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(ICTEAM), Avenue Georges Lemaitre 4-6, B-1348 Louvain-La-Neuve,
Belgium (e-mail: denis.dochain@uclouvain.be)

Abstract: Exponential (exp.) stability of equilibrium profiles for a nonisothermal axial
dispersion tubular reactor is considered. This model is described by nonlinear partial differential
equations (PDEs) whose state components are the temperature, the reactant and the product
concentrations inside of the reactor. It is shown how to get appropriate local exponential
stability of the equilibria for the nonlinear model, on the basis of stability properties of
its linearized version and some relaxed Fréchet differentiability conditions of the nonlinear
semigroup generated by the dynamics. In the case where the reactor can exhibit only one
equilibrium profile, the latter is always locally exponentially stable for the nonlinear system.
When three equilibria are highlighted, local bistability is established, i.e. the pattern (locally)
”(exp.) stable – unstable – (exp.) stable” holds. The results are illustrated by some numerical
simulations. As perspectives, the concept of state feedback is also used in order to show a
manner to stabilize exponentially a nonlinear system on the basis of its capacity to stabilize
exponentially a linearized version of the nonlinear dynamics and some Fréchet differentiability
conditions of the corresponding closed-loop nonlinear semigroup.

Keywords: Nonlinear systems – Equilibrium – Exponential stability – Process models –
Feedback stabilization

1. INTRODUCTION

The time evolution of temperature and concentration in
nonisothermal axial dispersion tubular reactors is gov-
erned by the following nonlinear partial differential equa-
tions (PDEs):

∂x1

∂t
=

1

Peh

∂2x1

∂z2
−
∂x1

∂z
− γ(x1 − xw) + δα(1− x2)e

−µ
1+x1 ,

∂x2

∂t
=

1

Pem

∂2x2

∂z2
−
∂x2

∂z
+ α(1− x2)e

−µ
1+x1 ,

∂x1

∂z
(0) = Pehx1(0),

∂x1

∂z
(1) = 0,

∂x2

∂z
(0) = Pemx2(0),

∂x2

∂z
(1) = 0,

(1)

where x1 and x2 denote the dimensionless temperature
and the dimensionless reactant concentration inside of the
reactor, respectively. Equations (1) are directly deduced
from mass and energy balances on a slice of infinitesimal
tickness dz during an infinitesimal time dt. These are called
convection–diffusion–reaction equations. The variables t ∈
[0,∞) and z ∈ [0, 1] stand for the time and the space
variables. The constants v, δ, α = k0Lv

−1 and µ depend
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on the model parameters, see e.g. (Hastir et al., 2020),
(Dochain, 2016). For instance, v is the superficial fluid
velocity, L denotes the length of the reactor and k0 is
the kinetic constant. Further analysis of that model relies
strongly on the relation between two specific numbers, Peh
and Pem. These represent the mass and energy ratio of
convection over diffusion, respectively. The term γ(x1−xw)
is due to a heat exchanger that acts as a distributed control
along the reactor, where xw is the coolant temperature
in the heat exchanger. For stability analysis, we shall
consider adiabatic conditions, meaning that there is no
heat exchange with the environment outside of the reactor,
i.e. γ = 0.

As it is exposed in (Hastir et al., 2020), such systems may
exhibit multiple equilibria depending on the parameters,
especially the diffusion and conduction ones. When those
parameters become large enough, the system may switch
from one to three equilibria.

Many control problems for systems like (1) have to handle
the stabilization of equilibrium profiles. One could either
design a control law that stabilizes an unstable equilibrium
or that improves the stability margin of a stable one. For
instance, a sliding-mode control approach was developed



in (Orlov and Dochain, 2002) and applied to the stabiliza-
tion of both plug-flow and convection – diffusion models.
Backstepping was studied in (Boskovic and Krstic, 2002)
and extremum-seeking control in (Hudon et al., 2008)
where models like (1) are considered without taking the
diffusion part into account. LQ-optimal regulation for a
plug-flow tubular reactor model was also deeply developed
in (Aksikas et al., 2007b).

A preliminary step before envisaging the stabilization of
any equilibrium consists in looking at its stability. The
main difficulty here comes from the nonlinear term α(1−
x2)e−µ/(1+x1) which is due to the Arrhenius’ law that
models the evolution of the reaction rate as a function
of the temperature. Asymptotic stability has already been
studied in (Dochain, 2016), (Aksikas et al., 2007a) and also
in (Varma and Aris, 1977), (Amundson, 1965) and in (Luss
and Amundson, 1967) where bistability is established for
a linearized version of (1). More recently, exponential
stability of the equilibria of (1) for its Gâteaux linearized
version has been studied in (Hastir et al., 2019b).

Deducing stability of the equilibria for a nonlinear system
on the basis of stability of a linearization of it is not
straightforward. For instance this is studied in (Al Jamal
and Morris, 2018) or in (Kato, 1995) where exponential
stability of the equilibria for the linearization and also
Fréchet differentiability of the nonlinear semigroup gen-
erated by the nonlinear dynamics are needed. Checking
Fréchet differentiability conditions for nonlinear operators
is generally challenging, especially when the operators are
unbounded. For instance the theoretical framework that is
proposed in (Al Jamal and Morris, 2018) is not directly
applicable on their example and a case–by–case study has
often to be performed.

The approach that is proposed here is an extension of the
works of (Al Jamal and Morris, 2018) for deducing nonlin-
ear local exponential stability of the equilibria of (1). Some
relaxed Fréchet differentiability conditions are required on
the nonlinear semigroup generated by the dynamics of (1),
by considering different spaces and different norms in the
definition. This allows more easily checkable Fréchet differ-
entiability conditions, providing local exponential stability
of the equilibria for the nonlinear system in a weaker sense,
see (Hastir et al., 2019a). This is crucial since the approach
of (Al Jamal and Morris, 2018) is also not applicable to
our case study.

For control purposes, the theory that is considered here is
of primary importance since any exponentially stabilizing
state feedback added to the linearized model is still locally
(exp.) stabilizing for the nonlinear nominal model once
the nonlinear semigroup generated by the closed-loop
dynamics is Fréchet differentiable (in a generalized sense,
see (Hastir et al., 2019a) and below). The LQ-optimal
regulation problem for a linearized model of (1) is also
introduced and discussed here.

The paper is organized as follows. In Section 2 some results
about the existence, the multiplicity and the exponential
stability of a Gâteaux linearized model corresponding to
(1) are recalled. Then the new concepts of Fréchet dif-
ferentiability are tested on the nonlinear semigroup gen-
erated by the dynamics (1) in order to deduce stability

conclusions for the nonlinear model. In particular it is
shown that, when the reactor exhibits only one equilibrium
profile, it is locally exponentially stable for the nonlinear
model and, when three equilibria are highlighted, bista-
bility is established for the nonlinear model. Section 3
is devoted to the illustration of these results by means
of some numerical simulations. The LQ-optimal control
problem is introduced in Section 4 where perspectives are
given. Note that equal Peclet numbers are considered in
what follows, i.e. Peh = Pem =: Pe = vL/D, where D will
be called the diffusion coefficient for the sake of simplicity.
Moreover L is fixed to one, without loss of generality.

2. LOCAL EXPONENTIAL STABILITY

In this section nonlinear exponential stability of the equi-
libria of (1) is considered. First we recall some results on
the existence and the multiplicity of the equilibrium pro-
files of (1). Then exponential stability of these equilibria is
adressed for a Gâteaux linearized version of (1). The last
part of this section is dedicated to the application of the
theoretical results presented in (Hastir et al., 2019a) to the
nonisothermal axial dispersion tubular reactor in order to
deduce stability or instability of the equilibrium profiles
for the nonlinear model.

2.1 Linearized stability of the equilibrium profiles

According to (Hastir et al., 2020, Section IV, Lemma 4.1),
in the case of equal Peclet numbers the nonisothermal axial
dispersion tubular reactor can either exhibit one equilib-
rium or three equilibria, depending on the parameters of
the system. These equilibria are given by

xe1(z) = a− k0L(δ − a)e
−µ
1+a

2D
(1− z)2 +O(1/D2)

and xe2(z) = (1/δ)xe1(z), see (Hastir et al., 2020, Section
IV), where a is the solution of the equation 1

k0L(δ − a)e
−µ
1+a

a
= v.

From (Laabissi et al., 2001) it is well-known that (1)
(without the third component x3) possesses a unique mild
solution, that is the nonlinear operator describing the
dynamics is the infinitesimal generator of a C0−semigroup
on D ∩ K where

D :=

{
x = (x1 x2)T ∈ H|dx1

dz
(0) = Pex1(0),

dx2
dz

(0) = Pex2(0),
dx1
dz

(1) = 0,
dx2
dz

(1) = 0

}
(2)

and

K :=
{
x ∈ H̃| − 1 ≤ x1(z), 0 ≤ x2(z) ≤ 1, a.e. on [0, 1]

}
,

(3)

where H = H2(0, 1) × H2(0, 1) and 2 H̃ = L2(0, 1) ×
L2(0, 1).

Moreover, by considering equal Peclet numbers, the change

of variables ξ̂1 = x1 − xe1, ξ̂2 = x2 − xe2, ξ1 = e−
Pe
2 z ξ̂1, ξ2 =

1 Depending on the value of the velocity, this equation possesses
one or three solutions which characterize the multiplicity of the
equilibria.
2 Here the state space is H̃.



e−
Pe
2 z ξ̂2 and χ = ξ1 − δξ2 yields the following triangular

form of (1):
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1

Pe

∂2χ

∂z2
− Pe

4
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∂ξ1
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=
1

Pe

∂2ξ1
∂z2

− Pe

4
ξ1 + δe

−Pe
2 zf

(
ξ1,

ξ1 − χ
δ

)
,

∂χ

∂z
(0) =

Pe

2
χ(0),

∂χ

∂z
(1) =

−Pe
2

χ(1),

∂ξ1
∂z

(0) =
Pe

2
ξ1(0),

∂ξ1
∂z

(1) =
−Pe

2
ξ1(1),

(4)

where f(ξ1, ξ2) = g(e
Pe
2 zξ1 + xe1, e

Pe
2 zξ2 + xe2) − g(xe1, x

e
2)

and g(x, y) = α(1− y)e
−µ
1+x for (x y)T ∈ K and g(−1, y) =

0. By (Hastir et al., 2019a, Section 4) the component
χ(t, z) of (4) converges exponentially fast to 0 as t tends
to +∞. Hence the stability analysis of (1) is based on the
following nonlinear PDE

∂ξ

∂t
=

1

Pe

∂2ξ

∂z2
− Pe

4
ξ + e

−Pe
2 z[g̃(e

Pe
2 zξ + xe)− g̃(xe)],

∂ξ

∂z
(0) =

Pe

2
ξ(0),

∂ξ

∂z
(1) =

−Pe
2

ξ(1),

(5)
where g̃(x) = δg(x, 1δx), xe and ξ stand for xe1 and ξ1, re-
spectively. This PDE fits the well-known class of semilinear
systems of the form{

ξ̇ = Aξ +N (ξ),
ξ(0) = ξ0

(6)

described in (Hastir et al., 2019a). The (unbounded) linear
operator A is defined as

Aξ =
1

Pe

d2ξ

dz2
− Pe

4
ξ (7)

on the domain

D(A) :=

{
ξ ∈ H2(0, 1)|

dξ

dz
(0) =

Pe

2
ξ(0),

dξ

dz
(1) = −

Pe

2
ξ(1)

}
. (8)

Defining the invariant domain K̃ by{
ξ ∈ L2(0, 1)| − 1 ≤ ξ(z), 0 ≤ ξ − χ

δ
≤ 1 a.e. on [0, 1]

}
,

the nonlinear operator N : e
−Pe

2 z(K̃ − xe) → L2(0, 1) is

expressed as N (ξ) = e
−Pe

2 z
[
g̃(e

Pe
2 zξ + xe)− g̃(xe)

]
for

ξ ∈ e−
Pe
2 z(K̃ − xe). It can be shown that the operator

A is dissipative and is the infinitesimal generator of
a contraction C0−semigroup on L2(0, 1). Moreover, the
nonlinear operator N satisfies the Lipschitz condition

‖N (ξ1)−N (ξ2)‖L2(0,1) ≤ lN ‖ξ1 − ξ2‖L2(0,1),

for every ξ1, ξ2 ∈ e
−Pe

2 z(K̃−xe), for some positive constant
lN . In order to linearize (5) around 0 3 , we introduce
now the definitions of Gâteaux and Fréchet derivatives for
nonlinear operators, see e.g. (Al Jamal and Morris, 2018).

Definition 1. Let f : D(f) ⊂ X → X be a nonlinear
operator defined on the Banach space X. The operator
f is Gâteaux differentiable at xe ∈ D(f) if there exists a
linear operator df(xe) : X → X (the Gâteaux derivative of

f at xe) such that liml→0
f(xe+lh)−f(xe)

l = df(xe)h, where
h, xe + lh ∈ D(f).

3 With the changes of variables introduced previously, it is obvious
that the equilibrium of (5) is 0.

The operator f is said to be Fréchet differentiable at xe ∈
D(f) if there exists a bounded linear operator Df(xe) :

X → X such that lim‖h‖X→0
‖f(xe+h)−f(xe)−Df(xe)h‖X

‖h‖X =

0. That is, for all h ∈ X such that xe + h ∈
D(f), f(xe + h) − f(xe) = Df(xe)h + w(xe, h), where

lim‖h‖X→0
‖w(xe,h)‖X
‖h‖X = 0.

Proving Fréchet differentiability for nonlinear operators is
often hard to do when these are unbounded. It is even
shown in (Hastir et al., 2019b, Appendix) that the consid-
ered nonlinear operator N is not Fréchet differentiable at
0. For this reason we shall linearize (5) around 0 by using
a Gâteaux derivative, which yields the linear PDE

∂ξ

∂t
=

1

Pe

∂2ξ

∂z2
− Pe

4
ξ + (α

µ(δ − xe)
(1 + xe)2

e
−µ

1+xe − αe −µ1+xe )ξ,

∂ξ

∂z
(0) =

Pe

2
ξ(0),

∂ξ

∂z
(1) =

−Pe
2

ξ(1).

(9)
Since the Gâteaux derivative is a bounded operator from
L2(0, 1) to L2(0, 1), the linear operator describing the
dynamics of (9) is still the infinitesimal generator of a
C0−semigroup on L2(0, 1), see e.g. (Engel and Nagel, 2006,
Bounded Perturbation Theorem).

According to (Hastir et al., 2019b, Section III) the follow-
ing proposition gives a bound on the L2(0, 1)−norm of the
state trajectory corresponding to (9).

Proposition 2. The solution to equation (9) satisfies the
following estimation:

‖ξ(t, ·)‖L2(0,1) ≤ e−
(

π2

π2+4Pe
+q(c)

)
t‖ξ(0, ·)‖L2(0,1),

where q(z) = Pe
4 + k0L

v e
−µ

1+xe(z) − k0L
v

µ(δ−xe(z))
(1+xe(z))2 e

−µ
1+xe(z) .

The proof of Proposition 2 is based on the following
auxiliary result, obtained by exploiting a variation of
Wirtinger’s Inequality, see (Chung-Fen et al., 2004, Corol-
lary 9) and (Hastir et al., 2019b, Lemma 3.1).

Lemma 3. For any continuously differentiable function w
on [0, 1],

−1

2
w2(0) ≤ − 1

4Λ

∫ 1

0

w2(z)dz +
2

π2(2Λ− 1)

∫ 1

0

w2
z(z)dz,

(10)
for all Λ > 1

2 .

Note that, Lemma 3 holds also with w(0) replaced by w(1).

Proof. (Proposition 2) Let us choose as Lyapunov
functional candidate the function V : L2(0, 1) → R,

defined by V (ξ) = 1
2

∫ 1

0
ξ
2
dz = 1

2‖ξ‖2L2 . By differentiating
V w.r.t. t along the state trajectories corresponding to (9),
one gets

1

2

d

dt

∫ 1

0

ξ
2
dz =

∫ 1

0

ξ

(
1

Pe

d2ξ

dz2
− q(z)ξ

)
dz,

An integration by parts yields the following form for V̇ (ξ):

−1

2
ξ
2
(1)− 1

2
ξ
2
(0)− 1

Pe

∫ 1

0

(
dξ

dz

)2

dz − q(c)
∫ 1

0

ξ
2
dz,

where the Generalized Mean Value Theorem has been used
on the last term, for some c ∈ (0, 1).



By applying Lemma 3 to ξ, V̇ is bounded by −( 1
2γ +

q(c))
∫ 1

0
ξ
2
dz + ( 4

π2(2γ−1) − 1
Pe )

∫ 1

0
( dξdz )2dz. We shall now

choose γ in such a way that 4
π2(2γ−1) − 1

Pe = 0, which

yields γ = 1
2 + 2Pe

π2 > 1
2 . Consequently 1

2
d
dt‖ξ‖2L2 ≤

−
(

π2

π2+4Pe + q(c)
) ∫ 1

0
ξ
2
dz. 2

It has been shown in (Hastir et al., 2019b, Section III)

that the constant −( π2

π2+4Pe + q(c)) is always negative in
the case where the reactor exhibits only one equilibrium
profile. In the case of three equilibria this quantity has
been shown to be negative for the first one and the third
one. In that way, exponential stability of the equilibria is
established in the following proposition, see (Hastir et al.,
2019b, Section III).

Proposition 4. In the case where the nonisothermal axial
dispersion tubular reactor (1) admits only one equilib-

rium profile, there exist D? and D̃ sufficiently large such
that this equilibrium profile is exponentially stable for
all D ≥ max(D?, D̃). When the reactor exhibits three
equilibria, the pattern ”exponentially stable – unstable –
exponentially stable” holds for all D ≥ max(D?, D̃), i.e.
bistability holds.

2.2 Nonlinear stability of the equilibrium profiles

On the basis of the results presented in the previous
section, here we aim at linking stability of the Gâteaux
linearized dynamics with stability of the nonlinear one.
To this end, it is stated in (Al Jamal and Morris, 2018)
that, as soon as the nonlinear semigroup generated by
the nonlinear dynamics is Fréchet differentiable at the
equilibrium, conclusions of (exp.) stability of the equilibria
for the nonlinear system can be derived locally (around the
equilibrium) from the linearization. Checking the Fréchet
differentiability of the nonlinear semigroup relies often on
the same property of the generator for which a counter–
example is proposed in (Hastir et al., 2019b, Appendix) in
order to prove that it is not Fréchet differentiable.

This is the reason why we proposed a new framework in
(Hastir et al., 2019a). It is based on a relaxed Fréchet
differentiability condition that is in general easier to check
since it allows more freedom in the manipulation of norm
inequalities. This is called (Y,X)−Fréchet differentiability
and is defined hereafter, see (Hastir et al., 2019a, Section
2).

Note that we shall use the notation ξe for an equilibrium
profile of a generic system of the form (6) in what follows.
In the particular case of System (5), it is obviously 0.

Definition 5. Let us consider the nonlinear operator N :
D(A) ∩ D(N ) ⊂ X → X. Let (Y, ‖ · ‖Y ) be an infinite-
dimensional space (possibly Banach) such that D(A) ∩
D(N ) ⊂ Y ⊆ X and ‖h‖X ≤ ‖h‖Y for all h ∈ D(A) ∩
D(N ). The operator N is called (Y,X)−Fréchet differ-
entiable at ξe if there exists a bounded linear opera-
tor dN (ξe) : X → X such that for all h ∈ D(A) ∩
D(N ),N (ξe + h) − N (ξe) = dN (ξe)h + R(ξe, h) where

lim‖h‖Y→0
‖R(ξe,h)‖X
‖h‖X = 0, or equivalently,

lim
‖h‖Y→0

‖N (ξe + h)−N (ξe)− dN (ξe)h‖X
‖h‖X

= 0.

Note that, when Y is X, the definition becomes the stan-
dard definition of Fréchet differentiability, which will be
called Y−Fréchet differentiability. In this new framework,
we give an adapted concept of local exponential stability.

Definition 6. The equilibrium ξe of (6) is said to be
(Y,X)−locally exponentially stable if there exist δ, α, β >
0 such that for all ξ0 ∈ D(A)∩D(N ) with ‖ξ0− ξe‖Y < δ,
it holds ‖ξ(t)− ξe‖X ≤ αe−βt‖ξ0 − ξe‖X , t ≥ 0.

With these new definitions, we need some assumptions in
order to be able to deduce local exponential stability of the
equilibria for the nonlinear system (6). First, we consider
standard assumptions on the operators A,N and A+N .

Assumption 7. • The operator A is dissipative under
some appropriate perturbation, i.e. there exists lA >
0 such that the operator A − lAI is dissipative
on D(A) ∩ D(N ) and the nonlinear operator N is
Lipschitz continuous on D(A) ∩ D(N ) with respect
to the X and Y norms;

• The operator A+N is the infinitesimal generator of
a nonlinear C0−semigroup (S(t))t≥0 on X and Y .

We now introduce assumptions concerning the Fréchet
differentiability of (S(t))t≥0.

Assumption 8. • The Gâteaux derivative of N at ξe,
denoted by dN (ξe) is a bounded linear operator on
X and Y . The Gâteaux linearized dynamics of (6) are
given by {

ξ̇ = (A+ dN (ξe))ξ,

ξ(0) = ξ0 − ξe =: ξ̂0
(11)

• The nonlinear semigroup (S(t))t≥0 is Y−Fréchet dif-
ferentiable and (Y,X)−Fréchet differentiable at ξe

with (Tξe(t))t≥0 as Fréchet derivative, the linear semi-
group generated by the Gâteaux derivative of A+N
at ξe;

• When the linear semigroup (Tξe(t))t≥0 is exponen-
tially stable on X, it is assumed that the following
estimate holds:

‖Tξe(t)ξ̂0‖Y ≤ η‖ξ̂0‖Y , t ≥ 0, (12)

for all ξ0 ∈ D(A) such that ‖ξ̂0‖Y < δ∗, for some
η > 0 and δ∗ > 0 that may depend on η.

Taking Assumption 7 into account, it can be shown that
(Y,X)−Fréchet differentiability of (S(t))t≥0 is obtained by
imposing that

lim
‖ξ̂0‖Y→0

‖R(ξe, ξ̂(t))‖L∞([0,t0);X)

‖ξ̂0‖X
= 0, (13)

where R(ξe, ξ̂(t)) = N (ξ̂(t)+ξe)−N (ξe)−dN (ξe)ξ̂(t), t0 >

0 and ξ̂(t) is the solution of
˙̂
ξ = Aξ̂ + N (ξ̂ + ξe) −

N (ξe), ξ̂(0) = ξ̂0, see (Hastir et al., 2019a, Section 3) for
further details 4 . In the same reference, it is then shown
how to link stability properties of the linearized system
with those of the nonlinear system, see (Hastir et al.,
2019a, Theorem 3.1). This result is recalled here below.

Theorem 9. Let us consider Assumptions 7 and 8. If ξe

is a (globally) exponentially stable equilibrium of the

4 For instance, equality (13) can be deduced by imposing the
(Y,X)−Fréchet differentiability of the nonlinear operatorN together
with the continuous dependence of (S(t))t≥0 on the initial condition
by using X− and Y−norms.



Target Local (exp.) stability/instability of (S(t))t≥0 on X

Go to Y
• (S(t))t≥0 is Y−Fréchet differentiable at ξ e

with (Tξ e (t))t≥0 as Fréchet derivative
• (Tξ e (t))t≥0 satisfies (14) when it is

exponentially stable on X

Go back to X
• (S(t))t≥0 is (Y,X)−Fréchet differentiable at

ξ e with (Tξ e (t))t≥0 as Fréchet derivative
• (Tξ e (t))t≥0 is (exp.) stable/unstable on X

Local means ‖ξ̂0‖Y < δ

Fig. 1. Summary of the adapted approach.

linearized model (11), then it is a (Y,X)−locally expo-
nentially stable equilibrium of (6). Conversely, if ξe is an
unstable equilibrium of (11), it is (Y,X)−locally unstable
for the nonlinear system (6).

This is a general theorem valid for semilinear systems of
the form (6) satisfying Assumptions 7 and 8. An illustra-
tion of the philosophy of the approach is summarized in
Figure 1.

In the case of the nonisothermal axial dispersion tubular
reactor, the chosen state space X is L2(0, 1) whereas
the ”alternative space” Y is C(0, 1) equipped with the
L∞(0, 1)−norm. Since Assumptions 7 and 8 are satisfied
for this case study, see (Hastir et al., 2019a, Section 4), the
following result concerning the stability of the equilibrium
profiles for the tubular reactor considered here holds, see
(Hastir et al., 2019a, Theorem 4.1):

Theorem 10. Consider the nonlinear PDE (5) that de-
scribes the time evolution of the temperature in a non-
isothermal axial dispersion tubular reactor. In the case
where the reactor exhibits one equilibrium profile, the
latter is (C(0, 1), L2(0, 1))−locally exponentially stable for
the nonlinear system (5). In the case of three equilibria
the pattern (C(0, 1), L2(0, 1))−”locally exponentially sta-
ble – locally unstable – locally exponentially stable” is
highlighted, which is called bistability.

3. NUMERICAL SIMULATIONS

This section is devoted to the illustration of Theorem
10 by means of numerical simulations performed on the
nonlinear system (5). The chosen approach is the Galerkin
Residuals Method, see e.g. (McGowin and Perlmutter,
1970). The method is summarized as follows: the solution
ξ(t, z) to (5) is supposed to be of the form

ξ(t, z) =

+∞∑
n=1

αn(t)φn(z), (14)

where {αn}n∈N0
is a set of time dependent functions

and {φn}n∈N0
are space dependent functions that form

an orthonormal basis of L2(0, 1) and which satisfy the
boundary conditions associated to (5). This formulation
of ξ(t, z) is well adapted since the PDE we are considering
is a parabolic one, see e.g. (McGowin and Perlmutter,
1970) or (Thomée, 2006). In order to compute the solution
numerically, the series in (14) is truncated up to order

N . Then the resulting residuals error is orthogonalized on
the basis {φn}n∈N0

to deduce the dynamics of αn(t), n =
1, . . . , N .

As orthonormal basis of L2(0, 1), we choose the eigenfunc-
tions of the operator A defined in (7) and (8), i.e. φn(z) =

Kn[βn
√
Pe cos(βn

√
Pez) + Pe

2 sin(βn
√
Pez)] where Kn =

( 2
β2
nPe+Pe+Pe

2/4 )
1
2 and {βn}n∈N0 are solutions of the re-

solvent equation tan(β
√
Pe) = 4β

√
Pe

4β2−Pe , β > 0, see e.g.

(Delattre et al., 2003). The corresponding eigenvalues are
given by

{
−β2

n − Pe
4

}
n∈N0

. Plugging the truncated form

of ξ into (5) leads to the following residual error

Γξ =

N∑
n=1

dαn
dt

φn −
1

Pe

N∑
n=1

αn
d2φn
dz2

+
Pe

4

N∑
n=1

αnφn

− e−Pe2 z
[
g̃

(
e
Pe
2 z

N∑
n=1

αnφn + xe

)
− g̃(xe)

]
.

Making Γξ orthogonal to the i−th eigenfunction φi yields

dαi
dt

=

(
−β2

i −
Pe

4

)
αi + Θi(α1, . . . , αN ), (15)

where Θi is a nonlinear function expressed as

Θi(α1, . . . , αN ) :=∫ 1

0

e−
Pe
2 z

[
g̃

(
e
Pe
2 z

N∑
n=1

αnφn + xe

)
− g̃(xe)

]
φidz,

i = 1, . . . , N . The initial condition is given by αi(0) =∫ 1

0
ξ0φidz, where ξ0 is the initial condition given to (5).

The solutions αn, n = 1, . . . , N of equation (15) are then
computed via the numerical integration routine ode23s of
MATLAB c©.

The following set of parameters is chosen in order to
highlight three equilibria, that is µ = 10, δ = 1, k0 =
1, L = 1, v = 0.0011 and D = 0.001 (which entails
that Pe = 1.1). The chosen initial condition satisfies the
boundary conditions associated to (5). Its expression is
given by ξ0(z) = ω(sin(πz) + 2π

Pe ), where ω is a weighting
factor that is used to make the C(0, 1)−norm of ξ0 as small
as desired. A computation of ‖ξ0‖C(0,1) gives

‖ξ0‖C(0,1) = sup
z∈[0,1]

|ξ0(z)| = ω

Pe
(Pe+ 2π). (16)

In the numerical simulations, ω = εPe, ε > 0. Conse-
quently (16) becomes εPe + 2πε, which can be made as
small as desired by imposing that ε is small. The state tra-
jectories ξ(t, z) and their L2(0, 1)−norms are represented
in Figures 2 to 7 for the different equilibrium profiles. The
theoretical conclusions reported in the previous section can
be observed on these different Figures.

4. PERSPECTIVES

Here we aim at giving some further considerations about
the nonisothermal axial dispersion tubular reactor. A first
perspective would be the investigation of non adiabatic
conditions inside of the reactor. This leads us to consider
(1) with the additional term −γx1+γxw, γ > 0 in the PDE
associated with temperature. Remember that x1 denotes
the temperature and xw the coolant temperature which
is seen as a control variable here. Since the homogeneous
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Fig. 2. State trajectory ξ for µ =
10, δ = 1, first equilibrium.
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Fig. 3. State trajectory ξ for µ =
10, δ = 1, second equilibrium.
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Fig. 4. State trajectory ξ for µ =
10, δ = 1, third equilibrium.
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Fig. 5. L2−norm of the state trajec-
tory ξ for µ = 10, δ = 1, first
equilibrium.
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Fig. 6. L2−norm of the state trajec-
tory ξ for µ = 10, δ = 1, second
equilibrium.
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Fig. 7. L2−norm of the state trajec-
tory ξ for µ = 10, δ = 1, third
equilibrium.

system is considered in the analysis, this variable is iden-
tically 0. Hence, it suffices to study the system in which
−γx1 is incorporated in the PDE associated with x1. This
can be seen as the linear perturbation operator −γ[x1 0] =
−γP [x1 x2], where P is the projection operator defined as
P : L2(0, 1) × L2(0, 1) → L2(0, 1) × L2(0, 1), P [x1 x2] =[
I 0
0 0

] [
x1
x2

]
and which norm is obviously less than 1. Note

also that P is a positive operator, that is 〈Px, x〉 ≥ 0
for all x ∈ L2(0, 1) × L2(0, 1). Hence, in the case where
the adiabatic reactor exhibits a stable equilibrium, adding
the term −γP [x1 x2] improves its stability margin by a
negative constant η which satisfies −γ ≤ η ≤ 0. This
equilibrium remains exponentially stable. Further analysis
could be done in the case of an unstable equilibrium by
using these ”perturbation” arguments. Then, in order to
stabilize an equilibrium profile or to improve its stability
margin, we shall first model a heat exchanger that acts (in
a distributed manner) along the reactor as an additional
controlled PDE (dynamic feedback compensator) that pro-
duces the coolant temperature xw. This heat exchanger is
described by

∂xw
∂t

= −∂xw
∂z
− γw(xw − uw) + u, xw(0) = 0, (17)

where xw ∈ L2(0, 1) is the coolant temperature, uw is the
heat exchange control variable and u is an additional con-
trol that acts on the heat exchanger. The interconnection
of (1) and (17) is made by uw = x1. This leads to the
following controlled PDE system



∂x1

∂t
=

1

Peh

∂2x1

∂z2
−
∂x1

∂z
− γ(x1 − xw) + δα(1− x2)e

−µ
1+x1 ,

∂x2

∂t
=

1

Pem

∂2x2

∂z2
−
∂x2

∂z
+ α(1− x2)e

−µ
1+x1 ,

∂xw

∂t
= −

∂xw

∂z
− γw(xw − x1) + u,

∂x1

∂z
(0) = Pehx1(0),

∂x1

∂z
(1) = 0,

∂x2

∂z
(0) = Pemx2(0),

∂x2

∂z
(1) = 0, xw(0) = 0.

(18)

Adding observations on the system above leads us to
consider a system of the form{

ẋ(t) = Ax(t) +N(x(t)) +Bu(t),
y(t) = Cx(t), x(0) = x0,

(19)

where B ∈ L(U,L2(0, 1)3) and C ∈ L(L2(0, 1)3, Y ) are
control and observation operators 5 and x ∈ L2(0, 1)3 is
defined as x = (x1 x2 xw)T . It can be shown that the
homogenous system corresponding to (18) is well-posed.
A first perspective now is to show that (18) satisfies
Assumptions 7 and 8 of Section 2 by considering state
feedbacks u = K(x1 x2 xw)T where K is a bounded
linear operator from L2(0, 1)3 into L2(0, 1). In that way,
the following proposition makes the link between the
stabilization of the linearized dynamics and the (local)
stabilization of (19).

Proposition 11. Let us consider system (19) in which u is
a state feedback, i.e. u(t) = K(x1(t) x2(t) xw(t))T , t ≥ 0
for some K ∈ L(L2(0, 1)3, U). Assume that the closed-
loop system dynamics operator (A+BK)+N generates a
nonlinear C0−semigroup (SK(t))t≥0 and that its Gâteaux

5 U and Y are called the control and observation spaces and are
supposed to be Hilbert.



linearization around any equilibrium xe = (xe1 x
e
2 x

e
w)T

is the infinitesimal generator of a linear C0−semigroup
(Txe,K(t))t≥0. Suppose also that Assumptions 7 and 8
hold mutatis mutandis. Under these conditions, if the
feedback operator K stabilizes exponentially the linearized
dynamics (around the equilibrium xe), then it stabilizes
locally exponentially the nonlinear dynamics around that
equilibrium.

Thus the design of u could be done on a linear system
instead of a nonlinear one. The approach we shall consider
first is the LQ-optimal regulation, see e.g. (Callier and
Winkin, 1992), (Callier and Winkin, 1990), (Aksikas et al.,
2007b). It consists in finding u that minimizes the cost
functional

J(u, x0,∞) =
1

2

∫ +∞

0

(
‖Cx(t)‖2 + 〈u(t), Qu(t)〉

)
dt,

subject to the linearized dynamics of (18), whereQ ∈ L(U)
is a coercive operator. The first step will be the well-
posedness of this control problem which is deduced from
the exponential stabilizability of the pair (A,B) and the
exponential detectability of (C,A). Then the LQ-optimal
control can be designed by using numerical techniques.
Currently, we are considering an early lumping approach,
that is, the system is first discretized and the controller is
designed on the corresponding finite-dimensional approxi-
mation. Further perspectives aim at considering adaptive
(extremum seeking) control techniques, see e.g. (Hudon
et al., 2005) and (Hudon et al., 2008).

5. CONCLUSION

Stability analysis techniques for nonlinear infinite – di-
mensional systems were reported. A new framework was
proposed to extend exponential stability of a linearized
system to the local exponential stability of the nomi-
nal nonlinear system. This new framework relies on an
adapted and weakened concept of Fréchet differentiabil-
ity, the (Y,X)−Fréchet differentiability. This new concept
seems to be promising and its applicability to different
classes of distributed parameter systems is currently under
investigation. Some control design perspectives were also
given.
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