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Abstract: Local exponential (exp.) stability of nonlinear distributed parameter, i.e. infinite–
dimensional state space, systems is considered. A weakened concept of Fréchet differentiability
((Y,X)-Fréchet differentiability) for nonlinear operators defined on Banach spaces is proposed,
including the introduction of an alternative space (Y ) in the analysis. This allows more freedom
in the manipulation of norm–inequalities leading to adapted Fréchet differentiability conditions
that are easier to check. Then, provided that the nonlinear semigroup generated by the nonlinear
dynamics is Fréchet–differentiable in the new sense, appropriate local exp. stability of the
equilibria for the nonlinear system is established. In particular, the nonlinear semigroup has to be
Fréchet differentiable on Y and (Y,X)–Fréchet differentiable in order to go back to the original
state space X. This approach may be called ”perturbation–based” since exp. stability is also
deduced from exp. stability of a linearized version of the nonlinear semigroup. Under adapted
Fréchet differentiability assumptions, the main result establishes that local exp. stability of an
equilibrium for the nonlinear system is guaranteed as long as the exp. stability holds for the
linearized semigroup. The same conclusion holds regarding instability. The theoretical results
are illustrated on a convection-diffusion-reaction system.

Keywords: Distributed parameter systems – Nonlinear systems – Equilibrium – Exponential
stability

1. INTRODUCTION

Deducing stability/instability of an equilibrium for a non-
linear distributed parameter, i.e. infinite-dimensional, sys-
tem on the basis of the stability/instability properties of
a linearization of it is not straightforward. For instance
this is studied in (Al Jamal and Morris, 2018), (Al Ja-
mal et al., 2014) or in (Kato, 1995) where exp. stability
of the equilibrium for the linearization and also Fréchet
differentiability of the nonlinear semigroup generated by
the nonlinear dynamics are needed. This approach is often
called linearized stability and has also been studied in
(Henry, 1981; Smoller, 1983; Webb, 1985; Temam, 1997)
among others. However, cheking Fréchet differentiability
conditions for nonlinear operators is generally challenging
or even impossible when these operators are unbounded.
This is mainly due to the fact that the norms are not
equivalent when working in infinite-dimensional spaces.
For instance the theoretical framework that is proposed
in Al Jamal and Morris (2018) is not directly applicable
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on their example and a case–by–case study has often to
be performed by working directly on the nonlinear semi-
group generated by the nonlinear dynamics instead of its
generator. Other assumptions like the Lipschitz continuity
(in the operators norm) of the Fréchet derivative of the
nonlinear operator are also needed, which is a quite strong
assumption since it depends critically on the considered
topology.

The approach that is proposed here is an extension of the
contribution of (Al Jamal and Morris, 2018) for deducing
nonlinear local exp. stability or instability of an equilib-
rium of nonlinear distributed parameter systems. Some
relaxed Fréchet differentiability conditions are required on
the nonlinear semigroup generated by the nonlinear dy-
namics, by considering different spaces and different norms
in the definition. This is called (Y,X)−Fréchet differentia-
bility, where X is the state space and Y is an auxiliary
space that has to be chosen according to the application.
Since Y is chosen as involving more regularity than X,
this allows more easily checkable Fréchet differentiability
conditions, providing local exp. stability or instability of
an equilibrium for nonlinear infinite-dimensional systems
in a weaker sense, see (Hastir et al., 2019b).



The paper is organized as follows. In Section 2 the class
of considered nonlinear distributed parameter systems is
introduced together with the related assumptions. The
new concept of (Y,X)−Fréchet differentiability and the
appropriate definitions of stability are given. Section 3 is
dedicated to the main results of the paper. In particular, it
is shown how to get adapted Fréchet differentiability of the
nonlinear semigroup generated by the nonlinear dynamics.
Then, stability of an equilibrium of the nonlinear model
is deduced from the stability/instability properties of an
appropriate linearization of it. The results are applied to
a particular example of nonlinear distributed parameter
system in Section 4.

2. PROBLEM STATEMENT

In this section, we aim at presenting the framework, the
new concept of (Y,X)−Fréchet differentiability and the
assumptions that will be under consideration in the sequel.

The nonlinear distributed parameter systems that are
going to be studied are governed by the following abstract
differential equation:{

ξ̇(t) = Aξ(t) +N (ξ(t)),
ξ(0) = ξ0,

(1)

where ξ(t) is supposed to evolve in the (Hilbert) state
space X. Moreover, the (unbounded) linear operator A :
D(A) ⊂ X → X is the infinitesimal generator of the
C0−semigroup (T (t))t≥0 on X and N : D ⊂ X → X is a
nonlinear operator defined on the closed convex subset D.
The initial condition ξ0 lies in D(A)∩D. Such systems are
studied e.g. in (Curtain and Zwart, 1995) and (Engel and
Nagel, 2006) among others.

Note that, since A is the infinitesimal generator of a
C0−semigroup, it is dissipative under some additive per-
turbation, i.e. there exists lA ≥ 0 such that A − lAI is
dissipative.

The following assumption characterizes the well-posedness
of (1). By well-posedness we mean the existence of a mild
solution on [0,∞).

Assumption 1. The closed convex subset D is T (t)-
invariant, that is T (t)D ⊂ D for all t ≥ 0. In addition, it
is supposed that the tangential condition limh→0+

1
hd(ξ +

hN (ξ)D;D) = 0 holds for any ξ ∈ D. We also assume that
the nonlinear operator N is Lipschitz continuous on D and
that there exists lN ≥ 0 such that N − lN I is dissipative
on D.

Note that Assumption 1 implies that equation (1) has
a unique mild solution on [0,∞) for all ξ0 ∈ D. By
defining S(t)ξ0 := ξ(t) for all t ≥ 0, (S(t))t≥0 is a
nonlinear semigroup on D whose infinitesimal generator is
the operator A+N . Note also that the tangential condition
in Assumption 1 implies that D is S(t)−invariant.

In what follows, it is supposed that (1) possesses an
equilibrium profile ξe ∈ D(A) ∩ D, i.e. Aξe +N (ξe) = 0.

Assumption 2. The nonlinear operator N is Gâteaux dif-
ferentiable at ξe, that is, there exists a linear operator
dN (ξe) : X → X such that

lim
ε→0

N (ξe + εh)−N (ξe)

ε
= dN (ξe)h,

where 1 ξe, ξe + εh ∈ D. Moreover, it is assumed that
dN (ξe) is bounded on X.

For the sake of simplicity, in the following, we shall write
(1) around its equilibrium ξe. Hence by defining the

variable ξ̂ := ξ − ξe one has{
˙̂
ξ(t) = Aξ̂(t) +N (ξ̂(t) + ξe)−N (ξe),

ξ̂(0) = ξ0 − ξe =: ξ̂0.
(2)

The null function is an obvious equilibrium of (2) and since
(1) is well-posed, (2) is also well-posed in the sense that the
nonlinear operatorA+N (·+ξe)−N (ξe) is the infinitesimal

generator of a nonlinear semigroup (Ŝ(t))t≥0 onD(A)∩De,
with De := D − ξe.
Note that the shifted domain De is Ŝ(t)−invariant, since
D is S(t)−invariant.

Let us consider an auxiliary (possibly Banach) space Y
that satisfies D(A) ∩ De ⊂ Y ⊆ X and ‖h‖X ≤ ‖h‖Y
for all h ∈ D(A) ∩ De. It will be of primary importance
in the definition of the generalized concept of Fréchet
differentiability, the (Y,X)−Fréchet differentiability, see
e.g. (Hastir et al., 2019b). This new concept is in general
more easily verifiable for nonlinear operators since it allows
more freedom in the manipulation of norm inequalities for
instance. This is mainly due to the fact that the space
Y adds a degree of freedom in the analysis and is often
chosen as a multiplicative algebra (L∞ or Sobolev spaces
Hp, p ∈ N) 2 .

Note that the nonlinear operator N is restricted to the
domain D(A) ∩ D in what follows.

Definition 3. The nonlinear operator N : D(A) ∩ D ⊂
X → X is called (Y,X)−Fréchet differentiable at ξe if
there exists a bounded linear operator dN (ξe) : X → X
such that for all h ∈ D(A) ∩ De,N (ξe + h) − N (ξe) =
dN (ξe)h+R(ξe, h) where

lim
‖h‖Y→0

‖R(ξe, h)‖X
‖h‖X

= 0,

or equivalently,

lim
‖h‖Y→0

‖N (ξe + h)−N (ξe)− dN (ξe)h‖X
‖h‖X

= 0.

Taking Y to be identical to X entails that Definition 3 is
equivalent to the standard definition of Fréchet differen-
tiability, see e.g. (Al Jamal and Morris, 2018).

Since this new concept is introduced to link the stability
properties of a linearized version of (2) with the stability
properties of (2), we shall specify what we mean by
exponential stability in this context.

Definition 4. The equilibrium ξe of (1) is said to be glob-
ally exponentially stable if there exist α, β > 0 such that
for all ξ0 ∈ D(A)∩D, it holds ‖ξ(t)− ξe‖X ≤ αe−βt‖ξ0 −
ξe‖X , t ≥ 0, or equivalently, ‖ξ̂(t)‖X ≤ αe−βt‖ξ̂0‖X for all

ξ̂0 ∈ D(A) ∩ De.
1 Due to the convexity of the closed subset D, any convex combina-
tions of ξe and ξe + εh is an element of D, that is aξe + (1− a)(ξe +
εh) ∈ D for all a ∈ [0, 1].
2 Note that there are no canonical choices for the space Y . It depends
strongly on the application that is considered.



Definition 5. The equilibrium ξe of (1) is (Y,X)−locally
exponentially stable if there exist δ, α, β > 0 such that,

for all ξ̂0 ∈ D(A) ∩ De with ‖ξ̂0‖Y < δ, there holds

‖ξ̂(t)‖X ≤ αe−βt‖ξ̂0‖X , t ≥ 0.

Definition 6. The equilibrium ξe of (1) is said to be
(Y,X)−locally stable if for all ε > 0 there exists δ > 0

such that for all ξ̂0 ∈ D(A) ∩ De, ‖ξ̂0‖Y < δ implies that

‖ξ̂(t)‖X < ε, t ≥ 0. The equilibrium ξe is (Y,X)−(locally)
unstable if it is not stable.

Let us consider the two following assumptions on (2), the
nonlinearity N and the auxiliary space Y .

Assumption 7. The nonlinear abstract Cauchy problem
(2) is well-posed on Y . Moreover, it is assumed that the
Gâteaux derivative dN (ξe) of N is bounded on Y .

Assumption 8. The operator N is (Y,X)−Fréchet dif-
ferentiable at ξe. Moreover, the nonlinear semigroup
(Ŝ(t))t≥0 is supposed to be continuously dependent of the

initial condition ξ̂0 in the sense that the inequality

‖Ŝ(t)ξ̂0‖X ≤ γt‖ξ̂0‖X (3)

holds on the time interval [0, t0], t0 ≥ 0, for some γt (that
may depend on t).

We shall end this section by the following lemma that is a
consequence of Assumption 8.

Lemma 9. Let us consider ξ̂(t), the solution of the abstract
differential equation (2), where t ∈ [0, t0] for some nonneg-
ative t0. Then, under Assumption 8, the relation

lim
‖ξ̂0‖Y→0

‖N (ξ̂ + ξe)−N (ξe)− dN (ξe)ξ̂‖L∞([0,t0];X)

‖ξ̂0‖X
= 0

holds.

Proof. The function N (ξ̂(·)+ ξe)−N (ξe)−dN (ξe)ξ̂(·) is
time–continuous on the interval [0, t0]. Hence there exists
t∗ ∈ [0, t0] such that

sup
t∈[0,t0]

‖N (ξ̂(t) + ξe)−N (ξe)− dN (ξe)ξ̂(t)‖X

= ‖N (ξ̂(t∗) + ξe)−N (ξe)− dN (ξe)ξ̂(t∗)‖X . (4)

Moreover, according to (3),

1

‖ξ̂0‖X
≤ γt∗

1

‖ξ̂(t∗)‖X
. (5)

Combining (4) and (5) yields

lim
‖ξ̂0‖Y→0

‖N (ξ̂ + ξe)−N (ξe)− dN (ξe)ξ̂‖L∞([0,t0];X)

‖ξ̂0‖X

= lim
‖ξ̂0‖Y→0

‖N (ξ̂(t∗) + ξe)−N (ξe)− dN (ξe)ξ̂(t∗)‖X
‖ξ̂0‖X

≤ γt∗ lim
‖ξ̂0‖Y→0

‖N (ξ̂(t∗) + ξe)−N (ξe)− dN (ξe)ξ̂(t∗)‖X
‖ξ̂(t∗)‖X

.

According to the properties of the auxiliary space Y ,

imposing that ‖ξ̂0‖Y converges to 0 implies that so does

‖ξ̂0‖X . In view of (3), it follows that ‖ξ̂(t∗)‖X → 0 in this
case. By the (Y,X)−Fréchet differentiability ofN , we have

lim
‖ξ̂0‖Y→0

γt∗‖N (ξ̂(t∗) + ξe)−N (ξe)− dN (ξe)ξ̂(t∗)‖X
‖ξ̂(t∗)‖X

= 0,

which entails that

lim
‖ξ̂0‖Y→0

‖N (ξ̂ + ξe)−N (ξe)− dN (ξe)ξ̂‖L∞([0,t0];X)

‖ξ̂0‖X
= 0.

2

This property will be of interest in the next section that
is dedicated to the stability analysis of the equilibrium
profile ξe and through which Assumptions 1, 2, 7 and 8
are assumed to hold.

3. NONLINEAR STABILITY ANALYSIS

In this section, the stability properties of a linearized
model corresponding to (2) are used to deduce local
(exp.) stability or instability of the semigroup generated
by the dynamics of (2). First we linearize (2) around its

equilibrium ξ̂ = 0 via a Gâteaux linearization. This yields
the following linear abstract differential equation{

ξ̇(t) = Aξ(t) + dN (ξe)ξ(t),

ξ(0) = ξ̂0 ∈ D(A) ∩ De.
(6)

Since the operator dN (ξe) − ldN I is dissipative by As-
sumption 2 and A is the infinitesimal generator of a
C0−semigroup, the operator A + dN (ξe) is still the in-
finitesimal generator of a linear semigroup. We denote that
semigroup by (T (t))t≥0. Moreover, since by Assumption 7,
the abstract Cauchy problem 2 is well-posed on Y and that
dN (ξe)− l̃dN I is dissipative on Y , the linearized dynamics
(6) is well-posed on Y , see e.g. (Engel and Nagel, 2006,
Bounded Perturbation Theorem).

Let us consider the following assumptions that will consti-
tute the basis in making the link between (exp.) stability

or instability of (T (t))t≥0 and (Ŝ(t))t≥0, see (Hastir et al.,
2019b, Section 3).

Assumption 10. The nonlinear C0−semigroup (Ŝ(t))t≥0 is

Y−Fréchet differentiable at 0. For the case where (T (t))t≥0
is exponentially stable on X, it is also assumed that
(T (t))t≥0 satisfies

‖T (t)ξ̂0‖Y ≤ η‖ξ̂0‖Y , t ≥ 0,∀ξ̂0 ∈ Y s.t. ‖ξ̂0‖Y < δ∗,

for some η > 0 and δ∗ > 0 that may depend on η.

Remark 11. 1) Assumption 10 implies Lyapunov stabil-
ity of the equilibrium ξe of system (1) on the space
Y .

2) Under Assumptions 7 and 10, the estimate

‖Ŝ(t)ξ̂0‖Y ≤M‖ξ̂0‖Y , t ≥ 0, for ‖ξ̂0‖ < δ (7)

holds for some M > 0 and δ > 0 that may depend
on M . Indeed, the Y−Fréchet differentiability of
(Ŝ(t))t≥0 in Assumption 10 yields the identity

Ŝ(t)ξ̂0 = T (t)ξ̂0 + r(ξe, ξ̂0),

where

lim
‖ξ̂0‖Y→0

‖r(ξe, ξ̂0)‖Y
‖ξ̂0‖Y

= 0,

that is, for all ε > 0, there exists δ̃ > 0 such that

‖r(ξe, ξ̂0)‖Y < ε‖ξ̂0‖Y for ‖ξ̂0‖Y < δ̃. Let us pick any

ε > 0. Then δ := min(δ∗, δ̃) > 0 is such that

‖Ŝ(t)ξ̂0‖Y ≤ ‖T (t)ξ̂0‖Y + ‖r(ξe, ξ̂0)‖Y
≤ η‖ξ̂0‖Y + ε‖ξ̂0‖Y =: M‖ξ̂0‖Y ,



for ‖ξ̂0‖Y ≤ δ and M := η + ε.

3) Let us consider the norm |||x||| := supt≥0 ‖Ŝ(t)x‖Y for
x ∈ Y, ‖x‖Y < δ. The norms ||| · ||| and ‖·‖Y are locally
equivalent around the equilibrium ξe, that is

‖x‖Y ≤ |||x||| ≤M‖x‖Y ,
for some M > 0 and δ > 0 such that ‖x‖Y < δ. This

is valid since (7) is satisfied. Moreover, (Ŝ(t))t≥0 is a
contraction C0−semigroup on (Y, ||| · |||).

Under Assumptions 1, 2, 7, 8 and 10, the (Y,X)−Fréchet

differentiability of (Ŝ(t))t≥0 at 0 with (T (t))t≥0 as Fréchet
derivative is established in the following lemma, see (Hastir
et al., 2019b).

Lemma 12. Let us consider a space (Y, ‖ · ‖Y ) satisfying
D(A)∩De ⊂ Y ⊆ X. Under Assumptions 1, 2, 7, 8 and 10,

the nonlinear C0−semigroup (Ŝ(t))t≥0 is (Y,X)−Fréchet
differentiable at 0 and its Fréchet derivative is given by
the linear C0−semigroup (T (t))t≥0 whose infinitesimal
generator is A+ dN (ξe), that corresponds to the Gâteaux
derivative of A+N (·+ ξe)−N (ξe) at 0.

Proof. Pick any ξ̂0 ∈ D(A) ∩ De and t ∈ [0, t0]. Let

us define φ(t) = ξ̂(t) − ξ(t), where ξ̂(t) and ξ(t) are the
solutions to (2) and (6) at time t, respectively, with the

same initial conditions ξ̂0. It follows that

φ̇(t) =
˙̂
ξ(t)− ξ̇(t)

= Aξ̂(t) +N (ξ̂(t) + ξe)−N (ξe)−Aξ(t)− dN (ξe)ξ(t)

= Aφ(t) + dN (ξe)ξ̂(t)− dN (ξe)ξ̂(t) +N (ξ̂(t) + ξe)

−N (ξe)− dN (ξe)ξ(t)

= Aφ(t) + dN (ξe)φ(t) +R(ξe, ξ̂(t)),

where R(ξe, ξ̂(t)) = N (ξ̂(t) + ξe) − N (ξe) − dN (ξe)ξ̂(t).
Obviously, φ(0) = 0. Taking the inner product of φ(t) and

φ̇(t) yields

1

2

d

dt
‖φ(t)‖2X = 〈φ̇(t), φ(t)〉X

= 〈Aφ(t) + dN (ξe)φ(t) +R(ξe, ξ̂(t)), φ(t)〉X
= 〈(A− lAI)φ(t), φ(t)〉X + 〈lAφ(t), φ(t)〉X
+ 〈dN (ξe)φ(t), φ(t)〉X + 〈R(ξe, ξ̂(t)), φ(t)〉X
≤ (lA + ‖dN (ξe)‖op)‖φ(t)‖2X + ‖R(ξe, ξ̂(t))‖X‖φ(t)‖X ,

where Assumption 2 and the Cauchy-Schwarz have been
used. The notation lA + ‖dN (ξe)‖op =: k is adopted in
what follows. By applying Young’s inequality to the pre-
vious inequality, see e.g. (Krstic and Smyshlyaev, 2008), it
follows that

1

2

d

dt
‖φ(t)‖2X ≤ (k +

1

2
)‖φ(t)‖2X +

1

2
‖R(ξe, ξ̂(t))‖2X .

Applying Grönwall’s inequality with φ(0) = 0 (see for
instance (Curtain and Zwart, 1995, Lemma A.6.7)), gives

‖φ(t)‖2X ≤ e(2k+1)t

∫ t

0

e−(2k+1)s‖R(ξe, ξ̂(s))‖2Xds

≤ e(2k+1)t0

∫ t0

0

‖R(ξe, ξ̂(s))‖2Xds.

Equivalently,

‖φ(t)‖X ≤ e
(2k+1)t0

2

(∫ t0

0

‖R(ξe, ξ̂(s))‖2Xds
) 1

2

= e
(2k+1)t0

2 ‖R(ξe, ξ̂)‖L2([0,t0];X)

≤ t
1
2
0 e

(2k+1)t0
2 ‖R(ξe, ξ̂)‖L∞([0,t0];X).

The positive constant t
1/2
0 e

(2k+1)t0
2 is denoted by λt0 in the

following. Lemma 9 implies that

lim
‖ξ̂0‖Y→0

‖φ(t)‖X
‖ξ̂0‖X

= lim
‖ξ̂0‖Y→0

‖Ŝ(t)ξ̂0 − T (t)ξ̂0‖X
‖ξ̂0‖X

≤ lim
‖ξ̂0‖Y→0

λt0‖R(ξe, ξ̂)‖L∞([0,t0];X)

‖ξ̂0‖X

= lim
‖ξ̂0‖Y→0

λt0‖N (ξ̂ + ξe)−N (ξe)− dN (ξe)ξ̂‖L∞([0,t0];X)

‖ξ̂0‖X
= 0.

Hence, Ŝ(t) is (Y,X)−Fréchet differentiable at 0 with T (t)
as Fréchet derivative. 2

Note that the Y−Fréchet differentiability of (Ŝ(t))t≥0 in
Assumption 10 can be obtained by using similar argu-
ments as those in Lemma 9. That is, N has notably
to be Y−Fréchet differentiable at ξe and the continuous

dependence of (Ŝ(t))t≥0 on the initial condition ξ̂0 has to
hold by using Y−norms.

All the facts established so far lead us to the following
theorem that allows to make the connection between
(exp.) stability or instability of (T (t))t≥0 and local (exp.)

stability or instability of (Ŝ(t))t≥0. Here we mean ”local”
in the sense of Definition 5. The proof of the following
theorem goes along the lines of (Al Jamal et al., 2014,
Theorem 3.3), wherein the concepts have been adapted
and re–worked to fit our specific framework, see (Hastir
et al., 2019b, Theorem 3.1).

Theorem 13. Let Assumptions 1, 2, 7, 8 and 10 hold. If
0 is a globally exponentially stable equilibrium of the
linearized system (6), then it is a (Y,X)−locally expo-
nentially stable equilibrium of (2). Conversely, if 0 is a
(Y,X)−unstable equilibrium of (6), it is (Y,X)−locally
unstable for the nonlinear system (2).

Proof. Let us choose ξ̂0 ∈ D(A)∩De. First, observe that,

by Lemma 12, Ŝ(t) is (Y,X)−Fréchet differentiable at 0,

i.e. Ŝ(t)ξ̂0 = T (t)ξ̂0 + r(ξe, ξ̂0), where

lim
‖ξ̂0‖Y→0

‖r(ξe, ξ̂0)‖X
‖ξ̂0‖X

= 0. (8)

According to Remark 11 3, the norms ||| · ||| and ‖ · ‖Y are
locally equivalent. Hence it holds that

lim
|||ξ̂0|||→0

‖r(ξe, ξ̂0)‖X
‖ξ̂0‖X

= 0.

That is, for any t > 0 and ε > 0, there exists δ(t, ε) > 0

such that, if |||ξ̂0||| < δ(t, ε),

‖r(ξe, ξ̂0)‖X
‖ξ̂0‖X

< ε.

By the strong continuity in t of the semigroups (Ŝ(t))t≥0
and (T (t))t≥0, the function r(ξe, ξ̂0) is also continuous in



t. Since 0 is a globally exponentially stable equilibrium
of (6), there exist α ≥ 1 and β > 0 such that for all

ξ̂0 ∈ D(A) ∩ De
‖T (t)ξ̂0‖X ≤ αe−βt‖ξ̂0‖X , t ≥ 0. (9)

Hence there exist ε > 0 and t0 < +∞ such that, for
τ ∈ [0, t0],

‖Ŝ(τ)ξ̂0‖X ≤ ‖T (t)ξ̂0‖X + ‖r(ξe, ξ̂0)‖X
≤ αe−βτ‖ξ̂0‖X + ε‖ξ̂0‖X ≤ C‖ξ̂0‖X , (10)

where C = α + ε. Let us choose t0 = ln(4α)
β > 0. Writing

(9) with t replaced by t0 gives

‖T (t0)ξ̂0‖X ≤
1

4
‖ξ̂0‖X .

In addition,

lim
|||ξ̂0|||→0

‖Ŝ(t0)ξ̂0 − T (t0)ξ̂0‖X
‖ξ̂0‖X

= 0,

that is, there exists δ > 0 such that, if |||ξ̂0||| < δ, then

‖Ŝ(t0)ξ̂0 − T (t0)ξ̂0‖X ≤
1

4
‖ξ̂0‖X .

Hence,

‖Ŝ(t0)ξ̂0‖X = ‖Ŝ(t0)ξ̂0 − T (t0)ξ̂0 + T (t0)ξ̂0‖X
≤ ‖Ŝ(t0)ξ̂0 − T (t0)ξ̂0‖X + ‖T (t0)ξ̂0‖X
≤ 1

2
‖ξ̂0‖X = e−ln 2‖ξ̂0‖X .

Let k > 0 be an integer. By using the semigroup property
and the fact that Ŝk(t0) maps D(A) ∩De into D(A) ∩De
for every k ∈ N, for every t0 ≥ 0, one gets

‖Ŝ(kt0)ξ̂0‖X = ‖Ŝk(t0)ξ̂0‖X ≤ e−(ln 2)k‖ξ̂0‖X , (11)

where we have been using recursively the fact that if

|||ξ̂0||| < δ, then |||S(t0)ξ̂0||| < δ. For t > 0, let 3 k = b tt0 c
and τ = t−kt0 ∈ [0, t0]. By using the semigroup property,
(10) and (11),

‖Ŝ(t)ξ̂0‖X ≤ C‖Ŝ(kt0)ξ̂0‖X ≤ Ce−γt‖ξ̂0‖X
for γ ≤ ln 2

t0
. This implies that 0 is a (Y,X)−locally

exponentially stable equilibrium for (2).

In order to prove the second part of the theorem, let 0 be a
(Y,X)−locally stable equilibrium to the nonlinear system
(2). One has

Ŝ(t)ξ̂0 = T (t)ξ̂0 + r(ξe, ξ̂0). (12)

Since 0 is (Y,X)−locally stable, it follows that for any

ε > 0, there exists δ > 0 such that if ‖ξ̂0‖Y < δ, then

‖Ŝ(t)ξ̂0‖X ≤
ε

2
,

for all t ≥ 0. Since ‖ξ̂0‖X ≤ ‖ξ̂0‖Y , it follows from (8) that

lim
‖ξ̂0‖Y→0

‖r(ξe, ξ̂0)‖X
‖ξ̂0‖Y

≤ lim
‖ξ̂0‖Y→0

‖r(ξe, ξ̂0)‖X
‖ξ̂0‖X

= 0.

Hence, ‖r(ξe, ξ̂0)‖X has to converge to 0 when so does

‖ξ̂0‖Y . Consequently, there exists δ∗ with 0 < δ∗ < δ

such that, if ‖ξ̂0‖Y < δ∗, then ‖r(ξe, ξ̂0)‖X ≤ ε
2 . Since

‖ξ̂0‖Y < δ∗ < δ, it follows from (12) and from the last
inequality that

‖T (t)ξ̂0‖X ≤ ‖r(ξe, ξ̂0)‖X + ‖Ŝ(t)ξ̂0‖X ≤ ε. 2
3 The symbol b·c is used to denote the integer part of a real number.

Remark 14. As introduced with Definition 5 the main

difference in our approach is that ‖ξ̂0‖Y is assumed to con-

verge to 0 instead of ‖ξ̂0‖X , because of the (Y,X)−Fréchet
differentiability of the nonlinear semigroup. Note that this
leads to additional technical difficulties, notably when we

need to apply successively the property that ‖Ŝ(t0)ξ̂0‖X ≤
e−ln2‖ξ̂0‖X whenever ‖ξ̂0‖Y < δ, on higher composition

orders of the nonlinear semigroup, i.e. on Ŝk(t0)ξ̂0, k ∈
N, k > 1. This is possible due to Assumptions 7 and 10
that allow to use a locally equivalent norm to ‖·‖Y , namely
||| · |||. For instance this technical detail is not needed in

(Al Jamal et al., 2014) because ‖Ŝ(t0)ξ̂0‖X ≤ e−ln2‖ξ̂0‖X
implies automatically that ‖Ŝ(t0)ξ̂0‖X ≤ δ whenever

‖ξ̂0‖X ≤ δ.

Note that one of the most important features of the anal-
ysis is the choice of the auxiliary space Y . It has e.g. to be
chosen in order to avoid limitations in the manipulations
of norm-inequalities. Good choices are in general L∞ or
Sobolev spaces (Hp, p ∈ N0) which are all multiplicative
algebras. Hence, they allow for example to split the norm
of the product of two functions into the product of the
norms, which is not permitted in Lp−spaces, 1 ≤ p < ∞,
in which Hölder inequality has to be applied. To give
intuition about the auxiliary space Y it may be noted
that the condition D(A) ∩ De ⊂ Y ⊆ X is quite natural
depending on the application. Indeed, the choice of Y is
induced by the domain of the linear operator A which
takes more regularity into account.

Hereafter are some guidelines and some intuition in order
to apply the new method to a specific nonlinear distributed
parameter systems whose (exp.) stability or instability has
to be analyzed. The method is summarized in Figure 1.
The objective is to deduce exponential stability or instabil-
ity of an equilibrium profile for a nonlinear distributed pa-
rameter system, where the state space is called X. First, a
Gâteaux linearized version of the nonlinear system is built
and its exponential stability is studied. Then, after the
choice of the auxiliary space Y , the nonlinear semigroup is
proved to be Y−Fréchet differentiable and its linearization
has to be ”Lyapunov stable” on Y . The new concept of
(Y,X)−Fréchet differentiability plays its role now to make
the connection between Y and X to deduce exponential
stability or instability of the equilibrium for the nonlinear
system (by using X−norms). What is specific here is that
local means that the Y−norm of the initial condition is
small instead of its X−norm.

4. APPLICATION

In this section, the previous results are applied to a
particular nonlinear convection–diffusion–reaction model,
which is governed by the following partial differential
equation (PDE):

∂x

∂t
=

1

Pe

∂2x

∂z2
− ∂x

∂z
+ α(δ − x)e

−µ
1+x ,

∂x

∂z
(0) = Pex(0),

∂x

∂z
(1) = 0.

(13)

The state variable x(z, t) represents the temperature in
a nonisothermal axial dispersion tubular reactor, at time



Target Local (exp.) stability/instability of (Ŝ(t))t≥0 on X

Go to Y
• (Ŝ(t))t≥0 is Y−Fréchet differentiable at 0

with (T (t))t≥0 as Fréchet derivative
• (T (t))t≥0 is Lyapunov stable on Y when it

is exponentially stable on X

Go back to X
• (Ŝ(t))t≥0 is (Y,X)−Fréchet differentiable at

0 with (T (t))t≥0 as Fréchet derivative
• (T (t))t≥0 is (exp.) stable/unstable on X

Local means ‖ξ̂0‖Y < δ

Fig. 1. Guidelines in order to apply the new method.

t ≥ 0 and at position z ∈ [0, 1]. It is supposed to evolve
in the state space X := L2(0, 1) and it is constrained
to remain above −1 (this is imposed by the physical
constraints of the problem). The number Pe is called the
thermal Peclet number which is equal to v/D where v is
the superficial velocity of the fluid inside the reactor and
D is the diffusion coefficient. The constants α, δ and µ
depend on the parameters of the system, see e.g. (Dochain,
2016; Hastir et al., 2019a). The nonlinear function α(δ −
x)e−µ/1+x in the dynamics models the variation of the
reaction rate as a function of the temperature and is due
to the Arrhenius law, see e.g. (Aksikas et al., 2007).

System (13) can be described by using the abstract for-
mulation (1) where the (unbounded) linear operator A
is defined by Ax = 1

Pe
d2x
dz2 − dx

dz for x ∈ D(A) :={
x ∈ H2(0, 1), dxdz (0) = Pex(0), dxdz (1) = 0

}
. The nonlinear

operator N is given by N (x) = α(δ − x)e−µ/(1+x) where
x ∈ D :=

{
x ∈ X,−1 ≤ x, 0 ≤ 1

δ (x− χ) ≤ 1 a.e. on[0, 1]
}

,
where χ is called the asymptotic reaction invariant and is
subject to the PDE

∂χ

∂t
=

1

Pe

∂2χ

∂z2
− ∂χ

∂z
,

∂χ

∂z
(0) = Peχ(0),

∂χ

∂z
(1) = 0.

From (Laabissi et al., 2001) system (13) is known to be
well-posed. Recent researches concentrate on the analysis
and the existence of equilibria of (13), see e.g. (Hastir et al.,
2019a). In particular, in (Hastir et al., 2019a), it is shown
that systems like (13) exhibit different numbers of equilib-
ria, depending on the parameters of the model, especially
the diffusion coefficient. For some specific values of the
parameters µ and δ and above a sufficiently high value of
D, system (13) switches from one to three equilibria, see
(Hastir et al., 2019a, Section IV); let us denote by xe any
equilibrium of (13). Many years ago, asymptotic stability
of the equilibria of (13) has been studied in (Varma and
Aris, 1977). More recently, the question of asymptotic
stability of the equilibria has been discussed in (Dochain,
2016). Exponential stability of the equilibria of (13) for a
Gâteaux linearization of it has been studied for the first
time in (Hastir et al., 2019c) where linear bistability is
proved. That is, in the case of only one equilibrium profile,
the latter has been shown to be exponentially stable for
a Gâteaux linearized model corresponding to (13) and in
the case where the reactor exhibits three equilibria, the

pattern ”stable–unstable–stable” is highlighted (for the
linearized model). In the same reference it is also shown
that the nonlinear operator N is Gâteaux differentiable at
the equilibrium xe and its Gâteaux derivative is given by
the bounded linear operator dN (xe) : X → X,

dN (xe)h :=

(
α
µ (δ − xe)
(1 + xe)

2 e
−µ

1+xe − αe −µ1+xe

)
h.

Also in (Hastir et al., 2019c) limitations in the analysis of
the stability of the equilibria are discussed. In particular,
the nonlinear operator that models the Arrhenius law
has been shown to be not Fréchet differentiable. Hence,
the standard approaches of (Kato, 1995) or (Al Jamal
and Morris, 2018) about nonlinear exponential stability
could not be used in this context. Here comes the new
method that is presented above, see (Hastir et al., 2019b,
Section 4). In this study the auxiliary space Y has been
chosen as C(0, 1) equipped with the L∞(0, 1)−norm. In
(Hastir et al., 2019b), it is shown that, with this smaller
space, the nonlinear operator in the dynamics of (13) is
(Y,X)−Fréchet differentiable and also Y−Fréchet differ-
entiable. This together with continuous dependence of the
solutions of (13) on the initial conditions on X and on Y
lead us to the following result, see (Hastir et al., 2019b,
Section 3).

Lemma 15. Let us denote by (S(t))t≥0 the nonlinear semi-
group generated by the operator A+N . Moreover, let the
linear operator A+ dN (xe) be the infinitesimal generator
of the semigroup (T (t))t≥0. By choosing X := L2(0, 1)
and Y := C(0, 1) equipped with the L∞(0, 1)−norm, the
nonlinear semigroup (S(t))t≥0 is (Y,X) and Y−Fréchet

differentiable at xe with (T (t))t≥0 as Fréchet derivative.

Proof. This is a direct consequence of (Hastir et al.,
2019b, Lemmas 3.1 and 4.4). 2

This allows to consider the following theorem that con-
cludes on the nonlinear stability properties of the equilibria
of (13), see (Hastir et al., 2019b, Theorem 4.1).

Theorem 16. Consider the nonlinear PDE (13) that de-
scribes the time evolution of the temperature in a non-
isothermal axial dispersion tubular reactor. In the case
where the reactor exhibits one equilibrium profile, the
latter is (C(0, 1), L2(0, 1))−locally exponentially stable for
the nonlinear system (13). In the case of three equilibria
the pattern (C(0, 1), L2(0, 1))−”locally exponentially sta-
ble - locally unstable - locally exponentially stable” holds,
which is called bistability.

5. CONCLUSION/PERSPECTIVES

In this paper, an extended concept of Fréchet differentia-
bility, based on an auxiliary space for nonlinear operator
defined on infinite-dimensional spaces, was proposed. This
is in general more easily manipulable and allows more
freedom in the handling of norm-inequalities since the
alternative space can be chosen depending on the consid-
ered problem. This new concept was shown as being the
keypoint in showing more easily adapted Fréchet differen-
tiability conditions for nonlinear semigroups. On the basis
of the stability properties of a corresponding linearized
semigroup, appropriate local (exp.) stability or instability
of the original nonlinear semigroup was deduced.



Perspectives aim at considering linear feedback stabiliza-
tion of systems like (13). Indeed, since the nonlinear part
of (13) does not change by adding bounded linear feed-
back and since continuous dependence of the nonlinear
semigroup on the initial conditions is preserved as long
as bounded feedbacks are considered, adapted Fréchet
differentiability of the ”closed–loop” semigroup is guar-
anteed 4 , see Lemmas 9 and 12. A direct consequence is
that any exponentially stabilizing state feedback for the
linearized dynamics remains locally (exp.) stabilizing for
the nonlinear system. This allows to design a stabilizing
feedback on a linear system instead of a nonlinear one, in
order to apply it to the latter.
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