-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Repository of the University of Namur

Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

An SMT-Based Concolic Testing Tool for Logic Programs
Fortz, Sophie; Mesnard, Fred; Payet, Etienne; Perrouin, Gilles; Vanhoof, Wim; Vidal, German

Published in:
Functional and Logic Programming

DOI:
10.1007/978-3-030-59025-3_13

Publication date:
2020

Document Version
Peer reviewed version

Link to publication

Citation for pulished version (HARVARD):

Fortz, S, Mesnard, F, Payet, E, Perrouin, G, Vanhoof, W & Vidal, G 2020, An SMT-Based Concolic Testing Tool
for Logic Programs. in K Nakano & K Sagonas (eds), Functional and Logic Programming: 15th International
Symposium, FLOPS 2020, Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12073 LNCS, Springer Science and Business
Media Deutschland GmbH, pp. 215-219, 15th International Symposium on Functional and Logic Programming,
FLOPS 2020, Akita, Japan, 14/09/20. https://doi.org/10.1007/978-3-030-59025-3_13

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. May. 2021


https://core.ac.uk/display/355855745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-030-59025-3_13
https://researchportal.unamur.be/en/publications/an-smtbased-concolic-testing-tool-for-logic-programs(a8ed3861-2105-412e-b5d7-865ba911d541).html
https://doi.org/10.1007/978-3-030-59025-3_13

An SMT-Based Concolic Testing Tool
for Logic Programs*

Sophie Fortz', Fred Mesnard?, Etienne Payet?, Gilles Perrouin®, Wim
Vanhoof!, and German Vidal3

! Université de Namur, Belgique
2 LIM - Université de la Réunion, France
3 MiST, VRAIN, Universitat Politécnica de Valéncia, Spain

Abstract. Concolic testing combines symbolic and concrete execution
to generate test cases that achieve a good program coverage. Its benefits
have been demonstrated for more than 15 years in the case of imperative
programs. In this work, we present a concolic-based test generation tool
for logic programs which exploits SMT-solving for constraint resolution.

1 Concolic Testing of Logic Programs

Concolic testing is a well-established validation technique for imperative and
object-oriented programs [3,8], but only recently investigated for functional and
logic programming languages. Concolic testing for logic programming was ini-
tially studied by Vidal [11] and Mesnard et al. [4], while Giantsos et al. [2] and
Tikovsky et al. [L0] considered concolic testing of functional programs.

Concolic testing performs both concrete and symbolic execution in parallel:
given a test case (atomic goal), e.g., p(a), we evaluate both p(a) (the concrete
goal) and p(X) (the symbolic goal), where X is a fresh variable, using a concolic
execution extension of SLD resolution. The symbolic goal mimics the steps of
the concrete goal but is aimed at gathering constraints that can be later used to
produce alternative test cases. In particular, alternative test cases are computed
by solving so-called selective unification problems [4,6]. The previous algorithm
introduced by Mesnard et al. [4] does not scale well and does not support neg-
ative constraints. By defining selective unification problems as constraints on
Herbrand terms and relying on an SMT solver, we address both scalability and
completeness issues.

Let us motivate our approach by illustrating one of the problems of the
previous framework [4]. Consider the following logic program defining predicates

p/1 and ¢/1:
(1) p(a). (£s) q(b).
(f2) p(X) = q(X).

* Third author is a research associate at FNRS that also supports this work (O05518F-
RGO03). The last author is partially supported by the EU (FEDER) and the Spanish
MCI/AEI under grants TIN2016-76843-C4-1-R/PID2019-104735RB-C41 and by the
Generalitat Valenciana under grant Prometeo/2019/098 (DeepTrust).



2 S. Fortz et al.

where f1,0s, 03 are (unique) clause labels. Given an initial call, say p(a), the
algorithm considers all possible matching clauses for this call (i.e., all combi-
nations from clauses I; and l3) and produces the sets {}, {p(a)}, {p(X)}, and
{p(a),p(X)} with the heads of the clauses in each combination.

The considered initial call already covers the last case (i.e., it matches both
p(a) and p(X)). As for the remaining cases:

— Matching no clause. This case is clearly unfeasible, since the head of the
second clause, p(X), matches any call.

— Matching only clause 1. This case is unfeasible as well since every atom that
unifies with p(a) will also unify with p(X).

— Matching only clause €. This case is clearly feasible with, e.g., p(b), since
p(b) unifies with p(X) but it does not unify with p(a). Thus p(b) is our next
initial goal.

In the second iteration, p(b) calls ¢(b) (using clause ¢5) and, then, successfully
matches clause ¢3. Since we only have one clause defining ¢/1, the only alter-
native consists in producing an initial call to p/1 that i) unifies with clause /o
but not with clause ¢; and, then, ii) calls ¢/1 but fails. Unfortunately, since
the approach of Mesnard et al. [{] cannot represent negative constraints, the
algorithm tries to find an instance p(X)o of p(X) such that ¢(X)o does not
unify with g(b). A possible solution is then p(a). Observe that this goal will not
achieve the desired result (matching clause ¢» and then fail) since it will match
clause ¢; and terminate successfully. Indeed, since p(a) was already considered,
the concolic testing algorithm of Mesnard et al. [4] terminates computing the
test cases {p(a),p(b)}, which is unnecessarily incomplete.

For example, if we assume that the domain comprises at least one more
constant, say ¢, then the right set of test cases should be {p(a), p(b),p(c)}, so
that the last test case actually matches clause 5 and then fails. In this work,
we overcome the above problem by introducing constraints, which can represent
both positive and negative information. In particular, the search for an instance
of p(X) that first unifies with clause ¢5 only, and then fails, is represented as
follows:

p(X) # pla) ANVY (p(X) # p(Y) V q(Y) # (b))

Solving this constraint (using an SMT solver) would produce the desired test
case, p(c), thus achieving a full path coverage.

For this purpose, we have designed a concolic testing tool for logic programs
that is based on the following principles:

— As in the approach of Mesnard et al. [4], we instrument a deterministic
semantics for logic programs (inspired by the linear semantics of Stroder et
al. [9]) in order to perform both concrete and symbolic execution in parallel.

— In contrast to previous approaches, our instrumented semantics also con-
siders negative constraints, so that the problems mentioned above can be
avoided (i.e., our implemented semantics is complete in more cases).

— Finally, the generated constraints are solved using a state-of-the-art con-
straint solver, namely the Z3 SMT solver [[1]. This allows us to make concolic
testing more efficient in practice.



An SMT-Based Concolic Testing Tool for Logic Programs 3

Z3 Binding

Concolic Tool
(Prolog) Parser
(Prolog)

«

SWIPrologZ3
©)

Fig. 1. Implementation workflow.

Table 1. Summary of experimental results

Subject Ground|Max |time time #TCs |#TCs
program [size|lnitial goal Args  |Depth|concolic|contest |concolic|contest
Nat 2 |nat(0) 1 1 0.050 ]0.0273 |3 4
Nat 2 |nat(0) 1 5 0.0897 10.15564 |7 12
Nat 2 |nat(0) 1 50 1.6752 [19.5678|52 102
Generator |7  |generate(empty, A, B) 1 1 1.4517 |0.7096 |9 9
Generator |7 |generate(empty, T, B) 2 1 1.3255 [4.4820 |9 9
Generator |7 |generate(empty, T,H) 3 1 1.3211 |crash |9 N/A
Activities |38 |""hat-to_do_today(sunday, 5 2 [6.3257 |timeout|122  [N/A
sunny,wash__your_ car)
Cannibals |78 |start(config(3,3,0,0)) 1 2 0.0535 |[timeout|2 N/A
Family 48 |parent(dicky,X) 1 20.0305|64.1838(9 19
Monsters
and mazes|113|base score(will,grace) 2 2 0.2001 [0.4701 |6 7

2 A Concolic Testing Tool for Prolog

Our prototype is implemented in SWI-Prolog [12] and the Z3 SMT solver [1], as
depicted in Figure [|. Regarding the termination of concolic testing, we impose
a maximum term depth for the generated test cases. Since the domain is finite
and we do not generate duplicated test cases, termination is trivially ensured.

Let us show some selected results from a preliminary experimental evaluation
of our concolic testin%tool. We selected six programs from previous benchmarks
] and from GitHub®. We ran concolic testing between 3 and 100 executions
on a MacBook Pro hexacore 2,6 Ghz with 16 GB RAM in order to get reliable
results. Reported times, in seconds, are the average of these executions. Our
results are reported in Table [ll. Here, concolic refers to our tool, while contest
refers to the tool introduced by Mesnard et al. [4]; the size of a subject program is
the number of its source lines of code; column Ground Args displays the number
of ground arguments in the initial symbolic goal; and # T Cs refers to the number
of generated test cases. A timeout for contest is set to 1000 seconds (the crash is
an overflow).

Regarding execution times, our new tool exhibits a certain overhead on small
programs with a low depth due to the calls to the SMT solver. As program size
and/or depth increase, our tool performs up to 10 times faster than contest. We
note that the number of test cases generated by the tools are not comparable

4 https:/ /github.com/Anniepoo/prolog-examples



https://github.com/Anniepoo/prolog-examples

4 S. Fortz et al.

since our new framework avoids a source of incompleteness (as mentioned in
the previous section), but also restricts the number of test cases by forbidding
the binding of so-called output arguments (which is allowed in contest). More
details can be found in the companion paper: http://arxiv.org/abs/2002.07115.
The implementation is also publicly available at https://github.com/sfortz/P1_|
Concolic_ Testing.

3 Conclusion

In this paper, we report our experience in the development of an SMT-based
concolic testing tool that is based on the approach of Mesnard et al. [4] but
adds support for negative constraints, thus overcoming some of the limitations
of previous approaches [5,6]. Our preliminary experimental evaluation has shown
promising results regarding the scalability of the method.

Recently, concolic testing has been extended to CLP programs [[i], so that
both positive and negative constraints can be represented in a natural way. As
future work, we plan to extend our concolic testing tool to the case of CLP
programs.

References

1. De Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: TACAS. pp. 337-340.
Springer-Verlag, Berlin, Heidelberg (2008)

2. Giantsios, A., Papaspyrou, N., Sagonas, K.: Concolic testing for functional lan-
guages. Science of Computer Programming 147, 109-134 (2017)

3. Godefroid, P., Klarlund, N.; Sen, K.: DART: directed automated random testing.
In: Proc. of PLDI'05. pp. 213-223. ACM (2005)

4. Mesnard, F., Payet, E., Vidal, G.: Concolic testing in logic programming. TPLP
15(4-5), 711-725 (2015). https://doi.org/10.1017/S1471068415000332

5. Mesnard, F., Payet, E., Vidal, G.: On the completeness of selective unification in
concolic testing of logic programs. In LOPSTR’16. Lecture Notes in Computer
Science, vol. 10184, pp. 205-221. Springer (2017)

6. Mesnard, F., Payet, E., Vidal, G.: Selective unification in constraint logic program-
ming. In: Vanhoof, W., Pientka, B. (eds.) PPDP. pp. 115-126. ACM (2017)

7. Mesnard, F., Payet, E.. Vidal, G.: Concolic Testing in CLP. CoRR
abs/2008.00421 (2020), https://arxiv.org/abs/2008.00421

8. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
ESEC/ FSE. pp. 263-272. ACM (2005)

9. Stroder, T., Emmes, F., Schneider-Kamp, P., Giesl, J., Fuhs, C.: A Linear Op-
erational Semantics for Termination and Complexity Analysis of ISO Prolog. In:
LOPSTR’11. pp. 237-252. Springer LNCS 7225 (2011)

10. Tikovsky, J.R.: Concolic testing of functional logic programs. In: Declarative Pro-
gramming and Knowledge Management, pp. 169-186. Springer (2017)

11. Vidal, G.: Concolic execution and test case generation in Prolog. In LOPSTR 2014.
Lecture Notes in Computer Science, vol. 8981, pp. 167-181. Springer (2015)

12. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. TPLP 12(1-2),
67-96 (2012). https://doi.org/10.1017/S1471068411000494


http://arxiv.org/abs/2002.07115
https://github.com/sfortz/Pl_Concolic_Testing
https://github.com/sfortz/Pl_Concolic_Testing
https://doi.org/10.1017/S1471068415000332
https://arxiv.org/abs/2008.00421
https://doi.org/10.1017/S1471068411000494

	An SMT-Based Concolic Testing Tool for Logic Programs

