
UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096605

DOI: 10.1371/journal.pone.0096605

Direitos autorais / Publisher's copyright statement:

©2014 by Public Library of Science. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo
CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

http://www.repositorio.unicamp.br/


Changes in the Bacterial Community of Soil from a
Neutral Mine Drainage Channel
Letı́cia Bianca Pereira, Renato Vicentini, Laura M. M. Ottoboni*

Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas – UNICAMP, Campinas, SP, Brazil

Abstract

Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural
resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-
throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of
bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine
in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The
results showed that the neutral mine drainage caused changes in the composition and structure of the microbial
community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part
responsible for the differences between the communities, and was positively associated with the presence of copper and
other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and
composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the
understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an
important role in shaping the microbial population in mine environments.
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Introduction

The mining of metal ores and coal can lead to a variety of

environmental problems, including deforestation, soil erosion, and

the flooding of low-lying areas. One of the most critical issues in

mine environments is the natural oxidation (chemical and

biological) of sulfide mineral tailings that are exposed to water,

oxygen, and microorganisms. This oxidation is responsible for the

generation of mine drainage that compromises the quality of soil,

surface water, and sub-surface water bodies, hence affecting

overall biodiversity [1,2].

Mine drainage can be highly acidic or alkaline, depending on

the complex interactions of hydrological, chemical, and biological

processes. In addition, mine drainages are rich in heavy metals

and sulfur, which are present in the minerals, but poor in

nutrients. As a result, mine drainage is a multi-factor pollutant

(considering aspects such as acidity or alkalinity, salinization, metal

toxicity, and sedimentation processes), with the importance of each

factor depending on the characteristics of the environment affected

[2,3,4].

Investigation of the microbial communities of these environ-

ments can reveal undiscovered species able to provide a pool of

genes and proteins whose potential is still unknown. Microorgan-

isms in mine drainages have been studied for purposes including

the bioremediation of mine sites [5] and the development of

bioleaching consortia [6,7]. In addition, the metabolic diversity of

the microbial community present in mine drainage makes these

environments ideal for studies of genomes, ecology, evolution,

tolerance mechanisms, and the interactions between bacteria and

environmental factors [8,9,10].

Due to the extreme pH conditions (,3.0) and the high content

of heavy metals, the microbial community of acid mine drainage

(AMD) has been extensively studied. Evaluations have been made

of the microbial communities in acid mine drainage [11,12], river

sediments contaminated with AMD [13], subsurface mine

environments [14], and AMD sediments [11].

In many cases, due to the neutralizing capacity of the waste

minerals, or human intervention such as the spreading of

limestone to precipitate metals, the drainage can have higher

pH values (4.5 to 8.5), and is then called neutral mine drainage

(NMD). This can cause severe environmental problems in mine

environments because heavy metals, which are often present at

high concentrations, can remain soluble at alkaline pH under

suitable redox conditions [1,15].

Previous studies have reported that NMD contains great

bacterial diversity, while that of AMD is typically low. Using

metagenomic and metaproteomic approaches, Halter et al. [16]

found a wide range of different bacteria in slightly alkaline French

mine sediments, including iron-oxidizing and heterotrophic

organisms. Reis et al. [17] reported a high diversity index for

alkaline river sediments contaminated with heavy metals released

from a Brazilian arsenic mine. However, NMD is an environment

that has been poorly explored, and little is known about the

structure and diversity of the bacterial community in soil

contaminated with this kind of drainage [18,19].
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The interaction between the bacterial community and a heavy

metal-contaminated soil is also incompletely understood. Guo et al.

[19] showed that the heavy metal-contaminated soils of two

abandoned copper mines in Australia did not have any impact on

microbial diversity. However, Marcin et al. [20] reported that a

high content of heavy metals in forest soils had a negative influence

on bacterial activity and diversity. It is noteworthy that the

structure and diversity of bacteria communities in soil is not only

influenced by heavy metal concentrations, but also by season [21],

pH [22], organic matter [23], and interactions between these

factors.

The behavior of the soil bacterial community exposed to

different contaminants in extreme environments can be charac-

terized using a combination of high-throughput sequencing,

knowledge of the soil chemical parameters, and advanced

statistical analysis. In this work, intensive parallel pyrosequencing

of 16S rDNA was used to evaluate the microbial community in soil

impacted by neutral mine drainage. The influence of soil chemical

parameters on the composition, structure, and diversity of the

bacterial community was also evaluated.

Materials and Methods

Sample collection and chemical analysis
Samples were collected at the Sossego copper mine (6u25’45"S,

50u3’58"W), in Canaã dos Carajás, Brazil. The mine has been

operated by Vale since 1997 and the collection was authorized by

this Company. In the mine, a drainage flows continuously from an

ore deposit along a channel in the soil that starts at an ore heap

and terminates at a runoff area. Along the course of the channel,

the drainage is treated with limestone to increase the pH and

precipitate heavy metals. Six drainage samples (D1-6, see Table S1

for coordinates) were collected aseptically from the upper soil layer

(0–10 cm). Six uncontaminated soil samples (S1-6, see Table S1

for coordinates) were also collected (at 0–10 cm), adjacent to each

drainage sample. The samples were stored at 220uC.

The chemical parameters Cd, Ca, Pb, Cu, Cr, S, Fe, P, Mg,

Mn, Ni, K, Na, and Zn were measured in each sample prepared

according to US EPA SW-846 method 3051A, with detection

using inductively coupled plasma atomic emission spectrometry

(ICP-AES) [24]. The organic matter (OM) content and pH (soil/

water = 1:2.5, w/v) were determined as described by Camargo et

al. [25].

DNA isolation, 16S rDNA library construction, and
pyrosequencing

Prior to the isolation of DNA, the heavy metals were removed

from the environmental samples using the method of Sánchez-

Andrea et al. [13], with modifications. For this, the samples (0.5 g)

were resuspended in 1 mL of phosphate-buffered saline (PBS),

agitated, and centrifuged at 12879 x g for 10 min. The supernatant

was discarded and the samples were resuspended in 1 mL of

0.5 M EDTA, at pH 8, and incubated at 4 uC for 2 h. After the

incubation, the samples were centrifuged at 12879 x g for 10 min,

and the supernatant was discarded. The wash with EDTA was

repeated until the metals had been completely removed. The

material was then washed with PBS, and the DNA was isolated

from a 0.25 g aliquot using the Power Soil DNA Isolation Kit

(MoBio Laboratories, Carlsbad, USA), according to the manufac-

turer’s instructions.

The amplification of the V3–V4 region of the 16S rDNA was

performed using the primers 338F and 806R [26,27]. The

reaction mixture (final volume 25 mL) consisted of 3–10 ng of

DNA, 0.6 mM of each primer, 0.5 U of AccuPrime Pfx DNA

Polymerase (Invitrogen), and AccuPrime Pfx 1X reaction mix

(Invitrogen). Amplification was performed under the following

conditions: initial denaturation at 94uC for 1 min, 20 cycles at

94uC for 15 s, 52uC for 30 s, and 72uC for 30 s, and a final

extension at 72uC for 2 min. After the first amplification, a further

five cycles were performed, with a final volume of 50 mL and using

the same conditions, in order to add specific barcodes to each

sample and the adaptors A and B. The purification of the

amplicons was accomplished using the GFX PCR DNA and Gel

Band Purification Kit (GE Healthcare). An equimolar mixture of

the 12 samples was made in order to obtain 2400 ng of PCR

product with a concentration of 16.48 ng/mL. The amplicons

were sequenced on a 454 GS Junior platform (Roche Company,

Branford, CT, USA). The pyrosequencing data were submitted to

MG-RAST [28] (ID 4521082.3 to 4521090.3 and 4521341.3 to

4521343.3) and to NIH Sequence Read Archive (BioProject

PRJNA239576, accession numbers SRR1178540 and

SRR1179196).

Sequence processing and statistical analysis
The QIIME package [29] was used to analyze the quality of the

sequences and to group them into operational taxonomic units

(OTUs, similarity of 97% or greater). Sequences with a quality

score $ 25 and size between 400 and 470 bp were used in the

analysis. Ambiguous bases and mismatches in primer sequences

were not admitted. Chimeras were checked and removed with the

ChimeraSlayer algorithm in QIIME. The taxonomic classification

was performed using the RDP (Ribosomal Database Project,

http://rdp.cme.msu.edu/classifier/classifier.jsp) at the 80%

threshold.

The Student’s t-test was employed to compare the drainage and

soil samples in terms of the chemical parameters, using Statistica

v.10 software [30]. Analysis of similarities (ANOSIM) was used to

test the significance of the differences observed between the

drainage and soil samples, based on the Bray-Curtis distance,

considering the OTU composition of the samples. The t-test (with

95% confidence intervals) was used to determine whether the

means of the Simpson, Shannon, and Berger-Parker diversity

indices were statistically different, in terms of species richness and

dominance, between the drainage and soil samples. Non-metric

multidimensional scaling (n-MDS) was carried out using the Bray-

Curtis distance matrix to plot the distances between the samples,

considering the OTU distribution and the chemical parameters.

Similarity percentage (SIMPER) analysis was used to identify the

taxa that were mainly responsible for the differences observed

between the drainage and soil samples. All the analyses were

performed with normalized data, by sample length, using the

PAST software [31].

Multivariate regression tree (MRT), aggregated boosted tree

(ABT), and Spearman rank correlation analyses were carried out

to correlate the chemical parameters with the biological data.

MRT [32] was used to explore the relationship of the chemical

parameters with the relative abundance of the dominant phyla and

standardized diversity indices. This analysis was performed using

the mvpart package within the R statistical environment, with

default parameters. ABT [33] was performed (with 5000 trees, 10-

fold cross validation, and three-way interaction) to evaluate the

relative importance of the chemical parameters to the relative

abundance of the dominant phyla, using the gbmplus package

within the R environment. Non-parametric Spearman rank

correlation was used to test the significance (p,0.5) of the

relationships between the chemical parameters and phyla abun-

dance, using the Statistica v.10 software.

Bacterial Community from a Neutral Mine Drainage
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Results

Chemical characterization of samples
A total of 16 chemical parameters were examined for each

sample. Significant differences between the drainage and soil

samples were observed for copper, nickel, potassium, sodium, and

zinc (Table 1). The concentrations of the heavy metals were higher

in the drainage samples, while those of sodium and potassium were

higher in the soils. The pH of the soil samples ranged from 4.86 to

8.66, while pH values between 6.08 and 8.05 indicated that the

drainage was a neutral mine drainage. Also, high concentrations of

calcium were observed in samples S3, S5, and S6. This was due to

the addition of limestone along the drainage channel of the

Sossego mine, which also increased the pH and the calcium

concentration of the soil next to the drainage (see Table S1 for

details). High sulfur concentrations were observed in samples D3

and S2, which can be explained by the fact that the drainage

channel flows over uneven ground, resulting in the accumulation

of certain elements in some of the drainage and nearby soil

samples.

Taxonomic composition
The pyrosequencing resulted in 102655 quality sequences from

the 12 samples analyzed. The number of sequences per sample

ranged from 3248 to 21198 (8554.5865390.96). A total of 5901

OTUs were found, and approximately 45% were singletons. Of

these OTUs, 5636 (95.5%) could be assigned to at least one

particular phylum, and 24 OTUs were assigned to Archea. The

Good’s coverage ratio of the samples ranged from 83.8 to 99%

(93.2264.67%) (see Table S2 for details).

The phyla Proteobacteria (25.3%) and Deinococcus/Thermus (25.4%)

were dominant in the drainage samples (Figure 1), while in soil the

dominant phyla were Proteobacteria (26.6%), Chloroflexi (17.7%),

Acidobacteria (15%), Gemmatimonadetes (14.2%), and Actinobacteria

(13.1%) (Figure 2). Among the Proteobacteria, the most dominant

taxa in both environments were Alphaproteobacteria (44.7% in

drainage and 51.7% in soil), followed by Betaproteobacteria (26.5% in

drainage and 19% in soil). In general, variation of the relative

abundance of different phyla was more notable in the soil samples,

while the drainage environment was dominated by a few phyla.

The drainage samples presented a total of 3023 OTUs, while

the soil samples presented 4031 OTUs. Only 1153 OTUs (19.5%)

were shared between both environments; most OTUs were found

exclusively in one of the environments analyzed. All these results

suggest that the composition of the bacterial community differed

between the mine drainage and soil environments.

Diversity analysis
The analysis of similarities (ANOSIM), which considered the

OTU compositions, revealed significant differences between the

drainage and soil bacterial communities (p = 0.0087). No signifi-

cant difference was found when the drainage samples were

compared to each other (p = 1), and the same was observed for the

soil samples.

Non-metric multidimensional scaling (n-MDS) (Figure 3) was

performed to group the samples by associating the chemical

parameters and the OTU frequencies. The results indicated a

clear separation between the drainage and soil samples. The soil

samples showed more scatter, suggesting greater heterogeneity,

and the concentrations of sodium and potassium were the

chemical parameters that contributed most to the separation.

The drainage samples showed a more homogenous distribution,

closely related to the amounts of copper, cadmium, nickel, and

zinc. These results were in accordance with the statistical analysis

(Student’s t-test) showing that the amounts of the chemical

parameters described above were different for the two environ-

ments. The ANOSIM and n-MDS analyses indicated that the

structure of the bacterial community changed when the environ-

ment was directly impacted by the mine drainage.

Table 1. Chemical parameters of the drainage and soil samples, and P-values derived from the Student’s t-test.

Drainage Mean values Soil Mean values P-value

Cadmium 0.6060.15 0.4760.14 0.15

Calcium 40266.67674148.52 28633.33650360.92 0.76

Lead 5.3562.86 5.8564.49 0.82

Copper 31436.33622707.81 6287.1768012.76 0.03*

Chromium 22.75610.29 26.4569.86 0.54

Sulfur 24391.67653721.94 28865.00669631.71 0.90

Iron 27603.50615210.08 21695.8369405.91 0.43

Phosphorus 11286.67623115.07 538.336253.57 0.28

Magnesium 7608.3364871.39 4883.3364937.37 0.36

Manganese 324.836139.01 446.506413.48 0.51

Nickel 112.25642.2 64.95626.24 0.04*

Potassium 9.3268.44 268.506157.6 0.002**

Sodium 1.8260.91 102.35645.13 0.00**

Zinc 31.17618.34 13.2263.13 0.04*

pH 7.5060.71 7.2561.59 0.73

OM 22.5069.12 22.33617.22 0.98

Metal concentrations are expressed in mg/kg. The organic matter (OM) content is expressed in g/dm3.
* Statistically significant at 5%.
** Statistically significant at 1%.
doi:10.1371/journal.pone.0096605.t001
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The Student’s t-test applied to the diversity indices revealed

that, considering all the samples, there were no significant

differences between the drainage and soil in terms of diversity

(p = 0.210, Shannon index) and dominance (p = 0.26, Berger-

Parker index; p = 0.25, Simpson index).

Since a difference in the bacterial community was observed

between the environments, SIMPER analysis was used to show

which OTUs contributed to this result. The five main OTUs are

shown in Table 2. The OTU that contributed the most to the

differences between the soil and drainage communities was 824

(12.7% of the total dissimilarity), composed of the genus

Meiothermus, which was highly abundant in the drainage samples.

The OTUs 3607 and 4974 were classified as Gemmatimonas, and

were more abundant in the soil samples. Together, these OTUs

accounted for 4.43% of the difference. The OTU 1366 was

identified as Acidobacteria, a phylum containing genera commonly

found in soil and drainage [14]. The OTU 303 was classified as

Bacteria, and presented 95% identity with soil bacteria. The high

contribution of OTU 824 is particularly interesting, because it was

the dominant OTU in all the drainage samples and was most

important in the species dominance index (Berger-Parker index,

data not shown). These results revealed that the presence of the

mine drainage had a positive influence on the abundance of this

OTU in the environment.

Influence of the chemical parameters on microbial
composition and diversity

The MRT analysis was conducted by associating the chemical

parameters with both the relative phylum abundance and the

standardized diversity indices. For the distribution of the dominant

phylum, the environmental data provided a tree with three splits,

based on copper, potassium, and iron (Figure 4). The tree

explained 70% of the variance of the relative phylum abundance.

In this tree, copper was responsible for the first split, appearing to

be a strong predictor in this environment since it explained 58.4%

of the variance. Deinococcus/Thermus were the most abundant phyla

in samples exhibiting a high content of copper, while other phyla

were less abundant.

The second and third splits were determined by potassium

(8.2% of the variance) and iron (3.5% of the variance),

respectively. Proteobacteria was abundant in samples that contained

a smaller amount of potassium and were richer in iron. In contrast,

Acidobacteria and Actinobacteria were prevalent in samples containing

higher amounts of potassium, and the Actinobacteria population

decreased when the amount of iron increased. Gemmatimonadetes

showed a homogeneous distribution along the tree.

The tree for the standardized diversity indices (Figure 5) showed

one split determined by pH. This tree explained 58.1% of the

variance. As shown by the split, the Berger-Parker index decreased

at pH above 6.16, while the Shannon and Simpson indices showed

higher values, suggesting less dominance and greater diversity in

the alkaline environments. Additionally, the single regression tree

with the diversity indices (Figure S1) showed that the Shannon

index was explained more by potassium and pH, while the Berger-

Parker and Simpson indices were explained by pH.

The ABT models showed how the relative importance of the

chemical parameters influenced the relative abundance of the

dominant phyla (Figure 6). In general, the analysis indicated that

Figure 1. Relative abundance of bacterial phyla in drainage samples. Others: Armatimonadetes, BRC1, Chlamydiae, Chlorobi, Cyanobacteria,
Elusimicrobia, Firmicutes, Nitrospirae, OD1, Planctomycetes, Spirochaetes, Synergistetes, Verrucomicrobia, TM6, TM7, WPS-2, WS3, and unclassified
Bacteria.
doi:10.1371/journal.pone.0096605.g001
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copper and potassium were the principal parameters that exerted

a strong influence on these phyla. Copper was the principal

influence on Proteobacteria (59.74%) and Deinococcus/Thermus

(62.42%), and an intermediate influence on Acidobacteria (34.16%)

and Gemmatimonadetes (3.12%). This metal showed no influence on

Actinobacteria. Potassium was the principal influence on the

distribution of the Acidobacteria (44.14%) and Actinobacteria

(62.24%) communities, and showed an intermediate influence on

Proteobacteria (13.58%) and Deinococcus/Thermus (18.65%). These

findings supported the MRT results, showing the importance of

these chemical parameters in shaping the microbial communities

in the mine environments. Chromium, calcium, iron, and nickel

were also important parameters that influenced the distribution of

the principal phyla (see Table S3 for complete relative influence

data).

Spearman rank correlation analysis (Table S4) revealed a

slightly positive correlation between Acidobacteria and Actinobacteria/

Proteobacteria. Gemmatimonadetes presented significant correlations

with cadmium, chromium, and sulfur, while Proteobacteria was

negatively correlated with calcium and pH. The Thermus phyla was

highly positively correlated with copper, potassium, and zinc, and

slightly correlated with sulfur, iron, and nickel, reinforcing the

previous findings for the relationships between the chemical and

biological data.

Discussion

This work evaluated the impact of a neutral mine drainage flow

on the soil microbial community. Statistical analysis of the

measured chemical parameters revealed significantly higher levels

of copper, nickel, and zinc in the drainage samples, compared to

the soil samples. The increase of these metals in the drainage was

expected because they were part of the composition of the

minerals in the Sossego mine ore deposit, which after oxidation

became soluble and flowed along the soil. In contrast, the soil

samples contained higher amounts of sodium and potassium.

These chemical components could have played an important role

in shaping the microbial community in these environments.

However, it is important to note that both the drainage and soil

samples presented high contents of heavy metals, iron, and sulfur,

in addition to the calcium and magnesium that increase the

normal pH of the soil. Therefore, both environments (soil and

drainage) presented conditions that were adverse to microbial

communities, and deserved to be investigated.

Analysis of microbial composition revealed that the bacterial

community in the drainage samples was dominated by only a few

phyla, with only two phyla (Proteobacteria and Deinococcus/Thermus)

accounting for 50% of the total diversity. The microbial

community of the soil samples presented more phyla with similar

relative abundances. In areas contaminated with heavy metals, it

has been observed that the abundance of tolerant bacteria

increases, while that of the more sensitive organisms decreases

[34]. Therefore, the higher content of metals such as copper,

nickel, and zinc in the drainage samples could have acted to select

the resistant bacteria that dominated this environment. Proteobac-

teria was the phylum with the highest relative abundance in both

drainage and soil samples. Proteobacteria has been found to be the

Figure 2. Relative abundance of bacterial phyla in soil samples. Others: Acidobacteria, AD3, Armatimonadetes, Chlamydiae, Chlorobi,
Elusimicrobia, Fusobacteria, GAL15 Nitrospirae, OD1, Spirochaetes, Tenericutes, Verrucomicrobia, TM6, TM7, WPS-2, WS3, WYO, and unclassified
Bacteria.
doi:10.1371/journal.pone.0096605.g002
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predominant phylum in many mine environments, including

arsenic mine sediment [16], gold mine stream sediments [17], and

a river contaminated with metals [35]. This phylum exhibits a

complex lifestyle and can degrade a variety of complex organic

molecules, enabling it to adapt to many different environments

[23].

The small number of OTUs shared between samples supports

the hypothesis of the existence of large differences between the

bacterial community compositions of the drainage and soil

samples. The n-MDS and ANOSIM analyses showed that there

were differences between the two environments in terms of the

structure of the communities. The high heterogeneity observed

among the soil samples reflected the wide variety of phyla in this

environment, as observed in the community composition results.

In contrast, the drainage samples exhibited less diversity,

suggesting that in this environment, the bacterial community

was more homogeneous because fewer organisms could adapt to

the extreme conditions.

Figure 3. Non-metric multidimensional scaling. Non-metric multidimensional scaling using the Bray-Curtis dissimilarity plots of the first two
components for drainage (red) and soil (blue) samples. The stress value is 0.095.
doi:10.1371/journal.pone.0096605.g003

Table 2. Principal OTUs responsible for differences between the drainage and soil samples.

OTU Dissimilarity contribution (%) Abundance Drainage (%) Abundance Soil (%) RDP classifier [bootstrap value]

824 12.7 23.3 1.09 Meiothermus [99%]

3607 2.69 2.5 3.31 Gemmatimonas [99%]

303 1.8 0.19 3.11 Bacteria [100%]

1366 1.78 3.45 0.37 Acidobacteria [100%]

4974 1.74 0.012 3.06 Gemmatimonas [89%]

doi:10.1371/journal.pone.0096605.t002
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Comparison of the Simpson, Shannon, and Berger-Parker

indices revealed that there was no significant difference between

the drainage and soil samples in terms of diversity. According to

Kandeler et al. [36], enrichment of the soil with heavy metals

reduces the biomass and activity of bacteria. However, recent

studies have shown that after a century of exposure to acid

drainage, the bacterial community tends to stabilize and increase

its diversity, resulting in an environment with a microbial diversity

similar to that of non-impacted areas [17,23]. The Sossego mine

has been in operation for 16 years, and soil contamination is

considered to be relatively recent. Therefore, it was expected that

diversity would be lower at the drainage sites because only a few

groups of bacteria would be resistant to the extreme conditions of

this environment. However, it has been suggested that while acute

exposure has a negative influence on bacterial diversity, in

chronically contaminated environments, the proliferation of

resistant bacteria can increase diversity [37,38]. This situation is

common in mines such as the Sossego mine, where the drainage

flows constantly from the ore deposit. Furthermore, high

concentrations of nutrients can improve diversity in sediments

contaminated with heavy metals [17,39]. At the Sossego mine, the

drainage flows over the soil to a run-off area located about 700 m

from the ore deposit, and the vegetation in this area provides high

levels of organic matter. The natural nutrient content of this soil

might therefore play a key role in the promotion of bacterial

diversity.

The SIMPER results revealed that OTU 824, associated with

Meiothermus, accounted for much of the difference between the

drainage and soil communities, because it was much more

abundant in the drainage samples. The optimum growth

temperatures of these bacteria lie between 50 and 65uC, optimum

pH is around 8.0, and they are usually found in warm and

nutrient-poor environments, such as geothermal and anthropo-

genically-influenced areas [40,41,42]. OTU 824 was the taxa with

the highest relative importance in all the drainage samples and was

responsible for the dominance index in this environment. Other

researchers have reported the Meiothermus phylum, Deinococcus/

Thermus, in river sediments affected by an arsenic mine [16] as well

as in acid mine drainage [12], albeit in smaller proportions

compared to the present work. This is the first time that the genus

has been found in great abundance in mine environments,

suggesting a broad adaptive capacity of the Meiothermus species.

OTUs 3607 and 4974 were classified as Gemmatimonas and were

more frequently found in the soil samples. Together, these OTUs

accounted for 4.43% of the difference observed between the soil

and drainage samples. The genus Gemmatimonas has been reported

in studies of diversity in mine environments that were either

uncontaminated or contaminated with acid mine drainage.

Mendez et al. [43] used 16S rDNA libraries to study the bacterial

composition of the Klondyke mine in the USA. Gemmatimonadetes

was only found in uncontaminated samples, where the pH was

around 8.0. Reis et al. [17] studied sediments affected by heavy

metals from mining areas in Brazil and found that the phylum

Gemmatimonadetes was only present in contaminated environments.

It is therefore possible that these bacteria were widely present in

the soil of the Sossego mine region and resisted the impact of the

drainage, although their abundance decreased slightly due to the

prevalence of other bacteria more resistant to heavy metals.

The OTU 1366 was identified as Acidobacteria, a phylum that

includes genera commonly found in soil and drainage environ-

ments [14], and OTU 303 was identified only as bacteria present

in soils.

The MRT and ABT analyses revealed a major influence of

copper on the bacterial community of the Sossego mine. Although

neutral pH decreases the available copper, its presence can still

interfere with the microbial population. Kunito et al. [34]

evaluated the influence of different forms of copper on the soil

microorganism community, and found no significant correlation

between total copper and the tolerance of the bacteria. Nonethe-

less, in alkaline soils a small (but important) proportion (about 4%

Figure 4. Multivariate regression tree of the abundance of
phylum. Multivariate regression tree of the relation between relative
abundance of dominant phylum and chemical parameters. The bar
plots show the mean relative abundance of each phylum at the
terminal nodes. The numbers under the bar plots indicate the error and
the number of samples (n) within each group. Error: 0.299.
doi:10.1371/journal.pone.0096605.g004

Figure 5. Multivariate regression tree of the diversity indices.
Multivariate regression tree of the relation between standardized
diversity indices and chemical parameters. The bar plots show the mean
of the diversity indices at the terminal nodes. The numbers under the
bar plots indicate the error and the number of samples (n) within each
group. Error: 0.744.
doi:10.1371/journal.pone.0096605.g005
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of the total copper) can remain adsorbed onto soil particles and/or

associated with organic matter. The copper fraction associated

with organic matter is slightly soluble, and could have a negative

impact on the bacterial community. Furthermore, the soluble and

adsorbed fractions of copper are in equilibrium; although the

soluble copper reflects the toxicity, the adsorbed copper reflects

the toxicity capacity, because it is the source of the soluble copper.

In soil with a high content of heavy metals that compete for

adsorption sites, copper is the cation most likely to be retained by

organic matter, clay, and oxides. This competition process mainly

occurs in soil where there are large inputs of limestone, due to the

increase in soil sorption capacity [44]. It is therefore possible that

copper influenced the structure and composition of the bacterial

communities of the Sossego mine, because the soil was exposed to

different conditions of rainfall, redox condition, and limestone

application.

The most interesting effect of copper was observed for the

Deinococcus/Thermus phylum, which showed a strong positive

correlation with this metal, as well as with other metals, such as

zinc and nickel (see the Spearman rank correlation coefficients).

This phylum includes the genera Deinococcus, Meiothermus, Thermus,

and Trupera, which have shown resistance to extreme conditions

(high irradiation, oxidation, high temperature, and desiccation)

[45,46]. Although they have a broad adaptation capacity, little is

known about their survival in the presence of high levels of heavy

metals, because (until the present study) this phylum has only been

detected at low abundance in mine environments. The ecological

importance of Deinococcus/Thermus was only proposed recently

[47], and their presence in mine environments could provide new

opportunities for the study of these microorganisms.

Another important factor that affected bacterial composition in

the Sossego mine was the potassium concentration. Both

potassium and sodium were present at high levels in the soil

samples, and were highly inter-correlated (r = 0.94). Both elements

could have been influenced by the plant rhizosphere, which was

present in most of the soil samples. Potassium is a plant

macronutrient that is easily leached because of its mobility in

soils. Bacteria can affect the solubility and availability of this and

other nutrients, which affects the growth of plants as well as the

selection of specific bacteria associated with potassium [48].

The MRT analysis revealed high bacterial diversity in samples

with elevated pH. Since there was high exposure to limestone, the

bacterial community of the drainage and soil could have become

adapted to neutral/alkaline conditions, which would explain the

high abundance of genera generally associated with high pH, such

as Gemmatimonas and Meiothermus.

In conclusion, it was found that a chronic impact of neutral

mine drainage in the soil environment shifted the composition and

structure of the bacterial community, but did not affect bacterial

diversity. The high diversity found in both environments could

have been due to constant exposure to the drainage, as well as the

high availability of organic matter that promoted the growth of an

adapted microbial community. The high levels of heavy metals, as

well as the concentrations of nutrients such as potassium and

sodium, could account for the different microbial compositions of

the drainage and soil samples. The Deinococcus/Thermus phylum

was strongly affected by heavy metals (especially copper), and the

Meiothermus genus was dominant in the drainage communities.

This suggests that the full diversity of these taxa remains

unexplored.
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