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Resumo

Neste trabalho, usamos o Método dos Elementos Finitos (MEF) para estudar a propa-
gação de modos acústicos em um poço infinito preenchido por fluido e cercado por um
sólido homogêneo e isotrópico. Primeiramente, usando uma aproximação bidimensional
(2D) no plano transversal do poço, um modelo de análise modal foi proposto. Discuti-
mos a distribuição geométrica, interpretação física e obtivemos as curvas de dispersão dos
principais modos propagantes: Stoneley, flexural e quadrupolar. Os resultados foram vali-
dados por comparação direta com a solução analítica e numérica disponíveis na literatura.
Após isso, analisamos o problema no domínio do tempo usando uma aproximação no plano
longitudinal. Utilizamos o MEF para simular a aquisição de sinais por uma ferramenta de
perfilagem composta por uma fonte de monopolo com 𝑁 detectores igualmente espaçados.
Os resultados foram validados aplicando processos de pós-processamento de sinais, como
o Slowness Time Coherence (STC) e o Phase-based Dispersion Analysis (PBDA), para
obter as curvas de dispersão dos modos. Isso nos permitiu demonstrar a equivalência
de nossas análises modal e temporal. Nas duas formulações, analisamos a propagação
de ondas em formações rápidas e lentas, dando atenção ao caso para o limite a baixas
frequências. Demonstramos que nosso modelo pode ser efetivamente útil na interpretação
de dados de baixa relação sinal-ruído e também pode ser expandida para estudar sistemas
mais complexos.

Palavras-chave: Perfilagem sônica, Poços preenchidos por fluido, Geofísica; Método
dos Elementos Finitos.



Abstract

In this work, we use the Finite Element Method (FEM) to study the propagation
of acoustic modes in an infinite fluid-filled borehole surrounded by a homogeneous and
isotropic solid. First, using a two-dimensional (2D) approach in the transverse plane of
the borehole, we carry out a modal analysis of the problem. We discuss the geometric
distribution, physical interpretation, and obtain the dispersion curves of the main prop-
agating modes, namely, the Stoneley, flexural, and quadrupole modes. The results are
validated by direct comparison with analytical and numerical solutions available in the
literature. Second, we analyze the time domain problem with a two-dimensional approx-
imation in the borehole longitudinal plane. We use the FEM interface to simulate the
signal acquisition of a logging tool composed of a monopole source with 𝑁 equally spaced
detectors. The results are validated by applying data post-processing methods, like the
Slowness Time Coherence (STC) and Phase-Based Dispersion Analysis (PBDA), to ob-
tain the dispersion curves of the modes. This allows us to demonstrate the equivalence of
our modal and temporal analysis. In both approaches, we analyze the wave propagation
in fast and slow formations, paying particular attention to the low frequency limit. We
showed that our simulation model can be effectively helpful in the interpretation of low
signal-to-noise experimental data and also be expanded to study more complex systems.

Keywords: Sonic logging; Fluid-filled boreholes; Geophysics; Finite Element Method.
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Chapter 1

Introduction

The main goal of geophysical experiments is to provide an accurate classification of
the soil, rock, and the surrounding environment. Various experiments are conducted to
gather different and needed information for mining, water management, and oil-and-gas
companies. Properties such as porosity, anisotropies, and rock permeability are primar-
ily important in petrophysical systems since they indicate the presence of hydrocarbons
reservoirs. There are different types of studies based on electrical, acoustic, and nuclear
measurements that are conducted for soil and subsoil classifications. [1]

In this scenario, acoustic wave propagation phenomena are broadly employed. Sonic
logging is a technique based on measurements of propagating and scattered acoustic modes
in a cylindrical waveguide filled with fluid and surrounded by a rock formation. The
measurement probe (sonic tool) is constituted by a source of acoustic waves and an array
of equally spaced detectors. The source generates an energy pulse that propagates in
the system and is collected by the array detector along the borehole depth. The most
commonly used sources are monopole and dipole. In monopole sources, the generated
waves have an isotropic energy distribution. In dipole sources, energy is distributed in a
preferential axis. The characterization of the formation is made using inversion techniques,
which consist in the estimation of physical parameters (elastic constants, porosity, etc)
from the compressional (P) and shear (S) wave velocities obtained after processing of the
time-recorded signals [2, 3]. All inversion techniques employ the wave dispersion relation,
meaning the relation between its wavenumber and wavefrequency. [4, 5]

One of the main problems in sonic logging is the reliability of the low-frequency regime
of the experimentally obtained dispersion curves of some modes due to the low signal-to-
noise ratios. Porosity and permeability effects tend to contribute to signal attenuation
in this frequency regime [6]. Moreover, in slow formations, where the formation shear
velocity is lower than the fluid compressional velocity, the formation shear wave detection
after excitation with a monopole source is considerably suppressed. Quadrupole and
dipole sources are usually employed to mitigate the problem. Over the last decades, an
effort has been devoted to develop sophisticated numerical data processing techniques to
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improve signal-to-noise ratios in the processed data and to separate the contribution of
the different dispersive and non-dispersive modes which are present in the acquired signal
[2, 3, 7]. However, besides the remarkable progress, analytical and numerical simulations
remain essential to support the data treatment and estimate the shear wave velocity in
the low-frequency regime [8].

The analytical approach is usually based on calculations using the modal matrix for-
malism of the elasticity theory to derive analytical expressions for simplified cases, such as
wave propagation in homogeneous and isotropic solids, and obtain the dispersion curves
and the signal amplitude at each detector [9–11]. Numerical approaches take place to
investigate more complex and realistic situations, such as anisotropies, tool presence, and
stressed solids [12, 13]. Various numerical approaches have been used: semi-analytical
method [14], finite difference method [15], and finite element method (FEM) [16–21].
The advantage of FEM is its ability to treat geometrically more complex problems in
comparison to semi-analytical and finite difference methods.

1.1 Organization of the dissertation

This dissertation aims to contribute to the comprehension of the physical concepts
involved in wave propagation phenomena in isotropic and homogeneous fluid-filled bore-
holes. In particular, we are interested in the low-frequency response of dispersive modes
detected in field data. To do so, we implement a FEM calculation platform which allows
us to treat the problem in the time and frequency domains and that has the potential to
be used in more complex situations.

Chapter 2 begins by addressing the fundamental concepts of elasticity theory neces-
sary to the understanding of the sonic logging technique. We explore the measurement
procedure and its relation to the main propagating acoustic modes of the formation. We
review the fundamentals of elastic wave propagation and apply the elasticity theory to the
case of fluid-filled boreholes in isotropic and homogeneous media. We discuss the general
form of the solutions and their implications to the cases of fast and slow formations.

In Chapter 3, we numerically analyze the normal modes which propagate in fast and
slow formations. To do so, we implemented, tested, and validated our FEM simulations
in the frequency domain. The implemented model considers an infinite, homogeneous,
and isotropic solid. We focus on the Stoneley, flexural, and screw (quadrupole) modes.
We analyze their spatial distribution, dispersion, and propagation characteristics. We
also demonstrate very good agreement of our numerical results with analytical and other
numerical solutions. In particular, we show that our FEM model provides reliable disper-
sion curves up to at least 200 Hz, which is up to one order of magnitude lower than what
is achieved with other numerical methods or in post-processed real data.

In Chapter 4, we simulate the problem in the time domain in order to mimic a real
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experiment. We simulate a fluid-filled borehole surrounded by the formation. After
optimizing the model, we generate a data-set which is the time response of the detector
array, exactly as in the experimental situation. Then, the data undergoes post-processing
treatment with two independent algorithms: Slowness Time Coherence (STC), which
is a numerical method to obtain formation S and P velocities of non-dispersive modes,
and Phase-based Dispersion Analysis (PBDA), which does the same for the dispersive
modes. Again, we treat the case of fast and slow formations. The results are compared
with the analytical solutions and our modal analysis from Chapter 3, demonstrating very
good agreement in the determination of the formation shear velocity from the different
approaches. Moreover, the equivalence between our FEM frequency and time-domain
approaches allows us to use our model to improve the efficiency and implementation of
data processing algorithms like the PBDA.

In Chapter 5, we summarize the main results of our simulations and comment on
future perspectives.
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Chapter 2

Sonic logging

The determination of the elastic parameters of a solid formation is important for
reservoir characterization. While there are different ways to determine these parameters
using wave propagation phenomena, the acoustic logging technique is one of the main
disciplines in geophysical well logging [1]. This technique is used to determine the rock
characteristics from the response to a pressure pulse emitted by a source and obtain the
dispersion curve of the propagating waves. [8]

A tool is inserted in a fluid-filled borehole surrounded by the formation. The structure
of the logging tool varies depending on the application or manufacturer. Figure 2.1(a)
shows an example of a modern tool used in field data collection by Schlumberger. It is
composed of 13 (R1 to R13) equally spaced (15.16 cm) detectors, sources, and acoustic
insulation. One can see the presence of five different sources: MU, ML, M, Dx, and
Dy. MU and ML are cylindrical ceramic monopole sources used in the measurement
procedure of near propagating waves at around 8 kHz. M represents a cylindrical ceramic
monopole source used for measurements of P and S waves at high-frequencies and Stoneley
wave at low-frequency. Dx and Dy are dipole sources which are perpendicularly oriented.
Between the far sources and receivers, there is acoustic insulation used to minimize the
wave propagation inside the tool. Figure 2.1(b) shows a cross-section scheme in one
detector of the receiver array. Actually, each receiver is another array composed of eight
detectors azimuthally distributed. This configuration is used to detect waves propagating
in different orientations, for example, the flexural modes propagating along the x and
y-axis of an anisotropic formation.
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Figure 2.1: Logging tool scheme provided by Schlumberger: (a) shows the geometric pa-
rameters of the tool as well as the sources and receivers positions; (b) shows the azimuthal
distribution of the detectors in every single detector. Adapted from [22]
.

Three types of sources are used: the monopole, dipole, and quadrupole. The monopole
source emits energy isotropically. The dipole source emits energy in a preferred direction.
The quadrupole source emits energy in two perpendicular directions. Usually, the emitted
pulse is composed of frequencies from 0.5 Hz to 20 Hz.

(a) (b)

Figure 2.2: (a) Sonic logging technique illustration. The upper part shows the receiver
array of equally spaced detectors. The lower part shows the source. Between the tool and
the formation, there is fluid. (b) Ray tracing for a fast formation. The incident wave,
from the fluid, meets the borehole boundary giving rise to reflected and refracted waves
with different angles at the interface. Adapted from [4].
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The source emits a pulse which propagates in the fluid and then meets the borehole
wall, giving rise to reflected and transmitted waves. Figure 2.2(a) shows an example of
the physical situation. The transmitted wave splits into shear (𝑣𝑠) and compressional (𝑣𝑝)
waves with different velocities. The ray tracing approximation can be used to visualize
this situation, as shown in Figure 2.2(b).

The surrounding formation is usually called fast or slow. Fast formation happens
when the solid shear velocity is greater than the compressional velocity of the fluid. Slow
formation happens in the opposite situation: the shear velocity of the solid is lower than
the compressional velocity of the fluid. Using Figure 2.2(b) and Snell’s Law to relate the
reflected and refracted wave angles and the velocities we get

sin(𝜃1)
sin(𝜃𝑝) = 𝑣𝑓

𝑣𝑝

(2.0.1)

sin(𝜃1)
sin(𝜃𝑠)

= 𝑣𝑓

𝑣𝑠

(2.0.2)

where 𝑣𝑓 , 𝑣𝑝 and 𝑣𝑠 are the fluid, compressional, and shear velocities, respectively. 𝜃1

is the incident angle, 𝜃𝑝 and 𝜃𝑠 are the refracted angles of each body wave. There is a
certain value of 𝜃1, for each type of solid wave, that allows the wave propagation along
the fluid-solid interface. In the slow formation (𝑣𝑠 > 𝑣𝑓 ) there is no 𝜃1 that satisfies
this condition. In this situation, the detection of the shear wave by the detector array is
considerably hindered.

Besides the compressional and shear waves in the solid, there are also interface waves
that are guided along the borehole fluid-solid interface. Different sources excite different
interface waves. The monopole source excites the Stoneley wave. The dipole source
excites mainly the flexural wave. The quadrupole source excites the quadrupole wave.
These waves are usually dispersive, the phase velocity is dependent on the frequency.

Figure 2.3 shows the experimentally recorded signals excited with a monopole source
by eight equally spaced detectors: fast (Figure 2.3(a)) and slow formation (Figure 2.3(b)).
For the fast formation, it is possible to see three different arrivals: the compressional,
shear, and Stoneley. For slow formation, it is possible to see only the P and the Stoneley
arrival, as expected from equation 2. [5]
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(a) (b)

Figure 2.3: Waveforms recorded by eight equally spaced detectors for (a) fast and (b) slow
formation. In the fast formation, it is possible to see the presence of the compressional,
shear, and Stoneley waves. In the slow formation, it is possible to see only the presence
of the compressional and Stoneley waves. The arrival at each detector is illustrated with
lines in different colors. Adapted from [5].

The dipole source was introduced to overcome limitations in the determination of
shear velocity in slow formations using a monopole source. The dipole source excites the
flexural wave which is dispersive. In the low-frequency range, the phase velocity of the
flexural wave is equal to the shear velocity of the formation [23]. Therefore, obtaining
the dispersion curve of the flexural wave is, in principle, a way to obtain the shear wave
velocity in a slow formation. However, at low frequencies, flexural waves also have low
energy and signal competes with noise.

Figure 2.4 shows the pattern of each interface mode propagating along the z-direction.
In Figure 2.4(a) , on the left we show the cross-section of the tube when the Stoneley mode
is propagating. The plus (+) sign indicates expansion, while the minus sign (-) indicates
a compression. One can see that this mode does not have a preferred orientation, in
contrast to the flexural mode shown in Figure 2.4(b) where energy is concentrated along
one of the in-plane axes. The quadrupole mode in Figure 2.4(c) has two perpendicular
directions, one which suffers a compression and the other an expansion.



2. Sonic logging 22

Figure 2.4: Geometrical representation of three main propagating modes: (a) Stoneley (b)
Flexural (c) Screw. On the left, we show the cross-section of the tube, in which plus sign
represents expansion, and the minus sign represents compression. On the right, the shape
of interface mode propagating along z-direction is shown. Each one is mainly excited by
a specific source. Adapted from [5].

2.1 Wave propagation

The first analytical solution for an ideal fluid-filled borehole was obtained by Biot, who
explored the axisymmetric waves generated by a monopole source in a borehole surrounded
by an isotropic and homogeneous medium [9]. He obtained the dispersion curve for
the Stoneley wave and its asymptotic velocity in the low-frequency range. His work is
considered a milestone in this research field and has been extended and complemented
since his early publication.

The results for higher-order modes were gathered by Tang in 2004 [8]. Here, we follow
his considerations to discuss the ideal fluid-filled borehole case. To obtain the propagating
modes, we first deduce the equation of motion and then apply the boundary conditions
of the system. Continuum mechanics is used along the discussion. It means that the
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discrete nature of matter can be ignored and its properties are described using continuous
functions. Here, we explore the key concepts involved in wave propagation.

2.1.1 Strain tensor

When a solid undergoes external forces, there will be deformation and restoring forces.
The strain is a measurement of how much the medium is deformed with respect to its
initial condition.

Consider two neighboring points inside an arbitrary volume 𝑉 located at 𝑃 = 𝑃 (x)
and 𝑄 = 𝑄(x + 𝑑x). Then, the volume 𝑉 is deformed to a new configuration 𝑉 ′. The
new location of the points are 𝑃 ′ = 𝑃 ′(x + u(x)) and 𝑄′ = 𝑄′(x + 𝑑x + u(x + 𝑑x)), where
u(x) is the displacement vector. The difference between the distances of the deformed,
𝑃 ′𝑄′, and non-deformed, 𝑃𝑄, neighboring points is given by [24]

𝑃 ′𝑄′2 − 𝑃𝑄
2 =

∑︁
𝑖

(𝑑𝑥𝑖 + 𝑢𝑖(x + 𝑑x) − 𝑢𝑖(x))2 − 𝑑𝑥2
𝑖

=
∑︁
𝑘,𝑗

[︃(︃
𝜕𝑢𝑘

𝜕𝑥𝑗

+ 𝜕𝑢𝑗

𝜕𝑥𝑘

)︃
+
∑︁

𝑖

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑥𝑘

]︃
𝑑𝑥𝑗𝑑𝑥𝑘

=
∑︁
𝑘,𝑗

2𝐸𝑗𝑘𝑑𝑥𝑗𝑑𝑥𝑘

(2.1.1)

where

𝐸𝑗𝑘 = 1
2

[︃
𝜕𝑢𝑘

𝜕𝑥𝑗

+ 𝜕𝑢𝑗

𝜕𝑥𝑘

+
∑︁

𝑖

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑥𝑘

]︃
(2.1.2)

It can be shown that 𝐸𝑗𝑘 is a symmetric second-order tensor and it is known as Strain
Tensor. Considering small deformations, i.e.,

⃒⃒⃒
𝜕𝑢𝑖

𝜕𝑥𝑗

⃒⃒⃒
≪ 1, terms of second order can be

neglected, so

𝑒𝑗𝑘 = 1
2

[︃
𝜕𝑢𝑘

𝜕𝑥𝑗

+ 𝜕𝑢𝑗

𝜕𝑥𝑘

]︃
(2.1.3)

where 𝑒𝑗𝑘 is known as infinitesimal strain tensor, which is a symmetric linear second-tensor
rank. The strain represents the relative deformation of the solid that has undergone a
deformation.
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2.1.2 Stress tensor

To introduce the stress tensor, we will analyze the internal forces in a solid divided
into two portions separated by an imaginary surface. Consider a body divided into two
parts I and II by surface 𝐴, which is oriented by n. Part II exerts a force in part I, as
shown in Figure 2.5. The stress in a given point is defined by the limit

T(n) = lim
𝛿𝐴→0

𝛿F
𝛿𝐴

(2.1.4)

Figure 2.5: Representation of an imaginary surface 𝐴 which divides the solid into two
parts. 𝛿F is the force exerted by part II on part I in the area 𝛿𝐴. The infinitesimal area
is oriented by n.

The force components which are not parallel to n give rise to shear tensions. The full
description of the state of stress can be represented using a second-rank tensor, see [25].
So, it is defined by nine quantities

𝜎𝑖𝑗 = 𝑇𝑖(𝑛𝑗) (2.1.5)

where 𝑇𝑖(𝑛𝑗) is the 𝑖-th component of stress that acts on the normal plane with 𝑛𝑗 orien-
tation. This way

𝑇𝑖 =
∑︁

𝑗

𝜎𝑖𝑗𝑛𝑗 (2.1.6)

The stress tensor can be represented using matrix form, where the diagonal terms rep-
resent the normal stresses and the non-diagonal terms the shear stresses. Figure 2.6 repre-
sents the components of the stress tensor in the Cartesian coordinate system (𝑥1, 𝑥2, 𝑥3).
The normal and shear stresses are represented using red and black colors, respectively.



2. Sonic logging 25

Figure 2.6: Representation of stress tensor components. Normal stresses are represented
in red. Shear components are represented in black.

2.1.3 Generalized Hooke’s law

A medium is called elastic if there is restoring stress which is linearly related to the
strain. The major part of Hooke’s observations were involving springs. Cauchy generalized
the theory to elastic solids by proposing, in modern notation, the following constitutive
relation between strain and stress [25]

𝜎𝑖𝑗 =
∑︁
𝑘𝑙

𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙 (2.1.7)

where 𝐶𝑖𝑗𝑘𝑙 is the element of a fourth-rank tensor known as stiffness tensor and it has 81
components, but it can be reduced to 21 independent components due to the symmetry
of 𝜎𝑖𝑗, 𝑒𝑘𝑙, and thermodynamics consideration [26]. The symmetries involving the stiffness
tensor are

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗

(2.1.8)

Consequently, without losing generality, the stiffness tensor can be represented using
the Voigt notation

𝑖𝑗 → 𝛼

𝑘𝑙 → 𝛽
→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
11 → 1 32 = 23 → 4
22 → 2 31 = 13 → 5
33 → 3 12 = 21 → 6

(2.1.9)
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Using the Voigt notation we can rewrite the constitutive relation using matrix notation
as follows

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

𝜎6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16

𝐶22 𝐶23 𝐶24 𝐶25 𝐶26

𝐶33 𝐶34 𝐶35 𝐶36

𝐶44 𝐶45 𝐶46

𝑆𝑦𝑚. 𝐶55 𝐶56

𝐶66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑒1

𝑒2

𝑒3

2𝑒4

2𝑒5

2𝑒6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.1.10)

The stiffness tensor representation can be simplified taking into account some symme-
tries of the medium. The medium is called isotropic when all orientations are equivalent
and, then, the stiffness tensor can be reduced using only two independent parameters as
follows

𝐶𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (2.1.11)

where 𝛿𝑖𝑗 is the Kronecker Delta, and 𝜇 and 𝜆 are referred to as Lamé’s first and second
parameter, respectively. Using the Voight notation, the isotropic stiffness tensor can be
represented by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 + 2𝜇 𝜆 0 0 0

𝜆 + 2𝜇 0 0 0
𝜇 0 0

𝑆𝑦𝑚. 𝜇 0
𝜇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.1.12)

Therefore, the stress tensor components can be written in Voigt notation as

𝜎𝑖𝑗 = 𝜆

(︃∑︁
𝑘

𝑒𝑘𝑘

)︃
𝛿𝑖𝑗 + 2𝜇𝑒𝑖𝑗 (2.1.13)

2.1.4 Equation of motion

Consider a volume 𝑉 with density 𝜌(x) enclosed by a surface 𝜕𝐴. This volume is
submitted to an external force (per unit volume) f(x, 𝑡) and a stress on the surface. Each
component of the displacement vector can be written using the Newton second law and
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the divergence theorem as follows [25]

𝜕

𝜕𝑡

∫︁
𝑉

𝜌
𝜕𝑢𝑖

𝜕𝑡
𝑑𝑉 =

∫︁
𝑉

𝑓𝑖(x, 𝑡) 𝑑𝑉 +
∫︁

𝜕𝐴

𝑇𝑖(n)𝑑𝑆

=
∫︁
𝑉

⎡⎣𝑓𝑖(x, 𝑡) +
∑︁

𝑗

𝜕𝜎𝑗𝑖

𝜕𝑥𝑗

⎤⎦ 𝑑𝑉

(2.1.14)

Since 𝑉 is an arbitrary volume, the following equation needs to be satisfied

𝜌
𝜕2𝑢𝑖

𝜕𝑡2 − 𝑓𝑖 −
∑︁

𝑗

𝜕𝜎𝑗𝑖

𝜕𝑥𝑗

= 0 (2.1.15)

Using the constitutive relation for linear medium given by equation 2.1.13, the elasto-
dynamic equation is obtained

𝜌
𝜕2𝑢𝑖

𝜕𝑡2 = 𝑓𝑖 +
∑︁
𝑗𝑘𝑙

𝜕

𝜕𝑥𝑗

(︃
𝐶𝑖𝑗𝑘𝑙

𝜕𝑢𝑘

𝜕𝑥𝑗

)︃
, 𝑖 = 1, 2, 3 (2.1.16)

For a linear and isotropic solid, the constitutive relation 2.1.11 can be applied to
equation 2.1.16. Then, the elastodynamic equation can be written as

𝜌
𝜕2u(x, 𝑡)

𝜕𝑡2 = (𝜆 + 𝜇)∇(∇ · u(x, 𝑡)) + 𝜇∇2u(x, 𝑡) + f (2.1.17)

Equation 2.1.17 describes the wave propagation in an elastic and isotropic solid. Var-
ious types of waves can be described using this equation and the solution may depend
on the boundary conditions. Two different waves can be identified in unbounded media,
the compressional and shear waves. In the first one, the displacement vector points in
the same direction of the wave propagation. In the shear wave, the displacement vector
is perpendicular to the direction of the wave propagation. Their values depend on the
elastic parameters of the solid through the relation (see Appendix A)

𝑣𝑝 =
√︃

𝜆 + 2𝜇

𝜌
𝑎𝑛𝑑 𝑣𝑠 =

√︃
𝜇

𝜌
(2.1.18)

From these equations, we can observe that the compressional wave velocity is always
larger than shear wave velocity. Moreover, for a fluid medium, the Lame’s second param-
eter is zero (𝜇 = 0), implying the absence of shear acoustic waves.
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2.2 Fluid-filled boreholes

In a fluid-filled borehole, the presence of the liquid-solid interface creates a waveguide
and leads to the appearance of other propagating modes apart for the unbound ones.
However, since we are dealing with isotropic and elastic media, the equation 2.1.17 can
still be used. Disregarding external forces and assuming a propagating wave with angular
frequency 𝜔

u(x, 𝑡) = u(x)𝑒−𝑖𝜔𝑡 (2.2.1)

so,

𝜇∇2u(x) + (𝜆 + 𝜇)∇(∇ · u(x)) = −𝜌𝜔2u(x) (2.2.2)

The above equation describes the wave propagation. However, boundary conditions
are needed in order to obtain a complete set of solutions. These conditions are obtained
by analyzing the fluid-solid interface and by imposing the Sommerfeld radiation condition
faraway from the borehole axis, as discussed bellow.

2.2.1 Solid

The solution of equation 2.2.2 can be obtained by separating the displacement field
into one compressional and two polarized shear components

u(x) = u𝑃 (x) + u𝑆𝐻(x) + u𝑆𝑉 (x) (2.2.3)

here u𝑃 denotes the compressional displacement, u𝑆𝐻 is the horizontally polarized shear
component, and u𝑆𝑉 is the vertically polarized shear components. Using the cylindrical
coordinate system (with u = (𝑢𝑟, 𝑢𝜃, 𝑢𝑧)), the displacement potentials (Φ, 𝜒, Γ) can be
introduced in a convenient way [27]

u𝑃 = ∇Φ
u𝑆𝐻 = ∇ × (𝜒ẑ)
u𝑆𝑉 = ∇ × ∇ × (Γẑ)

(2.2.4)

and, then, each potential has to satisfy its Helmholtz equation
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(∇2 + 𝑘2
𝑝)Φ = 0

(∇2 + 𝑘2
𝑠)𝜒 = 0

(∇2 + 𝑘2
𝑠)Γ = 0

(2.2.5)

where the compressional and shear wavenumbers are given by 𝑘𝑝 = 𝜔/𝑣𝑝 and 𝑘𝑠 = 𝜔/𝑣𝑠.
The compressional and shear velocities are given by equation 2.1.18. Considering a planar
wave propagating along the z-direction, the general solution of equation 2.2.5 is [27]

Φ(𝑟, 𝜃, 𝑧) = [𝐴𝑛𝐼𝑛(𝑝𝑟) + 𝐵𝑛𝐾𝑛(𝑝𝑟)] 𝑒𝑖𝑘𝑧𝑧 cos [𝑛 (𝜃 − 𝜃0)]
𝜒(𝑟, 𝜃, 𝑧) = [𝐶𝑛𝐼𝑛(𝑠𝑟) + 𝐷𝑛𝐾𝑛(𝑠𝑟)] 𝑒𝑖𝑘𝑧𝑧 sin [𝑛 (𝜃 − 𝜃0)]
Γ(𝑟, 𝜃, 𝑧) = [𝐸𝑛𝐼𝑛(𝑠𝑟) + 𝐹𝑛𝐾𝑛(𝑠𝑟)] 𝑒𝑖𝑘𝑧𝑧 cos [𝑛 (𝜃 − 𝜃0)]

(2.2.6)

In the above expression, 𝐼𝑛 is the modified Bessel function of the first kind and order 𝑛,
𝐾𝑛 is the modified Bessel function of the second kind and order 𝑛. Moreover, the number
𝑛 is interpreted as the mode number, with 𝑛 = 0 representing the monopole mode, 𝑛 = 1
representing the dipole mode, and so on. 𝜃0 is the initial phase. 𝑘𝑧 is the propagating
wavenumber in the z-direction. The parameters 𝑝 and 𝑠 represent the compressional and
shear radial wavenumbers and are given by

𝑝 =
√︁

𝑘2
𝑧 − 𝑘2

𝑝

𝑠 =
√︁

𝑘2
𝑧 − 𝑘2

𝑠

(2.2.7)

2.2.2 Fluid

The fluid can be also described by equation 2.2.2, by replacing 𝜇 = 0. Since fluids do
not support shear, the only potential needed is the one for compressional waves (𝜑)

⎧⎨⎩(∇2 + 𝑘2
𝑓 )𝜑 = 0,

𝑢𝑓
𝑟 = ∇𝜑,

(2.2.8)

where 𝑘𝑓 = 𝜔/𝑣𝑓 is the fluid compressional wavenumber, 𝑣𝑓 is the compressional velocity
of the fluid. The fluid displacement in 𝑟 direction is labeled as 𝑢𝑓

𝑟 . The solution of the
Helmholtz equation for compressional wave potential is similar to the previously obtained
for solids:

𝜑(𝑟, 𝜃, 𝑧) =
[︁
𝐴

′

𝑛𝐼𝑛(𝑓𝑟) + 𝐵
′

𝑛𝐾𝑛(𝑓𝑟)
]︁

𝑒𝑖𝑘𝑧 cos [𝑛 (𝜃 − 𝜃0)], (2.2.9)

where 𝑛 represents the mode number and 𝑓 is the fluid compressional radial wavenumber
given by:
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𝑓 =
√︁

𝑘2
𝑧 − 𝑘2

𝑓 (2.2.10)

To a full description of the wave fields, the coefficients in equations 2.2.6 and 2.2.9 are
needed, so boundary conditions must be imposed on the problem.

2.2.3 Boundary conditions

Figure 2.7(a) and 2.7(b) represent the general dependence with 𝑟 of the Bessel modified
functions of first and second order, respectively, for a given 𝑛. As we observe, 𝐼𝑛(𝑟)
diverges for large values of 𝑟, while 𝐾𝑛(𝑟) behaves the same way when 𝑟 → 0. The source
is located inside the borehole and we can use the Sommerfeld radiation conditions. This
means that, in order obtain finite acoustic fields in the fluid domain (0 ≤ 𝑟 ≤ 𝑅), we need
to set 𝐵

′
𝑛 = 0 in equation 2.2.9. For the solid domain (𝑅 ≤ 𝑟 ≤ ∞), the same argument

leads us to to set 𝐴𝑛 = 𝐶𝑛 = 𝐸𝑛 = 0 in equation 2.2.6.

(a) (b)

Figure 2.7: Modified Bessel of (a) first and (b) second kind of order 0,1,2,3 and 4. The
coordinate 𝑟 is in arbitrary units.

Then, the following equations can properly describe the system:
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜑(𝑟, 𝜃, 𝑧) = 𝐴
′
𝑛𝐼𝑛(𝑓𝑟)𝑒𝑖𝑘𝑧𝑧 cos [𝑛 (𝜃 − 𝜃0)] 0 ≤ 𝑟 ≤ 𝑅

Φ(𝑟, 𝜃, 𝑧) = 𝐵𝑛𝐾𝑛(𝑝𝑟)𝑒𝑖𝑘𝑧𝑧 cos [𝑛 (𝜃 − 𝜃0)] 𝑅 ≤ 𝑟 ≤ ∞
𝜒(𝑟, 𝜃, 𝑧) = 𝐷𝑛𝐾𝑛(𝑠𝑟)𝑒𝑖𝑘𝑧𝑧 sin [𝑛 (𝜃 − 𝜃0)] 𝑅 ≤ 𝑟 ≤ ∞
Γ(𝑟, 𝜃, 𝑧) = 𝐹𝑛𝐾𝑛(𝑠𝑟)𝑒𝑖𝑘𝑧𝑧 cos [𝑛 (𝜃 − 𝜃0)] 𝑅 ≤ 𝑟 ≤ ∞

(2.2.11)
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To be able to solve the system of equations (2.2.11), another four boundary conditions
are required. These conditions can be obtained by analyzing the borehole interface (𝑟 =
𝑅). The radial displacement 𝑢𝑟 and radial stress 𝜎𝑟𝑟 must be continuous and, since the
fluid doesn’t support shear, the shear stresses 𝜎𝑟𝑧 and 𝜎𝑟𝜃 must vanish at the interface.
These conditions can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑢𝑟 = 𝑢𝑓
𝑟

𝜎𝑟𝑟 = 𝜎𝑓
𝑟𝑟

𝜎𝑟𝑧 = 0 𝑟 = 𝑅.

𝜎𝑟𝜃 = 0

(2.2.12)

Using equations 2.1.3, 2.1.7, and 2.1.13, the stress elements in cylindrical coordinates
are given by

𝜎𝑖𝑗 = 𝜆(𝑒𝑟𝑟 + 𝑒𝜃𝜃 + 𝑒𝑧𝑧)𝛿𝑖𝑗 + 2𝜇𝑒𝑖𝑗 (2.2.13)

where the strain components are given by:

𝑒𝑟𝑟 = 𝜕𝑢𝑟

𝜕𝑟

𝑒𝜃𝜃 = 𝑢𝑟

𝑟
+ 1

𝑟

𝜕𝑢𝜃

𝜕𝜃

𝑒𝑧𝑧 = 𝜕𝑢𝑧

𝜕𝑧

𝑒𝑟𝜃 = 1
2

[︃
1
𝑟

𝜕𝑢𝑟

𝜕𝜃
− 𝑢𝜃

𝑟
+ 𝜕𝑢𝜃

𝜕𝑟

]︃

𝑒𝜃𝑧 = 1
2

[︃
1
𝑟

𝜕𝑢𝑧

𝜕𝜃
+ 𝜕𝑢𝜃

𝜕𝑧

]︃

𝑒𝑟𝑧 = 1
2

[︃
𝜕𝑢𝑧

𝜕𝜃
+ 𝜕𝑢𝑟

𝜕𝑧

]︃

and the displacement components can be expressed using equations 2.2.11

𝑢𝑟 = 𝜕Φ
𝜕𝑟

+ 1
𝑟

𝜕𝜒

𝜕𝜃
+ 𝜕2Γ

𝜕𝑟𝜕𝑧

𝑢𝜃 = 1
𝑟

𝜕Φ
𝜕𝑟

+ 𝜕𝜒

𝜕𝜃
+ 𝜕2Γ

𝜕𝑟𝜕𝑧

𝑢𝑧 = 𝜕Φ
𝜕𝑧

+ 𝑘2
𝑠Γ + 𝜕2Γ

𝜕𝑧2
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The above equations applied to the boundary conditions 2.2.12 lead to a homogeneous
system of the form [8]:

⎛⎜⎜⎜⎜⎜⎜⎝
𝐻11 𝐻12 𝐻13 𝐻14

𝐻21 𝐻22 𝐻23 𝐻24

𝐻31 𝐻32 𝐻33 𝐻34

𝐻41 𝐻42 𝐻43 𝐻44

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
𝐴′

𝑛

𝐵𝑛

𝐷𝑛

𝐹𝑛

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ (2.2.14)

where

𝐻11 = −𝑛𝐼𝑛(𝑓𝑅)
𝑅

− 𝑓𝐼𝑛+1(𝑓𝑅)

𝐻21 = 𝜌𝑓𝜔2𝐼𝑛(𝑓𝑅)
𝐻31 = 𝐻41 = 0

𝐻12 = 𝑛𝐾𝑛(𝑝𝑅)
𝑅

− 𝑝𝐾𝑛+1(𝑝𝑅)

𝐻22 = 2𝜌𝑣2
𝑠𝑛(𝑛 − 1)𝐾𝑛(𝑝𝑅)

𝑅2 + 𝜌(2𝑘2
𝑧𝑣2

𝑠 − 𝜔2)𝐾𝑛(𝑝𝑅) + 2𝜌𝑝𝑣2
𝑠𝐾𝑛+1(𝑝𝑅)

𝑅

𝐻32 = 2𝑛𝜌𝑣2
𝑠

𝑅

[︃
𝑝𝐾𝑛+1(𝑝𝑅) − (𝑛 − 1)𝐾𝑛(𝑝𝑅)

𝑅

]︃

𝐻42 = 2𝑖𝑘𝑧𝜌𝑣2
𝑠

[︃
𝑛𝐾𝑛(𝑝𝑅)

𝑅
− 𝑝𝐾𝑛+1(𝑝𝑅)

]︃

𝐻13 = 𝑛𝐾𝑛(𝑠𝑅)
𝑅

𝐻23 = 2𝜌𝑣2
𝑠𝑛(𝑛 − 1)𝐾𝑛(𝑠𝑅)

𝑅2 − 2𝑛𝜌𝑠𝑣2
𝑠𝐾𝑛+1(𝑠𝑅)

𝑅

𝐻33 = −𝜌𝑣2
𝑠

{︃[︃
𝑠2 + 2𝑛(𝑛 − 1)

𝑅2

]︃
𝐾𝑛(𝑠𝑅) + 2𝑠𝐾𝑛+1(𝑠𝑅)

𝑅

}︃

𝐻43 = 𝑖𝑘𝑧𝑛𝜌𝑣2
𝑠𝐾𝑛(𝑠𝑅)
𝑅

𝐻14 = 𝑖𝑘𝑧𝑛𝐾𝑛(𝑠𝑅)
𝑅

− 𝑖𝑘𝑧𝑠𝐾𝑛+1(𝑠𝑅)

𝐻24 = 2𝑖𝑘𝑧𝜌𝑣2
𝑠

[︃
𝑛(𝑛 − 1)

𝑅2 + 𝑠2
]︃

𝐾𝑛(𝑠𝑅) + 2𝑖𝑘𝑧𝑠𝜌𝑣2
𝑠𝐾𝑛+1(𝑠𝑅)
𝑅

𝐻34 = 2𝑖𝑘𝑧𝑛𝜌𝑣2
𝑠

[︃
𝑠𝐾𝑛+1(𝑠𝑅)

𝑅
− (𝑛 − 1)𝐾𝑛(𝑠𝑅)

𝑅2

]︃

𝐻44 = (𝑘2
𝑧 + 𝑠2)𝜌𝑣2

𝑠

[︃
𝑠𝐾𝑛+1(𝑠𝑅) − 𝑛𝐾𝑛(𝑠𝑅)

𝑅

]︃
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For equation 2.2.14 to have a nontrivial solution, the determinant of the matrix of
coefficients must vanish. The zeros of this determinant results in the relation of the phase
velocity of the guided waves. This means that for each considered angular frequency 𝜔,
one needs to find the wavenumber 𝑘𝑧 which vanishes the determinant. Replacing 𝑛 = 0 in
the previous equations, the results obtained of Biot for Stoneley wave are recovered. [8]

The analytical solution for simple systems can be found with the formalism described
above. However, the description of more complex and realistic structures are usually
needed. In realistic systems, analytical solutions cannot be easily found. Numerical meth-
ods have been used in such cases. More sophisticated and accurate numerical methods to
capture the physical situation have been required since the modeling plays an important
role in the refinement of inversion techniques. Finite-difference time-domain (FDTD)
is the most commonly used technique. We note the contributions of Cheng et al. [28]
who numerically studied the wave propagation in isotropic and anisotropic formations;
Liu et al. [29] who obtained synthetic waveforms for inhomogeneous solid formations.
Wang and Tang [15] investigated the dipole and quadrupole sources, they also applied a
perfect-matched layer (PML) to simulate infinite domains; Sinha et al. [30] studied trans-
versely isotropic formations and they also applied the PML. Synthetic waveforms were
obtained by Whyte and Zechman considering a cylindrical and homogeneous borehole
[31]. The monopole and dipole sources in a transversely isotropic solid were studied by
Tongtaow [32]. The theoretical formulation and numerical evaluation of the axisymmetric
and non-axially symmetric mode of higher-order in a fluid-filled borehole surrounded by
a homogeneous medium were developed by Kurkjian and Chang [10]. Cheng and Tokzos
theoretically formulated and numerically evaluated the dispersion curve and synthetic
microseismograms for Stoneley waves considering an elastic tool [33].

More recently, the FEM has been employed to simulate acoustic sonic logging and
wave propagation phenomena in geometrically complex situations. Pardo et al. [18, 19]
obtained the waveforms and the dispersion curves of the propagating modes in wireline
and logging-while-drilling techniques with an eccentred tool. Matuszyk, Torres-Verdín
and Pardo [20] and Matuszyk and Torres-Verdín [21] numerically studied different and
complex geometric configurations in logging-while-drilling and wireline situations: the
presence of the tool (with and without grooves), fractures, and layering. They explored
the axial symmetry of the system and implemented a 2D model in which formation non-
uniformities in the radial and axial directions are easily tailored. They also applied a PML
to mimic the infinite formation and introduced an adaptative mesh formulation which
increased the numerical accuracy of the results. Gaede et al. [34] studied the dynamic
properties in 3D vertical and inclined boreholes in a variety of situations including in
isotropic, transversely isotropic, and orthorhombic symmetries. Jorgensen and Burns [16]
studied the response of a stressed acoustic borehole excited by a quadrupole source and
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computed its dispersion curves. In the next chapter, we use FEM calculations in order to
obtain the dispersion curves for each propagating mode of the borehole. The considered
modes are solutions for equation 2.2.14 using 𝑛 = 0, 1, 2, that represent the Stoneley,
flexural, and screw mode, respectively.
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Chapter 3

Modal Analysis

In this chapter, we investigate the acoustic modes and their dispersion curves in infi-
nite, isotropic, and homogeneous formations in the frequency domain. We describe and
validate our implementation by comparing our numerical results with the analytical so-
lutions obtained in Chapter 2. Moreover, the main result obtained by Biot [9] about the
Stoneley wave is reproduced and then expanded for flexural waves. Finally, we discuss
the main aspects of each propagating mode.

3.1 Model implementation

The numerical simulation was performed using the FEM with COMSOL Multiphysics.
It provides a useful and friendly platform that allows us to solve Partial Differential Equa-
tions (PDEs) in different physical environments (like liquids and solids) and to couple them
via appropriate boundary conditions. It counts with some already implemented PDEs for
different purposes, like the constitutive equations of the elasticity theory described in
Chapter 2.

Our simulations use Solid Mechanics and Pressure Acoustics packages. The first one is
applied to the solid domain and the second to the fluid domain. At the borehole interface,
the coupling uses the Acoustic-Structure Boundary. It allows us to numerically solve
the elastodynamic equation in the considered medium (equation 2.1.17), as developed in
Chapter 2. To directly obtain the propagating modes, we used the Modal Analysis study
type. The modal analysis is a study in the frequency-domain focused on finding normal
modes of the considered structure, meaning the eigenvalue of the stiffness matrix.

In our simulation, the modal analysis consists in considering a propagating plane-wave
along the z-axis with wavenumber 𝑘𝑧. The problem can be solved just considering the 𝑥𝑦

plane, simplifying from 3D to 2D calculations. In this way, the solid displacement vector
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and fluid acoustic pressure can be described by the following transformations

u(𝑥, 𝑦, 𝑧) = u(𝑥, 𝑦)𝑒−𝑖𝑘𝑧𝑧

𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑥, 𝑦)𝑒−𝑖𝑘𝑧𝑧
(3.1.1)

The above considerations, together with the symmetry of the problem, lead to some
reductions in the computational domain. Basically, for each frequency 𝑓 , values for 𝑘𝑧 will
be searched to solve the governing equations with imposed boundary conditions. Strictly
speaking, the wavenumber is composed of an imaginary and a real part

𝑘𝑧 = 𝑘𝑟𝑒𝑎𝑙
𝑧 + 𝑖𝑘𝑖𝑚𝑎𝑔

𝑧 (3.1.2)

A propagating mode happens when 𝑘𝑖𝑚𝑎𝑔
𝑧 = 0. A evanescent wave is described by a

purely imaginary wavenumber (𝑘𝑟𝑒𝑎𝑙
𝑧 = 0). When both are different from zero, meaning

complex values of 𝑘𝑧, we have a mode that is attenuated along the propagation path, so-
called leaky mode. In this work, we have only considered the real part of the wavenumber,
disregarding the attenuation of the wave. Then, the search routine is based on finding
purely real values of 𝑘𝑧.

Figure 3.1(a) illustrates the infinite borehole aligned along the z-axis. A cut plane
used to investigate the modes is indicated. Figure 3.1(b) shows the cut plane which is
implemented in COMSOL in details. The light brown and blue regions indicate the solid
and fluid domains. The fluid-solid interface boundary conditions (red dashed line) are
given by equation 2.2.12.

(a) (b)

Figure 3.1: Computational domains used to investigate the propagating modes: (a) shows
the 3D domain and the cut plane considered that simplifies the considered problem; (b) 2D
sketch of the implemented modal analysis model showing the liquid and solid domains as
well as their interface. 𝑅 is the fluid radius, 𝑅𝑃 𝑀𝐿 is the PML width, 𝑅𝑠 is the cylindrical
shell width. u = 0 represents zero displacement at the model outer edge.
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Figure 3.1(b) also shows the presence of PML layer. The PML is an artificial layer
used to mimic infinite domains which is commonly used in frequency-domain studies for
wave-like equations. It is a mapping of the real coordinates into complex ones, providing
the attenuation of incoming waves. The PML outer boundary (u = 0) helps to guarantee
the attenuation of the modes at the model edge. The layer needs to have the same meshing
parameters of the adjacent domain and the coordinates transformation parameters have
to be carefully chosen to avoid reflections and unexpected interactions. The stretching in
one single direction is given by the transformation

Δ𝑥 = 𝜆𝑏𝜉𝑎(1 − 𝑖) − Δ𝑤𝜉 (3.1.3)

where 𝜆 is the typical wavelength of incoming waves; Δ𝑤 = 𝑥1 − 𝑥0 = 𝑅𝑃 𝑀𝐿; 𝑎 and 𝑏 are
the curvature and scaling parameters, respectively. 𝜉 is a parameter considered for each
point 𝑥 inside the PML domain, it varies from 0 to 1 and is given by:

𝜉 = (𝑥 − 𝑥0)/(Δ𝑤) (3.1.4)

Curvature and scaling parameters usually need to be optimized and can be crucial in
certain systems. In our simulation, due to the domain sizes and propagating wavelengths
of interest, they are not critical. For simulations shown here, we use 𝑎 = 3 and 𝑏 = 4.
The total displacement is computed summing up the stretching for 𝑥 and 𝑦 directions [35,
36]. The geometric parameters used in the simulations presented here are given in Table
3.1.

Table 3.1: Parameters used in modal simulations, considering the cut plane, as shown in
Figure 3.1.

Domain Inner radius (m) Outer radius (m)
Fluid 0 0.1
Formation 0.1 0.8
PML 0.8 1.0

The mesh size is a key parameter to the numerical accuracy of the FEM method. Each
mesh element needs to be small enough in comparison to the propagating wavelength to
guarantee good resolution and accuracy of computed physical quantities. In a frequency
study type, a meshing procedure can be adapted to each frequency of the sweeping. This
allows us to reduce the total computational effort and maintain simulation accuracy. For
each frequency, the maximum element size ℎ is chosen to be at least ten times smaller
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than the typical wavelength

ℎ = 𝑣𝑚𝑖𝑛

10 𝑓
, (3.1.5)

where 𝑓 is the frequency and 𝑣𝑚𝑖𝑛 is the smallest mode velocity of the domain. For solids,
the smallest velocity is the shear wave velocity.

The solid and fluid domains are meshed with triangular elements that are structured
to guarantee the accuracy at the fluid-solid interface. Second-order shape functions in all
domains were used. The PML mesh is also constructed using structured meshes composed
of at least eight layers, as recommended by COMSOL Multiphysics User’s Guide [36].
Figure 3.2(a) shows the resulting discretization map obtained at 8 kHz of a fast formation
using the conditions described above. We plot one-quarter of the model geometry. The
color scale presents the mesh element size distribution. Figure 3.2(b) is a zoom in the
fluid-solid interface, demonstrating the mesh parameterization according to the fluid or
solid velocities, as well as the mesh resolution at the fluid-solid interface.

(a) (b)

Figure 3.2: (a) Discretization of the domain. (b) Zoom near to solid-fluid interface. Color
scale shows the mesh element size.

3.2 Results

Our main goal is to calculate the dispersion curves for the propagating modes in fast
and slow formations. The dispersion curve is commonly represented by a chart of the
angular frequency as a function of the wavenumber. However, in geophysics, dispersion
curves are commonly represented as the inverse of phase velocity 𝑣𝑝ℎ𝑎𝑠𝑒, known as phase
slowness 𝑆, in the function of frequency. The slowness is given by
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𝑆 = 𝐾

𝑣𝑝ℎ𝑎𝑠𝑒

(3.2.1)

where 𝐾 = 304800 is the conversion factor from s/m to µs/ft, which is the most used unit
in sonic well logging.

In order to validate and test our implementation, we choose parameters for fluid and
solid domain which are typical in numerical studies [8, 32, 37], providing a straightforward
comparison between the results. We point out that changes in elastic parameters of
each medium can be easily implemented in our platform. Fast and slow formations were
simulated using different values for fluid compressional slowness. The chosen slowness are
displayed in Table 3.2. Fluid 1 was used for fast formation calculation since its slowness
is greater than solid shear slowness. Fluid 2 was used for slow formation calculation since
its slowness is lower than solid shear slowness.

Table 3.2: Parameters used for simulation of fast and slow formations. Fast formation
considers the fluid 1, whereas slow formation considers fluid 2.

Domain 𝑆𝑝 (µs/ft) 𝑆𝑠 (µs/ft) 𝜌 (kg/m3)
Fluid 1 203.0 - 1000
Fluid 2 138.5 - 1000
Formation 87.0 152.4 2300
PML 87.0 152.4 2300

Figures 3.3(a) and 3.3(b) summarize (in open circles) the results of our FEM sim-
ulations for fast and slow formations, respectively. The upper (high slowness) slightly
dispersive mode corresponds to the Stoneley wave. The highly dispersive mode which
shows a slowness plateau (𝑆 ≈ 152 µs/ft) as frequency becomes smaller than 3 kHz is
associated with the flexural mode. The second highly dispersive mode which shows the
plateau for frequencies below 6 kHz is the quadrupole (screw) mode [38]. More details
about these modes will be discussed in Section 3.3. One can also note the presence of
higher-order modes in Figure 3.3(a). The dispersive character of these modes starts at
much higher frequencies and we are not interested in their behavior since they are not
used in real logging situations. We note, however, that calculations at higher frequencies
reveal a similar behavior, in terms of curve shape, to lower-order modes. FEM calculation
also provides desired information about modes in the low-frequency range.



3. Modal Analysis 40

(a) (b)

Figure 3.3: Dispersion relation of the monopole, dipole, and quadrupole modes obtained
by FEM, in open circles, for (a) Fast formation and (b) Slow formation. The numerical
solution of Equation 2.2.14 for 𝑛 = 0, 1, and 2 corresponding to the Stoneley (monopole),
flexural (dipole), and quadrupole modes are plotted for comparison.

In order to validate our simulation, we compared our results with a numerical solution
of Equation 2.2.14 1. This approach consists in numerically finding the elements 𝐻𝑚𝑛

depend on 𝑛, 𝜔 and 𝑘𝑧 using the parameters we presented in Tables 3.1 and 3.2. For 𝑛

= 0, 1, and 2 we have the solutions for the Stoneley, flexural, and quadrupole modes,
respectively. The imposition of 𝐷𝑒𝑡(𝐻) = 0, meaning non-trivial solutions, for each
chosen mode, provides its dispersion curves. Thus, the method consists of finding values
for 𝑘𝑧 and 𝜔 that vanish the determinant of the modal matrix. The implementation needs
to handle with modified Bessel functions with complex values. The elements depend
on the radial wavenumbers given by equations 2.2.7 and 2.2.10. Thus, when 𝑘𝑧 < 𝜔/𝑣𝑖

(𝑣𝑖 = 𝑣𝑓 , 𝑣𝑠, 𝑣𝑝), the radial wavenumbers 𝑠, 𝑝, 𝑓 assume complex values, implying leaky
modes. The implemented algorithm does not deal with this situation. According to the
literature, the flat region at low frequencies, found in our calculations, is related to the
leaky character of the mode. In this frequency region, there is a loss of energy to the
formation. [39]

Figure 3.3 also shows the comparison between FEM simulation and the ones obtained
by the method based on the modal matrix. As we observe, the results are in very good
agreement for monopole, dipole, and quadrupole modes in the whole range of frequencies
from 2 kHz to 10 kHz. Moreover, FEM simulation can successfully describe dipole and
quadrupole behavior in the low-frequency limit and, when the frequency tends to zero,
we obtain the slowness shear wave velocity of the surrounding medium, as expected from

1implemented by Dr. Pablo D. Batista
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Table 3.2. Using the meshing parameters described in the previous section and the ge-
ometrical values presented in Table 3.1, our FEM model is able to calculate accurately
the dispersion curves up to 200 Hz, which is one order of magnitude smaller than what is
usually detected with reasonable signal-to-noise ratios in sonic logging experiments [8].

We can also use our FEM simulation to investigate the spatial distribution and sym-
metry of each mode. Figure 3.4 shows the solid total displacement (in meters) and fluid
acoustic pressure (in Pascal) at 8 kHz. We can observe that the acoustic pressure is lower
at the borehole center and greater near to the borehole wall, demonstrating the guided na-
ture of the Stoneley (Figure 3.4(a)), flexural (Figures 3.4(c) and 3.4(d)), and quadrupole
(Figure 3.4(b)) modes. The figure also reveals how the coupling between the fluid and
the rock occurs for each mode. One can observe that Stoneley mode (𝑛 = 0) is totally
symmetric, as expected. The flexural mode (𝑛 = 1) presents a preferential direction,
and two possible orientations can be seen. The quadrupole mode (𝑛 = 2) exhibits two
preferred directions and two possible orientations, one of them is plotted.

Figure 3.4: Visualization of the modes and the coupling between the fluid and the solid
at 8 kHz . The pressure is given in Pa, and the radial displacement is given in m. The
represented modes are: (a) Stoneley mode (b) Quadrupole mode (c) and (d) two different
Flexural mode.

To reduce the computational efforts, the simulated domain size can be diminished
even more using cyclic boundary condition, as shown in Figure 3.5(a). This boundary
condition is based on the choice of the azimuthal mode number 𝑛, which is the same who
labeled the monopole, dipole, and quadrupole modes. The mode number available in this
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configuration varies from 0 to 𝑁/2, where 𝑁 is the number of necessary sectors to a full
revolution. To our interests, it is just needed to use one-quarter of the total circle as
shown in Figure 3.5(a).

The validation of this implementation can be done comparing the obtained results with
the previous ones, as shown in Figure 3.5(b). In open circles we reproduce the results
shown in Figure 3.3(a) for the fast formation. In colored solid lines, we show the results
obtained by the reduced model shown in Figure 3.5(a). Both computed curves are in total
agreement. Therefore, the domain with a periodic condition can be used henceforward.

(a) (b)

Figure 3.5: (a) Geometry used to reduce the computational domain size using boundary
conditions. The sector angle is 𝜋/4. The solid domain, fluid domain, and the PML layer
are represented. (b) Comparison between the dispersion curves using the full domain
resented in Figure 3.3(a) and the reduced domain in the fast formation.

In order to further test our implementation, we reproduce the first analytical (and
fundamental) result demonstrated by Biot in 1952 for the propagation of Stoneley modes
[9]. Biot analytically studied the Stoneley mode and obtained fundamental relations
fundamental between the fluid and rock elastic parameters of this mode. The problem
was analyzed for different values of the ratio between fluid and solid densities 𝜌𝑓/𝜌 =
0.4, 0.6, 0.8, 1.0 in order to observe the influence of the fluid properties in the dispersion
curve. To numerically reproduce his work, the formation parameters are given in Table
3.3 were used. The geometrical parameters are the same from Table 3.1.
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Table 3.3: Parameters used in simulations to reproduce the results in reference [9].

Domain 𝑆𝑝 (µs/ft) 𝑆𝑠 (µs/ft) 𝜌 (kg/m3)
Fluid 1 203.0 - 920
Formation 78.2 135.5 2300
PML 78.2 135.5 2300

Figure 3.6(a) shows the normalized dispersion curves obtained by FEM for the Stoneley
mode using the same density ratios computed by Biot. Instead of the slowness, we plot
the phase velocity in order to make a direct comparison between our simulations and
his results. The formation phase velocity (𝑣𝑝ℎ𝑎𝑠𝑒) is normalized with respect to the fluid
velocity (𝑣𝑓 ) and is plotted as function of 𝜆/2𝑅, where 𝜆 = 𝑣𝑝ℎ𝑎𝑠𝑒/𝑓 . Our numerical
results are in extremely good agreement with Biot analytical ones (see. Figure 8 from
[9]). The velocity tends to an asymptotic value in the low frequency limit, as indicated
in Figure 3.6(a). The asymptotic value that was derived by Biot is given by:

𝑣𝑝ℎ𝑎𝑠𝑒

𝑣𝑓

= 1√︁
1 + (𝜌𝑓𝑣2

𝑓/𝜌𝑣2
𝑠)

(3.2.2)

The asymptotic values are organized in Table 3.4, where the predicted values using
equation 3.2.2 are compared to the ones obtained with our simulations. Independent of
the density ratio, the difference between the two results is not larger than 1.6%.

Table 3.4: Analytical and numerical comparison between the ratio of the Stoneley phase
velocity and fluid velocity for different fluid density ratios in the low-frequency limit.

Densities ratio Theoretical value FEM
𝜌𝑓/𝜌 𝑣𝑝ℎ𝑎𝑠𝑒/𝑣𝑓 𝑣𝑝ℎ𝑎𝑠𝑒/𝑣𝑓

0.4 0.921 0.922
0.6 0.888 0.887
0.8 0.858 0.864
1.0 0.832 0.845

The same analysis can be done for the flexural mode. This is presented in Figure
3.6(b). Again, the mode is much more dispersive than the Stoneley. As expected, for
high wavelength (low frequencies) the phase velocity tends to shear wave formation [8], as
observed by comparing the values displayed in Table 3.3. By analyzing the low frequency
limit, the value of the phase velocity is 𝑣𝑝ℎ𝑎𝑠𝑒 = 1.5𝑣𝑓 = 2252.2 m/s, in terms of the phase
slowness 𝑆 ≈ 135 µs/ft.
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(a) (b)

Figure 3.6: Normalized formation phase velocity as a function of normalized wavenumber
in fast formation for: (a) Stoneley and (b) Flexural modes. Different values of fluid and
solid density ratios are considered: 𝜌𝑓/𝜌 = 0.4, 0.6, 0.8, 1.0. The red arrow indicates the
low-frequency limit.

3.3 Physical interpretation of the modes

The analysis of dispersion curves gives us information about the surrounding medium.
In general, field detected acoustic data is numerically processed (some of the methods
are discussed in the next chapter) to generate the dispersion curves of the formation as
a function of the borehole depth [1]. However, the elastic properties of real rocks vary
considerably with stress, porosity, and composition. This means that in a single borehole,
which generally has depths of a few kilometers, the properties of the formation can vary
enormously. Therefore, the understanding of the dispersion curves is important for the
interpretation of the experimental results as well as for the optimization of experimental
procedures and even for the development of new logging tools and sources.

The low-frequency range is a key part of the problem since the shear velocity is usually
estimated using flexural and quadrupole modes. In this regime, even the signal (energy)
associated with the flexural waves competes with attenuation and noise. Consequently, a
better characterization of these modes in the measurable frequency range is an important
part in the estimation of the shear velocity at low frequencies.

In an acoustic logging experiment, the signal is collected as an amplitude as a function
of time in each detector of the logging tool. The arriving signal can be described as a
superposition of the different plane waves with different phase slowness. The energy of
the wave packet propagates with group slowness given by

𝑆𝑔(𝜔) = 𝑑𝑘 (𝜔)
𝑑𝜔

(3.3.1)
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where 𝜔 is the angular frequency, and 𝑘(𝜔) is the wavenumber.
Figures 3.7(a) and 3.7(b) show the dispersion curves calculated by FEM for fast and

slow formations, respectively, in a range from 200 Hz to 20 kHz, using the parameters
displayed in Table 3.2. They show in continuous (solid) lines the phase slowness and
in dashed lines the group slowness. The Stoneley wave (blues lines), also designated as
tube wave, is symmetric. Its amplitude decays rapidly from the borehole interface and
it is slightly dispersive when compared to other modes. The phase and group slowness
decrease for high frequencies in the fast formation and increases in slow formation. The
Stoneley dispersion depends on the compressional wave slowness. However, according to
Table 3.2, since the elastic parameters of the formations are the same, the difference in the
dispersion behavior shown in Figures 3.7(a) and 3.7(b) is due to the fluid properties used
in each simulation. In the high-frequency limit, its phase slowness tends to the Scholte
wave slowness, another type of interface wave that propagates along a planar solid-fluid
interface [8, 9, 38] The phase slowness of the Scholte waves are slightly greater than fluid
wave slowness. This limit can be explained, due to the fact that high frequencies result
in smaller wavelengths, so the cylindrical borehole is seen by the wave as a planar space.

The flexural and quadrupole waves exhibit stronger dispersive characters when com-
pared to the Stoneley wave, as we see in Figure 3.7. In the low-frequency range, their
phase slowness tends to the surrounding medium shear wave slowness, meaning that the
influence of the fluid can be neglected. At high frequencies, their slowness tends to the
Stoneley slowness, meaning a strong influence of the fluid [8, 38]. One important thing to
remark is that we are dealing with isotropic formations. It means that both shear waves,
known as SV and SH, have the same slowness. In other words, this is why we also see a
degenerate flexural wave Figures 3.4(c) and 3.4(d). In anisotropic formations, shear wave
splits into two different waves, known as qSV and qSH, and the same behavior is reflected
in flexural and quadrupole modes. It means that, at low frequencies, one flexural wave
tends to qSV-wave slowness, while the second to qSH-wave slowness. [13]

The flexural and quadrupole modes also exhibit a pronounced maximum value in
the group slowness dispersion, which is called Airy Phase. It can be shown that, for
longer times after excitation by a source, the amplitude of the guided modes around
the Airy phase decays slower in distance (∝ 𝑧−1/3) in comparison to the other modes
(∝ 𝑧−1/2) [40]. This means that, for detectors placed at larger distances compared to
the mode wavelength, the detected response will usually be dominated by the modes
with frequencies around the Airy Phase. This explains why, even employing flexural wave
detection to study the low-frequency limit, the signal-to-noise ratio can be very poor. This
is an important aspect to consider when choosing amplitudes and frequencies of source
pulse in an experimental situation.
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(a) (b)

Figure 3.7: Phase slowness, in a continuous line, and group slowness, in dashed line, for
(a) fast and (b) slow formation. Three modes are plotted: Stoneley in blue color, flexural
in orange color, and quadrupole in yellow color.

Geometric aspects of the system also affect the dispersion curve of each mode. To
study these effects, dispersion curves for different borehole radius are plotted for both
fast and slow formations in Figure 3.9 using the elastic parameters provided in Table 3.2.
We adopted 𝑅 = 0.1, 0.2, 0.3, 0.4 m. The phase slowness is plotted in solid lines and the
group slowness is represented using a dashed line.

For the monopole mode, one can observe opposite behaviors in dispersion curves be-
tween fast and slow formations. For fast formation, Figure 3.9(a), a larger radius shifts the
entire curve to left and to low slowness direction, considering a specif frequency. Whereas
in slow formation, Figure 3.9(b), a larger radius shifts the curve to the left and to higher
slowness values. See for example the frequency 𝑓 = 4 kHz. In fast formation, the phase
slowness is approximately 222 µs/ft for 𝑅 = 0.1 m and 216 µs/ft for 𝑅 = 0.4 m at this
frequency. In slow formation, the phase slowness is approximately 176 µs/ft for 𝑅 = 0.1
m and 186 µs/ft for 𝑅 = 0.4 m at same frequency. Moreover, the phase slowness at low
frequency are equal for all radii in the same type of formation, since the slowness it does
not depend on geometric parameters, as calculated by Biot and is expressed by Equation
3.2.2 [9].

For dipole and quadrupole modes, the influence of the borehole radius is similar, as
we observe in Figures 3.9(c) to 3.9(f). The increase of radius shifts the entire curve to
left. As a result, the Airy phase is also shifted to the low-frequency range for all curves.
As it is expected for these modes, the slowness phase at low-frequency range tends to the
formation shear slowness independently of the borehole radius. Figures 3.9(a) to 3.9(f)
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demonstrate that dispersion curve is sensitive to the borehole radius. In experiments, this
geometrical parameter varies along the penetration depth. This variation, besides been
much smaller in practice than the range we vary 𝑅 in our simulation, adds an uncertainty
in many situations. The sensitivity of the dispersion to the radius is one of the reasons
why this geometrical parameter is frequently employed in fitting procedures [41].

Another way to represent the mode dispersion is to plot the normalized angular fre-
quencies (𝜔𝑅/𝑣𝑠) as a function of the normalized wavenumbers (𝑘𝑅). This type of rep-
resentation is not often used in geophysics. A linear relation between 𝜔 and 𝑘 represents
a non-dispersive propagating wave-packet. Figures 3.8(a) and 3.8(b) show the dispersion
curves of the normalized angular frequency as a function of the normalized wavenumber
for the monopole, dipole, and quadrupole modes for fast and slow formations, respec-
tively. The linear dispersion of the fluid, shear, and compressional waves are also plotted
for a direct comparison. One can see that in the low-frequency limit the flexural and
quadrupole modes tend to shear wave slowness (red dashed line). In the high-frequency
limit, all modes tend to the Scholte wave velocity.

(a) Fast formation (b) Slow formation

Figure 3.8: Dispersion relation of monopole, dipole and quadrupole modes for: (a) fast
formation; (b) slow formation. The dashed blue, red and black lines represent the forma-
tion compressional, formation shear, and fluid compressional velocities, respectively.
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(a) Stoneley: Fast formation (b) Stoneley: Slow formation

(c) Flexural: Fast formation (d) Flexural: Slow formation

(e) Quadrupole: Fast formation (f) Quadrupole: Slow formation

Figure 3.9: Phase slowness, in continuous line, and group slowness, in dashed line, for
different radius with same elastic parameters. Stoneley mode for (a) fast and (b) slow
formation. Flexural modes for (c) fast and (d) slow formation. Quadrupole modes for (e)
fast and (f) slow formation. The considered radius are given in meter.
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Chapter 4

Time domain analysis

In this chapter, we describe our FEM platform created to investigate fast and slow
formations simulating a monopole source logging tool in an infinite, isotropic, and ho-
mogeneous formation. We obtain typical waveforms recorded in experiments, which are
compared with the theory and modal analysis provided in Chapters 2 and 3.

4.1 Model implementation

Figure 4.1(a) shows the fluid-filled borehole in a 3D perspective. To obtain the solution
for the axis symmetric modes like the Stoneley, the P, and the S modes, a cut plane
(marked with red line) can be used to investigate the system, avoiding a 3D computation.
Therefore, we solve equation 2.1.17 in the 2D plane and a full rotation around the axis
of symmetry is performed afterwards. This approach has been successfully employed by
Matuszyk et al. [20, 21] in sonic logging simulations using FEM. The general solution for
the solid displacement and fluid acoustic pressure associated to the other guided modes
could be obtained using the following transformation

u(𝑟, 𝜃, 𝑧, 𝑡) = u(𝑟, 𝑧, 𝑡)𝑒−𝑖𝑛𝜃

𝑝(𝑟, 𝜃, 𝑧, 𝑡) = 𝑝(𝑟, 𝑧, 𝑡)𝑒−𝑖𝑛𝜃
(4.1.1)

where 𝑛 is the azimuthal number. u(𝑟, 𝑧, 𝑡) and 𝑝(𝑟, 𝑧, 𝑡) are the Stoneley wave solutions,
obtained by making 𝑛 = 0. With 𝑛 = 1 and 2 we obtain the flexural and quadrupole
modes, respectively. Here, we focus our analysis on Stoneley mode.

Figure 4.1(b) shows in details the geometric aspects, boundary conditions, as well as
the position of source and detectors. Wave excitation is performed by a point source
emitting energy isotropically, as in the case of a monopole source. The detectors are
considered as equally spaced points in which the pressure is monitored throughout time.
The borehole wall (solid-fluid interface) is marked in red dashed line. To implement time-
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domain simulations, we choose geometric parameters based on real experimental setups.
All geometric parameters used in the simulations shown in this Chapter are organized in
Table 3.1. Detectors are equally spaced by 𝑑 = 0.12 m along the z direction and positioned
at 𝑟 = 0.08 m away from the axis of symmetry of the system.

Figure 4.1: Physical and computational domains. (a) shows the fluid-filled borehole
situation in a 3D perspective. It is also possible to see the presence of a cut plane,
where FEM calculation takes place. (b) Shows in details geometric parameters, boundary
conditions, and the positioning of source and array of detectors. In our simulations
detectors are simulated by equally spaced probe points. We adopted equally spaced 10
detectors during calculations.

Table 4.1: Geometric parameters used in the tool model represented in Figure 4.1

Parameter Value (m)
𝑅 0.1
𝑅𝑠 3
𝐻 10
𝑍𝑠 10
𝐷 3.5
𝑑 0.12

The PML layer is broadly used in simulations involving frequency domain. However,
in time-domain simulations, this technique does not work properly. Some works have ex-
plored specifics PML implementations in time-domain simulations, see [42, 43]. COMSOL
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does not recommend the PML approach to time-domain simulations [36]. To overcome
this, we applied the "Low-Reflecting Boundary" at solid boundaries and a similar condi-
tion to the fluid, known as "Plane Wave Radiation". These boundary conditions are used
in time domain simulations to reduce undesired reflections at boundaries. To avoid the
presence of reflected waves at the detectors, which affect mainly the slower modes, we
used large domains for fluids and solids, as shown in Table 4.1. The reduction in the
amplitude of incoming and reflected waves is of order of 10−3.

The pulse excitation, denoted by 𝑞(𝑡), is mandatory in time-domain simulations. Usu-
ally, Ricker wavelets are employed and will also be adopted here [44]. Mathematically, it
is the second derivative of the Gaussian function. In the time domain, it is given by

𝑞(𝑡) = (1 − 2𝜋2𝑓 2
𝑝 𝑡2)𝑒−𝜋2𝑓2

𝑝 𝑡2 (4.1.2)

where 𝑓𝑝 is the central pulse frequency. Its spectrum, frequency domain, is given by

𝑞(𝜔) = (𝜔/𝜔𝑝)2𝑒−(𝜔/𝜔𝑝)2 (4.1.3)

where 𝜔𝑝 = 2𝜋𝑓𝑝. The above expressions are plotted in Figure 4.2, considering 𝑓𝑝 = 8kHz.

(a) (b)

Figure 4.2: Ricker wavelet representation with central frequency at 8kHz in (a) time-
domain and (b) frequency domain.

The element size ℎ was chosen to be ten times smaller than the most significant
wavelength

ℎ = 𝑣𝑚𝑖𝑛

10 𝑓𝑝

(4.1.4)

where 𝑣𝑚𝑖𝑛 is the minimum value of propagating waves in the domain and 𝑓𝑝 is the
dominant frequency of the pulse. The domains are meshed using triangular elements. We
discretized the time in 1024 equally spaced points from 0 ms to 5 ms.
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To a direct comparison between modal analysis and time-domain results, we used the
same elastic parameters. We note, however, that these parameters can be easily modified
in both simulations. Elastic parameters used in the time domain studies are organized in
Table 4.2.

Table 4.2: Parameters used during simulation for fast and slow formations. Fast formation
considers fluid 1, whereas slow formation considers fluid 2.

Domain 𝑆𝑝 (µs/ft) 𝑆𝑠 (µs/ft) 𝜌 (kg/m3)
Fluid 1 203.0 - 1000
Fluid 2 138.5 - 1000
Formation 87.0 152.4 2300

Figure 4.3(a) shows the resulting discretization map obtained for a fast formation
using the conditions described above. The color scale presents the mesh element size
distribution. Figure 4.3(b) shows a zoom in the interface, demonstrating the mesh pa-
rameterization according to the fluid or solid velocities, as well as the mesh resolution at
the fluid-solid interface. Second-order shape functions in all domains were used.

(a) (b)

Figure 4.3: (a) Discretization of the domains. Blue area indicated the mesh elements in
the fluid. (b) Zoom near to solid-fluid interface. Color scale shows the mesh element size.

4.2 Data processing

In experiments, we only have access to signals recorded in time by the detectors. To
obtain the modes dispersion curves, post-processing of the data is required. Therefore,
before discussing the waveforms generated with our model, we briefly explain two pro-
cessing algorithms that we employed in our analysis. One is based on the comparison of
the waveforms detected in the time domain and the other on the analysis of the Fourier
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transform of the signal in the frequency domain. The two algorithms were implemented
by Dr. Pablo D. Batista. In both methods, the signal at 𝑖-th detector is labeled as 𝑧𝑖(𝑡)
and its Fourier transform is labeled as 𝑧𝑖(𝑓). The detectors are considered to be equally
spaced by a distance 𝑑.

4.2.1 Slowness Time Coherence

The Slowness Time-Coherence (STC) is a post-processing algorithm based in the wave
packet shape analysis in the time domain developed by Kimball in 1984 [2]. The algo-
rithm uses a semblance (coherence) function that compares the waveforms between all the
detectors. So, this algorithm can be only applied accurately to describe a non-dispersive
wave. However, it can also be used to provide estimates of less intense waves. Dispersive
waves can be processed more accurately by adding a Fourier transform analysis to the
algorithm [37].

The output of STC is a coherence map where the arrivals in time of each mode can
be observed for the different slowness (𝑆) components of the wave packet. Considering
𝑁 equally spaced detectors, and {𝑧1(𝑡), ..., 𝑧𝑁(𝑡)} the registered signals, the semblance
function 𝜌2(𝑆, 𝑇 ) is given by

𝜌2(𝑆, 𝑇 ) =

∫︁ 𝑇 +𝑇𝑤

𝑇

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

𝑧𝑖 [𝑡 + 𝑆𝑑(𝑖 − 1)]
⃒⃒⃒⃒
⃒
2

𝑑𝑡

𝑁
𝑁∑︁

𝑖=1

∫︁ 𝑇 +𝑇𝑤

𝑇
|𝑧𝑖 [𝑡 + 𝑆𝑑(𝑖 − 1)]|2 𝑑𝑡

(4.2.1)

where 𝑇 is the arrival time at the first detector and 𝑇𝑤 is the size of the temporal window
chosen to calculate the semblance. The back-propagation in time for the 𝑖-th detector is
done by shifting the signal in time by the amount 𝑆𝑑(𝑖 − 1), which allows us to compare
the waveforms (for a specific value of 𝑆) at each detector as if they were arriving at the
same time. Besides, it is easy to see that the values of the coherence function are between
0 and 1, where the maximum value indicates that the waves are identical in shape and
magnitude for all receivers. And, when there is no resemblance between the waveforms,
the value of the function is zero. We point out that the STC version used here, which was
written to treat experimental data, applies a Gaussian filter in the semblance matrix.
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(a) (b)

Figure 4.4: Example of STC procedure: (a) Collected signals at detectors. The red
rectangle represents a different interval of 𝑇𝑤 in which the coherence, given by Equation
4.2.1, will be calculated. Its inclination is proportional to wave slowness. (b) Shows the
processed coherence map for the recorded signal: two arrivals can be identified by the
maximum coherence values.

Figure 4.4 illustrates the algorithm functioning. One can see the presence of two main
modes labeled 1 and 2. The red rectangles represent the time windows for two different 𝑆

values. By scanning the slowness and comparing the waveforms using Equation 4.2.1, the
algorithm determines the 𝑆 values which maximize the semblance. The result is a 2D map
with the slowness as a function of time, as shown in Figure 4.4(b). The produced map
gives us information about the wave arrival time in the first detector and its slowness.
Intense dispersion results in low semblance, whereas slight dispersion results in distorted
formats, as observed mainly for wave 2 in Figure 4.4(b).

4.2.2 Phase-Based Dispersion Analysis

The Phase-Based Dispersion Analysis (PBDA) method was developed by Assous et
al. in 2013 to deal with dispersive waves as a robust alternative to more computationally
heavy algorithms [3]. The method considers that the phase velocity can be found using
the phase obtained in the Fourier transform of each recorded signal. Denoting the Fourier
transform of recorded signals in time by {𝑧1(𝑓), ..., 𝑧1(𝑓)}, it is possible to access the
frequency content of each signal, its amplitude 𝐴𝑖(𝑓) and the phase shift 𝜑𝑖(𝑓).

For each frequency that composes the packet. It is possible to calculate the phase
slowness from the signal of two adjacent detectors as follows [3]:

𝑆 = 1
𝑣

= 𝐾
Δ𝜑

360𝑓𝑑
(4.2.2)
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where Δ𝜑 is the phase difference between the two signals (in degrees), 𝑓 the frequency
under analysis measured in Hz, 𝑑 is the distance between the detectors in meters, 𝐾 =
304878 the conversion factor from s/m to µs/ft. If the first detector is taken as reference,
there will be (𝑁 − 1) phase differences, and a graph of Δ𝜑 versus the channel number
for each frequency can be made. A linear regression is made and the phase slowness is
computed as follows:

𝑆 = 1
𝑣

= 𝐾
|𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡|

360𝑓𝑑
(4.2.3)

In this way, we are able to obtain the value of 𝑆 for each frequency of the Fourier
transform spectrum and plot the dispersion curve of the mode. It is important, however,
to point out that the phase information needs to undergo corrections through processes
known as phase unwrapping and aliasing in order to generate the correct values of Δ𝜑

from the Fourier Transform [3]. In addition, the only frequencies analyzed are multiples
of 𝐹𝑠/𝑀 to 𝐹𝑠/2, where 𝐹𝑠 is the signal sampling frequency and 𝑀 the number of points.

A drawback of the PBDA method is that, if two or more modes are not separated in
frequency, their dispersion curves cannot be distinguished appropriately. Therefore, the
method works very well when a single mode is present or when one of the modes is much
stronger than the others.

4.3 Results

We show a cross-section of the cylindrical borehole defined by our FEM modeling
in Figure 4.5. We plot the normalized solid displacement and normalized pressure for
different times after the excitation of the system with a Ricker pulse at 𝑡0.2ms . Positive
pressure means compression, while negative pressure means expansion. Figure 4.5(a)
shows the displacement and pressure fields soon after the pulse excitation at 𝑡 = 0.2 ms.
The source emits a pulse which propagates isotropically in the fluid until the borehole
wall. Then, part of its energy is transmitted to the solid formation. At this moment,
three waves are generated, but they are not completely separated in space even after 𝑡 =
0.5 ms, as shown in Figure 4.5(b). After 𝑡 = 1.0 ms, Figure 4.5(c) shows that the spacial
separation becomes evident. The last plot, Figure 4.5(d) shows the moment when they
are completely separated at 𝑡 = 1.5 ms. The presence of shear (P), compressional (S),
and Stoneley (St) waves are indicated.

Part of the energy is trapped inside the cylindrical waveguide and propagates along
the z-direction. Part is lost to the formation. The Stoneley wave carries guided energy.
P and S waves are bulk waves and propagate along the formation and also close to the
fluid-solid interface. In the solid, close to the interface, they scatter, exciting again the
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fluid. That is the reason they are noted in the recorded signals. Normal and quasi-normal
reflections at the wall also take place during the process. These waves can be seen in
the detectors after long times after the main modes arrive. Figure 4.5, together with
the ray-tracing scheme provided in Figure 2.2(b), helps us to understand the pattern of
signals recorded by the detectors.

In order to obtain the slowness of our wave trains and see at what happens in the
frequency domain, we performed simulations of fast and slow formations to be verified by
the STC and PBDA algorithms. STC was used to obtain the propagating wave slowness
of S and P waves. PBDA was used to obtain the dispersion curve for Stoneley mode to a
direct comparison with the previous computed modal analysis performed in Chapter 3.

(a) (b)

(c) (d)

Figure 4.5: Wave packet evolution in our FEM model after excitation with a Ricker pulse
at 𝑧 = 0. The normalized solid total displacements and fluid pressures are plotter in four
different times: (a) 𝑡 = 0.2 ms (b) 𝑡 = 0.5 ms (c) 𝑡 = 1.0 ms (d) 𝑡 = 1.5 ms. The presence
of shear (P), compressional (S), and Stoneley (St) waves are indicated.
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4.3.1 Waveforms

Figure 4.6(a) shows the waveforms detected at the 10 detectors in the time domain
for the fast formation. Zoom in the signal of the first detector is shown in Figure 4.6(b)
in order to highlight the weak P and S arrivals, where the presence of P and S waves can
be noted. The energy is mainly concentrated in the Stoneley mode. Qualitatively, results
are in agreement with expectations, since the presence of these three waves can be seen
in a fast formation using the monopole source [8].

(a) (b)

Figure 4.6: Waveforms in a fast formation: (a) Signal amplitudes (in arbitrary units
(𝑎.𝑢.)) obtained using the model and parameters presented in Section 4.1, using a Ricker
wavelet centered in 8 kHz as excitation pulse. The arrival of each wave can be seen:
compression (P) in green, shear (S) in red, and Stoneley (St) in purple. (b) Zoom in the
first arrivals detected by the first detector in order to highlight the P and S arrivals.

Figure 4.7(a) shows the results obtained for the slow formation. Again, energy is
concentrated in the guided Stoneley mode. A green dashed line is shown to indicate the
P-wave arrival and zoom in the signal of the first detector is shown in Figure 4.7(b). A
direct comparison between Figures 4.6(b) and 4.7(b) shows the P-wave arrival at the same
time in the first detector for fast and slow formations. This occurs because this velocity
depends only on the solid elastic parameters. Moreover, no signal of the S wave is evident,
as expected from the discussion in Chapter 2 regarding the S wave propagating in slow
formations.
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(a) (b)

Figure 4.7: Signals (𝑎.𝑢.) obtained in the slow formation by equally spaced detectors along
time, given in ms, for the considered system using a Ricker wavelet centered in 8 kHz as
excitation pulse. The arrival of each wave can be seen: compressional (P) in green, and
Stoneley (St) in purple. (b) A zoom is provided in order to check the presence of less
intense modes.

Figure 4.8(a) shows the coherence map for the fast formation obtained by applying
the STC algorithm to the waveforms presented in Figure 4.6(a). One can see the presence
of three regions of maximum coherence which start at different arrival times. They are
attributed to the compressional, shear, and Stoneley arrivals. The corresponding appar-
ent slowness of each of the modes is found using a maximum search and white dashed
horizontal lines mark the corresponding values. Largely distorted regions in the coherence
map indicate dispersive character, as observed in the Stoneley wave map in comparison
to the compressional and shear maps.
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(a) (b)

Figure 4.8: Coherence map obtained using the STC algorithm for: (a) fast formation and
(b) slow formation using 𝑇𝑤 = 0.1 ms. Coherent waves can be seen: S, P and St. The
local maximum of each arrival is indicated in white dashed lines. The slowness is given
in µs/ft and arrival time in ms.

Since the Stoneley mode is slightly dispersive, STC is not the best method to treat
it. Therefore, Figure 4.9(a) shows in red dots the PBDA analysis for this mode. Dif-
ferently from STC, PBDA provides a dispersion curve which starts around 226 µs/ft at
low frequencies and slowly decays as the frequency increases. For comparison, in black
solid line, we plot the dispersion obtained by applying the FEM modal analysis developed
in Chapter 3. The agreement is very good for frequencies up to approximately 5 kHz,
as highlighted on the inset, where both curves start to differ. The difference between
both dispersions increases with frequency and some scattering is observed in the PBDA
response around 11 kHz. Figure 4.9(b) shows the normalized Fourier transform of the
signal acquired by the 10 detectors which are used in the PBDA processing. As we ob-
serve, at 5 kHz the Fourier transform reaches its maximum amplitude and starts to decay
for higher frequencies. We attribute the gradual difference between the PBDA and the
modal dispersion curves to aliasing effects that are not fully eliminated in the algorithm
and affect the Fourier transform phase component. The scattering of points is most likely
related to phase unwrapping [3]. The presence of internal reflections inside the borehole,
which can add contribution at high frequencies to the signal detected in our time-domain
model, may also have a contribution to this effect. Further tests will be performed to
check these assumptions. However, the most important thing is that the PBDA and the
modal analysis agree in a long range of frequencies, particularly in the low-frequency limit,
which is as long as usual good signal-to-noise experimental data [4, 41, 45].
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(a) (b)

Figure 4.9: Fast formation: (a) Comparison between the dispersion curves obtained using
PBDA, in red asterisk, and using the modal analysis, in black continuous line, developed
in Chapter 3. (b) Normalized Fourier transform of the signals at each detector.

Table 4.3 summarizes the low-frequency analysis of the fast formation of acoustic
modes by comparing the different methods employed here. The column "Expected (𝑓 =
0)" reproduces the slowness of the P and S waves already presented in Table 4.2 with the
addition of the low-frequency limit of the Stoneley wave obtained with Equation 3.2.2.
The STC values for the P and S wave slowness are (88 ± 3) µs/ft and (153 ± 4) µs/ft.
The uncertainties here are a rough estimate using the full width at half maximum in the
flat regions (of slowness) for the two modes in Figure 4.8(a). The slowness values for S
and P waves are in good agreement with the input of Table 4.2. The PBDA value for the
Stoneley wave in the low-frequency limit is 227.7 µs/ft at 500 Hz, which is also a good
comparison with the 𝑓 = 0 value since the Stoneley mode shows a small plateau in the low-
frequency limit. The Stoneley wave slowness obtained with our modal analysis presented
in Chapter 3 calculated at 500 Hz is 226.6 µs/ft, thus demonstrating the agreement and
consistency of our FEM time and frequency analysis.

Table 4.3: Comparison between FEM time and modal analysis for fast formation in
the low-frequency limit. The expected slowness values for the time domain model are
performed with STC and PBDA (at 500 Hz) algorithms. The column "Expected (𝑓 = 0)"
presents the St wave slowness obtained with equation 3.2.2. The Modal analysis limit for
the Stoneley wave slowness is calculated 500 Hz. Values of slowness are given in µs/ft.

Wave type Expected (𝑓 = 0) STC PBDA (500 Hz) Modal (500 Hz)

P 87.0 88 ± 3 - -
S 152.4 153 ± 4 - -
St 226.7 223 ± 8 227.7 226.6
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The STC analysis of the slow formation is presented in Figure 4.8(b). As expected,
the coherence map shows only the arrivals of the compressional and Stoneley waves.
Figure 4.10(a) shows the dispersion curve for slow formation found applying the PBDA
algorithm in red dots. We compare the post-processed data with the results from the
modal analysis (black solid line). Again, the agreement is better below 6 kHz and the
difference increases for higher frequencies. Figure 4.10(b) shows that the Fourier transform
of the slow formation is slightly shifted to lower frequencies in comparison to the fast
formation. In this case, small oscillations are present in the PBDA response even at
lower frequencies. The difference (in %) as a function of the frequency between the
slowness obtained with PBDA and our modal analysis for the two types of formation
shown in Figure 4.11. Besides the good agreement in the low-frequency range, slow and
fast formations dispersion curves obtained with PBDA show the same behavior in the
high-frequency range.

The low-limit frequency analysis of the slow formation is organized in Table 4.4. Since
the elastic parameters of the fast and slow formation are the same, the STC slowness of the
P wave is quite similar to the same presented in Table 4.3. The slowness of the Stoneley
mode at 𝑓 = 0, obtained Equation 3.2.2 is 171.1 µs/ft. The PBDA value at 300 Hz of
169.8 µs/ft and is possibly affected by the oscillations already observed in Figure 4.10(a).
From the FEM modal analysis, we obtain 171.4 µs/ft at 300 Hz, which is in very good
agreement with the 𝑓 = 0 limit. Again, we see a good agreement in the low-frequency
values of the two modes obtained with the different approaches, once more validating our
FEM time and frequency analysis.

(a) (b)

Figure 4.10: Slow formation: (a) Comparison between dispersion curves obtained using
PBDA, in red asterisk, and using the modal analysis, in black continuous line, for slow
formation. (b) Normalized Fourier transform of the signals at each detector.
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Figure 4.11: Percent difference between the slowness values obtained with PBDA and the
modal analysis for the fast (blue dots) and slow formation (red dots).

Table 4.4: Comparison between FEM time and modal analysis for slow formation in
the low-frequency limit. The expected slowness values for the time domain model are
performed with STC and PBDA (at 300 Hz) algorithms. The column "Expected (𝑓 = 0)"
presents the St wave slowness obtained with equation 3.2.2. The Modal analysis limit for
the Stoneley wave slowness is calculated 300 Hz. Values of slowness are given in µs/ft

Wave type Expected (𝑓 = 0) STC PBDA (300 Hz) Modal (300 Hz)

P 87.0 87 ± 5 - -
S - - - -
St 171.1 178 ± 9 169.8 171.4
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Chapter 5

Conclusions and pespectives

We investigated some aspects of the Sonic logging technique using the Finite Element
Method (FEM). We obtained a platform that allowed us to study an isotropic, homoge-
neous, and infinite borehole in the time and frequency domains.

With the modal analysis, we successfully obtained the dispersion curves for Stoneley,
flexural, and screw modes for fast and slow formations. We validated our simulation by
comparing our results with the first analytical description of the problem obtained for the
Stoneley wave [9] and with a more general matrix formalism based solution for the three
main guided modes [8]. We explored the physical interpretations of the dispersion curves
of the modes and discussed how our simulation can be used to analyze them in the low-
frequency limit. In this limit, the dispersion curves of post-processed time-domain data
from experiments cannot be accurately determined due to its low signal-to-noise ratio.
Our numerical simulations demonstrated to be reliable in frequencies up to 150 Hz, which
is one order of magnitude lower than what is usually achieved in experimental data with
reasonable signal to noise ratios.

The problem of a logging tool containing a monopole source was also addressed. To
do so, a logging tool was simulated in the time domain with a Ricker pulse source which
probes the fluid and formation. The signal is detected by N equally spaced detectors as in
the real experimental situation. The detected waveforms were also analyzed in the cases
of fast and slow formations. The analysis was performed with two different algorithms:
the Slowness Time Coherence (STC) and the Phase-based Dispersion Analysis (PBDA).
In the fast formation, we demonstrated the presence of P, S, and Stoneley waves, while in
the slow formation only the P and Stoneley modes were present, as expected. For both
types of formation, the comparison between the dispersion curves obtained with the post-
processed data and with the modal analysis were in very good agreement, demonstrating
the equivalence of our time and frequency FEM models.

In this way, we successfully developed a reliable platform for FEM calculation of
the acoustic properties of modes in ideal fluid-filled boreholes. Our platform has the
potential to receive further implementations which will increase the complexity of the
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problems that it can deal with and, mainly, improve its applicability in real data analysis.
Concentric solid layers, the presence of a physical tool (with elastic parameters), and in-
plane anisotropies can be easily implemented in this platform. However, tools containing
dipole or quadrupole sources will probably need full 3D calculations, which shall require
more computation efforts.
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Appendix A

Bulk waves and elastic parameters

The elastodynamic equation for homogeneous medium in the absence of external
stresses is:

𝜌
𝜕2𝑢𝑖

𝜕𝑡2 =
∑︁
𝑗𝑘𝑙

𝜕

𝜕𝑥𝑗

(︃
𝐶𝑖𝑗𝑘𝑙

𝜕𝑢𝑘

𝜕𝑥𝑗

)︃
, 𝑖 = 1, 2, 3 (A.0.1)

A plane wave propagating in unbounded system can be described as

u(x, 𝑡) = A 𝑒𝑖(k·x−𝑤𝑡) (A.0.2)

where A = (𝐴𝑖, 𝐴𝑗, 𝐴𝑘) describes the wave polarization, k = (𝑘𝑖, 𝑘𝑗, 𝑘𝑘) the direction
of propagating wave and 𝜔 the angular frequency. Applying equation A.0.2 in equation
A.0.1 leads to :

⎡⎣∑︁
𝑗𝑘𝑙

𝐶𝑖𝑗𝑘𝑙𝐴𝑘𝑘𝑘𝑘𝑗 − 𝜌𝜔2𝐴𝑖

⎤⎦ 𝑒𝑖(k·x−𝑤𝑡) = 0 (A.0.3)

Dividing by 𝜌|𝑘|2, and noticing that 𝑐2 = 𝜔2/|𝑘|2, the equation can be written, using
the directional cosines 𝑛𝑖, as

∑︁
𝑘

⎡⎣∑︁
𝑗𝑙

𝐶𝑖𝑗𝑘𝑙
𝑛𝑘𝑛𝑗

𝜌
− 𝑐2𝛿𝑖𝑘

⎤⎦𝐴𝑘𝑒𝑖(k·x−𝑤𝑡) = 0 (A.0.4)

For isotropic solids the stiffness tensor is given by:

𝐶𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (A.0.5)

where 𝜆 and 𝜇 are the Lamé parameters. Taking equation A.0.5 into equation A.0.4:
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∑︁
𝑘𝑖

[︃(︃
𝜆 + 𝜇

𝜌

)︃
𝑛𝑖𝑛𝑘 +

(︃
𝜇

𝜌
− 𝑐2

)︃
𝛿𝑖𝑘

]︃
𝐴𝑘 = 0 (A.0.6)

so, the following system needs to be solved

⎡⎢⎢⎢⎣
(︁

𝜆+𝜇
𝜌

)︁
𝑛1𝑛1 +

(︁
𝜇
𝜌

− 𝑐2
)︁ (︁

𝜆+𝜇
𝜌

)︁
𝑛1𝑛2

(︁
𝜆+𝜇

𝜌

)︁
𝑛1𝑛3(︁

𝜆+𝜇
𝜌

)︁
𝑛2𝑛1

(︁
𝜆+𝜇

𝜌

)︁
𝑛2𝑛2 +

(︁
𝜇
𝜌

− 𝑐2
)︁ (︁

𝜆+𝜇
𝜌

)︁
𝑛2𝑛3(︁

𝜆+𝜇
𝜌

)︁
𝑛3𝑛1

(︁
𝜆+𝜇

𝜌

)︁
𝑛3𝑛2

(︁
𝜆+𝜇

𝜌

)︁
𝑛3𝑛3 +

(︁
𝜇
𝜌

− 𝑐2
)︁
⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝐴1

𝐴2

𝐴3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0
0
0

⎤⎥⎥⎥⎦
(A.0.7)

To have non-trivial solutions, the determinant needs to vanish. Since the medium is
isotropic, a direction can be chosen without losing generality. Considering n = (1, 0, 0)𝑇 ,
the values of phase velocities 𝑐 (eigenvalues) can are:

𝑐2
1 = 2𝜇 + 𝜆

𝜌
𝑐2

2 = 𝜇

𝜌
(A.0.8)

Using equation A.0.8 into A.0.6, the components of A can be calculated and is trivial
to conclude that:

𝑐2
2 = 𝜇

𝜌
⇒ A ⊥ n

𝑐2
1 = 𝜆 + 2𝜇

𝜌
⇒ A ‖ n

(A.0.9)

The above conditions imply that the propagating wave can be decomposed in two
different polarizations: perpendicular and parallel to the propagating direction. This is
the reason 𝑐1 and 𝑐2 are recognized as compressional (𝑣𝑝) and shear (𝑣𝑠) velocities. These
results are independent of the coordinate system.

Isotropic and homogeneous media is completely described using these two parameters.
The relation among most used elastic parameters are organized in Table A.1, where we
can see how the first and second Lamé parameters are related to the Young modulus and
Poisson ratio denote by 𝐸 and 𝜈, respectively. Table A.1 also shows how 𝑣𝑝 and 𝑣𝑠 can
be written in therms of these different elastic parameters.

The second Lamé parameter, also called the shear modulus, is the relation between the
shear strain and shear stress. It is the resistance of a material to shear stresses. Generally,
fluids do not support shear, implying 𝜇 = 0. The first Lamé parameter doesn’t have a
direct physical interpretation as the Poisson ratio and Young modulus.

The Young Modulus is interpreted as the proportionality constant between strain and
stress in an uniaxial direction. The Poisson ratio measures the deformation between
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two perpendicular directions in solids. Mathematically, when the load is applied in the
z-direction, it can be described as the ratio of the two strain components

𝜈 = −𝑒𝑥𝑥

𝑒𝑧𝑧

, (A.0.10)

the negative sign is for compensating the stretching in one direction and compression in
another. Generally, 𝜈 is positive but, recently, materials have been designing to have
negative values for the Poisson ratio [46].

Table A.1: Relation between different elastic parameters. Adapted from [1]

𝜆, 𝜇 𝐸, 𝜈 𝜌, 𝑣2
𝑝, 𝑣2

𝑠

𝜆 𝜆 𝐸𝜈
(1+𝜈)(1−2𝜈) 𝜌(𝑣2

𝑝 − 2𝑣2
𝑠)

𝜇 𝜇 𝐸
2(1+𝜈) 𝜌𝑣2

𝑠

𝐸 𝜇(3𝜆+2𝜇)
𝜆+𝜇

𝐸
𝜌𝑣2

𝑠(3𝑣2
𝑝−4𝑣2

𝑠)
𝑣2

𝑝−𝑣2
𝑠

𝜈 𝜆
2(𝜆+𝜇) 𝜈

𝑣2
𝑝−2𝑣2

𝑠

2(𝑣2
𝑝−𝑣2

𝑠)

𝑣2
𝑝

𝜆+2𝜇
𝜌

𝐸(1−𝜈)
𝜌(1+𝜈)(1−2𝜈) 𝑣2

𝑝

𝑣2
𝑠

𝜇
𝜌

𝐸
𝜌2(1+𝜈) 𝑣2

𝑠

In anisotropic media, equation A.0.4 can be used just replacing the correspondent
stiffness tensor. In this case, shear wave degeneracy is usually broken, giving rise to two
shear waves referred as qSV and qSH. More considerations about different anisotropic
mediums can be found in [47].
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