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Abstract

Consider a random walk {S(n), n ≥ 1} on Rd, d ≥ 2, where S(n) =
∑n

i=1 X(i) with
{X(n), n ≥ 1} is a family of i.i.d. random variables in Rd. Let K ⊂ Rd be an open
cone and τx = inf{n ≥ 1 : x + S(n) 6∈ K} the exit time from the cone when the random
walk is started at x ∈ K. Let Zx = {Zx(n) : n ≥ 0} be the Markov chain defined by
the random walk conditioned to stay in the cone K. That is, the distribution of Z(n) is
given by the distribution of {x + S(n), k ≤ n} conditional on τx > n. The bulk of this
dissertation studies different aspects of the behavior of Zx. Classical methods typically
used for the one-dimensional case (e.g. Wiener-Hopf factorization) are not applicable in
the multi-dimensional setting.

In the case of zero-drift in chapter 3 we prove invariance principles and functional
convergence of h-transforms and bridges to the corresponding functionals of Brownian
motion. These results are used subsequently in chapter 4 to study the asymptotic behavior
of the Green function of Z in the case that K is convex. The characterization of the Green
function for the case of zero-drift leads to the proof of uniqueness of the harmonic function
of Z in the case that K is convex. Complementary to this result, it is shown in the same
chapter that whenever the random walk has non-zero drift, there are typically uncountably
many harmonic functions for the case of convex cones.

Many of the results in the dissertation are proven under minimal moments assumption
on the random variables {X(n), n ≥ 1}. From a methodological perspective, many of the
proofs use a combination of a strong approximation of random walks ‘deep inside the cone’
with Brownian motion, corresponding results about functionals of Brownian motion and
estimates to control the behavior near the boundary. Some of the results for the continuous
time limits need to be proven from scratch.

In chapter 5, we show how a similar methodology as for the case of random walks in
cones can be used to study a different process, which does not exhibit the same symmetry
properties as the case of random walks, even though it is a functional of S(n): integrated
random walks conditioned to stay positive. To be more precise, the integrated random walk
is given by {T (n) : n ≥ 0} where T (0) = x > 0 and T (n) = x+ny+

∑n
k=1 S(k). T (n) is not

a Markov chain, but if we define S(0) = y then Z(x,y) = {(T (n), S(n)) : n ≥ 0} is a Markov
chain. The respective stopping time is τ(x,y) = inf{n ≥ 1 : Z(n) 6∈ (0,∞)×R}. We prove
invariance principles and functional convergence of h-transforms and bridges for {Z(x,y) :
x, y > 0} conditional on τ(x,y) > n. The limit process now is the Kolmogorov diffusion,
a two-dimensional continuous time stochastic process which consists of the integral of



x

a Brownian motion in its first coordinate and the Brownian motion itself in its second
coordinate.

Some of the results on random walks in cones in the dissertation have proven useful
for recent work that applies the probabilistic approach to enumerative combinatorics (see
e.g. Kenyon et al. [2019], Bostan et al. [2018]). Moreover, they complete the study
of respectively, random walks in multi-dimensional cones and integrated random walks
conditioned to stay positive, started respectively in Denisov and Wachtel [2010, 2015b]
and Denisov and Wachtel [2015a].



Zusammenfassung

Sei {S(n), n ≥ 1} eine Irrfahrt in Rd, d ≥ 2, mit S(n) =
∑n

i=1X(i) und {X(n), n ≥ 1} eine
Familie von Zufallsvariablen mit Werten in Rd. Sei außerdem K ⊂ Rd ein offener Kegel
und τx = inf{n ≥ 1 : x + S(n) 6∈ K} die Austrittszeit aus dem Kegel, wenn die Irrfahrt
bei x ∈ K gestartet wird. Sei Zx = {Zx(n), n ≥ 0} die Markov-Kette, die durch Bedingen
von {x+S(k), k ≤ n} auf τx > n gewonnen wird. Die Hauptergebnisse dieser Dissertation
beschäftigen sich mit verschiedenen Aspekten des Verhaltens von Z, wenn d ≥ 2 gilt.
Klassische Methoden wie Wiener-Hopf-Faktoriesierungen sind im multi-dimensionalen Fall
nicht anwendbar.

Im Falle von Irrfahrten mit Drift Null beweisen wir in Kapitel 3 mehrere Invarianz-
prinzipien und funktionale Grenzwertsätze für die h-Transformierten und Brücken der
Irrfahrt. Die Limiten sind immer Funktionale der Brownschen Bewegung, gestoppt wenn
sie den Kegel verlässt. Diese Resultate werden im Weiteren in Kapitel 4 benutzt um
das asymptotische Verhalten der Green’schen Funktion der Irrfahrt, gestoppt wenn sie
den Kegel verlässt, zu charakterisieren. Diese Charakterisierung liefert als Korollar die
Eindeutigkeit der harmonischen Funktion für die gestoppte Irrfahrt. Dieses Resultat wird
im selben Kapitel ergänzt, in dem gezeigt wird, dass es überabzählbar viele harmonische
Funktionen für die gestoppte Irrfahrt gibt, wenn die Irrfaht einen Drift hat.

Viele der Resultate der Dissertation kommen mit minimalen Momentenannahmen an
den Schritt der Irrfahrt aus. Methodologisch gesehen kombinieren viele der Beweise eine
starke Approximation durch die Brownsche Bewegung der Irrfahrt ‘tief im Kegel’, entsprechende
Resultate der Theorie der Brownschen Bewegung und Ungleichungen für das Verhalten in
der Nähe des Kegelrandes. Einige der Resultate für den Limesprozess werden hier zum
ersten Mal bewiesen.

Im Kapitel 5 zeigen wir, dass eine ähnliche Methodologie wie im Falle der Irrfahrt
behilflich sein kann, um einen stochastischen Prozess zu studieren, der nicht die gleichen
Eigenschaften wie die Irrfahrt aufweist: integrierte ein-dimensionale Irrfahrt, bedingt darauf
positiv zu bleiben. Genauer formuliert, die integrierte Irrfahrt ist gegeben durch {T (n) :
n ≥ 0} mit T (0) = x > 0 und T (n) = x + ny +

∑n
k=1 S(k). T (n) ist keine Markov-Kette,

aber mit der Definition S(0) = y wird der Prozess Z(x,y) = {(T (n), S(n)) : n ≥ 0} eine
Markov Kette. Die Stoppzeit von Interesse ist τ(x,y) = inf{n ≥ 1 : Z(n) 6∈ (0,∞)×R}. Wir
beweisen Invarianzprinzipien und funktionale Grenzwertsätze für die h-Transformierten
und Brücken von {Z(x,y) : x, y > 0} bedingt darauf, dass τ(x,y) > n. Der Limesprozess
ist nun die Kolmogorov’sche Diffusion, ein zwei-dimensionaler Prozess bestehend aus dem
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Integral einer Brownschen Bewegung und der Brownschen Bewegung selbst.
Einige der Resultate in dieser Dissertation wurden vor Kurzem in Arbeiten, die die

probabilistiche Perspektive in der Kombinatorik verfolgen, eingesetzt (siehe etwa Kenyon
et al. [2019] oder Bostan et al. [2018]). Die Resultate in dieser Dissertation erweitern und
vervollständigen die Arbeit über multi-dimensionale Irrfahrten in Kegeln und integrierte
Irrfahrten bedingt darauf positiv zu bleiben, die in den Arbeiten Denisov and Wachtel
[2015b, 2019] und Denisov and Wachtel [2015a] begonnen wurde.
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Chapter 1

Introduction

Conditioned random walks, and especially conditioned random walks in cones have gained
considerable popularity recently. This is because they appear in some form or another
in many models of probability theory, statistical mechanics, combinatorics and beyond.
Sometimes they are an integral part of a probabilistic model, in other cases they appear as
an auxiliary tool in proofs. This thesis brings new insights into the study of such stochastic
processes.

We first give some more explicit applications of random walks in cones and of the
methods used in this thesis. More explicit definitions of the mathematical objects mentioned
follow within this introduction and in the next chapter.

i. Models of non-intersecting particles are sometimes used in physics (see e.g. Fisher
[1984]). They can be interpreted as models of a multi-dimensional random walk in
specific Weyl chambers, which are also cones.1 Functionals of random walks in such
chambers also appear in recent work: see e.g. Feierl [2012] and Feierl [2009]. Denisov
and Wachtel [2015b] contains a discussion how the study of walks in Weyl chambers in
Denisov and Wachtel [2010] served as a starting point for the generalization to random
walks in general cones.

ii. Random walks in the quarter plane are a favorite object of study in enumerative
combinatorics, not just the model per se, but also as a building block for the analysis
of other models. Note that a quarter plane, or orthant more generally, is a cone. See
Bostan et al. [2018] and references therein for work on counting of random walks in a
quarter plane and results which use the results presented in this thesis. See Kenyon
et al. [2019] for an example how results in this thesis are used as a tool in proofs for
other stochastic models.

The algebraic approach to random walks in the quarter plane is studied extensively
in Fayolle et al. [1999] and applied in recent work on random walks in the quarter
plane: e.g. Raschel [2012], Kurkova and Raschel [2011], Kurkova and Raschel [2012]
and Raschel [2014]. The work presented here shows how the probabilistic approach is

1Weyl chambers of type A and B to be more precise.



2 1. Introduction

poweful enough to give more general results than these works without making strong
assumptions on the step of the random walk.

Random walks in the quarter plane sometimes also appear in queueing models, see e.g.
Greenwood and Shaked [1977] and Cohen [1992].

iii. Doob’s h-transforms as defined in this thesis are sometimes useful in the numerical
simulation of physical processes, as well as in simulating rare events for certain functionals
of random walks, in both one- and multi-dimensional cases.2 See e.g. Blanchet and
Glynn [2008] for examples. Moreover, because h-transforms allow to control the drift of
the random walk, there may be uses of such transforms in machine learning algorithms
which aim at learning outcomes which are rare under the data-generating process.

iv. The tools used in this thesis and other preceding work (Denisov and Wachtel [2015b],
Denisov and Wachtel [2019]) can be fruitfully used in the study of other related Markov
processes. An example of this are integrated random walks. Recent work has studied
integrated random walks conditioned to stay positive, see e.g. Dembo et al. [2013] and
Denisov and Wachtel [2015a]. Chapter 5 is devoted to proving invariance principles
for such processes.

Grama et al. [2017] study conditioned limit theorems for functionals of products of
random matrices under the condition that the functional stay away from the origin. It
should not be hard to use results in this thesis to extend their work towards invariance
principles for certain functionals of products of random matrices.

v. Finally, random walks conditioned to stay positive appear as a tool in the study of
the asymptotic behavior of branching processes and in the study of random walks
in random environments. Random walks conditioned to stay positive are the one-
dimensional analogue of the processes to which most of this thesis is devoted. The
results in this thesis may be potentially helpful for the study of the asymptotic behavior
of branching processes in which children of each generation are tagged by discrete
collection of ‘features’.

We introduce the main geometric object of interest in this thesis. A cone in Rd, d ≥ 1
is an open set K such that for every z ∈ K it holds λz ∈ K for all λ > 0. A cone is called
convex if it is closed under vector addition. In d = 1 there are only two possible cones:
(0,∞) and (−∞, 0) – we focus for simplicity and without loss of generality only on the
former.

The one-dimensional case.

The study of one-dimensional random walks conditioned to stay positive is more or less
complete and well-known in the classical literature. Denote for the random walk {S(n) :=∑n

k=1Xi} with {X(n), n ≥ 1} a family of i.i.d. one-dimensional random variables, the exit

2See Doob [1982] for a classical treatment of h-transforms.
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time from the positive domain by τx = inf{n ≥ 1 : x + S(n) ≤ 0}, whenever the random
walk is started at x ≥ 0.

The asymptotics of the exit time probability P(τx > n) for x > 0 as n→∞ have been
very well studied. The same holds true for the process of the random walk conditioned
to stay positive, i.e. x + S(n) = x +

∑n
k=1Xk under the condition that τx > n. See e.g.

Doney [1989], Doney [1998], Bertoin and Doney [1994] and Bolthausen [1976] as well as
the references contained in these papers. We give here a brief summary of the results.

One knows that

P(τx > n) ∼ V (x)P(τ0 > n) ∼ κV (x)n−
1
2 , n→∞. (1.1)

Here, V (x) is the renewal function based on ladder heights of the reflected random
walk. To be more precise, define the process of ladder heights and ladder epochs (H,T ) =
(Hk, Tk)k≥0 for the reflected random walk {−S(n)} as follows. Let T0 = 0 and define the
ladder height of order k as Hk = −STk and the ladder epoch of order k + 1 as Tk+1 =
inf{j > Tk : −Sj > Hk}. Use the convention that Hk = +∞ when Tk = +∞.

Then the function V is given by

V (x) =
∑
k≥0

P(Hk ≤ x), x > 0. (1.2)

Even nicer characterizations of V are known when E[|X1|2] < ∞. In that case, Wald’s
identity leads to

V (x) =
E[−S(τx)]

E[−S(τ0)]
.

Whenever E[Xi] ≥ 0, the function V is harmonic for the random walk killed when it
leaves (0,∞). This means

E[V (x+X1), x+X1 > 0] = V (x), x > 0.3 (1.3)

In case E[Xi] < 0, the function V is only super-harmonic and the equality in V is replaced
by ≤. One can state this otherwise: {V (S(n))1{τx>n}}n≥0 is a martingale whenever S(n)
is started at x and E[Xi] ≥ 0, and a super-martingale whenever S(n) is started at x and
E[Xi] < 0. Whenever harmonicity of V is ensured, one can use the theory of h- transforms
due to Joseph Leo Doob, to define a Markov chain {Ŝ(n)} which never leaves (0,∞). This
is done formally by defining

P(V )
x (Ŝ(n) ∈ A) =

1

V (x)
E[V (x+S(n)), A, τx > n], ∀A ⊂ (0,∞) Borel-measurable, x > 0.

Bertoin and Doney [1994] show that the measure P
(V )
x

(
(Ŝ(k), k ≤ n) ∈ ·

)
is the weak

limit of P(S(k), k ≤ n) ∈ ·|τx > n) as n→∞. Therefore, the two methods of defining a

3In the following we require any harmonic function to be non-negative.



4 1. Introduction

‘random walk conditioned to stay positive’, via weak limit and via h-transform, coincide
in the one-dimensional case.

One knows that V as defined in (1.2) is, up to multiplication with positive scalars, the
only non-constant function which satisfies (1.3), whenever E[X1] ≥ 0. When E[X1] < 0,
only constant functions satisfy (1.3). More generally, for a given Markov chain Z(n), the
study of all functions V such that V (Z(n)) becomes a Martingale is called the study of the
Martin boundary of Z(n). The Martin boundary of a Markov chain characterizes its long-
run behavior and gives insights as to how to control the Markov chain (see e.g. chapter
7 in Woess [2009] for a modern introduction to the Martin boundary theory for Markov
chains).

Finally, we turn the attention to invariance principles. Bolthausen [1976] proves an
invariance principle with the Brownian meander as a weak limit: he shows that under the
assumption that E[Xi] = 0 and E[X2

i ] = 1, the continuous-time process Yn(t) with Yn( k
n
) =

S(k)

n 1
2

and which is linearly interpolated otherwise, converges weakly to the Brownian meander

process defined by

B+(t) =

∣∣∣∣∣ 1

(1− τ)
1
2

B(τ + (1− τ)t)

∣∣∣∣∣ , t ∈ [0, 1]

with B a Brownian motion and τ = sup{t ∈ [0, 1] : B(t) = 0}. Bolthausen’s result is
limited to random walks in the domain of attraction of the standard normal distribution.
Caravenna and Chaumont [2008] prove a similar result to Bolthausen’s for the case of
random walks in the domain of attraction of a stable law.4 Instead of the meander
of a Brownian motion conditioned to stay positive, the limit is then a ‘Lévy process
conditioned to stay positive’. In analogy to above, this limit can be constructed through
a h-transform from the respective unconstrained Lévy process, which is the limit in the
invariance principle of the unconstrained random walk.

All of the results in the one-dimensional case use, to varying extents, the Wiener-Hopf
identities in the proofs, and the associated construction through ladder heights and ladder
epochs (H,T ). In fact, these powerful tools can be used even for random walks which are
not in the domain of attraction of the standard normal distribution. E.g. a typical and
powerful Wiener-Hopf identity is∑

n≥0

E[eiλM
+
n ]zn = exp

(∑
k≥1

ψk(λ)

k
zk

)
, |z| < 1, λ ∈ C, im(λ) ≥ 0.

Here ψk(λ) = E[eiλS(k)+ ], k ≥ 1. From this identity one can extract the asymptotics
of P(τx > n) as n→∞, even when the random walk is outside of the domain of the
attraction of the standard normal distribution. To exemplify, assume that {S(n)} satisfies
the condition P(S(n) > 0)→ρ ∈ (0, 1) as n→∞. Then, (1.1) holds in the form P(τx >
n)→V (x)n−ρL(n), for a slowly varying function n→L(n).

4I.e. the random walk {S(n), n ≥ 1} is such that there exists a sequence of positive real numbers

{a(n), n ≥ 1} such that S(n)
a(n) converges in law to a stable law as n→∞.
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The multi-dimensional case.

In dimensions d ≥ 2, the number of possible cones K becomes uncountable. Unfortunately,
there is no reasonable way of extending the Weiner-Hopf identities and the associated
construction through ladder heights and epochs to the set-up with d ≥ 2. Geometrically
speaking, the problem is that the directions in which a typical random walk can leave a
typical cone are highly non-unique. Therefore, a new methodology is required for the case
d ≥ 2.

Denisov and Wachtel [2015b] offers such a methodology for random walks with zero
drift and finite second moment. The methodology started there and refined in Denisov
and Wachtel [2019] and Duraj and Wachtel [2020] is of probabilistic nature, and doesn’t
rely on algebraic identities as was the case for one-dimensional random walks. It can be
used to establish results for general classes of random walks in cones and related processes.
In particular, it enables:

i. Establishing the asymptotics of P(τx > n) (Denisov and Wachtel [2015b], Denisov and
Wachtel [2019]), see chapter 2 here;

ii. Establishing conditional limit theorems and local limit theorems (Denisov and Wachtel
[2015b, 2019]), see chapter 2 here;

iii. Establishing several invariance principles, both for random walks conditioned to stay
in cones (meander and bridge), as well as for the respective h-transforms (Duraj and
Wachtel [2020]), see chapter 3;

iv. Characterizing the Martin boundary for the zero-drift case (Duraj and Wachtel [2018]),
see chapter 4 here;

v. Studying properties of related processes. Some examples are:

• the non-zero drift random walk in a general convex cone (e.g. Duraj [2014a]), see
subsection 4.4 of chapter 4,

• recurrence properties for two-dimensional queuing processes, which can be studied
via absorbing-reflecting random walks in R2

+ (e.g. the recent Peigné and Woess
[2019]),

• integrated random walks conditioned to stay positive, see chapter 5 here.

The limits that are characterized are always functionals or measure-transformations of
Brownian motion killed when leaving the multi-dimensional cone. The study of Brownian
motion in cones started with Burkholder [1977] to the best of knowledge. This thesis
uses results from Banuelos and Smits [1997] and Garbit [2009]. Moreover, it proves some
additional results regarding the convergence of h-transforms which were not present in the
literature in the generality necessary for this thesis. It is well-known since Banuelos and
Smits [1997] that for Brownian motions in a cone K started at x ∈ K, the exit time from
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the cone τ bmx has the asymptotics P(τ bmx > t) ∼ κu(x)t−
p
2 with a p > 0. The parameter

p is determined by the geometry of the cone K. Here, u is a harmonic function for the
Brownian motion in K, i.e. it satisfies a similar relation as V in (1.3) for the Brownian
motion in K. Analogous to the discrete-time process, one can define the u-transform of
the Brownian motion to get a continuous process in continuous time which never leaves
the cone.

The general strategy for the results in the zero-drift case always has the same broadly
defined steps which we now explain.

First, one notices that under the condition {τx > n} the random walk eventually ends
up ‘deep inside the cone’ (so-called entropic repulsion). This means that the probability
of the random walk being near to the boundary of the cone, conditional on {τx > n}, falls
exponentially with n.

Second, one notices that the random walk deep inside the cone behaves essentially as a
Brownian motion. This is due to the Donsker invariance principle and the fact that deep
inside the cone there are no ‘boundary effects’. Therefore, one uses a strong approximation
of the random walk through Brownian motion, when the random walk reaches into the
depths of the cone.

Finally, because the random walk is assumed to have finite second moments, deep inside
the cone, paths with atypical M(n) := maxk≤n |S(k)| where n ranges up until the time of
entry in the region deep inside the cone, do not contribute to the limit. To show that these
large deviations don’t play a role in the limit one uses versions of the powerful Fuk-Nagaev
inequalities (see Nagaev [1979] and Borovkov [1972]).

The proofs of the results in this thesis build upon each other and previous technical
work: e.g. the invariance principles use the local-limit theorems for random walks in
cones from Denisov and Wachtel [2015b, 2019] together with extensions of the work in
Garbit [2009] on Brownian motion in cones; the characterization of the Green function
uses the already proven invariance principles, local-limit theorems and estimates for the
Green function of the unconditioned random walk.

A slightly more formal discussion of the proof strategies follows. The rest of the thesis
is devoted to formalizing the strategies and giving complete proofs for all results.

Invariance principles.

We look at a zero-drift random walk in a cone K with geometric characteristic p, i.e. so that
the Brownian motion killed when leaving K satisfies P(τ bmx > t) ∼ κu(x)t−

p
2 , t→∞. We

assume the step X1 satisfies E[|X1|2] = 1, E[|X1|α] < ∞ for some α > 2 satisfying α = p
if p > 2. In particular, the random walk is in the domain of attraction of the Brownian
motion. More than second moments are needed for the proof of the results, because of
the geometry of the cones. But the moment assumptions made are shown by examples to
be minimal (for the invariance principles the examples in this spirit are in Denisov and
Wachtel [2015b], whereas for the study of the Green function they are contained in the
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thesis). Let K ⊂ Rd be a convex cone with smooth boundary.5 One defines for ε > 0 small
the region

Kn,ε = {x ∈ K : dist(x, ∂K) ≥ n
1
2
−ε}.

Note that this is the ‘right’ formalization of ‘deep inside the cone’, since the random walk
is in the domain of attraction of Brownian motion. Define also the associated entry time

νn = min{k ≥ 1 : x+ S(k) ∈ Kn,ε}.

Let D[0, 1] be the space of real-valued functions on [0, 1] which are right-continuous with
left limits. To show an invariance principle for random walks conditioned to stay in the
cone, one defines X(n)(t) = x+S([nt])√

n
, t ≥ 0. One establishes the invariance principle towards

the Brownian meander MK within K, if one shows for bounded and uniformly continuous
f : D[0, 1]→R+ that

E[f(X(n))|τx > n]→E[f(MK)], n→∞. (1.4)

One knows from Denisov and Wachtel [2015b, 2019] that P(τx > n) ∼ κV (x)n−
p
2 as

n→∞. Chapter 4 here shows that V is unique up to scaling.
Moreover, one can split

E[f(X(n)), τx > n] = E[f(X(n)), τx > n, νn ≤ n1−ε] + E[f(X(n)), τx > n, νn > n1−ε].

Denisov and Wachtel [2015b] show that P(τx > n, νn > n1−ε) ≤ e−O(nε), so that the second
term is o(P(τx > n)). The first term can be split according to whether a big jump has
occurred before entering Kn,ε.

E[f(X(n)), τx > n, νn ≤ n1−ε] = E[f(X(n)), τx > n, νn ≤ n1−ε,M(νn) ≤ θn
√
n]

+ E[f(X(n)), τx > n, νn ≤ n1−ε,M(νn) > θn
√
n].

Since the random walk is in the domain of attraction of the Brownian motion, the second
term is also o(P(τx > n)). To show this large-deviations result one uses a version of the
Fuk-Nagaev inequalities, which hold for general random walks under minimal conditions.
Thus, only the first term on the right-hand side of the equality contributes to the limit.
We call the paths where {τx > n, νn ≤ n1−ε,M(νn) ≤ θn

√
n} the region of typical paths.

Once one focuses on typical paths under {τx > n}, one can focus on the difference

S([nt]) − S(νn) by defining X
(k,n)
z (t) =

z+(S([nt])−S(k))1{t> kn }√
n

, t ≥ 0, z ∈ K. For typical

paths of the random walk, the difference between X(n) and X
(νn,n)
x+S(νn) is o(P(τx > n)) in

probability. Thus, one can essentially push the random walk deep inside the cone, where
it can be approximated by Brownian motion. To be more precise, one knows that one can
define a probability space and a random walk and Brownian motion B, such that for γ > 0
small, the event

An = {sup
k≤n
|S([k])−B(k)| ≤ n

1
2
−γ},

5This is for simplicity, to cover the rest of the discussion in the introduction. Several of the results hold
under weaker conditions.
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is of the order n−r for r > 0 that can be made arbitrarily small. That is, the probability
that the path of the Brownian motion and of the random walk are far from each other is
of order n−r, for r > 0 that can be made arbitrarily small.

After one pushes the Brownian motion B deep inside the cone with the same steps
as for the random walk {S(n)}, the fact that P(An) = O(n−r) and that f is uniformly
continuous establishes (1.4).

For the case of the invariance principle for bridges, one looks to establish for fixed
x, y ∈ K the weak convergence of the measures P(·|x+ S(n) = y, τx > n). The main idea
is to split the path from x to y according to the intermediate value reached at [(1 − t)n]
for t ∈ (0, 1) and use the invariance principle for the meander. One writes

P(·|x+ S(n) = y, τx > n) (1.5)

=

∑
z∈K P(·, x+ S(tn) = z, τx > tn)P(z + S((1− t)n) = y, τz > (1− t)n)

P(x+ S(n) = y, τx > n)
.

The path until time [(1− t)n] converges to a meander MK , as established above. The path
from [(1− t)n] to n of {S(n)} corresponds approximately to a path from time 0 to [tn] for
the random walk {−S(n)}.6 Thus, one can write

P(z + S((1− t)n) = y, τz > (1− t)n) = P(y − S((1− t)n) = z, τ̃y > (1− t)n),

for τ̃y the respective exit time for {−S(n)}. The invariance principle for the meander
therefore deals with the numerator in (1.5). The asymptotics of the denominator follow
immediately from a local limit theorem in Denisov and Wachtel [2015b].

We also prove an invariance principle for the h-transforms, namely show that the V -
transform of S(n) converges to the u-transform of the Brownian motion started at zero.

Formally, for any bounded and uniformly continuous f : D[0, 1]→R+ one shows that

E
(V )
x [f(X(n))] = 1

V (x)
E[f(X(n))V (x+S(n)), τx > n] converges to the expectation of f under

a measure P
(u)
0 , which is the weak limit as x→0 of u-transforms of the Brownian motion

started at x ∈ K, x→0.7 The proof follows similarly to the case of the meander, except
that one needs good estimates for the harmonic function V . Denisov and Wachtel [2019]

shows that the difference of V and u is of the order max{|x|p−γ, |x|p
(dist(x,∂K)γ)

}. This is a
tight characterization of the difference and multiple applications of this insight are used in
the proof of the invariance for the h-transforms.

The Green function and Martin boundary for the case with zero drift.

To study the Green function of the random walk, one focuses on random walks on a lattice
(w.l.o.g. the Zd lattice).

The Green function for {S(n)}, killed when leaving K is given by

6This trick was first used in Caravenna and Chaumont [2013].
7We prove the existence of this limit.
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GK(x, y) =
∑
n≥0

P(x+ S(n) = y, τx > n).

It is well-known that all positive harmonic functions of the random walk killed when leaving
K are characterized by looking at the limits GK(x,y)

GK(x′,y)
as |y|→∞. Thus, one needs to study

this limit with respect to all possible convergence directions of y
|y| as |y|→∞, y ∈ K.

To study the asymptotics of the Green function for fixed x ∈ K and y ∈ K such that
|y|→∞, one splits as follows

GK(x, y) =
∑

n<ε|y|2
P(x+ S(n) = y, τx > n) +

∑
n≥ε|y|2

P(x+ S(n) = y, τx > n)

= S1(x, y, ε) + S2(x, y, ε).

An application of the local limit theorems from Denisov and Wachtel [2015b, 2019] and
results from the one-dimensional case show that

S2(x, y, ε) ∼ c
V (x)

|y|2p+d−2
u(y), for |y|→∞ and y far from ∂K, (1.6)

S2(x, y, ε) ∼ c
V (x)

|y|p+d−1
vσ(dist(y, ∂K)), for |y|→∞ and

y

|y|
→σ ∈ ∂K. (1.7)

Here, vσ is asymptotically linear, i.e. vσ(t) ∼ cσt, t→∞. This function appears from the
one-dimensional theory. For more details, note that when y ∈ K becomes unbounded along
the vector σ ∈ ∂K, the condition {τx > n} is satisfied with the same order in probability,
as if one would require the weaker condition that the random walk stay inside the half-
space whose boundary contains σ and which contains K fully. Denote in the following
this half-space by Hσ. Note that this half-space exists because K is assumed convex and
it is unique at the direction σ because of the smoothness assumption on the boundary
of K. This construction allows to replace the condition {τx > n} with a respective one-
dimensional condition by projecting the random walk along the perpendicular vector to σ.
After necessary technical modifications because the half-space Hσ is usually not aligned to
the lattice Zd, the results from the one-dimensional theory can be applied to our setting.

The restriction n < ε|y|2 pertaining to S1(x, y, ε) is usually treated in the literature using
estimates for local large deviations – one estimates the summand in S1(x, y, ε). We follow
a different approach – we estimate the whole sum and use estimates for Green functions
together with the invariance principle. For more details, S1(x, y, ε) can be first approached
via a split of the path from x to y. One defines θy = inf{n ≥ 1 : |x+S(n)− y| ≤ δ|y|}, the
entry time into the neighborhood of y with radius δ|y| and splits the path using Markov
property according to the entry value in this neighborhood. In the case that y becomes
unbounded in directions away from the boundary of K and d ≥ 3, this leads to an estimate
of the type

S1(x, y, ε) ≤ E[G(ε|y|2)(y − x− S(θy)), τx > θy, θy ≤ ε|y|2],
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where G(t)(z) =
∑

n<t P(S(n) = z) is the truncated Green function for the unconstrained
random walk. Then one uses estimates of the unconstrained Green function from previous
works like Uchiyama [1998], together with various versions of the invariance principles for
random walks in cones. Namely, one knows from Uchiyama [1998] that for d ≥ 3 it holds
uniformly in t and z

G(t)(z) ≤ C

1 + |z|d−2
, z ∈ Zd.

In the case d = 2 and y becoming unbounded in directions away from the boundary,
one replaces the estimates of the unconstrained Green functions through the standard
unconditional local limit theorem for random walk (see e.g. chapter 2 from Spitzer [1976]).
Overall, with the help of the invariance principles for the V -transform of the random walk,
this results in

y|2p+d−2S1(x, y, ε)→0, for |y|→∞ and y far from ∂K.

Establishing this asymptotics requires slightly more than the moment assumption needed
for the existence of the harmonic function V and of the asymptotics P(τx > n) ∼
κV (x)n−

p
2 , but one can show by example that the assumptions made are minimal for

our proof method to achieve the asymptotics (1.6).
For the case that y moves along the boundary direction σ ∈ ∂K, we use the same split

of the path as for the case away from the boundary, use also time reversion after the split
and instead of the truncated Green function G(t), we make use of the truncated Green
function of the half-space Hσ.

This leads to the estimate

S1(x, y, ε) ≤ E[Gε,y(x+ S(θy)), τx > θy, θy ≤ ε|y|2],

with
Gε,y(z) =

∑
k<ε|y|2

P(y − S(k) = z, T ′y > k),

where T ′y is the exit time for {−S(n)} from the half-space Hσ. One uses results from the
one-dimensional theory to bound

Gε,y(z) ≤ C min{v
′
σ(y)(1 + dist(z,Hy))

|z − y|d
, 1}.

From here, the proof follows similar steps as in the case of y becoming unbounded but not
approaching the boundary ∂K.

Overall, one arrives for any d ≥ 2 to the asymptotics

|y|p+d−1S1(x, y, ε)→0, for |y|→∞ and
y

|y|
→σ ∈ ∂K. (1.8)

It follows from (1.6), (1.7) and (1.8) that for any x, x′ ∈ K
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GK(x, y)

GK(x′, y)
→ V (x)

V (x′)
, as |y|→∞.

This establishes uniqueness of the harmonic function (up to a positive scaling) for zero-
drift random walks in cones K that are convex and have a smooth boundary. This result
generalizes some recent and partial uniqueness results for random walks with small steps
and specific cones (see e.g. Raschel [2014] and Bouaziz et al. [2015]).

Integrated random walks conditioned to stay positive.

The process to which chapter 5 is devoted, is not a random walk, but a derived Markov
chain.

Let {Xi}i∈N be i.i.d. random variables with E[Xi] = 0,E[X2
i ] = 1 and E[|Xi|2+δ] <∞

for some δ > 0 given and fixed throughout. For every starting point (x, y) define

S(n) = y +X1 + · · ·+Xn, n ∈ N0.

and

T (n) = x+ S(1) + · · ·+ S(n) = x+ ny + nX1 + (n− 1)X2 + · · ·+Xn, n ∈ N0.

We define the Markov chain Z(n) = (T (n), S(n)), n ∈ N0. We study the process under the
condition that T (n) remains positive. We look at the exit time

τ(x,y) = inf{n ≥ 0 : T (n) ≤ 0}.

We establish invariance principles for the Markov chain Z conditioned on τ(x,y) > n.

Let X(n)(t) =
(
T (tn)

n
3
2
, S(tn)

n
1
2

)
for t ∈ [0, 1] be the scaled discrete-time process. The

continuous limit process which appears in the invariance principles, is the Kolmogorov
Diffusion, started at (x, y) ∈ R+ ×R given by

W(x,y) =

{(
x+ ty +

∫ t

0

B(s)ds, y +B(s)

)
: t ≥ 0

}
,

and conditioned to stay in R+ ×R up to time 1.
We establish precisely the same invariance principles as for the random walk in cones:

convergence towards meander, bridge/excurison, and functional convergence of h-transforms.
All of these are established under the assumption of zero drift. Since the statements and
their proofs have an analogous strategy and implementation to the case of random walks
in cones, we avoid a detailed exposition of the strategy, and just summarize its main steps.

For the case of the meander, note that, conditional on τ(x,y) > n, the bulk of the mass is
concentrated in the region where T (n) is relatively large. In this region of ‘typical paths’,
one can use a strong approximation through the Kolmogorov diffusion. This is given by
the same arguments as the case of Brownian motion in a cone, because the Kolmogorov
diffusion is a continuous transformation of the paths of Brownian motion.



12 1. Introduction

For the case of bridges, one uses again time reversion together with the already proven
invariance principle for the meander.

Finally, for the functional convergence of h-transforms, besides the invariance principle
for the meander, one needs good control for the difference between the discrete-time and
continuous-time harmonic functions. This is given whenever the step of the random walk
has moments above 5

2
.

Relation to papers of the thesis author. All new results contained in this thesis
come from the following papers of the author of the thesis: Duraj [2014a], Duraj [2014b],
Duraj and Wachtel [2018], Duraj and Wachtel [2020], and Bär et al. [2020]. The following
chapters of the thesis are partial reformulations from sections of these papers, with some
passages literally copied.

Chapter 3 of this thesis and some parts of chapter 2 are based on the paper Duraj and
Wachtel [2020], which has been published in the journal Stochastic Processes and Their
Applications this year. Theorem 1 is a result of joint discussions with Vitali Wachtel,
Theorems 2 and 3 were proven by the author of the thesis.

Chapter 4, except for section 4.4, is based on the preprint Duraj and Wachtel [2018].
All the new results of this chapter (except for section 4.4) were obtained in joint discussion
with Vitali Wachtel.

Chapter 5, Anhang A, section B.2 of Anhang B, and some parts of chapter 2 are based
on the preprint Bär et al. [2020]. The new results on the integrated Brownian motion in
Anhang A and chapter 2 were established in joint discussion with Michael Bär and Vitali
Wachtel. The main results in chapter 5 (Theorems 7, 8 and 9) are due to the author of
the thesis.

Sections 4.4, and B.1 of Anhang B are complementary results of lesser importance than
the main results of this thesis. Section 4.4 is based on the paper Duraj [2014a] of the author,
which has been published by the journal Electronic Communications in Probability in the
year 2014. Section B.1 of Anhang B is based on the paper Duraj [2014b] of the author,
which has been published by the journal Stochastic Processes and Their Applications in
the year 2014.



Chapter 2

Technical preliminaries

This chapter summarizes several auxiliary results needed for the main body of the work
of the thesis. Many of these results have been proven in preceding work and are cited
accordingly whenever they are presented. Some of these results needed to be proven from
scratch, because they were not found in the literature. Whenever this is the case, a proof
is given in this chapter or in the appendix. The new results mentioned and proved here
appear in the works Duraj and Wachtel [2018], Duraj and Wachtel [2020] and Bär et al.
[2020].

2.1 Notation

In this thesis the following notation is used:

• The symbol ∼ means asymptotic equivalence. That is, for two non-negative functions
f, g and a constant (a ∈ R ∪ {±∞})d for some d ≥ 1.

f(x) ∼ g(x), as x→a ⇐⇒ lim
x→a

f(x)

g(x)
= 1.

• For real-valued functions with real-valued arguments, the symbols o,O are used to
indicate, respectively, the function on the left has a smaller order than the function
on the right, and the function on the right does not have a larger order. In more
detail, for a constant a ∈ R ∪ {±∞}:

f(x) = o(g(x)), as x→a ⇐⇒ lim
x→a

f(x)

g(x)
= 0,

f(x) = O(g(x)), as x→a ⇐⇒ lim sup
x→a

f(x)

g(x)
<∞.

• For a real-valued random variable X we define
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X+ = max{X, 0}, X− = min{X, 0}.

• For a random variable X and measurable event A, the expectation expression E[X,A]
means E[X1A]. Here, 1A is the indicator function of A with the properties 1A(x) = 1
if x ∈ A and 0 otherwise.

• For a vector X ∈ Rd, d ≥ 1, the notation |X| denotes the euclidean norm of the
vector. Recall that this coincides with the absolute value when d = 1.

• The short notation i.i.d. for a sequence of random variables means that the said
sequence is identically and independently distributed.

• For a random walk with i.i.d. steps denoted by {S(n), n ≥ 0} (S(0) = x, the starting
point) we denote the running maximum of the norms by Mn := max0≤k≤n |Sk|. This
encodes how far from the origin the walk has arrived within its first n steps.

• In the following, and for the rest of the thesis, we denote by c, C, C1, c0, Cε, CR positive
constants whose value may change from line to line and whose exact value is not
important for the arguments.

Additional notation is introduced as needed in the following chapters.
This thesis is about long-run behavior of random walks conditioned to stay in certain

geometric domains. All of the convergence limits consist of different functionals of Brownian
motion conditioned to stay in certain geometric domains. In the following subsection we
gather some useful results about Brownian motion in cones and related objects.

2.2 Results about Brownian motion in cones

The new auxiliary results presented in this section are taken from Duraj and Wachtel
[2020]. The rest of the results are in the literature and cited accordingly.

Denote by Sd−1 the unit sphere of Rd and Σ an open and connected subset of Sd−1.
Let K be the cone generated by the rays emanating from the origin and passing through
Σ, i.e. Σ = K ∩ Sd−1.

Throughout the thesis, we shall impose the following geometric conditions on the cone
K ⊂ Rd for some d ≥ 2:

• Geometric conditions: K is either convex or star-like. If K is star-like we assume
also that its boundary is C2. K star-like means here that there exists x0 ∈ Σ such
that x0 +K ⊂ K and dist(x0 +K, ∂K) > 0.

Let LSd−1 be the Laplace-Beltrami operator on Sd−1 and assume that Σ is regular with
respect to LSd−1 . With this assumption, there exists (see, for example, Banuelos and Smits
[1997]) a complete set of orthonormal eigenfunctions mj and corresponding eigenvalues
0 < λ1 < λ2 ≤ λ3 ≤ . . . satisfying
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LSd−1mj(x) = −λjmj(x), x ∈ Σ (2.1)

mj(x) = 0, x ∈ ∂Σ.

Define
p :=

√
λ1 + (d/2− 1)2 − (d/2− 1) > 0.

This is an important geometric parameter of the cone K, which appears frequently in
the following.

Define the function u(x) given by

u(x) = |x|pm1

(
x

|x|

)
, x ∈ K. (2.2)

Then u(x) is, up to positive scaling, the unique strictly positive solution on K of the
following boundary problem:

∆u(x) = 0, x ∈ K with u
∣∣
∂K

= 0.

The function u is extended by setting u(x) for x 6∈ K.
Denisov and Wachtel [2019] show the following estimates for u, which we register here

in two lemmas for future use.

Lemma 1. Assume the geometric conditions for K. Then

C1(dist(x, ∂K))p ≤ u(x) ≤ C2|x|p−1dist(x, ∂K), x ∈ K (2.3)

and

|∇u(x)| ≤ C3|x|p−1, x ∈ K. (2.4)

Lemma 2. Assume the geometric conditions for K. Then for x ∈ K, x+ y ∈ K

|u(x+ y)− u(x)| ≤ C|y|(|x|p−1 + |y|p−1), (2.5)

and, if in addition |y| ≤ |x|
2

, then

|u(x+ y)− u(x)| ≤ C|y||x|p−1. (2.6)

For p < 1 and x ∈ K,
|u(x+ y)− u(x)| < C|y|p. (2.7)

In the following we denote

τ bmx := inf{t > 0 : x+B(t) /∈ K},

the exit time from K of the Brownian motion started at x ∈ K.
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Proposition 1 (Banuelos and Smits [1997], Denisov and Wachtel [2015b]). 1) There exists
a finite constant C such that

P(τ bmx > t) ≤ C
|x|p

t
p
2

, x ∈ K. (2.8)

Moreover,

P(τ bmx > t) ∼ κ
u(x)

t
p
2

. (2.9)

uniformly in x ∈ K satisfying |x| ≤ θt
√
t with some θt→0, where κ is a positive constant.

In particular,
P(τ bmx > 1) ∼ κu(x), as x→0, (2.10)

and

lim
ε→0

sup
x∈K,|x|≤ε

∣∣∣∣P(τ bmx > 1)

κu(x)
− 1

∣∣∣∣ = 0. (2.11)

2) The density bt(x, z) of the probability P(τ bmx > t, x+B(t) ∈ dz) is

bt(x, z) ∼ κ0t
− d

2 e−
|z|2
2t u(x)u(z)t−p, (2.12)

uniformly in x, z ∈ K satisfying |x| ≤ θt
√
t and |z| ≤

√
t
θt

with some θt→0.

(2.10) has been proven in Banuelos and Smits [1997]. (2.8) and (2.9) and 2) are proven
in from Lemma 18 in Denisov and Wachtel [2015b] using results from Banuelos and Smits
[1997]. The rest of 1) follows using the Brownian scaling.

Meander and bridge of Brownian motion in a cone.

Let {MK(t), t ∈ [0, 1]} denote the Brownian meander in the cone K. Roughly speaking,
this process is the Brownian motion conditioned to start from the vertex of the cone K
and to stay in K for all t ∈ [0, 1]. A rigorous construction only for the case K is a nice
cone is due to Garbit [2009], see Subsection 4.3.2 in Garbit [2009] for the corresponding
definition of a nice cone. According to Remark 4 in Garbit’s paper, every convex cone with
C2 boundary is nice. But not every star-like cone is nice. In order to have the process
MK defined in star-like cones as well, in joint work with Vitali Wachtel, we propose in
this chapter (see subsection 2.3) an alternative proof of existence of the meander MK with
starting point at the origin.

We also consider the Brownian bridge B0
K . Roughly speaking, this is the Brownian

motion conditioned to start from the vertex of the cone K, to remain in K for intermediate
times and to end at the vertex at time 1. Formally, B0

K(0) = B0
K(1) = 0 and B0

K(t) ∈ K
for all t ∈ (0, 1). The Brownian bridge in K is constructed here through a limit of random
walk bridges and time reversion. For more details, we show first that the random walk
bridge {x+S([nt])√

n
, t ∈ [0, σ]|x + S(n) = y} for x, y ∈ K, converges weakly for all σ < 1 to

a continuous process. Moreover, the same holds for {x+S([nt])√
n

, t ∈ [σ, 1]|x + S(n) = y} by
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time reversion. This shows tightness of the limit on [0, 1] and establishes existence of the
continuous limit. More details are in the end of the proof of Subsection 3.2.3.1

h-transforms and their convergence.

For the weak convergence of random walks conditioned to stay in K at all times, one can
use Doob’s h-transforms. Here, we explain the h-transform of the Brownian motion.2

In the case of the standard d-dimensional Brownian motion B(t) one can use the
function u to construct the h-transform. The harmonicity property can be written in
the following way:

u(x) = E[u(x+B(t)), τ bmx > t], t > 0.

Then we consider the probabilistic measure P(u) given by the following relation: For any
t > 0 and each continuous and bounded functional ft : C[0, t] 7→ R,

E(u)[ft(B)|B(0) = x] = E

[
ft(B)

u(x+B(t))

u(x)
, τ bmx > t

]
, x ∈ K.

We shall write P
(u)
x for the distribution of the process with starting point x. For our next

theorem we need a convergence property of the measures P
(u)
x as x→ 0. With help of the

convergence towards MK we show in section 2.3 that, under our geometric assumptions,

P(u)
xn converges weakly on C[0,∞) as xn → 0, (2.13)

under some weak restrictions on the sequence {xn}. In the literature Chaumont [1997] has
shown this relation for stable processes conditioned to stay positive. For this reason we
give a proof in the next subsection.

2.3 Proofs for the Brownian meander and h-transform

Construction of Brownian meander for a large class of star-like and convex
cones

In this paragraph we adapt the arguments from Garbit’s paper Garbit [2009] and obtain
the Brownian meander MK for a large class of star-like and convex cones.

Let {xn} be a sequence of points in K such that xn → 0. We are going to show that
the sequence of processes {

xn +B(t)|τ bmxn > 1
}
,

converges weakly in C[0, 1] under some mild restrictions on the sequence {xn}.
We first address the convergence of finite dimensional distributions. For this we note

that we have good control over the density

p(1, x, z) :=
P(x+B(1) ∈ dz, τ bmx > 1)

dz
.

1The proof uses discrete time methods and therefore we leave it for the main chapters of the thesis.
2h-transforms for random walks will be defined and studied in chapter 3.
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Namely, it follows from the proof of Lemma 5.4 in Garbit [2009] that

sup
x∈K,|x|≤ 1

2

p(1, x, z)

u(x)
≤ Ce−γ|z|

2

(2.14)

for some suitable C, γ > 0. This is essentially a sharpening of (2.12). That proof doesn’t
use more than the analytical results from Banuelos and Smits [1997] and so is valid for all
cones satisfying our geometric conditions. Using this estimate and the Brownian scaling,
we obtain for every fixed t ∈ (0, 1]

lim
R→∞

sup
x∈K,|x|≤

√
t/2

P(|x+B(t)| > R, τ bmx > t)

u(x)
= 0. (2.15)

By using (2.10) and (2.11), we see that there exists ε0 ∈ (0, 1) such that

P(τ bmx > 1) ≥ 1

2
κu(x) for all x ∈ K, |x| ≤ ε0. (2.16)

Combining this relation with (2.15), we conclude that, for every fixed t ∈ (0, 1],

lim
R→∞

sup
x∈K,|x|≤ε0

√
t/2

P(|x+B(t)| > R|τ bmx > 1) = 0. (2.17)

Now one can repeat the proofs of Lemma 5.5 and Proposition 5.1 in Garbit [2009] with the
following change: instead of (5.7) there one uses (2.17). This gives the desired convergence
of finite dimensional distributions, since (5.7) is the only place where ‘nice’-property has
been used.

We now turn to the tightness. We are going to use Theorem 7.4 and its Corollary from
Billingsley [1968]. Fix ε, δ > 0. For every t ∈ [δ, 1) we have

P

(
sup

u∈[t,t+δ]

|B(u)−B(t)| > ε

∣∣∣∣τ bmxn > 1

)

=
P
(
supu∈[t,t+δ] |B(u)−B(t)| > ε, τ bmxn > 1

)
P(τ bmxn > 1)

≤
P
(
supu∈[t,t+δ] |B(u)−B(t)| > ε, τ bmxn > t

)
P(τ bmxn > 1)

=
P(τ bmxn > t)

P(τ bmxn > 1)
P

(
sup
u∈[0,δ]

|B(u)| > ε

)
≤

P(τ bmxn > δ)

P(τ bmxn > 1)
P

(
sup
u∈[0,δ]

|B(u)| > ε

)

≤
P(τ bmxn > δ)

P(τ bmxn > 1)
C1e

−c0ε2/δ ≤ C2δ
−p/2e−c0ε

2/δ. (2.18)

The second equality uses the Markov property. In the last two steps we have used the
obvious bound

P

(
sup
u∈[0,δ]

|B(u)| > ε

)
≤ C1e

−c0ε2/δ,
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and the relation P(τ bmxn > t) ∼ κu(xn)t−p/2 as n→∞ which follows from (2.11). Combining
now (2.18) with the above-mentioned corollary to Theorem 7.4 in Billingsley [1968], we
conclude tightness on C[δ, 1] for every δ > 0.

In order to extend this property on the whole interval [0, 1] it remains to show that the
probability P

(
supu∈[0,δ] |B(u)| > ε

∣∣τ bmxn > 1
)

can be made sufficiently small. We first note
that

P

(
sup
u∈[0,δ]

|B(u)| > ε

∣∣∣∣τ bmxn > 1

)
≤ P

(
sup
u∈[0, δ

2
]

|B(u)| > 3ε

4

∣∣∣∣τ bmxn > 1

)

+ P

(
sup
u∈[0, δ

2
]

|B(u)| ≤ 3ε

4
, sup
u∈[0,δ]

|B(u)| > ε

∣∣∣∣τ bmxn > 1

)
.

For the second summand we have

P

(
sup
u∈[0, δ

2
]

|B(u)| ≤ 3ε

4
, sup
u∈[0,δ]

|B(u)| > ε

∣∣∣∣τ bmxn > 1

)

≤ 1

P(τ bmxn > 1)
P

(
sup

u∈[δ/2,δ]

|B(u)−B(δ/2)| > ε

4
, τ bmxn >

δ

2

)

=
P(τ bmxn > δ

2
)

P(τ bmxn > 1)
P

(
sup
u∈[0, δ

2
]

|B(u)| > ε

4

)
≤

P(τ bmxn > δ
2
)

P(τ bmxn > 1)
C1e

−c0( ε4)
2
/ δ
2 .

As a result,

P

(
sup
u∈[0,δ]

|B(u)| > ε

∣∣∣∣τ bmxn > 1

)

≤ P

(
sup
u∈[0, δ

2
]

|B(u)| > 3ε

4

∣∣∣∣τ bmxn > 1

)
+

P(τ bmxn > δ
2
)

P(τ bmxn > 1)
C1e

−c0ε2/8δ.

After N iterations we arrive at the bound

P

(
sup
u∈[0,δ]

|B(u)| > ε

∣∣∣∣τ bmxn > 1

)

≤ P

 sup
u∈[0, δ

2N
]

|B(u)| > 3Nε

4N

∣∣∣∣τ bmxn > 1

+
N∑
k=1

P(τ bmxn > δ
2k

)

P(τ bmxn > 1)
C1e

−c0 9k−1ε2

8kδ . (2.19)

According to (2.14) it holds

sup
|x|≤ 1

2

P(τ bmx > 1)

u(x)
≤ C∗.
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Then by the scaling property of Brownian motion we have for |xn| ≤ δ
1
2

2
k
2 +1

P

(
τ bmxn >

δ

2k

)
= P

(
τ
xn2

k
2 /
√
δ
> 1
)
≤ C∗

2kp/2

δ
p
2

u(xn). (2.20)

Set N := max{k ≥ 1 : 2k ≤ δ
4|xn|2}. Then, combining (2.16), (2.19) and (2.20), we obtain

P

(
sup
u∈[0,δ]

|B(u)| > ε

∣∣∣∣τ bmxn > 1

)
≤ P

 sup
u∈[0, δ

2N
]

|B(u)| > 3Nε

4N

 /P(τ bmxn > 1)

+ C

N∑
k=1

2kp/2

δp/2
e−c09k−1ε2/8kδ

≤ Ce−c09N ε/8N δ2

u(xn)
+ Cδ−

p
2 e−c0ε

2/8δ.

By the definition of N it holds 2N ≥ δ
8
|xn|−2. Therefore,

e−(9/8))N c0ε2/δ ≤ e−c1ε
2/(δ1−q0 |xn|2q0 ),

where q0 = log(9/8)
log 2

∈ (0, 1). Consequently,

P

(
sup
u∈[0,δ]

|B(u)| > ε

∣∣∣∣τ bmxn > 1

)
≤ C

(
e−c1ε

2/(δ1−q0 |xn|2q0 )

u(xn)
+ δ−

p
2 e−c0ε

2/8δ

)
.

For every given ε one can choose δ so that the second summand on the right hand side
becomes as small as needed. Clearly, the first summand will also converge to zero, for an
appropriate choice of δ, if we assume that the sequence xn satisfies the condition

log

(
1

u(xn)

)
= O

(
|xn|−2q0

)
. (2.21)

As a result we have tightness on C[0, 1] and the weak convergence on the same space for
any sequence of starting points satisfying (2.21).

Let us give some sufficient conditions for the validity of (2.21). According to Lemma
1,

u(x) ≥ C(dist(x, ∂K))p.

Thus, (2.21) follows from the relation

log

(
1

dist(xn, ∂K)

)
= O

(
|xn|−2q0

)
. (2.22)

In other words, in order to ensure weak convergence one has to assume that the distance
dist(xn, ∂K) to the boundary is not too small when compared with the absolute value of
|xn|.

The restriction on the sequence of starting points is the main difference between our
approach and that of Garbit. In his paper one has convergence for any sequence of starting
points, but the cone should be nice.
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Convergence of h-transforms for Brownian motion in cones

Proof of (2.13). Let in the following P
(u)
0 denote the limiting distribution in (2.13). Due

to the scaling property of the Brownian motion, it suffices to prove the convergence on
C[0, 1]. Let f be a bounded and uniformly continuous function on C[0, 1] with values in
[0, 1]. Fix some R > 1 and split

E(u)
x [f(B)] = E(u)

x [f(B), |x+B(1)| ≤ R] + E(u)
x [f(B), |x+B(1)| > R]. (2.23)

In order to bound the second summand we use (2.14). Introducing spherical coordinates
and using the estimate u(x) ≤ C|x|p, we obtain

E(u)
x [f(B), |x+B(1)| > R] =

1

u(x)
E[f(x+B)u(x+B(1)), τ bmx > 1, |x+B(1)| > R]

≤ C

u(x)
E[|x+B(1)|p, τ bmx > 1, |x+B(1)| > R]

≤ C

∫ ∞
R

rp+d−1e−γr
2

dr,

uniformly in x ∈ K, |x| ≤ 1
2
. Therefore,

sup
x∈K,|x|≤ 1

2

E(u)
x [f(B), |x+B(1)| > R]→ 0 as R→∞. (2.24)

For the first summand in (2.23) we have the following representation

E(u)
x [f(B), |x+B(1)| ≤ R]

=
P(τ bmx > 1)

u(x)
E[f(x+B)u(x+B(1))1{|x+B(1)| ≤ R}|τ bmx > 1].

The functional f(x + B)u(x + B(1))1{|x + B(1)| ≤ R} is bounded and the set of its
discontinuities is a null set with respect to the distribution of the meander MK . Therefore,
by the convergence proven in Section 2.3,

E[f(xn +B)u(xn +B(1))1{|xn +B(1)| ≤ R}|τ bmxn > 1]

→ E[f(MK)u(MK(1))1{MK(1) ≤ R}], xn → 0,

provided that xn satisfies (2.21).
Recalling (2.10), we then have

E(u)
x [f(B), |x+B(1)| ≤ R]→ κE[f(MK)u(MK(1))1{MK(1) ≤ R}]. (2.25)

Note that, by monotone convergence,

E[f(MK)u(MK(1))1{MK(1) ≤ R}]→ E[f(MK)u(MK(1))] as R→∞.
Combining this with (2.24) and (2.25) we finally get

lim
n→∞

E(u)
xn [f(B)] = κE[f(MK)u(MK(1))]. (2.26)

As in the construction of the meander MK , the restriction on the sequence of starting
points is not needed if the cone is nice. In that case it suffices to use the results from
Garbit [2009].
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2.4 Other tools: Fuk-Nagaev-Borovkov inequalities

and the KMT coupling

As mentioned in chapter 1, one step in proving convergence (after appropriate scaling) of
the random walks in cones, involves studying the behavior of the (appropriately scaled)
discrete-time process ‘deep’ inside the cone. The idea is that, ‘untypical’ values of S(n) do
not contribute in the limit, just as values near the boundary of the cone do not contribute
in the limit. On the other hand, ‘typical’ values of S(n) ‘deep’ in the cone contribute the
bulk of the limit.

A powerful tool for estimates in formalizing the intuition above are the Fuk-Nagaev-
Borovkov inequalities. These can be used to estimate the probability of large deviations
uniformly on n and under minimal assumptions on the random walk step. They are
therefore of interest on their own.

Proposition 2 (Fuk-Nagaev-Borovkov inequalities). Let x, y > 0 and Xi, i ≥ 1 be Rd-
valued i.i.d. random variables with E[X1] = 0,E[|X1(j)|2] = 1. Then it holds

P

(
M(n) > x,max

k≤n
|X(k)| ≤ y

)
≤ 2dex/

√
dy

(√
dn

xy

)x/
√
dy

(2.27)

and

P(M(n) > x) ≤ 2dex/
√
dy

(√
dn

xy

)x/
√
dy

+ nP(|X(1)| > y). (2.28)

The original form of the Fuk-Nagaev inequalities is in Lemma 22 of Denisov and Wachtel
[2015b] (see also the comments therein related to the original work Fuk and Nagaev [1971]).
The weaker version whereM(n) is replaced by |S(n)| is Corollary 23 in Denisov and Wachtel
[2015b]. Borovkov [1972] shows that all Fuk-Nagaev inequalities remain valid for partial
maximas of sums of independent random variables.

Deep inside the cone, the appropriately scaled random walk behaves like a Brownian
motion. This can be formally established through a coupling argument. The argument is
old; the formulation below is from Lemma 17 in Denisov and Wachtel [2015b].

Proposition 3 (Hungarian coupling). If E[|X1|2+δ] < ∞ for some δ ∈ (0, 1), then one
can define on a joint probability space a copy of S(n) =

∑n
i=0 Xi and a Brownian motion

B(t) on the same space, such that for any γ so that 0 < γ < δ
2(2+δ)

the probability of the
event

P

({
sup
u≤n
|S([u])−B(u)| > n1/2−γ

})
< Cn−r,

with r = r(δ, γ) = δ/2− 2γ − γδ.
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2.5 Tail asymptotics for the exit time and the local

limit theorem for random walks in cones

It is instructive to summarize shortly the main results in Denisov and Wachtel [2015b] and
Denisov and Wachtel [2019] with regards to random walks conditioned to stay in cones,
because these results are an important building block for the work in chapters 3 and 4.

We first define the setting. We look at a random walk {S(n), n ≥ 1} on Rd, d ≥ 1,
where S(n) =

∑n
j=1 X(j) and {X(n), n ≥ 1} are i.i.d. random variables with X ≡ X(1) =

(X1, . . . , X2) a d−dimensional random variable.
Throughout the thesis, unless otherwise specified, we impose the following moment

conditions.

• Moment conditions: E[|X|α] is finite for α = p if p > 2 or for some α > 2 if p ≤ 2.
Moreover, E[X] = 0 ∈ Rd, Var(Xi) = 1 and cov(Xi, Xj) = 0, i, j = 1, . . . , d, i 6= j.

For x ∈ K we let

τx = inf{n ≥ 1 : x+ S(n) 6∈ K},

be the exit time from the cone of the random walk started at x.
The following result characterizes a class of harmonic functions for random walks

satisfying the moment conditions.

Proposition 4. [Denisov and Wachtel [2019]] Assume that the cone K satisfies the geometric
conditions and that the random walk S(n), n ≥ 1 satisfies the moment conditions. Then
the function

V (x) = lim
n→∞

E[u(x+ S(n)), τx > n)] (2.29)

is finite and harmonic for {S(n)} killed at leaving K, i.e.

V (x) = E[V (x+ S(n)), τx > n], x ∈ K,n ≥ 1.

V is strictly positive on the set

K+ = {x ∈ K : ∃γ > 0 : ∀R > 0∃n with P(x+ S(n) ∈ DR,γ, τx > n) > 0},

where DR,γ = {x ∈ K : |x| ≥ R, dist(x, ∂K) ≥ γ|x|}.

A large part of the work in proving this result is devoted to proving several properties
of the function V as defined in (2.29). We gather here the properties which are needed for
chapters 3 and 4.

A. V and u behave asymptotically the same along rays: For any γ > 0, R > 0, uniformly
in x ∈ DR,γ we have V (tx) ∼ u(tx) as t→∞.
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B. Estimates for V : It holds for every x ∈ K

V (x) ≤ C(1 + |xp|). (2.30)

Moreover, for all γ small enough

|V (x)− u(x)| ≤ C

(
1 + |x|p−γ +

|x|p

(dist(x, ∂K)γ)

)
. (2.31)

C. Monotonicity inside the cone: If x ∈ K, then V (x) ≤ V (x+ x0) for all x0 such that
x0 +K ⊂ K.

Once Theorem 4 is established, coupling arguments and Fuk-Nagaev inequalities are
the main ‘novel’ ingredients used to prove the pendant of Proposition 1 for random walks.
For this, we first formalize the expression deep inside the cone through the definition

Kn,ε = {x ∈ K : dist(x, ∂K) ≥ n
1
2
−ε}.

Proposition 5 (Cor. 1.2 in Denisov and Wachtel [2019], Lemma 20 in Denisov and
Wachtel [2015b]). 1) For all sufficiently small ε > 0,

P(τy > n) = κu(y)n−
p
2 (1 + o(1)), n→∞ (2.32)

uniformly in y ∈ Kn,ε, n ≥ 1, such that |y| ≤ θn
√
n for some θn→0.

Moreover, there exists a constant C such that

P(τy > n) ≤ C
|y|p

n
p
2

, (2.33)

uniformly in y ∈ Kn,ε, n ≥ 1. Finally, it holds for every x ∈ K

P(τx > n) ∼ κV (x)n−
p
2 .

2) For any compact set D ⊂ K it holds true

P(τy > n, y + S(n) ∈
√
nD) ∼ κ0u(y)n−

p
2

∫
D

e−
|z|2
2 u(z)dz, (2.34)

uniformly in y ∈ Kn,ε such that |y| ≤ θn
√
n for some θn→0.

Suppose thatX has support on a lattice L which is a non-degenerate linear transformation
of Zd. Denisov and Wachtel [2015b] and Denisov and Wachtel [2019] use then the previous
results, together with time reversion and standard concentration inequalities, as well as
Stone’s local limit theorem to prove the following local limit theorems for lattice walks in
cones.
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Proposition 6 (Thms. 5,6 in Denisov and Wachtel [2015b], Cor. 1.3 in Denisov and
Wachtel [2019]). 1) Assume that X takes values on a lattice L which is a non-degenerate
linear transformation of Zd. Then under the moment and geometric assumptions it holds

sup
y∈Dn(x)

∣∣∣∣n p
2

+ d
2 P(x+ S(n) = y, τx > n)− C0V (x)u

(
y√
n

)
e−
|y|2
2n

∣∣∣∣→0,

where Dn(x) = {y ∈ K : P(x+ S(n) = y) > 0}.
Here the constant C0 is a product of the volume of the unit cell in L and of a factor,

which depends on the periodicity of the distribution of X.
2) Under the assumptions of 1) and for every fixed y ∈ K it holds

P(x+ S(n) = y, τx > n) ∼ C1
V (x)V ′(y)

np+
d
2

,

where V ′ is the harmonic function for the walk {−S(n)} and

C1 = C2
0

∫
K

u2(z)e−|z|
2/2dz.

2.6 Results about Kolmogorov diffusion conditioned

to stay positive

If {Bt, t ≥ 0} is a standard Brownian motion, we define the Kolmogorov diffusion started
at (x, y) to be the process given by

W(x,y)(t) = (Ut, Vt)(x,y) =

(
x+ ty +

∫ t

0

Bsds, y +Bt

)
, t ≥ 0.

Kolmogorov diffusion has the following scaling property. Define the map at : R2→R2

via at(x, y) = ( x

t
3
2
, y

t
1
2

) for t > 0. Let bt = a−1
t . Then

at ((Ws, s ≤ t,W (0) = (x, y))) = (Ws, s ≤ 1,W (0) = at(x, y)) (2.35)

or equivalently

(Ws, s ≤ t,W (0) = (x, y)) = bt ((Ws, s ≤ 1,W (0) = at(x, y))) .

It has a long history and the reader is referred to Groeneboom et al. [1999] for more details
and references on applications. The transition density of this process can be calculated
via the expectations and covariances of this Gaussian process (see Denisov and Wachtel
[2015a] and references therein). For x, y, u, v ∈ R and t > 0 it is given by

pt(x, y;u, v) =

√
3

πt2
exp

(
−6(u− x− ty)2

t3
+

6(v − y)(u− x− ty)

t2
− 2(v − y)2

t

)
=

√
3

πt2
exp

(
−6(u− x)2

t3
+

6(u− x)(v + y)

t2
− 2(v2 + vy + y2)

t

)
.
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Denote the exit time from R+ ×R by τ bm(x,y). It is given as follows.

τ bm(x,y) = inf{t ≥ 0 : x+ ty +

∫ t

0

Bsds ≤ 0}.

Let p̄t(x, y;u, v) denote the density of the Kolmogorov diffusion started at (x, y) at
time t and killed if the first coordinate becomes non-positive. Let h be the function
h : R+ × R −→ R which is harmonic for the Kolmogorov diffusion, in the sense that
Ah = 0 on R+ × R, h(0, ·) ≡ 0, where A = y ∂

∂x
+ 1

2
∂2

∂y2
is the generator of W . This can

also be expressed as

E(x,y)[h(W (t)), τ bm > t] = h(x, y), x > 0, y ∈ R, t > 0.

In other words, h(W (t))1{τbm>t} is a nonnegative martingale. h has both an integral
representation (see Appendix) and a representation in terms of confluent hypergeometric
functions (see Groeneboom et al. [1999], Denisov and Wachtel [2015a], or appendix). It

can be bounded by the square root of α(x, y) = max{|x| 13 , |y|} both from below and
above (see Lemma 6 in Denisov and Wachtel [2015a]). It also has the scaling property

h(x, y) = x
1
6h(1, x−

1
3y), x > 0, y ∈ R.

Parts of the following result are well-known, others need a proof.

Proposition 7. 1) There exists a finite positive constant C such that

P(x,y)(τ
bm > t) ≤ C

h(x, y)

t
1
4

, x, y > 0, (2.36)

Moreover,

P(x,y)(τ
bm > t) ∼ κ

h(x, y)

t
1
4

, (2.37)

uniformly in x, y > 0 satisfying α(x, y)
1
2 ≤ θtt

1
4 with some θt→0.

In particular,

lim
ε→0

sup
(x,y)∈R2

+,α(x,y)≤ε2

∣∣∣∣P(x,y)(τ
bm > 1)

κh(x, y)
− 1

∣∣∣∣ = 0. (2.38)

2) For x, y ↘ 0 we have

pt(x, y;u, v) ∼ h(x, y)h(t, u,−v), (2.39)

uniformly in (u, v) with α(u, v) ≤ R (R > 0 arbitrary).
Moreover,

sup
x,y∈R+,α(x,y)≤1

p̄1(x, y;u, v)

h(x, y)
≤ ψ(u, v), (2.40)

for an integrable function ψ : R2→R such that ψh is integrable in R2.
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The proofs of (2.36) and (2.37) are in Denisov and Wachtel [2015a], whereas the proof
of (2.38) follows from Lemma 15 there and the scaling property of Kolmogorov diffusion.3

The proofs of (2.39) and (2.40) are in the appendix.

Kolmogorov meander, bridge conditioned to stay positive and h-transforms

We call the measure on C[0, 1] given by the conditional measure W(x,y)(· |τ bm > 1) the
Kolmogorov meander of length one started at (x, y) ∈ R+ ×R+.

We show the following convergence result.

Wzn(· |τ bm > 1) converges weakly in C[0,∞) as zn ↘ (0, 0), (2.41)

under some weak restrictions on {zn : n ≥ 1}. We denote the limit process asW(0,0)(· |τ bm >
1), and call it Kolmogorov meander started at (0, 0) of length one. Its respective distribution
is denoted by P(0,0)(W ∈ ·|τ bm > 1). One can characterize the density explicitly (see
Appendix).

Just as for Brownian motion in cones, we construct the Kolmogorov bridge (or excursion)
conditioned to stay positive, through a limit of discrete-time processes and time reversion.

Just as for random walks in cones, we can define the h-transform as follows: For any
t > 0 and each continuous and bounded functional ft : C[0, t]→R,

E
(h)
(x,y)[ft(W )] = E(x,y)

[
ft(W )

h(W (t))

h(x, y)
, τ bm > t

]
, x > 0, y ∈ R.

With the help of (2.41) we show the following convergence in (C[0, 1], || · ||∞).

P(h)
zn converges weakly as zn ↘ (0, 0), (2.42)

under some weak restrictions on {zn : n ≥ 1}.

2.7 Proofs for the convergence of Kolmogorov diffusion

Here we prove (2.41) and (2.42), leaving the rest of the auxiliary results concering the
Kolmogorov diffusion to the appendix.

Proof of (2.41)

We show that the sequence of processes with continuous paths in R2

{W (·)|W (0) = zn, τ
bm > 1},

converges as zn ↘ (0, 0), n→∞.

3To see this it suffices to use with t = 1
ε .
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Convergence of finite-dimensional distributions. Note that

P(x,y)(α(W (t)) > R, τ bm > t)

h(x, y)
=

P(x,y)(α(bt(W (1))) > R, τ bm > 1)

t
1
4h(at(x, y))

,

and from this that

lim
R→∞

sup
x,y>0,at(x,y)≤ 1

2

P(x,y)(α(W (t)) > R, τ bm > t)

h(x, y)
= 0. (2.43)

Now we take in (2.38) ε0 > 0 such that

P(x,y)(τ
bm > 1) ≥ 1

2
κh(x, y) for all x ∈ K,α(x, y) ≤ ε20. (2.44)

Combining (2.44) with (2.43) delivers for every t ∈ (0, 1] that

lim
R→∞

sup
x,y>0,at(x,y)≤ 1

2
)

P(x,y)(α(W (t)) > R|τ bm > t) = 0. (2.45)

We can write for the density of the meander started at (x, y)

mt(x, y;u, v) =
p̄t(x, y;u, v)P(u,v)(τ

bm > 1− t)
P(x,y)(τ bm > 1)

=
p̄t(x, y;u, v)

h(x, y)

h(x, y)

P(x,y)(τ bm > 1)
P(u,v)(τ

bm > 1− t).

(2.39) shows that the density mt(x, y;u, v) converges to mt(u, v), as x, y ↘ 0 uniformly
for α(u, v) ≤ R and R > 0 arbitrary. Note that (2.40) implies that mt(u, v) is integrable.
Using this fact and (2.45) it follows that

lim sup
x,y↘0

∫ ∫
|mt(x, y;u, v)−mt(u, v)| dudv = 0.

It follows that mt(u, v) is also a density. Together with the Markov property, this
implies the convergence of finite-dimensional distributions.

Tightness. First, we note that due to the continuous mapping theorem, it is enough to
focus on showing tightness of the second coordinate of W . That is, it is sufficient to show
the tightness of Brownian motion killed whenever its integral (plus a start point) becomes
non-positive.

We follow a similar approach as for the construction of the meander for the Brownian
motion in a cone. Namely, we use again Theorems 7.3, 7.4 in Billingsley [1968] and the
Corollary of the latter result there. Since the proof is very similar to that of the meander
of Brownian motion in a cone, we just highlight the differences.

Showing tightness on C[δ, 1] (δ ∈ (0, 1) arbitrary) is the same, except the replacements

of xn by zn, p by 1
2
, and we use the relation Pzn(τ bm > t) ∼ κh(zn)t−

1
4 , n→∞ instead of

Pxn(τ bm > t) ∼ κu(xn)t−
1
4 , n→∞.
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We then need to show that Pzn(supu∈[0,δ] |B(u)| > ε|τ bm > 1) can be made sufficiently
small. The proof follows exactly the same steps as for the meander of the Brownian motion
in cones, but for the replacements of xn by zn, u(xn) by h(zn) h(zn), p by 1

2
. Moreover, we

replace sup|x|≤ 1
2

Px(τbm>1)
u(x)

≤ C∗ by

sup
α(z)≤ 1

2

Pz(τ
bm > 1)

h(z)
≤ C∗,

for a suitable C∗. This follows from (2.38) and the fact that R+×R+ 3 z 7→ Pz(τ
bm > 1)

is continuous. We also replace N := max{k ≥ 1 : 2k ≤ δ
4|xn|2} by N := max{k ≥ 1 : 2k ≤

δ
4α(zn)2

}. Overall, we arrive at the condition

log

(
1

α(zn)
1
2

)
= O(α(zn)−2q0). (2.46)

Here, q0 = log(9/8)
log 2

∈ (0, 1), just as for the case of the meander. (2.46) is easy to satisfy, e.g.

take sequences {zn, n ≥ 1} such that α(zn) = O(n−β) for some β > 0 as n→∞.

Proof of (2.42)

Let f be a uniformly continuous, bounded function on C[0, 1] with values in [0, 1]. Fix
some S > 0. It holds

E
(h)
(x,y)[f(W )] = E

(h)
(x,y)[f(W ), |W (1)| ≤ S] + E

(h)
(x,y)[f(W ), |W (1)| > S]. (2.47)

We have the following estimate with the help of (2.40).

E
(h)
(x,y)[f(W ), |W (1)| > S] =

1

h(x, y)
E(x,y)[f(W )h(W (1)), τ bm > 1, |W (1)| > S]

≤ C

h(x, y)
E(x,y)[|W (1)|

1
2 , τ bm > 1, |W (1)| > S]

uniformly for |(x, y)| ≤ 1
2
, x, y > 0 and some suitable S > 0. In particular, it follows

sup
|(x,y)|≤ 1

2
,x,y>0

E
(h)
(x,y)[f(W ), |W (1)| > S] = o(S), S→∞. (2.48)

We have

E
(h)
(x,y)[f(W ), |W (1)| ≤ S] =

1

h(x, y)
E(x,y)[f(W )h(W (1)), τ bm(x,y) > 1, |W (1)| ≤ S]

=
P(x,y)(τ

bm > 1)

h(x, y)
E(x,y)[f(W )h(W (1)), |W (1)| ≤ S|τ bm > 1].
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We recall (2.38). Moreover, the function

f(W )h(W (1))1{|W (1)|≤S}

is bounded and the set of its discontinuities is a null set w.r.t. the Lebesgue measure, i.e.
also w.r.t. measure constructed by the weak convergence of P(x,y)(·|τ bm > 1) as x, y ↘ 0.
In particular,

E(x,y)[f(W )h(W (1)), |W (1)| ≤ S|τ bm > 1]→E(0,0)[f(W )h(W (1)), |W (1)| ≤ S|τ bm > 1],

because of the convergence of the meander of Kolmogorov diffusion as the start point
converges to (0, 0). Monotone convergence delivers

E(0,0)[f(W )h(W (1)), |W (1)| ≤ S|τ bm(0,0) > 1]→E(0,0)[f(W )h(W (1))|τ bm(0,0) > 1], S→∞.
(2.49)

Combining this with (2.48) shows

E
(h)
(x,y)[f(W )]→κE(0,0)[f(W )h(W (1))|τ bm(0,0) > 1].

This finishes the proof.

2.8 Exit time and local limit theorems for integrated

random walks

We summarize shortly the main results from Denisov and Wachtel [2015a] we need, leaving
smaller technical results to the proofs section of chapter 5. We consider a sequence of i.i.d.
real-valued random variables {Xi : i ≥ 1} with E[Xi] = 0 and E[|Xi|2+δ] < ∞ for some
δ > 0.

We define respectively, the random walk {S(n) : n ≥ 0} and the integrated random
walk {T (n) : n ≥ 0} as

S(n) = y +X1 + · · ·+Xn, n ∈ N0.

and

T (n) = x+ S(1) + · · ·+ S(n) = x+ ny + nX1 + (n− 1)X2 + · · ·+Xn, n ∈ N0.

Here x > 0, y ∈ R. We look at the Markov chain Z(n) = (T (n), S(n)), n ∈ N0. We look at
the following stopping time.

τ(x,y) = inf{n ≥ 0 : T (n) ≤ 0}.

Denisov and Wachtel [2015a] construct a harmonic function for Z(n), killed when the
first coordinate becomes non-positive and establish the asymptotic for the exit time τ(x,y).
They also establish local limit theorems for the same process.
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Proposition 8. [Denisov and Wachtel [2015a]] Assume the moment conditions {Xi : i ≥
1} with E[Xi] = 0 and E[|Xi|2+δ] <∞ for some δ > 0.

1) The function

V (z) := lim
n→∞

Ez[h(Z(n)), τ > n]

is well-defined, strictly positive on

K+ = {z ∈ R+ ×R : z ∈ R+ ×R : Pz(Z(n) ∈ R2
+, τ > n) > 0 for some n ≥ 0},

and is harmonic for the killed integrated random walk, i.e.

V (z) = Ez[V (Z(1)), τ > 1], z ∈ R+ ×R.

2) It holds

Pz(τ > n) ∼ κ
V (z)

n
1
4

, n→∞. (2.50)

3) The following local limit theorems hold true.

sup
z̃

∣∣∣n2+ 1
4 Pz(Z(n) = z̃, τ > n)− κV (z)h (an(z̃)) p1(0, 0; an(z̃))

∣∣∣→0. (2.51)

For every fixed z̃ ∈ K+

lim
n→∞

n2+ 1
2 Pz(Z(n) = z̃, τ > n) = V (z)V ′(z̃), (2.52)

for some positive function V ′.





Chapter 3

Invariance principles for random
walks in cones

3.1 Introduction and statement of results

The work presented in this chapter is included in Duraj and Wachtel [2020].

Invariance principles for random walks in one-dimensional cones (a half-line) are well-
known. It is clear that one has only two non-trivial cones: (0,∞) and (−∞, 0) in this case.
Furthermore, due to symmetry, it suffices to consider (0,∞) only. A functional central
limit theorem for zero mean random walks with finite variance conditioned to stay positive
has been proved by Bolthausen [1976]. Denisov et al. [2018] have generalized this result
to all random walks with non-identical distributed increments and satisfying a Lindeberg-
type of condition. For random walks with i.i.d. increments from the domain of attraction
of a stable law, conditional invariance principles were derived by Doney [1985] and by
Caravenna and Chaumont [2008].

In terms of methodology, in the case of one-dimensional walks with i.i.d. increments
tools like Wiener-Hopf factorisation are feasible. These allow to obtain exact identities
for distributions of conditioned walks. Unfortunately, this method does not work if the
random walk is not one-dimensional. As a consequence, the case of multi-dimensional
walks is much less studied in the literature. For random walks constrained to the Weyl
chamber functional limit theorems have been derived in Denisov and Wachtel [2010]. A
generalization to Weyl chambers of type C and D was obtained by König and Schmid
[2010]. Shimura [1991] and Garbit [2011] have obtained an invariance principle for some
conditioned two-dimensional random walks. Besides these special results, we are unaware
of other invariance principles in the literature. Finally, a conditional limit theorem for
walks starting deep in a cone was proved in Denisov and Wachtel [2015b].

Similar to Denisov and Wachtel [2015b], we consider here quite general cones and a
wide class of random walks and prove various conditional functional limit theorems for
walks starting at a fixed point. The main purpose of this chapter is to continue the study
of random walks in cones and to derive invariance principles for various functionals of
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random walks constrained to stay in cones.
The assumptions we make are the ones mentioned in chapter 2. We look at a cone K

that satisfies the geometric conditions mentioned in subsection 2.2 and at a random walk
that satisfies the moment conditions from subsection 2.5.

Before we state the invariance principle for the meander we collect invariance principles
which are straightforward applications of the classical, unconditional invariance principle
and Bayes’ rule.

Remark 1. For every sequence {xn} such that xn√
n
→ x ∈ K, the process

{xn+S([nt])√
n

, t ∈ [0, 1]} conditioned on the event {τx > n} converges towards {x+B(t)|τ bm >

1}t∈[0,1] weakly in (D[0, 1], || · ||∞).

Define

K+ := {x ∈ K : there exists γ > 0 such that for every R > 0

there exists n with P(x+ S(n) ∈ DR,γ, τx > n) > 0},

where DR,γ = {x ∈ K : |x| ≥ R, dist(x, ∂K) ≥ γ|x|}. Finally, let K̃+ be the analogous
set to K+ where the random walk has step −X instead of X. We prove the following
invariance principle.

Theorem 1. For every fixed x ∈ K+, the process {x+S([nt])√
n

, t ∈ [0, 1]} conditioned on

{τx > n} converges towards {MK(t), t ∈ [0, 1]} weakly in (D[0, 1], || · ||∞).

In Denisov and Wachtel [2015b, 2019] a positive harmonic function V (x) for S(n) killed
at leaving K has been constructed. There it is shown that under the assumptions made
here V can be expressed as the following limit

V (x) = lim
n→∞

E[u(x+ S(n)), τx > n].

In the following we also let P(V ) denote the h-transform of P with the harmonic function
V . It is given by the formula:

P(V )
x (S(n) ∈ dy) = P(x+ S(n) ∈ dy, τx > n)

V (y)

V (x)
, {x ∈ K : V (x) > 0}.

For one of the subcases of our Theorem 2 only, we expand the geometric assumptions
on K by the following regularity assumption for the cone.

• (Extendability) There exists an open and connected set Σ̃ ⊂ Sd−1 with dist(∂Σ, ∂Σ̃) >

0 such that Σ ⊂ Σ̃ and the function m1 can be extended to Σ̃ as a solution to (2.1).

The extendability assumption is a relatively weak assumption, because holds for any two
dimensional cone as well as for any cone whose ∂Σ is real-analytic. Under this assumption
one has more information on the asymptotic behaviour of the harmonic function V than
in the case of our standard geometric assumptions from subsection 2.2. Therefore, for
Theorem 2 below the lack of the information in the general case will be compensated by
stronger moment restrictions on the walk.
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Theorem 2. Assume one of the following cases.

A. E|X|α+ε0 < ∞ for some ε0 > 0, where α is from the moment assumptions on the
increments of the random walk.

B. The cone satisfies the Extendability condition.

Then for every fixed x ∈ K+, the process
{
x+S([nt])√

n
, t ≥ 0

}
under P(V ) converges weakly to

{B(t), t ≥ 0} under P
(u)
0 .

In the special case of the Weyl chamber of type A this result was proved by Denisov
and Wachtel [2010]. In the case when d = 1 and K = (0,∞) Bryn-Jones and Doney [2006]
proved Theorem 2 for random walks which are integer-valued, aperiodic and belong to the
domain of attraction of a standard normal law. Caravenna and Chaumont [2008] have
generalized this result to the whole class of asymptotically stable random walks, albeit still
under d = 1.

It is well-known that for random walks belonging to the domain of attraction of the
normal distribution one gets in the limit the three-dimensonal Bessel process for the
radial part of the random walk. Grabiner [1999] has shown that the radial part of a
Brownian motion conditioned to stay in Weyl chambers is also a Bessel process. It is then
immediate from Theorem 2 that the rescaled radial part of a random walk converges to the
corresponding Bessel process. This is actually valid in all cones satisfying our geometric
assumptions.

Corollary 1. For every fixed x ∈ K+, the process
{
|x+S([nt])|√

n
, t ≥ 0

}
under P(V ) converges

weakly to a (2p+ d)-dimensional Bessel process.

We now turn to bridges of random walks conditioned to stay in K. Here we shall
use the local limit theorems from Denisov and Wachtel [2015b], which are valid under the
following assumption:

• Lattice assumption: X takes values on a lattice R which is a non-degenerate linear
transformation of Zd. Furthermore, we assume that the distribution of X is strongly
aperiodic, that is, for every x ∈ R, the smallest subgroup of R which contains the set

{y : y = x+ z with some z such that P(X = z) > 0}

is R itself.

As above, before we state the invariance principle for the bridge we collect invariance
principles which are straightforward applications of the classical, unconditional invariance
principle and Bayes’ rule.



36 3. Invariance principles for random walks in cones

Remark 2. For every pair of lattice sequences {xn}n, {yn}n such that xn√
n
→ x ∈ K, yn√

n
→

y ∈ K, the process {xn+S([nt])√
n

, t ∈ [0, 1]} conditioned on

{τx > n, xn + S(n) = yn} converges towards {x+B(t)|τ bmx > 1, x+B(1) = y}t∈[0,1] weakly
in (D[0, 1], || · ||∞).

Theorem 3. For all fixed x ∈ K+ and y ∈ K̃+, the process
{
x+S([nt])√

n
, t ∈ [0, 1]

}
conditioned

on {τx > n, x + S(n) = y} converges weakly to a continuous process {B0
K(t) : t ∈ [0, 1]},

which we shall call Brownian excursion in K.

The proof of Theorem 3 is based on a method suggested by Caravenna and Chaumont
[2013], who proved an invariance principle for bridges of one-dimensional random walks
conditioned to stay positive. It is worth mentioning that their results are valid for all
asymptotically stable random walks. Their method combines weak convergence towards
the meander and local limit theorems for conditioned probabilities. In the case of random
walks in cones we have all needed ingredients: Theorem 1 and local limit theorems in
Proposition 6.

As usual, invariance principles allow to derive results about weak convergence of appropriate
functionals of random processes. If one knows the limiting behaviour for one particular
random walk then the same convergence is valid for all random walks satisfying the
conditions in our theorems. For example, Feierl [2012, 2009] has considered functionals

max
k≤n

(xd + Sd(k))

and
max
k≤n
|xd + Sd(k)− x1 − S1(k)|

for random walk bridges in Weyl chambers WA := {x ∈ Rd : x1 < x2 < . . . < xd}
and WB := {x ∈ Rd : 0 < x1 < x2 < . . . < xd}. Assuming that every coordinate of
S(n) is a simple symmetric random walk, he has shown that the functionals mentioned
above converge weakly after rescaling by

√
n. His proofs are based on very cumbersome

calculations, which can be done for simple random walks only. Theorem 3 implies that one
has the same limiting distributions for a much larger class of random walks.

Remark 3. If the limiting process is a functional of the Brownian motion then one usually
proves the weak convergence on the space of continuous functions. In order to do so, one
considers linear interpolations of random walks. For random walks in cones this is possible
only in the case of convex cones, since in a non-convex cone it can happen that a linear
interpolation of points from the cone leaves the cone. This explains the choice of D-space
with uniform metric in our theorems. �

3.2 Proofs

3.2.1 Proof of convergence towards the Brownian meander

This subsection proves Theorem 1.
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Let f : D[0, 1] 7→ R be a non-negative uniformly continuous with respect to the uniform
topology function with values in [0, 1]. Set also for brevity,

X(n)(t) :=
x+ S([nt])√

n
, t ≥ 0

and

X(k,n)
z (t) :=

z + (S([nt])− S(k))1{t > k/n}√
n

, t ≥ 0.

It suffices to show that

E
[
f
(
X(n)

) ∣∣∣τx > n
]
→ E[f(MK)]. (3.1)

Similar to Denisov and Wachtel [2015b], we use the strong approximation of random walks
by the Brownian motion. We shall also keep the notation from Denisov and Wachtel [2015b,
2019] for Kn,ε, V (x),M(n), νn.

Let ε > 0 be a constant and let

Kn,ε = {x ∈ K : dist(x, ∂K) ≥ n1/2−ε}.

Define
νn := min{k ≥ 1 : x+ S(k) ∈ Kn,ε}.

By Theorem 1 in Denisov and Wachtel [2015b],

P(τx > n) ∼ κV (x)n−p/2 as n→∞, (3.2)

where κ is the same constant as in (2.10). Furthermore, according to Lemma 14 from
Denisov and Wachtel [2015b],

P(νn > n1−ε, τx > n1−ε) ≤ exp{−Cnε}. (3.3)

Consequently,

E
[
f
(
X(n)

)
, τx > n

]
= E

[
f
(
X(n)

)
, νn ≤ n1−ε, τx > n

]
+ o(P(τx > n)). (3.4)

Using (2.27) and (2.28) in the proof of Lemma 24 from Denisov and Wachtel [2015b],
one can easily infer that there exists a sequence θn which goes to 0 sufficiently slow such
that

lim
n→∞

E
[
|x+ S(νn)|p; τx > νn,M(νn) > θn

√
n, νn ≤ n1−ε] = 0. (3.5)

Since f takes values in [0, 1],

E
[
f
(
X(n)

)
, νn ≤ n1−ε,M(νn) > θn

√
n, τx > n

]
≤ P

(
νn ≤ n1−ε,M(νn) > θn

√
n, τx > n

)
.
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By (2.33), there exists a constant C such that, uniformly in y ∈ Kn,ε,

P(τy > n) ≤ C
|y|p

np/2
.

Combining this estimate with the Markov property, we obtain

E
[
f
(
X(n)

)
, νn ≤ n1−ε,M(νn) > θn

√
n, τx > n

]
≤ E

[
P(τx+S(νn) > n− νn); νn ≤ n1−ε,M(νn) > θn

√
n
]

≤ C

np/2
E
[
|x+ S(νn)|p; τx > νn,M(νn) > θn

√
n, νn ≤ n1−ε]

= o(n−p/2) = o(P(τx > n)), (3.6)

where we have used (3.2) in the last step.
Let

Cn := {νn ≤ n1−ε,M(νn) ≤ θn
√
n}.

It holds

sup
t∈[0,1]

∣∣∣X(νn,n)
x+S(νn)(t)−X

(n)(t)
∣∣∣ =

maxk≤νn |S(νn)− S(k)|√
n

≤ 2M(νn)√
n

.

On the set {M(νn) ≤ θn
√
n} this is smaller than 2θn. Then, as n→∞,

|f(X(n))− f(X
(νn,n)
x+S(νn))| = o(1), uniformly on Cn,

since θn → 0, n→∞. From this estimate we infer that

E
[
f
(
X(n)

)
, Cn, τx > n

]
= E

[
f
(
X

(νn,n)
x+S(νn)

)
, Cn, τx > n

]
+ o(P(τx > n)).

Then, taking into account (3.4) and (3.6), we have

E
[
f
(
X(n)

)
, τx > n

]
= E

[
f
(
X

(νn,n)
x+S(νn)

)
, Cn, τx > n

]
+ o(P(τx > n)). (3.7)

Thus, to prove the theorem, it suffices to consider the expectation on the right hand side
of the above equation. Note first that, by the strong Markov property

E
[
f
(
X

(νn,n)
x+S(νn)

)
, Cn, τx > n

]
=
∑

k≤n1−ε

∫
Kn,ε

P(νn = k, τx > k,M(k) ≤ θn
√
n, x+ S(k) ∈ dz)

× E
[
f
(
X(k,n)
z

)
, τz > n− k

]
.
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We now note that it is sufficient to show that, uniformly in z ∈ Kn,ε, k ≤ n1−ε, such that
|z| ≤ θn

√
n,

E
[
f
(
X(k,n)
z

)
, τz > n− k

]
= (κ + o(1))E[f(MK)]

u(z)

np/2
. (3.8)

Indeed, (3.8) implies that

E
[
f
(
X

(νn,n)
x+S(νn)

)
, Cn, τx > n

]
∼ E[f(MK)]

κ
np/2

E [u(x+ S(νn)), Cn, τx > νn] .

It follows from (3.5) and Lemma 21 in Denisov and Wachtel [2015b] that

E [u(x+ S(νn)), Cn, τx > νn] ∼ E
[
u(x+ S(νn)), νn ≤ n1−ε, τx > νn

]
∼ V (x). (3.9)

Now we infer from (3.7) that

E
[
f
(
X(n)

)
, τx > n

]
∼ E[f(MK)]κ

V (x)

np/2
∼ E[f(MK)]P(τx > n).

In other words,

E
[
f
(
X(n)

) ∣∣∣τx > n
]
∼ E[f(MK)].

In order to prove (3.8) we first set

An :=

{
sup
u≤n
|S([u])−B(u)| ≤ n1/2−γ

}
,

and use Proposition 3 in subsection 2.4. We have

E
[
f
(
X(k,n)
z

)
, τz > n− k

]
= E

[
f
(
X(k,n)
z

)
, An, τz > n− k

]
+O(n−r).

One uses (2.3) from Lemma 1, to show that for all ε > 0 sufficiently small and all y ∈ Kn,ε

with |y| ≤
√
n

n−r = o(u(y)n−
p
2 ).

It follows for all ε > 0 sufficiently small,

n−r

P(τz > n)
→ 0,

uniformly in z ∈ Kn,ε. Consequently,

E
[
f
(
X(k,n)
z

)
, τz > n− k

]
= E

[
f
(
X(k,n)
z

)
, An, τz > n− k

]
+ o(P(τz > n)). (3.10)

For every z ∈ Kn,ε we define
z± = z ±R0n

1/2−γx0,
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where x0 is such that |x0| = 1, x0 +K ⊂ K and R0 is such that

dist(R0x0 +K, ∂K) > 1.

Note also that this choice of R0 ensures that R0n
1/2−γx0 ⊂ Kn,γ. Therefore, if we take

ε < γ then z± ∈ Kn,γ for all n ≥ n(ε, γ) large enough.
Define

B(k,n)
z (t) :=

z + (B(nt)−B(k))1{t > k/n}√
n

, t ≥ 0.

From the coupling described above we have the following relations

{τ bmz− > n− k} ∩ An ⊂ {τz > n− k} ∩ An ⊂ {τ bmz+ > n− k} ∩ An

and ∣∣∣f (X(k,n)
z

)
− f

(
B

(k,n)

z±

)∣∣∣ = o(1) uniformly on An.

Moreover, the latter relation is uniform in k ≤ n1−ε, z ∈ Kn,ε. Combining these relations
with (3.10), we obtain

E
[
f
(
B

(k,n)

z−

)
, τ bmz− > n

]
+ o(P(τz > n))

≤ E
[
f
(
X(k,n)
z

)
, τz > n− k

]
+ o(P(τz > n)) (3.11)

≤ E
[
f
(
B

(k,n)

z+

)
, τ bmz+ > n− n1−ε

]
+ o(P(τz > n)),

uniformly in k ≤ n1−ε, z ∈ Kn,ε.
Clearly, z± satisfy (2.22) for any z ∈ Kn,ε. Then, applying the results from Subsection 2.2

and using the Brownian scaling, we obtain

max
k≤n1−ε

sup
z∈Kn,ε:|z|≤θn

√
n

∣∣∣E [f (B(k,n)

z+

) ∣∣τ bmz+ > n− n1−ε
]
− E[f(MK)]

∣∣∣→ 0

and
max
k≤n1−ε

sup
z∈Kn,ε:|z|≤θn

√
n

∣∣∣E [f (B(k,n)

z−

) ∣∣τ bmz− > n
]
− E[f(MK)]

∣∣∣→ 0.

According to Propositions 1 and 5,

P(τ bmz+ > n− n1−ε) ∼ P(τ bmz− > n) ∼ κ
u(z)

np/2

and

P(τz > n) ∼ κ
u(z)

np/2

uniformly in z ∈ Kn,ε with |z| ≤ θn
√
n.

Combining these relations with (3.11), we arrive at (3.8). This completes the proof of
the theorem.
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3.2.2 Proof of convergence of h-transforms

In this subsection we prove Theorem 2.
Most of the proof follows the same steps for both cases A and B. We note below

specifically where the assumptions in A, B play a role.
Take a uniformly continuous and bounded functional in (D[0, 1], || · ||∞) with 0 ≤ f ≤ 1.

We want to show that

E(V )
x [f(X(n))]→ E

(u)
0 [f(B)] as n→∞.

We first note that

E(V )
x [f(X(n)), νn > n1−ε] ≤ 1

V (x)
E[V (x+ S(n)), τx > n, νn > n1−ε].

By the Markov property and the harmonicity of V we get

E[V (x+ S(n)), τx > n, νn > n1−ε]

= E[E[V (x+ S(n))1{τx > n}|Fn1−ε ], νn > n1−ε]

= E[V (x+ S(n1−ε)), τx > n1−ε, νn > n1−ε].

We want to show

E(V )
x [f(X(n)), νn > n1−ε] = o(1), n→∞. (3.12)

Assume first the moment condition in A. It is immediate from (2.30) that

V (x) ≤ c|x|p, x ∈ K, |x| ≥ 1.

Applying the Hölder inequality and using (3.3), we obtain

E[V (x+ S(n1−ε)), τx > n1−ε, νn > n1−ε]

≤
(
E[|x+ S(n1−ε)|α+ε0 ]

) p
α+ε0

(
P(τx > n1−ε, νn > n1−ε)

) ε0
p+ε0

≤ C(x)e−cn
ε

.

This establishes (3.12) for the case of A.
Assume now the extendability condition in B. From estimates (22) and (24) found in

the proof of Lemma 12 in Denisov and Wachtel [2015b] one concludes that the harmonic
function V (x) satisfies

V (x) ≤ u(x) + C|x|p−δ, x ∈ K, |x| ≥ 1 (3.13)

for some δ > 0 small enough. By Lemma 16 of Denisov and Wachtel [2015b] we have

E[u(x+ S(n1−ε)), τx > n1−ε, νn > n1−ε] ≤ C(x)e−cn
ε

.
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Furthermore, applying the Hölder inequality and using (3.3) once again, we have

E[|x+ S(n1−ε)|p−δ, τx > n1−ε, νn > n1−ε]

≤ C
(
E[|x+ S(n1−ε)|p]

) p−δ
p
(
P(τx > n1−ε, νn > n1−ε)

) δ
p

≤ C(x)e−cn
ε

.

This establishes (3.12) for the case of B.

Using the Markov property and the harmonicity of V once again, we get

E(V )
x [f(X(n)), νn ≤ n1−ε,M(νn) > θn

√
n]

≤ 1

V (x)
E[V (x+ S(n)), νn ≤ n1−ε,M(νn) > θn

√
n, τx > n]

≤ 1

V (x)
E[V (x+ S(νn)), νn ≤ n1−ε,M(νn) > θn

√
n, τx > νn].

Using again V (x) ≤ C|x|p for |x| ≥ 1 we have

E(V )
x [f(X(n)), νn ≤ n1−ε,M(νn) > θn

√
n]

≤ C

V (x)
E[|x+ S(νn)|p, νn ≤ n1−ε,M(νn) > θn

√
n, τx > νn].

Then, in view of (3.5),

E(V )
x [f(X(n)), νn ≤ n1−ε,M(νn) > θn

√
n] = o(1), n→∞. (3.14)

Together, (3.12) and (3.14) imply

E(V )
x [f(X(n))] = E(V )

x [f(X(n)), νn ≤ n1−ε,M(νn) ≤ θn
√
n] + o(1), n→∞.

Therefore, we have to look only at the convergence of

E(V )
x [f(X(n)), νn ≤ n1−ε,M(νn) ≤ θn

√
n].

We have already seen in the proof of Theorem 1 that∣∣∣f(X(n))− f
(
X

(νn,n)
x+S(νn)

)∣∣∣ = o(1) uniformly on {νn ≤ n1−ε,M(νn) ≤ θn
√
n}.

Therefore,

E(V )
x [f(X(n)), νn ≤ n1−ε,M(νn) ≤ θn

√
n]

= E(V )
x

[
f
(
X

(νn,n)
x+S(νn)

)
, νn ≤ n1−ε,M(νn) ≤ θn

√
n
]

+ o(1).
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Then, by the strong Markov property,

E(V )
x

[
f
(
X

(νn,n)
x+S(νn)

)
, νn ≤ n1−ε,M(νn) ≤ θn

√
n
]

(3.15)

=
n1−ε∑
k=1

1

V (x)

∫
Kn,ε

P(x+ S(k) ∈ dz, τx > k, νn = k,M(k) ≤ θn
√
n)

× E[f(X(k,n)
z )V (z + S(n− k)), τz > n− k].

To estimate E[f(X
(k,n)
z )V (z + S(n− k)), τz > n− k] for k ≤ n1−ε we shall use once again

coupling arguments. We first show that

E[V (z + S(n− k)), τz > n− k,Acn] = o(u(z)) (3.16)

and
E[u(z +B(n− k)), τ bmz > n− k,Acn] = o(u(z)) (3.17)

uniformly for k ≤ n1−ε, z ∈ Kn,ε, |z| ≤ θn
√
n.

Fix some η > 0 and split

E[V (z + S(n− k)), τy > n− k,Acn]

= E[V (z + S(n− k)), τz > n− k, |z + S(n− k)| ≤ n
1
2

+η, Acn]

+ E[V (z + S(n− k)), τz > n− k, |z + S(n− k)| > n
1
2

+η, Acn]

=: En,1 + En,2.

Note that
En,1 ≤ Cn

p
2

+pηP(Acn) ≤ Cn
p
2

+pη−r.

It follows easily from Lemma 5 in Denisov and Wachtel [2019] that

u(z) ≥ Cnp/2−pε, z ∈ Kn,ε.

Then, choosing ε and η sufficiently small, we get

En,1 = o(u(z)).

Further,

En,2 ≤ E[V (z + S(n− k)), |z + S(n− k)| > n
1
2

+η]

≤ CE[(M(n))p,M(n) > n
1
2

+η].

Integrating by parts, we get

E[(M(n))p,M(n) > n
1
2

+η]

= np(1/2+η)P(M(n) > n1/2+η) + p

∫ ∞
n1/2+η

xp−1P(M(n) > x)dx.
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Using now (2.28) with y = ε√
d
x and taking into account the moment assumption, one easily

gets

E[(M(n))p,M(n) > n
1
2

+η] = o(np/2−pε) = o(u(z)).

This finishes the proof of (3.16). The proof of (3.17) is even simpler.
As we have seen in the proof of Theorem 1,

{τ bmz− > n} ∩ An ⊂ {τz > n} ∩ An ⊂ {τ bmz+ > n} ∩ An.

Consider the event

Dn,k := {dist(z− +B(n− k), ∂K) ≥ 2n(1−γ)/2}.

Then on the event An ∩Dn,k one has also

dist(z + S(n− k), ∂K) ≥ n(1−γ)/2 ultimately in n.

We now recall (2.31). It follows from that that for all γ small enough and n large
enough0

|V (z + S(n− k))− u(z + S(n− k))| ≤ C
|z + S(n− k)|p

nγ(1−γ)/2
on An ∩Dn,k.

Using this estimate, we obtain for all n large enough

E[f(X(k,n)
z )V (z + S(n− k)), τz > n− k,An]

≥ E[f(X(k,n)
z )V (z + S(n− k)), τz > n− k,An ∩Dn,k]

≥ E[f(X(k,n)
z )u(z + S(n− k)), τ bmz− > n− k,An ∩Dn,k]

− C

nγ(1−γ)/2
E[|z + S(n− k)|p, τ bmz− > n− k,An].

Note now that

|(z + S(n− k))− (z− +B(n− k))|p ≤ Cn(1/2−γ)p

on the event An. As a result,

E[f(X(k,n)
z )V (z + S(n− k)), τz > n− k,An]

≥ E[f(X(k,n)
z )u(z + S(n− k)), τ bmz− > n− k,An ∩Dn,k]

− C

nγ(1−γ)/2
E[|z− +B(n− k)|p, τ bmz− > n− k]

− Cn(1/2−γ)p

nγ(1−γ)/2
P(τ bmz− > n− k),

for all n large enough.
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Using the scaling property of the Brownian motion and applying (2.14) in the first
inequality, we get, uniformly in k ≤ n1−ε and y such that |y| = o(

√
n),

E[|y +B(n− k)|q, τ bmy > n− k] = (n− k)q/2E

[∣∣∣∣ y√
n− k

+B(1)

∣∣∣∣q , τ bmy√n−k > 1

]
≤ C(n− k)q/2u

(
y√
n− k

)
≤ Cn(q−p)/2u(y), q > 0. (3.18)

Note that for q = 0 (3.18) follows immediately from (2.11).
Using this inequality with q = p, y = z− and recalling that P(τ bmz− > n − k) ∼

Cu(z−)n−p/2, we have for all n large enough

E[f(X(k,n)
z )V (z + S(n− k)), τz > n− k,An]

≥ E[f(X(k,n)
z )u(z + S(n− k)), τ bmz− > n− k,An ∩Dn,k] + o(u(z−))

uniformly in k ≤ n1−ε and z ∈ Kn,ε with |z| ≤ θn
√
n.

Note that Lemma 2 implies that u(z±) ∼ u(z) for all z ∈ Kn,ε with |z| ≤
√
n. We

finally get for all n large enough

E[f(X(k,n)
z )V (z + S(n− k)), τz > n− k,An]

≥ E[f(X(k,n)
z )u(z + S(n− k)), τ bmz− > n− k,An ∩Dn,k] + o(u(z)).

We next apply the relation

E
[
|u(z + S(n− k))− u(z− +B(n− k))|, τ bmz− > n− k,An

]
= o(u(z)), (3.19)

which will be proved later. This estimate yields for all n large enough

E[f(X(k,n)
z )V (z + S(n− k)), τz > n− k,An]

≥ E[f(X(k,n)
z )u(z− +B(n− k)), τ bmz− > n− k,An ∩Dn,k] + o(u(z))

uniformly in k ≤ n1−ε and z ∈ Kn,ε with |z| ≤ θn
√
n.

By the Brownian scaling, for all n large enough,

E[u(z− +B(n− k)), τ bmz− > n− k,Dc
n,k]

≤ (n− k)p/2P(τ bmz− > n− k)

[
u

(
z−√
n− k

+B(1)

)
, D̃c

n,k

∣∣∣τ bmz−/√n−k > 1

]
,

where D̃c
n,k = {dist( z−√

n−k + B(1), ∂K) ≤ 4n−
γ
2 }. The expectation on the right hand side

converges to zero, due to convergence towards the meander and to (2.14). Furthermore,
we already know that

(n− k)p/2P(τ bmz− > n− k) ∼ κu(z−) ∼ κu(z).
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As a result,
E[u(z− +B(n− k)), τ bmz− > n− k,Dc

n,k] = o(u(z)).

Consequently, for all n large enough,

E[f(X(k,n)
z )V (z + S(n− k)), τz > n− k,An]

≥ E[f(X(k,n)
z )u(z− +B(n− k)), τ bmz− > n− k,An] + o(u(z)).

As we have seen in the proof of Theorem 1,

f(X(k,n)
z )− f

(
B

(k,n)
z−

)
= o(1)

uniformly in k ≤ n1−ε, z ∈ Kn,ε with |z| ≤ θn
√
n and in An. This implies that

E[f(X(k,n)
z )u(z− +B(n− k)), τ bmz− > n− k,An]

− E[f
(
B

(k,n)

z−

)
u(z− +B(n− k)), τ bmz− > n− k,An]

= o
(
E[u(z− +B(n− k)), τ bmz− > n− k]

)
= o(u(z)).

In the last step we used the harmonicity of u and the relation u(z−) ∼ u(z). From this
estimate and (3.17) we infer, for all n large enough,

E[f(X(k,n)
z )V (z + S(n− k)), τz > n− k,An]

≥ E
[
f
(
B

(k,n)

z−

)
u(z− +B(n− k)), τ bmz− > n− k,An

]
+ o(u(z))

= E
[
f
(
B

(k,n)

z−

)
u(z− +B(n− k)), τ bmz− > n− k

]
+ o(u(z))

= u(z)E
(u)

z−/
√
n

[
f
(
B

(k,n)

z−

)]
+ o(u(z)).

Then, in view of convergence (2.13), for all n large enough,

E[f(X(k,n)
z )V (z + S(n− k)), τz > n− k,An] ≥ u(z)E

(u)
0 [f(B)] + o(u(z)),

uniformly in k ≤ n1−ε, z ∈ Kn,ε with |z| ≤ θn
√
n.

By similar arguments, for all n large enough,

E[f(X(k,n)
z )V (z + S(n− k)), τz > n− k,An] ≤ u(z)E

(u)
0 [f(B)] + o(u(z)),

uniformly in k ≤ n1−ε, z ∈ Kn,ε with |z| ≤ θn
√
n.

Combining these inequalities and (3.15), we obtain

E(V )
x

[
f
(
X

(νn,n)
x+S(νn)

)
, νn ≤ n1−ε,M(νn) ≤ θn

√
n
]

=
E

(u)
0 [f(B)] + o(1)

V (x)
E
[
u(x+ S(νn)), νn ≤ n1−ε,M(νn) ≤ θn

√
n, τx > νn

]
.
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Taking into account (3.9), we have

E(V )
x

[
f
(
X

(νn,n)
x+S(νn)

)
, νn ≤ n1−ε,M(νn) ≤ θn

√
n
]

= E
(u)
0 [f(B)] + o(1).

Combining this with (3.12) and (3.14), we finally obtain

E(V )
x [f(X(n))]→ E

(u)
0 [f(B)].

It remains to show (3.19). It follows from Lemma 6 in Denisov and Wachtel [2019] that

|u(x)− u(y)| ≤ C|x− y|(|x|p−1 + |y|p−1), x ∈ K.

This implies

|u(z + S(n− k))− u(z− +B(n− k))|
≤ C

(
|z− − z|+ |B(n− k)− S(n− k)|

) (
|z + S(n− k)|p−1 + |z− +B(n− k)|p−1

)
.

From definitions of z− and An, we get for p > 1 the bound

|u(z + S(n− k))− u(z− +B(n− k))|
≤ Cn1/2−γ (|z + S(n− k)|p−1 + |z− +B(n− k)|p−1

)
≤ Cnp(1/2−γ) + Cn1/2−γ|z− +B(n− k)|p−1.

Then

E[|u(z + S(n− k))− u(z− +B(n− k))|, τ bmz− > n− k,An]

≤ Cnp(1/2−γ) + Cn1/2−γE[|z− +B(n− k)|p−1, τ bmz− > n− k].

Using now (3.18) with q = p− 1, we conclude that (3.19) is proved for p ≥ 1.

Consider now the case p < 1. Lemma 2 implies that if p < 1 then

|u(z + S(n− k))− u(z− +B(n− k))| ≤ Cnp(1/2−γ) = o(np/2)

on the event An. Consequently,

E[|u(z + S(n− k))− u(z− +B(n− k))|, τ bmz− > n− k,An]

= o(np/2P(τ bmz− > n− k)) = o(u(z)).

We conclude that (3.19) is valid also for p < 1.
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3.2.3 Proof of convergence for bridges of random walks in a cone

For every event B ∈ σ({S(k), k ≤ nt}) we have

P(B|x+ S(n) = y, τx > n)

=

∑
z∈K P(B, x+ S(nt) = z, τx > nt)P(z + S((1− t)n) = y, τz > (1− t)n)

P(x+ S(n) = y, τx > n)

= E
[
h(n)
x,y

(
t,X(n)(t)

)
1B|τx > nt

]
, (3.20)

where

h(n)
x,y(t, w) =

P(τx > nt)P
(
w
√
n+ S((1− t)n) = y, τw√n > (1− t)n

)
P(x+ S(n) = y, τx > n)

.

We show now that there exists a bounded, continuous function h(t, w) such that

sup
w∈K
|h(n)
x,y(t, w)− h(t, w)| → 0. (3.21)

Let S̃(k) denote a random walk, whose increments are independent copies of −X(1).
Considering the path w

√
n+ S(k), k ≤ (1− t)

√
n in the reversed time, we have

P
(
w
√
n+ S((1− t)n) = y, τw√n > (1− t)n

)
= P

(
y + S̃((1− t)n) = w

√
n, τ̃y > (1− t)n

)
.

Thus, applying the local limit theorem Proposition 6, we conclude that, uniformly in
w ∈ K,

np/2+d/2P
(
w
√
n+ S((1− t)n) = y, τw√n > (1− t)n

)
−κṼ (y)H0

u(w)

(1− t)p+d/2
e−|w|

2/2(1−t) → 0, (3.22)

where Ṽ is the positive harmonic function for S̃ and H0 is a norming constant.
Furthermore, combining Propositions 5 and 6, we get

P(τx > nt)

P(x+ S(n) = y, τx > n)
∼ C

t−p/2

Ṽ (y)
np/2+d/2.

From this estimate and (3.22) we infer that (3.21) is valid with

h(t, w) = Ct−p/2(1− t)−p/2−d/2u(w)e−|w|
2/2(1−t).

Let gt : D[0, t] 7→ R be bounded and continuous. It follows from (3.20) and (3.21) that

E[gt(X
(n))|x+ S(n) = y, τx > n] = (1 + o(1))E[gt(X

(n))h(t,X(n)(t))|τx > nt].
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Applying now Theorem 1, we finally get

E[gt(X
(n))|x+ S(n) = y, τx > n]→ E[gt(t

1/2MK)h(t, t1/2MK(1))]. (3.23)

In other words, we have shown convergence in distribution on D[0, t] for every fixed t < 1.
Furthermore, the right hand side in (3.23) can be used to determine all finite dimensional
distributions of the suggested limiting process. Thus, it remains to show tightness on the
time interval [1− δ, 1].

Considering the path x+ S(k), k ≤ n in reversed time and using the same arguments,
one obtains for every bounded and continuous qt : D[t, 1] 7→ R convergence

E[qt(X
(n))|x+ S(n) = y, τx > n]

→ E[qt((1− t)1/2MK)h(1− t, (1− t)1/2MK(1))]. (3.24)

As a result, we have tightness on [1− δ, 1] for every 1 > δ > 0. Therefore, the proof of the
weak convergence is finished.

Finally, we note that the continuity of MK implies also that B0
K is continuous as well.

Moreover, due to MK(0) = 0, we have B0
K(0) = B0

K(1) = 0.

3.3 Application: Convergence of the radial part of a

random walk in a cone

In this subsection we prove Corollary 1.
In view of Theorem 2 it suffices to show that |B(t)| under P

(u)
0 is a Markov process

with the desired transition kernel.
We first note that (2.26) implies that

P
(u)
0 (B(1) ∈ dx)/dx = κu(x)e(1, x) = Cu2(x)e−|x|

2/2.

Here, e(t, x) for t ∈ (0, 1], x ∈ K is the density of the Meander at time 1 (see Theorem 1.1
in Garbit [2009]). Recalling that u(x) = |x|pm1(x/|x|), we then obtain

P
(u)
0 (|B(1)| ∈ dr)/dr = Cr2p+d−1e−r

2/2.

Finally, using the scaling property of B(t), we arrive at the following expression for the
entrance law

P
(u)
0 (|B(t)| ∈ dr)/dr = Ct−p−d/2r2p+d−1e−r

2/2t. (3.25)

Under P
(u)
0 , B(t) is a Markov process with the following transition kernel:

P
(u)
0 (B(t+ h) ∈ dz|B(t) = x)

dz
=
u(z)

u(x)

P(x+B(h) ∈ dz, τ bmx > h)

dz

=
u(z)

u(x)
bh(x, z),
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where, according Lemma 1 in Banuelos and Smits [1997],

bh(x, z) =
e−(|x|2+|z|2)/2h

h|x|d/2−1|z|d/2−1

∞∑
j=1

Iaj

(
|x||z|
h

)
mj

(
x

|x|

)
mj

(
z

|z|

)
,

with aj =
√
λj + (d/2− 1)2.

Combining this with the entrance law for B(t) we have

P
(u)
0 (B(t+ h) ∈ dz,B(t) ∈ dx)

dxdz
= Cu(z)t−p−d/2u(x)e−|x|

2/2tbh(x, z)

Integrating over {x : |x| = r1} and {z : |z| = r2} we obtain

P
(u)
0 (|B(t)| ∈ dr1, |B(t+ h)| ∈ dr2)

dr1dr2

= Crd−1
1 rd−1

2 rp2t
−p−d/2rp1e

−r21/2t
e−(r21+r22)/2h

hr
d/2−1
1 r

d/2−1
2

×
∞∑
j=1

Iaj

(r1r2

h

)∫
Sd−1

∫
Sd−1

m1(η)m1(ν)mj(η)mj(ν)dηdν

= Crd−1
1 rd−1

2 rp2t
−p−d/2rp1e

−r21/2t
e−(r21+r22)/2h

hr
d/2−1
1 r

d/2−1
2

Ia1

(r1r2

h

)
.

Here in the last step we have used the orthogonality of eigenfunctions mj, j ≥ 1.
Using now the Bayes formula, we obtain

P
(u)
0

(
|B(t+ h)| ∈ dr2

∣∣|B(t)| = r1

)
dr2

= C

(
r2

r1

)p+d/2−1

r2
e−(r21+r22)/2h

h
Ia1

(r1r2

h

)
.

Noting that a1 = p + (d/2 − 1) we see that the right hand side is the transition kernel of
the (2p+ d)-dimensional Bessel process.

By similar calculations one can easily show that the process |B(t)| is Markovian under

P
(u)
0 . This finishes the proof of the Corollary.



Chapter 4

The Green function of a random walk
in cones

4.1 Introduction and statement of results

The work presented in this chapter is included in Duraj and Wachtel [2018].
Consider a random walk {S(n), n ≥ 1} on Rd, d ≥ 1, where

S(n) = X(1) + · · ·+X(n)

and {X(n), n ≥ 1} is a family of independent copies of a random variableX = (X1, X2, . . . , Xd).
Denote by Sd−1 the unit sphere of Rd and Σ an open and connected subset of Sd−1. Let K
be the cone generated by the rays emanating from the origin and passing through Σ, i.e.
Σ = K ∩ Sd−1.

Let τx be the exit time from K of the random walk with starting point x ∈ K, that is,

τx = inf{n ≥ 1 : x+ S(n) /∈ K}.

We recall the positive harmonic function V (x) for the random walk {S(n)} killed at leaving
K defined in Theorem 4. That is, V satisfies

V (x) = E[V (x+X); τx > 1], x ∈ K.

In this chapter we determine the asymptotic behavior of the Green function for {S(n)}
killed at leavingK and prove, by using the Martin compactification approach, the uniqueness
of the positive harmonic function for such processes.

We shall strengthen the usual geometric conditions on K from chapter 2 as follows:

• Extendability: We assume that there exists an open and connected set Σ̃ ⊂ Sd−1

with dist(∂Σ, ∂Σ̃) > 0 such that Σ ⊂ Σ̃ and the function m1 can be extended to Σ̃
as a solution to (2.1).

• Convexity and regularity: K is convex and C2.
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Besides the usual moment conditions, we impose the following assumption on the increments
of the random walk:

• Lattice assumption: X takes values on a lattice L which is a non-degenerate linear
transformation of Zd.

Our first result describes the asymptotic behavior of the Green function for endpoints
y which lie deep inside the cone K.

Theorem 4. Set r1(p) = p+ d− 2 + (2− p)+ and assume that E|X|r1(p) <∞. If |y| → ∞
and dist(y, ∂K) ≥ α|y| for some positive α, then

GK(x, y) :=
∞∑
n=0

P(x+ S(n) = y, τx > n) ∼ cV (x)
u(y)

|y|2p+d−2
. (4.1)

Moreover, this relation remains valid if one replaces the moment condition E|X|r1(p) <∞
by the following restriction on the local structure of X1:

P(X = x) ≤ |x|−p−d+1f(|x|) (4.2)

for some decreasing function f such that u(3−p)∨1f(u)→ 0 as u→∞.

Uchiyama [1998] has shown, see Theorem 2 there, that if d ≥ 5 and E|X|d−2 <∞ then

GRd(0, z) ∼
c

|z|d−2
, |z| → ∞.

If d = 4 or d = 3 then the same is valid provided that respectively E|X|2 log |X| < ∞ or
E|X|2 <∞.

Uchiyama mentions also that this moment condition is optimal: for every ε > 0 there
exists a random walk satisfying E|X|d−2−ε <∞ such that

lim sup
|z|→∞

|z|d−2GRd(0, z) =∞.

He has considered the dimensions 4 and 5 only, but it is quite simple to show that this
statement holds in every dimension d ≥ 5. We now give an example in our setting of
a random walk which shows the optimality of Uchiyama’s condition and of the moment
condition in Theorem 4. Our example is just a multidimensional variation of the classical
Williamson example, see Williamson [1968]. Let d be greater than 4 and consider X with
the following distributon. For every n ≥ 1 and for every basis vector ek put

P(X = ±2nek) =
qn
2d
,

where the sequence qn is such that

∞∑
n=1

qn = 1 and qn ∼
c log n

2n(d−2)
.
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Clearly,

E|X|d−2 =∞ and E
|X|d−2

log1+ε |X|
<∞.

Using now the obvious inequality GRd(0, x) ≥ P(X = x), we conclude that, for every
j = 1, 2, . . . , d,

lim
n→∞

2(d−2)nGRd(0,±2nej) =∞.

If we have a cone K such that p ≥ 2 and ej ∈ Σ for some j, then, choosing qn ∼ c logn
2n(p+d−2) ,

we also have
lim
n→∞

2(p+d−2)nGK(ej, (1 + 2n)ej) =∞.
�

But Uchiyama shows that the moment assumption E|X|d−2 is not necessary, as it can be
replaced by P(X = x) = o(|x|−d−2), which implies the existence of the second moment only.
In Theorem 4 we have a similar situation: the moment condition E|X|r1(p) is not necessary
and can be replaced by the assumption (4.2), which yields the finiteness of E|X|p∨2 only.
It has been shown in Denisov and Wachtel [2015b], if p > 2 then the condition E|X|p <∞
is an optimal moment condition for the existence of the harmonic function V (x).

We now turn to the asymptotic behavior of the Green function along the boundary of
the cone.

Theorem 5. Assume that K is convex and C2. Assume also that E|X|r1(p)+1 < ∞. If
y/|y| converges to σ ∈ ∂Σ as |y| → ∞ then there exists a strictly positive function vσ(y)
such that

GK(x, y) ∼ c
V (x)vσ(dist(y, ∂K))

|y|p+d−1
. (4.3)

The function vσ is asymptotically linear, that is,

vσ(y) ∼ cσ|y| as y →∞.

Moreover, the same relation for GK holds under the assumption (4.2).

Clearly, one can adapt the random walk from Example 4.1 to show that the moment
assumption in Theorem 5 is minimal as well. Indeed, it suffices to take qn ∼ c logn

2n(p+d−1) and
to assume that one of the vectors ±ej belongs to the boundary of the cone K.

Theorems 4 and 5 describe the asymptotic behavior of Gk(x, y) along all possible
directions inside the cone K. Combining these two results, we conclude that, for all
x, x′ ∈ K,

G(x, y)

G(x′, y)
→ V (x)

V (x′)
as |y| → ∞.

As a result we have the following Corollary.

Corollary 2. Assume that the assumptions of Theorem 5 are valid. Then the function
V (x) is the unique, up to mutiplicative factor, positive harmonic function for {S(n)} killed
at leaving K.
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Doney [1998] has shown that the harmonic function for any one-dimensional oscillating
random walk killed at leaving the positive half-axis is unique without any additional
moment assumption.

For multidimensional cones much less is known. Raschel [2014] has shown the uniqueness
of the positive harmonic function for random walks with small steps killed at leaving the
positive quadrant Z2

+ and some particular cases of such random walks have been studied
by the same author in Raschel [2010] and Raschel [2011]. The approach in Raschel [2014]
is based on a functional equation which is satisfied by all harmonic functions. It should
be also mentioned that Raschel [2010] and Raschel [2011] describe actually the asymptotic
behavior of the Green function and the uniqueness of the harmonic function is just a
consequence of the results on the Green function.

Uchiyama [2014] derives asymptotics for the Green function for random walks in Zd−1×
Z+, see Theorem 5. He assumes that E|X|d is finite. This is slightly weaker than the
moment assumption in Theorem 5, which reduces in the case of a half-space to E|X|d+1 <
∞. On the other hand, Theorem 5 can be applied to any half-space, and Uchiyama’s proof
uses in a crucial way that the half-space is precisely Zd−1×Z+, i.e. aligned with the gitter
of the random walk.

Bouaziz et al. [2015] have shown uniqueness for a wide class of random walks with finite
number of steps killed at leaving the orthant Zd+, d ≥ 2.

Ignatiouk-Robert [2020] has studied the properties of harmonic function for random
walks on semigroups by introducing a special renewal structure. Applying this to a random
walk in a cone, she has shown that, if the cone K satisfies the assumptions from Denisov
and Wachtel [2015b] with some p ≤ 2 and E|X|α is finite for some α > 2, then the harmonic
function is unique. From our results on the Green function one can deduce uniqueness if
it is assumed that E|X|d+1 <∞. Therefore, for cones with p ≤ 2 the result in Ignatiouk-
Robert [2020] holds under much weaker restrictions on the random walk than Corollary 2.
This does not provide any information on the asymptotic behavior of the Green function.

Raschel and Tarrago [2018] have derived an implicit asymptotic representation for the
Green function of random walks in cones under the assumptions p ≥ 1 and E|X|r1(p)+p <
∞. They also show that the construction of the harmonic function V (x) suggested in
Denisov and Wachtel [2015b] works for all convex cones and all random walks satisfying
E|X|r(p)+p <∞. In other words, by increasing the number of finite moments of the random
walk one can relax the geometric restrictions on the cone. This is the main difference
between their assumptions and ours: we need less moments but we have to impose the
condition that there exists a harmonic extension of u(x) into a bigger cone and that the
cone is C2. The latter excludes, for example, Weyl chambers, which appear naturally in
some models of killed random walks from statistical physics.
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4.2 Proofs

4.2.1 Proof of the behavior of the Green function inside the cone

Proof of Theorem 4. Fix some ε > 0 and split GK(x, y) into two parts:

GK(x, y) =
∑

n<ε|y|2
P(x+ S(n) = y, τx > n) +

∑
n≥ε|y|2

P(x+ S(n) = y, τx > n)

=: S1(x, y, ε) + S2(x, y, ε).

By Proposition 6,

np/2+d/2P(x+ S(n) = y, τx > n) = C0V (x)u

(
y√
n

)
e−|y|

2/2n + o(1)

uniformly in y ∈ K. Consequently, as |y| → ∞,

S2(x, y, ε) = C0V (x)
∑

n≥ε|y|2

1

np/2+d/2
u

(
y√
n

)
e−|y|

2/2n + o

 ∑
n≥ε|y|2

1

np/2+d/2


= C0V (x)u(y)

∑
n≥ε|y|2

1

np+d/2
e−|y|

2/2n + o
(
|y|−p−d+2

)
= C0V (x)u(y)|y|−2p−d+2

∫ ∞
ε

z−p−d/2e−1/(2z)dz + o
(
|y|−p−d+2

)
.

Letting here ε→ 0 and recalling that u(y) ≥ c(α)|y|p for dist(y, ∂K) ≥ α|y|, we obtain

lim
ε→0

lim
|y|→∞

|y|2p+d−2

u(y)
S2(x, y, ε) = C0V (x)

∫ ∞
0

z−p−d/2e−1/(2z)dz. (4.4)

Therefore, it remains to show that

lim
ε→0

lim sup
|y|→∞

|y|2p+d−2

u(y)
S1(x, y, ε) = 0. (4.5)

Fix additionally some small δ > 0 and define

θy := inf{n ≥ 1 : x+ S(n) ∈ Bδ,y},

where Bδ,y denotes the ball of radius δ|y| around point y.
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Then we have

S1(x, y, ε) =
∑

n<ε|y2|

P(x+ S(n) = y, τx > n ≥ θy)

=
∑

n<ε|y2|

n∑
k=1

∑
z∈Bδ,y

P(x+ S(k) = z, τx > k = θy)P(z + S(n− k) = y, τz > n− k)

≤
∑

k<ε|y|2

∑
z∈Bδ,y

P(x+ S(k) = z, τx > k = θy)
∑

j<ε|y|2−k

P(z + S(j) = y)

≤ E
[
G(ε|y|2)(y − x− S(θy)); τx > θy, θy ≤ ε|y|2

]
, (4.6)

where

G(t)(z) :=
∑
n<t

P(S(n) = z).

We focus first on the case d ≥ 3. Then, according to Theorem 2 in Uchiyama [1998],

G(z) := G(∞)(z) ≤ C

1 + |z|d−2
, z ∈ Zd, (4.7)

provided that E|X1|sd <∞, where sd = 2 + ε for d = 3, 4 and sd = d− 2 for d ≥ 5. Since
r1(p) > sd, (4.7) yields

S1(x, y, ε)

≤ CE

[
1

1 + |y − x− S(θy)|d−2
; τx > θy, θy ≤ ε|y|2

]
(4.8)

≤ CP(|y − x− S(θy)| ≤ δ2|y|, τx > θy, θy ≤ ε|y|2) +
C(δ)

|y|d−2
P(τx > θy, θy ≤ ε|y|2).

Noting now that |y−x−S(θy)| ≤ δ2|y| yields |X(θy)| > δ(1− δ)|y| and using our moment
assumption, we conclude that

P(|y − x− S(θy)| ≤ δ2|y|, τx > θy, θy < ε|y|2)

≤
∑

k<ε|y|2
P(|X(k)| > δ(1− δ)|y|, τx > k = θy)

≤ P(|X| > δ(1− δ)|y|)
∑

k<ε|y|2
P(τx > k − 1)

= o
(
|y|−r1(p)E[τx; τx < |y|2]

)
= o

(
|y|−d−p+2

)
. (4.9)
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Recalling that V is harmonic for S(n) killed at leaving K, we obtain

P(τx > θy, θy < ε|y|2)

=
∑

k<ε|y|2

∑
z:|z−y|≤δ|y|

P(τx > k, θy = k, x+ S(k) = z)

=
∑

k<ε|y|2

∑
z:|z−y|≤δ|y|

V (x)

V (z)
P(V )(θy = k, x+ S(k) = z)

≤ V (x)

min{z:|z−y|≤δ|y|} V (z)
P(V )(θy < ε|y|2).

It follows from the assumption dist(y, ∂K) ≥ α|y| and (2.31), that

min
{z:|z−y|≤δ|y|}

V (z) ≥ C|y|p

for all δ sufficiently small. As a result,

|y|pP(τx > θy, θy < ε|y|2) ≤ C(x)P(V )

(
max
n<ε|y|2

|x+ S(n)| > (1− δ)|y|
)
.

Applying now the functional limit theorem for S(n) under P(V ), see Theorem 2 and Remark
2, we conclude that

lim
ε→0

lim sup
|y|→∞

|y|pP(τx > θy, θy < ε|y|2) = 0. (4.10)

Note that the functional limit theorems from Duraj and Wachtel [2020] only require p ∨
(2 + ε)-moments.

Combining (4.8)–(4.10), we infer that (4.5) is valid under the assumption E|X1|r1(p) <
∞ in all dimensions d ≥ 3.

Assume now that (4.2) holds. It is clear that this restriction implies that E|X1|p <∞.
Therefore, Proposition 6 is still applicable and (4.4) remains valid for all random walks
satisfying (4.2). In order to show that (4.5) remains valid as well, we notice that

S1(x, y, ε) ≤ CE

[
1

1 + |y − x− S(θy)|d−2
; |y − x− S(θy)| ≤ δ2|y|, τx > θy, θy ≤ ε|y|2

]
+
C(δ)

|y|d−2
P(τx > θy, θy ≤ ε|y|2).

In view of (4.10), we have to estimate the first term on the right hand side only. For every
z such that |z − y| ≤ δ2|y| we have

P(x+ S(θy) = z, τx > θy, θy ≤ ε|y|2)

≤
ε|y|2∑
k=1

∑
z′∈K\Bδ,y

P(x+ S(k − 1) = z′, τx > k − 1)P(Xk = z − z′).
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Since |z − z′| > δ(1− δ)|y|, we infer from (4.2) that

P(x+ S(θy) = z, τx > θy, θy ≤ ε|y|2)

≤ C(δ)|y|−p−d+1f(δ(1− δ)|y|)
ε|y|2∑
k=1

P(τx > k − 1)

≤ C(δ)|y|−p−d+1f(δ(1− δ)|y|)E[τx; τx < |y|2]. (4.11)

Here and in the following we use that E[τx; τx < |y|2] ∼ C|y|−p+2 if p ≤ 2.
For every natural m there are O(md−1) lattice points z such that |z − y| ∈ (m,m+ 1].

Then, using (4.11), we obtain

E

[
1

1 + |y − x− S(θy)|d−2
; |y − x− S(θy)| ≤ δ2|y|, τx > θy, θy ≤ ε|y|2

]

≤ C(δ)|y|−p−d+1f(δ(1− δ)|y|)E[τx; τx < |y|2]

δ2|y|∑
m=1

md−1

1 +md−2

≤ C(δ)|y|−p−d+3f(δ(1− δ)|y|)E[τx; τx < |y|2].

Recalling that u(3−p)∨1f(u)→ 0, we conclude that

E

[
1

1 + |y − x− S(θy)|d−2
; |y − x− S(θy)| ≤ δ2|y|, τx > θy, θy ≤ ε|y|2

]
= o(|y|−p−d+2).

This completes the proof of the theorem for d ≥ 3.
We now focus on d = 2. In this case we can not use the full Green function. We

will obtain bounds for G(t)(x) directly from the local limit theorem for unrestricted walks.
More precisely, we shall use Propositions 9 and 10 from Chapter 2 in Spitzer’s book Spitzer
[1976], which say that

P(Sn = z) =
1

2πn
e−|z|

2/2n +
ρ(n, z)

|z|2 ∨ n
, as n→∞ (4.12)

where
sup
z∈Z2

ρ(n, z)→ 0, as n→∞.

This asymptotic representation implies that

sup
z∈Z2

G(t)(z) ≤ C log t, t ≥ 2. (4.13)

Furthermore, for |z| → ∞ and t ≤ a|z|2 one has

G(t)(z) ≤
a|z|2∑
n=1

1

2πn
e−|z|

2/2n + o(1) =
1

2π

∫ a

0

1

v
e−1/2vdv + o(1).
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As a result,
sup
z∈Z2

G(a|z|2)(z) ≤ C(a) <∞. (4.14)

Using (4.13) and (4.14), we obtain

S1(x, y, ε) ≤ C log |y|P(|y − x− S(θy)| ≤ δ2|y|, τx > θy, θy ≤ ε|y|2)

+ C(ε)P(τx > θy, θy ≤ ε|y|2)

According to (4.9),

P(|y − x− S(θy)| ≤ δ2|y|, τx > θy, θy ≤ ε|y|2) = o(|y|−r1(p)E[τx; τx < |y|2])

= o(|y|−p/ log |y|).

Combining this with (4.10), we conclude that (4.5) holds for d = 2. �

4.3 Random walks in a half-space

In this section we shall consider a particular cone

K =
{
x ∈ Rd : xd > 0

}
.

Since the rotations of the space do not affect our moment assumptions, the results of this
section remain valid for any half-space in Rd.

For this very particular cone we have

• u(x) = xd;

• τx = inf{n ≥ 1 : xd + Sd(n) ≤ 0};

• V (x) depends on xd only and is proportional to the renewal function of ladder heights
of the random walk {Sd(n)}.

In other words, the exit problem from K is actually a one-dimensional problem. This allows
the use of exiting results for one-dimensional walks. As a result we obtain the asymptotic
behavior of the Green function.

Theorem 6. Assume that E|X|d+1 < ∞. Assume also that x = (0, . . . , 0, xd) with xd =
o(|y|). Then

GK(x, y) ∼ c
V (x)v′(y)

|y|d
.

Here, V ′ is the harmonic function for the killed reversed random walk {−S(n)}.

The proof of this result is based on the following simple generalization of known results
for cones.
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Lemma 3. Assume that E|X|2+δ is finite. Then, uniformly in xd = o(
√
n),

(a) P(τx > n) ∼ V (x)n−1/2;

(b) {x+S([nt])√
n
}, t ∈ [0, 1] conditioned on {τx > n} converges weakly to the Brownian

meander in K;

(c) supy∈K

∣∣∣n1/2+d/2P(x+ S(n) = y; τx > n)− cV (x) yd√
n
e−|y|

2/2n
∣∣∣→ 0.

Proof. The first statement is the well-known result for one-dimensional random walks.
The second and the third statements for fixed starting points x have been proved in Duraj
and Wachtel [2020] and in Denisov and Wachtel [2015b] respectively; the former is Theorem
1 the latter is also contained in Proposition 6. To consider the case of growing xd one has
to make only one change: Lemma 24 from Denisov and Wachtel [2015b] should be replaced
by the estimate

lim
n→∞

1

V (x)
E
[
|x+ S(νn)|; τx > νn, |x+ S(νn)| > θn

√
n, νn ≤ n1−ε] = 0

uniformly in xd ≤ θn
√
n/2. If xd ≥ n1/2−ε then νn = 0 and the expectation equals zero.

If xd ≤ n1/2−ε then one repeats the proof of Lemma 24 in Denisov and Wachtel [2015b]
with p replaced by 1 and uses the part (a) of the proposition to obtain a uniform in xd
estimate for the sum

∑
j≤n1−ε P(τx > j−1). (In Denisov and Wachtel [2015b], the Markov

inequality has been used, since one does not have the statement (a) in general cones.) �

Lemma 4. Uniformly in y with yd = o(
√
n),

P(x+ S(n) = y, τx > n) ∼ c
V (x)v′(y)

n1+d/2
e−|y|

2/2n.

Proof. Set m = [n
2
] and write

P(x+S(n) = y, τx > n)

=
∑
z∈K

P(x+ S(n−m) = z, τx > n−m)P(z + S(m) = y, τz > m).

It holds due to part (c) of Lemma 3 that

Σ1(A, n) : =
∑

z∈K:|z|>A
√
n

P(x+ S(n−m) = z, τx > n−m)P(z + S(m) = y, τz > m)

= Cydn
−1− d

2 e−|y|
2/2nE[V (x+ S(n−m)), τx > n−m, |x+ S(n−m)| > A

√
n]

= Cydn
−1− d

2 e−|y|
2/2nV (x)

(
1−PV

x

(∣∣∣∣x+ S(n−m)√
n

∣∣∣∣ ≤ A

))
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It then follows from part (b) of Lemma 3 that

lim
A→∞

lim
n→∞

n1+ d
2

V (x)yd
Σ1(A, n) = 0.

It remains to show that for

Σ2(A, n) :=
∑

z∈K:|z|≤A
√
n

P(x+ S(n−m) = z, τx > n−m)P(z + S(m) = y, τy > m)

it holds

lim
A→∞

lim
n→∞

n1+ d
2

V (x)yd
Σ2(A, n) = c > 0.

Again with help of part (c) in Lemma 3 it follows

Σ2(A, n) = Cydn
−1− d

2 e−|y|
2/2nE[V (x+ S(n−m)), τx > n−m, |x+ S(n−m)| ≤ A

√
n]

= Cydn
−1− d

2 e−|y|
2/2nV (x)PV

x

(∣∣∣∣x+ S(n−m)√
n

∣∣∣∣ ≤ A

)
and the required convergence relation for Σ2(A, n) follows from part (b) of Lemma 3. �

Proof of Theorem 6. If y is such that yd ≥ α|y| for some α > 0 then it suffices to repeat
the proof of Theorem 4.

We consider then the ’boundary case’ yd = o(|y|).
Using Lemma 4, one obtains easily

lim
ε→0

lim
|y|→∞

|y|d

V (x)v′(y)
S2(x, y, ε) = c.

Namely, it follows that

lim
ε→0

lim
|y|→∞

|y|d

V (x)v′(y)
S2(x, y, ε) = c lim

ε→0
lim
|y|→∞

∑
n≥ε|y|2

|y|dn−1− d
2 e−

|y|2
2n

= c

∫ ∞
0

(
1

v

)1+ d
2

e−
1
2v dv

and the last integral is finite. It follows that the theorem will be proven if we show that

lim
ε→0

lim
|y|→∞

|y|d

V (x)V ′(y)
S1(x, y, ε) = 0. (4.15)

Using an appropriate rotation we can reduce everything to the case yk = o(|y|) for every
k = 2, . . . , d− 1 and y1 ∼ |y|. This also implies yd = o(|y|).
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We first split the probability P(x+ S(n) = y, τx > n) into two parts:

P(x+ S(n) = y, τx > n) =P(x+ S(n) = y, τx > n,max
k≤n
|X1(k)| ≤ γy1)

+ P(x+ S(n) = y, τx > n,max
k≤n
|X1(k)| > γy1),

where γ ∈ (0, 1). Introduce the stopping time

σγ := inf{k ≥ 1 : |X1(k)| > γy1}.

Then, by the Markov property,

P(x+ S(n) = y, τx > n,max
k≤n
|X1(k)| > γy1)

=
n∑
k=1

P(x+ S(n) = y, τx > n, σγ = k)

≤
n∑
k=1

P(τx > k − 1)P(|X1| > γy1) max
z

P(S(n− k) = z).

Using now the bounds P(τx > k) ≤ CV (x)k−1/2 and maxz P(S(k) = z) ≤ Ck−d/2, we
obtain

P(x+ S(n) = y, τx > n,max
k≤n
|X1(k)| > γy1)

≤ CV (x)P(|X1| > γy1)
n∑
k=1

1√
k

1

(n− k + 1)d/2

≤ CV (x)P(|X1| > γy1)
(log n)1{d=2}
√
n

.

Here, in the last step we have split the sum
∑n

k=1
1√
k

1
(n−k+1)d/2

into
∑n

2
k=1 and

∑n
k=n

2

and used elementary inequalities.
This implies that

ε|y|2∑
n=1

P(x+ S(n) = y, τx > n,max
k≤n
|X1(k)| > γy1)

≤ C
√
εV (x)P(|X1| > γy1)|y| (log |y|)1{d=2} .

As a result, for all random walks satisfying

E
[
|X|d+1 (log |X|)1{d=2}

]
<∞,

we have
ε|y|2∑
n=1

P(x+ S(n) = y, τx > n,max
k≤n
|X1(k)| > γy1) = o

(
V (x)

|y|d

)
. (4.16)
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In order to estimate P(x + S(n) = y, τx > n,maxk≤n |X1(k)| ≤ γy1) we shall perform
the following change of measure:

P(X(k) ∈ dz) =
ehz1

ϕ(h)
P(X(k) ∈ dz; |X1(k)| ≤ γy1),

where
ϕ(h) = E

[
ehX1 ; |X1| ≤ γy1

]
.

Therefore,

P(x+ S(n) = y, τx > n,max
k≤n
|X1(k)| ≤ γy1)

= e−hy1ϕn(h)P(x+ S(n) = y, τx > n). (4.17)

According to (21) in Fuk and Nagaev [1971],

e−hy1ϕn(h)

≤ exp

{
−hy1 + hnE[X1; |X1| ≤ γy1] +

ehγy1 − 1− hγy1

γ2y2
1

nE[X2
1 ; |X1| ≤ γy1]

}
Choosing

h =
1

γy1

log

(
1 +

γy2
1

nE[X2
1 ; |X1| ≤ γy1]

)
(4.18)

and noting that

|E[X1; |X1| ≤ γy1]| = |E[X1; |X1| > γy1]| ≤ 1

γy1

E[X2
1 ] =

1

γy1

,

we conclude that uniformly for n ≤ γ|y|2 it holds

e−hy1ϕn(h) ≤
(
en

γy2
1

)1/γ

.

Plugging this into (4.17), we obtain uniformly for n ≤ γ|y|2

P

(
x+ S(n) = y, τx > n,max

k≤n
|X1(k)| ≤ γy1

)
≤ C(γ)

(
n

|y|2

)1/γ

P(x+ S(n) = y, τx > n). (4.19)

According to Theorem 6.2 in Esseen [1968], there exists an absolute constant C such that

sup
z

P(S(n) = z) ≤ C

nd/2
χ−d/2,
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where

χ := sup
u≥1

1

u2
inf
|t|=1

E [(t,X(1)−X(2)); |X(1)−X(2)| ≤ u] .

Since h defined in (4.18) converges to zero as |y| → ∞ uniformly in n ≤ γ|y|2,

E [(t,X(1)−X(2)); |X(1)−X(2)| ≤ u]→ E [(t,X(1)−X(2)); |X(1)−X(2)| ≤ u]

for every fixed u. Since S(n) is truly d-dimensional under the original measure,
inf |t|=1 E [(t,X(1)−X(2)); |X(1)−X(2)| ≤ u] > 0 for all large values u.
As a result, there exists χ0 > 0 such that χ ≥ χ0 for all |y| large enough and all

n ≤ γ|y|2. Consequently,

sup
z

P(S(n) = z) ≤ Cχ
−d/2
0

nd/2
. (4.20)

Combining this bound with (4.19), we obtain for all r ∈ (0, 1), γ < 2/d

|y|2−r∑
n=1

P

(
x+ S(n) = y, τx > n,max

k≤n
|X1(k)| ≤ γy1

)

≤ C(γ)χ
−d/2
0 |y|−2/γ

|y|2−r∑
n=1

n1/γ−d/2 ≤ C(γ)χ
−d/2
0 |y|−2/γ|y|(2−r)(1/γ−d/2+1),

for all n ≤ γ|y|2. If we choose γ so small that r(1/γ − d/2 + 1) > 2, then

|y|2−r∑
n=1

P

(
x+ S(n) = y, τx > n,max

k≤n
|X1(k)| ≤ γy1

)
= o

(
1

|y|d

)
. (4.21)

In the case n ≥ |y|2−r we can not ignore the condition τx > n. By the Markov property
at times n/3 and 2n/3 and by (4.20),

P(x+ S(n) = y, τx > n)

≤
∑
z,z′

P(x+ S(n/3) = z, τx > n/3)P(z + S(n/3) = z′)P(z′ + S(n/3) = y, τz′ > n/3)

=
∑
z,z′

P(x+ S(n/3) = z, τx > n/3)P(z + S(n/3) = z′)P(y + S ′(n/3) = z′, τy > n/3)

≤ C

nd/2
P(τx > n/3)P(τ ′y > n/3).

Therefore, it remains to show that, uniformly in n ∈ [|y|2−r, |y|2],

P(τx > n/3) ≤ C
1 + xd√

n
. (4.22)
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Indeed, from this estimate and from the corresponding estimate for the inversed walk we
get

P(x+ S(n) = y, τx > n) ≤ C
(xd + 1)(yd + 1)

nd/2+1
.

This implies with help of (4.19) that

ε|y|2∑
n=|y|2−r

P

(
x+ S(n) = y, τx > n,max

k≤n
|X1(k)| ≤ γy1

)
≤ Cε1/γ−d/2(xd + 1)(yd + 1)|y|−d.

Combining this with (4.16) and with (4.21), we obtain (4.15).
To derive (4.22) we first estimate some moments of the random walk Sd(n) under P.

By the definition of this probability measure,

E[Xd] =
1

ϕ(h)
E
[
Xde

hX1 ; |X1| ≤ γy1

]
.

For the expectation on the right hand side we have the representation

E
[
Xde

hX1 ; |X1| ≤ γy1

]
= E [Xd; |X1| ≤ γy1] + hE [XdX1; |X1| ≤ γy1]

+ E
[
Xd(e

hX1 − 1− hX1); |X1| ≤ γy1

]
= −E [Xd; |X1| > γy1]− hE [XdX1; |X1| > γy1]

+ E
[
Xd(e

hX1 − 1− hX1); |X1| ≤ γy1

]
.

In the last step we have used the equalities E[Xd] = E[XdX1] = 0. If

E|X|3+δ <∞, (4.23)

then, by the Markov inequality,

E [Xd; |X1| > γy1] + hE [XdX1; |X1| > γy1] = o(y−2
1 ) = o(n−1).

Therefore,

E
[
Xde

hX1 ; |X1| ≤ γy1

]
= o(n−1) + E

[
Xd(e

hX1 − 1− hX1); |X1| ≤ γy1

]
.

It is obvious that |ex − 1− x| ≤ x2

2
e|x|. Therefore,∣∣E [Xd(e

hX1 − 1− hX1); |X1| ≤ γy1

]∣∣ ≤ h2

2
E
[
|Xd|X2

1e
h|X1|; |X1| ≤ γy1

]
≤ e

2
h2E|Xd|X2

1 + h2ehγy1E

[
|Xd|X2

1 ; |X1| >
1

h

]
≤ e

2
h2E|Xd|X2

1 + h2+δehγy1E|Xd||X1|2+δ

≤ e

2
h2E|X|3 + h2+δehγy1E|X|3+δ.
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Here in the last step we have used Hölder’s inequality. It is immediate from the definition
of h that h2 ≤ cn−1. Furthermore, if n ≥ |y|2−r with some r < δ

2
, then h2+δehγy1 = o(n−1).

From these estimates and from assumption (4.23), we obtain∣∣E [Xde
hX1 ; |X1| ≤ γy1

]∣∣ ≤ c

n
(4.24)

uniformly in n ∈ [|y|2−r, |y|2].
By the same arguments,

ϕ(h) = E
[
ehX1 ; |X1| ≤ γy1

]
= P(|X1| ≤ γy1) + hE [X1; |X1| ≤ γy1] + E

[
ehX1 − 1− hX1; |X1| ≤ γy1

]
= 1−P(|X1| > γy1)− hE [X1; |X1| > γy1] + E

[
ehX1 − 1− hX1; |X1| ≤ γy1

]
= 1 + o(n−1). (4.25)

Combining this with (4.24), we finally obtain∣∣EXd

∣∣ ≤ c1

n
. (4.26)

We now turn to the second and the third moments of Xd under P. Using (4.25) and the
moment assumption we have

EX2
d =

1

ϕ(h)
E[X2

de
hX1 ; |X1| ≤ γy1] = (1 + o(1))E[X2

de
hX1 ; |X1| ≤ γy1]

= E[X2
d ; |X1| ≤ γy1] + o(1) +O

(
E
[
X2
d(ehX1 − 1); |X1| ≤ γy1

])
= 1 + o(1) +O

(
hehγy1

)
.

Noting that hehγy1 = o(1) for all n ≥ |y|2−r we get

EX2
d = 1 + o(1). (4.27)

Similarly,

E|Xd|3 = (1 + o(1))E[|Xd|3ehX1 ; |X1| ≤ γy1]

≤ c
(
E[|Xd|3; |X1| ≤ 1/h] + ehγy1E[|Xd|3; |X1| > 1/h]

)
≤ c

(
E|Xd|3 + hδehγy1E|Xd|3+γ

)
Using once again the fact that hδehγy1 = o(1) for n ≥ |y|2−r, we arrive at

E|Xd|3 ≤ c3. (4.28)

Now we can derive (4.22). First, it follows from (4.26) that

P(τx > n/3) ≤ P(τ 0
x+c1

> n/3),
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where
τ 0
y := inf{k ≥ 1 : y + S0

d(k) ≤ 0} and S0
d(k) = Sd(k)− kEXd.

Applying Lemma 25 in Denisov et al. [2018] to the random walk S0
d , we have

P(τ 0
y > k) ≤

E[y + S0
d(k); τ 0

y > k]

E(y + S0
d(k))+

Relations (4.27) and (4.28) allow the application of the central limit theorem to the walk
S0
d(k), which gives E(y + S0

d(k))+ ≥ c
√
k. Consequently,

P(τ 0
y > k) ≤ C√

k
E[y + S0

d(k); τ 0
y > k].

Further, by the optional stopping theorem,

E[y + S0
d(k); τ 0

y > k] = y − E[y + S0
d(τ

0
y ); τ 0

y ≤ k]

≤ y − E[y + S0
d(τ

0
y )].

We now use inequality (7) in Mogul’skii [1973] which states that there exists an absolute
constant A such that

−E[y + S0
d(τ

0
y )] ≤ A

E|Xd|3

EX2
d

.

Combining this with (4.27) and (4.28), we finally get

P(τ 0
y > k) ≤ C(y + 1)√

k
,

which implies (4.22). �

4.3.1 Proof of the behavior of the Green function along the
boundary of the cone

Limit theorems for random walks starting far from the origin but close to the
boundary

Let |y| → ∞ in such a way that dist(y, ∂K) = o(|y|). Let y⊥ ∈ ∂K be defined by the
relation dist(y, ∂K) = |y − y⊥|. Set σ(y) := y⊥/|y| ∈ ∂Σ and assume that σ(·) converges
as |y| → ∞ to some σ̄ ∈ ∂Σ. Let Hy denote a tangent hyperplane at point y⊥. Let Pn be
the distribution of the linear interpolation of t→(y+S(nt))/

√
n conditioned to stay in the

half-space Ky containing the cone K and having boundary Hy. Then Pn → P weakly on
C[0, 1]. Denote

An := {f ∈ C[0, 1] : f(k/n) ∈ K, ∀1 ≤ k ≤ n}.
Then

lim inf An ⊇ {f ∈ C[0, 1] : f(t) ∈ K for all t ∈ (0, 1]}
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and
lim supAn ⊆ {f ∈ C[0, 1] : f(t) ∈ K for all t ∈ (0, 1]},

where A denote the closure of A.
Denote for every fixed n by [0, 1] 3 t 7→ S(nt) the linear interpolation of S(k), k ≤ n.

The conditions to apply Theorem 2.3 from Durrett [1978] are given. This leads to the
following invariance principle:

as
n

|y|2
→ t, [0, 1] 3 r→y + S(nr)√

n
converges weakly

to the Brownian meander {Br, r ≤ 1} inside K started at
σ√
t

In particular it holds with Ty := inf{n ≥ 1 : y + S(n) /∈ Ky}

P

(
y + S(nt)√

n
∈ B

∣∣∣τy > n

)
∼ Qσ,t(B) =

∫
B

qσ,t(z)dz,
n

|y|2
→ t, (4.29)

where qσ,t(z) is the density of the aforementioned Brownian meander at time t.
Theorem 2.3 in Durrett [1978] also leads to

P(τy > n|Ty > n)→ cσ,t, (4.30)

where
Ty := inf{n ≥ 1 : y + S(n) /∈ Ky}.

Limiting relations (4.29) and (4.30) imply that

V (y) ≥ c|y|p−1(1 + dist(y, ∂K)). (4.31)

Indeed, by the harmonicity of V

V (y) = E[V (y + S(n)); τy > n], n ≥ 1.

Fix now some ε > 0 and note that choosing n = [|y|2] it follows that V (z) ∼ u(z) uniformly
as z → ∞ as long as distance to ∂K of z is at least ε|z| (recall fact A in subsection 2.5).
We obtain, as |y| → ∞, and ε→ 0

V (y) ≥ P(Ty > [|y|]2)cσ,1|y|p
∫
K

u(z)qσ,1(z)dz.

Due to results for the one-dimensional random walk we arrive at

P(Ty > [|y|]2) ≥ c
1 + dist(y, ∂K)

|y|
.

This establishes (4.31).
Before continuing with the proof of Theorem 5 we record an auxiliary estimate needed

in its proof.
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Lemma 5. Define

φσ(t) = cσ,t

∫
K

u(z)e−
|z|2
2 qσ,t(z)dz.

It holds φσ(t) = o(e−c/t) as t→ 0 for some c > 0.

Proof. First we record that due to the invariance principle for the halfspace it holds

cσ,t = P(τ bmσ > t|T bmσ > t).

Here T bmy := inf{t ≥ 0 : y + B(t) /∈ Ky}. Since |σ| = 1 and K is contained in H(σ) it is
clear then that cσ,t→1 as t→0.

Write AK := {z ∈ K : |z| > 1} and BK := K \ AK .
It follows after a substitution for t ≤ 1∫

AK

u(z)e−
|z|2
2 qσ,t(z)dz ≤ t−

p+d
2 e−

1
4t

∫
AK

u(z)e−
|z|2
4t qσ,t(z/

√
t)dz

≤ e−
1
4t ·σ/√t [u(B(t))e−|B(t)|2/2, |B(t)| ≥

√
t|τ bm > 1] = O(e−

1
4t ), t→0.

For BK we calculate for t ≤ 1

∫
BK

u(z)e−
|z|2
2 qσ,t(z)dz ≤ tp/2 ·P(|σ/

√
t+B(t)| ≤

√
t|τ bm

σ/
√
t
> 1)

It is easy to see using the invariance principles for the half-space and cones as well as the
limit relation cσ,t→1 for t→0 that

P(|σ/
√
t+B(t)| ≤

√
t|τ bm

σ/
√
t
> 1) ≤ P(|σ/

√
t+B(t)| ≤

√
t|T bm

σ/
√
t
> 1).

Let h ∈, |h| = 1 be so that Kσ = {y ∈: h · y ≥ 0}. It holds {|σ
√
t + B(t)| ≤

√
t} ⊂

{|σ ·B(t)| ≥ 1
2
√
t
} for all t > 0 small enough. It follows then from the fact that the density

of the meander of the Brownian motion in Kσ at y at time t depends only on h · y and t
that for some c1 > 0 and c2 > 0 suitable

P(|σ/
√
t+B(t)| ≤

√
t|τ bm

σ/
√
t
> 1) ≤ Ct−

3
2

√
tt−

d−1
2

∫ ∞
1/2t

e−c1z
2

dz = o(e−c2/t).

This finishes the proof. �

4.3.2 Proof of Theorem 5

To estimate the contribution coming from large values of n one does not need the limit
theorems from the previous paragraph, quite rough estimates turn out to be sufficient.
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Set m = [n/2]. Then, applying the Markov property at time m and inverting the time
in the second part of the path, we obtain

P(x+ S(n) = y) =
∑
z∈K

P(x+ S(m) = z, τx > m)P(y + S ′(n−m) = z, τ ′y > n−m)

≤ max
z∈K

P(x+ S(m) = z, τx > m)P(τ ′y > n−m)

By Proposition 6,

max
z∈K

P(x+ S(m) = z, τx > m) ≤ C
V (x)

mp/2+d/2
.

Furthermore, due to results for the one-dimensional random walk

P(τ ′y > n−m) ≤ P(T ′y > n−m) ≤ C
1 + dist(y, ∂K)√

n−m
. (4.32)

Combining these estimates, we obtain

P(x+ S(n) = y) ≤ CV (x)(1 + dist(y, ∂K))n−(p+d+1)/2.

Consequently, for A ≥ 2 and |y| ≥ 1,∑
n≥A|y|2

P(x+ S(n) = y) ≤ CV (x)(1 + dist(y, ∂K))
∑

n≥A|y|2
n−(p+d+1)/2

≤ CV (x)A−(p+d−1)/2 1 + dist(y, ∂K)

|y|p+d−1
. (4.33)

We turn now to the ’middle’ part: n ∈ (ε|y|2, A|y|2). Using again the Markov property
at time m = [n/2] and applying Proposition 6, we obtain

P(x+ S(n) = y, τx > n)

=
∑
z∈K

P(x+ S(m) = z, τx > m)P(y + S ′(n−m) = z; τ ′y > n−m)

=
C0V (x)

mp/2+d/2

∑
z∈K

(
u

(
z√
m

)
e−
|z|2
2m + o(1)

)
P(y + S ′(n−m) = z; τ ′y > n−m)

=
C0V (x)

mp/2+d/2
E

[
u

(
S ′(n−m)√

m

)
e−
|S′(n−m)|2

2m ; τ ′y > n−m
]

+ o

(
P(τ ′y > n−m)

mp/2+d/2

)
.

Taking into account (4.32), we have

P(x+ S(n) = y, τx > n)

=
C0V (x)

mp/2+d/2
E

[
u

(
S ′(n−m)√

m

)
e−
|S′(n−m)|2

2m ; τ ′y > n−m
]

+ o

(
1 + dist(y, ∂K)

n(p+d+1)/2

)
.
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Next, it follows from (4.29) and (4.30) that if n
|y2| ∼ t then

E

[
u

(
S ′(n−m)√

m

)
e−
|S′(n−m)|2

2m ; τ ′y > n−m
]
∼ P(T ′y > n−m)φσ(t/2).

Since T ′y is an exit time from a half space,

P(T ′y > k) ∼ v′(y)k−1/2,

where v′(y) is the positive harmonic function for S ′ killed at leaving the half-space Kσ̄. As
a result,

P(x+ S(n) = y, τx > n) = C0
V (x)v′(y)

n(p+d+1)/2
φσ

(
n

|y|2

)
+ o

(
1 + dist(y, ∂K)

n(p+d+1)/2

)
,

where

C0 := C02(p+d+1)/2.

This representation implies that

A|y|2∑
ε|y|2

P(x+ S(n) = y, τx > n)

= C0V (x)v′(y)

A|y|2∑
ε|y|2

n−(p+d+1)/2φσ

(
n

2|y|2

)
+ o

(
1 + dist(y, ∂K)

n(p+d−1)/2

)

= C0
V (x)v′(y)

|y|p+d−1

∫ A

ε

φσ(t/2)t−(p+d+1)/2dt+ o

(
1 + dist(y, ∂K)

n(p+d−1)/2

)
.

Combining this with (4.33) and letting A→∞, one can easily obtain

lim
|y|→∞

|y|p+d−1

V (x)v′(y)
S2(x, y, ε) = C0

∫ ∞
ε

φσ(t/2)t−(p+d+1)/2dt.

From Lemma 5 it follows

lim
ε→0

lim
|y|→∞

|y|p+d−1

V (x)v′(y)
S2(x, y, ε) = C0

∫ ∞
0

φσ(t/2)t−(p+d+1)/2dt. (4.34)

It remains to estimate S1(x, y, ε). We shall use the same strategy as in the proof of
Theorem 4, but instead of the Green function for the whole space we shall use the Green
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function for the half-space Ky. More precisely,

S1(x, y, ε) =
∑

n<ε|y2|

P(x+ S(n) = y, τx > n ≥ θy)

=
∑

n<ε|y2|

n∑
k=1

∑
z∈Bδ,y

P(x+ S(n) = z, τx > k = θy)P(z + S(n− k) = y, τz > n− k)

=
∑

k<ε|y|2

∑
z∈Bδ,y

P(x+ S(n) = z, τx > k = θy)
∑

j<ε|y|2−k

P(z + S(j) = y, τz > j)

≤
∑

k<ε|y|2

∑
z∈Bδ,y

P(x+ S(n) = z, τx > k = θy)
∑
j<ε|y|2

P(y + S ′(j) = z, T ′y > j)

= E
[
Gε,y(x+ S(θy)); τx > θy, θy ≤ ε|y|2

]
,

where

Gε,y(z) =
∑
j<ε|y|2

P(y + S ′(j) = z, T ′y > j).

Applying Theorem 6 and (4.14) to the random walk S ′(n), we obtain

Gε,y(z) ≤ C
v′(y)(1 + dist(z,Hy))

|z − y|d
∧ 1.

Therefore,

S1(x, y, ε) ≤ CP(|y − x− S(θy)| ≤ δ2|y|, τx > θy, θy ≤ ε|y|2)

+ C(δ)
v′(y)

|y|d
E
[
(1 + dist(x+ S(θy), Hy); τx > θy, θy ≤ ε|y|2

]
. (4.35)

The first term has been estimated in (4.9):

P(|y − x− S(θy)| ≤ δ2|y|, τx > θy, θy ≤ ε|y|2) = o(|y|−p−d+1) (4.36)

for random walks having finite moments of order r2(p) := p+ d− 1 + (2− p)+.
In order to estimate the second term in (4.35), we shall perform again the change of

measure with the harmonic function V :

E
[
(1 + dist(x+ S(θy), Hy); τx > θy, θy ≤ ε|y|2

]
= V (x)E(V )

[
1 + dist(x+ S(θy), Hy)

V (x+ S(θy))
; θy ≤ ε|y|2

]
.

Applying now (4.31), we obtain

E
[
(1 + dist(x+ S(θy), Hy); τx > θy, θy ≤ ε|y|2

]
≤ CV (x)|y|−p+1P(V )(θy ≤ ε|y|2).
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From this estimate and (4.10) we conclude that

lim
ε→0

lim
|y|→∞

|y|p−1E
[
(1 + dist(x+ S(θy), Hy); τx > θy, θy ≤ ε|y|2

]
= 0.

Combining this estimate with (4.35) and (4.36) as well as (2.30) for the half-space we get

lim
ε→0

lim
|y|→∞

|y|p+d−1S1(x, y, ε) = 0. (4.37)

Since v′(y) is bounded from below by a positive number, (4.37) and (4.34) yield the desired
result for the case E[|X|r2(p)] <∞ due to classical results for the one-dimensional random
walk.

Assume now that (4.2) holds. It is easy to see that the above proof that

lim
ε→0

lim
|y|→∞

|y|p+d−1

V (x)v′(y)
S2(x, y, ε) = C0

∫ ∞
0

φσ(t)t−(p+d+1)/2dt, (4.38)

goes through again word for word. Therefore we focus on the asymptotic of S1(x, y, ε) in
the following. With similar steps as above it holds

S1(x, y, ε) ≤ C(δ)v′(y)

[
1 + dist(x+ S(θy), Hy)

|x+ S(θy)− y|d
, |y − x− S(θy)| ≤ δ2|y|, τx > θy, θy ≤ ε|y|2

]
+ C(δ)

v′(y)

|y|d
E
[
(1 + dist(x+ S(θy), Hy); τx > θy, θy ≤ ε|y|2

]
.

The second summand can be treated just as above with help of (4.31) so that we need to
show

lim
|y|→∞

|y|p+d−1E

[
1 + dist(x+ S(θy), Hy)

|x+ S(θy)− y|d
, |y − x− S(θy)| ≤ δ2|y|, τx > θy, θy ≤ ε|y|2

]
= 0.

It holds 1 + dist(x + S(θy), Hy) ≤ 1 + |S(θy) − y| + |y − y⊥| = O(1) + |S(θy) − y|. To
complete the proof we now show

S2,rest(x, y, ε) := E
[
|x+ S(θy)− y|−d+1, |y − x− S(θy)| ≤ δ2|y|, τx > θy, θy ≤ ε|y|2

]
= o(|y|−p−d+1).

With a similar calculation as in the proof of Theorem 4 (using (4.11)) we obtain

E
[
|y − x− S(θy)|−d+1; |y − x− S(θy)| ≤ δ2|y|, τx > θy, θy ≤ ε|y|2

]
≤ C(δ)|y|−p−d+1f(δ(1− δ)|y|)E[τx; τx < |y|2]

δ2|y|∑
m=1

md−1

md−1

≤ C(δ)|y|−p−d+2f(δ(1− δ)|y|)|y|(2−p)+ .

This finishes the proof of Theorem 5.
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4.4 Notes on the case of non-negative drift

The results presented in this subsection are from Duraj [2014a].

4.4.1 Introduction

The uniqueness result, up to a positive scalar, of the harmonic function for zero-drift
random walks in cones opens the question as to what happens for non-zero drift random
walks. We show here that for random walks of non zero drift on the euclidean space
Rd, d ≥ 2, killed when leaving a convex cone with vertex in 0, there are uncountably many
non-negative harmonic functions. The main assumption is finiteness of the jump generating
function of the step of the random walk in a neighborhood of its preimage of 1. The proof is
constructive and an adaptation of the similar proof in Ignatiouk-Robert and Loree [2010],
which considers the special case of lattice random walks in the two-dimensional positive
quadrant.

This establishes by example that the uniqueness result established in this chapter is
special to the case of non-zero drift. We also make a conjecture about the Martin boundary
of two-dimensional random walks, killed when leaving convex cones of R2 and comment
on the difficulties in translating the Ignatiouk-Robert and Loree [2010] proof to the more
general setting we are considering.

We consider a convex cone in Rd, d ≥ 2 with vertex in 0, denote by K its interior,
which we assume to be nonempty throughout the paper and also a random walk on the
euclidean space Rd with steps Xi, i ∈ N and step distribution γ. We also set Σ = K∩Sd−1.
We will study the random walk with the following modified moment conditions.

A1 The step distribution has

m := E[X1] 6= 0 and E[|X1|] 6= 0.

A2 The jump generating function ϕ(a) := E[ea·X1 ] fulfills

D = {a ∈ R2|ϕ(a) ≤ 1} ⊂ int({a ∈ R2|ϕ(a) <∞}).

A3 The random walk is lattice-valued, irreducible in Zd and the killed random walk when
leaving K is irreducible in K. Moreover, the angle between every two points in ∂Σ
is strictly smaller than π.

Assumption A2 is the standard assumption made for the study of the Martin boundary
of lattice random walks in the euclidean lattice (see Ney and Spitzer [1966]). It implies in
particular that X1 has all moments.

Under assumptions A1 and A2 it is well-known, that

D = {a ∈ Rd : ϕ(a) ≤ 1}
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is a strictly convex and closed set, the gradient ∇ϕ(a) exists everywhere and does not
vanish on ∂D = {a ∈ Rd|ϕ(a) = 1}. Moreover, the mapping

a→ q(a) =
∇ϕ(a)

|∇ϕ(a)|

is a homeomorphism between ∂D and an open set of Sd−1. D does not need to be bounded
as the case d = 2, γ = 1

3
δ(1,−1)+

1
3
δ(−1,1)+

1
3
δ(−1,−1) shows. If A3 is additionally fulfilled then

D is additionally compact and the image of q(·) is the whole sphere in d dimensions Sd−1

(see Ney and Spitzer [1966] and the references therein). The inverse mapping is denoted

Abbildung 4.1: A typical D in R2.
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by q → a(q) and, whenever possible, we extend this map to nonzero q ∈ Rd by setting

a(q) := a
(
q
|q|

)
. This definition implies that a(q) is the only point in ∂D where q is normal

to D. See figure 4.1 for a typical picture of D in the case d = 2 and that A1-A3 hold.
If A3 is not fulfilled, we make the following weaker assumption to avoid trivialities.

A4 Γ = {a ∈ ∂D |q(a) ∈ Σ = K ∩ Sd−1} is nonempty.

For the case d = 2 we encode the cone K as follows: take Λ to be a set of two points
in the unit circle S1, Λ = {c1, c2}, so ordered that the angle φ between them is in (0, π).
The rays from (0,0) to infinity going through the S1-sector between the two vectors in Λ
enclose a convex cone. Its interior K depends on the vectors we chose, i.e. K = K(c1, c2).
A4 implies that at least one of the ci is normal to ∂D if not both. We also note the unit
vectors f1 and f2, respectively perpendicular to c1 and c2, pointing inwards. See figure 4.2
for a typical example. We want to prove the following.
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Abbildung 4.2: A convex cone in R2.
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Proposition 9. (a) Under assumptions A1, A2 and A4 for every a such that
q(a) ∈ int(Σ) and z ∈ K

ha(z) = exp(a · z)− E[exp(a · S(τz)), τz <∞].

are non-negative and harmonic for the random walk, killed when leaving the cone.
(b) If in (a) d = 2 and a fulfills q(a) = ci, i ∈ {1, 2} the function

ha(z) = z · fi exp(a · z)− E[fi · S(τz) exp(a · S(τz)), τz <∞]

is nonnegative and harmonic for the random walk, killed when leaving the cone.
(c) The harmonic functions from (a)-(b) are strictly positive if A3 is additionally fulfilled.

These harmonic functions are just a generalization of the functions found in
Ignatiouk-Robert and Loree [2010]. Intuitively, a look at figure 4.2 and at their paper
suggests, that these functions must be the harmonic functions for general cones in the
two-dimensional case.

For the case q(a) 6∈ int(Σ) our proof method doesn’t work in general for d ≥ 3. The
difficulty lies in the fact that for d = 2 the event {the random walk doesn’t leave K through
a specific supporting hyperplane of the cone} can be encoded easily through the unique
opposite supporting hyperplane. This simple characterization generalizes to d ≥ 3 only if
the cone is defined as intersection of finitely many halfspaces, which we don’t pursue here
since we are interested in the class of general cones. We remark also the following.

Remark 4. In the formulation of Proposition 9 the event {τz <∞} can be left out when
m 6∈ K.
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Remark 5. For d = 1 the only cone to consider is (0,∞). Doney [1998] fully characterizes
the Martin boundary in the lattice case. His result can be used direcly in special cases even
in Rd, d ≥ 2, when our assumptions are not fulfilled. For example, it shows that random
walks which are cartesian products of one-dimensional lattice random walks with drift −∞
and such that ∂D = {0}, killed when leaving K = (0,∞)d have no nontrivial nonnegative
harmonic function.

Finally, one can see how the harmonicity result in Ignatiouk-Robert and Loree [2010]
immediately follows from our proposition by taking c1 = (0, 1) and c2 = (1, 0) in (b).

Proposition 10 (Ignatiouk-Robert and Loree [2010]-The positive quadrant). Assume A1-
A3. For every a ∈ Γ+ := {a ∈ ∂D : q(a) ∈ R2

+, |q(a)| = 1} and z = (x1, x2) ∈ N∗ × N∗

ha(z) =


x1 exp(a · z)− E[S1(τz) exp(a · S(τz)), τz <∞], if q(a) = (0, 1),
x2 exp(a · z)− E[S2(τz) exp(a · S(τz)), τz <∞], if q(a) = (1, 0)

exp(a · z)− E[exp(a · S(τz)), τz <∞], otherwise

are strictly positive and harmonic for the random walk, killed when leaving the positive
quadrant.

The next section states the natural conjecture about the Martin boundary of random
walk, killed when leaving a two-dimensional convex cone, when A1-A3 are all fulfilled.
We also underline where the proof in Ignatiouk-Robert and Loree [2010], which considers
only the positive quadrant, breaks down for the general case. Proposition 9 is proven by
adapting the proof of Proposition 10, contained in Ignatiouk-Robert and Loree [2010], to
the general setting we are considering. Details of the proofs are in Duraj [2014a].

4.4.2 A Conjecture: Martin boundary for general convex cones
in two dimensions

For this section only we assume that A1-A3 are fulfilled and that d = 2. In Ney and Spitzer
[1966] the authors show that every positive harmonic function h for the random walk can
be expressed as

h(z) =

∫
C

ec·zdγ(c).

Here γ is a positive Borel measure on some suitable set C. These types of functions are
not harmonic for killed random walk on the quadrant. To makethem harmonic, one has to
consider the correction term. Therefore the form of the functions in Proposition 10.

The main contribution of Ignatiouk-Robert and Loree [2010] is to show that these
functions are the whole Martin boundary for the case of the positive quadrant (see Theorem
1 there).

Judging from the analogy between Proposition 9 and 10, we conjecture the following
(stated analoguously to Theorem 1 in Ignatiouk-Robert and Loree [2010]).
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Conjecture For the cone encoded by c1 and c2 as in subsection 4.4.1 and under the
assumptions A1 - A4 made there, we have that :

1. A sequence of points zn in K with limn→ |zn| = +∞ converge to a point of the Martin
boundary for the killed random walk when leaving the cone, if and only if zn

|zn| → q
for some q ∈ Γ.

2. The full Martin Compactification of K ∩ Z2 is homeomorphic to the closure of the set
{w = z

1+|z| |z ∈ K ∩ Z2} in R2.

In short, the conjecture states that Proposition 9 (a)-(b) fully characterizes the Martin
boundary of random walks on the two dimensional euclidean lattice, killed when leaving
convex cones.

If one tries to carry over the methods of Ignatiouk-Robert and Loree [2010] to this
general case, one sees that the communication condition contained there and the large
deviations result can be modified to work for the more general setting as well. We will
not give details how this is done, but we mention shortly that both can be proven if one
augments assumption A3 by the following.

Strong local irreducibility: There exists some uniform R > 0 such that for every
z ∈ K, e ∈ Z2, |e| = 1 such that z+ e ∈ K we have: there exists a path of measure
non zero within K ∩BR(z) from z to z + e.

This assumption is neccessary, if one wants to work with the communication condition as
Ignatiouk-Robert and Loree [2010] do and is fulfilled in the positive quadrant setting due
to irreducibility. The obstacle for generalizing the proof in the case of the positive quadrant
is the lack of Markov-additivity for local processes for the general case. We recall that a
Markov Chain Zn = (A(n),M(n)) on a countable space Zd × E is called Markov-additive
if for its transition matrix p it holds:

p((x, y), (x′, y′)) = p((0, y), (x′ − x, y′)) for all x, x′ ∈ Zd, y, y′ ∈ E

Ignatiouk-Robert and Loree [2010] make extensive use of this property when showing the
above conjecture for the case of the positive quadrant. The idea for the general case of
convex cones would be to look at local processes deep inside the cone, where the random
walk is Markov-additive in two directions. But approaching the boundary of the cone, this
property disappears in general in both directions. For the positive quadrant this happens
only for one direction and this is crucial for the proof in Ignatiouk-Robert and Loree [2010].
Without Markov-additivity it seems impossible to come to a usable Ratio Limit theorem as
is done in Ignatiouk-Robert and Loree [2010]. On the other hand, the proof of Proposition
9 does not use Markov-additivity. This suggests the existence of more general methods
than those of Ignatiouk-Robert and Loree [2010] for proving the conjecture made in this
section or a similar conjecture in higher dimensions.



Chapter 5

Invariance principles for integrated
random walks conditioned to stay
positive

5.1 Introduction, motivation and statement of results

The work presented in this paper is included in Bär et al. [2020].

5.1.1 Motivation

Integrated random walks conditioned to stay positive have become a popular topic in
probability. There are many applications of integrated random walks in models in mathematical
physics and beyond, but also within probability. The reader can consult Caravenna and
Deuschel [2008] for an example application or the survey articles Aurzada and Simon [2015]
and Majumdar [1999]. While there are many papers that have studied integrated random
walks under the condition of positivity, until now they have focused either on special cases
or on characterizing asymptotic behavior of the exit time (e.g. Aurzada et al. [2014],
Dembo et al. [2013], Denisov and Wachtel [2015a], Gao et al. [2014], Vysotsky [2010] and
Vysotsky [2014]). In this paper we prove invariance principles for the meander and for the
bridge of the integrated random walk conditioned to stay positive. Our invariance principle
for the bridge establishes the weak convergence of the normalized Markov chain, whose first
coordinate is the integrated random walk and the second coordinate is the random walk,
started at a point and conditioned to end at another point all the while under the condition
of positivity for the first component of the Markov chain.

The ‘price’ we have to pay for the proofs is existence of slightly more than the second
moment for the step-distribution of the random walk. Just as for the case of random walks
in cones, this allows the use of the normal approximation to the random walk, for the mass
of probability on the random walk paths in which the positivity condition is far from being
violated.
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An adaptation of the strategy in Denisov and Wachtel [2015b] and Duraj and Wachtel
[2020] delivers the invariance principles in our setting as well. In order to apply this
strategy, we focus not on the integrated random walk (which is in general not a Markov
chain), but on the pair integrated random walk and random walk. This is again a Markov
chain and the condition of positivity for the integrated random walk can be formulated as
a geometric condition of the new chain not leaving R+ ×R.

Another in the proof of the invariance principles is a weak convergence result for
the respective continuous limit of the above mentioned Markov chain, namely for the
Kolmogorov diffusion. The Kolmogorov diffusion is the pair consisting of the integral
of the Brownian motion and the Brownian motion itself. This is a Markov process in
continuous time. The limit process conditional on posivitity of the first coordinate has
been studied extensively in Groeneboom et al. [1999]. What is needed for the invariance
principle for random walks is the statement that the Kolmogorov diffusion, started at some
point in the non-negative quadrant, converges weakly when the starting point converges
to zero within the non-negative quadrant. Groeneboom et al. [1999] proves a special case
of this result but we need the full statement as above for the invariance principles. Since
the proof of this result is nontrivial and lengthy, and interesting on its own, we sketch the
proof and talk about other results we have proved for the Kolmogorov diffusion in a section
of its own.

Once the invariance principle for the centered random walk is proven, certain invariance
principles for the case with drift under modified conditioning follow in a straightforward
way. We also note these down in this section.

5.1.2 Assumptions and statement of results

Let {Xi}i∈N be i.i.d. random variables with E[Xi] = 0,E[X2
i ] = 1 and E[|Xi|2+δ] <∞ for

some δ > 0 given and fixed throughout. For every starting point (x, y) define

S(n) = y +X1 + · · ·+Xn, n ∈ N0.

and

T (n) = x+ S(1) + · · ·+ S(n) = x+ ny + nX1 + (n− 1)X2 + · · ·+Xn, n ∈ N0.

We define the Markov chain Z(n) = (T (n), S(n)), n ∈ N0. We want to study the process
under the condition that T (n) remains positive. Therefore, the following stopping time
plays a crucial role.

τ(x,y) = inf{n ≥ 0 : T (n) ≤ 0}.

Note that we can write the law of motion of the Markov chain Z explicitly as follows.

Z(n+ 1) =

(
1 1
0 1

)
Z(n) +Xn+1

(
1
1

)
, n ≥ 0, {Xn, n ≥ 1} are i.i.d. (5.1)
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It is easy to establish that, a two-dimensional Markov chain started at some Z0 ∈ R2 has
as components an integrated random walk and the corresponding random walk, if and only
if it satisfies the law of motion as in (5.1).

The continuous counterpart of the chain Z, which appears in the limits in the invariance
principles, is W(x,y) = (U, V )(x,y), the Kolmogorov Diffusion, started at (x, y) ∈ R+ × R
and conditioned to stay in R+ ×R up to time 1.

Let X(n)(t) =
(
T (tn)

n
3
2
, S(tn)

n
1
2

)
for t ∈ [0, 1] be the scaled discrete-time process. This will

be considered a process in D[0, 1], which is equipped with the supremum norm || · ||∞.

Theorem 7. The process X(n)(t) for t ∈ [0, 1] conditioned on {τ > n} and started at some
fixed (x, y) ∈ R+ × R+ converges to the Kolmogorov meander started at (0, 0) of length
one.

Time length of one has been chosen only due to convenience, as one can easily extend
the results above to the following more general case by time scaling. In the following with
=⇒ we denote weak convergence.

Corollary 3 (Meander of length t). For (x, y) ∈ R+ ×R+ and t ∈ (0,∞) we have

((X(n)(s))s≤t|τ > nt)(x,y)=⇒(W (·)(0,0)|τ bm > t), n→∞.

Note that this result implies in particular the limit theorem for X(n)(1), which is already
known from Denisov and Wachtel [2015a].

For the invariance principle for bridges we look at steps of random walk defined on a
lattice of R. Without any loss of generality, we assume for the next statements that X1 is
supported on Z and that the resulting random walk is aperiodic. Aperiodicity with respect
to Z means that for every x ∈ Z, the smallest subgroup of Z which contains the set

{y : y = x+ z with some z such that P(X1 = z) > 0},

is Z itself.
The necessary modifications for the general case of a lattice a+ bZ, with maximal span

b > 0 are clear. We can then state the invariance principle for the meander as follows. We
denote by an the scaling function an(x, y) = (n−

3
2x, n−

1
2y), n ∈ N, (x, y) ∈ Z+ × Z.

Theorem 8. For each x, u, y, v ∈ Z+ the process (X(n)(·)|X(n)(1) = an(u, v), τ > n) started
at an(x, y) converges weakly to a process Y . Y is a continuous Markov process with Y |D[0,t]

absolutely continuous w.r.t. P0(W ∈ · |τ bm > t). Moreover, Yt ↘ 0, as t↗ 1 a.s.

We also derive the density of Yt w.r.t. Lebesgue measure. We call the process Y the
Kolmogorov excursion (from zero and back). It fulfills all obvious reasons to be called that
way: it is continuous, absolutely continuous w.r.t. meander measure started at zero of
length one and converges to zero as t goes to one. The proof of the invariance principle for
bridges follows in broad lines the strategy already used in Caravenna and Chaumont [2013]
for proving invariance principle for bridges of random walks conditioned to stay positive.
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This is already used in the proof of the invariance principle for bridges in chapter 3. To
recall the broad steps: first prove weak convergence up to time t ∈ [0, 1]; then time-reverse
the process and use convergence towards the meander to prove weak convergence for time
[t, 1]; this also incidentally proves tightness for the whole process.

Analogously to the case of meander, the restriction to time length one is artificial so
that the following corollary is straightforward.

Corollary 4 (Bridge of length t). For each x, u, y, v ∈ Z+ and t > 0 the process (X(n)(·)|X(n)(1) =
an(u, v), τ > tn) started at an(x, y) converges weakly to a process Y (t). Y (t) is a continuous

Markov process with Y
(t)
s absolutely continuous w.r.t. P0(Ws ∈ · |τ bm > s). Moreover,

Y
(t)
s ↘ 0, as s↗ t a.s.

We also prove functional convergence of V -transforms for the integrated random walks
conditioned to be positive. The limit process is the h-transform of the Kolmogorov diffusion
introduced in 2.6.

Formally, the V -transform started at x, y > 0 is defined as

P
(V )
(x,y)(Z(n) ∈ d(u, v)) = P(x,y)(Z(n) ∈ d(u, v), τ > n)

V (u, v)

V (x, y)
.

The proof follows the same strategy as that of Theorem 2. We need an estimate for
the difference between the harmonic function of the integrated random walk V and that
of the harmonic function for the Kolmogorov diffusion h. This estimate is given whenever
the step of the random walk has moments strictly above 5

2
.

Theorem 9. Assume that E[|X| 52+ε0 ] <∞ for some ε0 > 0. Then for every fixed (x, y) ∈
R+×R+ the process X(n) under P(V ) converges weakly to the Kolmogorov diffusion under

P
(h)
(0,0).

Finally, we note that even though so far in the thesis, we have chosen to formulate our

convergence results in D[0, 1] if we define X(n)(t) =
(
T (tn)

n
3
2
, S(tn)

n
1
2

)
for tn ∈ {1, . . . , n} and

through linear interpolation for other t ∈ [0, 1], we can prove the invariance principles for
the integrated random walk on (C[0, 1], || · ||∞) as well. This is because R+×R is convex.
The limit processes are the same and the proofs are similar.

5.2 Proofs

5.2.1 Proof of convergence towards Kolmogorov meander

Let Xn(t) = (Ttn
n

3
2
, Stn
n

1
2

) for t ∈ [0, 1] and let τ be the stopping time defined above. When

we don’t annotate or mention it explicitly, it is assumed the processes are started at zero.
Let now f : D[0, 1]→[0, 1] be a bounded and uniformly continuous function. First, we

introduce several helpful notations. For k ≤ n, z ∈ R+ ×R,W ∈ D[0, 1] we define

f(z, k,W ) = f(z1{t≤ k
n
} +W (t)1{t> k

n
}).
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The scaling function an is defined by an(z) = ( z1
n

3
2
, z2
n

1
2

) and for z = (x, y) we define

z+ = (x+ n
3
2
−γ, y), z− = (x− n 3

2
−γ,, y). We also define

Kn,ε = {z ∈ R+ ×R : y > 0, x ≥ n
3
2
−3ε},

for the set of values deep inside R+ ×R. Note that for ε > 0 small enough, z+, z− ∈ Kn,ε′

if z ∈ Kn,ε, where ε′ > ε. Also let

γn = inf{k ≥ 0 : Zk ∈ Kn,ε}

be the corresponding entry time. This denotes the first time Z is deep inside R+ ×
R. Intuitively speaking, because of the moment assumption, under the conditioning, the
process Z will spend most of the time in Kn,ε so that γn will be relatively small. For some

θn→0, n→∞ and so that θn
√
n→∞ we use α(z) = max{|x| 13 , |y|} to define

Ln,ε = {z ∈ Kn,ε : α(z) ≤ θn
√
n} = {z : 0 < y ≤ θn

√
n, n

3
2
−3ε ≤ x ≤ θ3

nn
3
2}.

Finally, we define for future reference the random variables Ln := maxk≤n α(Zk) and
Mn := maxk≤n |Sk|.

To show the invariance principle we have to show w.lo.g.

E(x,y)[f(X(n))|τ > n]→E(0,0)[f(W )|τ bm > 1], n→∞.

For the proof we will use coupling, as stated in Proposition 3. As a first step, we see easily
that for all ε > 0 small enough only the part

E[f(Xn), γn ≤ n1−ε|τ > n]

contributes something to the limit. This is because

E(x,y)[f(X(n)), γn > n1−ε|τ > n] ≤
P(x,y)(γn > n1−ε, τ > n1−ε)

P(x,y)(τ > n)
≤ C(x, y)e−n

ε′

with some suitable ε′ > 0 small enough. This follows from Corollary 3 and Lemma 12 in
Denisov and Wachtel [2015a].
As a second step, we prove

P(x,y)(τ > n, γn ≤ n1−ε, Lγn > θn
√
n)

P(x,y)(τ > n)
= o(1).

Due to Markov property we have

P(x,y)(τ > n, γn ≤ n1−ε, Lγn > θn
√
n) ≤

∑
k≤n1−ε

∫
Kn,ε

Pz(τ > n− n1−ε)P(Zγn ∈ dz, τ > k = γn)

≤ C
1

n
1
4

E(x,y)[h(Zγn), γn ≤ n1−ετ > γn, Lγn > θn
√
n],



84 5. Integrated random walks conditioned to stay positive

where we have used, that

Pz(τ > n) ≤ C
h(z)

n
1
4

, uniformly in z ∈ Kn,ε, n ≥ 1.

This is contained in Lemma 18 in Denisov and Wachtel [2015a]. We now show that

O
(
E[h(Zγn), γn < n1−ετ > γn, Lγn > θn

√
n]
)

= o(1). (5.2)

We use Lemma 6 in Denisov and Wachtel [2015a] to see, that on {γn ≤ n1−ε} we have

h(Zγn) ≤ CL
1
2

n1−ε . Therefore,

E(x,y)[h(Zγn), γn < n1−ετ > γn, Lγn > θn
√
n] = O(E(x,y)[L

1
2

n1−ε , Ln1−ε > θn
√
n]).

Since
Ln1−ε ≤ n

1−ε
3 M(n1−ε)

1
3 +M(n1−ε),

we have

lim sup
n→∞

E(x,y)[L
1
2

n1−ε , Ln1−ε > θn
√
n] ≤ lim sup

n→∞
E(x,y)[n

1−ε
6 M(n1−ε)

1
6 ,M(n1−ε) > θ3

nn
ε
√
n]

+ lim sup
n→∞

E(x,y)[M(n1−ε)
1
2 ,M(n1−ε) > θn

√
n]

≤ 2E(x,y)[M(n1−ε)
1
2 ,M(n1−ε) > θn

√
n],

for ε > 0 small enough and θn going to zero slowly enough (θ2
nn

ε→∞ is sufficient).
Kolmogorov inequality now gives

E(x,y)[M(n1−ε)
1
2 ,M(n1−ε) > θn

√
n] = o(1),

if θn goes to zero slowly enough (θ2
nn

ε→∞ is again sufficient). In all, the contributing part
to the limit is

E(x,y)[f(Xn), τ > n, γn ≤ n1−ε, Lγn ≤ θn
√
n]

P(τ > n)
.

We note first that we have

sup
t∈[0,1]

∣∣∣(an(Z(γn))1{t≤ k
n
} +Xn(t)1{t> k

n
}

)
−Xn(t)

∣∣∣
≤ max

k≤γn
|an(Z(k)− Z(γn))| ≤ 2M(γn)√

n
≤ 2θn

on the set {Lγn ≤ θn
√
n}. Let

Cn = {γn ≤ n1−ε, Lγn ≤ θn
√
n} ∈ Fγn .

It follows from the uniform continuity of f that

E(x,y)[f(X(n)), Cn|τ > n] = o(1) + E(x,y)[f(an(Zγn), γn, X
(n)), Cn|τ > n].
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Therefore, to prove the theorem, it suffices to consider convergence of

E(x,y)[f(an(Zγn), γn, X
(n)), Cn|τ > n].

Note first that we can write with the Markov property

E(x,y)[f(an(Zγn), γn, Xn), Cn, τ > n] =∑
k≤n1−ε

∫
Kn,ε

P(γn = k, τ > k, Lγn ≤ θn
√
n, Zk ∈ dz)Ez[f(an(z), k,X(n))|τz > n− k]Pz(τ > n− k).

As a next step want to show

Ez[f(an(z), k,X(n))|τz > n− k] = (1 + o(1))E(0,0)[f(B)|τ bm > 1], (5.3)

uniformly for z ∈ Ln,ε, k ≤ n1−ε. With (5.3), it would follow

E(x,y)[f(an(Zγn), γn, X
(n)), Cn|τ > n] = (1 + o(1))E(0,0)[f(B)|τ bm > 1]

P(τ > n,Cn)

P(τ > n)
,

and we know from calculations in subsection 3.3 in Denisov and Wachtel [2015a], that

P(τ > n,Cn)

P(τ > n)
= 1 + o(1).

This would finish the proof. Therefore, the rest of this section focuses on proving (5.3).
Define in a common probability space S(n) as above and a Brownian motion B(u)

An = {sup
u≤n
|S(u)−B(u)| ≤ n

1
2
−γ}.

Proposition 3 gives that
P(Acn) = o(n−r),

with r = r(δ, γ) = −2γ − γδ + δ
2
.

First, we note, that

Ez[f(an(z), k,X(n))|τz > n− k] = Ez[f(an(z), k,X(n)), An|τz > n− k]

+ Ez[f(an(z), k,X(n)), Acn|τz > n− k]

= Ez[f(an(z), k,X(n)), An|τz > n− k] + o(1),

for all ε > 0 sufficiently small. This is because of P(Acn) = o(n−r) and the fact that
uniformly for all z ∈ Ln,ε, k ≤ n1−ε : o(n−r) = o(P(τz > n − k)). The latter follows from
the proof of Lemma 18 in Denisov and Wachtel [2015a].

Define

W (n)(t) =

(∫ nt
0
Bsds

n
3
2

,
Bnt

n
1
2

)
.
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Due to uniform continuity of f we have in An, uniformly for all k ≤ n1−ε, z ∈ Kn,ε that

f(an(z), k,X(n)) = f(an(z), k,W (n)) + o(1). (5.4)

We know that
|an(z)− an(z±)| ≤ O(n−γ), (5.5)

uniformly in z ∈ Kn,ε. One also has

Pz±(τ bm > n) = χh(z)n−
1
4 (1 + o(1)) = Pz(τ > n), (5.6)

uniformly in k ≤ n1−ε, z ∈ Kn,ε. These follow from considerations in subsection 3.2 of
Denisov and Wachtel [2015a].
Using (5.4),(5.5) and (5.6) and the scaling property of Brownian motion, it is easy to see
that

Ez[f(an(z), k,X(n)), An|τz > n− k] = (1 + o(1))Ean(z±)[f(an(z±), k,W )||τ bm > 1].

In all, we have shown that it suffices to prove

Ean(z±)[f(an(z±), k,W )|τ bm > 1]→E(0,0)[f(W )|τ bm > 1], n→∞, (5.7)

uniformly for k ≤ n1−ε, z ∈ Ln,ε.
Notice that (2.41), together with the mild condition (2.46), implies immediately for

every β > 0

lim
n→∞

sup
z∈R+×R+,α(z)≤n−β

∣∣Ez[f(W )|τ bm > 1]− E(0,0)[f(W )|τ bm > 1]
∣∣ = 0. (5.8)

Note also that for z ∈ Ln,ε we have an(z) = O(n−β) uniformly for some β > 0 small, if
we choose θn = n−p for some p > 0 small enough.

We now show that

|Ean(z±)[f(an(z±), k,W )|τ bm > 1]− Ean(z±)[f(W )|τ bm > 1]|→0, (5.9)

uniformly in k ≤ n1−ε, z ∈ Ln,ε to complete the proof of (5.7) by the use of triangle
inequality.

The difference of arguments of f(an(z±), k,W ) and f(W ) is up to a constant bounded
above by

max
t,s∈[0,1],|t−s|≤n−ε

|Wt −Ws| uniformly for all k ≤ n1−ε.

Recalling that f is uniformly continuous, we can write for each δ′ > 0∣∣Ean(z±)[f(an(z±), k,W )|τ bm > 1]− Ean(z±)[f(W )|τ bm > 1]
∣∣

≤ Cδ′ + 2Pan(z±)

(
max

|t−s|≤n−ε
|Wt −Ws| ≥ δ|τ bm > 1

)
,



5.2 Proofs 87

for some δ > 0 small enough. We now show that

lim sup
n→∞

Pan(z±)( max
|t−s|≤n−ε

|Wt −Ws| ≥ δ|τ bm > 1) = 0. (5.10)

Since the sets
Γn = { max

|t−s|≤n−ε
|Wt −Ws| ≥ δ},

are closed subsets of the metric space (C[0, 1], || · ||∞), and moreover these sets are monotonously
decreasing in n we can always write for fixed m ∈ N

lim sup
n→∞

Pan(z±)( max
|t−s|≤n−ε

|Wt −Ws| ≥ δ|τ bm > 1) ≤ P(0,0)(Γm|τ bm > 1),

uniformly for z ∈ Ln,ε. The measure P(0,0)(· |τ bm > 1) is gained by convergence of densities
from measures which are absolutely continuous w.r.t. to the distribution of W on C[0,∞).
This implies that P(0,0)(· |τ bm > 1) is also absolutely continuous w.r.t. to the distribution
of W on C[0,∞). Therefore, we have that Γm ↘ ∅,m→∞ implies P(0,0)(· |τ bm > 1)-a.s.
as well. This shows (5.10), which in turn implies (5.9). (5.8) and (5.9) imply (5.7), which
in turn shows (5.3). This finishes the proof of Theorem 7.

Proof of Corollary 3 is straightforward from a time rescaling.

5.2.2 Proof of invariance principle for bridges

We now assume that the random walk moves on Z and is aperiodic, as described in
subsection 5.1.2.

As a first step, we note the following easy property.

Lemma 6 (Time reversal). For all z, y ∈ Z+ × Z, n ∈ N we have the following relation

Pz(Z(n) = y, τ > n) = Pỹ(Z̃(n) = z̃, τ̃ > n),

where Z̃ is the two-dimensional Markov chain started at (y1,−y2), that satisfies the law of
motion

Z̃(l + 1) =

(
1 1
0 1

)
Z̃(l) + X̃l+1

(
0
1

)
, l ≥ 0, {X̃s, s ≥ 1} are i.i.d, (5.11)

X̃1 distributed as X1.
Z̃ behaves asymptotically like the Markov chain in (5.1) started at (y1,−y2).

Proof. We have (T0, S0) = (z1, z2), the recursion

Tl = Tl−1 + Sl, Sl = Sl−1 +Xl, 1 ≤ l ≤ n. (5.12)

and (Tn, Sn) = (y1, y2). Define (T̃0, S̃0) = (y1,−y2) and the recursion

T̃l = T̃l−1 + S̃l−1, S̃l = S̃l−1 +Xn−l+1, 1 ≤ l ≤ n. (5.13)
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Then we have S̃l = Sn−l and T̃l = Tn−l. Therefore, this path transformation is such that
the condition of positiveness of T̃ process started at (y1,−y2) and ending in (x1,−x2) in
n-steps is preserved throughout, whenever it is preserved for the original process T started
at (x1, x2) and ending at (y1, y2).

Even more is true: there is a one-to-one and measure-preserving map between paths of
Z started at x and ending at y at time n, and paths of Z̃ started at (y1,−y2) and ending
at (x1,−x2) at time n. In particular, one can gain results about the asymptotic behavior
of Z̃, conditioned on not leaving R+ ×R until time n, from the ones about Z under the
same condition. �

Remark 6. Note that Lemma 6 clarifies that in (2.52) (see also equation (13) in Denisov
and Wachtel [2015a]) the function V ′ is related to the harmonic function for the Markov
chain as in (5.1) where the innovations of the underlying random walk are distributed
as −X1. Namely, if Ṽ is the said harmonic function, then V ′(y) = Ṽ ((y1,−y2)) for
(y1, y2) ∈ R+ ×R.

We will show: given x = (x1, x2), y = (y1, y2) ∈ Z+ × Z and 0 ≤ f ≤ 1 bounded and
uniformly continuous and measurable w.r.t. (D[0, t], || · ||∞) for some t ∈ (0, 1) we have

Ean(x1,x2)[f(Xn)|τ > n,Xn(1) = an(y1, y2)]→E(0,0)[g(W )ft(Wt)|τ bm > 1], n→∞,

with some ft bounded and continuous. In particular, this also establishes a density for the
limit process of the scaled bridges up until time t.

As a first step note that for C measurable w.r.t. Borel σ- algebra on D[0, t] the following
holds.

P(x1,x2)[C|τ > n, Tn = y1, Sn = y2] =
Ex[1C, τ > nt,PZ(nt)(Z(n(1− t)) = y, τ > n(1− t))]

Px(τ > n, Tn = y1, Sn = y2)

= Ex[1Cf
n
t (Xn(t), an(x), an(y)|τ > nt],

with the definition

R+ ×R 3 z 7→ fnt (z, x, y) =
Pz(Xn(1− t) = an(y), τ > n(1− t))Px(τ > nt)

Px(τ > n,Xn(1) = an(y))

=
Pbn(z)(Z(n(1− t)) = y, τ > n(1− t))Px(τ > nt)

Px(τ > n, Z(n) = y)
,

where bn(z̃) = a−1
n (z̃) for z̃ ∈ Z2. One can show the following Lemma with the help of

relations in Denisov and Wachtel [2015a].

Lemma 7. For x, y ∈ Z+ × Z we have

lim
n→∞

sup
z∈Z+×Z,

|fnt (z, x, y)− ft(z)| = 0,

where ft(z) = κ2t−
1
4 (1− t)−2− 1

4h(z1,−z2)p1(0, 0; z1,−z2) is continuous and bounded.
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Proof. We have

fnt (z, x, y) =
Pbn(z)(Z(n(1− t)) = y, τ > n(1− t))Px(τ > nt)

Px(τ > n, T (n) = y1, Z(n) = y2)

=
Pỹ(Z̃(n(1− t)) = bn(z̃), τ > n(1− t))Px(τ > nt)

Px(τ > n, T (n) = y1, S(n) = y2)
,

where in the last step we used Lemma 6.
First, the conditional local limit theorem from Denisov and Wachtel [2015a] (see (2.51)

here or relation (12) there) yields uniformly for all z ∈ Z+ × Z (with z̃ = (z1,−z2))

Pỹ(Z̃(n(1− t)) = bn(z̃), τ̃ > n(1− t))
∼ κn−2− 1

4 (1− t)−2− 1
4V ′(y)h(z̃)p1(0, 0; z̃). (5.14)

Note that we also used the scaling property of pt(x, y, u, v) here.
Second, we get by using (2.50)

Px(τ > nt) ∼ κV (x)n−
1
4 t−

1
4 . (5.15)

Finally, we use (2.52) in Denisov and Wachtel [2015a]

Px(τ > n, T (n) = y1, S(n) = y2) ∼ n−2− 1
2V (x)V ′(y). (5.16)

We get the result about ft by combining (5.14), (5.15) and (5.16). �

For a given functional g on (D[0, 1], || · ||∞), which is uniformly continuous and bounded,
we can write with the triangle inequality

|Ex[g(X)fnt (Xn(t), x, y)|τ > nt]− E(0,0)[g(W )ft(Wt)|τ bm > t]|
≤ Ex[g(X)|fnt (Xn(t), x, y)− ft(Xn(t))||τ > nt]

+
∣∣Ex[g(X)ft(Xn(t))|τ > nt]− E(0,0)[g(W )ft(Wt)|τ bm > t]

∣∣
=: An +Bn.

An = o(1) follows from Lemma 7 and the boundedness of g. Bn = o(1) can be proven using
Skorohod’s representation theorem. For more details, take some suitable probability space
and define thereXn(·) with distribution P(· |τ > nt) andW· with distribution P(· |τ bm > t)
so that Xn(·)→W·, n→∞ a.s. This is possible due to Corollary 3. It then follows due
to continuity and boundedness of ft and g with the new measure, whose expectation we
denote by E, that

|Ex[g(X)ft(Xnt)|τ > nt]− E(0,0)[g(W )ft(Wt)|τ bm > t]|
= |E[g(X)ft(Xnt)]− E[g(W )ft(Wt)]|
≤ CE[|ft(Xnt)− ft(Wt)|] + E[ft(Wt)|g(W )− g(Xnt)|].

Dominated convergence, together with boundedness and continuity of f, g gives the result.
In all, we have proven the following.
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Lemma 8. For each t ∈ (0, 1) and x, y ∈ Z+ × Z it holds on D[0, t] that

(Xn|Xn(1) = an(y), τ > n)an(x) converges weakly as n→∞.

The limit process Y |D[0,t] is absolutely continuous w.r.t. Kolmogorov meander measure
P0(W ∈ · |τ bm > t) and has continuous and bounded density ft.

In particular, this implies tightness of the measures (Xn|Xn(1) = an(y), τ > n)an(x) in
D[0, t]. Since we know the density of P0(Wt ∈ ·|τ bm > t) (see Theorem 13 in the appendix),
we get a Lebesgue density for Yt.

Corollary 5. Yt has Lebesgue density

gt(z) = ft(z)p+
t (z1, z2)

= κt−
1
4 (1− t)−2− 1

4h(z1,−z2)p1(0, 0; z1,−z2)P(z1,z2)(τ
bm > 1− t)h̄(t, u,−v).

It is obvious from the construction and the weak convergence that the laws of (Ys)s∈(0,1)

are consistent, in the sense that for s < t we have

Yt|C[0,s]
d
= Ys.

Moreover, if we take the process Z̃ as defined in (5.11) from Lemma 6, and denote by(
X̃(n)

)
n∈Z+

the process defined through X̃(n)(t) = an(Z̃([nt])), t ∈ [0, 1] then the following

result follows immediately.

Lemma 9. For each t ∈ (0, 1) and x, y ∈ R+ ×R we have on (D[0, t], || · ||∞)

(X̃n|X̃n(1) = an(y), τ > n)an(x) converges weakly as n→∞.

From this we get tightness of (X̃n|X̃n(1) = an(y), τ > n)an(x) in D[0, t], which amounts
to tightness of the processes (X(n)|X(n)(1) = an(y), τ > n)an(x) in D[1 − t, 1]. Using the
characterizations from Theorems 15.3 and 15.5 from Billingsley [1968] we get tightness on
the whole D[0, 1]. In all, we get weak convergence to a process in D[0, 1], whose density at
any point is characterized in Corollary 5. From Theorem 15.5 in Billingsley [1968] we get
automatically that the weak limit has to be continuous, i.e. an element of C[0, 1].

5.2.3 Proof of convergence of h-transforms

Here we prove Theorem 9. For this, we first note some sharp estimates between V
as constructed in Denisov and Wachtel [2015a] and the harmonic function h for the
Kolmogorov diffusion conditioned to stay positive.

Lemma 10. Assume that E[|X| 52+ε0 ] <∞ for some ε > 0. It holds

|V (z)− h(z)| ≤ C min{1, α(z)−
3
2
−δ}, z ∈ R+ ×R. (5.17)
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This is a simple implication of equation (32) in Denisov and Wachtel [2015a] (proof
of Lemma 11 there) and Lemma 7 in Denisov and Wachtel [2015a]. It has the following
important Corollary, which we use repeatedly throughout the proof.

Corollary 6. Assume that E[|X| 52+ε0 ] <∞. Then the following inequalities hold true.

|V (z)− h(z)| ≤ Cα(z)
1
2
−∆, α(z) ≥ 1, z ∈ R+ ×R. (5.18)

In particular, it follows

V (z) ≤ Cα(z)
1
2 , α(z) ≥ 1, z ∈ R+ ×R. (5.19)

The Corollary follows directly from Lemma 10 using Lemma 6 in Denisov and Wachtel
[2015a].

Proof of Theorem 9. We want to show that given a f ∈ D[0, 1] bounded and uniformly
continuous and (x, y) ∈ R+ ×R+ fixed, we have

E
(V )
(x,y)[f(X(n))]→E

(h)
(0,0)[f(W )], n→∞.

Assume w.l.o.g. that values of f are in [0, 1]. Then,

E
(V )
(x,y)[f(X(n)), γn ≥ n1−ε] ≤ 1

V (x, y)
E(x,y)[V (Z(n)), τ > n1−ε, γn ≥ n1−ε].

Using Markov property and the harmonicity of V , we get

E(x,y)[V (Z(n)), τ > n1−ε, γn ≥ n1−ε] = E(x,y)

[
E(x,y)[V (Z(n), τ > n|Fn1−ε ], τ > n1−ε, γn ≥ n1−ε]

= E(x,y)[V (Z(n1−ε)), γn ≥ n1−ε, τ ≥ n1−ε].

Recalling (5.19), we use Hölder inequality to obtain

E(x,y)[V (Z(n1−ε)), γn ≥ n1−ε, τ ≥ n1−ε]

≤ CE(x,y)[α(Z(n1−ε))]
1
2

(
P(x,y)(γn ≥ n1−ε, τ ≥ n1−ε)

) 1
2 .

Note that α(Z(n1−ε)) ≤ 2 max{n(1−ε) 1
3M(n1−ε)

1
3 ,M(n1−ε)}. Together with Doob’s inequality

for martingales and Lemma 12 in Denisov and Wachtel [2015a] this delivers

E
(V )
(x,y)[f(X(n)), γn ≥ n1−ε] = o(1), n→∞.

We look at

E
(V )
(x,y)[f(X(n)), γn ≤ n1−ε] = E

(V )
(x,y)[f(X(n)), γn ≤ n1−ε, Lγn > θn

√
n]

+ E
(V )
(x,y)[f(X(n)), γn ≤ n1−ε, Lγn ≤ θn

√
n]

= A(n) +B(n).
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A(n) can be estimated as follows

E
(V )
(x,y)[f(X(n)), γn ≤ n1−ε, Lγn > θn

√
n] ≤ C

V (x, y)
(P(Ln1−ε > θn

√
n) + E[L

1
2

n1−ε , Ln1−ε > θn
√
n]),

for θn→0 slow enough. Note that {Ln1−ε > θn
√
n} ⊂ {Mn1−ε > θ3

n

√
n}. It holds

P(Mn1−ε > θ3
n

√
n) = o(1),

due to Kolmogorov inequality. Moreover, if θn goes to zero slowly enough, we have

max{((n1−ε)Mn1−ε)
1
3 ,Mn1−ε} = Mn1−ε

on the set {Mn1−ε > θ3
n

√
n} for all n large enough. To show that A(n) = o(1) it thus suffices

to show
E[M

1
2

n1−ε ,Mn1−ε > θ3
n

√
n] = o(1). (5.20)

Simple combinations of the Hölder inequality and the Kolmogorov inequality can be used
to show (5.20). We now look at B(n). Define now for W ∈ D[0, 1]

f(z, k,W ) = f(z1{t≤ k
n
} +W (t)1{t> k

n
}).

It follows from uniform continuity of f , just as for the proof of the invariance principle for
the meander, that

E
(V )
(x,y)[f(X(n)), γn ≤ n1−ε, Lγn ≤ θn

√
n]

= o(1) + E
(V )
(x,y)[f(an(Zγn), γn, X

(n)), γn ≤ n1−ε, Lγn ≤ θn
√
n].

We can use Markov property to write

E
(V )
(x,y)[f(an(Zγn), γn, X

(n)), γn ≤ n1−ε, Lγn ≤ θn
√
n] (5.21)

=
n1−ε∑
k=0

1

V (x, y)

∫
Ln,ε

P(x,y)((Z(k) ∈ dz, τ > k, γn = k, Lk ≤ θn
√
n)

× Ez[f(an(z), k,X(n))V (Z(n− k)), τ > n− k]

To continue, we first show that

Ez[V (Z(n− k)), Acn, τ > n− k] = o(h(z)), (5.22)

Ez[h(W (n− k)), Acn, τ
bm > n− k] = o(h(z)) (5.23)

uniformly for k ≤ n1−ε, z ∈ Kn,ε, α(z) ≤ θn
√
n. For the first expression note

Ez[V (Z(n− k)), Acn, τ > n− k]

= Ez[V (z + Z(n− k)), α(z + Z(n− k)) ≤ n
1
2

+η, Acn, τ > n− k]

+ Ez[V (z + Z(n− k)), α(z + Z(n− k)) > n
1
2

+η, Acn, τ > n− k]

= A(n) +B(n).
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We get with help of (5.18) and (5.19)

A(n) ≤ C(1 + n
1
4

+ η
2 )P(Acn) ≤ Cn

1
4

+ η
2
−r. (5.24)

Here r = δ
2
− 2γ − γδ from Proposition 3. Furthermore, Lemma 6 in Denisov and Wachtel

[2015a] implies

h(z) > cn
1
4
− ε

2 , z ∈ Kn,ε. (5.25)

It follows that A(n) = o(h(z)), uniformly for z ∈ Kn,ε, α(z) ≤ θn
√
n, whenever ε, η > 0 are

chosen small enough. By an analogous logic, we have

B(n) ≤ CEz[α(Z(n− k))
1
2 , α(Z(n− k)) > n

1
2

+η]

≤ CE[M
1
2
n + α(z)

1
2 ,Mn > n

1
2

+ η
2 ] ≤ Ch(z)n−

1
4

+ ε
2E[M

1
2
n + α(z)

1
2 ,Mn > n

1
2

+ η
2 ].

Note that because α(z) ≤ θn
√
n with θn→0, we can focus on the term M(n) in the above

expression.
Integration by parts gives

n−
1
4

+ ε
2E[M

1
2
n ,Mn > n

1
2

+ η
2 ]

= n
ε
2

+ η
4 P(Mn > n

1
2

+ η
2 ) +

1

4
n−

1
4

+ ε
2

∫ ∞
n

1
2+

η
2

x−
1
2 P(Mn > x)dx (5.26)

We recall Fuk-Nagaev-Borovkov inequalities from Proposition 2:

P(|Mn| > x) ≤ 2

(
en

xy

)x
y

+ nP(|X(1)| > y). (5.27)

One can use this estimate with y = xn−
η
4 to show, that (5.26) is asymptotically zero,

uniformly for z ∈ Kn,ε, α(z) ≤ θn
√
n, if we choose ε > 0 small enough and then, given

this ε we choose η > 0 small enough. In all, we have shown (5.22). (5.23) follows along
similar lines and uses estimates for Brownian motion instead of the Fuk-Nagaev-Borovkov
inequalities.

We now use coupling. Note that

{τ bmz− > n} ∩ An ⊂ {τz > n} ∩ An ⊂ {τ bmz+ > n} ∩ An.

Consider the event (here we use the notation z = (x′, y′))

Dn,k := {x′ − n
3
2
−γ +

∫ n−k

0

B(s)ds ≥ 2n
3
2
−γ}.

Then on the event Dn,k ∩ An it holds for Z = (T, S) started at z

T (n− k) ≥ n
3
2
−γ ultimately in n.
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Now it follows on Dn,k ∩ An that

|V (Z(n− k))− h(Z(n− k))| ≤ Cα(Z(n− k))1−∆, (5.28)

for all ∆ > 0 sufficiently small.
We use this and (5.18) to get for a ∆ > 0 small,

Ez[f(an(z), k,X(n))V (Z(n− k)), τ > n− k,An]

≥ Ez[f(an(z), k,X(n))h(Z(n− k)), τ bmz− > n− k,An ∩Dn,k]

− CEz[α(Z(n− k))
1
2
−∆, τ bmz− > n− k,An],

uniformly for k ≤ n1−ε, z ∈ Kn,ε, α(z) ≤ θn
√
n.

Note that

Ez[α(Z(n− k))
1
2
−∆, τ bmz− > n− k,An]

≤ CEz[|T (n− k)|
1
3

( 1
2
−∆) + |S(n− k)|

1
2
−∆, τ bmz− > n− k,An]

≤ CEz− [α(W (n− k))
1
2
−∆, τ bmz− > n− k,An] + C

(
n

1
3

( 3
2
−γ)( 1

2
−∆) + n( 1

2
−γ)( 1

2
−∆)
)

Pz−(τ bm > n− k)

=: A+B.

It is clear that B = o(u(z)) as n→∞, uniformly for all k ≤ n1−ε, z ∈ Kn,ε, α(z) ≤ θn
√
n.

Here we have used, that

P(τ bmz± > n) = κh(z)(1 + o(1)), uniformly in z ∈ Kn,ε,

which is shown in the proof of Lemma 18 of Denisov and Wachtel [2015a].
Note that

A ≤ CEz[α(W (n− k))
1
2
−∆, τ bmz > n− k,An] = C(n− k)

1
4

(1−∆)Ean−k(z)[h(W (1))1−∆, τ bman−k(z) > 1].

From here, we use the scaling property of the Kolmogorov diffusion, to get for all n large
so that uniformly for all k ≤ n1−ε, z ∈ Kn,ε, α(z) ≤ θn

√
n it holds α(an−k(z)) ≤ 1, that

A ≤ C(n− k)
1
4

(1−∆)h(an−k(z))

∫
R+×R

ψ(σ)h(σ)1−∆dσ.

We use the scaling property of the function h to substitute h(an−k(z)) = (n − k)
1
4h(z).

This shows that A = o(u(z)) as n→∞, uniformly for all k ≤ n1−ε, z ∈ Kn,ε, α(z) ≤ θn
√
n.

Next we prove, that

Ez[h(Z(n− k)), τ bmz− > n− k,An]

= Ez− [h(W (n− k)), τ bm > n− k,An] + o(h(z)), (5.29)
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uniformly for k ≤ n1−ε, z ∈ Kn,ε, α(z) ≤ θn
√
n.

Lemma 6 in Denisov and Wachtel [2015a] shows∣∣∣∣ ∂i+jh∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cα(x, y)
1
2
−3i−j. (5.30)

We have for some θn→0 with help of Lemma 6 and Lemma 18 in Denisov and Wachtel
[2015a]

Ez− [h(W (n− k)), α(W (n− k)) ≤ θn
√
n, τ bm > n− k,An]

≤ Cθ
1
2
nn

1
4 Pz−(τ bm > n− k) = o(h(z)). (5.31)

Here, we have used
h(z±) = (1 + o(1))h(z), (5.32)

uniformly for z ∈ Kn,ε, which is shown in the proof of Lemma 18 in Denisov and Wachtel
[2015a].

Moreover, for all large enough n and if θn goes to zero slowly enough, it holds

α(Z(n− k)) ≤ 1

2
θn
√
n, on An, whenever α(W (n− k)) ≤ θn

√
n.

Here Z is started at z. We estimate

Ez− [h(Z(n− k)), α(W (n− k)) ≤ θn
√
n, τ bm > n− k,An]

≤ Ez[h(Z(n− k)), α(Z(n− k)) ≤ θn
√
n, τ > n− k,An].

We use this last inequality and an estimate analogous to (5.31) to get

Ez− [h(Z(n− k)), α(W (n− k)) ≤ θn
√
n, τ bm > n− k,An] = o(h(z)). (5.33)

For α(W (n− k)) > θn
√
n it holds again for n large enough and θn going slowly enough to

zero, that

α(Z(n− k)) >
1

2
θn
√
n.

We now use Taylor formula together with (5.30) to show that on An ∩{α(W (n− k)) >
θn
√
n} for n large enough and θn it holds

|h(Z(n− k))− h(W (n− k))| = o(n
1
4 ). (5.34)

Here Z is started at z and W at z−.
To see (5.34) note that in general we have

|h(z + w)− h(z)| ≤ C
(
|w1|α(z + t0w)−

5
2 + |w2|α(z + t0w)−

1
2

)
, (5.35)

for some suitable t0 ∈ [0, 1]. Replace here z by W (n− k) and w by Z(n− k)−W (n− k).
It holds
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α(w) ≤ Cn
1
2
− 1

3
γ,

and
α(z + t0w) ≥ Cα(z)− α(w) ≥ Cθn

√
n,

for all n large enough, whenever θn goes to zero slowly enough. Here we have used the
inequality α(z1 + z2) ≤ C (α(z1) + α(z2)) for z1, z2 ∈ R2.

We combine this with (5.35) to arrive at

|h(Z(n− k))− h(W (n− k))| ≤ Cn
1
4
−γ
(
θ
− 5

2
n + θ

− 1
2

n

)
= o(n

1
4 ), n→∞,

whenever θn goes to zero slowly enough.
It follows that

Ez[|h(Z(n− k))− h(W (n− k)), α(W (n− k)) > θn
√
n, τ bmz− > n− k,An]

= o(n
1
4 )Pz−(τ bm > n− k) = o(h(z)),

uniformly for k ≤ n1−ε, z ∈ Kn,ε, α(z) ≤ θn
√
n. This finishes the proof of (5.29).

We return to the main proof. So far we have shown

Ez[f(an(z), k,X(n))V (Z(n− k)), τ > n− k,An]

≥ Ez[f(an(z), k,X(n))h(W (n− k)), τ bmz− > n− k,An ∩Dn,k] + o(h(z)),

uniformly for k ≤ n1−ε, z ∈ Kn,ε, α(z) ≤ θn
√
n.

It holds

Ez− [h(W (n− k)), τ bmz− > n− k,Dc
n,k]

≤ (n− k)
1
4 Pz−(τ bm > n− k)Ean−k(z−)[h(an−k(W (n− k))), D̃n,k|τ bm > 1],

with D̃n,k = { x′
n

3
2
− n−γ +

∫ 1

0
B(s)ds ≤ 4n−γ}. Due to convergence towards the meander,

as well as the properties of the function ψ, the expectation converges to zero as n→∞.
Using Lemma 15 in Denisov and Wachtel [2015a] together with (5.32) it follows for all n
large enough that

Ez[f(an(z), k,X(n))V (Z(n− k)), τ > n− k,An] (5.36)

≥ Ez[f(an(z), k,X(n))h(W (n− k)), τ bmz− > n− k,An] + o(h(z)),

uniformly for k ≤ n1−ε, z ∈ Kn,ε, α(z) ≤ θn
√
n.

Analogous to above, we can prove

Ez[f(an(z), k,X(n))V (Z(n− k)), τ > n− k,An]

≤ Ez[f(an(z), k,X(n))h(W (n− k)), τ bmz+ > n− k,An] + o(h(z)), (5.37)
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uniformly for k ≤ n1−ε, z ∈ Kn,ε, |z2| ≤ θn
√
n.

In the proof of Theorem 7 we have shown that

f(an(z), k,X(n)) = f(an(z), k,W (n)) + o(1), (5.38)

uniformly for k ≤ n1−ε, z ∈ Kn,ε, |z2| ≤ θn
√
n. Here W (n) = an(W ) is the rescaled

Kolmogorov diffusion. (5.38) implies that

Ez[|f(an(z), k,X(n))− f(an(z), k,W (n))|h(W (n− k)), τ bmz± > n− k,An] (5.39)

= o
(
Ez± [h(W (n− k)), τ bm > n− k]

)
= o(h(z)),

uniformly for k ≤ n1−ε, z ∈ Kn,ε, |z2| ≤ θn
√
n. Here we have used the harmonicity of h as

well as (5.32). From this we infer, after performing a scaling, that

h(z−)E
(h)

an(z−)[f(an(z), k,W (n))] + o(h(z))

≤ Ez[f(an(z), k,X(n))V (Z(n− k)), τ > n− k,An]

≤ h(z+)E
(h)

an(z+)[f(an(z), k,W (n))] + o(h(z)),

uniformly for k ≤ n1−ε, z ∈ Kn,ε, |z2| ≤ θn
√
n.

Given the convergence of the h-transforms for the Kolmogorov diffusion, we arrive at

Ez[f(an(z), k,X(n))V (Z(n− k)), τ > n− k,An] = h(z)E
(h)
0 [f(W )] + o(h(z)), (5.40)

uniformly for k ≤ n1−ε, z ∈ Kn,ε, |z2| ≤ θn
√
n. We return to (5.21), which implies with

(5.40) that

E
(V )
(x,y)[f(an(Z(γn)), γn, X

(n)), γn ≤ n1−ε, Lγn ≤ θn
√
n] (5.41)

=
E

(h)
0 [f(W )] + o(1)

V (x, y)
E(x,y)[h(Z(γn)), γn ≤ n1−ε, τ > γn, Lγn ≤ θn

√
n]. (5.42)

A combination of Lemmas 20 and 21 from Denisov and Wachtel [2015a] shows

lim
n→∞

E(x,y)[h(Z(γn)), γn ≤ n1−ε, τ > γn, Lγn ≤ θn
√
n] = V (x, y).

This finishes the proof.
�





Appendices





Anhang A

On Kolmogorov diffusion conditioned
to be positive

A.1 Introduction

We recall the definition of the Kolmogorov diffusion. Given {Bt, t ≥ 0} a standard
Brownian motion, the Kolmogorov diffusion started at (x, y) is the process given by

W(x,y)(t) = (Ut, Vt)(x,y) =

(
x+ ty +

∫ t

0

Bsds, y +Bt

)
, t ≥ 0.

The Kolmogorov diffusion has been studied since 1934, when it first occurred in Kolmogorov
[1934]. The Kolmogorov diffusion with the first coordinate conditioned to be positive and
started at the origin is used in various contexts (see Lachal [2003, p.111] for a list of
applications). We recall the transition density of the Kolmogorov diffusion, which can be
calculated via expectations and covariances of this Gaussian process (see McKean [1962]).
For x, y, u, v ∈ R and t > 0 it is given by

pt(x, y;u, v) =

√
3

πt2
exp

(
−6(u− x− ty)2

t3
+

6(v − y)(u− x− ty)

t2
− 2(v − y)2

t

)
(A.1)

=

√
3

πt2
exp

(
−6(u− x)2

t3
+

6(u− x)(v + y)

t2
− 2(v2 + vy + y2)

t

)
.

In McKean [1962] the behavior of a Kolmogorov diffusion started in (0,−|z|) that is
stopped, when it hits zero is studied. Lachal [1991] has done a more general analysis,
where the process can start in any (x, y) and is stopped when its first coordinate hits a
given level.

Lemma 11 (Joint distribution of (τa, Vτa)-Lachal [1991]). The joint distribution of (τa, Vτa),
where τa is the stopping time τa := inft>0{Ut = a}, is determined by the density ft, which
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is recursively defined by

1. fs(0,−|z|; 0, w) := P(0,−|z|)
(
τ0 ∈ ds, Vτ0 ∈ dw

)
/dsdw =

=
3|w|

π
√

2πs2
e−(2/s)(z2−|zw|+w2)

∫ 4|zw|/s

0

θ−1/2e−(3θ/2)dθ

and

2. ft(x, y; a, z) := P(x,y)

(
τa ∈ dt, Vτa ∈ dz

)
/dtdz =

= |z|
[
pt(x, y, a, z)−

∫ t

0

∫ ∞
0

fs(0,−|z|; 0, w)pt−s(x, y, a,−ςw)dwds
]
1A(z),

where A = [0,∞) if x < a, A = (−∞, 0] if x > a and ς is the sign of (a− x).

Using this, Lachal (see Lachal [2003, p.128]) described the transition density of (U, V )
killed when U hits a ∈ R.

Lemma 12 (Formula for p). For t, x, u > 0 and y, v ∈ R and where A is again (−∞, 0] if
x > a and [0,∞) if x < a we have

pat (x, y;u, v) := P(x,y)

(
(Ut, Vt) ∈ dudv, τa > t

)
/dudv =

= pt(x, y;u, v)−
∫ t

0

∫
A

fs(x, y; a, z)pt−s(a, z;u, v)dzds.

As the probability that a Kolmogorov diffusion started in (x, y) for x > 0, y ∈ R has a
positive first coordinate for a given time t > 0 is positive, the corresponding conditioned
process can be defined through Bayes’ rule and is described entirely by p and the known
probability P(x,y)(τ

bm > T ). The existence of (U, V ) conditioned to be positive forever and
started in (0, 0) can be proven as a weak limit by showing the convergence of transition
density and tightness of the corresponding family of probability measures. In Groeneboom
et al. [1999] the authors have analyzed the convergence behavior of P(x,y)(τ0 > T ) for

T → ∞ and thus deduced that the transition density of (Ũ , Ṽ )(x,y), the Kolmogorov
diffusion with the first coordinate conditioned to be positive forever started in (x, y), has
the form

h(x, y)−1pt(x, y;u, v)h(u, v) for x > 0 and y ∈ R, (A.2)

In Groeneboom et al. [1999] the case of sending (0, y) ↓ 0 for the conditioned process started
in (0, y) is also considered. Our aim is the density of the conditioned process started at
the origin and running up until time 1.

Results of Groeneboom, Jongbloed and Wellner

In this subsection a part of the work done in Groeneboom et al. [1999] is outlined,
which is needed for our own calculations. We begin with the definition of the auxiliary
function h which is used to describe the behavior of P(x,y)(τ

bm > T ) for T → ∞. The
function h can be expressed by another auxiliary function g, which is a function of one
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argument and satisfies the scaling property h(x, y) = x1/6g(x−1/3y). As g can be expressed
by confluent hypergeometric functions and their convergence behavior is known, we can
calculate the convergence behavior of g and thus that of h. This subsection concludes with
the introduction of the function h, which appears in the asymptotics of p̄.

Harmonic function h and the behavior of P(x,y)(τ0 > T ). We use the shorthand

qt(x, y;u, v) := pt(x, y;u, v)− pt(x, y;u,−v).

The function h : (0,∞)× R→ R is defined by

h(x, y) :=

∫ ∞
s=0

∫ ∞
w=0

w3/2qs(x, y; 0,−w)dsdw = (A.3)

2
√

3

π

∫ ∞
s=0

∫ ∞
w=0

w3/2 exp(−6x2s3 − 6xys2 − 2(y2 + w2)s) sinh(6xws2 + 2yws)dsdw.

Groeneboom et al. [1999] characterize P(x,y)(τ0 > T ) as T →∞.

Lemma 13 (Groeneboom et al. [1999]). If (U, V ) starts at (x, y) with x > 0, y ∈ R we
have

P(x,y)(τ0 > T ) ∼ 3Γ(1/4)

23/4π3/2

h(x, y)

T 1/4
as T →∞.

The asymptotic behavior of h. We analyze the convergence behavior of p and h. We
start with h and in order to simplify the discussion we introduce from Groeneboom et al.
[1999] the function g : R→ (0,∞) defined by

g(y) := h(1, y) =

∫ ∞
s=0

∫ ∞
w=0

w3/2qs(1, y; 0,−w)dsdw. (A.4)

We recall the scaling property of g, which can be easily shown from (A.3) by a change of
variables s→ x−2/3s and w → x1/3w.

Lemma 14 (Representation of h via g). The functions g and h are related by

h(x, y) = x1/6g(x−1/3y).

Using results concerning confluent hypergeometric functions in Groeneboom et al.
[1999] it is shown how the function g can be expressed in terms of two such functions,
the Tricomi function U and the function V .

Tricomi’s function U is defined as the unique solution of the confluent hypergeometric
equation with the convergence behavior

U(a, c, z) ∼ z−a
∞∑
s=0

(−1)s
(a)s(1 + a− c)s

s!zs
for z →∞ in |ph(z)| < 3

2
π,
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where ph denotes the phase of a complex number and ()s is the so called Pochhammer’s
notation defined as

(a)0 := 1 and (a)s := a(a+ 1)(a+ 2) . . . (a+ s− 1) for s ∈ N.

The confluent hypergeometric function V is defined as

V (a, c, z) := ezU(c− a, c,−z) for |ph(z)| < 1

2
π,Re(a) > 0.

See Olver [1974][p.256] for more on these definitions and further theory concerning
confluent hypergeometric equations and functions. Now we can state the representation of
g (see Groeneboom et al. [1999] for a proof).

Lemma 15. The function g has the representation

g(y) = (
2

9
)1/6y U

(
1

6
,
4

3
,
2

9
y3

)
for y > 0,

g(y) = −(
2

9
)1/6 1

6
y V

(
1

6
,
4

3
,
2

9
y3

)
for y < 0,

g(0) = (
2

9
)−1/6 Γ(1/3)

Γ(1/6)
.

Results about the density p̄

The results proven in the remainder of Appendix A are included in Bär et al. [2020].
The main results of this section of the appendix are the following two Propositions.

Proposition 11. There exists R > 0, g : R+ ×R→R+ with the property∫
R+

∫
R

g(u, v)h(u, v)dvdu <∞,

so that,

sup
(x,y)∈R+×R+,α(x,y)≤ 1

2

p̄1(x, y;u, v) ≤ g(u, v)h(x, y), for (u, v) ∈ R+×R;u ≥ R or |v| ≥ R.

The auxiliary function h. We finally introduce another auxiliary function, which is
also used in Groeneboom et al. [1999].

The function h is defined by

h(t, x, y) :=
4
√

3√
2π

∫ t

s=0

∫ ∞
w=0

w3/2s−1/2ps(0, w; 0, 0)qt−s(x, y; 0,−w)dsdw. (A.5)

With this definition we can state the asymptotic of the density p̄t(x, y;u, v) as x, y ↘ 0.
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Proposition 12. For x, y ↘ 0 we have

pt(x, y;u, v) ∼ h(x, y)h(t, u,−v),

uniformly in (u, v) with α(u, v) ≤ R (R > 0 arbitrary).

Note that the proof of Proposition 12 given here establishes formally also the result
stated in Lemma 16 of Denisov and Wachtel [2015a].

Before giving the proofs of the Propositions 11 and 12, we give an application. We use
Proposition 12 to calculate the density of the meander W(0,0)(·|τ bm > 1).

Proposition 13. The transition density of the process W(0,0)(· |τ bm > 1) is proportional
to P(u,v)(τ

bm > 1− t)h̄(t, u,−v).

Proof. We look at the convergence of densities, i.e. of

p̄t(x, y;u, v)P(u,v)(τ
bm > 1− t)

P(x,y)(τ bm > 1)

as x, y ↘ 0. We use Proposition 12 pt(x, y, u, v) ∼ h(x, y)h(t, u,−v). The scaling property
of Brownian motion, implies

P(x,y)(τ
bm > 1) = P

(λ
3
2 x,λ

1
2 y)

(τ bm > λ).

This implies in turn, that

P(x,y)(τ
bm > 1) = P

(1,yx−
1
3 )

(τ bm > x−
2
3 ) for x

1
3 ≥ y,

P(x,y)(τ
bm > 1) = P(xy−3,1)(τ

bm > y−2) for x
1
3 < y.

Using uniform continuity of h(1, t), h(t, 1) as functions in t, Lemma 15 from Denisov and

Wachtel [2015a] with θt = max{x 1
6 , y

1
2}, t = x−

2
3 and the scaling properties of h we get in

all
P(x,y)(τ

bm > 1) ∼ κh(x, y), as x, y ↘ 0

The limit density is CP(u,v)(τ
bm > 1)h̄(t, u,−v), where C is a suitable normalization

constant. �
We calculate here also the density of the meander of length t 6= 1. For this we note

that if the meander is started at some point (x, y) ∈ R+ ×R+ then the density at some
time s ≤ t is

p+
t (s;x, y, ;u, v) =

p̄s(x, y;u, v)P(u,v)(τ
bm > t− s)

P(x,y)(τ bm > t)
.

Here we can write

P(x,y)(τ
bm > t) = P

(xt−
3
2 ,yt−

1
2 )

(τ bm > 1) ∼ h(xt−
3
2 , yt−

1
2 ) = t−

1
4h(x, y), as x, y ↘ 0

Using then again ps(x, y;u, v) ∼ h(x, y)h(s, u,−v) from above we get

p+
t (s;x, y, ;u, v) ∼ t

1
4 h̄(s, u,−v)P(u,v)(τ

bm > t− s) as x, y ↘ 0.

In all, we have proven the following.
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Corollary 7. The density of meander of length t ∈ (0,∞) with start point in 0 is

p+
t (s;u, v) = Ct

1
4 h̄(s, u,−v)P(u,v)(τ

bm > t− s), s ≤ t, (u, v) ∈ R+ ×R.

Auxiliary results for the proofs

Using the Lemmas above we can analyze the convergence behavior of the function h.

Lemma 16 (Convergence behavior of h). For x ↓ 0 and y → 0 we have

A. h(x, y) ∼ x1/6g(c) as x ↓ 0 and y → 0 such that x−1/3y → c for c ∈ R.

B. h(x, y) ∼ y1/2 as x ↓ 0 and y → 0 such that x−1/3y → +∞.

C. h(x, y) ∼ 3
4
x(−y)−5/2e

2
9
y3

x as x ↓ 0 and y → 0 such that x−1/3y → −∞.

Proof. A. This is a simple consequence of the representation of h and g.
B. For y→+∞ we have

g(y) =

(
2

9

) 1
6

yU

(
1

6
,
4

3
,
2

9
y3

)
∼
(

2

9

) 1
6

y
2

9
y3

)− 1
6

= y
1
2 ,

where we have used the definition of U . Thus, we have for h

h(x, y) = x
1
6 g(x−

1
3y) ∼ x

1
6 (x−

1
3y)

1
2 = y

1
2 .

C. For y→−∞ we have

g(y) = −
(

2

9

) 1
6 1

6
yV

(
1

6
,
4

3
,
2

9
y3

)
= −

(
2

9

) 1
6 1

6
ye

2
9
y3U

(
7

6
,
4

3
,−2

9
y3

)
∼ −

(
2

9

) 1
6 1

6
ye

2
9
y3
(
−2

9
y3

)− 7
6

=
3

4
(−y)−

5
2 e

2
9
y3 .

Here we have used the properties of U . Thus we have for h

h(x, y) = x
1
6 g(x−

1
3y) ∼ x

1
6

3

4
(−x−

1
3y)−

5
2 e

2
9
y3

x =
3

4
x(−y)−

5
2 e

2
9
y3

x .

�
Before giving our proof of Propositions 11 and 12 we establish some useful estimates in

the following Lemma.

Lemma 17. (a) Define the quadratic forms Q1(u, v, z) = 6u2−6uv+2v2 +2z2−6uz+2vz
and Q2(u, v, z) = 6u2 − 6uv + 2v2 + 2z2 + 6uz − 2vz. Then it follows

Q1(u, v, z) ≥ c[(z + u)2 + (v − u)2],
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Q2(u, v, z) ≥ c[(z − u)2 + (v − u)2].

(b) Define

ρ̃(u, v, z) := (u+ v) exp(−(u− v)2)
[
exp(−(z − u)2) + exp(−(z + u)2)

]
.

Then the function R+ ×R 3 (u, v) 7→ h(u, v) sup|z|≤ε ρ̃(u, v, z) is integrable for any ε > 0.
(c) For all u, z > 0 and v

p1(u,−v; 0,±z) ≤
√

3

π
exp

(
−6u2 − v2 + 9− z2

)
.

(d) For all u, z > 0, v and s ∈ (0, 1)

|q1−s(u,−v; 0,±z)| ≤ C

(1− s)2
exp

(
− 6u2

(1− s)3
− v2 + z2

1− s

)
.

Proof. (a) This can be proved through lengthy algebra. Another way forward is to note
that Q1(z̃) = z̃tAz̃, z̃ ∈ R3 with the positive semidefinite matrix

A =

 6 −3 −3
−3 2 1
−3 1 2

 .

A has eigenvalues 0, 1, 9 and diagonalization given by

A =

1 0 −2
1 −1 1
1 1 1

 ·
0 0 0

0 1 0
0 0 9

 ·
 1

3
1
3

1
3

0 −1
2

1
2

−1
3

1
6

1
6

 .

From here, simple algebra delivers the estimate for Q1.
Similarly, Q2(z̃) = z̃tBz̃, z̃ ∈ R3 with the positive semidefinite matrix

B =

 6 −3 3
−3 2 −1
3 −1 2

 .

B has eigenvalues 0, 1, 9 and diagonalization given by

B =

−1 0 2
−1 1 −1
1 1 1

 ·
0 0 0

0 1 0
0 0 9

 ·
−1

3
−1

3
1
3

0 1
2

1
2

1
3
−1

6
1
6

 .

From here, simple algebra delivers the estimate for Q2.
(b) Recall that h(u, v) ≤ cα(u, v)

1
2 . Note also that u+ v ≤ c(α(u, v)3 +α(u, v)). Hence

we concentrate on the exponential part

ι : (u, v, z) 7→ exp(−(u− v)2)
[
exp(−(z − u)2) + exp(−(z + u)2)

]
.
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Suppose that |u− v| ≤ 1. Then trivially u ≥ R =⇒ v ≥ R − 1 and v ≥ R =⇒ u ≥
R− 1. Hence this region does not cause problems for integrability.

Suppose that u ≥ v+ 1. In particular, u ≥ v. Then for every z ≤ ε it holds ι(u, v, z) ≤
Cε exp(−1

2
(u2 + v2)). This holds true both when v ≥ 0 and when v < 0.

Finally, suppose that v ≥ u + 1. In particular, v > 0. Then exp(−(u − v)2) ≤
exp(−v) exp(u), so that altogether, for every |z| ≤ ε, it holds ι(u, v, z) ≤ Cε exp(−v) exp(cε(u−
u2)). Overall, it follows that the function is integrable over the region |u − v| ≥ 1 also.
This finishes the proof of part (b).

(c) Recall that

p1(u,−v; 0, z) =

√
3

π
exp

(
−6u2 + 6(v − z)− 2(z2 − vz + v2)

)
=

√
3

π
exp

(
−6u2 − 2v2 + (v − z)(6 + 2z)

)
.

Maximize the parabola −v2 + (v − z)(6 + 2z) w.r.t v and substitute the value of the
maximized function in the exponent. This delivers the statement.

(d) This is straightforward from (c) and the scaling property of p̄. �
Next, we register a helpful result about densities (see Lachal [2003, p.128]).

Lemma 18 (Equation for the densities). For x, y, u, v ∈ R we have

pt(x, y;u, v) = pt(u,−v;x,−y),

pt(x, y;u, v) = pt(u,−v;x,−y).

As a next step we prove a decomposition for p̄1(x, y;u, v), which is needed in the proof
of the Propositions 11 and 12.

Lemma 19. It holds true for x,u > 0 and y,v ∈ R

pt(x, y;u, v) = pt(x, y;u, v)− pt(x, y;−u,−v)

−
∫ t

0

∫ ∞
0

qt−s(u,−v; 0, z)|z|qs(x, y; 0,−z)dwdrdzds

+

∫ 1

0

∫ ∞
0

∫ s

0

∫ ∞
0

zq1−s(u,−v; 0, z)fr(0,−z; 0, w)qs−r(x, y; 0,−w)dwdrdzds.

Proof. Recalling Lemma 12, we have for x,u > 0 and y,v ∈ R that

pt(x, y;u, v) = pt(x, y;u, v)−
∫ t

0

∫ 0

−∞
fs(x, y; 0, z)pt−s(0, z;u, v)dzds. (A.6)

By pt(x, y;u, v) = pt(u,−v, x,−y) (see Lemma 18) and the substitution z → −z equals

pt(x, y;u, v)−
∫ t

0

∫ ∞
0

fs(x, y; 0,−z)pt−s(u,−v; 0, z)dzds. (A.7)
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As qt(x, y;u, v) := pt(x, y, u, v)− pt(x, y;u,−v), (A.7) equals

pt(x, y;u, v)−
∫ t

0

∫ ∞
0

fs(x, y; 0,−z)(qt−s(u,−v; 0, z) + pt−s(u,−v; 0,−z))dzds. (A.8)

Because every path which goes from (x, y) to (−u,−v) in time t has to pass through
{0} × (−∞, 0] at least once, we have using the symmetry of density, that

pt(x, y;−u− v) (A.9)

=

∫ t

0

∫ ∞
0

fs(x, y; 0,−z)pt−s(0,−z;−u,−v))dzds

=

∫ t

0

∫ ∞
0

fs(x, y; 0,−z)pt−s(0, z;u, v))dzds

=

∫ t

0

∫ ∞
0

fs(x, y; 0,−z)pt−s(u,−v; 0,−z))dzds.

Applying (A.9) to (A.8), we get that pt(x, y;u, v) equals

pt(x, y;u, v)− pt(x, y;−u− v)−
∫ t

0

∫ ∞
0

fs(x, y; 0,−z)qt−s(u,−v; 0, z)dzds. (A.10)

Now we look closer at the double integral in (A.10) and apply Lemma 11:∫ t

0

∫ ∞
0

fs(x, y; 0,−z)qt−s(u,−v; 0, z)dzds =∫ t

0

∫ ∞
0

qt−s(u,−v; 0, z)|z|
[
ps(x, y; 0,−z)− (A.11)∫ s

0

∫ ∞
0

fr(0,−|z|; 0, w)ps−r(x, y; 0,−w)dwdr
]
dzds.

Since every path from (0,−z) to (x,−y) hits {0} × [0,∞) at least once, we have∫ s

0

∫ ∞
0

fr(0,−z; 0, w)ps−r(x, y; 0,−w))dwdr

=

∫ s

0

∫ ∞
0

fr(0,−z; 0, w)ps−r(0, w;x,−y))dwdr

=ps(0,−z, x,−y) = ps(x, y; 0, z),

where we have used Markov property. By this calculation and the definition of q the
integrand of (A.11) is

qt−s(u,−v; 0, z)|z|
[
qs(x, y; 0,−z)−

∫ s

0

∫ ∞
0

fr(0,−|z|; 0, w)qs−r(x, y; 0, w)dwdr

]
.

This gives the result. �
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A.2 Proofs of Propositions 11 and 12

Proof of Proposition 11. We recall the decomposition of p̄ from Lemma 19.

pt(x, y;u, v) = pt(x, y;u, v)− pt(x, y;−u,−v)

−
∫ t

0

∫ ∞
0

qt−s(u,−v; 0, z)|z|qs(x, y; 0,−z)dwdrdzds

+

∫ 1

0

∫ ∞
0

∫ s

0

∫ ∞
0

zq1−s(u,−v; 0, z)fr(0,−z; 0, w)qs−r(x, y; 0,−w)dwdrdzds.

Step 1. First we deal with the part

p1(x, y;u, v)− p1(x, y;−u,−v).

Using the definition of p1 this is equal to

p1(x, y;u, v)− p1(x, y;−u,−v)

=
2
√

3

π
exp

(
−6(u2 + x2) + 6(uv − xy)− 2(v2 + y2)

)
sinh (12ux+ 6(uy − vx)− 2vy) .

Now recall, that there exists c > 0 with

−6u2 ± 6uv − 2v2 ≤ −c(u2 + v2).

It follows

exp
(
−6(u2 + x2) + 6(uv − xy)− 2(v2 + y2)

)
≤ exp

(
−c(u2 + v2)

)
exp

(
−c(x2 + y2)

)
.

Here, we have used x, y > 0.

Using the estimate sinh(x) ≤ x cosh(x) ≤ xex for x ≥ 0 it follows that there exists
some c′ > 0 with

sinh (12ux+ 6(uy − vx)− 2vy) ≤ (12|u|+ 6|v|)(x+ y) exp(c′(|u|+ |v|)).

Here we have used that (x, y) is bounded. Recall from Lemma 6 in Denisov and Wachtel
[2015a]

h(x, y) ≥ cmax{x
1
6 , y

1
2},

with c > 0 suitable. In all, we have for suitable γ > 0

|p1(x, y;u, v)− p1(x, y;−u,−v)| = o(1)h(x, y) exp
(
−γ(u2 + v2)

)
, as x, y ↘ 0.
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Step 2. Next we look at

1

h(x, y)

∫ 1

0

∫ ∞
0

q1−s(u,−v; 0, z)|z|qs(x, y; 0,−z)dzds.

We first consider the integration domain 0 < ε < s < 1 for an ε ∈ (0, 1) fixed throughout.
Using the estimates sinh(x) ≤ |x| cosh(x), Lemma 6 in Denisov and Wachtel [2015a], ε < s
and the definition for ps we have

qs(x, y; 0,−z) =
2
√

3

πs2
exp

(
−6x2

s3
− 6xy

s2
− 2y2 + 2z2

s

)
sinh

(
6xz

s2
+

2yz

s

)
≤
(

6xz

s2
+

2yz

s

)
(ps(x, y; 0, z) + ps(x, y; 0,−z))

≤ Cεz(x+ y) = Cεzh(x, y)o(1), as x, y ↘ 0.

In the last inequality we use extensively (A.1) and the fact that α(x, y) ≤ 1
2
. For more

details, note first that

ps(x, y; 0, z) + ps(x, y; 0,−z) =

√
3

πs2
exp

(
−6x2

s3
− 6x(z + y)

s2
− 2(z2 + zy + y2)

s

)
+

√
3

πs2
exp

(
−6x2

s3
− 6x(y − z)

s2
− 2(z2 − zy + y2)

s

)
.

Note also that the quadratic forms (z, y) 7→ z2± zy+y2 are positive definite. This delivers
easily that for s ∈ [ε, 1], (x, y) ∈ R+ ×R+ such that α(x, y) ≤ 1

2
, the sum ps(x, y; 0, z) +

ps(x, y; 0,−z) is bounded by a positive constant that depends on ε.
Now we look to control the integral∫ 1

ε

∫ ∞
0

z2q1−s(u,−v; 0, z)dzds.

Use (d) from Lemma 17 to get∫ 1

ε

∫ ∞
0

z2q1−s(u,−v; 0, z)dzds ≤ C

∫ 1

ε

∫ ∞
0

z2(1− s)−2 exp

(
−6u2 + v2 + z2

1− s

)
dzds

= C

∫ ∞
0

t2e−t
2

dt ·
∫ 1−ε

0

1√
s
ds · exp

(
−6u2 + v2

1− ε

)
≤ C exp(− C ′

1− ε
(u2 + v2)).

Next we consider the integration domain 0 ≤ s ≤ ε < 1. We look at

1

h(x, y)

∫ ε

0

∫ ∞
0

q1−s(u,−v; 0, z)|z|qs(x, y; 0,−z)dzds.
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We perform the change of variables s→x 2
3 s, z→x 1

3 z to get after the scaling property of qs∫ ε

0

∫ ∞
0

q1−s(u,−v; 0, z)|z|qs(x, y; 0,−z)dzds

=

∫ x−
2
3 ε

0

∫ ∞
0

x
4
3 q

1−x
2
3 s

(u,−v; 0, x
1
3 z)|z|q

x
2
3 s

(x, y; 0,−x
1
3 z)dzds

=

∫ x−
2
3 ε

0

∫ ∞
0

q
1−x

2
3 s

(u,−v; 0, x
1
3 z)|z|qs(1, x−

1
3y; 0,−z)dzds.

Now recall that 1−x 2
3 s ∈ [1−ε, 1] for s ∈ [0, x−

2
3 ε] and use (d) from Lemma 17 to conclude

that

q
1−x

2
3 s

(u,−v; 0, x
1
3 z) ≤ Cεx

1
3 z(u+ v) exp(−C(6u2 + v2 + x

2
3 z2)).

Furthermore, h(x, y) ≥ c|x| 16 by Lemma 6 in Denisov and Wachtel [2015a], i.e. one has

x
2
3 = h(x, y)o(1) as x, y ↘ 0. Therefore, it suffices to show that the following expression

is finite ∫ ∞
0

∫ ∞
0

zqs(1, x
− 1

3y; 0,−z)dzds.

We use (d) from Lemma 17 to see that it suffices∫ ∞
0

∫ ∞
0

zs−2e−
1
s3
− z

2

s dzds <∞.

This is true.
These two steps establish the result.

Step 3. Finally, we have to look at the following four-fold integral.

I(x, y, u, v) =

∫ 1

0

∫ ∞
0

∫ s

0

∫ ∞
0

zq1−s(u,−v; 0, z)fr(0,−z; 0, w)qs−r(x, y; 0, w)dwdrdzds.

Since the argument is particularly lengthy, we split this step into several intermediate
steps.

Step 3-a: preparations.
We first use the identity

qs(x, y;u,−v) = −qs(x, y;u, v)

twice and then substitute r→s− r to get

I(x, y, u, v) =

∫ 1

0

∫ ∞
0

∫ s

0

∫ ∞
0

zq1−s(u,−v; 0,−z)fs−r(0,−z; 0, w)qr(x, y; 0,−w)dwdrdzds.
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According to the formula for fr from Lemma 11 we have

fs−r(0,−z; 0, w) =
3we−

2(z2−zw+w2)
s−r

π
√

2π(s− r)2

∫ 4zw
s−r

0

θ−
1
2 e−

3θ
2 dθ.

Note that
∫ x

0
θ−

1
2 e−

3θ
2 dθ ≤ 2

√
x for all x > 0. Note also that the quadratic form (z, w) 7→

2(z2 − zw + w2) is positive definite. These two facts deliver the estimate

zfs−r(0,−z; 0, w) ≤ C
(zw)

3
2

(s− r) 5
2

exp(−cz
2 + w2

s− r
). (A.12)

Replacing (A.12) into I, recalling that qr(x, y; 0−w) > 0 for x, y, w > 0 and interchanging
the integration sequence (the integrand is non-negative) delivers

I(x, y, u, v) ≤ C

∫ 1

0

∫ ∞
0

w
3
2 qr(x, y; 0,−w)

(∫ ∞
0

∫ 1

r

z
3
2 exp(−c z2

s−r )

(s− r) 5
2

q1−s(u,−v; 0,−z)dsdz

)
dwdr.

Recalling (A.3), we focus the analysis in the following on the function

ψ(u, v, r, t, a, b) :=

∫ b

a

∫ t

r

z
3
2 exp(−c z2

s−r )

(s− r) 5
2

q1−s(u,−v; 0,−z)dsdz,

for 0 < r < t ≤ 1, u, v > 0, 0 ≤ a < b ≤ ∞.

Step 3-b: integrability of R+ × R 3 (u, v) 7→ h(u, v) supr∈[0,1] ψ(u, v, r, 1, ε,∞) for
arbitrary ε > 0.

Note that t−
5
2 e−

c
2
t2 = O(1), t→∞. We use this fact, part (d) of Lemma 17 together

with the substitution z 7→ z√
s−r and the fact that s− r ∈ (0, 1) to estimate

ψ(u, v, r, ε,∞) ≤ Cε

(∫ ∞
0

z4e−
c
2
z2dz

)
·
∫ 1

0

1

(1− s)2
exp

(
− 6u2

(1− s)3
− v2

1− s

)
ds.

z 7→ z4e−
c
2
z2 is integrable. Suppose that u ≥ R. Then it follows∫ 1

0

1

(1− s)2
exp

(
− 6u2

(1− s)3
− v2

1− s

)
ds ≤ C exp(−c(u2 + v2))

∫ 1

0

1

(1− s)2
exp

(
− R2

(1− s)3

)
ds

≤ CR exp(−c(u2 + v2)). (A.13)

Suppose that u < R, |v| ≥ R. Then a similar estimate to (A.13) holds true. This finishes
the integrability required.

Step 3-c: integrability of R+ ×R 3 (u, v) 7→ h(u, v) supr,ε:r+ε<1 ψ(u, v, r + ε, 1, 0, ε).
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We use first a similar estimate as in Step 2 of the proof based on the fact that sinh(x) ≤
|x| cosh(x). Namely, it holds

q1−s(u,−v; 0,−z) ≤ C

(1− s)2
exp

(
− 6u2

(1− s)3
+

6uv

(1− s)2
− 2v2 + 2z2

1− s

)
× sinh

(
z(

6u

(1− s)2
− 2v

1− s
)

)
≤ Cz

(
6u

(1− s)2
+

2v

1− s

)
exp

(
− 6u2

(1− s)3
+

6uv

(1− s)2
− 2v2 + 2z2

1− s

)
× 1

(1− s)2
cosh

(
z(

6u

(1− s)2
− 2v

1− s
)

)
.

= Czρ(u, v, s, z),

with

ρ(u, v, s, z) :=

(
6u

(1− s)2
+

2v

1− s

)
exp

(
− 6u2

(1− s)3
+

6uv

(1− s)2
− 2v2 + 2z2

1− s

)
× 1

(1− s)2
cosh

(
z(

6u

(1− s)2
− 2v

1− s
)

)
.

After straightforward algebra and use of part (a) of Lemma 17 it follows that

ρ(u, v, s, z) ≤ ρ̄(u, v, s, z) :=
1

(1− s) 5
2

(
6u

(1− s) 3
2

+
2v√
1− s

)
×[

exp

(
−cQ1

(
u

(1− s) 3
2

,
v√

1− s
,

z√
1− s

))
+ exp

(
−cQ2

(
u

(1− s) 3
2

,
v√

1− s
,

z√
1− s

))]
.

To show integrability of integrability of R+ ×R 3 (u, v) 7→ h(u, v)ψ(u, v, r + ε, 1, 0, ε) for
ε > 0 small so that ε+r < 1, we note first that it is without loss of generality to show it for
r ≤ 1

2
and ε ≤ 1

4
. This is because the integrand is non-negative for all r ∈ (0, 1), ε, u, v > 0.

We focus on such values of r, ε in the following.
We use the substitution z 7→ z√

s−r to arrive at

ψ(u, v, r + ε, 1, 0, ε) ≤
∫ 1

r+ε

∫ ε√
s−r

0

z
5
2 e−cz

2 1

(s− r) 3
4

ρ̄(u, v, s, z
√
s− r)dzds.

Note first, that z 7→ z
5
2 e−cz

2
, z ≥ 0 is bounded, and that 1

(s−r)
3
4
≤ Cε.

We make use of the substitutions u 7→ u

(1−s)
3
2
, (v, z) 7→ (v,z)√

1−s together with the fact that

z
√
s− r ≤ ε to see, that to complete Step 3-c, it is sufficient to show that∫ ∞

0

∫ ∞
0

h(u, v) sup
z≤ε

ρ̄(u, v, 0, z)dudv
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is finite. But this follows from easy substitutions and part (b) of Lemma 17.
Step 3-d: integrability of R+ ×R× 3 (u, v) 7→ h(u, v) supr,ε:r+ε<1 ψ(u, v, r, r + ε, 0, ε).
Suppose first that r > 1

2
. Then we are integrating s over a range [r, r + ε], which

can be expanded to [1
2
, 3

4
) ∪ [3

4
, 1] (recall that the integrand is non-negative). Step 3-c

shows the integrability needed in the range [3
4
, 1]. Hence, in the following we work on the

integrability of R+ × R+× 3 (u, v) 7→ h(u, v)ψ(u, v, r, 3
4
, 0, ε) for ε > 0 for some r ≤ 1

2
.

Note that 1− s ∈ [1
4
, 1) under these conditions.

Analogous to the Step 3-c, we use the substitution z 7→ z√
s−r to arrive at

ψ(u, v, r,
3

4
, 0, ε) ≤

∫ 3
4

r

∫ ε√
s−r

0

z
5
2 e−cz

2 1

(s− r) 3
4

ρ̄(u, v, s, z
√
s− r)dzds.

Note that z
√
s− r ≤ ε. We estimate for z′ ≤ ε

ρ̄(u, v, s, z′) ≤ C(u+ v) exp

(
−c( u

1− s
− v)2

)
×[

exp

(
−c(z′ − u

1− s
)2

)
+ exp

(
−c(z′ − u

1− s
)2

)]
.

By steps analogous to the proof of part (b) of Lemma 17, one arrives at the integrability
of

R+ ×R 3 (u, v) 7→ h(u, v) · sup
s∈[ 3

4
,0],z≤ε

ρ̄(u, v, s, z). (A.14)

Finally, recall that (0,∞) 3 z 7→ z
5
2 e−cz

2
is integrable, as is (0, 1) 3 t 7→ 1

t
3
4

.1 This, together

with (A.14) finishes the proof of Step 3-d.
Step 4. Step 3 has shown that the four-fold integral from the decomposition in Lemma

19 leads to a bound of the type

I(x, y, u, v) ≤ C

∫ 1

0

∫ ∞
0

w
3
2 qr(x, y; 0,−w)ψ(u, v, r, 1, 0,∞)dwdr,

with a function R+ ×R× (0, 1) 3 (u, v, r) 7→ ψ(u, v, r, 1, 0,∞) so that∫ ∞
0

∫ ∞
0

h(u, v) sup
r∈(0,1)

ψ(u, v, r, 1, 0,∞)dudv <∞. (A.15)

Making use of the steps 1 and 2, of (A.15), and of the integral representation of h in (A.3)
finishes the proof of the proposition.

�

Proof of Proposition 12. Due to the scaling properties of the functions h̄, h and of the
density p it is w.l.o.g. to take t = 1.

1We make the substition t 7→ s− r in
∫ 3

4

r
1

(s−r)
3
4
ds.
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We use the equations from Lemma 18. Due to the proof of Lemma 11 it is enough to look
at

lim
x,y↘0

1

h(x, y)

∫ 1

0

∫ ∞
0

∫ s

0

∫ ∞
0

zq1−s(u,−v; 0, z)fr(0,−z; 0, w)qs−r(x, y; 0,−w)dwdrdzds.

(A.16)

Lemma 11 and Lemma 17 ensures a dominating function for the integral whenever |(u, v)|
is large enough. Otherwise, for |(u, v)| bounded points (a), (b) from Lemma 17 ensure that
there is a dominating function and we can interchange integration and limit in (A.16). It
is easy to see the convergence is also uniform for α(u, v) ≤ R.

After transformations similar to the ones in the proof of Lemma 11 we need to verify
the limit (uniformly for α(u, v) ≤ R)∫ 1

0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ 4

0

lim
x↓0,y↓0

1

h(x, y)
|z|3/2|w|3/2q1−s(u,−v; 0,−z)x1/6qr(1, x

−1/3y; 0,−w)

× 3

π
√

2π(s− x2/3r)5/2
e
− 2

(s−x2/3r)
(z2−|x1/3zw|+x2/3w2)

θ−1/2e
− 3|x1/3zw|θ

2(s−x2/3r) dθdwdrdzds = h(1, u,−v).

First we look at the case x−
1
3y→c. Using h(x, y) ∼ x1/6g(c) the integrand equals after

substitutions r 7→ x
2
3 r, z 7→ x

1
3
z

lim
x↓0,y↓0

1

g(c)
|z|3/2|w|3/2q1−s(u,−v; 0,−z)qr(1, x

−1/3y; 0,−w)

× 3

π
√

2π(s− x2/3r)5/2
e
− 2

(s−x2/3r)
(z2−|x1/3zw|+x2/3w2)

θ−1/2e
− 3|x1/3zw|θ

2(s−x2/3r) .

Solving the limit, this is equal to

1

g(c)
|z|3/2|w|3/2q1−s(u,−v; 0,−z)qr(1, c; 0,−w)

3

π
√

2πs5/2
e−

2
s
z2θ−1/2,

uniformly for α(u, v) ≤ R.
After calculating the θ integral and sorting the terms, we have the integral

1

g(c)

∫ 1

0

∫ ∞
0

4
√

3√
2π
|z|3/2s−1/2q1−s(u,−v, 0,−z)

√
3

πs2
e−

2
s
z2

×
∫ ∞

0

∫ ∞
0

|w|3/2qr(1, c; 0,−w)dwdrdzds

=

∫ 1

0

∫ ∞
0

4
√

3√
2π
|z|3/2s−1/2q1−s(u,−v, 0,−z)ps(0, z; 0, 0)

=h(1, u,−v),

where in the last steps we used the definitions of h,g,p and h.
Finally, we look at the case x−1/3y →∞.
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Note that x−1/3y → ∞ for x, y ↘ 0 is equivalent to x = 0, y ↓ 0. To see this, one can
perform a translation of the start points (x, y). Using (4.5) of Groeneboom et al. [1999]
we have

pt(0, y;u, v) ∼ √yh(t, u,−v) for y ↓ 0.

It is easy to see from the proof in Groeneboom et al. [1999] that the convergence is uniform
in (u, v) as long as they remain bounded.

With Lemma 16 we know that
√
y ∼ h(x, y) as x, y ↘ 0 and x−1/3y → ∞. This

concludes the proof. �





Anhang B

Results on the case of non-zero drift

B.1 The case of non-zero drift with exponential moments

The results presented in this section are from Duraj [2014b].

Formally, we study the multidimensional counterpart of the following one dimensional
problem:

Let S(n) be a real valued random walk with negative drift started at some x ∈ (0,+∞).
Find the asymptotics of the exit time τx = inf{n ≥ 0 : S(n) ≤ 0}. This is by now a classical
result. For example, in Doney [1989] the asymptotics is found if the jump of the random
walk fulfills the following Cramér-type condition :
R(h) = E[ehX ] is finite in some [0, B] for B ≤ ∞, and 0 < limh↑B

R′(h)
R(h)

≤ ∞. The
asymptotics is then

P(τx > n) ∼ V (x)µ−nn−
3
2 as n→∞. (B.1)

Here, µ = 1
E[eh0X ]

and h0 is the unique solution of R′(h) = 0 and the assumption on the

jump implies in particular that it has a finite second moment. For two real-valed sequences,
by the notation a(n) ∼ b(n), as n→∞, we mean the property limn→∞

a(n)
b(n)

= 1.
Note that the positive open real halfline is a cone. Our main aim is to find an analogue

to (B.1) for random walks in dimensions greater than one, killed when leaving cones in the
respective euclidean space and to derive some weak convergence results for the conditioned
process.
Even though the idea of a Cramér condition and use of an exponential change of measure
will be helpful for the multidimensional case as well, methodologically the multidimensional
problem is different from the one dimensional case. Therefore we first briefly recall the
main idea of the study of latter problem, as it is done in Doney [1989].
Its study is facilitated by the obvious relation P(τx > n) = P(Ln ≥ −x) with Ln =
mini=1..n S(i). This makes possible the use of the following classical relations (see also the
similar equations (2.5) and (2.6) in Doney [1989])∑

n≥0

snE[esLn ] = exp{
∑
n≥1

snan(s)} (B.2)
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and ∑
n≥0

snP(τ0 > n) = exp{
∑
n≥1

snan}, (B.3)

where an(t) = 1
n
{E[etS(n), S(n) < 0] + P(Sn ≥ 0)} and an = 1

n
P(Sn ≥ 0). Then getting the

asymptotics of an(t) and an yields the asymptotics of the exit time. To this aim one makes
use of a change of measure, for example for an we have

an =
1

n

∫ ∞
0

P(Sn ∈ dx)

=
1

n

∫ ∞
0

e−hx(E[ehx])nP(Ŝn ∈ dx)

=
(E[ehx])n

n
E[e−Ŝn , Ŝn ≥ 0].

Here Ŝn is the driftless random walk gained from an exponential change of measure of
X through the density ehx

E[ehx]
. It is then easy to see, for example if the random walk is

discrete by expanding and using a local limit theorem, that the expectation in the last line
is asymptotically const√

n
.

As already mentioned, there is no hope of some similarly helpful relation as (B.2) and
(B.3) for the multidimensional case. A way of attacking the multidimensional case is
supplied by the work Denisov and Wachtel [2015b]. One could use some of their results
after reducing the case of a nonzero drift to that of the zero drift. For this we impose
a Cramér condition and use an exponential change of measure to turn the nonzero drift
random walk into a driftless one already at the beginning. Nevertheless, it turns out that
one has to refine and specialize some crucial estimate from the driftless case to accomplish
the proof for the nonzero drift case. This refinement is the hardest part of the proof.

B.1.1 Assumptions and Statement of Results

Let S(n) be a d-dimensional random walk, d ≥ 2. Its jumps are i.i.d. copies of some
random variable
X = (X1, X2, ...Xd) which takes value in the euclidian lattice Zd.
We assume

Assumption 1 (Cramér condition) : The set
Ω = {h ∈ Rd : R(h) = E[eh·X ] <∞} has a nonempty interior containing 0 and there exists
some nonzero h in the interior such that ∇R(h) = E[Xeh·X ] = 0.

We also assume that the random walk is truly d-dimensional, i.e. it does not live
on a hyperplane of the euclidian space. Thus we impose
Assumption 2 (Non Collinearity) : For every nonzero c ∈ Rd we have
P(c ·X = 0) < 1.
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We also assume that the random walk is strongly aperiodic.
Assumption 3 (Strong aperiodicity): X fulfills the following condition:

For every x ∈ Zd the smallest subgroup of Zd containing

{y : y = x+ z with some z s.t. P(X = z) > 0}

is the whole group.
Note that Assumption 1 implies that c := R(h) is smaller than 1 and that E[X] = ∇R(0)

is nonzero, since the function R(h) is strictly convex and C∞ in the interior of Ω. Thus we
are in the nonzero drift case. Also, due to convexity of Ω and Assumption 1, it follows by
a Taylor expansion of R(h) around 0 that E[X] · h < 0.

Define c = E[eh·X ] and let X̃ be a random variable with density

P(X̃ ∈ dz) =
1

c
eh·zP(X ∈ dz), (B.4)

defined on the same probability space as S(n) is. As a consequence of the Cramér
assumption we know its associated random walk S̃(n) =

∑n
i=1 X̃(i) is driftless. Clearly,

the non-collinearity assumption holds for X̃ again, since we are dealing with an equivalent

change of measure. This implies that E
[
X̃ · X̃ t

]
is a positive definite matrix. This ensures

the existence of an invertible d× d-matrix M such that X̂ = MX̃ has E
[
X̂ · X̂ t

]
= Id×d,

where Id×d is the Identity matrix of dimension d. We denote by Ŝ(n) its corresponding
random walk. It has uncorrelated components with zero drift, since also E[X̂] = ME[X̃] =
0.

Due to the Cramér condition, we know that X̃ and X̂ have all moments. The state
space of Ŝ(n) is MZd. It is again strongly aperiodic in its state space. We denote from
now on by ŷ the vector My for y ∈ Zd. For the original random walk we recall the stopping
time

τx = inf{n ≥ 0 : x+ S(n) 6∈ K} (B.5)

and introduce by τ̂x̂ the corresponding stopping time for Ŝ(n),

τ̂x̂ = inf{n ≥ 0 : x̂+ Ŝ(n) 6∈ K̂ = MK}. (B.6)

Here K is an open cone containing h of Assumption 1 and x ∈ Zd always.

Assumption 4 (Convexity): K is convex.

Moreover, our method works only for cones where the series
∑

y∈K∩Zd e
−h·y is convergent,

so that letting Σ := K ∩ Sd−1 we have to impose
Assumption 5: For every x ∈ ∂Σ we have |∠(x, h|h|)| <

π
2
.

This assumption is not fulfilled for two-dimensional cones of opening bigger or equal to
π, which contain h in its interior. For such cones h · y ≤ 0 for some y ∈ K ∩Zd can happen
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so that
∑

y∈K∩Zd e
−h·y diverges.

For cones fulfilling Assumption 5, it follows that h · y can be bounded from below by a
constant times the norms of h and y for y ∈ K. Thus this assumption can be considered as
minimal for our method. This assumption and the fact E[X]h < 0 imply that the random
walks in consideration have a drift which points outside of the cone.

One can not use the method presented here to get the exact asymptotic of the probabilities
of a two dimensional random walks conditioned to stay in a half-plane. Nevertheless, under
some conditions, we can use (B.1) to get the tail asymptotics of the exit time.

If the cone has the form K = {x ∈ Rd|a · x > 0} for some nonzero a ∈ Rd, the jump
X has a · E[X] < 0, there exist some B > 0 such that E[eah·X ] < ∞ for h ∈ [0, B], and

finally limh↑B
E[a·Xeha·X ]
E[eha·X ]

> 0, then we are precisely in the conditions of Doney [1989] for the

random walk with jump a ·X and can use (B.1) to get the asymptotics of the exit time.
As a last restriction, we have to impose some additional regularity on ∂K.
Assumption 6 (Regularity): ∂Σ is C2 and the solution of{

∆u = 0, if x ∈MK,
u(x) = 0, if x ∈ ∂MK

is extendable to the respective solution on a bigger cone, which strictly contains MK, i.e.
there exists some cone K̃ which strictly contains MK and for which u is extendable to a
solution of the Dirichlet problem for the cone K̃. It is also clear, M being invertible i.e.
a C∞-diffeomorphism, that ∂(MK ∩ Sd−1) is C2 if ∂Σ is C2. We note here, that if the
original random walk has indipendent components, then M is a diagonal positive definite
matrix so that MK = K and the Assumption 6 is then made on the original cone.

With an eye on applications, our assumptions are not as restrictive as they seem. For
example, Assumption 6 is always fulfilled for cones K with real-analytic ∂Σ (see references
in Banuelos and Smits [1997]). In particular, every two dimensional cone of opening of
less or equal to π

2
fulfills all of Assumptions 4, 5 and 6, since ∂Σ contains just two points.

Moreover, depending on the specific setting of the original problem one wants to study, it
may be possible to make a linear transformation of the cone and the jump and reduce the
setting to a random walk living in some cone of the form K̃ × Rd−r (for some r ≤ d and
K̃ suitable), whose projection on Rr fulfills our assumptions.

We also note, that for our proof to go through we could weaken Assumption 1 as
our proof only needs the existence of a nonzero h with R(h) < 1, E[Xeh·X ] = 0 and
E[|X|αeh·X ] <∞, where α is some suitable real number depending on the transformation
M . Here, α has to be greater than 2 and equal to p if p itself is greater than 2. We have
stated Assumption 1 to show the analogy with the one dimensional problem.

In this setting we are able to prove the following Proposition.

Proposition 14. Let V be the harmonic function from Proposition 4 for {Ŝ(n)} and V ′

the respective harmonic function for {−Ŝ(n)}. It holds for n→∞, for A ⊂ K ∩ Zd

P(x+ S(n) ∈ A, τx > n) ∼ ρcnn−(p+ d
2

)eh·xV (x)
∑
y∈A

e−h·yV ′(y).
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In particular,

P(τx > n) ∼ %cnn−(p+ d
2

)eh·xV (x). (B.7)

Relation (B.7) is the multidimensional counterpart of (B.1) and U , U ′ are suitable
functions defined in the next section. We note that one does not need Assumption 3 for
(B.7). Indeed, given the original random walk is not strongly aperiodic, we could redefine
the probabilities on a suitable subset grid of the euclidian grid and get again (B.7) through
the same calculations. Assumption 3 has been stated for expository reasons. The proof of
Proposition 14 is based on the similar results for the driftless random walk Ŝ(n), but is
not a straightforward application, since the estimates on the tail probability for the exit
time in the driftless case are not sharp enough to justify an interchange of limit and sum,
which is crucial for the proof of the nonzero drift case. Sharpening this estimate for our
setting is the essential in our method.

Having Proposition 14, we derive from it the asymptotic behavior of the conditioned
process. As a first simple Corollary it is immediate to derive

Corollary 8.
Px(τ = n)

Py(τ = n)
−→ eh·(x−y)V (x)

V (y)
, n→∞.

The one dimensional version of this limit is found in Doney [1989].
In Daley [1969] and Iglehart [1974b] the authors find the limit process for the one-dimensional
conditioned random walks to be quasistationary. In our setting, as a simple corollary from
Proposition 14, one can check that the respective Yaglom limit exists for the multidimensional
case.

Corollary 9 (Yaglom Limit). We have for x ∈ K ∩ Zd, A ⊂ K and n→∞

P(x+ S(n) ∈ A|τx > n) −→ µ(A) = κ
∑

y∈A∩Zd
e−h·yV ′(y).

Here, κ > 0 is the norming constant so that µ is a probability distribution on K. Furthermore,
µ is quasistationary for the conditioned process.

Existence of the Yaglom limit is not always given. For example, one sees directly that
for driftless random walks S(n) due to Proposition 6 we have

P(x+ S(n) = y|τx > n) −→ 0, n→∞.

I.e. the Yaglom Limit doesn’t exist in this case (it needs to be a genuine probability
distribution). For some examples on the fact that even for extensively studied processes
like birth-death processes both existence and non-existence can happen, see Van Doorn
[1991]. Duraj [2014b] also show with a simple example that one cannot expect uniqueness
of quasistationary distributions in our setting.

The previous results can be used to prove some simple weak convergence results for the
conditioned process. For the one dimensional case, the analysis of such limits in Iglehart
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[1974b], Iglehart [1974a] and Daley [1969] is complete. They use the methodology of the
one-dimensional problem, which as previously noted, has no bite in the multidimensional
setting. Using the results above Duraj [2014b] proves the following for the exit distribution
of the random walk, conditioned on exiting at a specific time: For x ∈ K∩Zd and y ∈ Zd\K
and n→∞

P(x+ S(τx) = y|τx = n) −→ χ

1− c
∑
z∈K

e−h·zV ′(z)P(z + S(1) = y),

where χ is a positive constant. For bridges for random walks in our setting it holds

Proposition 15. For A ⊂ K ∩ Zd finite, z ∈ K and t ∈ (0, 1)

np+
d
2P(x+ S([tn]) ∈ A|τx > n, x+ S(n) = z) ∼ ρ

(t(1− t))p+ d
2

∑
y∈A

V (y)V ′(y), n→∞.

Finally, Proposition 14 makes it possible to construct a Markov chain on K ∩ Zd
conditioned to never leave the cone. Namely, we get the markov chain Z with transition
matrix

p(x, y) =
1

c
P(x+ S(1) = y)eh·(x−y)V (x)

V (y)
, for x, y ∈ K ∩ Zd

by looking at the weak limit of

P(x+ S(1) = y1, x+ S(2) = y2, . . . , x+ S(k) = yk, τx > n|τx > n),

as n → ∞. It is then easy to prove the following: Z is a strictly stochastic and transient
Markov chain on K ∩ Zd. Z is probably the physically right process to take as a
random walk conditioned to never leave the cone and it is important to note that it is
not constructed through a Doob-h-transform, but involves instead a c-harmonic function,
for some suitable c ∈ (0, 1). In some of the cases considered in applications, like two-
dimensional random walks in two-dimensional cones, there are uncountably many positive
harmonic functions (see section 4.4 in chapter 4). So there are uncountably many possible
definitions through Doob-h-transforms of a random walk conditioned to stay in a cone
in this case. Proposition B.1.1 tells us that none of them is equal to the process gained
through the weak limit procedure.

To conclude this section, we comment on a special case which is ubiquitous in applications.

Example. There has been extensive research on random walks in the quarter plane. In
the monograph Fayolle et al. [1999], the authors develop analytical and algebraic methods
to study such random walks under strong assumptions on the distribution of the jump.
These methods have been successfully used, for example in Kurkova and Raschel [2011] and
Raschel [2012] to study random walks of non-zero drift with small steps. In comparison,
the assumptions here are less stringent and we follow a pure probabilistic approach.
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In our setting, assume that d = 2 and that the jump of the random walk has negative
drift m = E[X] = (m1,m2) with m1,m2 < 0. Also assume that there exists some h0 > 0
such that for h̃i ≤ h0, i = 1, 2 we have

E[e
∑2
i=1 h̃iXi ] <∞.

Assume also the existence of some h = (h1, h2) with h0 > hi > 0, i = 1, . . . , d such that

E
[
Xje

∑2
i=1 hiXi

]
= 0 j = 1, 2.

Last, assume that the random walk is strongly aperiodic and that X has a strictly two-
dimensional distribution. Under these conditions, if we take for K the interior of the
positive quadrant, all of the Assumptions 1-6 are fulfilled. In particular, Theorem 1 holds
and yields the asymptotics for P(τx > n) for x ∈ N2 and all its immediate corollaries apply.
In this setting we can give an explicit form for M . Namely, using Example 2 from Denisov
and Wachtel [2015b] one can calculate M this way: define first

ci = E[(X̃i)
2].

Then

α = Cov

(
X̃1√
c1

,
X̃2√
c2

)
∈ (−1,+1),

due to non collinearity. With this, we have then

M =
1√

1− α2

(
cosϕ√
c1

− sinϕ√
c2

− sinϕ√
c1

cosϕ√
c2

)
,

where ϕ is such that sin(2ϕ) = α. The terms 1√
ci

norm the variables X̃i into having

variance 1, while the cos and sin-functions cause a rotation, which makes the components
uncorrelated, as can be seen by straightforward computation. In the case of two-dimensional
cones the value of p is known and equal to π

arccos(−α)
.

B.2 On integrated random walks conditioned to stay

positive: Applications to the case with drift

The results presented in this subsection of the Appendix are contained in Bär et al. [2020].
The case where E[X] 6= 0 can be considered under two different settings. We develop

the exponential case and just remark shortly on the case without exponential moments.
Consider a random variable which has finite exponential moments in a right neighborhood

of zero:
M(t) = E[etX1 ] <∞, 0 ≤ t ≤ t0, t0 > 0.
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Denote by µ the law of X1 and define the laws

µt(dz) =
etX1

M(t)
dµ(z).

Let X(t) be a random variable with law µt. Then we have for the laws µnt of the respective

vector (X
(t)
1 , . . . , X

(t)
n ) under the change of exponential measure

µnt (dz) =
etS

(t)(n)

M(t)n
dµn(dz),

where S(t)(n) is the respective random walk. Note that f(t) = (logM(t))′ = E[X1etX1 ]

E[etX1 ]
for

t ∈ (0, t0) is a bijective function in t and increasing. Take some c from its image, i.e.
assume there exists tc with f(tc) = c. Then it is easy to show that E[X(tc)] = c. Note also
that σ2 = V ar(X(tc)) = (logM(t))′′ and that we can get an invariance principle for

X(n,tc)(s) =

(
T (ns)− ns(ns+1)

2
c

σ3n
3
2

,
Sns − nsc
σn

1
2

)
, s ∈ [0, 1]

under the measure µt. The condition now is for the integrated random walk to stay strictly
above a quadratic function. Define thus

τ = inf{k ≥ 0 : T (k) ≤ k(k + 1)c

2
}.

Then we have the following invariance principle for the meander.1

Theorem 10. Let X(n,tc)(s) for s ∈ [0, 1] as above under the measure µt. Then these
processes, started in (x, y) ∈ R+ ×R and conditioned on τ > n, converge to the meander
of the Kolmogorov Diffusion, conditioned on not leaving R+×R before time 1. In formulas

(X(n,tc)(·)|τ > n)(x,y)=⇒(W (·)|τ bm > 1)(0,0), n→∞

in (D[0, 1], || · ||∞).

Similarly, we get invariance principles for the case of bridges.

Theorem 11. For x, u ∈ R+, y, v ∈ R we have

(X(n,tc)(·)|X(n,tc) = an(u, v), τ > n)an(x,y)

converges weakly to the Kolmogorov excursion of length 1 w.r.t. uniform topology in D[0, 1].

Extensions to arbitrary time length t > 0 are again straigthforward. We close by
remarking the case with E[X1] 6= 0, where no exponential assumption is assumed.

1Note that what we get is a whole family of invariance principles, indexed by c in the image of f(·).
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Remark 7. Note that the above invariance principles also hold for random walks which
instead: fulfill a second moment condition of E[|X1|2+δ] < ∞ for some δ > 0 and have
drift E[X1] = c 6= 0. The steps are the same as for the exponential case above and we don’t
need to make a change of measure. Instead we look at

X(n,c)(s) =

Tns − ns(ns+1)
2

c

V ar[X1]
3
2n

3
2

,
Sns − nsc
V ar[X1]

1
2n

1
2

 , s ∈ [0, 1]

in place of X(n,tc)(s).
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