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a b s t r a c t

Ray tracing technique is an important tool not only to forward but also for inverse problems inGeophysics,
which most of the seismic processing steps depend on. However, implementing ray tracing codes can be
very time consuming. This article presents a computer library to trace rays in 2.5D media composed by a
stack of layers. The velocity profile inside each layer is such that the eikonal equation can be analytically
solved. Therefore, the ray tracing within such profile is made fast and accurate. The great advantage
of an analytical ray tracing library is the numerical precision of the quantities computed and the fast
execution of the implemented codes. Even though ray tracing programs exist for a long time, for example
the seis88 package by Červený, most of those programs use a numerical approach to compute the ray.
Regardless of the fact that numerical methods can solvemore general problems, the analytical ones could
be part of a more sophisticated simulation process, where the ray tracing time is completely relevant. We
demonstrate the feasibility of our codes using several examples (Miqueles et al., 2013) [1]. The library can
also be used for other applications besides seismic, e.g., optics and tomography.

Program summary

Program title: art

Catalogue identifier: AEQK_V1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEQK_V1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html

No. of lines in distributed program, including test data, etc.: 149519

No. of bytes in distributed program, including test data, etc.: 2609188

Distribution format: tar.gz

Programming language: C.

Computer:Workstations and PCs.

Operating system: Linux and Windows.

RAM: ≥2 Mb

Classification: 2.9.

External routines: LibConfuse (http://www.nongnu.org/confuse/).
To run the examples included in the distribution file, gengetopt (http://www.gnu.org/software/
gengetopt/gengetopt.html), Seismic Unix (http://www.seismicunix.com/w/Main_Page), gnuplot (http://
www.gnuplot.info/) and SU.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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Nature of problem:
Fast ray tracing algorithms for Seismic simulation and problems related to Wave propagation and/or
Optics.
Solution method:
Method of characteristics for the eikonal equation, at a layered media, with analytical velocities.
Running time:
Milliseconds to 3 min, depending on the data size

© 2013 Published by Elsevier B.V.

1. Introduction

The seismic image problem of determining the approximate subsurface model of the earth from a set of seismic measurements, is a
well known task of the geophysics community through the years. Most of themethods used in practice assume that a priori macro-velocity
model between the subsurface reflectors is approximately known. To validate the assumed reference velocity, computer simulations are
made, and if the resultant experiments agree with real ones, then within a reasonable tolerance, the velocity is a good approximation.

If not, we estimate another macro-velocity and repeat this process iteratively until we get a desired accuracy. The process to validate a
given reference velocity model is intrinsically related to the propagation of elastic waves along a stratified media, and such waves always
concentrate a great amount of energy in a three-dimensional curve in the euclidean space, that is called a ray.

Hence, whenever a synthetic model of the subsurface is given, a basic step in seismic surveying is the ray tracing, which consists in
the determination of the raypath along the propagation medium. Sometimes, practical experimentations have shown that there is a great
velocity variation over short time intervals, so that is reasonable to think in a continuous variation of the velocitywith respect to depth and
distance within a seismic layer (the space bounded by subsurface reflectors). As a consequence, sometimes we can consider the velocity
field formulated through an analytical expression; and with a physical meaning. Sometimes, this is exactly the case when the velocity is
constant through the medium (see Fig. 1).

When properly chosen, the analytical formulation of the velocity field also allows the analytical determination of the raypath and
other related quantities, either kinematic or dynamical, like the traveltime and the amplitude associated to the elastic wave. This is a
good motivation to build a computer library for ray tracing. The great advantage of an analytical ray tracing library (art for short) is the
numerical precision of the quantities computed and the fast execution of the implemented codes. Although ray tracing programs already
exist for a long time, for example the Seis package revisited in [2] and the Software Norsar R⃝ [3], a different approach is commonly used,
with numerical methods to compute the ray. A short article for artwas presented in [1].

A straightforward and powerful application of ray tracing technique is the computation of seismic records associated to a common-
source or common-receiver seismic event. Although this is not the primary intention of this article, we provide an easy-to-use tool for
computing further quantities, e.g. the seismic trace. Indeed, since the software provides the traveltime and the reflectivity upon each
interface, a simple convolution will provide an impulse.

In Section 2 we review the mathematical theory for ray tracing. In Section 3, we describe the seismic mediumwhere the associated ray
equations have an analytical solution. In Section 4 we define the C-library art and Sections 5 and 6 presents several examples on how
this library can be used at different kinds of seismic applications.

2. Ray trace system

We now briefly summarize the mathematical theory for seismic ray tracing. For simplicity, the main equations are depicted in Table 1.
For further reference, we refer to such table as the symbol T[1].

Seismic waves propagating through an elastic and isotropic medium obeys the elastodynamic wave equation [4] given at T[1].(A),
where u is the displacement vector, ρ is the density and {λ, µ} are the Lamé parameters. Assuming a high frequency solution for T[1].(A),
it is easy to show that propagating waves are approximately given by a superposition of two other waves, the compressional scalar wave
θ = ∇·u and the shear vectorial waveΩ = ∇×u, also called P and Swaves respectively (Helmholtz decomposition Theorem, see [5]). The
ray-theory assumes that the zeroth-order approximation T[1].(B) is a high-frequency solution (WKJB approximation) of T[1].(A), where U
is a complex-valued vectorial amplitude function, F is a high-frequency signal and T is the real-valued traveltime function. So, to estimate
the zeroth-order solution [6], we need to compute the traveltime and amplitude functions.

After several assumptions and operations with the ansatz T[1].(B) and the elastodynamic equation, it can be shown [7,4] that the
traveltime obeys the so-called eikonal equation T[1].(C), where p = ∇T is the slowness vector and v is the wave velocity. Usually, we have
to solve the eikonal equation for P and S waves separately, so we denote v = α for the first case and v = β for the second. For a better
understanding on how both α and β are related to the Lamé parameters, see [8].

We are most concerned with pressure waves, where the displacement vector is perpendicular to the wavefront [4,9] and thus, we
can write U(x) = α(x)A(x)p. Shear waves propagate in the parallel wavefront direction, we write U(x) = B(x)e1(x) + C(x)e2(x), for a
particular choice of polarization vectors {e1, e2}. In both cases, we need to compute the scalar amplitude functions A, B and C . In the case of
P waves, the function A obeys the transport equation given by T[1].(D). For S waves, the pair {B, C} also obeys the same transport equation
T[1].(D) with A replaced by {B, C}, and α replaced by β , see [4].

Once the eikonal equation is a non-linear first order partial differential equation, the solution can be computed by the method of
characteristics (or Lagrange’sMethod, see [10,11]), which is fully described in [6,12,13]. TheHamiltonian associated to the eikonal equation
T[1].(C) can be written in the following form

H (x, p, T ) =
1
n


pTp

n/2
−

1
v(x)n


, H (x, p, T ) =

1
2
ln


v(x)2pTp


, (1)
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Fig. 1. Seismic profile π : isotropic 2.5D medium for ray tracing.

Table 1
Main equations for seismic ray tracing. See text for more details. SI Units are the following: u (km), T (sec), v (km/sec), p (sec/km), A (1/km).
Other quantities are dimensionless.

Equation Description

ρ ∂2u
∂t2

= (λ + µ)∇(∇ · u) + µ∇
2u + (∇ · u)∇λ + ∇µ × (∇×)u + 2(∇µ · ∇)u + f (A) Elastodynamic equation

u(x, t) = U(x)F(t − T (x)) (B) Ansatz solution for (A)

pTp = ∥p∥
2

=
1

v(x)2 =
3

j=1


∂T
∂xj

2
(C) Eikonal equation

2pT
∇A + A∇

2T = 0 (D) Transport equation
dx
du =

∂H
∂p ,

dp
du = −

∂H
∂x −

∂H
∂T p, dT

du = pT ∂H
∂p (E) General ray equations

A(u) =


ρ(u0)v(u0)J(u0)

ρ(u)v(u)J(u) (F) Amplitude function along a ray

d
du


Q
P


=

 0 v2−n(u)I

−
V(u)

vn+1(u)
0

 
Q
P


(G) Dynamical ray tracing system

dw(i)

du = S(i)w(i), dw(o)

du = S(o)w(o) (H) In-plane and out-of-plane systems

S(i)
=


0 v2−n(u)

ν(u) 0


(I) In-plane matrix

S(o)
=


0 v2−n(u)
0 0


(J) Out-of-plane matrix

ν(u) = −
[Jp(u)]THv [Jp(u)]

vn−1(u)
(K) Functionν = ν(u)

w(o)(u) = Π (o)(u)w(o)(u0), Π (o)(u) =


1 yn
0 1


(L) Out-of-plane system solution of (H)

yn(u) =
 u
u0

v2−n(b)db (M) Functionyn = yn(u)

for 0 ≠ n ∈ R and n = 0 respectively. We shall refer to the constant n as the Hamiltonian index. The method of characteristics states
that the solution of H = 0 is equivalent to the solution for a system of ordinary differential equations T[1].(E), with initial conditions
x(u0) = x0, p(u0) = p0 and T (u0) = T0. In our case, this system is reduced to

dx/du = v(x)2−np,

dp/du =
1
n
∇


1

v(x)n


,

dT/du =
1

v(x)n
,

dx/du = v(x)2p,
dp/du = −∇ (ln v(x)) ,
dT/du = 1

(2)

for n ≠ 0 and n = 0 respectively. The above system is called the kinematic ray tracing equations. The curve x:R → R3 has the slowness
vector p as a tangent vector and the integration parameter u varying over the domain u ≥ u0. Usually, we will adopt the convention
u0 = 0. For the case where the Hamiltonian index is zero, the integration parameter is the traveltime itself. The kinematic part of a ray is
mathematically represented by the characteristic curve {x, p, T } and the raypath is determined by x.

Finally, to compute the solution of equation T[1].(D), we emphasize that along a ray, function A can be computed by T[1].(F), where
v(u0) = v(x(u0)) and J is the ray Jacobian related to a usual orthonomic ray system parameterization, see [6]. The dynamical ray tracing
system is mainly concerned with the computation of the ray Jacobian, in order to evaluate T[1].(F). [4,6,14] shows that, introducing a
properly change of variables, we obtain the so-called dynamical ray tracing system T[1].(G), where matrices {Q, P} represent the Jacobian
in a new system of coordinates centered at the ray, with I the identity inR2×2 andV the Hessianmatrix in this new coordinate system. For a
3Dmedium,1 that differential equation can be decoupled into two other ones, the in-plane and out-of-plane dynamical systems. Therefore,
the solution can be made easier. We write those decoupled systems as in T[1].(H) with matrices S(i) and S(o) given by T[1].(I) and T[1].(J)
respectively. Function ν, introducedwithin thosematrices, is an appropriate real mapping depending on the Hessianmatrix of the velocity

1 Actually, 2.5D.
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Table 2
Analytical velocity fields.

Id. (n, u) Φ(v)

ART_VCONST (1, s) v(x) = c
ART_VAFF (−1, ξ) v(x) = aTx + c
ART_VASS, ART_VQSS (2, σ ) 1

v(x)2 = xTAx + aTx + c
ART_VCGL (0, T ) ln v(x) = aTx + c

Fig. 2. Fluxogram for art.

field and v(u) = v(x(u)). It follows from all these properties that J(u) = w(i)
1 (u)w(o)

1 (u) is the Jacobian along the ray, see [4]. Also, other
quantities like geometrical spreading and ray-centered-amplitude can be obtained from the solution of both dynamical systems.

3. Seismic analytical medium

Wewant to determine the kinematic part of the ray through the solution of one the ray systems in (2), i.e., quantities {x, p, T }. For this,
we are motivated to choose velocity fields that enable analytical solutions. In this sense, we pick a particular Hamiltonian index to make
easier the ray equations, and for our purposes, the best choices for n are in the set {−1, 0, 1, 2}.

For further reference, we consider that velocities can be written in the general form

Φ(v(x)) = xTAx + aTx + c (3)

where Φ assume the value of one of the functions {v, v−2, ln v}, as illustrated by Table 2. By a suitable choice of the parameters A, a and
c we can always ensure that Φ(v(x)) > 0 for all x. To distinguish the velocities, we established the following identification: vass stands
for affine square of slowness, vqss for quadratic square of slowness, vcgl for constant gradient of logarithmic velocity, vaff for affine
velocity and vconst for constant velocity.

Since we are mainly interested in rays that are confined in a vertical plane along the seismic profile, we can assume that parameters in
Eq. (3) are two-dimensional, i.e., A ∈ R2×2 and a ∈ R2, where the position vector x has first component related to horizontal distance and
second component related to depth.

Function ν appearing in the in-plane dynamical matrix S(i) of equation T[1].(I) – see Table 1 – is defined by equation T[1].(K), where
J is a two-dimensional symplectic matrix [15] and Hv is the Hessian matrix of the velocity field in Cartesian coordinates. The proof of
T[1].(K) is given in [7]. The out-of-plane dynamical system T[1].(H) always have an analytical solution, which is given by T[1].(L). The in-
plane solution w(i)(u) = Π (i)(u)w(i)(u0) is usually computed by a numerical method. Π (i) and Π (o) are called in-plane and out-of-plane
propagator matrices, respectively.

Note that the solution of the kinematic ray tracing system (2) can be written in the general form

x(u) = x0 + dn(u), T (u) = T0 + tn(u), p(u) = p0 + sn(u) (4)

where dn, sn and tn vary according to the velocity field (i.e., according to the index n). The analytical equations for {dn, tn, sn} are given
in Appendix A.1, where we assume a continuous velocity field v = v(x) without boundaries. Therefore, the ray starts at a free source
point and goes through the medium without any restriction. Problems related to incidence/transmission at a boundary are treated in the
following sections.

4. The C-library art

As other free libraries, like gsl [16], our library provides many ‘ray tracing functions’, so the user can be free to implement his/her own
codes (in standard C-language), which is basically the idea of art. To introduce users with art, we also provide programs that already
contain some standard routines in seismic ray tracing, like two-point ray tracing, one-way ray tracing, common-shot experiments, and
others. These functions are contained within art-fun. Also, the library depends on other free softwares, the libConfuse [17] and
gengetopt [18], as shown in the Fluxogram of Fig. 2. The library is in continuous expansion and we expect it to increase and improve. In
the next section we present the usage of art-fun/.

The 2.5D synthetic medium for ray tracing considered by the library is presented in Fig. 3(a). The main goal of the library is the
determination of a ray in this kind of medium, starting at a source point (usually at the surface) and arriving at a receiver or at an interface.
Since the medium is composed by a stack of layers, where each layer has one of the analytical velocities presented in the previous section,
the first step in tracing a ray through the profile, is the computation of incidence points along a sequence of layers. Computationally, the
union of incidence points fully determines the raypath since we know exactly (or analytically) the behavior of the curve between such
extreme points. The sequence of layers (for the raypath) is given a priori, and is known as the ray code. Fig. 3(b) shows an example of two
rays and their respective ray codes. Finally, each interface is represented by a cubic spline and we assume that at least three knots can
always be determined, even in the case of planar interfaces.
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Fig. 3. Ray tracing profile. (a) Stack of layers, each one bounded by structural interfaces, represented by cubic splines. (b) Two rays in a three-layered profile, with ray codes
{0, 1, 2, 2, 1, 0} (left) and {0, 1, 1, 1, 2, 2, 1, 0} (right).

In a synthetic profile like the one described in Fig. 3, the library allows the following two basic operations: (i) one-way ray tracing—given
a point source and an initial slowness direction, we compute the ray through the profile, following a ray code sequence and (ii) two-point
ray tracing—compute the ray through the profile starting at the source and finishing at a given receiver, following a ray code sequence.
Other operations are also allowed in the library, but are nothing more than applications of these two basic procedures.

Before starting the explanation for the state-of-the-art of art, there are some basic rules that we must keep in mind whenever we
want to trace a ray.

(a) The library can only perform a ray tracing if analytical velocities are defined within each layer, but the choice of parameters A, a and
c in Eq. (3), is of entire user’s responsibility. In the case of Φ(v(x)) ≤ 0 for some xwithin a layer, there is a great probability to fail the
ray tracing.

(b) Rays are traced only within a seismic box [a, b] × [0, d], as illustrated by Fig. 3(a). If any ray point lies outside the box, the ray tracing
is considered unfeasible.

(c) For each spline (interface), the first and last knots cannot be within the box, or the library will produce an error.
(d) Since four types of waves are produced whenever a ray strikes an interface, a segment of the raypath can represent either pressure

waves (P waves) or shear waves (S waves). Hence, the ray code includes the wave type associated to each segment of the path. In a
profile with N layers, a ray code sequence takes the form rc = {(l0, w0), (l1, w1), . . . , (lM−1, wM−1)} where 0 ≤ lk ≤ N indicates the
layer number and wk indicates the wave type, for example wk = 1 for S waves and wk = 0 for P waves. This means that the ray must
traverse the profile according to l0 → l1 → · · · → lM−1 where each layer is crossed only once at a time. In Fig. 3(b) there are two
examples of ray code sequences, note that for the ray displayed at left, the sequence {0, 1, 2, 1, 0} it is not a correct ray code and may
produce an error.

(e) If a given ray code has lengthM then the number of incidence points will always beM + 1. This is illustrated in Fig. 3(b).
(f) Given a source point upon an interface, the initial slowness vector could not have the same direction of the surface tangential vector

at that point. Whenever this happens (within a default tolerance) an error is produced and the ray tracing is considered unfeasible. As
a consequence, art does not consider Rayleigh waves.

(g) Two-point ray tracing can only be performed with the receiver placed at an interface, but the source point could be placed anywhere
inside the seismic box. On the other hand, one-way ray tracing always end at an interface.

(h) The library do not trace turning rays (within a given layer).
(i) Earth’s surface is always represented by the plane z = 0, i.e., the library does not take into account ground topography.
(j) Layers are considered as disjoint sets. Thismeans that they donot cross each other, like salt domes andmore complex seismic reflectors.

4.1. Implementation of art

In this section we briefly summarize the implementation of point-interface ray tracing, since this is the most basic step to compute a
single ray. Next we show how the two-point ray tracing is done, using a slight modification of the bisection method.

We adopt the following convention: given a ray code rc = {l0, l1, . . . , lM−1}, the ray Ω is computationally equivalent to the array of
extreme points Ω ≡ {R0, R1, . . . , RM}, where Rk belongs to the layer number lk. The point R0 is the source point and each Rk is either an
incidence point or a transmission point.

4.1.1. Point to interface
Given a ray code rc(Ω) and an angle θ ∈ [−π, π], the initial slowness vector direction is given by p0 = (1/v0)(sin θ, cos θ)where v0 is

the velocity at the initial point x0 ≡ R0. Starting at the point R0 wemust determine the intersection between the curve x = x(u) in Eq. (4)
(lying within layer number l0) with the interface Σ where R1 must be placed. Then, a new slowness direction is obtained using Snell’s law.
Next, we use the same reasoning to find R2 on a new interface. This procedure continues until we had successfully computed the desired
number of extreme points inside the seismic box.

So, the geometric problem here is just one: find the intersection of two curves, one representing the raypath, given by (4), and the other
representing an interface. Let S be an initial point, we want to find R ∈ Σ so that the curve x = x(u) lies within the layer, as illustrated
by Fig. 4(a). Let S be the spline function representing the interface Σ . The task can be stated as a root-finding problem, i.e., we want to
find u (integration parameter) such that η(u) = x2(u) − S(x1(u)) = 0 with x = (x1, x2)T the position vector (4), see Fig. 4(b). We use the
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Fig. 4. Point-interface problem. (a) A ray Ωj ∈ L1 starts from point S and strikes an interface at point Rj ∈ Σj, j = 1, 2. (b) Distance η = η(u) to be minimized.

Fig. 5. Newton initial guess. (a) Exist l ∈ N such that p0 ∈ Cl . (b) Do not exist l ∈ N such that p0 ∈ Cl . (c) Exist l ∈ N such that the average of distances to r is minimum (d)
and (e) Intersection parameter τ (see text for details).

Newton–Raphson method to compute the optimal u∗ so that R ≡ x(u∗). Since η′(u) = (x′

1(u), x
′

2(u)) · (−S′(x1(u)), 1), we have a typical
iteration procedure:

ui+1
= ui

− vn−2(ui)
η(ui)

p(ui)Tn(ui)
, i = 0, 1, 2, . . .

where n(u) = (−S(x1(u)), 1)T is the normal vector to the interface at point x1(u). Assuming that there are no turning rays, it follows that
(pTn)(u) ≠ 0 and the above iterative method is always well posed. To obtain quadratic convergence limi→∞ ui

= u∗, we need to find an
initial guess u0 such that x(u0) ≈ R.
Finding an initial guess

The spline S is represented by control points {w1,w2, . . . ,wl, . . .},wl ∈ R2. If we assume that the ray has a low-curvature, the first
strategy to compute the nearest point R̃ to R is the following: find two control pointswl,wl+1 so that the straight line spanned by the initial
slowness vector p0 intersects the straight line between both points. This can be restated using the idea of a cone: given the initial point S,
build the positive cone2 Cl ≡ wl → S → wl+1 (with S as the vertex), and find an index l so that p0 ∈ Cl. Fig. 5(a) shows an example where
exists the requested index, whereas in Fig. 5(b) the index is empty. Let r(τ ) = S + τp0 be the straight line spanned by the initial slowness
vector. The intersection of r with the line segment betweenwl and wl+1 occurs when (see Fig. 5(d))

τ =
qT (wl − S)

qTp0
(5)

with q = (δ, −1) and δ = (wl+1,2 − wl,2)/(wl+1,1 − wl,1). We refer to this idea as cone strategy.

Proof for (5). The line through points {wl,wl+1} is given by z = wl,2 + δ(x − wl,1). Replacing z = S2 + τp0,2 and x = S1 + τp0,1, we
obtain (5) after some cumbersome calculations. �

2 Mathematically: Cl = {q(wl+1 − S) + c(wl − S) : q, c ∈ R+}.
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Fig. 6. (a) Fan of rays starting at source point S and arriving at receiver interface, following ray code rc = {1, 2, 2, 1, 0}. (b) Two auxiliary rays Ω1 and Ω2 surrounding the
receiver point.

By the ray equations, dT/du = 1/vn or ds = du/vn from what follows that u ≈ vn−1(τ )s. Hence, after a reparametrization of r by
arclength s, we arrive at that τ = sv0, taking the initial guess u0 as

u0 ≈ vn−1(τ )s = vn−1(r(τ ))
τ

v0
. (6)

Since the cone strategy eventually fails, as in Fig. 5(c), we need to develop a second strategy, which we call minimum distance. The idea is
also simple, we search for a pair of pointswl,wl+1 such that the average of the distance from r to each one of these points is minimum. In
other words, if dl is the distance fromwl to the line r then we search for a l ∈ Z such that (dl + dl+1)/2 is minimum. Once determined the

index l, we choose τ such that r(τ ) − ml ⊥ p0 where ml = (wl + wl+1)/2 (see Fig. 5(e)), i.e., τ =
pT0 (ml−S)

∥p0∥2
= pT

0(ml − S)v2
0 , and take the

initial guess u0 as in Eq. (6). Here, it only makes sense to search an index l ≥ mwherem is the spline branch where the source point S lies,
and whenever the slowness vector points toward right. Analogously, we search for l ≤ m whenever the slowness vector points toward
left.

4.1.2. Two-point ray tracing
Given a pair of fixed points S, R ∈ R2, we are searching for the set of rays connecting S andR; this is called a two-point ray tracing problem.

For the sake of completeness, we present the implemented method, which is similar to the bisection algorithm. It is an adaptation of the
classical shooting algorithm due to Červený and Pšenčik [19–21]. We always assume that the receiver R lies at an interface, whereas the
source S is placed anywhere inside the seismic box. A ray code rc(Ω) is given a priori.

Let f : θ → R(θ)1 the real-valued function that maps an angle θ to the abscissa of an end ray-point R(θ), that we denote as R(θ)1. The
mathematical problem here, is to find an angle θ∗ such that f (θ∗) = R1, i.e., a one-dimensional root finding problem. The method starts
searching two rays Ω1(θ1) and Ω2(θ2) so that their end points R(θ1)1, R(θ2)2 satisfy the condition f (θ1) ≤ R1 ≤ f (θ2) as illustrated in
Fig. 6(b). These rays are chosen among a fan of rays starting at the source point (following the ray code) reaching the receiver interface,
see Fig. 6(a). Next, a linear interpolation creates a new angle estimate θ (1)

= (R1 − a)/b, where a = (θ2f (θ1) − θ1f (θ2))/(θ2 − θ1) and
b = (f (θ2) − f (θ1))/(θ2 − θ1), and tracing the ray Ω(θ (1)) to obtain a new pair of rays surrounding the receiver. This process is repeated
until we get a desired accuracy for |f (θ (i)) − R1|. This generates a sequence of take-off angles {θ (i)

} that converges to the requested angle
θ∗. The proof is similar to the bisection root-finding method (see [22]), in this case the ray Ω(θ∗) connects the source and the receiver
point. This algorithm is applied to each pair of rays enclosing the receiver point, as depicted in Fig. 6(b), a phenomenon that may occur
due to caustic interfaces.

4.2. The ray: computational aspects

We have seen that the ray is computationally equivalent to an array of extreme points {R0, R1, . . . , RN} since we know exactly the
raypath behavior between any pair of points Rk and Rk+1. Starting at Rk we have determined an optimal integration parameter u(k) such
that x(u(k)) ≡ Rk+1, where x = x(u) is the raypath, given in (4), according to the layer velocity field. Fig. 7 shows a physical ray and its
computational representation. Within each layer, the local integration parameter varies in the interval [0, u(k)

]. To unify the integration
parameter along the raypath, we have chosen the traveltime to be the global integration parameter, as illustrated by Fig. 7.

If the ray Ω has N + 1 extreme points, and τ ∈ [0, τN ] is the traveltime varying over the ray, i.e., we have τN = T (u(N)) with T being
the traveltime function within the last branch. We want to know the exact value of a certain kinematic/dynamic quantity at τ , e.g. the
position vector. To solve this problem, first we find the ray-branch corresponding to the input traveltime τ , say k, and second, using the
traveltime function T at the branch k, we find a parameter u∗, the solution of T (u∗) − τ = 0.

This is a one-dimensional root-finding problem, with unique solution3 and once again, through the usage of the Newton–Raphson
method, we iterate:

ui+1 = ui − vn(ui)[T (ui) − τ ], i = 0, 1, 2, . . .

with initial guess u0 being the solution of P(u0)− τ = 0. Here, P is an interpolating parabola of function T through the points {0, u(k+1)/2,
u(k+1)

}. This initial guess ensures quadratic convergence ui → u∗ since the traveltime function behaves like a hyperbola (see [8]), and
a parabola usually fit reasonably well. This one-dimensional root finding problem is used to compute the reflectivity and the acoustic
impedance as a function of the traveltime along the ray. It should be noted that most of the computational complexities in our ray tracing

3 Since the traveltime is always a continuous and increasing function.
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Fig. 7. Physical and computational representations of a ray Ω in art. The traveltime varies continuously along the raypath while the local integration parameter varies
from 0 to u(k) within each ray-branch.

Table 3
Dynamic ray tracing equations. See text for more details.

Equation Description

w(∗)
I (Rk+1) = Π (∗)(Rk+1, Rk)w

(∗)
T (Rk) (A) Incidence solution

w(∗)
T (Rk+1) = Π

(∗)
T (Rk+1)w

(∗)
I (Rk+1) (B) Transmitted solution

L(Rk) = L(i)(Rk)L
(o)(Rk) (C) Standard incident geometrical spreading

L(Rk, R0) = L(i)(Rk, R0)L
(o)(Rk, R0) (D) Relative incident geometrical spreading

AI (Rk) = e−i π
2 κ(Rk)C(Rk)d(Rk) (E) Incident amplitude

AT (Rk) = C(Rk)AI (Rk) (F) Transmitted amplitude

d(Rk) =


V (Rk)
L(Rk)

v(R0)

L(i)(Rk,R0)L(o)(Rk,R0)


vT (R0)ρT (R0)

vI (Rk)ρI (Rk)
(G): Used in (E)

V (Rk) =
k

m=1
vT (Rm)ρT (Rm)

vI (Rm)ρI (Rm)
(H): Used in (G)

L(Rk) =
k

m=1
cosαI (Rm)

cosαT (Rm)
(I): Used in (G)

C(Rk) =
k−1

m=1 C(Rm) (J): Used in (E)

approach come from the optimization technique used to solve the root-finding problem for intersection between ray and interface, or
even the evaluation along the ray.

4.3. Dynamic ray tracing

For simplicity, the main equations for the dynamic ray tracing are summarized in Table 3, that we denote by T[3], presented at the end
of this section.

Many quantities related to dynamic tracing depend on the solution of equations T[1].(H)—see Table 1. Since the out-of-plane system
have an analytical solution, the only numerical task here is the computation of the in-plane solution. We solve this system by the
Runge–Kutta–Fehlberg (4,5) method, using standard GSL procedures [16]. Once we have both solutions, and the kinematic ray tracing
complete, everything remains analytical again (e.g. the geometrical spreading and amplitude values) because we know the optimal
integration parameter that allows us to leave an extreme point and reach the next one. For completeness, we list below the dynamical
expressions used in the library. A more detailed treatment is given in [4].

Consider the following notation for the in-plane and out-of-plane propagator matrices: Π (∗)(u(k), 0) = Π (∗)(Rk+1, Rk), for ∗ = {i, o}
respectively, i.e. the propagator matrix from an extreme point Rk to Rk+1. Assuming that we know a transmitted dynamic solutionw(∗)

T at
Rk, the incident and transmitted solutions at Rk+1 are given in T[3].(A) and T[3].(B) respectively, whereΠ

(∗)
T is the propagatormatrix across

an interface.4 Here, Π (o)
T = I is the two-dimensional identity matrix, and Π

(i)
T have a more complicated expression, described in [4]. The

in-plane propagatormatrix can bewritten asΠ (i)
= [w(i)

1 w(i)
2 ]wherew(i)

j is a solution of equation T[1].(H) – see Table 1 –with normalized
plane wavefront initial condition (1, 0)T for j = 1 and the normalized point source initial condition (0, 1)T for j = 2.

The standard and relative incident geometrical spreadings at an extreme point Rk are given in T[3].(C) and T[3].(D) respectively, where

L(∗)(Rk) =


|w(∗)

I,1 (Rk)| and L(∗)(Rk, R0) =


|Π

(∗)
I,01(Rk, R0)|. Also, the same applies for the transmitted geometrical spreading. Here, the

propagator matrix Π (∗)(Rk, R0) is computed by the chain-rule property for propagator matrices.
Finally, the vectorial-complex valued amplitude U in equation T[1].(B) – see Table 1 – is computed by

Uj(Rk) =

Aj(Rk)e11
0

Aj(Rk)e13


, Uj(Rk) =

 Aj(Rk)e13
0

−Aj(Rk)e11


, Uj(Rk) =

 0
Aj(Rk)

0


(7)

for P, SV and SH waves respectively, incident at point Rk with j = I and transmitted for j = T . Here, e1 = vj(Rk)pj(Rk) is the polarization
vector at point Rk and A is the solution of the transport equation (see Table 1, Eq. (F)). The equations are depicted from T[3].(E) to T[3].(J).

4 Subscript T stands for transmitted data and I for incident data.
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Numbers αj and ρj are related to the incident/transmitted angle and density respectively, and also κ is the KMAH index (counting the
number of caustic points along the ray). The function C is the reflection/transmission coefficient at Rm following Snell’s law; see [4,6].

5. Using art-fun/

In this section we describe some technical details on how using art, assuming that the theoretical basis is sufficiently clear from the
previous sections. The library is written in C, under the GNU Scientific Library standards.

Once a synthetic model (the seismic profile) has been proposed, the first step is the construction of a description file that specifies
the subsurface under investigation, as illustrated in File 1. The description file is self-explained, composed from three types of sections:
box, surface and layer. The layer section contains the following subsections: id is the layer number, type is the string of velocity
type (as convention in Table 2), Pvelocity defines the analytical coefficients associated to P waves (analogous to Svelocity for S
waves), interface defines the control points associated to the spline representation of an interface and density is a positive number
representing the constant density within layer. Variable coeff is an array with coefficients {A, a, c} of Eq. (3),

coeff = {c}, coeff = {a1, a2, c}, coeff = {A11,A12,A21,A22, a1, a2, c}

fortype=ART_VCONST,type=ART_VAFF,ART_VASS,ART_VCGL andtype=ART_VQSS respectively. If subsectionSvelocity is empty,
we use the approximation vS ≈ vP/

√
3 (see [8]) for P wave velocity vP and S wave velocity vS. Finally, interface points are given in x=

{x1, x2, . . . , xl, . . .} and z= {z1, z2, . . . , zl, . . .} so that (xl, zl) is a spline control point. By default, if id= k then the interface definedwithin
the layer section is the interface number k + 1, see Fig. 3. Also, the box constraint 0 ≤ z ≤ d, implies that the last layer section has the
interface defined by z = {d, d, . . . , d, . . .}.

box{
xaxis = { a, b }
zaxis = { 0, d }

}

surface{
x = { x1, x2, x3 }
z = { 0 , 0 , 0 }

}

layer{

id = ...
type = ...

Pvelocity{
coeff = { ... }

}
Svelocity{

coeff = { ... }
}
interface {

x = { ... }
z = { ... }

}
density = ...

}

File 1: General art description file, containing three global sections box, surface and layers. The layer section appears many times as the
number of layers.

We remark that not all the functions implemented inart are implemented inart-fun/, although future versions of lattermay include
a specific example program for each art function. Also, art-fun/ can be used for a first contact with the library. More optimized codes
can be written in C language using art functions, although this includes additional effort which includes: learning the documentation of
art, writing a C code, properly linkage of libraries for compilation and finally execution.

The functions distributed within art-fun/ are listed below. Routines ending with *-view or *-print were implemented to view
and print the results generated from art-fun/ functions. Also, every function on the first column below has a brief help guide which can
be seen using the command line art- name-of-function -h.

art-csrays art-profile art-rayset-path art-twop-view
art-csrays-print art-profile-print art-rayset-print art-vrms
art-csrays-view art-profile-view art-rayset-view art-vrms-print
art-fan art-ray-oneway art-ray-view art-vrms-view
art-fan-path art-ray-oneway-path art-twop
art-fan-print art-ray-print art-twop-path
art-fan-view art-rayset art-twop-print
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Fig. 8. Example of six seismic models used for simple test, distributed within art-fun/. Each figure was generated with the routine art-profile-print.

As for *-view and *-print functions, we remark that typing his name on command line we get a help guide, as shown below:
$ art-ray-print

Usage: art-ray-print [-a] [-b] [<name>]
Options

[-a] seismic model file
[-b] raypath file
[<name>] output postscript

6. Practical examples

As shown in Fig. 8,wepresent six seismic profiles, each onewith an analytical velocitymodelwithin layers, as those presented in Table 2.
We remark that, seismic models are described through File 1. Six velocity models are distributed within raft-fun/ and are denoted
by M00-4L-aff.cfg, M01-4L-const.cfg, M03-2L-qss.cfg, M04-4L-ass.cfg and M05-2L-cgl-cfg, each one associated to
Fig. 8(a)–(e), respectively.

6.1. One-way ray tracing

Let us consider the velocity model from Fig. 8(a). Our goal is a ray tracing starting from surface at point x = 1, reflecting at the third
interface (separating third and fourth layers), and with initial angle θ = 25°. Next, we want to export the output data in order to print a
postscript image of the raypath. This is done in the following command lines, respectively

$ art-ray-oneway -m M00-4L-aff.cfg -s 1.0 -a 25
-i 3 -n 20 -o model.dat > ray.dat 2> report.txt

$ art-ray-print model.dat ray.dat rayM{00}_{2}5.ps

(8)

In the first line above, we use file M00-4L-aff.cfg as the description file for the velocitymodel. The function art-ray-oneway exports
a matrix with columns representing each interface; such a matrix is printed within file model.dat.5 The output ray.dat is a two-
column matrix with the (x, z) coordinates of the raypath. File report.txt (on standard error output) contains a complete report of the
ray through the profile. A complete example of report.txt is shown in Appendix B. Finally, the raypath postscript image for the above
example is depicted in Fig. 9(a). Fig. 9(b) represents the same ray tracing, but with initial angle equal to θ = 0°. This is done changing the
flag -a 25 on command line (8) to -a 0.

Let us give another example using routine art-ray-oneway and extracting some information from the report file. We are able to
trace many rays (creating a fan of rays) starting from source point x = 1, with initial angle −50° ≤ θ ≤ 50° and also reflecting at the
third interface. This is done in Script 1 (see Appendix B). Fig. 9(c) was generated with the command line art-ray-print model.dat
allrays.dat myfig.ps. Fig. 9(d) shows the traveltime curve obtained from the report file for each successfully traced ray. We remark
that this curve can be easily used to obtain a seismic record associated to the common-source event of Fig. 9(c).

5 If Grace is installed, the command line xmgrace -nxy model.dat displays the seismic profile.
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Fig. 9. (a) and (b): Example of a one-ray tracing using routine art-ray-oneway with initial angles θ = 25° and θ = 15° respectively. (c) and (d): Output from Script 1
(see text for details).

6.2. One-way ray tracing: given a ray code

The routine art-ray-oneway-path is very similar to art-ray-oneway, although the first compute the ray following a given path,
or a ray code, as described in Section 4.1. A typical execution follows:

$ art-ray-oneway-path -m M01-4L-const.cfg -p path.dat -s 1.0 -a 25
-n 20 -o model.dat > ray.dat 2> report.txt

$ art-ray-print model.dat ray.dat rayM00_path.ps

(9)

The flag -p determines a file for the raycode path.dat. For example (9), it is a file with a single line given by 10 0 1 1 1 2 2 2 2 1 0;
with first position indicating the path length, followed by the sequence of layers for wave propagation. It is important to note thatmultiple
reflections, on seismic surveys, can be modeled with the usage of such a ray tracing. The file report.txt has the same pattern described
in Appendix B. The output file ray.dat for a successful ray tracing is exported to a postscript image using routine art-ray-print, as
depicted in Fig. 10(a).

6.3. One-way ray tracing: source to interface

This routine, called art-ray-s2i, determines the ray following a given path and starting at a source point, which can be placed
anywhere inside the seismic box. A typical execution follows, using the seismic model description file M01-4L-const.cfg:

$ art-ray-s2i -m M01-4L-const.cfg -x 1 -z 1.5 -a 140
-p path.dat -n 20 -o model.dat > ray.dat 2>report.txt

$ art-ray-print model.dat ray.dat rayM00_s2i.ps

(10)

In the above command line, flag -a 140 indicates an initial angle θ = 140° for the wave propagation. Flags -x 1 and -z 1.5 set the
source position x = 1 and z = 1.5 within the profile. The above example uses the same ray code given in the command line (9) (given
through the file path.dat). The exported postscript image for this example is presented in Fig. 10(b).

Script 2 creates a fan of rays starting at the source position (x, z) = (1, 2.5) varying the angle from θ = 110° to θ = 170° equispaced
with ∆θ = 3°. Gathering only the feasible rays within the seismic box, the resulting ray tracing is presented in Fig. 10(c). Using the same
source point and changing the ray code (through the command line echo "7 2 2 2 2 2 1 0" >path.dat), we obtain the ray tracing
shown in Fig. 10(d).

6.4. One-way ray tracing: free wave

The library is also capable to trace rays starting at the source point and traveling through an unbounded media, until the wavefront
reaches a given traveltime. We call this experiment as a ‘‘free ray tracing’’ since there is any kind of reflection/transmission at a boundary.
To specify the unbounded media, we choose a particular layer from a given seismic profile, which is described within a file *.cfg. The
routine that computes ‘free rays’ is called art-ray-free. A typical example follows:

$ art-ray-free -m M04-4L-ass.cfg -x 1.5 -z 1.5
-a 5 -t 2.5 -l 1 -n 200 > ray.dat 2>report.dat

$ art-ray-free-print ray.dat image.ps

(11)
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Fig. 10. (a) Example of one-way-tracing with initial angle θ = 25° and following the ray code {0, 1, 1, 1, 2, 2, 2, 2, 1, 0}, using routine art-ray-oneway-path. (b)
Example of source to interface ray tracing, with initial angle θ = 140° and following the ray code {1, 1, 2, 2, 1, 0}. (c) and (d) Examples from Script 2, see text for more details.

In the above command line, we ask for a ray starting at the source point (x, z) = (1.5, 1.5) and traveling through the first layer (flag -l
1) from description file M04*.cfg (see Fig. 8(d)), reaching the traveltime T = 2.5 (flag -t 2.5), starting with initial angle θ = 5° and
exporting 200 points upon the curve. The standard error output report.dat gives the final point of the curve. The postscript image
generated with routine art-ray-free-print is shown in Fig. 11(a). Using model M00*.cfg (see Fig. 8(a)) and a simple loop, as
presented in (12), we create a fan of rays starting at the same source point and reaching the same traveltime.

$ for ((j=0;j<=360;j=j+14)); do
art-ray-free -m M00-4L-aff.cfg -x 1 -z 3 -t 1.5 \

-n 1000 -a $j -l 1 \
>> ray.dat 2>> wfront.dat;

done

(12)

The resulting file ray.dat, a stacking of feasible rays, is used to generate the image depicted in Fig. 11(b). We remark that the first layer
has constant velocity. Changing the layer flag to -l 2, i.e., using the second layer, we obtain the result from Fig. 11(c) (with affine velocity).
The standard error output wfront.dat from routine art-ray-free, see command line (11), gives the final point from the curve. Such
a point belongs to the wavefront traveling through the medium. Routine art-ray-wavefront-print generates a postscript image, as
shown in (13). The resulting image is presented in Fig. 11(d).

$ art-ray-wavefront-print ray.dat wfront.dat 1 3 image.ps (13)

6.5. Fan of rays

In this example, we consider the model M05*.cfg (see Fig. 8(f)), with an anticlinal reflector on the first interface. The command line
(14) shows a construction of fan of rays reflecting at this anticlinal reflector using routine art-fan. The source is positioned at x = 1 and
the fan has depth-angle aperture of 45°. The routine is attempting to trace 30 rays within this aperture.

$ art-fan -m M05-2L-cgl.cfg -s 1.0 -r 30 -i 1 -a 45
-n 20 -o model.dat > rays.dat 2>report.txt; (14)

Fig. 12(a) was generated with routine art-fan-print using the output from the command line above. Changing flag -s 1.0 to -s 5,
means that we are changing the source point to x = 5. The result is presented in Fig. 12(b). Also, routine art-fan-path computes a fan
of rays following a given path (or a ray code) (see functions art-fan* distributed within art-fun/).

6.6. Two-point ray tracing

We now consider the two-point ray tracing, which is implemented on routines art-twop and art-twop-path. For illustration, we
use the velocity model of Fig. 8(c)—described within file MO2*.cfg. The command line (15) executes a two-point ray tracing between the
source point at x = 1.6 and the receiver at x = 4, reflecting at a synclinal reflector.

$ art-twop -m M02-2L-ass.cfg -s 1.6 -r 4 -i 1 -n 20
-o model.dat > rays.dat 2> report.txt (15)

Plotting the output file rays.dat, using routine art-twop-print, gives us the postscript image shown in Fig. 12(c). Also, the file
report.txt generated from the standard error output, displays the number of rays connecting the source and the receiver and the most
useful incident information at the receiver, e.g., the traveltime, the slowness vector and the vectorial amplitude. This report is presented
below:
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Fig. 11. (a) and (b) Ray and a family of rays at an unboundedmedia with affine velocity; see text for details. (c) Family of rays at an unboundedmedia with constant velocity.
(d) Wavefront construction using ray tracing and routine art-ray-free.

Fig. 12. (a) and (b): Example of routine art-fan to create a fan of rays. See text for more details. (c) Two-point ray tracing using routine art-twop: result from the
command line (15). (d) Output rays from Script 4 (see Appendix B).

Number of rays: 3

-- Ray 1 --:
Time=3.435063, p=(0.522485,-0.525010)
Amplitude A = (0.061460, 0.000000)
Initial angle between source and receiver: 13.579396 deg
-- Ray 2 --:
Time=3.523274, p=(0.242478,-0.699879)
Amplitude A = (0.032317, 0.000000)
Initial angle between source and receiver: 39.092164 deg
-- Ray 3 --:
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Fig. 13. (a) and (b): RMS velocity field. (c) and (d): Image rays for RMS velocity (a) and (b) respectively.

Time=3.410444, p=(-0.116572,-0.731463)
Amplitude A = (0.016891, 0.000000)
Initial angle between source and receiver: 58.500262 deg

We remark that the amplitude function reported above is represented as a complex number (ℜ(A), ℑm(A)).
To illustrate an application of this ray tracing –with routineart-twop – and the report file above, we propose Script 4 (see Appendix B)

to reunite all the feasible rays between twenty source points and a fixed receiver. The source position varies uniformly in the interval
[0.5, 2.5]. The report file for each two-point ray tracing gives us the traveltime between the source and the receiver. The results are
presented in File 3 (see Appendix B): the first column representing the source location, the second column for the number of rays
connecting the source and the receiver; third and fourth columns giving themulti-valued traveltime for each traced rays. The rays obtained
with Script 4 are depicted in Fig. 12(d).

Routine art-twop-path – distributed within art-fun/ – is also similar to art-twop, computing Fermat rays following a given ray
code sequence.

6.7. Root mean square velocity

For a given a velocity model v = v(x), the Root mean square velocity (RMS) is denoted by vrms and defined by the squared average
of v2(x) along image rays. These are rays starting from the surface with initial angle θ = 0° and traveling through the seismic profile.
Mathematically, the RMS velocity is defined by v2

rms(x) =
1
ℓ


Ω

v2(x)dτ with ℓ =


Ω
dτ , Ω an image ray and τ the traveltime along the

ray. Needless to say that x = x(τ ) is the raypath of Ω . To compute the RMS velocity, we use routine art-vrms. The command line (16)
illustrates the calculation for the RMS velocity model from Fig. 8(a). The mean velocity is presented in Fig. 13(a). The same applies for
Fig. 13(b) that corresponds to the seismic model from Fig. 8(b). Also, the corresponding image rays for these examples are presented in
Fig. 13(c) and (d) respectively.

$ art-vrms -m M00-4L-aff.cfg -r 80 -s 0.01 -t 3 -n 20
-o model.dat > vrms.dat 2> irays.dat;

$ art-vrms-print model.dat irays.dat vrms.dat VRMS.eps IRAYS.eps

(16)

6.8. Common-shot rays

Common-shot experiments are widely used in seismic survey. We provide the routine art-csrays to reunite all the feasible rays
obtained for such an experiment. As an example, we have computed the common-shot rays for each velocity model from Fig. 8. The source
is positioned at x = 1 and 50 receivers were equally distributed at the surface. The command line is given below, and the results are
depicted in Fig. 14 following the same label from Fig. 8, i.e., Fig. 14(a) for the CS-rays corresponding to Fig. 8(a), and henceforth:

$ art-csrays -m M00-4L-aff.cfg -r 50 -s 1 -n 20
-o model.dat > rays.dat (17)
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Fig. 14. Common-shot rays using routine art-csrays. See text for more details.

6.9. A complete example: caustic rays

A seismic profile with four layers, each one with constant velocity; being the first and the second interface a concave/convex reflector.
From first to fourth layer, the velocities were set to 4 km

s , 1.5 km
s , 4 km

s and 1.7 km
s respectively. Density is one through all the profiles. The

velocity model is presented in Fig. 15(a).
Caustic rays are very important in dynamical ray tracing due to the intersection of many wavefronts at the same traveltime; each

wavefront being represented by a single ray. This phenomenon causes a singularity point, where the Jacobian vanishes and the amplitude
goes to infinity. The ray tracing library was tested at a profile with lens shape, to generate a caustic point situation. The rays obtained
are presented in Fig. 15(b), where we clearly see the caustic point. The traveltime curve versus offset (for every successful ray tracing) is
presented in Fig. 15(c). Fig. 15(d) presents the multivalued amplitude function versus offset. Most of the seismic methods are based on
a smooth velocity model, neglecting the strong discontinuity for the velocity at an interface. Sometimes, the smooth model may cause
a caustic point, and a subsequent loss of amplitude information along the ray. This problem cannot occur with the analytical ray tracing
since the amplitude values depend only on the Jacobian of extreme points (lying at the interface).

The following script sets the construction of a ray set on the lens shape profile. All rays are reflecting on the third interface, with source
placed at x = 0.5. The position of each end point and also the amplitude value are extracted from the report file report.txt (see File 2 at
Appendix B). For this particular example, the amplitude arriving at the surface is a pure imaginary number. Indeed, the Jacobian vanishes
from the first interface to surface, causing a phase shift (KMAH index equal to 1). We remark that, Fig. 15(d) represents the absolute value
of the amplitude function.

#!/bin/bash
#
#

for ((j=-40;j<40;j=j+3)); do

art-ray-oneway -m modeloII.cfg -s 0.5 -a $j -i 3 -n 20 -o model.dat > ray.dat 2> report.txt;

status=$(grep "Error:" report.txt);
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Fig. 15. (a) Velocity profile. (b) Caustic rays. (c) Traveltime curve. (d) Amplitude value for successfully computed caustic rays.

if [ ! "$status" ]; then

cat ray.dat >> allrays.dat;

T=$(grep ’Traveltime’ report.txt | awk ’{print $2}’ | tail -1);
x=$(grep ’Position’ report.txt | awk ’{print $2}’ | tail -1);
A=$(grep "Amplitude" report.txt | tail -1 | awk ’{print $7}’);

echo $x $T >> traveltime.dat -
echo $x $A >> amplitude.dat

fi
done

7. Conclusions

As a typical inverse problem, the seismic imaging problem can be solved through several direct problems.Most of these direct problems
are intrinsically related to ray tracing [23–28]. Computing rays in an analytical medium, as presented here, is a fast option for inversion
techniques. Execution time usually varies frommilliseconds to 3 min, depending on the data size. Our computational tool can be used for
several seismic procedures, e.g. Kirchhoff modeling. Though the usage of art is mainly designed for seismic problems, the library also can
be used to different problems related to optics, tomography and wave propagation in general.
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Appendix A. Analytical expressions

A.1. Ray tracing functions {d, t, s}

(A) Constant velocity: Setting A ∈ R2×2 and a ∈ R2 as the zero matrix and vector in (3), we obtain a constant velocity field v(x) = c . The
kinematic solution (4), for n = 1, consider the following functions

d1(s) = c s p0, t1(s) = s/c, s1(s) = 0 (A.1)

where u ≡ s denotes arclength along the raypath. Since the Hessian matrix of v = v(x) is zero, it follows that ν(u) = 0 vanishes for u ≥ 0
and the in-plane and transverse dynamical systems are equal, with analytical solution given by T[1].(L), where y1(s) = cs.
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(B) Affine velocity: Setting A = 0 in Eq. (3) we obtain the affine velocity field v(x) = aTx + c. The kinematic solution (4), for

n = −1, consider the following functions: d−1(ξ) =
p0−κa
∥a∥3


sin arctan ξ−κ

√
σ

+ sin arctan κ
√

σ


+

a
∥a∥3


1√

σ+(ξ−κ)2
−

∥a∥
∥p0∥


, traveltime

t−1(ξ) = ln


sec arctan


ξ−κ
√

σ


+

ξ−κ
√

σ

sec arctan


−κ√
σ


+

−κ√
σ


and s−1(ξ) = −ξa. Here u ≡ ξ is the integration parameter, κ = pT

0a/∥a∥
2 and σ = ∥p0∥

2/∥a∥2
− κ2

are positive constants.6 Since the Hessian matrix of the velocity field is zero, the dynamic function ν vanishes for ξ ≥ 0 and in-plane/out-

of-plane solutions are equal to T[1].(L), with y−1(ξ) =
sin arctan ξ−κ

√
σ

+sin arctan κ√
σ

∥a∥3σ .

(C) Affine square of slowness: Setting A = 0 in Eq. (3) we obtain the affine square of slowness velocity field 1/v(x)2 = aTx + c . The
kinematic solution (4), for n = 2, consider the following functions: d2(σ ) = σp0 + σ 2 a

4 , traveltime t2(σ ) =
σ

v(x0)2
+

aT p0
2 σ 2

+
aT a
12 σ 3 and

s2(σ ) = σ a
2 . Here, u ≡ σ is the integration parameter. Since Φ(v) = v−2, it follows from the chain-rule that the Hessian matrix of v is

given by Hv =
3
4v(x)5aaT . Hence, the dynamical functions ν and y2 are given by ν(σ ) = −

3
4v

4(σ )p(σ )T (JTa)(JTa)Tp(σ ) and y2(σ ) = σ .
(D) Logarithmic velocity: Setting A = 0 in Eq. (3) we obtain the logarithmic velocity field ln v(x) = aTx + c. The kinematic solution
(4), for n = 0 and traveltime as the integration parameter (u ≡ T ), consider the following functions: d0(T ) =

p0−κa
√
aσ f1(T ) −

a
2a f2(T ),

traveltime s0(T ) = −Ta, where κ = aTp0/∥a∥2, a = ∥a∥2, σ = ∥p0∥
2
− (aTp0)

2/∥a∥2. Also f1(T ) = arctan

T


a
σ


+ arctan


κ


a
σ


and

f2(T ) = ln


(T−κ)2−(σ/a)
κ2−(σ/a)


.

Since Φ(v) = ln v it follows that the Hessian matrix of v is given by Hv = v(x)aaT and the dynamical functions ν and y0 are given by

y0(T ) =
1

√
aσ


arctan


(T − κ)


a
σ


+ arctan


κ


a
σ


and ν(T ) = −v2(T )v4(T )p(T )T (JTa)(JTa)Tp(T ).
(E) Quadratic square of slowness: Here Φ(v) = v−2, and we assume that A is a two-dimensional symmetric matrix in the general velocity
model (3). The kinematic ray equation (2) in this case, for n = 2 and u ≡ σ , reduces to dx

dσ = p,
dp
dσ =

1
2∇Φ(v) and dT

dσ = Φ(v). Since
∇Φ(v) = 2Ax + a we obtain a second order differential equation7 for the slowness vector, i.e. p̈(σ ) = Ap whose fundamental solutions
are p1 = eσ

√
Ap0 and p2 = e−σ

√
Ap0. Such solutions are presented in Appendix A.2, using a spectral factorization ofmatrixA. It follows that

p(σ ) = ξ p1(σ )+ η p2(σ ), x(σ ) = x0 +d2(σ ) and T (σ ) = T0 + t2(σ ). Here, η = pT
0(ṗ(0)− ṗ1(0))pT

0(ṗ2(0)− ṗ1(0)), ξ = 1− η, ṗ(0) =

Ax0 + a/2, d2(σ ) = ξ f(σ ) + η g(σ ), traveltime

t2(σ ) =
σ

v(x0)2
+ 2ξ(AF(σ ))Tx0 + 2η(AG(σ ))Tx0 + 2ξη

 σ

0
[Ag(w)]T f(w)dw

+ aT [ξF(σ ) + ηG(σ )] + ξ 2
 σ

0
[Af(w)]T f(w)dw + η2

 σ

0
[Ag(w)]Tg(w)dw.

We use f =

p1, g =


p2, F =


f and G =


g. Functions f, g, F and G are presented in Appendix A.2. Although analytic expressions

canbewritten for those integrals, they are computednumerically. Finally, since theHessianmatrix of v isHv = −v3(x)A+
3
4v

5(x)g(x)g(x)T
with g(x) = 2Ax + a, the dynamical function ν is given by

ν(σ ) = v2(u)[Jp]
TA[Jp]|σ −

3
4
v4p[JTg][JTg]Tp|σ (A.2)

and y2(σ ) = σ .

A.2. Quadratic square of slowness

The fundamental solution of the differential equation d2p/dσ 2
= Ap, with A ∈ R2×2 a symmetric matrix, is given by p(σ ) = e±σ

√
Ap0,

see [29]. Since A has a spectral factorization and therefore a square root, we list below all possible solutions, according to the sign of the
matrix eigenvalues. Assume λ1, λ2 eigenvalues of A:

(i) λj > 0, j = 1, 2 : p±(σ ) = S e±σ
√

ΛS−1p0

(ii) λj < 0, j = 1, 2 : p1(σ ) = S cos(σ
√

Λ)S−1p0 and p2(σ ) = S sin(σ
√

Λ)S−1p0

(iii) λ1 > 0, λ2 < 0 : pj(σ ) = SΛj(σ )S−1p0 with Λ1(σ ) = diag{eσ
√

λ1 , cos(σ
√

−λ2)} and Λ2(σ ) = diag{0, sin(σ
√

−λ2)}

(iv) λj = 0, λk > 0 : p±(σ ) =
1
λk
XAX−1p0 +

1
λk
e±σ

√
λkAp0

(v) λj = 0, λk < 0 : p1(σ ) =
1
λk
XAX−1p0 +

1
λk

cos(σ
√

−λk)Ay0 and p2(σ ) =
1
λk

sin(σ
√

−λk)Ay0.

6 It follows by the Cauchy–Schwarz inequality that σ ≥ 0.
7 We denote ṗ as the derivative of vector p.
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Table A.4
Functions {f, g, F,G} for the quadratic square of slowness. See Appendix A.1(E).
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where S and Λ are such that A = SΛS−1 and X = SPS−1 with P a two-dimensional permutationmatrix. Functions f, g, F and G introduced
in Appendix A.1.(E) are listed below, according to the sign of the matrix eigenvalues shown above. Considering the notation D = XAX−1

and B =
√
A, functions {f, g, F,G} are depicted in Table A.4.

Appendix B. Scripts and files

We present here a collection of bash script files used for simple test of art-fun/ routines presented in Section 5.

Script 1 Example of a bash script using routine art-ray-oneway and the ray report.
#!/bin/bash

for ((j=-50;j<50;j=j+1)); do
art-ray-oneway -m M00-4L-aff.cfg -s 1.0 -a $j -i 3

-n 20 -o model.dat > ray.dat 2> report.txt;

cat ray.dat >> allrays.dat;

T=$(grep ’Traveltime’ report.txt | awk ’{print $2}’ | tail -1);
x=$(grep ’Position’ report.txt | awk ’{print $2}’ | tail -1);

echo $x $T >> traveltime.dat
done

sed "s/(//g" traveltime.dat > null.dat
sed "s/,//g" null.dat > traveltime.dat
rm ray.dat report.txt;

Script 2 Example of a bash script using routine art-ray-s2i.
#!/bin/bash

echo "10 0 1 1 1 2 2 2 2 1" > path.dat

for ((j=110;j<170;j=j+3)); do

art-ray-s2i -m M01-4L-const.cfg -x 1 -z 1.5 -a $j
-p path.dat -n 20 -o model.dat > ray.dat 2>report.txt

status=$(grep "Error:" report.txt);

if [ ! "$status" ]; then
cat ray.dat >> allrays.dat;
printf "\n" >> allrays.dat;

fi
done

rm ray.dat report.txt;
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Script 3 Example of a bash script using routine art-fan and the ray report.
#!/bin/bash

rm Nrays.dat;

for ((j=0;j<=100;j++)); do

S=$(echo "1 + 0.07*$j" | bc);

art-fan -m M05-2L-cgl.cfg -s $S -r 30 -i 1 -n 20
-o model.dat > rays.dat 2>report.txt;

R=$(awk ’{print $5}’ report.txt);

echo $S $R >> Nrays.dat
done;

Script 4 Example of a bash script using routine art-twop and the ray report
#!/bin/bash

for ((j=0;j<=20;j++)); do

S=$(echo "0.5 + 0.1*$j" | bc);

art-twop -m M02-2L-ass.cfg -s $S -r 4 -i 1 -n 20
-o model.dat >> rays.dat 2> report.txt

E=$(grep ’empty ray set’ report.txt);

if [ $? -eq 0 ]; then
N="0"; T="0";

else
N=$(grep "Number of rays" report.txt | awk ’{print $4}’);
T=$(grep ’Time’ report.txt | awk ’{print $1}’ |

sed "s/Time=//g" | sed "s/,//g");
fi

echo -e "$S\t$N\t" $T
done

File 2 A typical report generated from routine art-ray, see command line (8), is depicted in File 2. The report displays the kinematic
and dynamical quantities at each extreme point Rk that lies at an interface. The ‘‘ray-report’’ for some extreme point R[k] is presented.
Needless to say that such a report contains the same information for each extreme point along the ray, i.e, R[0], R[1], R[2], ....,
R[N]. Information of extreme point Rk extracted from the ‘‘ray-report’’ exported by routine art-ray.
Point R[5]

Position: (3.721358, 0.694336)
Traveltime: 3.138275
Coefficient Reflection: (0.068771, 0.000000)
Coefficient Transmission: (1.068771, 0.000000)
In-plane propagator matrix across interface: [0.985385 0.000000; -0.042030 1.014831]
Relative Inplane Geometrical Spreading: 3.035499
Relative Out-of-plane Geometrical Spreading: 3.035499
Incident quantities at the point:

Slowness vector: (0.180659, -0.787343)
Incidence angle: 0.311962
Velocity: 1.237924
Amplitude (complex): -0.000192 + 0.000000 i 0.000192
Vector Q: (-4.425952, 8.389156)
Vector P: (1.000000, 1.000000)
Inplane Geometrical Spreading: 2.103795
Out-of-plane Geometrical Spreading: 2.896404
Geometrical Spreading: 6.093439
In-plane propagator matrix: [1.132956 -9.214257; 0.216105 -0.874922]
Out-of-plane propagator matrix: [1.000000 11.744819; 0.000000 1.000000]

Transmitted quantities at the point:
Slowness vector: (0.189198, -0.688773)
Incidence angle: 0.354488
Velocity: 1.400000
Amplitude (complex): -0.000204 + 0.000000 i 0.000204
Vector Q: (-0.371902, 0.714286)
Vector P: (1.000000, 1.000000)
Inplane Geometrical Spreading: 2.088365
Out-of-plane Geometrical Spreading: 2.896404
Geometrical Spreading: 6.048749
In-plane propagator matrix: [1.116399 -9.079595; 0.171692 -0.500624]
Out-of-plane propagator matrix: [1.000000 11.744819; 0.000000 1.000000]
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File 3 Output from Script 4. See text, Section 6 for details.
.5 1 4.245209
.6 1 4.166297
.7 2 3.673226 4.087915
.8 2 3.638657 4.010091
.9 2 3.606489 3.932850
1.0 2 3.576595 3.856214
1.1 2 3.548828 3.780207
1.2 2 3.523020 3.704853
1.3 2 3.498981 3.630174
1.4 2 3.476488 3.556196
1.5 2 3.455286 3.482943
1.6 2 3.435063 3.410444
1.7 2 3.415417 3.338726
1.8 2 3.395781 3.267820
1.9 2 3.375168 3.197760
2.0 1 3.128579
2.1 1 3.060315
2.2 0 0
2.3 0 0
2.4 0 0
2.5 0 0
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