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1 INTRODUCTION
Droplet microfluidics has the potential to eliminate the test-

ing bottleneck in synthetic biology by screening biological

samples encapsulated in water-in-oil emulsions at unprece-

dented throughput [2]. Sophisticated screens require func-

tional and complex devices that perform exactly as designed.

Effective performance characterization and predictive design

of droplet microfluidic components has been hampered due

to low-throughput and expensive fabrication with standard

soft lithography techniques. This has limited droplet mi-

crofluidics to proof-of-concept devices. Even when some of

these barriers are removed through rapid prototyping, devel-

oping a robust dataset to effectively represent all parameters

as a "lookup table" is near impossible.

One solution to explore how design parameters affect

performance in microfluidics is through machine learning.

Although machine learning can make accurate microfluidic

design automation tools, standard development pipelines re-

quire a large, naively-generated training set (Figure 1, left).
These approaches become intractable in cases where gener-

ating labeled data is particularly time or money-intensive.

Training data-restricted models can benefit from active

learning algorithms, in which the model queries an "oracle"

(the user) during the training process to only generate or

label the data it predicts would best improve model perfor-

mance (Figure 1, right) [6]. Through structured data gen-

eration, the amount of training data needed for an accurate

model can be significantly reduced, speeding up the time to

predictive design and eliminating unproductive user efforts.

Here, we present a novel experimental paradigm to rapidly

generate microfluidic design automation tools. Efficacy of

thismethodwas tested against a previously generated dataset

for a droplet generator design tool (DAFD) [3, 4]. Thismethod

can be extended to additional microfluidic components or

fabrication methods, provided a method for data generation

is high-throughput enough.

2 RESULTS
Efficient data generation for active learning algorithms ne-

cessitates evaluation of the quality of unlabeled data (infor-

mativeness and/or diversity) used in each round of model

training [6]. Informativeness is the predicted amount that a

specific datapoint can improve the model, whereas diversity

is the spread of the data used across the design space. Here,

previously generated data is pooled as "chips" (i.e., all data-

points generated using the same microfluidic device), which

includes 1̃000 datapoints pooled as 43 chips that were fab-

ricated with previously developed rapid prototyping work-

flows [5]. Data was pooled in this way to minimized future

microfluidic devices that need to be made, the most resource-

intensive step in the data generation process.

To initially explore the advantages of active learning, three

data quality metrics were implemented: (1) random choice;

(2) greedy sampling (GS), which chooses the most different

chip to the training set [7]; and (3) query by committee (QBC),

which chooses the most informative chip [1]. In all cases,

the model is seeded with one chip randomly picked from the

training set.

In greedy sampling, optimal candidates are chosen by the

maximum average distance of the geometric features of the

chip from the existing labeled training set (Equation 1). All
features of each datapoint is normalized to avoid bias.

𝑑𝑑𝑝 =
1

𝑁𝑡𝑟𝑎𝑖𝑛
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| |xdp − xi | | (1)

Alternatively, the potential "information" gained through

adding a specific datapoint can be evaluatedwithQBC (Equa-
tion 2).

𝐼 (𝑥) = 1

𝑃

𝑃∑
𝑝=1

(𝑦𝑝 (𝑥) − 𝑦 (𝑥))2
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In QBC, the quality of each unlabeled point is evaluated by

the variance of each prediction across 𝑃 regressors. Each re-

gressor is trained on a bootstrapped collection of the training

set. Points with high information are estimate to be those

with a large variance in predicted value. In this study, results

were normalized by the mean prediction to avoid bias for

larger values. Each iteration, the chip with the max average

variance was chosen as the next datapoint.

These methods were implemented into the DAFD frame-

work, consisting of 4 neural networks (NN) predicting the

droplet size and generation rate in the dripping and jetting
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Figure 1: Comparison between a normal machine learning pipeline (left), in which a large training set it fed into the model
and active learning (right), in which the model queries a user for more data after "seeding" with a small initial dataset.

regimes (Figure 2). Regressor accuracy was tested on a ran-

domly partitioned 20% of the total dataset and evaluated

using root-mean-square error (RMSE). Across all NNs, GS

performed better than or equivalent to random choice. This

was distinct in regime 2: an RMSE of 0.9 was achieved with

100 and 150 fewer datapoints for size and generation rate, re-

spectively. This indicates that diversity of data is the most im-

portant characteristic of the training set. QBC had improved

performance than random choice in some cases, however,

performed worse when predicting droplet size in regime 2.

Poor performance by QBC could be from poor initialization

or balancing data selection over the 4 regressors.

3 CONCLUSION & FUTUREWORK
Here, we have shown that active learning can provide a de-

sign framework to streamline the experimental workflow

Figure 2: RMSE error across all four regressorswith different
active learning algorithms. Curves and shaded regions are
the mean and standard deviation, respectively (N=3)

for developing design automation tools. While model im-

provement was variable while simultaneously training four

regressors, this framework can be improved through devel-

opment of a more sophisticated algorithm accounting for

both diversity and informativeness. Model seeding could also

be improved through formal Design of Experiments (DoE),

giving a high-quality base model for further data generation

and model evaluation cycles.

While this first study has used an existing dataset ex-

ploring how microfluidic device parameters affect droplet

generation, we can extend this approach to de-novo models

of different components (droplet sorter, merger, etc.). This

method can also be used to rapidly perform transfer learn-

ing for using a device with custom fluid classes or different

fabrication methods. Development of a streamlined pipeline

for design automation is a necessary step for the standard-

ization of microfluidics, and further spread its adoption by

non-experts.
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