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1 INTRODUCTION
Droplet microfluidics is well poised to improve the gold

standard in many fields such as synthetic biology [2]. How-

ever, the lack of available design automation tools that can

create a microfluidic droplet generator based on a desired

performance, forces the design process to be iterative, ineffi-

cient, and costly, thus, hampering the wide-spread adoption

of droplet microfluidics in the life sciences. Machine learn-

ing and design automation tools have advanced many fields

with new capabilities, such as genetic circuit design, cell

pattern synthesis, and multi-cellular mass formation design

[1, 8, 9]. The recent introduction of low-cost rapid micro-

fabrication techniques enables generation of large-scale ex-

perimental datasets which was previously not viable in a

realistic cost and time-frame [7]. We previously developed

an open-source machine learning based design automation

tool, DAFD (dafdcad.org) [5], which can utilize the avail-

able data to provide both performance prediction and design

automation. However, to achieve accurate performance pre-

diction and design automation a full-factorial search in flow

conditions (25) and an orthogonal design of experiments

for geometry search (25 devices) were used resulting in a

total 625 experiments. By analyzing the the contribution

of each device to the exploration of the design-space, we

identify a more efficient method to map approximately the

same design-space with just 5 chips. Therefore, by utilizing a

low-cost fabrication method droplet generation design-space

was explored, analyzed, and understood, which in turn en-

ables design automation of high-performance and high-end

droplet generators in a viable and realistic cost-frame.

2 CONFIDENCE ELLIPSES
The observed performance of a microfluidic droplet genera-

tor can be summed up in two parameters: droplet diameter

and generation rate. Since, all the 25 microfluidic devices

were tested at the same 25 flow conditions, the devices that

show a larger variation in the observed performance induced

by changing the flow condition, is more efficient in explor-

ing the design-space. A confidence ellipse can be drawn by

using the variance of the 25 observed data per device in both

directions (droplet diameter and generation rate) as given in

Eq. (1): (
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Figure 1: The performance range of a given microfluidic
droplet generator design can be estimated by confidence el-
lipses. Using a dataset generated through a low-cost rapid
prototyping method and a low-cost fluid combination, per-
formance range of each design and the amount of perfor-
mance overlap are approximated. This analysis reduces the
necessary number of designs that should be fabricated and
tested for extending design automation tools to cover new
high-end fluid combinations and fabrication techniques.

where 𝜎𝐹 is the variance in generation rate, 𝜎𝐷 is the vari-

ance in droplet diameter, and 𝑠 defines the size of the ellipse

(confidence value). Since droplet diameter and generation

rate are independent and by assuming a Gaussian distribu-

tion, Eq. (1) becomes a Chi-Square distribution [4], therefore,

for a 95% confidence, 𝑠 = 5.991. Using the covariance matrix

of the data of each device, the eigenvectors are calculated to

determine the angle that the ellipse takes.

3 EFFICIENT DESIGN-SPACE EXPLORATION
The workflow consists of three phases. Phase 1 starts with

cost and time-efficient exploration of the entire design-space

using low-cost desktop micromilling to generate the initial

large-scale dataset as we previously reported [6]. In phase
2, machine learning models are fitted to the data and using

metrics such as coefficient of determination the accuracy of

the predictive models and the sufficiency and diversity of the

dataset are verified. Afterwards, iso-contours of the Gauss-

ian distribution (confidence ellipses) [3] for the data points

generated with a single device are used to determine the

contribution of each device in exploring the design-space.

The devices with a confidence ellipse that shows a lot of

overlap with other confidence ellipses signifies an inefficient

exploration. On the other hand, the devices with a confidence
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Figure 2: Phase 1: Low-cost rapid prototyping and design of experiments methods are used to generate a large-scale dataset.
Phase 2: Machine learning based performance prediction and design automation accuracy and data sufficiency are verified.
The dataset is analyzed to find a reduced number of devices that cover a similar design-space. Phase 3: The identified designs
can be used for extending the capabilities of design automation tools to support high-end fluids and fabrication methods.

ellipse that has a minimum overlap and encompasses a larger

design-space demonstrates a more efficient search. There-

fore, in phase 3, we can remove the inefficient devices and

determine the minimum number of devices that can be used

to explore the design-space. Consequently, by significantly

reducing the number of microfluidic devices necessary to

explore a design-space, high-end fabrication methods and

fluid combinations could be used to extend the design au-

tomation tool to support high-performance microfluidics in

a time- and cost-efficient manner.

4 CONCLUSION AND FUTUREWORK
Machine learning algorithms enable accurate microfluidic

design automation. However, generating large-scale datasets

required for training these algorithms are resource intensive.

Therefore, efficient frameworks are required for extending

design automation tools. In here, we used information in-

ferred from a dataset generated using low-cost material to

efficient create a dataset for high-end material.
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