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Abstract 

This paper proposes semiparametric estimation of the relationship between growth rate of GDP per 

capita, growth rates of physical and human capital, labor as well as other covariates and common trends 

for a panel of 23 OECD countries observed over the period 1971-2015. The observed differentiated 

behaviors by country reveal strong heterogeneity. This is the motivation behind using a mixed fixed- 

and random-coefficients model to estimate this relationship. In particular, this paper uses a 

semiparametric specification with random intercepts and slopes coefficients. Motivated by Lee and 

Wand (2016), we estimate a mean field variational Bayes semiparametric model with random 

coefficients for this panel of countries. Results reveal nonparametric specifications for the common 

trends. The use of this flexible methodology may enrich the empirical growth literature underlining a 

large diversity of responses across variables and countries. 
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1. Introduction

There is a huge theoretical and empirical literature studying cross-country growth differentials.

What explains differences in productivity and how does it enhance economic development? These are

fundamental questions that continue to preoccupy many economists.

As noted by Easterly and Levine (2001), starting with Solow (1957) a growing body of research

has suggested that after accounting for physical and human capital accumulation, “something else”

accounts for the majority of cross-country differences in both the level of Gross Domestic Product

(GDP) per capita and the growth rate of GDP per capita. The term “Total Factor Productivity

(TFP)”is used to refer to the “something else”(besides physical factor accumulation) that accounts

for economic growth differences. This TFP, also known as the Solow residual, has been viewed

by Abramowitz (1956) as a “measure of our ignorance”. Different theories have provided alterna-

tive conceptions of TFP: variations in technology, externalities, changes in the sector composition

of production, adoption of lower cost production methods, scale economies, variations in capacity

utilization, institutions to mention a few. Besides the traditional inputs (labor and physical capital)

in a Cobb-Douglas aggregate production function, a lot of other variables (technology, infrastructure,

institutions, etc.) are often advanced to explain the evolution of the growth rate of GDP per capita

and the country gaps in productivity. However, a vast majority of this empirical literature limit

cross-country heterogeneity in production technology to the specification of total factor productivity.1

Empirical evidence of the relative importance of each of these explanations is far from unanimous.

There is even controversy between those like Mankiw et al. (1992) who argue that growth is mainly

driven by factor accumulation and those like Easterly and Levine (2001), who argue that there is

something else besides factor accumulation that explains differences in economic growth. The lat-

ter research recommends that economists devote more effort towards modeling and quantifying total

factor productivity.

Besides the usual factors, like physical capital and labor, researchers include several indicators

and estimate the model using standard panel data estimators. More variables lead to the curse of

dimensionality especially with nonparametric estimation. As emphasized by Moral-Benito (2012),

considerable effort in the last decade in the empirical growth literature has been spent on selecting

appropriate variables to include in linear growth regressions. Using Bayesian model averaging (BMA)

techniques, these authors select variables proposed as growth determinants from a total of more than

140 variables (see Fernandez et al. (2001), and Durlauf et al. (2005)). If K is the number of potential

explanatory variables, there are 2K possible models and BMA, using MCMC methods, select the

“best” model. One major criticism of BMA is that some important variables such as capital stock,

R&D, education, etc., are eliminated in favor of other variables such as life expectancy, cultural or

religion variables.

Another line of research use factor-augmented regressions (FAR) to avoid these problems. They

focus attention on a small number of variables of interest such as capital and labor and consider the

1A majority of the growth empirics literature on aggregate data focuses on versions of the “convergence regression

equation” (Barro and Sala-i Martin (1992, 1997, 2004), Mankiw et al. (1992), Islam (1995) to mention a few.)
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other covariates merely as controls (see Anderson et al. (2006), Pesaran (2006), Bai and Ng (2008),

Bai (2009), Eberhardt and Bond (2009), Eberhardt and Teal (2011), Kneip et al. (2012), Bresson

et al. (2016) to mention a few).

Many empirical growth models in the applied literature assume common technology parameters.

As emphasized by Eberhardt and Teal (2011), this homogeneous specification is not likely to hold

across countries. Moreover, adding non-standard growth determinants is not sufficient. Some have

explicitly introduced heterogeneity using the mean group and pooled mean group estimators proposed

by Pesaran and Smith (1995) and Pesaran et al. (1999) (see also Bassanini and Scarpetta (2001),

Bassanini et al. (2001)). Durlauf et al. (2001) explain that theoretical justifications for heterogeneous

technology parameters can be found in the “new growth” literature which argues that production

functions differ across countries and attempt to find the sources of this heterogeneity. As underlined

by Brock and Durlauf (2001) (pp. 8-9) “the assumption of parameter homogeneity seems particularly

inappropriate when one is studying complex heterogeneous objects such as countries”.

Following the general ideas of Hsiao et al. (1999), Pesaran et al. (1999), Brock and Durlauf (2001),

Durlauf et al. (2001), Hsiao and Pesaran (2008), Eberhardt and Teal (2011), Hsiao (2015), among

others, we specify and estimate a random coefficient model of an aggregate Cobb-Douglas function

including a common and country-specific TFP structure. Unlike the common factor approach in which

the non observed TFP is modelled as the combination of a set a common factors and a vector of factor

loadings, we use a semiparametric specification of these common factors. In our particular case, this

set of common factors comes down to a trend (as in the Zhang et al. (2012)’s approach).

More specifically, we estimate a Bayesian semiparametric growth model of GDP per capita using

growth rates of capital intensity, human capital and other control covariates such as R&D intensity,

patent and trademark applications, government expenditures, trade, etc. In order to take into account

the heterogeneity among countries, we allow random intercept and slope coefficients as well as a

semiparametric function of time summarizing the dynamics of common factors. Inspired by the

recent work of Lee and Wand (2016), we use a mean field variational Bayesian approach which has

great advantages as compared to the Markov Chain Monte Carlo (MCMC) technique such as Gibbs

sampling. In section 2, we briefly present the specification and the estimation method. In section 3,

we describe our panel data using 23 OECD countries observed over the period 1971-2015. In Section

4, the estimation results are discussed. Finally, Section 5 concludes.

2. Growth empirics: the model and the estimation method

2.1. The model

Using a simplified setup, the production function takes the form:

Yi(t) = F [Ki(t), Ai(t), Li(t), Hi(t)] , i = 1, ..., N , t = 1, ..., T (1)

where Yi(t) denotes output produced in country i at time t. We assume a one-sector production

technology in which output is a homogeneous good that can be consumed, or invested to create new

units of physical capital Ki(t) and new units of human capital stock Hi(t). Li(t) denotes labor, Ai(t)

2



is the level of economic and technological efficiency, the so-called TFP. We assume a Cobb-Douglas

production function, so the production in country i at time t is given by:

Yi(t) = F [Ki(t), Ai(t), Li(t), Hi(t)] = Kαi
i (t)Hγi

i (t) [Ai(t)Li(t)]
βi (2)

with decreasing returns to all capital (αi + γi < 1) and where Ai(t)Li(t) is the number of effective

units of labor (labor augmenting technical progress). We assume constant returns to scale2: βi =

1− (αi + γi) and we allow the elasticities with respect to capital and labor to vary by country. This

is a heterogeneous by country model (as in Pesaran et al. (1999), Bassanini and Scarpetta (2001),

Bassanini et al. (2001), Eberhardt and Teal (2011) to mention a few).

The level of economic and technological efficiency Ai(t) is assumed to be the product of two com-

ponents: economic efficiency (or innovation efficiency) A1i(t) depending upon R&D policies, economic

policies, educational and health policies, institutions, openess, etc., and the level of technological

progress A2i(t) (see amongst others, Cellini (1997), Bassanini et al. (2001) for a similar formulation).

In turn, A1i(t) can be written as a product of policy variables Vij(t), while A2i(t) is assumed to grow

at the rate fi(t).

Ai(t) = A1i(t)A2i(t) with A1i(t) =

J∏
j=1

V
ωij
ij (t) and A2i(t) = A2i(0)efi(t) (3)

Given the rapid technological changes due to the 3rd industrial revolution (telecommunications, the

Internet, etc.), it is unrealistic to assume a constant rate of technological growth over time.3,4 In this

case, we can write:

log

(
Yi(t)

Li(t)

)
= αi log

(
Ki(t)

Li(t)

)
+ γi log

(
Hi(t)

Li(t)

)
+ [1− (αi + γi)]

J∑
j=1

ωij log Vij(t) (4)

+ [1− (αi + γi)] logA2i(0) + [1− (αi + γi)] fi (t)

where fi (t) is a smooth function defined as:

fi (t) = gi (t) +

ql∑
l=1

ηilWil (t) (5)

{Wl, 1 ≤ l ≤ ql} are spline bases of size ql and {ηl, 1 ≤ l ≤ ql} are the spline coefficients. gi (t) is the

parametric part of the smooth function which could be an empty set, a linear or a nonlinear function

of the time trend. The specification (4)-(5) is a semiparametric model with varying parameters. As

the main variables are non stationary (see section 4), the discrete version of the estimated model will

be written in growth rate as follows:

∆ log
(
Y
L

)
it

= αi∆ log
(
K
L

)
it

+ γi∆ log
(
H
L

)
it

+
J∑
j=1

ω∗ij∆ log Vijt + ∆f∗i (t)

with ∆f∗i (t) = ∆g∗i (t) +
∑ql
l=1 η

∗
il∆Wil (t) and ∆xit = xit − xi,t−1

(6)

2If αi + γi = 1, there is no steady state for this model.
3In the standard Solow framework, Mankiw et al. (1992) assumes that Ai(t) = A2i(0)efi(t) = A2i(0)egt, ∀i. Islam

(1995) and Pesaran et al. (1999) allow for heterogeneity by introducing indexes for each country: Ai(t) = A2i(0)efi(t) =

A0(t)egit where gi is a country-specific constant.
4The common factor literature assumes that: A2i(t) = A2i(0)eλ

′
if(t) where f (t) is set a common factors and λi is a

vector of factor loadings.
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where all the coefficients with a superscript (∗) are the initial coefficients multiplied by [1− (αi + γi)].

The estimate of TFP growth5 is then based on the standard discrete growth equation ∆ logAit =

∆ log
(
Y
L

)
it
− αi∆ log

(
K
L

)
it
− γi∆ log

(
H
L

)
it

. In a similar way, the technical innovation change (or

economic efficiency change) is given by ∆ logA1,it =
J∑
j=1

ω∗ij∆ log Vijt and the technical efficiency

change (or the technological efficiency change) is given by ∆ logA2,it = ∆g∗i (t) +
∑ql
l=1 η

∗
il∆Wil (t)).

This semiparametric model is introduced to describe the nonlinear trending phenomenon observed in

cross-country growth models.

The varying coefficient model considered here is therefore part of the already long tradition of research

on semiparametric estimation of partially linear varying coefficient panel data models6 which allow

flexibility to characterize trending phenomenon in nonlinear panel data analysis. Some use semipara-

metric profile likelihood methods (Chen et al. (2012), Li et al. (2013), kernel or averaged local linear

estimation (Li et et al. (2011)). In the spirit of works on semiparametric partially linear model using

series estimation methods (Huang et al. (2002), Fan and Li (2004), Qu and Li (2006), Fan et al. (2007),

An et al. (2016) for instance), we use a Bayesian linear-mixed Gaussian model-based penalized spline

specification with random coefficients proposed by Lee and Wand (2016). This approach is part of

a series of Bayesian works that has been developing in recent years, such as the work of Park et al.

(2015), Jeong and Park (2016) or Huang and Lu (2017) all of which use the Markov Chain Monte

Carlo (MCMC) method. Unfortunately, the MCMC techniques such as Gibbs sampling could become

computationally prohibitive and may suffer from poor mixing and do not scale well when applied to

models that require inversion of large sparse covariance matrices (as in our case). But Lee and Wand

(2016)’s approach, which uses a mean field variational Bayes approximation, has many advantages

over MCMC.

5The literature on regression-based estimation of TFP growth is deep and extensive. There are a lot of contributions

to the efficiency and productivity literature that offer different ways to estimate the canonical panel data model (produc-

tion function, cost function or stochastic production frontier) to decompose TFP growth into an innovation component

and a time trend technological component (see for instance Cornwell et al. (1990), Kumbhakar (1990), Baltagi and

Griffin (1988), Coelli et al. (1998), Park et al. (1998, 2003, 2007), Kneip et al. (2012), Sickles et al. (2015), Duygun

et al. (2017) and Isaksson et al. (2018), to mention a few).
6We follow Hsiao’s volumunus work on random coefficient models, by applying a semiparametric model with random

coefficients. Noteworthy are Cheng Hsiao’s work on serial correlation tests in semiparametric panel data models (Li and

Hsiao (1998)), semiparametric models based on series estimation methods (Li et al. (2003)), semiparametric nonlinear

errors-in-variables models (Wang and Hsiao (2011)), semiparametric analysis of non-cointegrated process (Sun et al.

(2011, 2015a)), semiparametric estimation of varying coefficient models (Li et al. (2015), An et al. (2016), Li et al.

(2017)) to mention a few. Also, the work of Robinson (1988), Li and Stengos (1996), Li and Ullah (1998), Fan and

Huang (2005), You et al. (2010) on semiparametric panel data models with random effects, to mention a few. Baltagi

and Li (2002), Su and Ullah (2006), Sun et al. (2009), Zhang et al. (2011), Qian and Wang (2012) and Boneva et al.

(2015), for semiparametric panel data models with fixed effects, to mention a few. The literature has also focused on

estimating (time) varying coefficient trend functions using nonparametric estimation methods (see for instance Robinson

(1989, 2012), Gao and Hawthorne (2006), Cai (2007), Chen et al. (2012), Zhang et al. (2012)) or on nonparametric

models with fixed effects (Li et al. (2011), Lee and Robinson (2015)). The literature on the subject is important and is

growing rapidly (see the surveys of Li and Racine (2007), Ai and Li (2008), Su and Ullah (2011), Chen et al. (2013),

Sun et al. (2015b), Rodriguez-Poo and Soberon (2017) and also the special issue of the Journal of Econometrics, edited

by Li and Li (2015), to mention a few.
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The use of semiparametric methods for growth regressions is not recent. For instance, Liu and Sten-

gos (1999) find non-linearities in cross-country growth regressions. Kumar and Ullah (2000) use a

semiparametric varying parameter panel data models for an application to the estimation of speed of

convergence. Park et al. (1998, 2003, 2007) considered linear stochastic frontier panel models in which

the distribution of country-specific technical efficiency effects is estimated nonparametrically. They

estimate robust standard errors for semi-nonparametric models based on adaptive estimation tech-

niques for semiparametric efficient estimators. Chambers and Krause (2010) study the relationship

between income inequality and economic growth using a semiparametric dynamic panel data model

with fixed effects. Liu et al. (2017) use Bayesian treatments for panel data stochastic frontier models

with time varying heterogeneity. But Bayesian semiparametric models with random coefficients based

on series estimation methods could be more flexible and powerful.

In this paper, we do not focus on the conditional convergence path, defined as a partial adjustment

process, the so-called Barro regressions. This error correction model may suffer from non-stationarity

problems if the equilibrium error is not an I(0) process (see Phillips and Sul (2003)7). In order to

avoid these additional problems, we restrict ourselves to the case of a growth model that depends only

on explanatory variables expressed in terms of growth rates (as in Zhang et al. (2012)).

Recall that economic efficiency A1i(t) depends on economic policies, institutions, etc. (Vij(t) for

j = 1, ..., J). Many studies considered the policies and institutional dimensions in investigating the

sources of economic growth. They focused on the transmission mechanism linking policy to growth as

well as on cross-country differences in policy settings. The main idea is that production requires more

than just direct investment in physical capital and labor but also investment in knowledge, human

capital, research and development (R&D), infrastructure, etc. (see Temple (1999, 2001), Bassanini

et al. (2001), Barro and Sala-i Martin (2004), Kappler (2004), Durlauf et al. (2005), Kim and Heshmati

(2013) to mention a few). Very often, we find proxy variables of R&D and innovation (as private and

public expenditures on R&D, patent and trademark applications, etc.). Since the work of Mankiw

et al. (1992), it is a standard approach of empirical growth models to include a measure of human

capital stock or a measure of its accumulation together with physical capital (sometimes measured

by the average number of years of education among the working-age population, based on figures on

educational attainment or the level of education of the labor force, the school enrollment, at primary,

secondary or tertiary levels). Other studies introduce monetary and fiscal policy variables such as

inflation, real government consumption expenditures as a proportion of GDP, tax ratio (proportion

of total indirect taxes to total direct taxes). Another sphere of influence on growth to be considered

is international trade as exposure to competition through openness or the diffusion of technology

through trade can improve the economic growth of a country. To proxy for the trade openness of a

country, some authors use the share of exports and imports to GDP, others use the trade ratio (as a

percent of GDP). Another strand of the growth literature focuses on the relationship between financial

market development and economic growth. Other studies consider demography, aging population, life

expectancy, income inequality and their effects on growth. The purpose of this paper is not to embrace

7Phillips and Sul (2003) allow for the presence of heterogeneity across countries and regions as well as over time.
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all potential variables explaining the sources of growth but to introduce some of them in addition to

physical and human capital and labor.

Before studying the data base, let us return to the semiparametric specification (4)-(5) and high-

light the estimation method used.

2.2. The Bayesian semiparametric model with random coefficients

In this section, we present the panel data semiparametric model with random coefficients. We are

influenced by the work of Zao et al. (2006), Lee (2016) and Lee and Wand (2016) and we follow their

methodology. Their model is a linear-mixed Gaussian specification given by:

y ∼ N
(
XPβP +WP ηP + f

(
XS
)
, σ2
εINT

)
(7)

where y is an (NT × 1) vector (y11, ..., y1T , y21, ..., y2T , ..., yN1, ..., yNT )
′

for i = 1, ..., N countries and

t = 1, ..., T time periods. XP is an (NT ×KP ) matrix of covariates, WP is an (NT ×NKP ) block-

diagonal matrix of the XP
i submatrices, and INT is an (NT × NT ) identity matrix. XP

it,1 is the

intercept and XP
it,k, 2 ≤ k ≤ KP are the other control covariates. The dimensions of the vectors

βP and ηP are respectively (KP × 1) and (NKP × 1). The random intercept is defined by the sum

(βP1 +ηPi,1), the random slope for variable Xi,2 is the sum (βP2 +ηPi,2), etc. The semiparametric additive

function is given by (see also Ruppert et al. (2003))

f
(
XS
)

= XSβS +WSηS =
KS∑
k=1

XS
k β

S
k +

KS∑
k=1

WS
k η

S
k

=
KS∑
k=1

XS
k β

S
k +

KS∑
k=1

qSk∑
l=1

ηSklW
S
kl

(
XS
k

)
with ηSkl ∼ N

(
0, σ2

ηk

)
(8)

XS contains KS covariates that are not already included in XP . The (NT ×qKS

) matrix WS matrix,

with qK
S

=
∑KS

k=1 q
S
k , contains spline basis functions WS

k of the same covariates, using qSk knots and ηS

are the (qK
S×1) spline coefficient vectors. Then, for the covariate XS

k , WS
k =

{
WS
kl

(
XS
k

)
, 1 ≤ l ≤ qSk

}
is a set of a penalized spline functions8 of size qSk and σ2

ηk
is the penalized parameter for the spline

coefficients
{
ηSk1, ..., η

S
kqSk

}
.

Hence,

y ∼ N

(
XPβP +WP ηP +XSβS +WSηS , σ2

εINT

)
∼ N

(
Xβ +Wη, σ2

εINT

)
(9)

where

XP = vec
(
XP

1 , ..., X
P
N

)
, WP = blockdiag

(
XP
i

)
(1≤i≤N)

, β =
(
βP
′
, βS

′
)′

(10)

X =
(
XP , XS

)
, η =

(
ηS
′
, ηP

′
)′

, and W =
(
WS ,WP

)
X and W are the fixed effects and random effects design matrices associated with the fixed effects

and random effects vectors β and η.9 The random effects vector ηP has an unstructured
(
KP ×KP

)
8Penalized splines can be viewed as random effects as one penalizes the spline basis function coefficients by treating

them as a random sample from a multivariate normal distribution to avoid overfitting (see Lee (2016)).
9This terminology is different from what the panel data literature dubs as “fixed” and “random” effects.
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covariance matrix IN ⊗ ΣP , with ⊗ denoting the Kronecker product. The spline coefficient vector

ηS has a block-diagonal covariance matrix σ2
ηk
IqSk where σ2

ηk
is the penalized parameter for the spline

coefficients
{
ηSkl, 1 ≤ l ≤ qSk

}
. Then, the random effects covariance matrix Cov(η) is homoskedastic.

Lee and Wand (2016) used a Bayesian approach to fit the model to the data. The full Bayesian model

(with priors on parameters and hyperparameters) is given by:

y | β, η, σ2
ε ∼ N

(
Xβ +Wη, σ2

εINT
)

(11)

with

β ∼ N
(

0, σ2
βIK

)
, IK = IKP+KS

η | ΣP , σ2
ηk

∼ N

0,

 blockdiag
(
σ2
ηk
IqSk

)
(1≤k≤KS)

0

0 IN ⊗ ΣP




ΣP | ψP1 , .., ψPKP ∼ IW
(
ν +KP − 1, 2νdiag

(
1/ψP1 , .., 1/ψ

P
KP

))
ψPp ∼ IG

(
1
2 ,Ψ

−2
p

)
, 1 ≤ p ≤ KP

σ2
ε | ψε ∼ IG

(
1
2 , 1/ψε

)
ψε ∼ IG

(
1
2 ,Ψ

−2
ε

)
σ2
ηk
| ψηk ∼ IG

(
1
2 , 1/ψηk

)
, 1 ≤ k ≤ KS

ψηk ∼ IG
(

1
2 ,Ψ

−2
ηk

)
where IW (.) and IG (.) denote the inverse-Wishart and inverse-Gamma distributions, respectively.

10,11 The resulting joint posterior distribution does not have a known tractable distribution and the

parameters have to be sampled using MCMC techniques such as Gibbs sampling. But, MCMC can be

computationally prohibitive and do not scale well when applied to massive data sets and/or models

that require storage and inversion of large sparse covariance matrices. Inference based on MCMC can

be very slow for such models and MCMC methods may suffer from poor mixing. Instead we will use

variational Bayesian inference.

2.3. The mean field variational Bayes approximation

Variational Bayesian inference is a scalable and computationally effective method for Bayesian

computation. It uses a deterministic optimization approach to approximate the posterior distribution

(see Bishop (2006) and Blei et al. (2017)). Let us give a quick overview of the mean field variational

Bayes (hereafter MFVB) method and its application to the semiparametric panel data model with

10The standard deviation parameters have independent Half-Cauchy priors σηk ∼ Half-Cauchy(Ψηk ), σε ∼

Half-Cauchy(Ψε) which are equivalent to the following statements: σ2
ηk
∼ IG

(
1
2
, 1/ψηk

)
and ψηk ∼ IG

(
1
2
,Ψ−2

ηk

)
and σ2

ε ∼ IG
(
1
2
, 1/ψε

)
and ψε ∼ IG

(
1
2
,Ψ−2

ε

)
. Transformed cubic O’Sullivan splines with qSk = 25 knots are used

for the estimation of WS . O’Sullivan penalized splines are similar to P-splines, but have the advantage of being a

direct generalization of smoothing splines (see also Wand and Ormerod (2008)). The quantity of spline basis functions

has a minimal effect on the adequacy of (11) and, as Ruppert (2002) showed, the number of knots qSk is not a crucial

parameter because smoothing is controlled by the penalty parameter.
11The values of the hyperparameters are those of diffuse priors with: σ2

β = 105, Ψε = 105, Ψη = 105 and ν = 2. For

the variance-covariance matrix ΣP of the random part ηPip, (p = 1, ...,KP ) of the coefficients, the hyperparameter of the

inverse-gamma distribution of ψPp was shrunk to ΨP = 10. It reduces the variability of the ηPip’s and avoids unplausible

marginal effects
(
βPp + ηPip

)
. We thank Dek Terrell for this suggestion.
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random coefficients. For a parameter vector ϕ that is continuous over the parameter space Φ, Bayes

theorem allows one to define the posterior distribution as:

p (ϕ | y) =
p (ϕ, y)

p (y)
=
p (y | ϕ) p (ϕ)

p (y)
with p (y) =

∫
Φ

p (ϕ, y) dϕ (12)

Let q be an arbitrary density function over Φ. Then, the logarithm of the marginal likelihood satisfies

(see Bishop (2006), Ormerod and Wand (2010)):

log p (y) = log p (y)

∫
Φ

q (ϕ) dϕ =

∫
Φ

q (ϕ) log p (y) dϕ =

∫
Φ

q (ϕ) log

{
p (ϕ, y) /q (ϕ)

p (ϕ | y) /q (ϕ)

}
dϕ

=

∫
Φ

q (ϕ) log

{
p (ϕ, y)

q (ϕ)

}
dϕ+

∫
Φ

q (ϕ) log

{
q (ϕ)

p (ϕ | y)

}
dϕ

= log p (y, q) +KL(q, p) (13)

where KL(q, p) is the Kullback-Leibler divergence between q (ϕ) and p (ϕ | y). Furthermore, log p (y, q)

is a lower bound on the marginal log-likelihood. The Kullback-Leibler divergence becomes

KL(q, p) = Eq(ϕ) [log q (ϕ)]− Eq(ϕ) [log p (ϕ | y)]

= Eq(ϕ) [log q (ϕ)]− Eq(ϕ) [log p (ϕ, y)] + log p (y) (14)

where the last term, log p (y), is a constant. The minimization of the Kullback-Leibler divergence is

thus equivalent to maximizing the scalar quantity,

log p (y, q) = Eq(ϕ)

[
log

(
p (ϕ, y)

q (ϕ)

)]
(15)

which is usually referred as the evidence lower bound (ELBO).

MFVB approximation is analogous to Gibbs sampling for conjugate models (see Bishop (2006),

Ormerod and Wand (2010), Pham et al. (2013), Lee and Wand (2016) and Blei et al. (2017) to

mention a few). The parameters of the approximate distribution are chosen to minimize some mea-

sure of distance (as the Kullback-Leibler divergence) between the approximation and the posterior.

For that, let {ϕ1, ..., ϕM} be a partition of the parameter vector ϕ. The MFVB approximates the

posterior distribution p (ϕ | y) by the product of the q-densities:

q (ϕ) =
M∏
j=1

qj (ϕj) (16)

The optimal q-densities which minimize the Kullback-Leibler divergence are given by

q∗j (ϕj) ∝ exp
[
Eq(−ϕj) {log p (ϕj | rest)}

]
, j = 1, ...,M (17)

where Eq(−ϕj) denotes expectation with respect to
∏
k 6=j qk (ϕk).

rest ≡ {y, ϕ1, ..., ϕj−1, ϕj+1, ..., ϕM} is the set containing the rest of the random vectors in the model,

except ϕj and the distributions (ϕj | rest) are the full conditionals in the MCMC literature. To obtain

the optimal q-densities under product restriction (16), the iterative scheme consists firstly of initializing

q∗j (ϕj), 1 ≤ j ≤M , then of executing cycles through updates

q∗j (ϕj)←
exp

[
Eq(−ϕj) {log p (y, ϕ)}

]∫
exp

[
Eq(−ϕj) {log p (y, ϕ)}

]
dϕj

, 1 ≤ j ≤M (18)

8



until the increase in log p (y, q) is negligible.

We outline the MFVB approach of Lee and Wand (2016) to estimate the Bayesian semiparametric

model with random coefficients. They derive the MFVB approximation of the linear-mixed Gaussian

model-based penalized spline specification (11) on the following factorization:

p (ϕ | y) = p (ϕ1, ..., ϕM | y) = p
(
β, ηP , ηS , ψP , ψη, ψε,Σ

P , σ2
η, σ

2
ε | y

)
(19)

≈ q
(
β, ηP , ηS , ψP , ψη, ψε,Σ

P , σ2
η, σ

2
ε

)
= q

(
β, ηP , ηS

)
q
(
ΣP
)
q
(
σ2
ε

)
q (ψε)

KP∏
k=1

q (ψp)
KS∏
k=1

q (ψηk)
KS∏
k=1

q
(
σ2
ηk

)
= q (β, η) q

(
ΣP
)
q
(
σ2
ε

)
q (ψε)

KP∏
r=1

q (ψp)
KS∏
l=1

q (ψηk)
KS∏
k=1

q
(
σ2
ηk

)
After tedious derivations12, this leads to the following forms of the optimal q-densities

q∗ (β, η) ∼ N
(
µq(β,η),Σq(β,η)

)
q∗
(
ΣP
)
∼ IW

(
ν +N +KP − 1, Bq(ΣP )

)
q∗
(
σ2
ε

)
∼ IG

(
1
2 (T + 1) , Bq(σ2

ε)

)
q∗ (ψε) ∼ IG

(
1, Bq(ψε)

)
q∗
(
σ2
ηk

)
∼ IG

(
1
2

(
qSk + 1

)
, Bq(σ2

ηk
)

)
q∗ (ψηk) ∼ IG

(
1, Bq(ψηk )

)
q∗ (ψp) ∼ IG

(
1
2

(
ν +KP

)
, Bq(ψp)

)

(20)

where the parameters are updated according to Algorithm 1 (see Appendix 1). Convergence in Algo-

rithm 1 is assessed using ELBO on the marginal log-likelihood:

log p (y, q) = Eq(ϕ)

[
log

(
p (ϕ, y)

q (ϕ)

)]
= Eq(ϕ)

 log p
(
y, β, η, ψP , ψη, ψε,Σ

P , σ2
η, σ

2
ε

)
− log q

(
β, η, ψP , ψη, ψε,Σ

P , σ2
η, σ

2
ε

)


which is presented in Appendix 1. Updating parameters is stopped when the maximum ELBO is

reached.13

Variational inference algorithms involve different implementation challenges from sampling algorithms14

but the output is a distribution, rather than a sample and the accuracy scores of the MFVB approxi-

mation (as compared to MCMC) generally exceed 95−97% in most papers on MFVB.15 Last but not

the least, the computing time gains afforded by MFVB algorithms, as compared to Gibbs sampling,

are huge (see for instance Pham et al. (2013) and Lee and Wand (2016)).

12See Lee (2016) for the derivations of the optimal q-densities.
13The ELBO is judged to cease increasing when the tolerance criterion is less than 10−7. This algorithm is part

of the family of coordinate ascent variational inference (CAVI). It iteratively optimizes each factor of the mean field

variational density, while holding the others fixed (see Bishop (2006) and Blei et al. (2017)).
14They are harder, in that they may require lengthy mathematical derivations to determine the update rules. However,

once implemented, variational Bayes can be easier to test, because one can use the standard checks for optimization

code (gradient checking, local optimum tests, etc.). Most variational inference algorithms converge to optima, which

eliminates the need to check convergence diagnostics.
15See for instance Bishop (2006), Ormerod and Wand (2010), Faes et al. (2011), Pham et al. (2013), Ranganath et al.

(2014), Lee and Wand (2016), Blei et al. (2017), Ranganath (2017) and Koop and Korobilis (2018) to mention a few.
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In the supplementary material, we conduct a small Monte Carlo simulation study to assess the perfor-

mance of the MFVB algorithm in terms of Bayesian inferential accuracy and computational speed.16

We compare Algorithm 1 to an MCMC Gibbs sampling of the specification (11) for a couple of (N,T )

= (500, 20), (25, 45) observations. The accuracy of the MFVB approximation is very high since the

accuracy scores17 range from 95% to 97% and the computational speed of MFVB is 1737 (resp. 297)

times faster than the MCMC for N = 500, T = 20 (resp. for N = 25, T = 45). Thus, the MFVB

approach has big advantages, as compared to MCMC technique such as Gibbs sampling, with a re-

markable ability to perform high quality Bayesian inference for large panel data models faster than

ever before.

3. The data

The data come from the World Bank’s World Development Indicators and the OECD national

accounts. The initial data sets are unbalanced with missing values. The percentage of missing values

are between 0 and 26% depending on the variable considered (except for the average number of years

of schooling of the population aged between 25 and 64 years which is a five-years census series). We

focused on OECD countries and dropped variables and years for which the rate of missing values was

larger than 15% (except for the average number of years of schooling). The remaining variables with

missing data were processed using cubic B-splines to obtain satisfactory imputations.18 The final data

set utilizes a balanced panel data set for 23 OECD countries over 45 years (1971-2015) (see Appendix

2 for the description of the variables in the data set).

Figure 1 shows the individual means of the growth rate of GDP (constant 2010 PPP US$). The

average value is 2.36% per year with a quite large range (from 1.57% for Switzerland to 4.10% for

Ireland). But most of the 23 OECD countries have a growth rate lying between 2% and 3%.

Figure 2 shows the time means of the GDP growth rate and reveals a decreasing trend over

16We thank an anonymous referee for this suggestion.
17The MCMC samples of the full Bayesian model (11) are obtained via the RStan package. Some elements of the R

code are available in the supplementary material of Lee and Wand (2016). The accuracy of MFVB approximation for

a generic parameter ϕ is assessed using the accuracy score defined by Faes et al. (2011) as

acc (q∗ (ϕ)) = 1−
1

2

∫ ∞
−∞

∣∣∣q∗ (ϕ)− pMCMC (ϕ | y)
∣∣∣dϕ

where pMCMC (ϕ | y) is an accurate MCMC-based approximation to p (ϕ | y). One proposed estimation of the

pMCMC (ϕ | y) is based on the binned kernel density estimate with the direct plug-in bandwidth (see Wand and Jones

(1995), Wand and Ripley (2009) and Lee and Wand (2016)).
18We have chosen a missingness rate of 15% that allows us to keep the maximum number of observations for the

maximum number of countries. We also tried multiple imputation, using Bootstrap-based EM algorithms proposed

by Honaker and King (2010) and Honaker et al. (2011) but we got implausible values, mainly for the oldest or most

recent years. So, we prefer to use cubic B-spline interpolation. Moreover, our choice of using a cubic spline smoothing

method rather than a multiple imputation method (like MICE or EM) is reinforced by the results of Yoon et al. (2017).

They have compared the most familiar methods for estimating missing data (recurrent neural networks (RNN), cubic

splines, multiple imputation, FIML, EM, ...). They show that RNN, just followed by cubic splines, give the best results

(i.e., smallest rmse) as compared to imputation (MICE (multiple imputation by chained equations) or EM). Increasing

the missingness rate doesn’t change significantly the rmse of RNN-based methods or cubic smoothing while the one of

MICE or EM is increasing faster whatever the individual size and/or the time length.
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the period 1971-2015 with some well-known troughs, most notably the 1974-75 oil crisis, the early

1980s, 1990s and 2000s recessions and the 2008-2009 crisis. The average rate (2.48%) ranges between

6.04% in 1973 and −3.81% in 2009 and, for the entire period, the GDP growth rate fell by 47.99%.

Interestingly, this decrease does not appear to be at a constant rate. This is confirmed by the smooth

local polynomial (of order 6). However, this common nonlinear trend hides different dynamics across

countries. Figure 3 shows that the smooth local polynomial is different across countries. In other

words, this confirms that a common trend is a simplifying hypothesis and that marked heterogeneities

exist between countries.

The scatter plots of Figures B1, B2 and B3 given in the supplementary material19 provide valuable

insights into the expected signs of the relationships between the dependent variable and the explana-

tory variables. The productivity variable (Y/L) is defined as the ratio of the GDP (constant 2010 PPP

US$) and the working age population (15-64 years). The capital intensity variable (K/L) is defined

as the ratio of the physical capital stock (constant 2010 PPP US$) — obtained with the perpetual

inventory method20 — and the working age population (15-64 years). The human capital stock (H) is

defined as the average number of years of schooling of the population aged between 25 and 64 years.

Recall from section 2 that economic efficiency depends on several variables (V ) related to R&D,

innovation, economic policies, etc. Here, we use business sector expenditure on R&D (% of GDP)

for R&D intensity, patent applications, trademark applications, government final consumption ex-

penditure (% of GDP), trade ratio (% of GDP) for openess, inflation, stock market capitalisation

(% of GDP) for financial development, income share held by the highest 10%, for inequality and

life expectancy at birth. Figure B1 shows a positive relationship between growth rate of GDP per

capita and capital intensity while that with human capital appears to be more tenuous. Similarly,

the relationship between growth rate of GDP per capita, R&D intensity or patent applications do not

seem to be of the right sign or significant. Figure B2 shows a strong positive relationship between the

growth rate of GDP per capita and the growth rate of trademark applications and trade, and a strong

negative relationship between the growth rate of GDP per capita and the growth rate of government

expenditures. On the other hand, the link between financial development and GDP is more diffuse. In

Figure B3, the inflation-GDP link is weakly negative while that between inequality and GDP appears

to be significantly increasing. On the other hand, the increase in life expectancy at birth does not

seem to “play” a role in GDP growth.

The graphs show strong heterogeneity as well as different trends across countries and years. We

carry out unit root tests on these variables both in logs and in growth rates. We apply the Pesaran

(2007) cross-sectional augmented IPS (CIPS) test. Like the IPS test, this relaxes the assumption

of a common autoregressive parameter in the augmented Dickey-Fuller (ADF) specification contrary

to other standard tests such as Levin-Lin-Chu, Harris-Tzavalis or Breitung tests. In addition, it

allows cross-section dependence across the countries.21 As cultural, institutional, environmental and

19We report graphs and tables in the supplementary material for the sake for brevity.
20See Appendix 2.
21Cross-sectionally augmented Dickey-Fuller (CADF) test augments the standard Dickey-Fuller regressions with cross-

sectional averages of lagged levels and its first differences.
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other factors make the common autoregressive parameter assumption tenuous for both macro- and

microeconometric panel data sets, the CIPS tests seem appropriate. Pesaran (2007)’s CIPS statistics

test the null hypothesis of panel unit roots against the possibility of some countries being stationary

while others are non-stationary.

Table 1 gives the results of the CIPS tests. For the variables in logs levels, we cannot reject the

null hypothesis of panel unit roots except for the life expectancy (with individual-specific intercepts)

and for trademark applications (with individual-specific intercepts and trend). In contrast, for the

growth rates, we always reject the null hypothesis of panel unit roots. These statistics allow us to

design a growth rate model with the presence of a trend. This supports taking into account the

heterogeneity of the intercepts and especially the slopes of the coefficients of the model. These figures

and statistics show that there are fundamental differences among countries. The motivation of a mixed

fixed- and random-coefficients model is then conditioned on these individual specific effects. Such a

specification allows us to draw inference on certain population characteristics through the imposition

of a priori constraints on the coefficients (see Hsiao (2003), Hsiao and Pesaran (2008), Hsiao (2015)

among others). These different elements lead us to choose a semiparametric specification with random

intercepts and slopes coefficients.

4. The results

The Bayesian Gaussian semiparametric model (with random intercepts and slopes coefficients) (6)

proposed in section 2 may be written as:

∆ log

(
Y

L

)
it

∼ N

KP∑
k=1

(
βPk X

P
it,k + ηPi,kW

P
it,k

)
+ ∆fi

(
t

T

)
, σ2
εINT

 (21)

where ∆fi

(
t

T

)
= βSi

(
t

T

)
+

qSk∑
k=1

ηSik∆WS
ik

(
t

T

)
and WP = blockdiag

(
XP
i

)
(1≤i≤N)

for i = 1, ..., N(= 23), t = 1, ..., T (= 45) where ∆ log yit (≡ log yit − log yit−1) , XP
it,1 is the intercept

and XP
it,k, 2 ≤ k ≤ KP are the other covariates in growth rates for the capital intensity, the human

capital, R&D, patents, trademarks, etc.
(
βPk + ηPi,k

)
is the random coefficient of the covariate Xit,k

for country i while
(
βP1 + ηPi,1

)
corresponds to the random intercept.22 The smoothed function (i.e.,

the semiparametric part of the model)23 consists only of a trend
{
t
T

}T
t=1

=
(

1
T ,

2
T , .., 1

)′
. In view

of Figure 3, we assume that the βS coefficients and the spline coefficients ηSk vary across countries

allowing for country-specific trend effects.24 This model encompasses the case with common trends in

22In our specification y ∼ N

(
XP βP + WP ηP + XSβS + WSηS , σ2

εINT

)
, y is the growth rate of GDP per capita,[

XS ,WS
]

are restricted to the time trends and
[
XP ,WP

]
are the other covariates including the intercept. In our case,

XS contains the N country-specific time trends (i.e., S = N) or a common time trend (i.e., S = 1).

23The smoothed function written in first differences comes from: fi
(
t
T

)
= gi

(
t
T

)
+
∑qSk
k=1 η

S
ikW

S
ik

(
t
T

)
where gi

(
t
T

)
=∑R

r=1 ζi,r
(
t
T

)r
, R = 2, 3, ... Then, ∆gi

(
t
T

)
=

2ζi,2
T

(
t
T

)
+
∑R
r=1O

(
T−r

)
' βSi

(
t
T

)
and ∆fi (t/T ) = βSi (t/T ) +∑qSk

k=1 η
S
ik∆WS

ik (t/T ).

24More specifically: XS = IN⊗
{
t
T

}T
t=1

.
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which fi
(
t
T

)
= f

(
t
T

)
, ∀i. For the spline bases of the smooth function ∆fi(.), we follow the approach

suggested by Baltagi and Li (2002) in the case of first difference models or dynamic models. The

spline bases are approximated with the difference of spline bases : ∆WS
ik

(
t
T

)
≈WS

ik

(
t
T

)
−WS

ik

(
t−1
T

)
.

Thus, it may be asked whether the hypothesis of country-specific trends fi
(
t
T

)
is justified or

whether it is necessary to introduce common trends f
(
t
T

)
, i.e., a function depending on common

coefficients βSi = βS , ∀i, on common spline bases WS
ik = WS

k , ∀i and on common spline coefficients

ηSik = ηSk , ∀i. In order to test common trends versus country-specific trends, we use a bootstrap

nonparametric R2 test inspired from Zhang et al. (2012) (see also Kneip et al. (2012)). It allows

one to test a semiparametric model with random intercept and slope coefficients with common trends

(RCM CT) against a semiparametric model with random intercept and slope coefficients with country-

specific trends (RCM CST).25

Using 100 bootstrap resamples and the Epanechnikov kernel associated with different bandwidths,

results in Table 2 show that we cannot reject the null hypothesis of a semiparametric model with

random intercept and slope coefficients with common trends (RCM CT) since the bootstrapped p-

values are more than 80%. Results are close no matter what bandwidth was used, i.e., whether one

uses the robust or the standard estimators of the Silverman (1986)’s rule of thumb. We have also

applied this test to compare the semiparametric one-way error component models with common trends

(OWEC CT) or with country-specific trends (OWEC CST).26 Table 2 shows that the bootstrapped

p-values are lower than 6% which allow us to strongly reject the null hypothesis of common trends.

An interesting conclusion that can be drawn from these tests is that, with an RCM CT specification,

the assumption of common trends is not rejected, whereas with an OWEC CT specification, the

hypothesis of common trends is strongly rejected in favor of that of country-specific trends. We can

discriminate between these two specifications: random intercept and slope coefficients model with

semiparametric common trends (RCM CT) versus random intercept and constant slope coefficients

model with semiparametric country-specific trends (OWEC CST). Using a bootstrap non parametric

test inspired from Henderson et al. (2008) (see Appendix 4), and running 100 bootstrap resamples,

we cannot reject the null of a random intercept and slope coefficients model with semiparametric

common trends (RCM CT) since the p-value is 100%. Hence, the introduction of random coefficients

associated with common trends seems sufficient to take into account the various trends of GDP per

capita growth rates between countries that have been observed in Figure 3.

Given the tests results, we estimate the random intercept and slope coefficients model with semi-

parametric common trends (RCM CT) both with MCMC and MFVB approximation.27,28 MCMC

samples of size 11, 000 were generated. The first 1, 000 values were discarded as burn-in and the

25See Appendix 3.
26Zhang et al. (2012) estimate the following specification: ∆ log Yit = β0 + β1∆ logLit + β2∆ logKit + β3∆ logHit +

m
(
t
T

)
+αi + εit. It is a constant slope coefficients model with fixed effects and nonparametric common trends m

(
t
T

)
.

They use profile least squares on quarterly interpolated data for 16 OECD countries over 1975Q4 - 2010Q3. They reject

the null hypothesis of common trends at the 10% level.
27We thank an anonymous referee for this suggestion.
28Estimation was conducted using R version 3.4 on a MacBook Pro, 2.8 GHz core i7 16Go MGz DDR3 ram. Some

elements of the R code are available in the supplementary material of Lee and Wand (2016).
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remaining 10, 000 were thinned by a factor of 10. The MCMC approach required longer computa-

tional time (8169 seconds). Table 3 gives the posterior mean, posterior standard deviation, the 95%

credible set and the Gelman-Rubin convergence diagnostic R̂. As R̂ < 1.2 for all the parameters,

convergence has been reached. This Table is provided for information purposes. We will focus on the

results of the MFVB in Table 4. The computational time of the MFVB algorithm was very short.

It took only 10.28 second and stopped only after 175 cycles. The computational speed of MFVB

was 795 times faster than that of MCMC! Convexity properties of the MFVB algorithm guarantees

quick convergence of such an algorithm to at least a local optima (see Figure 4 for the plot of the

ELBO). Table 4 gives the estimated coefficients and the standard deviations for βP , βS and σ2
ε given

by Algorithm 1. In addition, from the optimal q-densities (20), we generated 1, 000 draws of these

parameters and calculated their posterior means, posterior standard deviations and their 95% credible

sets as in typical Bayesian presentation.29 To assess the performance of the MFVB algorithm in terms

of Bayesian inferential accuracy, we have computed the accuracy scores (last column of Table 4). The

accuracy of MFVB approximation is very high since the scores range from 89% to 98%, except for σ2
ε .

Figure 5 gives approximate posterior density functions obtained via MFVB and MCMC. Each pair of

density function corresponds to a model parameter. The accuracy scores (in percent) on the topright

of each plot show the accuracy of MFVB approximation compared against the MCMC benchmark

and confirm MFVB’s suitability for MCMC. In Table 4, we can see that most of the coefficients are

significantly different from zero whatever the risk level, except for R&D intensity, patent and trade-

mark applications and life expectancy growth rates. Elasticity of growth in GDP per capita relative

to the stock of physical capital is around 37% which is quite standard for cross-country comparisons.

The elasticity of growth in GDP per capita relative to human capital is also positive (29%) lead-

ing to decreasing returns to all capital as suggested in (2). The results also show a strong negative

(−24.10%) elasticity of growth in GDP per capita relative to government consumption expenditures.

Also, a positive (4.05%) elasticity of growth in GDP per capita relative to openess. One can note a

negative (−10.46%) elasticity of growth in GDP per capita relative to inflation, as expected. Elasticity

of growth in GDP per capita relative to the financial development is around 1.15%. The effect of the

increase in inequality is significant and positive (5.4%). This positive elasticity may be a surprise at

first sight, but it complements a long list of studies that report positive effects of inequality on GDP in

the most developed countries30. Both dummy variables have a significant and negative effect, with the

29We thank Dek Terrell for this suggestion.
30The previous literature suggests different effects through different channels for the relationship between inequality

and economic growth. Negative effects of inequality on growth may refer to the link between inequality and education

level on the one hand and the effect of education on economic growth on the other hand. Furthermore, inequality

may harm political and economic stability and thus limit the attractiveness of the economy for investment. Likewise,

according to the endogenous fiscal policy theory, greater inequality may become unacceptable to voters. As a result,

their preferences move towards higher taxation and redistribution (see Perotti (1996), Alesina and Perotti (1996)).

However, positive effects of inequality on growth may come from incentives for innovation and entrepreneurship. If the

rates of return on investment (e.g., in education) are high, then inequality may motivate more people to undertake

studies and increase their level of education. Moreover, as savings rates tend to be higher in upper income classes, then

saving and investment and thus economic growth should be higher in more unequal societies, ceteris paribus (see Kaldor
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effect of the shock associated with the 2008-2009 crisis being more important. Last, the parametric

part βS of the common time trend effect is negative (−2.38%), which corresponds roughly to the 2.05

points lost between 1971 (4.278%) and 2015 (2.225%) of the observed time means of the GDP growth

rates, corroborating what has been observed in Figure 2. Figure 6 shows the MFVB spline fit of time

means of growth rates of GDP per capita and the narrow pointwise 95% credible set. It illustrates the

good quality of the adjustment. The estimated MFVB spline fit reveals the nonlinearity of the trend

on the whole period and the economic recovery after the collapse observed in 2009. Figures B4 and B5

in the supplementary material also confirm for some countries the good fit of the growth rates of GDP

per capita even if the profiles of evolution are very different from each other. The semiparametric

approach seems to be well justified.31

So far, we have discussed average marginal effects. One of the advantages of the Bayesian Gaussian

semiparametric model with random coefficients is that it is possible to discriminate between these

marginal effects (βPk + ηPi,k) for the i = 1, ..., N(= 23) OECD countries. Figures B6 to B14 in the

supplementary material plot bar charts of those marginal effects.32 There are significant differences

between countries. Thus the elasticities with respect to the physical capital stock vary between 19.80%

(New Zealand) and 51.70% (Greece). Elasticities with respect to human capital mainly range from

23.38% (Portugal) and 37.82% (New Zealand). Elasticities with respect to public spending range from

−8.38% (Luxembourg) and −13.99% (Norway). The elasticities of growth in GDP per capita relative

to the trade ratio are mainly positive and range between 2.93% (UK) and 9.96% (Belgium), except

for five countries (Ireland (−0.35%), Iceland (−2.13%), Norway (−3.62%), New Zealand (−4.14%)

and especially Greece (−13.41%)). We also observe different elasticities of the growth in GDP per

capita relative to inflation (from −17.29% (New Zealand) to −4.48% (Italy)). The elasticities with

respect to the financial development vary between 0.41% (France) and 3.38% (Greece) just preceded by

Ireland and Luxembourg. The growth of inequality positively affects that of GDP per capita varying

(1957), Lazear and Rosen (1981), Barro (2000)).

Some influential empirical studies (e.g., Cingano (2014), Ostry et al. (2014), see also Neves et al. (2016)) found evidence

in favour of a negative effects of inequality on growth. These studies have in common that they all rely on the System

GMM dynamic panel estimator. But, they suffer from a weak instrument problem in the inequality-growth setting

because lagged differences of inequality have practically no explanatory power for current inequality levels. In fact,

using fixed effects models or Difference GMM estimators, Kolev and Niehues (2016) show that the effect of income

inequality on growth is negative only for less-developed countries and for countries with high levels of inequality, and

rather positive otherwise.
31For information purposes, we give in the supplementary appendix the estimation of the growth rate model for GDP

per capita with random intercept and slope coefficients and semiparametric country-specific trends (see Table B1). This

time, inequality growth and the dummy variable associated with the oil shock become non significant. The elasticity

of growth in GDP per capita relative to human capital seems excessive (50%) leading to an unrealistic labor elasticity

less than 12%. The country-specific time trend effects range between −4.68% (Japan), −3.91% (Greece) and (−1.45%)

(Iceland) with countries like France (−3.51%), Germany (−2.91%) and the UK (−3.02%) being in the middle of the

distribution. For some countries, this trend effect is not significantly different from zero . This is the case of Iceland,

Switzerland and New Zealand. Given the 95% credible sets, it is highly likely that all these country-specific trend

coefficients are not statistically different from each other since all of them overlap with each other. This confirms our

choice of a random intercept and slope coefficients model with semiparametric common trends.

32We give these bar charts for only the variables with significant
(
βPk + ηPi,k

)
coefficients.
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from 2.91% (UK), followed by 3.66% (Switzerland) and 3.81% (Germany) to 7.31% (Spain), 8.42%

(Norway) and 9.29% (Greece). Also notable is that growth rates of GDP per capita for the 23 OECD

countries have not responded in a homogeneous and similar manner to the oil crisis (1973-1975) and

to the 2008-2009 crisis.

As stated in section 2.1, we can estimate the TFP growth based on the estimated discrete growth

equation with ∆ log Âit = ∆ log
(
Y
L

)
it
− α̂i∆ log

(
K
L

)
it
− γ̂i∆ log

(
H
L

)
it

or by summing the estimated

technical innovation change ∆ log Â1,it =
J∑
j=1

ω̂∗ij∆ log Vijt and the estimated technical efficiency

change ∆ log Â2,it = β̂
S

i

(
t
T

)
+
∑qSk
k=1 η̂

S
ik∆WS

ik

(
t
T

)
. Figure B15 in the supplementary material gives

the boxplot of the TFP growth for the 23 OECD countries. The mean value for all 23 OECD countries

is around 1.097%. In mean, countries with the highest TFP growth rates are Norway, Ireland, Japan

and Iceland, while countries with the lowest TFP growth rates are Italy, Greece, Spain and Switzer-

land. But the time variabilities, represented by the intervals between the lower and upper whiskers,

differ greatly across countries. Countries such as Australia, Canada, France, the Netherlands, the

United Kingdom and the United States have experienced relatively lower time variability of TFP

growths than countries such as Greece, Ireland, Luxembourg or Portugal. Some extreme (outliers)

observations (located outside the fences) underline the sensitivity of the TFP during some periods:

strong positive growth for the years around 1985 and strong negative growth after the first oil shock

and for the 2008-2009 crisis. These temporal evolutions of the TFP growth are traced in Figure B16

for some countries. The change in technical efficiency (Figure B17) has experienced a decrease of

−0.053% over 1971-2015. This result is close to those of Sickles et al. (2015) or Duygun et al. (2017)

who found a −0.06% decrease for 24 OECD countries over the period 1970-2000. The boxplot of

the change in technical innovation (economic efficiency change) looks a lot like the TFP (see Figure

B18). The mean value for all 23 OECD countries is around 1.30% which is higher than the value

(0.84%) found by Sickles et al. (2015) on a shorter period. As compared to the TFP growth (Figure

B15), we can note a quite similar ranking of the countries with the highest changes in technical inno-

vation namely, Ireland, Iceland, Japan and United Kingdom, and countries with the lowest changes

in technical innovation namely, Spain, Greece, Italy and Switzerland. Again, there are fairly strong

time variations of the change in technical innovation for all 23 OECD countries. Some of them are

illustrated in Figure B19. One of the flexibilities of the MFVB approach is therefore to easily estimate

this TFP growth as well as the changes in the technical and innovation efficiencies. This sensitivity

applied to covariates adds to the richness of the random coefficients model.33

Compared to other panel data studies on growth empirics, our approach has several advantages.

First, it rejects the too restrictive assumption of the implicit hypothesis that all the slope coefficients

33In the supplementary material, we give the estimation of a random intercept and slope coefficients model with

nonparametric common trends i.e., ∆f (t/T ) =
∑qSk
k=1 η

S
k∆Wk (t/T ). Even if this model seems to fit well the time

means of the growth rate of GDP per capita (see Figure B20), some variables have now no effect (see Table B2). This is

the case of inflation and the dummy 1973-1975 in addition to the already irrelevant variables in Table 4. Moreover, the

marginal effects also change as compared to those previously estimated (see Figures B21 to B24). The introduction of

a semiparametric specification for common trends therefore seems more relevant than the use of a pure nonparametric

specification.
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are in fact identical for all countries. It allows one to estimate country-specific intercepts and slope

coefficients as advocated by Islam (1995), Pesaran et al. (1999), Eberhardt and Teal (2011), Durlauf

et al. (2005), among others. Second, the use of a Bayesian linear-mixed Gaussian model-based pe-

nalized spline specification allows us flexibility in the functional form of the common trends. In a

field such as growth empirics, such a semiparametric specification can be promising. We provide a

Bayesian approach that allows one to obtain easily computable estimators. In the class of approximate

Bayesian computation methods, the mean field variational Bayes approximation is important for the

researcher’s toolkit. It gives results faster than the usual MCMC methods which can take in some

cases hours or days to achieve the same results.34

5. Conclusion

This paper proposed semiparametric estimation of the relationship between growth rates of GDP

per capita, capital intensity, human capital and other covariates including patent and trademark

applications, government consumption expenditures, and trade, to mention a few. This is estimated

using a panel of 23 OECD countries observed over the period 1971− 2015. We cannot reject the null

hypothesis of a random intercept and slope coefficients specification with semiparametric common

trends. The motivation of a mixed fixed- and random-coefficients model has been conditioned on

these country specific effects. Following a recent approach proposed by Lee and Wand (2016), we have

specified and estimated a mean field variational Bayes semiparametric model with random coefficients

for this panel of countries. This approach has numerous advantages as compared to the MCMC

technique such as Gibbs sampling. Results reveal different marginal effects across countries. The

inclusion of random coefficients in a mixed model-based penalized spline basis function enriches the

estimates and their interpretations, given the large diversity of responses across variables and countries.

34The application on children’s birthweight of Lee and Wand (2016) took 4 days with MCMC and few minutes with

MFVB.
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6. Appendix

6.1. Appendix 1 - The mean field variational Bayes algorithm and the variational evidence lower bound

Algorithm 1. Mean field variational Bayes algorithm (see Lee and Wand (2016), pp. 882).

1. Initialize µq(1/σ2
ε) > 0, µq(1/ψε) > 0, µq(1/σ2

ηk
) > 0, µq(1/ψηk) > 0, 1 ≤ k ≤ KS , µq(1/ψp) > 0,

1 ≤ p ≤ KP , Mq((ΣP )−1) positive definite.

2. Cycle through updates:

(a) R← 0, r ← 0, for i = 1, ..., N :

Gi ← µq(1/σ2
ε)

(
CSi
)′
XP
i ;Hi ←

[
µq(1/σ2

ε)

(
XP
i

)′
XP
i +Mq((ΣP )−1)

]−1

with CSi =
[
XS
i , W

S
i

]
R← R+GiHi (Gi)

′
; r ← r +GiHi

(
XP
i

)′
yi

(b) Σq(β,ηS) ←

µq(1/σ2
ε)

(
CS
)′
CS +

 σ−2
β IK 0

0 blockdiag
(
µq(1/σ2

ηk
)IqSk

)
(1≤l≤L)

−R

−1

(c) µq(β,ηS) ← µq(1/σ2
ε)Σq(β,ηS)

[(
CS
)′
y − r

]
with CS =

[
XS , WS

]
(d) for i = 1, ..., N :

Σq(ηPi ) ← Hi +Hi (Gi)
′
Σq(β,ηS)GiHi

µq(ηPi ) ← Hi

[
µq(1/σ2

ε)

(
XP
i

)′
yi − (Gi)

′
µq(β,ηS)

]

Bq(σ2
ε) ← µq(1/ψε) + 1

2


‖ D ‖2 +tr

[(
CS
)′
CSΣq(β,ηS)

]
+
∑N
i=1 tr

[(
XP
i

)′
XP
i Σq(ηPi )

]
−2µ−1

q(1/σ2
ε)

∑N
i=1 tr

[
GiHi (Gi)

′
Σq(β,ηS)

]


with D = y − CSµq(β,ηS)


XP

1 µq(ηP1 )
...

XP
Nµq(ηPN)


(e) µq(1/σ2

ε) ← 1
2 (T + 1) /Bq(σ2

ε); µq(1/ψε) ← 1/
[
µq(1/σ2

ε) + Ψ−2
ε

]
(f) for k = 1, ...,KP :

Bq(ψp) ← ν
(
Mq((ΣP )−1)

)
kk

+ Ψ−2
p ; µq(1/ψp) ← 1

2

(
ν +KP

)
/Bq(ψp)

Bq(ΣP ) ←
∑N
i=1

(
µq(ηPi )µ

′
q(ηPi )

+ Σq(ηPi )

)
+ 2νdiag

(
µq(1/ψP1 ), ..., µq

(
1/ψP

KP

))
(g) Mq((ΣP )−1) ←

(
ν +N +KP − 1

)
B−1
q(ΣP )

(h) for k = 1, ...,KS :

µq(1/ψηk) ← 1/
[
µq(1/σ2

ηk
) + Ψ−2

ηk

]
; Bq(ψηk ) ← 1/µq(1/ψηk)

µq(1/σ2
ηk

) ←
qS+1

2µ
q(1/ψηk)

+‖µ
q(ηSk )

‖2+tr

[
Σ
q(ηSk )

] ; Bq(σ2
ηk

) ← 1
2

(
qSk + 1

)
/µq(1/ψηk)

(i) for i = 1, ...,M :

Λq(β,ηS ,ηPi ) ≡ Eq

 β

ηS

− µq(β,ηS)

(ηPi − µq(ηPi )

)′← Σq(β,ηS)GiHi

Σq(β,ηS ,ηPi ) ≡ Cov


β

ηS

ηPi

←
 Σq(β,ηS) Λq(β,ηS ,ηPi )

Λ′
q(β,ηS ,ηPi )

Σq(ηPi )
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(j) Σq(β,η) ←

 Σq(β,ηS) Λq(β,ηS ,ηP1 ,...,ηPN)

Λ′
q(β,ηS ,ηP1 ,...,ηPN)

Σq(ηP1 ,...,ηPN)


until the increase in the ELBO log p (y, q) is negligible.

The variational lower bound on the marginal log-likelihood has the following expression (see Lee

and Wand (2016), pp. 893):

log p (y, q) =
1

2
KP

(
ν +KP − 1

)
log 2ν − T

2
log 2π −

(
1

2
KP +KS + 1

)
log π

−P
2

log σ2
β −

σ−2
β

2

[
‖ µq(β) ‖2 +tr

[
Σq(β)

]]
+

1

2

(∑KS

k=1 q
S
k + P +N

)
−1

2

∑N
i=1 log

∣∣∣µq(1/σ2
ε)

(
XP
i

)′
XP
i +Mq((ΣP )−1)

∣∣∣− 1

2
log
∣∣∣Σ−1
q(β,ηS)

∣∣∣
− log

(
CKP ,ν+KP−1

)
+ log

(
CKP ,ν+N+KP−1

)
− 1

2

(
ν +N +KP − 1

)
log
∣∣Bq(ΣP )

∣∣
+
∑KS

k=1 log Γ

(
qSk + 1

2

)
− 1

2

∑KS

k=1

(
qSk + 1

)
logBq(σ2

ηk
) +KS log Γ (N (T + 1))

−1

2
(T + 1) logBq(σ2

ε) −
∑KP

p=1 log Ψp +KP log Γ

(
qS + ν

2

)
+
∑KP

p=1 νMq((ΣP )−1)µq(1/ψp) −
1

2

(
KP + ν

)∑KP

p=1 logBq(ψp)

−
∑KS

k=1

[
logψηk + logBq(ψηk) + µq(1/ψηk)µq(1/σ2

ηk
)

]
+ logψε

− logBq(ψε) + µq(1/ψε)µq(1/σ2
ε)

where Ca,b is the normalizing factor: Ca,b = 2ab/2πa(a−1)/4
∏a
j=1 Γ

(
b+1−j

2

)
and Γ is the Gamma

function.

6.2. Appendix 2 - Definition of the variables

Variable Description

GDP (Y ) GDP (constant 2010 purchasing power parities (PPP) US$)

labor (L) working age population (15-64 years)

physical capital (K) physical capital (constant 2010 PPP US$) obtained

from perpetual inventory method (see below)

human capital (H) average number of years of schooling of the population

aged between 25 and 64 years

RD intensity business sector expenditure on R&D (% of GDP)

patents patent applications, residents

trademark trademark applications, total

gov.expenditure general government final consumption expenditure (% of GDP)

trade ratio trade (% of GDP)

inflation growth rate of private final consumption deflator

financial development stock market capitalisation (% of GDP)

inequality income share held by the highest 10%

life expectancy life expectancy at birth (years)
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The net capital stock at the beginning of period t, Kt, can be written as a function of the net

capital stock at the beginning of the previous period t − 1, Kt−1, gross investment in the previous

period, It−1, and consumption of fixed capital, Dt−1: Kt = Kt−1 + It−1−Dt−1. Assuming geometric

depreciation at a constant rate δ, we can rewrite the capital stock as: Kt = (1− δ)Kt−1 + It−1.

Following Griliches (1980), De la Fuente and Domenech (2006) and Berlemann and Wesselhöft (2012),

the estimation of the initial capital stock can be written as: Kt−1 = It/ (gI + δ) where gI is the growth

rate of gross investment (gross fixed capital formation (constant 2010 PPP US$) in the database). It

relies on the assumption that the economy under consideration is outside its long-term equilibrium.

When gI is replaced by gDGP , the growth rate of GDP, the economy is supposed to be at its steady

state. In our case, we fix gI = 0.04 and the depreciation rate at δ = 0.15. This depreciation rate is

standard in recent empirical studies and even undervalued for some R&D intensive industries (such

as telecommunications, chemical and pharmaceutical industry, electrical equipment, etc.) where the

R&D investment depreciation rate is estimated at around 35− 40% per year (see Li (2012)).

6.3. Appendix 3 - A bootstrapped nonparametric test for common trends

The idea behind the test is the following. Under the null hypothesis H0 of common trends, ξ̂it is

a consistent estimate for the augmented residuals ξit = εit + ηP1i where ηP1i is the specific effect coming

from the random intercept (βP1 + ηP1i). Under H0, there is no time trend in {ξit}Tt=1 for each cross-

sectional unit i. Nevertheless, under H1, ξit includes an individual-specific time trend component

fi(t/T ). This motivates us to consider a residual-based test for common trends in the spirit of the

bootstrap version of the nonparametric test of Zhang et al. (2012).35 For each cross-section i, they

propose to run the nonparametric regression of
{
ξ̂it

}T
t=1

on {t/T}Tt=1 : ξ̂it = mi (t/T ) + νit. Under

H0, we have mi (τ) = 0 for τ ∈ [0, 1], then
{
ξ̂it

}T
t=1

contains no useful trending information so that

the nonparametric R2 should be close to 0 for each individual i. Zhang et al. (2012) develop the

asymptotic distribution of a normalized nonparametric R2 which follows a N (0, 1) under the null

hypothesis and a sequence of Pitman local alternatives. The procedure is the following:

1. obtain the augmented residuals ξ̂it = ε̂it + η̂P1i where ε̂it = yit −
(
XP
it β̂

P
+WP

it η̂
P
i + f̂(t/T )

)
where β̂

P
, η̂Pi and f̂ are obtained from the MFVB approximation of this restricted model and

calculate the test statistics ΓNT (see below).

2. Obtain the bootstrap error ξ∗t by random sampling with replacement from
{
ξ̂j , j = 1, 2, ..., T

}
where ξ̂j =

(
ξ̂1j , ..., ξ̂Nj

)′
.

3. Generate the bootstrap analogue of yit by holding XP
it , W

P
it , XS

it, W
S
it as fixed: y∗it = XP

it β̂
P

+

WP
it η̂

P
i + f̂(t/T )+ ξ∗it for i = 1, ..., N and t = 1, ..., T where ξ∗it is the ith element in the N -vector

ξ∗t .

4. Based on the bootstrap resample
{
y∗it, X

P
it , W

P
it , XS

it, W
S
it

}
, run the MFVB approximation of

the model to obtain the bootstrapped residuals
{
ξ̂
∗
it

}
.

35Zhang et al. (2012) estimate the following fixed effects specification: yit = Xitβ+m
(
t
T

)
+αi+ εit. It is a constant

intercept and slope coefficients model with (correlated) fixed effects and nonparametric common trends m
(
t
T

)
. They

use profile least squares to estimate this semiparametric specification.
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5. Based on
{
ξ̂
∗
it

}
, compute the bootstrap test statistics Γ

∗
NT defined analogously to ΓNT but with

ξ̂it being replaced by ξ̂
∗
it.

6. Repeat step 2-5 for B times and index the bootstrap statistics as
{

Γ
∗
NT,l

}B
l=1

.

7. The bootstrap p-value is calculated by p∗ = B−1
B∑
l=1

1
{

Γ
∗
NT > ΓNT

}
where 1 {.} is the indicator

function.

The test statistics ΓNT proposed by Zhang et al. (2012) is given by:

ΓNT =
1√

Ω̂NT

√
b

N

N∑
i=1

ESSi − ξ̂
′
iMQMξ̂i

TSSi/T

where

Ω̂NT =
2b

T 2

∑
1≤t6=s≤T

α2
ts

(
1

N

N∑
i=1

N∑
j=1

ρ̂2
ij

)
, ρ̂ij = ω̂ij/ (σ̂iσ̂j)

ω̂ij = T−1
T∑
t=1

(
ξ̂it − ξ̂i

)(
ξ̂jt − ξ̂j

)
, σ̂2

i = T−1
T∑
t=1

(
ξ̂it − ξ̂i

)2

, ξ̂i = T−1
T∑
t=1

ξ̂it

with

TSSi = ξ̂
′
iMξ̂i, ESSi = ξ̂

′
i

(
H − JT

)
ξ̂i, M =

(
IT − JT

)
, JT = ιT ι

′
T /T

αts = THts − 1 , Q = T−1diag(α11, ..., αTT )

and

H =

1∫
0

H (τ) dτ, τ ∈ [0, 1] , H (τ) = Vb(τ)z
[1]
b (τ)

(
z

[1]
b (τ)′Vb(τ)z

[1]
b (τ)

)−1

z
[1]
b (τ)′Vb(τ)

z
[1]
b =

(
z

[1]
b,1, ..., z

[1]
b,T

)′
, z

[1]
b,t =

(
1,
t/T − τ

b

)
with Vb(τ) = diag(wb,1 (τ) , ..., wb,T (τ))

where wb,t (τ) = wb (t/T − τ) /λt/T and λt/T =

∫ 1

0

wb (t/T − s) ds

where wb (.) = w (./b) /b and ιT is a (T × 1) vector of ones. w (.) is the Epanechnikov kernel w (v) =

0.75
(
1− v2

)
1 {| v |≤ 1} and b is the bandwidth with v = x−τ and x = {t/T}Tt=1. Zhang et al. (2012)

show that λt/T = 1 for t/T ∈ [b, 1− b] and is larger that 1/2 otherwise.

When implementing density estimates, the choice of the kernel w (.) and the bandwidth b are essential.

Popular choices are based on Epanechnikov, Parzen or Tukey windows and b is based on the integrated

square error or its expected value. Generally, b = φT−1/5 where φ = 1.06σx or φ = 0.79R or φ = 0.9A

where σx is the standard deviation of the series x = {t/T}Tt=1, R is the interquartile range of x

and A = min (σx, R/1.34). In our case, σx =
√

T 2−1
12T 2 ' 1/

√
12. So, Zhang et al. (2012) choose

b = c
√

1/12T−1/5 with c = 0.5, 1.0 or 1.5. We can also define the bandwidth parameter b using

unbiased cross-validation techniques (see Pagan and Ullah (1999)).

6.4. Appendix 4 - A bootstrapped nonparametric specification test for RCM CT against OWEC CST

The idea behind the test is the following. We use H0 to denote the null hypothesis of the random

intercept and slope coefficients model with semiparametric common trends (RCM CT), against H1:
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the corresponding alternative is the random intercept and constant slope coefficients model with

semiparametric country-specific trends (OWEC CST). H0 : yit = βP1 +XP
itβ

P +WP
it η

P
i + f(t/T ) + ηP1i + εit

H1 : yit = βP1 +XP
itβ

P + fi(t/T ) + ηR1i + εit

Let ŷit = β̂
P

1 +XP
it β̂

P
+WP

it η̂
P
i + f̂(t/T ) and ỹit = β̃

P

1 +XP
it β̃

P
+ f̃i(t/T ) the fitted values of yit under

the null H0 and the alternative H1. The test statistic for testing H0 is:

JN =
1

NT

N∑
i=1

T∑
t=1

(ŷit − ỹit)2

Under H0 (resp. H1), JN converges to 0 in probability (resp. to a positive constant). Since it is well

known that asymptotic theory does not provide good approximations for nonparametric kernel-based

tests in finite sample applications, we use the following bootstrap procedure inspired from Henderson

et al. (2008) to approximate the finite sample null distribution of JN .

1. Let ξ̂P,it = η̂P1i + ε̂it, the augmented residuals from the estimation of the random intercept

and slope coefficients model with semiparametric common trends (RCM CT). Obtain the boot-

strap error ξ∗P,i by random sampling with replacement from
{
ξ̂P,i, i = 1, 2, ..., N

}
where ξ̂P,i =(

ξ̂P,i1, ..., ξ̂P,iT

)′
.

2. Generate the bootstrap analogue of yit by holding XP
it , W

P
it , XS

it, W
S
it as fixed: y∗it = β̂

P

1 +

XP
it β̂

P
+WP

it η̂
P
i + f̂(t/T ) + ξ∗P,it for i = 1, ..., N and t = 1, ..., T where ξ∗P,it is the tth element in

the T -vector ξ∗P,i.

3. Based on the bootstrap resample
{
y∗it, X

P
it , W

P
it , XS

it, W
S
it

}
, first run the MFVB approximation

of the RCM CT model to obtain the bootstrapped fitted values residuals {ŷ∗it} . Second, run

the MFVB approximation of the OWEC CST model to obtain the bootstrapped fitted values

residuals {ỹ∗it} .

4. Based on {ŷ∗it} and {ỹ∗it}, compute the bootstrap test statistics J∗N defined analogously to JN

but with ŷit and ỹit being replaced by {ŷ∗it} and {ỹ∗it}.

5. Repeat step 2-4 for B times and index the bootstrap statistics as
{
J∗N,l

}B
l=1

.

6. The bootstrap p-value is calculated by p∗ = B−1
B∑
l=1

1
{
J∗N,l > JN

}
where 1 {.} is the indicator

function.
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Table 1 - CIPS unit root tests.

CIPS tests logs growth rate

intercepts intercepts+trend intercepts intercepts+trend

Y/L -1.749 -1.974 -4.729 -4.875

K/L -0.806 -1.209 -2.765 -2.833

human capital -1.118 -1.517 -3.736 -4.218

R&D intensity -1.405 -1.112 -3.827 -3.909

patent applications -1.849 -1.869 -5.453 -5.840

trademark applications -1.827 -2.873 -5.997 -6.191

government expenditures -2.045 -2.208 -5.138 -5.170

trade ratio -2.207 -2.452 -5.252 -5.297

financial development -2.185 -2.626 -5.857 -6.001

inflation -3.568 -3.544

inequality 0.355 -1.674 -4.787 -5.240

life expectancy -2.548 -2.563 -6.056 -6.320

critical values:

CIPS with individual-specific intercepts: -2.23 (1%), -2.11 (5%), -2.04 (10%)

CIPS with individual-specific intercepts and trend: -2.73 (1%), -2.61 (5%), -2.54 (10%)

Table 2 - Bootstrapped p-values of the nonparametric test for common trends.

bandwidth b = φT−1/5 p-value p-value

H0 : RCM CT H0 : OWEC CT

vs H1 : RCM CST vs H1 : OWEC CST

φ = 0.5σx (b = 0.0067) 0.82 0.04

φ = 0.9A (b = 0.1213) 0.89 0.01

φ = σx (b = 0.1348) 0.88 0.04

φ = 0.79R (b = 0.1803) 0.88 0.02

φ = 1.5σx (b = 0.2022) 0.81 0.06

UCV (b = 0.7782) 0.84 0.03

√
TR is the interquartile range of x = {t/T} , A = min (σx, R/1.34) with σx = 1/ 12 being the standard deviation oft=1

the series x. UCV uses unbiased cross-validation to select the bandwidth.

RCM CT (resp. RCM CST): random intercept and slope coefficients with semiparametric common trends (resp.

country-specific trends).

OWEC CT (resp. OWEC CST) : random intercept and constant slope coefficients with semiparametric common trends

(resp. country-specific trends).
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Table 3 - MCMC results for growth rate model for GDP per capita with semiparametric common trend.

∆ log(Y/L) post.mean post. sd 2.5% 97.5% R̂

intercept 0.0302 0.0025 0.0252 0.0351 0.9994

∆ log(K/L) 0.3704 0.0342 0.3072 0.4416 0.9992

∆ log(human capital) 0.3020 0.0901 0.1337 0.4852 0.9991

∆ log(R&D intensity) -0.0097 0.0111 -0.0310 0.0128 0.9990

∆ log(patents) -0.0073 0.0044 -0.0154 0.0014 0.9997

∆ log(trademark) 0.0061 0.0046 -0.0032 0.0146 1.0007

∆ log(gov.expenditures) -0.2406 0.0261 -0.2937 -0.1893 0.9997

∆ log(trade ratio) 0.0405 0.0160 0.0110 0.0735 1.0002

inflation -0.1050 0.0254 -0.1570 -0.0547 0.9993

∆ log(financial dvlpt.) 0.0115 0.0030 0.0056 0.0170 0.9994

∆ log(inequality) 0.0545 0.0344 -0.0102 0.1218 0.9995

∆ log(life expectancy) -0.1053 0.1464 -0.3866 0.1678 0.9991

dummy 1973-1975 -0.0090 0.0035 -0.0159 -0.0019 1.0017

dummy 2008-2009 -0.0133 0.0039 -0.0208 -0.0062 0.9992{ }
t T

common trend
T t=1

-0.0237 0.0027 -0.0291 -0.0184 0.9993

σ2
ε × 10−3 0.1764 0.0087 0.1598 0.1937 0.9990

Table 3 gives posterior means, posterior standard deviations, 95% credible sets and Gelman-Rubin convergence diag-

nostics for βP , βS and σ2
ε .
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Table 4 - MFVB results for growth rate model for GDP per capita with semiparametric common trend.

∆ log(Y/L) coeff. sd post.mean post.sd 2.5% 97.5% accuracy

scores (%)

intercept 0.0300 0.0023 0.0300 0.0024 0.0251 0.0346 94

∆ log(K/L) 0.3710 0.0296 0.3716 0.0303 0.3151 0.4280 92

∆ log(human capital) 0.2926 0.0733 0.2916 0.0755 0.1438 0.4332 89

∆ log(R&D intensity) -0.0088 0.0106 -0.0090 0.0106 -0.0293 0.0113 94

∆ log(patents) -0.0074 0.0046 -0.0072 0.0047 -0.0166 0.0019 96

∆ log(trademark) 0.0062 0.0047 0.0063 0.0047 -0.0024 0.0156 98

∆ log(gov.expenditures) -0.2409 0.0223 -0.2408 0.0226 -0.2856 -0.1964 93

∆ log(trade ratio) 0.0405 0.0152 0.0408 0.0154 0.0100 0.0723 95

inflation -0.1046 0.0225 -0.1059 0.0222 -0.1501 -0.0622 94

∆ log(financial dvlpt.) 0.0115 0.0030 0.0115 0.0029 0.0058 0.0174 98

∆ log(inequality) 0.0543 0.0322 0.0540 0.0320 -0.0075 0.1177 94

∆ log(life expectancy) -0.1023 0.1398 -0.1062 0.1389 -0.3755 0.1739 95

dummy 1973-1975 -0.0090 0.0037 -0.0090 0.0038 -0.0164 -0.0020 98

dummy 2008-2009 -0.0132 0.0036 -0.0133 0.0035 -0.0199 -0.0066 96{ }
t T

common trend
T t=1

-0.0238 0.0026 -0.0238 0.0026 -0.0289 -0.0188 94

σ2
ε × 10−3 0.1702 0.1702 0.0075 0.1561 0.1858 71

Table 4 gives estimated coefficients, standard deviations, posterior means, posterior standard deviations, 95% credible

sets and accuracy scores for βP , βS and σ2
ε .
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Figure 1. Country means of the growth rate of GDP (23 OECD countries, 1971-2015).



Figure 2. Time means of the growth rate of GDP (23 OECD countries, 1971-2015).

Figure 3. Time means of the growth rate of GDP for some OECD countries (1971-2015).
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Figure 5. MCMC and MFVB approximate posterior density functions and accuracy scores (in percent) for βP , βS and

σ2
ε .
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Figure 6. Time means of the MFVB spline fit of the growth rate of GDP per capita.
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