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Abstract
The growth of cloud application services delivered through data centers with varying
traffic demands unveils the limitations of traditional load balancing study. Aiming at
attending the evolving scenarios and improving the overall network performance. This
research proposes a load-balancing study based on an Artificial Neural Network (ANN)
in the context of Knowledge-Defined Networking (KDN). KDN seeks to leverage Arti-
ficial Intelligence (AI) techniques for the control and operation of computer networks.
KDN extends Software Defined Networking (SDN) with advanced telemetry and network
analytics introducing a so-called Knowledge Plane. The ANN is capable of predicting
the network performance according to traffic parameters by creating a model of traffic
behavior using the available bandwidth and latency measurements over different paths.
The study includes training the ANN model to choose the least loaded path routing. We
conduct a series of experiments to verify the proposed study. The experimental results
show that the performance of the KDN-based data center has been greatly improved.

Keywords: Artificial Neural Network; Software Defined Networking; Knowledge Defined
Networking, sFlow.



Resumo
O crescimento dos serviços de aplicativos em nuvem fornecidos por os data centers com de-
mandas de tráfego variáveis revela limitações dos métodos tradicionais de balanceamento
de carga. Visando em atender aos cenários em evolução e melhorar o desempenho geral
da rede. Esta pesquisa propõe um estudo de balanceamento de carga baseado em uma
Rede Neural Artificial (ANN) no contexto da Rede Definido por Conhecimento (KDN). A
KDN busca alavancar as técnicas de Inteligência Artificial (AI) para o controle e operação
de redes de computadores. O KDN amplia o Redes Definidas por Software (SDN) com
telemetria avançada e análise rede, introduzindo o chamado Plano de Conhecimento. A
proposta da ANN é capaz de prever o desempenho da rede de acordo com os parâmetros
de tráfego, criando um modelo de comportamento de tráfego baseado em medições de
largura de banda e latência sobre diferentes caminhos. O estudo inclui o treinamento do
modelo ANN para escolher o roteamento de caminho menos carregado. Realizamos uma
série de experimentos em um ambiente emulado para validar o estudo proposto. Os re-
sultados experimentais mostram que o desempenho do data center baseado em KDN foi
bastante aprimorado.

Palavras-chaves: Redes Neurais Artificial; Redes Definidas por Software; Redes Defini-
das por Conochecimento; sFlow.
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1 Introduction

Data centers are the leading hosting infrastructures of Internet applications and ser-
vices (i.e., multimedia content, Internet banking, and social networks). Traditional load
balancing methods in such data center networks use dedicated hardware devices to dis-
tribute the network traffic in different server replicas. Although this approach can achieve
high performance in general, it is expensive, and it lacks flexibility in its configuration,
which cannot be dynamically adjusted based on real-time network state or other infor-
mation.

As an innovative networking technology that offers centralization (logical) of network
control and introduces the ability to program the network. Software-Defined Networking
(SDN) has been applied to many load balancing systems (AL-FARES et al., 2008), (AKY-
ILDIZ et al., 2014), (KREUTZ et al., 2015), based on decoupling of the data and control
planes, in which the forwarding state in the data plane is managed by a remote control
plane. OpenFlow version 1.3 (ONF, 2013) is currently the most well-known SDN protocol.
OpenFlow-based SDN can be used for monitoring network switches, sending policy com-
mands to each switch, programming routes with flow tables that can define the planned
path, and allowing the dynamic reprogramming of network devices through an external
controller that contains the control logic with a global knowledge of the network state.

Knowledge-Defined Networking (KDN)(MESTRES et al., 2017) is a recent network-
ing paradigm that allows the application of Artificial Intelligence (AI) techniques for
controlling and operating the network. KDN relies on SDN, telemetry, and network ana-
lytics, and introduces a so-called Knowledge Plane for network control and management
operations.

1.1 Research Proposal
The growth of cloud application services delivered through data centers with varying

traffic demands unveils the limitations of traditional data center load balancing methods.
Aiming to attend evolving scenarios and improve the network performance of cloud data
centers, this work proposes a load balancing study based on an Artificial Neural Network
(ANN) in the context of Knowledge-Defined Networking (KDN). Therefore, our main
research question can be stated as follows: Is it possible to apply KDN using standardized
SDN protocols (OpenFlow) to gather knowledge of the data center network, and employ
that knowledge to improve network control using Artificial Intelligence techniques?
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1.2 Research Objective and Methodology
The main objective of this work is to study the applicability of implementing an ANN

inside an SDN controller to provide a load balancing method for dynamic path selection
of individual data flows to improve the network performance. In order to evaluate the
load balancing methods based on ANN, we compare our strawman proposals with two
alternative methods, namely (random) static load balancer, and equal-cost multi-path
(ECMP) routing (HOPPS, 2000).

1.2.1 Specific Objectives

The specific objectives to carry this research are:

• Design and implement an ANN-based load balancing method in an open source
commercial-grade SDN/OpenFlow controller (OpenDaylight) responsible for the
datacenter routing.

• Train the ANN based on a monitoring system that collects network-level metrics
(bandwidth and latency) of each OpenFlow switch in the data center.

• Experimentally evaluate the proposed ANN-based SDN load balancing methods
using multiple paths between source and destination nodes in a fat-tree data center
topology.

1.3 Thesis Structure
In addition to this introductory chapter, the dissertation is organized with the other

chapters as follows.

Chapter 2 presents background information to understand the different components
of the design and implementation of our work, covering relevant aspects of SDN, KDN,
sFlow-RT, Fat-Tree Network, and ANN.

Chapter 3, we explain our new architecture of the proposed ANN-based SDN load
balancing. We present the design per component to break down the complexity and pro-
vide focus on each subtask.

Chapter 4 presents the experiments carried out, as well as the results of two case
studies for the prototype built on the KDN architecture.

Chapter 5 concludes the work with a presentation of the main conclusions of the
research, final remarks, and future work.
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2 Background and Related Work

In this chapter, we provide a general background which is considered appropriate
for the understanding of research design. The first section provides the background on
Artificial Neural Networks (ANNs). The next sections examine the concepts of Software
Defined Networking (SDN), OpenFlow (OF) protocol, the OpenDaylight controller, the
Mininet emulation environment,. We explain how to monitor network traffic using sFlow-
RT in OpenFlow-enabled networks. This chapter finishes with a review of load balancing
methods, and related works.

2.1 Artificial Neural Networks
Artificial Neural Networks (ANNs) are inspired in the behavior of biological neu-

rons and their interconnections, Thanks to their characteristics, neural networks are the
protagonists of conceptual innovations in machine learning systems and more specifically
in the artificial intelligence. The neurophysiologist Warren McCulloch and the mathe-
matician Walter Pitts inspired by the biological neuron, they were proposed the first
mathematical model in 1943, this was the first artificial neural architecture. Since then
many other architectures have been invented. In 1975, the development of the backprop-
agation algorithm was first introduced, which has emerged as the most popular learning
algorithm for the training of multiple layers networks (HAYKIN et al., 2009).

A sudden advance in the performance of the ANN was in the 21th century. A group
of computer scientists and engineers at the University of Toronto demonstrated a way to
significantly advance computer vision using deep neural nets running on GPUs. Therefore,
it was possible to achieve huge performance gains in computing and GPU made possible
to train complex network.

2.1.1 Models of a Neuron

A neuron is the basic unit of a neural network that performs the information pro-
cessing. The block diagram of Figure 1 shows the model of a neuron (HAYKIN et al.,
2009).

The following are the parameters that describe a neuron based on Figure 1:

• Input signals { x1,x2, ...,xn }

These are the signals or measures coming from the external medium and that repre-
sent the values assumed by the variables of a specific application. The input signals
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Figure 1 – Model of a neuron; wk0 accounts for the bias θk. Source (HAYKIN et al., 2009)

are usually normalized in order to increase the computational efficiency of the learn-
ing algorithms.

• The synaptic weights { w1,w2, ...,wn }

These are the values that served to weight each of the input variables of the network,
allowing to quantify their relevance to the functionality of the respective neuron.

• Linear combiner { Σ }

Its function is to aggregate all the input signals that were weighted by the respective
synaptic weights in order to produce an activation potential value.

• Bias (Offset) { θ }

The bias θ has the effect of increasing or lowering the net input of the activation
function, depending on whether it is positive or negative, respectively.

• Activation potential { µ }

It is the result produced by the difference of the value produced between the linear
combiner and the bias, for instance, if µ ≥ θ then the neuron produces an excitatory
potential, otherwise the potential will be inhibitory.

• The activation function { g }

The activation functions are used to introduce non-linearity in neural networks, with
the aim of limiting the amplitude of the output of a neuron.

• The output signal { y }

It consists of the final value produced by the neuron in relation to a certain set of
input signals and may also be used by other neurons that are sequentially intercon-
nected.
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In mathematical terms, we may describe the neuron k depicted in Figure 1 by writing
the pair of equations:

µk =
n∑
i=1

xiwi+ bk (2.1)

and
yk = g(µk) (2.2)

In Equation 2.1, we have added a new synapse. Its input is :

x0 = +1 (2.3)

and its weight is
wk0 = bk (2.4)

Where the output of neuron k can be described by:

yk = f(uk) = f(
n∑
j=0

wkjxj) (2.5)

2.1.2 Types of Activation Function

There are many activation functions at our disposal to change the output of our
neuron. Remember: An activation function is simply a mathematical function that trans-
forms x in the output f(x). The activation function introduces non-linearity into network,
allowing it to learn complex non-convex functions.

• Sigmoid (Logistic) Function:
f(x) = 1

1 + e−x
(2.6)

• Hyperbolic Tangent Function:

f(x) = tanh(x) = ex− e−x

ex+ e−x
(2.7)

• Rectified Linear Unit (ReLU) Function:

f(x) =max(0,x) (2.8)

2.1.3 Network Architectures

There are different types of neural networks, which can be distinguished by the
manner to connect the nodes (structure) and directions of signal flow generally, neural
networks may be differentiated as follows:
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1. Feedforward network is a non-recurrent network which incorporates inputs,
outputs, and hidden layers. Where information flows from inputs to outputs in only
one direction.

2. Recurrent network has feedback paths, meaning they can have signals traveling
in both directions using loops. Thus, some of the information flows not only in one
direction from input to output, but also in the opposite direction.

2.1.4 MultiLayer Perceptron

The multilayer perceptron (MLP) has of one or more hidden layers, where the neu-
ron output in one layer has direct connections to the neurons of the next layer. The
architectural in Figure 2 illustrates the design of a multilayer feedforward neural net-
work (HAYKIN et al., 2009). The function of hidden neurons is to intervene between the
external input and the network output in some useful manner :

Figure 2 – Architectural of a multilayer perceptron with two hidden layers. Source
(HAYKIN et al., 2009)

In particular, a typical learning algorithm for MLP networks is the so-called back
propagation’s algorithm. It is important to note that in MLP networks, although you
don’t know the desired outputs of the neurons of the hidden layers of the network, it is
always possible to apply a supervised learning method based on the minimization of an
error function via the application of gradient-descent techniques.

2.1.5 Loss Function

A function that measures the difference, or loss, between a predicted label and a
true label. Denoting the set of all labels as y and the set of possible predictions as y′, a
loss function L is a mapping L: y × y′ R+. In most cases, y = y′ and the loss function is
bounded, but these conditions do not always hold.

Root Mean Square Error (RMSE):

RSME =
√√√√ 1
n

n∑
i=1

(yi−y′i)2 (2.9)
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2.2 Software Defined Networking
In traditional networking, the control system is distributed, and the network pro-

tocols are running inside the network devices (e.g., routers and switches). Each network
element is a separate entity with its control plane and data plane implemented in a local
control plane on embedded hardware. Hence, all the devices in the network make their
own decision by using information that is shared (see Figure 3).

Figure 3 – Traditional networking (with distributed and middleboxes). Source: (KREUTZ
et al., 2015)

The control plane decides how to handle the network traffic and device configura-
tions, and the data plane handles input and output control, such as traffic shaping and
policing whenever it is necessary. The decisions made by the control plane are informed
to the data plane (KREUTZ et al., 2015). This makes it difficult to add new functionality
to traditional networks, reducing flexibility and hindering innovation and evolution of the
networking infrastructure (SHENKER et al., 2011), (NUNES et al., 2014).

In contrast, Software Defined Networking (SDN) is an innovative approach to net-
working in which the data plane (forwarding hardware) and the control plane (control
decisions) are decoupled (see Figure 4), as opposed to traditional networking. The SDN
can simplify network management, allowing innovation through network programmability
and offers a logically centralized control plane. The control plane is extracted from net-
work devices to an external entity, the so-called SDN controller or the network operating
system (NOS). The controller is installed on a general-purpose server, providing more
processing power than a local control plane on embedded hardware. Hence, the network
devices will become simple (packet) forwarding elements that can be programmed via an
open interface (e.g., ForCES (DORIA et al., 2010), OpenFlow (MCKEOWN et al., 2008),
etc.). Depending on the rules installed by the controller, a forwarding element can behave
like a router, switch, firewall, or even a middlebox such as a firewall, Network Address
Translator (NAT) or load balancer (ANDERSSON; TERMANDER, 2015), (SHENKER
et al., 2011).

The SDN architecture consists of three main layers (or planes), and there is a com-
munication between layers, as shown in the following figure:
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Figure 4 – SDN networking (with decoupled control). Source: (KREUTZ et al., 2015)

Figure 5 – SDN arquitecture. Source: (KREUTZ et al., 2015)

Following is a description of the specific functions of each layer, namely an infras-
tructure layer, a control layer, and an application layer, stacking over each other (XIA et
al., 2015),(KREUTZ et al., 2015).

A) Infrastructure Layer : It is called as the forwarding/data plane. This layer is built
up from OpenFlow-based forwarding devices (e.g., switches, routers, etc. ) and pro-
vides connectivity. The connections among forwarding devices are through different
transmission media, such as wireless (e.g., 802.11 and 802.16), wired (e.g., Ether-
net) and optical networks. The Forwarding Devices do not have an internal control
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logic. It is necessary to configure it via a Southbound API (e.g., OpenFlow protocol)
with the control plane, which allows processing packets based on rules provided by
a controller. Besides, each network device can store its current state temporarily
(e.g., the port statistical information: the send and receive packet count, the send
and receive byte count, etc.) in order to be "sent" to the controller.

B) Control Layer :

Also known as the control plane. Here is where the SDN controller resides (network
intelligence), as illustrated in Figure 5. The SDN controller can provide the abstrac-
tions, essential services, and common APIs to developers. The software-based SDN
controller for interacting with the infrastructure layer, via the southbound interface,
where some specific functions are reporting network status and importing packet for-
warding rules. Besides, the controller can communicate with the application layer
via the northbound interface. It provides service access points in various forms, for
example, an Application Programming Interface (API). The control layer allows
a logically centralized and global view of the network, which provides a control
platform in network management over traffic flows.

C) Application Layer : The top layer in the SDN architecture has one or more applica-
tions. Applications and services can control all the forwarding devices through an
abstract view of the network via the Representational State Transfer (REST) API
Functions. The REST API is used by the programmer to create their applications
and services with the controller.

2.2.1 OpenFlow Protocol

The OpenFlow protocol started as academic research (MCKEOWN et al., 2008).
It is the most deployed interface on forwarding devices and has come under control and
development by the Open Networking Foundation (ONF) (ONF, 2013). This protocol is
helping the company to improve operational efficiency and save operational costs. In each
version of the OpenFlow specification introduced new match fields including Ethernet,
IPv4/v6, MPLS, TCP/UDP, etc., as detailed in Table 1.

In later years, the implementation of SDN with the OpenFlow protocol has gained
significant interest in the industry, including equipment with support for the OpenFlow
API. There is confusion in terms of SDN and OpenFlow, which is about whether they
are synonymous. But they are unlike. SDN is the overlaying idea and concept, while
OpenFlow is one of several alternative protocols that enables the use of SDN in a net-
work (ANDERSSON; TERMANDER, 2015).

An OpenFlow switch is a software program or hardware device that supports the
OpenFlow Protocol and uses the Software Defined Network (SDN) techniques to forward
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Table 1 – Different match fields, statistics, and capabilities have been added on each
OpenFlow Protocol Revision. Source: (KREUTZ et al., 2015).

OpenFlow Version Match fields Statistics

v 1.0

Ingress Port Per table statistics
Ethernet: src, dst, type, VLAN Per flow statistics
IPv4: src,dst, proto, ToS Per port statistics
TCP/UDP: src port, dst port Per queue statistics

v 1.1 Metadata, SCTP, VLAN tagging Group statistics
MPLS: label, traffic class Action bucket statistics

v 1.2 OpenFlow Extensible Match (OXM)
IPv6: src, dst, flow label, ICMPv6

v 1.3 PBB, IPv6 Extension Headers Per-flow meter
Per-flow meter band

v 1.4 – Optical port properties

packets in a network. The OpenFlow protocol defines a set of messages that can be
exchanged between the SDN controller and switch, over a secure channel, as shown in
Figure 6.

Figure 6 – OpenFlow-enabled SDN devices. Source: (KREUTZ et al., 2015)

The forwarding device or OpenFlow switch supports one or more flow tables. Open-
Flow switch maintains a flow table that contains a set of flow entries. Each flow entry
determines how packets belonging to the flow will be processed and forwarded. Figure 7
illustrates the main components of a flow entry.

Match Fields Priority Counters Instructions Timeouts Cookie

Figure 7 – Components of a flow entry in a flow table (OpenFlow). Source: (ONF, 2013).

As can be seen in Figure 7, each flow entry consists of:

• Match fields or matching rules: used to match incoming packets; match fields
may contain information found in the packet header, ingress port, and metadata.



Chapter 2. Background and Related Work 28

• Priority: matching precedence of the flow entry.

• Counters: used to collect statistics for the particular flow, such as number of re-
ceived packets, number of bytes, and duration of the flow.

• Instructions or actions: to be applied upon a match; they dictate how to handle
matching packets.

• Timeouts: maximum amount of time or idle time before the switch expires a flow.

• Cookie: opaque data value chosen by the Controller. May be used by the Con-
troller to filter flow statistics, flow modification, and flow deletion. Not used when
processing packets.

Upon a packet arrives at an OpenFlow switch. Packet match fields are extracted from
the packet. For example, Ethernet address, IP address, Transmission Control Protocol
(TCP) port, or a tag value (e.g., Multi-Protocol Label Switching (MPLS) tag). After,
when a match is found in one of the flow tables, a corresponding action is performed, e.g.,
forward, push/pop tags, drop the packet, etc.

The meter and group table are also other tables in an OF enabled switch. The Meter
tables are used to provide Quality of Service (QoS) functionality, such as rate-limiting.
The Group tables are used to perform actions on a group type (ONF, 2013). For instance,
to forward on the first live port in a group of ports (fast failover), or to forward on all
ports in a group of ports (multicast).

An OpenFlow switch can be hardware-based or software-based:

• Hardware-based: Open network hardware platform based switches allow a vendor-
independent. They are utilized to build networks (SDN prototypes) for research and
classroom experiments since they are more flexible than the vendor?s switches and
getting a better result with the performance metrics (higher throughput). For ex-
ample, SDN switch implemented with NetFPGA based implementations such as
SwitchBlade and ServerSwitch, and Advanced Telecommunications Computing Ar-
chitecture (ATCA) based implementations such as OpenFlow Routers for Academic
Networks (ORAN) (XIA et al., 2015).

• Software-based: SDN switches can be performed as software running on a host
operating system (OS), generally Linux. Software switches such as Open vSwitch
(OVS) (PFAFF et al., 2015), ofsoftswitch (FERNANDES; ROTHENBERG, 2014),
and Pica8, can be installed in a general-purpose computer, adding switch function-
ality into it. A significant advantage of software implemented SDN switches is that
they can provide virtual switching for virtual machines in the popular paradigm of
server virtualization and cloud computing.
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In OpenFlow networks, switches come in two varieties:

• Pure: OpenFlow switches have no legacy features or on-board control, and entirely
rely on a controller for forwarding decisions.

• Hybrid: Switches support OpenFlow in addition to traditional operations and pro-
tocols.

2.2.2 SDN Controllers

The SDN controller is a software platform that provides the necessary resources
and abstractions to expedite the programming of forwarding devices based on a logically
centralized, such as communicates can be used to implement management tasks (flow
table) and provide new functionalities, as depicted in Figure 6.

There are two principal ways in which a controller can add a new rule in the flow
table of an OpenFlow switch:

1. Proactively mode: The flow tables are statically prepopulated, thereby reducing
latency.

2. Reactively mode: The controller can dynamically insert entries in response to
switch requests.

There are several open-source SDN controller frameworks available for a wide range
of languages. The following is a list of open-source controller based on their programming
language:

• C: Trema (also Ruby), and MUL

• C++: NOX (also Python).

• Java: Beacon, Floodlight, Open IRIS, Maestro, and OpenDaylight/Helium

• Python: POX, Pyretic, and RYU

2.2.2.1 OpenDaylight Controller

OpenDaylight (ODL) is an open-source software project that seeks to create an SDN
controller that can be employed to accelerate the adoption of SDN. The OpenDaylight
Controller is written in Java, runs within Java Virtual Machine (JVM) on the Open
Service Gateway initiative (OSGi) framework. Hence, it can be utilized on any operating
system platform that supports Java.

The controller uses these tools (SDX CENTRAL, 2018):
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• Maven: It is a software tool used for the management and construction of Java
projects. OpenDayLight uses Maven for more straightforward build automation.

• Open Service Gateway Interface (OSGi): for dynamically loading bundles and
packaged JAR files.

• Karaf: is a small OSGi based runtime which provides a lightweight container for
loading different modules.

• Java interfaces: for event listening, specifications, and forming patterns.

The OpenDaylight Controller supports external access to applications and data
using following model-driven protocols:

• NETCONF: XML-based RPC protocol, which provides abilities for a client to in-
voke YANG-modeled RPCs, receive notifications, and read, modify and manipulate
YANG modeled data.

• RESTCONF: HTTP-based protocol, which offers REST-like APIs to manage
YANG modeled data and invoke YANG modeled RPCs, using XML or JSON as
payload format.

The multiprotocol and modular (bundles) of ODL allow users can develop an SDN
controller to fit their specific needs. This modular and multiprotocol approach gives IT
admins the ability to pick a singular protocol or to select multiple protocols to resolve
complex problems as they emerge. Each module is a service offered by the controller, and
it is developed under a multi-vendor sub-project following the idea of SDN.

The OpenDaylight project is home to several sub-projects which combined, provide
a vast array of features under a single package. Some examples of such projects are
OpenFlow Plugin, Virtual Tenant Network (VTN), L2 Switch, and YANG Tools. These
sub-projects are available in the Project section of the OpenDaylight Wiki1

OpenDaylight has REST APIs which are used by external applications. Applications
that exist inside of OpenDaylight make use of the Service Abstraction Layer (SAL) to
communicate with different types of devices. The platform includes support for various
communication protocols, including OpenFlow, OVSDB, NETCONF, and BGP.

Figure 8 shows the architecture of the OpenDaylight release, Helium, its structure
is constituted of several blocks (OpenDaylight Foundation, 2018):

The modules of ODL can be viewed in Figure 8 as green boxes above the Service
Abstraction Layer (SAL) in the controller platform. Using the OSGi framework makes
1 https://wiki.opendaylight.org/view/Project_list
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Figure 8 – Detailed architecture of the OpenDaylight Controller. Source: (OpenDaylight
Foundation, 2018)

it possible to add, remove, and update bundles/modules without having to reboot the
complete system. OpenDaylight exposes open Northbound APIs used by applications.

The Southbound protocol support multiple protocols (as plugins), such as Open-
Flow version 1.0, OpenFlow version 1.3, and BGP-LS protocols. These modules are linked
dynamically into a Service Abstraction Layer (SAL). The SAL separates southbound pro-
tocol plugins (SB) from northbound service/application plugins (NB). The SAL exposes
the infrastructure layer to the applications north of it and determines how to fulfill the
requested services independently of the underlying protocol used and the network devices.

The OpenFlow plugin project intends to develop a plugin to support implementa-
tions of the OpenFlow specification as it develops and evolves. Specifically, the project has
developed a plugin aiming to support OpenFlow 1.0 and 1.3.x. It can be extended to add
support for subsequent OpenFlow specifications. The plugin is based on the Model-Driven
Service Abstraction Layer (MD-SAL) architecture.

The OpenFlow Plugin functionality can be cleanly divided into four areas, which
have clearly-defined interactions. In the interest of providing naming continuity, we refer
to them as Managers. The four managers are:



Chapter 2. Background and Related Work 32

1. Connection Manager is responsible for early session negotiation, including deter-
mining switch features and identity.

2. Device Manager is responsible for handling low-level interactions with the switch.
The Iterations allow us to ensure access to the commutator, populating inventory
with physical properties (such as port status), tracking outstanding requests, and
performing response dispatch to the proper requesting entity.

3. Statistics Manager is responsible for maintaining synchronization between the on
Switch counters and their representation in MD-SAL datastore. This process is
asynchronous to the normal processing, such that it can back off if the network
cannot keep up the data rate needed to maintain polling frequencies requested by
applications.

4. RPC Manager is responsible for routing application requests from MD-SAL towards
the device. It performs translation between high-level semantic requests to low-level
protocol messages, both in terms of data and in terms of the lifecycle.

OpenFlow plugin collects the following statistics from the OpenFlow enabled node
(switch):

1. Individual Flow Statistics

2. Aggregate Flow Statistics

3. Flow Table Statistics

4. Port Statistics

5. Group Description

6. Group Statistics

7. Meter Configuration

8. Meter Statistics

9. Queue Statistics

10. Node Description

11. Flow Table Features

12. Port Description

13. Group Features
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14. Meter Features

At a high-level statistics, collection mechanism is divided into the following three
parts:

1. Statistics related YANG models, service APIs, and notification interfaces are defined
in the MD-SAL.

2. Service APIs defined in yang models are implemented by the OpenFlow plugin.
Notification interfaces are wired up by OpenFlow plugin to MD-SAL.

3. Statistics Manager Module: This module use service APIs implemented by the Open-
Flow plugin to send statistics requests to all the connected OpenFlow enabled nodes.
The module also implements notification interfaces to receive statistics response
from nodes. Once it receives a statistics response, it augments all the statistics data
to the relevant element of the node (like node-connector, flow, table, group, meter)
and stores it in the MD-SAL operational data store.

In an SDN architecture, the Northbound Application Program Interfaces (APIs)
are used to communicate between the SDN Controller and network applications. The
Northbound APIs can be used to facilitate innovation and enable efficient orchestration
and automation of the network to align with the needs of different applications (Apps)
via SDN network programmability.

Figure 9 – A controller with the northbound APIs

2.2.3 Traffic Monitoring for SDN

Network traffic monitoring is the process of reviewing, analyzing, and managing
network traffic that can affect network performance. For instance, link failure detection
that causes a bottleneck leading to poor network performance.

Several different technologies have been employed to monitor network traffic. Tech-
nologies such as sFlow, Cisco NetFlow, Juniper J-Flow, NetStream, and IPFIX. They
perform similar functions but are supported by different network equipment vendors.
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• NetFlow is a network protocol developed by Cisco Systems. It is a Cisco proprietary
technology for the collection of traffic data on switches/routers, which uses probe
methods that are installed at switches as special modules to collect either complete
or sampled traffic statistics and send them to a central collector.

• sFlow (SFLOW, 2003) is a flow sampling method developed by InMon, which uses
time-based sampling for capturing traffic information.

• JFlow is a flow sampling method developed by the Juniper Networks. JFlow is
quite similar to NetFlow. However, these approaches may be not efficient solutions
to be applied in SDN systems, such as large-scale data center networks, because of
the significantly increased overhead incurred by statistics collection from the whole
network at the central controller.

2.2.3.1 sFlow Overview

In a data center, the efficient place to monitor traffic is within the switch/router.
The sFlow is a packet sampling technology embedded inside switches and routers and
does not impact forwarding or network performance. Figure 10 shows the growth of use
over packet sampling technologies, which was available since 2001. The packet sampling
with sFlow in high-speed networks has become recognized as the scalable, accurate, and
general solution for network monitoring (SFLOW, 2003).

Figure 10 – Packet sampling timelines. Source: (SFLOW, 2003)

The sFlow monitoring system (see Figure 11) be composed of a sFlow Agent (em-
bedded in a switch or router) and a central sFlow Collector:
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Figure 11 – sFlow Agent and Collector. Source: (SFLOW, 2003)

• The sFlow Agent uses sampling technology to capture traffic statistics from the
device it is monitoring. sFlow Datagrams are used to immediately forward the sam-
pled traffic statistics to a sFlow Collector for analysis.

• The sFlow Collector receives sFlow Datagrams from one or more sFlow Agents
(see Figure 11). The sFlow Collector may also configure sFlow instances using the
configuration mechanisms provided by the sFlow Agent.

The sFlow Agent is a software process that runs as part of the network manage-
ment software within a device (see Figure 12). It combines interface counters and flow
samples into sFlow datagrams that are sent across the network to a sFlow Collector.
Packet sampling is typically performed by the switching/routing ASICs, providing wire-
speed performance. The state of the forwarding/routing table entries associated with each
sampled packet is also recorded.

Figure 12 – sFlow Agent embedded in switch/router. Source: (SFLOW, 2003)
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sFlow separates traffic analysis from traffic sampling, therefore the sampling logic is
embedded in the network device (e.g., the router or switch), and traffic analysis is executed
on a separate machine (typically a server). This allows a greater response capacity on a
larger scale in real time. This design specifically addresses issues associated with:

• Accurately monitoring network traffic at Gigabit speeds and higher.

• Scaling to monitor tens of thousands of agents from a single sFlow Collector.

• Extremely low cost sFlow Agent implementation.

sFlow is a sampling technology that meets the key requirements for a network traffic
monitoring solution (SFLOW, 2003):

• sFlow provides a network-wide view of usage and active routes. It is a scalable
technique for measuring network traffic, collecting, storing, and analyzing traffic
data. This enables tens of thousands of interfaces to be monitored from a single
location.

• sFlow is scalable, enabling it to monitor links of speeds up to 10Gb/s and be-
yond without impacting the performance of core internet routers and switches, and
without adding significant network load.

• sFlow is a low cost solution. It has been implemented on a wide range of devices,
from simple L2 workgroup switches to high-end core routers, without requiring
additional memory and CPU.

• sFlow is an industry standard with a growing number of vendors delivering
products with sFlow support.

Accelerating adoption of virtual switching is helping to drive sFlow growth since
support for the standard is integrated in virtual switches:

• Open vSwitch, integrated in the mainstream Linux kernel and an integral part of
many commercial and open source virtualization platforms, including: VMware/Ni-
cira NSX, OpenStack, Xen Cloud Platform, XenServer, and KVM.

• Hyper-V Virtual Switch, part of Window Server 2012

• IBM Distributed Virtual Switch 5000V

• HP FlexFabric Virtual Switch 5900v
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2.2.3.2 The sFlow-RT Analytics

The sFlow-RT analytics engine collects a constant telemetry stream from sFlow
Agents embedded in network devices, hosts, and applications and converts them into
actionable metrics, accessible through APIs (The RESTflow). The RESTflow API makes
it easy for SDN application developers to configure customized measurements, retrieve
metrics, set thresholds, and receive notifications.

Figure 13 shows sFlow-RT’s role that can be combined with a wide variety of on-site
and cloud, orchestration, DevOps and Software-Defined Networking (SDN) tools.

Figure 13 – The sFlow-RT analytics

Writing Applications 2 describes how to use sFlow-RT’s APIs to extend or modify
existing applications or develop new applications. For example, Arista eAPI describes how
to automatically push controls based on flow measurements, describing automated DDoS
mitigation as a use case. Other use cases include: traffic engineering, traffic accounting,
anomaly detection, intrusion detection, targeted packet capture, etc.

2.2.4 Mininet

Mininet is an emulation environment that creates a realistic virtual network, running
real kernel, switch and application code on a single machine (virtual machine (VM),
cloud or native), in seconds. Mininet is useful for development, teaching, and research on
OpenFlow and SDN.
2 https://sflow-rt.com/writing_applications.php
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2.2.4.1 Mininet Flow Analytics

This article 3 shows how standard sFlow instrumentation built into Mininet can
be combined with sFlow-RT analytics software to provide real-time traffic visibility for
Mininet networks. Augmenting Mininet with sFlow telemetry realistically emulates the
instrumentation built into most vendor’s switch hardware, provides visibility into Mininet
experiments, and opens up new areas of research (e.g. SDN and large flows).

The following papers are a small selection of projects using sFlow-RT:

• Network-Wide Traffic Visibility in OF@TEIN SDN Testbed using sFlow (REHMAN
et al., 2014)

• OrchSec: An Orchestrator-Based Architecture For Enhancing Network-Security Us-
ing Network Monitoring And SDN Control Functions (ZAALOUK et al., 2014)

• Utilizing OpenFlow and sFlow to Detect and Mitigate SYN Flooding Attack (NU-
GRAHA et al., 2014)

• Implementation of Neural Switch using OpenFlow as Load Balancing Method in
Data Center (RUELAS; ROTHENBERG, 2015)

2.3 Knowledge-Defined Networking
The research community has considered in the past the application of Artificial

Intelligence techniques to control and operate networks. A notable example is the Knowl-
edge Plane proposed by D.Clark et al. (CLARK et al., 2003). However, such techniques
have not been extensively prototyped. We describe a new paradigm that accommodates
and exploits SDN, Network Analytic (NA) and Artificial Intelligence (AI) We refer to
this new paradigm as Knowledge-Defined Networking (MESTRES et al., 2016). The KDN
paradigm operates by means of a control loop to provide automation, recommendation, op-
timization, validation and estimation. Figure 14 shows an overview of the KDN paradigm
and its functional planes.

• The Data Plane is responsible for storing, forwarding and processing data packets.

• The Control Plane exchanges operational state in order to update the data plane
matching and processing rules.

• The Management Plane ensures the correct operation and performance of the
network in the long term. It defines the network topology and handles the provision
and configuration of network devices.

3 https://blog.sflow.com/2016/05/mininet-flow-analytics.html
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Figure 14 – KDN planes. Source: (MESTRES et al., 2016)

• The Knowledge Plane, in the KDN paradigm, the KP takes advantage of the
control and management planes to obtain a rich view and control over the net-
work. It is responsible for learning the behavior of the network and, in some cases,
automatically operate the network accordingly. While parsing the information and
learning from it is typically a slow process, using such knowledge automatically can
be done at a time-scales close to those of the control and management planes.

Figure 15 shows the basic steps of the KDN control. In what follows we describe
these steps in detail.

Figure 15 – KDN operational loop. Source: (MESTRES et al., 2016)
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1. Forwarding Elements & SDN Controller → Analytics Platform The An-
alytics Platform aims to gather enough information to offer a complete view of the
network. To that end, it monitors the data plane elements in real time while they
forward packets in order to access fine-grained traffic information.The most relevant
data collected by the analytics platform is summarized below.

• Network state

• Control and management state

• Service-level telemetry

2. Analytics Platform →Machine Learning ML algorithms (such as Deep Learn-
ing techniques) are the heart of the KP, which are able to learn from the network
behavior. The current and historical data provided by the analytics platform are
used to feed learning algorithms that learn from the network and generate knowl-
edge (e.g., a model of the network). We consider three approaches:

• Supervised learning, the KP learns a model that describes the behavior
of the network, i.e., a function that relates relevant network variables to the
operation of the network (e.g., the performance of the network as a function
of the traffic load and network configuration).

• Unsupervised learning is a data-driven knowledge discovery approach that
can automatically infer a function that describes the structure of the analyzed
data or can highlight correlations in the data that the network operator may
be unaware of. As an example, the KP may be able to discover how the local
weather affects the link?s utilization.

• Reinforcement learning a software agent aims to discover which actions lead
to an optimal configuration. As an example the network administrator can set
a target policy, for instance the delay of a set of flows, then the agent acts on
the SDN controller by changing the configuration and for each action receives
a reward, which increases as the in-place policy gets closer to the target policy.

Please note that learning can also happen offline and applied online. In this context
knowledge can be learned offline training a neural network with datasets of the
behavior of a large set of networks, then the resulting model can be applied online.

3. Machine Learning→Northbound controller API The KP eases the transition
between telemetry data collected by the analytics platform and control specific
actions.

Depending on whether the network operator is involved or not in the decision making
process, there are two different sets of applications for the KP. We next describe
these potential applications and summarize them in Table 2.
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Table 2 – KDN applications. Source: (MESTRES et al., 2016)

Close Loop Open Loop

Supervised
Automation Validation
Optimization Estimation

What-if analysis
Unsupervised Improvement Recommendation

Reinforcement Automation N/AOptimization

4. Northbound controller API → SDN controller The northbound controller
API offers a common interface to, human, software-based network applications and
policy makers to control the network elements. The API offered by the SDN con-
troller can be either a traditional imperative language or a declarative one. In the
latter case, the users of the API express their intentions towards the network, which
then are translated into specific control directives.

5. SDN controller→ Forwarding Elements The parsed control actions are pushed
to the forwarding devices via the controller southbound protocols in order to pro-
gram the data plane according to the decisions made at the KP.

2.4 Load-Balancing Methods
We define load-balancing as the distribution of traffic across multiple resources such

as computers or network links. The goal of the load-balancing is to optimize some property
of the network, such as minimizing response time, maximizing throughput, or maximizing
the utilization of the network links.

In (QADIR et al., 2015), load balancing and flow splitting approaches can be either
static/quasi-static or dynamic/load-aware. The following Table 3 has summarized major
load balancing works.

1. Static/ Quasi-Static Load Balancing: In these approaches, the traffic split is either
static or is managed offline based on a predicted traffic demand matrix with changes
occurring after a significantly long period of time.

2. Dynamic (Load-Aware) Load Balancing: In these approaches, the traffic split is
dynamically adapted to the changes in observed load.
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Table 3 – Summary of flow splitting/ Load balancing techniques. Source: (QADIR et al.,
2015)

Approach Main Idea

Weighted round robin or
Deficit round robin

Adopts an efficient fair queuing method to schedule contending
traffic flows in an almost perfectly fair fashion with efficient run-
ning time and a complexity of O(1) per-packet processing time.
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s ECMP

Divides traffic evenly over multiple equal-cost paths. There are
three splitting methods in ECMP: 1) Per-flow hashing; 2) Per-
packet round robin; and 3) Dividing destination prefixes among
the available next hops in forwarding table.

Valiant Load Balancing
(VLB)

Performs a decentralized 2-phase routing technique, which is ag-
nostic to the traffic matrix. In the first phase, VLB-independent of
the destination-redirects traffic to arbitrary intermediate routers.
The intermediate routers then forward the traffic to the destina-
tion in the second phase.

OSPF-OMP

Extends OSPF, which can form multiple equal-cost paths and uses
ECMP techniques to divide traffics equally over these paths, so
that it utilizes opaque LSAs to distribute loading information to
facilitate uneven splitting.

MPLS Optimized Multi-
path (MPLS-OMP)

Proposes a TE procedure to achieve load balancing across multiple
label-switched paths in MPLS. In MPLS-OMP, interior gateway
protocol (IGP) floods traffic load information according to OSPF-
OMP and ISIS-OMP specifications.
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MPLS-based Adap-
tive Traffic Engineering
(MATE)

Uses probing messages and explicit congestion notification packets
to solve multipath routing which is formulated as optimization
problem with the objective function of minimizing congestion on
highly utilized links in the network.

TeXCP

Uses explicit congestion notification packets to perform flow split-
ting in order to balance load in real-time manner in response to
actual traffic demands/failures. It is an online distributed proto-
col.

Common-case Optimiza-
tion with Penalty Enve-
lope (COPE)

Establishes optimal multiple paths efficiently for expected network
scenarios while providing worst-case guarantees. It is a hybrid of
oblivious routing and prediction-based optimal routing?a class of
TE algorithms.

Hedera Provides a centralized load-aware scheduler for datacenters.

MPTCP Shifts traffic from one path to another; hence, it is a load balancing
scheme for end hosts.

2.5 Related Work
Many methods and mechanisms have been proposed to implement load balancing

in SDN environment using OpenFlow protocol (AKYILDIZ et al., 2014), (ANDERS-
SON; TERMANDER, 2015),(AL-FARES et al., 2010), (LI; PAN, 2013), (YANG et al.,
2014),(ROTSOS et al., 2012). In Equal-Cost MultiPath (ECMP) (HOPPS, 2000) and
Valiant Load Balance (VLB) (ZHANG-SHEN, 2010), the controller analyzes response
information from OpenFlow switches and modify the flow-tables following specific load
balancing strategy, in order to efficiently plan the data transmission path and achieve load
balancing in SDN. However, these strategies belong to the static load balancing method
unable to make a dynamic routing plan, according to real-time network load condition.

Al Sallami et al. (SALLAMI; ALOUSI, 2013) discussed a proposal to obtain an
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ANN-based load balancing technique in cloud computing environments. The ANN predicts
the distribution of the overload demand of each user. Then the resources are allocated
according to the predicted demand to distribute equal load among all the servers. But
the active servers at any given time depend on the demand of users for a specific time.
As a result, busy servers are minimized, which leads to low energy consumption. These
predictions are based on current workload metrics from the N servers. Metrics such as
throughput, fault tolerance, response time, and resource utilization.

Semong et al. (SEMONG et al., 2020) have presented a survey and research chal-
lenges summary of emulators/mathematical tools commonly used in the design of intelli-
gent load balancing SDN algorithms. SDN allows load balancers to be programmable and
offer flexibility to design and implement their load balancing methods. A dynamic load
balancer optimizes network parameters such as latency, resource utilization, throughput,
and fault tolerance with minimal power consumption. ANNs have no limits on input vec-
tors and are described as flexible mathematical structures capable of pinpointing complex
nonlinear connections between input and output data sets. We indicate some inputs used
in ANNs, such as response time, packet loss, latency, bandwidth ratio, and hop. The neu-
ral model is found to be efficient, particularly in situations where the characteristics of the
processes are not easy to explain using physical equations. Therefore, the SDN services
that are integrated with artificial neural networks (ANNs) propose new load balancing
techniques.

The work in Andersson et al. (ANDERSSON; TERMANDER, 2015) proposes a
design of a dynamic load-balancer in the context of microwave mobile backhauls using a
Performance Management (PM) to decrease the drop level. Thus, the PM measures end-
to-end latencies and packet loss of all network paths to detect these capacity fluctuations.
Then we combine the resulting performance knowledge with an SDN controller to reroute
traffic around microwave links with reduced capacity. With the goals of load balancing
and improving the overall performance.

Yang et al. (YANG et al., 2014) implements an wildcard-base load balance mecha-
nism on cloud services and it was used different data mining algorithms to predict future
traffic. The implemntation of a prediction mechanism allows to dynamically update the
wildcard rule on switches or routers, in tihs way, enhance load balancing all over the whole
service. The features used to make the predictions: The first input is each IP’s percentage
of possession on the time of check, the second input is each IP’s percentage of packets on
the time of check, the third input is the occurrence time ratio for each IP, and the last
input is about how often an IP appears. The output node is the probability of appearance
for each IP. To determine the number of neurons in the hidden layer for the neuronal
model (BPNN) depending on the training’s response time, where the greater number of
neurons in the hidden layer would cost more time to give the result, and if there were few
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neurons, the response error is greater. The K-Means classification is more inaccurate than
the BPNN prediction mechanism for lower usage rate users and better than the BPNN
mechanism for higher usage rate users.

The dynamic load balancing algorithm proposed in (DU; ZHUANG, 2015) is based
on OpenFlow and sFlow protocol to distribute traffic among servers of the cluster effi-
ciently. The algorithm makes decisions based on real-time traffic statistics obtained via
the OpenFlow and sFlow protocol. These protocols allow us to collect network status and
export them to the controller. Furthermore, the proposed load balancer proactively in-
stalls wildcard rules on the switches to direct requests for a large group of clients without
involving the controller, which will reduce the number of rules and reduce the network
latency. The proposed load balancing algorithm considers the load on the server and the
performance differences between servers in the heterogeneous cluster and different types
of client requests. Some of the parameters are load computation of the server, processing
ability computation of the server, and server weight computation for the traffic distribu-
tion.
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3 Load-balancing based on Artificial Neural
Networks

This chapter contains a description of the different components to study load bal-
ancing based on Artificial Neural Networks. Let us begin by describing the general design
after we provided further details on the implementation. We also present pseudocode to
facilitate the understanding of the different parts and their interaction with each other.
Throughout this chapter, we will describe the architecture, which will serve the experi-
mental evaluation.

3.1 Concept
Traditional load balancing methods on datacenter networks use dedicated hardware

devices to distribute network traffic across different server replicas. Although this ap-
proach achieves high performance in general, it is expensive and lacks flexibility in its
configuration. Therefore, load-balancing methods based on an Artificial Neural Network
(ANN), allows creating a dynamic control of the traffic flow from a source to destination
through multiple paths of the data center.

The proposed solution is divided into 4 components:

a) OpenFlow-based data center

b) SDN controller

c) Data collection

d) Load balancing

3.2 Components

3.2.1 Implementation Choice

In order to test and evaluate the performance of the proposed model, this section
describes the chosen implementation. A sketch of the implementation can be seen in
Figure 16, and Table 4 lists the different versions and build numbers for the software and
packages used.
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Figure 16 – Testbed

We have used three virtual machines. One will run the Mininet emulated network,
next one the OpenDaylight controller, and the other will run the Tensorflow. We will con-
nect the virtual machines (VMs) to a host-only network. Besides, they can communicate
with each other, and with programs running on the host computer, such as Secure Shell
(SSH) protocol and the X11 client.

We will use VirtualBox to run the Mininet VM. The Mininet project team1 provides
an Ubuntu 14.04 LTS VM image with Mininet 2.1.0, Wireshark, and OpenFlow dissector
tools already installed and ready to use.

Table 4 – Software Versions used in implementation and experiments.

Item Version
Open vSwitch in Mininet 2.0.0
Mininet 2.1.0
OpenDaylight Controller Helium
OS VM1 Ubuntu 13.04
OS VM2 Ubuntu 13.04
OS VM3 Ubuntu 14.04
Python 3.05
Virtualization env. VirtualBox
Client OS Ubuntu 16.04
TensorFlow 2.00

1 https://github.com/mininet/mininet/wiki/Mininet-VM-Images
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3.2.2 OpenFlow-Based Data Center

We begin to create the fat-tree topology, using a network emulator, which creates
a network of virtual hosts, switches, controllers, and links. We simulate the data center
network in Mininet v2.1.0, which includes support for running Open vSwitch in user-space
mode.

3.2.2.1 Topology

The Fat-Tree topology (AL-FARES et al., 2008), (CHO et al., 2001) contains multi-
ple paths among hosts. Thus, it can provide higher available bandwidth and fault-tolerant
networking. It is typically a 3-layer hierarchical tree that consists of switches on the core,
aggregation, and edge layers. The switches in each pod have two types: edge switches on
the bottom, aggregation switches on the medium. There are k pods, each containing two
layers of k/2 switches. Each k-port switch in the lower layer is directly connected to k/2
hosts. Each of the remaining k/2 ports is connected to k/2 of the k ports in the aggrega-
tion layer of the hierarchy. Figure 3.2.2.1 shows the emulated 4-ary fat-tree topology as a
custom topology in Mininet using the mininet.topo API.

Figure 17 – Experimental data center topology. Symple k-ary Fat-Tree Topology(k = 4)
. Source: (AL-FARES et al., 2008)

The fat-tree topology has the following parameters: 4 pods, 8 edge switches, 8 ag-
gregation switches, 4 core switches, and 16 hosts. Table 5 shows the name of the switches
and hosts to create the simulation used with the source code of Appendix A.

Figure 3.2.2.1 shows a multiple-path network topology. Dijkstra’s algorithm is im-
plemented in order to find multiple paths of same length. This topology contains four
paths from the source to the destination node. Example of Pod 0 to Pod 1 :
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Table 5 – List of the switches and hosts.

Switch Host

Pod 0 s1 0_0_1 s3 0_2_1 h1 0_0_2 h3 0_1_2
s2 0_1_1 s4 0_3_1 h2 0_0_3 h4 0_1_3

Pod 1 s5 1_0_1 s7 1_2_1 h5 1_0_2 h7 1_1_2
s6 1_1_1 s8 1_3_1 h6 1_0_3 h8 1_1_3

Pod 2 s9 2_0_1 s11 2_2_1 h9 2_0_2 h11 2_1_2
s10 2_1_1 s12 2_3_1 h10 2_0_3 h12 2_1_3

Pod 3 s13 3_0_1 s15 3_2_1 h13 3_0_2 h15 3_1_2
s14 3_1_1 s16 3_3_1 h14 3_0_3 h16 3_1_3

Core s17 4_1_1 s19 4_2_1
s18 4_1_2 s20 4_2_2

Table 6 – The shortest paths between h1 and h5.

Host pairs Paths (switch-port)

Pod 0: h1 - Pod 1: h5

R1: s1-eth1, s3-eth1, s17-eth2, s7-eth2, s5-eth2
R2: s1-eth1, s3-eth3, s18-eth2, s7-eth2, s5-eth2
R3: s1-eth3, s4-eth1, s19-eth2, s8-eth2, s5-eth2
R4: s1-eth3, s4-eth3, s20-eth2, s8-eth2, s5-eth2

3.2.3 SDN Controller

We assume an SDN control platform that could be implemented as a distributed
system, obtaining the global view of the SDN network and discover all paths between the
network device. The SDN controller uses the OpenFlow protocol as an open standard to
communicate control decisions to data plane devices.

OpenDaylight Helium was chosen as the SDN controller for use in the testbed imple-
mentation. The controller was installed in a separate Linux Virtual Machine (VM) to not
interfere with the network emulation in any way. Specific instructions on how to install
the ODL controller can be found on the wiki page of the ODL project 2.

3.2.3.1 Installing OpenDaylight Features

Karaf is a modern and polymorphic container that allows the developers to put all
the required software in a single distribution folder. These facilitate the installation or
re-install OpenDaylight when needed because everything is in one folder. Furthermore,
Karaf allows programs to be bundled with optional modules that can be installed when
required.

To run and use the OpenDaylight controller with the implementation, run the fol-
lowing command.
2 https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation.html
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1 > cd distribution-karaf-0.2.0-Helium
2 > ./bin/karaf

Listing 1 – Run the ODL controller

The above command starts all the OSGi bundles installed as jar files in the plugins
directory. After the ODL console is opened, we will install the karaf features:

Figure 18 – Karaf used to run ODL

The Karaf distribution has no features enabled by default. However, all of the fea-
tures are available to be installed. By installing the features with the feature:install com-
mand on the ODL console. We entered the following features:

1 >feature:install odl-restconf odl-apidocs odl-dlux-all
2 odl-openflowplugins-flow-services-rest

Listing 2 – Installing multiple features

Once installed, these features are permanently added to the controller and will run
every time it starts. We describe the installed features in this work:

• odl-restconf : Allows access to RESTCONF API

• odl-mdsal-apidocs: Allows access to Yang API

• odl-dlux-all: OpenDaylight graphical user interface

• odl-openflowplugins-flow-services-rest: Wrapper feature for standard applica-
tions with REST interface

3.2.3.2 Northbound REST APIs

The Helium distribution has a chart user interface in the form of a web, that can
be accessed after installing the feature odl-mdsal-apidocs, and entering the address:
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http://<controller-ip>:8181/apidoc/explorer/index.html

Figure 19 shows the access from the machine with the OpenDaylight installed, where
we can observe some installed plugins that allow getting data from the switches connected
to the SDN controller.

Figure 19 – REST API explorer seen in a web browser

Each element of the list is a different set of instructions of the REST API, that can
be explored using Postman. Postman is a collaboration platform for API development. It
offers a very intuitive GUI and has some interesting features, such as the possibility to
save groups of commands into collections.
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Figure 20 – Postman overview

To interact with any REST API, there are three elements that we may have to
provide:

• Headers: They can specify options such as the language in which we have written
the body or we want to receive the response.

• Address: It will specify which is the command we are trying to send. The most
common methods are GET, POST, PUT, and DELETE.

• Body: For certain kind of instructions such as GET, we need to provide the data.

3.2.3.3 Implementation of the Northbound Interface

The Northbound REST APIs (also called RESTCONF) are easy to access through
HTTP requests from most programming languages or applications. Most of the bundles
in the controller have Northbound REST APIs implemented. They give an essential func-
tionality for communicating with the controller. A full reference for the different REST
APIs can be found in Seccion 2.2.2.1.

Details of statistics collection:

• The implementation collects the statistics mentioned in Section 3.2.4 at a periodic
interval of 15 seconds.

• Whenever any new element is added to the node (like flow, group, meter, and queue),
it sends statistics to request immediately to fetch the latest statistics and store it
in the operational data store.
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• Statistics Manager stores flow statistics as unaccounted flow statistics in a functional
data store if there is no corresponding flow exist in the configuration data store. ID
format of unaccounted flow statistics is as follows :

[#UF$TABLE*<table-id>*Unaccounted-flow-count - e.g #UF$TABLE*2*1]

• Statistics Manager only entertains statistics response for the request sent by itself.
Users can write their own statistics collector using the statistics service APIs and
notification defined in yang models. It won’t affect the functioning of the Statistics
Manager.

RESTCONF to access statistics of various node elements:

1. Access the Controller GUI using the following URL.

http://<controller-ip>:8181/dlux/index.html

2. Use RESTCONF to see the topology information.

GET http://<controller-ip>:8181/restconf/operational/network-topology:network-
topology/

3. Aggregate Flow Statistics & Flow Table Statistics.

GET http://<controller-ip>:8181/restconf/operational/opendaylight-inventory:nodes/
node/{node-id}/table/{table-id}

4. Node Connector Statistics.

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes
/node/{node-id}/node-connector/{node-connector-id}

3.2.3.4 Flow Rule Example

The flow example was tested to work with Open vSwitch. To add flow rules on Open
vSwitch via the RESTCONF. The knowledge plan will create flow rules and send these to
the controller using a PUT request. After the SDN controller will push the flow rules to
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the corresponding network devices (switches). We use the POSTMAN with the following
parameters:

Headers:

• Content-type: application/xml

• Accept: application/xml

• Authentication: admin:admin

URL:

http://<ctrl-addr>:8181/restconf/config/opendaylight-inventory:nodes/node/<Node-id>
/table/<Table-#>/flow/<Flow-#>

Method: PUT

For example:

1 PUT http://<ctrl-addr>:8181/restconf/config/opendaylight-inventory:nodes/node/<Node-id>
2 /table/<Table-#>/flow/<Flow-#>

Listing 3 – Set up the POSTMAN

This example programs a flow that matches IPv4 packets (ethertype 0x800) with
a source address (msg_src[host]) and destination address (msg_dst[host]). After sending
them to port msg_src[out]. The flow rule is installed in table 0 of the switch with datapath
ID id_flow. The flow rule created contains the following body:

In Listing 4 we see that:

a) Priority number for that flow, where 2 is a number between 1 and 500.

b) Unique name of flow on that switch.

c) ID of flow on that switch.

d) ID of the table in the pipeline that stores that flow.

e) Start of action fields.

f) A forward action to output port.
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1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <flow xmlns="urn:opendaylight:flow:inventory">
3 <priority>2</priority> /* (a) */
4 <flow-name>Load Balance ’ +str(id_flow)+ ’</flow-name> /* (b) */
5 <match>
6 <ipv4-destination>’+ msg_src[’host’] +’</ipv4-destination>
7 <ipv4-source>’+ msg_dst[’host’] +’</ipv4-source>
8 <ethernet-match>
9 <ethernet-type>

10 <type>2048</type>
11 </ethernet-type>
12 </ethernet-match>
13 </match>
14 <id>’+ str(id_flow) +’</id> /* (c) */
15 <table_id>0</table_id> /* (d) */
16 <instructions> /* (e) */
17 <instruction>
18 <order>0</order>
19 <apply-actions>
20 <action>
21 <order>0</order>
22 <output-action> /* (f) */
23 <output-node-connector>’+ msg_src[’out’] +’</output-node-connector>
24 </output-action>
25 </action>
26 </apply-actions>
27 </instruction>
28 </instructions>
29 </flow>

Listing 4 – Flow rule in XML format

3.2.4 Data Collection: Data Gathering and Processing

This process consists in to collect the metrics (bandwidth and transmission latency)
of each link by the sFlow-RT network analyzer and the SDN controller (see Figure 24).
These data are collected periodically and stored in a database.

3.2.4.1 Path Features Extraction Using sFlow-RT

The sFlow agent uses the statistical packet-based sampling of switched packet flows
to capture traffic statistics from the switch. Thus, the traffic can be accurately identi-
fied and monitored (PHAAL; LEVINE, 2004). In order to acquire the load condition of
each path, sFlow-RT is used to obtain the link load condition between two switches. We
implemented the sFlow-RT application “Real-time network weather map example”3 to
estimate the available bandwidth in each network link.

3.2.4.2 Bandwitdh

Bandwidth (BW) reflects the load condition over each link. sFlow-RT measures the
BW of each connection then sends this data using the REST API to the ANN module.
We can calculate the bits per second from every port by taking successive sFlow counter
3 https://github.com/sflow-rt/svg-weather
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samples and subtracting the values of ifinoctets/ifoutoctets counters using the following
Equation (3.1) :

BW = (ifoutoctets− ifinoctets)∗8
t

(3.1)

where t is the time between the collect samples made by the counter samples.

To measure bandwidth between nearby neighbor switches, we implement the follow-
ing applications for the sFlow-RT:

a) The sFlow-RT: Configuration in Open vSwitch

To configure the sFlow-RT, we implement the Large flow detection 4 that measures
the links between neighboring switches with link bandwidths of 10 Mbit/s and allows
reading measurements in JSON format using REST API.

The following command configures the sFlow-RT on the virtual switch (Open vSwitch)
with a 1-in-10 sampling probability and a 20 second counter export interval:

1 ovs-vsctl -- -- id=@sflow create sflow agent=eth0 target=127.0.0.1 \
2 sampling=10 polling=20 -- \
3 -- set bridge 0_0_1 sflow=$@$sflow \
4 -- set bridge 0_1_1 sflow=$@$sflow \
5 -- set bridge 0_2_1 sflow=$@$sflow \
6 ...
7 -- set bridge 4_2_2 sflow=$@$sflow

Listing 5 – Configuration sFlow-RT

Figure 21 shows a second-by-second representation of the stepped test pattern that
was used to evaluate the responsiveness of the detection script. The test consisted
of 20 second constant rate traffic flows ranging from 2 Mbit/s to 10 Mbit/s, repre-
senting 20% to 100% of the link bandwidth.

Figure 21 – Test of configuration in sFlow program.

4 https://blog.sflow.com/2013/06/large-flow-detection.html
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b) sFlow-RT: Measurements in JSON format

We implement Mininet Dashboard 5 that is a real-time dashboard displaying traffic
information fromMininet virtual networks. Figure 22 shows the real-time bandwidth
measurements by IP address and output port.

The dashboard (see Figure 22) has three time series charts that update every second
and show five minutes worth of data. Switch to the Charts tab to see traffic trend
charts. In this case, the trend charts show the results of five iperf tests. The Traffic
chart shows the top flows and the Topology charts show the busy links and the
network diameter.

Figure 22 – Dashboard displaying real-time traffic information from Mininet.

To get the measurements in JSON format, we implement Real-time network weather
map example 6, performing the following modifications:

- We have created an SVG image using the diagram of Figure 3.2.2.1 after it is
stored in path: app/svg-weather/html/map.svg

5 https://github.com/sflow-rt/mininet-dashboard
6 https://github.com/sflow-rt/svg-weather
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Figure 23 – sflow-RT in operation.

In Figure 23, the links between switches have different colors due to the bandwidth
measurement. If it is less than 0.5 Mbps the line color is gray; if it is less than 2
Mbps the line color is blue. The following code was made to get the color of the
links:

1 function linkProperties(utilization) {
2 var color;
3 if(utilization === -1) color = ’gray’;
4 else if(utilization < 500000) color = ’gray’;
5 else if(utilization < 2000000) color = ’blue’;
6 else if(utilization < 4000000) color = ’cyan’;
7 else if(utilization < 6000000) color = ’green’;
8 else if(utilization < 8000000) color = ’yellow’;
9 else color = ’red’;

Listing 6 – Assign link properties based on utilization the bandwidth

- We have modified the following code of the sflow-rt/app/svg-weather/scripts/status.js
in the variable links, see Appendix C.1. This code we let know the bandwidth mea-
surements in the JSON format, for each ingress and egress port:
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1 {
2 "links": {
3 "s001-eth2": { /* (a) */
4 "color": "red", /* (b) */
5 "width": 10, /* (c) */
6 "meter": 9829733.170511438 /* (d) */
7 },
8 "s001-eth4": {
9 "color": "yellow",

10 "width": 10,
11 "meter": 6997028.101058965
12 },
13 "s011-eth2": {
14 "color": "yellow",
15 "width": 10,
16 "meter": 6641743.560652587
17 },
18 ...
19 "s311-eth4": {
20 "color": "yellow",
21 "width": 10,
22 "meter": 377.75578773341715
23 }

Listing 7 – Bandwidth measurement in JSON format

In Listing 7 we see that:

a) Indicates the bandwidth measurement on the switch and its output port for
transmitting data. Measurement belongs to switch s1-eth2.

b) According to Listing 6, it is red if the bandwidth is less than 8 Mbps.

c) Line width (links between switches).

d) The value of the bandwidth measurement.

3.2.4.3 Latency

Latency (Latency) is the time spent by host switch on data transmission required to
push all the packet’s bytes into the wire until they are received by the end system.

The transmission latency can indicate the congestion status of a link and the load
situation of the switch in some way. The SDN controller can collect the transmitted
bytes Num_Byte in this period and the transmission rate txRate at correspond-
ing OpenFlow switches port. Then, the transmission latency can be calculated by
Equation (3.2):

Latency = Num_Byte
txRate

(3.2)
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For several links L1, L2,..., Ln with its transmission latency Latency1, Latency2,...,
Latencyn, respectively, then the total latency of this path is as follows:

Latency_pathi = 1
n

n∑
i=1

Latencyi (3.3)

To calculate the latency of a link between the switches/routers. We will use Equa-
tion 3.3. Thus, it is necessary to know the transmitted bytes and the transmission
rate where the number of bytes sent is provided by the SDN controller using the
REST API (RESTCONF) function and the transmission rate by the sFlow-RT.

For example, we measure the Latency in path Pod 0: h1 - Pod 1: h5 using route R1
(see Figure 21). Follow the following steps:

• The switches that we have in the route R1: s1 (openflow: 1), s3 (openflow:
513), s17 (openflow: 262401), s7 (openflow: 66049), and s5 (openflow: 65537).
Thus, the command to read the byte amount of each port on route R1 using
the SDN controller in JSON format is:

1 GET http://192.168.0.111:8181/restconf/operational/opendaylight-inventory:nodes/
2 node/openflow:1/
3
4 GET http://192.168.0.111:8181/restconf/operational/opendaylight-inventory:nodes/
5 node/openflow:513/
6
7 GET http://192.168.0.111:8181/restconf/operational/opendaylight-inventory:nodes/
8 node/openflow:262401/
9

10 GET http://192.168.0.111:8181/restconf/operational/opendaylight-inventory:nodes/
11 node/openflow:66049/
12
13 GET http://192.168.0.111:8181/restconf/operational/opendaylight-inventory:nodes/
14 node/openflow:65537/

Listing 8 – Command sent to controller SDN

The request using the GET method for reading data from switch s1 in the
JSON format:
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1 GET http://192.168.0.111:8181/restconf/operational/opendaylight-inventory:nodes/
2 node/openflow:1/
3
4 {
5 "node": [
6 {
7 "id": "openflow:1",
8 "flow-node-inventory:ip-address": "192.168.0.106",
9 "flow-node-inventory:hardware": "Open vSwitch",

10 "flow-node-inventory:software": "2.3.90",
11 "flow-node-inventory:table": []
12 "flow-node-inventory:manufacturer": "Nicira, Inc.",
13 "node-connector": [
14 {
15 "id": "openflow:1:1", {
16 "opendaylight-port-statistics:flow-capable-node-connector-statistics": {
17 "collision-count": 0,
18 "transmit-drops": 0,
19 "receive-errors": 0,
20 "receive-drops": 0,
21 "duration": {
22 "second": 11032,
23 "nanosecond": 963000000
24 },
25 "transmit-errors": 0,
26 "receive-over-run-error": 0,
27 "bytes": {
28 "received": 690781,
29 "transmitted": 682141
30 },
31 "receive-crc-error": 0,
32 "receive-frame-error": 0,
33 "packets": {
34 "received": 4358,
35 "transmitted": 4358
36 }},
37 "flow-node-inventory:hardware-address": "22:EC:72:A1:1F:47",
38 "flow-node-inventory:port-number": "1",
39 "flow-node-inventory:name": "0_0_1-eth1",
40 "flow-node-inventory:state": {
41 "link-down": false,
42 "live": false,
43 "blocked": false
44 },},
45 {
46 "id": "openflow:1:2",{...},
47 },
48 {
49 "id": "openflow:1:3",{...},
50 },
51 {
52 "id": "openflow:1:4",{...},
53 }]}]}

Listing 9 – How to get the TX/RX bytes of each port of a switch specified in JSON format
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Listing 9 only shows part of the data readings. The full answer is found in
appendix D.

• The transmission rate in the input and output ports on switches. We do the
reading using the command:

1 GET http://192.168.0.106:8008/app/top_flows_1/scripts/status.js/topology/json
2
3 {
4 "value": 789785.7163159391,
5 "agent": "192.168.0.106",
6 "key": "1_2_1-eth2"
7 },
8 {
9 "value": 747670.5886217935,

10 "agent": "192.168.0.106",
11 "key": "0_0_1-eth1"
12 },
13 {
14 "value": 746795.1898133202,
15 "agent": "192.168.0.106",
16 "key": "0_2_1-eth1"
17 },
18 {
19 "value": 699042.1515834683,
20 "agent": "192.168.0.106",
21 "key": "1_0_1-eth2"
22 },
23 {
24 "value": 691332.9161517477,
25 "agent": "192.168.0.106",
26 "key": "4_1_1-eth2"
27 },
28 {
29 "value": 20071.34802618815,
30 "agent": "192.168.0.106",
31 "key": "0_2_1-eth2"
32 },...}
33 ]

Listing 10 – Command sent to sFlow-RT

Listing 10 only shows part of the data readings. The full answer is found in
appendix C2.
Then, it was made 5 replications of the experiment to calculate latency. It are
listed in Table 7.
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Table 7 – Test to calculate latency.

Sample Time (msec)
1 83.10
2 115.00
3 91.20
4 75.30
5 125.00

where the average was 97.92 msec.

3.2.5 Load Balancing

This component is the main focus of the investigation. The proposed solution pre-
dicts the path with less traffic, chosen by the neural network allowing the distribution
of traffic flow over the available routes in the system.

The system architecture for the proposed load balancing in the KDN-based data
center is shown below:

Figure 24 – System architecture

Figure 24 shows an overview of the methodology. The sFlow-RT network analyzer
gathers the metrics of multiple paths of the data center. Next, the data is sent to
the ANN module to be processed by the multilayer perceptron. Then the result will
be a route with the least load and sent to the OpenDaylight controller. Following
the SDN controller starts to program the flow tables of the network devices with
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the installation of the flow rules for each OpenFlow switch on the chosen path to
reach the data flow transmission plan.

The proposed load balancing algorithm is as follows:

a) If the SDN controller finds only a single path for data transmission, then
the SDN controller will create a flow-tables and allocate them to OpenFlow
switches for active data transmission.

b) If the SDN controller finds multiple paths for data transmission, then the SDN
controller should transmit multiple path load information to the ANN mod-
ule. Besides the sFlow-RT gathering the metrics (bandwidth and transmission
latency) of multiple paths of the data center.

c) The ANN module processes the parameters and chooses the least loaded path.
The result is sent to the SDN controller.

d) The SDN controller receives the selected route from the ANN Module and
creates flow-tables to allocate to OpenFlow switches.

e) The procedure is repeated every 10 seconds.

3.2.6 The ANN Module

We used a Multilayer Perceptron Network (MLP) (BISHOP et al., 1995), a class of
the feedforward Artificial Neural Network. An MLP has three types of layers: input,
hidden, and output. The number of input and output units in a neural network is
generally determined by the dimension of the data set, while the number of hidden
units is a free parameter adjustable to give the best generalization performance,
corresponding to the balance between under-fitting and over-fitting.

The configuration of the inputs for the multiclass classifier (MLP) depends on traffic
matrix of the 32 links within the implemented data center. Thus, we get 64 inputs
(ingress and egress ports) while the output is the four possible paths, where the
classifier chooses a path with less traffic load (latency) from the source to destination
node. Consequently, the structure of the classifier can be depicted in Figure 25, where
each node is a neuron that uses a nonlinear activation function:

Figure 25 – Neural Network Architecture.
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The MLP utilizes a learning technique called backpropagation for training. In our
experimental setup, we set the value of 1000 as the number of training and the
learning rate is set to 0.01. For this work, the input and output dataset was divided
randomly into two subsets:

• Training set (70 %)

• Validation set (30 %)

There are many rule-of-thumb methods (HEATON, 2008) for determining the cor-
rect number of neurons to use in the hidden layers, such as the following:

• The number of neurons should be between the size of the input layer and the
size of the output layer.

• The number of neurons should be 2/3 the size of the input layer, plus the size
of the output layer.

• The number of neurons should be less than twice the size of the input layer.

This module has four parts that are:

a) Database: We store each feature in a time series database (InfluxDB) to collect
and store the metrics. These values form the traffic matrix (dataset).

b) Reformatting of data: It would be problematic for the neural network to pro-
cess the input data with different ranges. Feature scaling is a method used to
normalize the range of independent variables or features of data, often between
zero and one. We use the Min-max scaling (also called normalization)

xscaled = x−xmin
xmax−xmin

(3.4)

where the elements are rescaled so that they end up ranging from 0 to 1, x
is a particular sample, xmax and xmin are the correspondingly minimum and
maximum return in the training data, respectively.

c) Build an Artificial Neural Network:
We implement the MNIST digits classification with stochastic gradient descent
(SGD) using TensorFlow (GÉRON, 2019). This classifier has a configuration
of 64 inputs and 16 labels. Every label output has 4 classes.
We have built an MLP with the following architecture (see Seccion 3.2.3.1 ).
The source code can be found in Appendix B.:

• First, we need to import appropriate libraries and the Tensorflow frame-
work.
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• After we are created a name scope using the name for every layer, here
we define the input data (tensor) for the MLP network with 64 neurons,
2 hidden layers, and 4 output neurons. Therefore, it will contain all the
computation nodes for this neuron network.
• Next, we need to calculate a logit (a linear transformation) ŷk for each

class using Equation 2.5 :

ŷk = f (f (~x · ~wk + bk)) ,k = 1,2,3,4 (3.5)

• The loss function should match the type of problem we’re trying to solve.
In this case, we choose binary_crossentropy as the cross-entropy cost func-
tion, because it penalizes wrong predictions, producing larger gradients and
converging faster.
• After calculating the scalar loss, we will take a step accordingly with the

help of SGD using default Adam Optimizer.
• We use a learning rate of 0.01.
• Finally, using Tensorboard we can present the program nodes.

Figure 26 – Visualizing the graph using TensorBoard
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Figure 26 shows the graph of inputs, two hidden layers, and outputs, as
well as layer error, train operation, save, and accuracy.

d) Finally, we build the flow rules to forward the packets along the route chosen
by ANN, then send them to the SDN controller using a RESTCONF. For
example:
The Listing 11 shows a flow that matches IPv4 packets (ethertype 0x800) with
a source address ("h1:10.0.0.1") and destination address ("h5:10.1.0.2"). After
sending them to port "2" . The flow rule is installed in table 0 of the OVS with
datapath ID 1. The flow rule created contains the following body:

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <flow xmlns="urn:opendaylight:flow:inventory">
3 <priority>2</priority>
4 <flow-name>Load Balance 1</flow-name>
5 <match>
6 <ipv4-destination>10.1.0.2</ipv4-destination>
7 <ipv4-source>10.0.0.1</ipv4-source>
8 <ethernet-match>
9 <ethernet-type>

10 <type>2048</type>
11 </ethernet-type>
12 </ethernet-match>
13 </match>
14 <id>1</id>
15 <table_id>0</table_id>
16 <instructions>
17 <instruction>
18 <order>0</order>
19 <apply-actions>
20 <action>
21 <order>0</order>
22 <output-action>
23 <output-node-connector>2</output-node-connector>
24 </output-action>
25 </action>
26 </apply-actions>
27 </instruction>
28 </instructions>
29 </flow>

Listing 11 – Flow rule in XML format send SDN controller



67

4
Experimental Evaluation

In this chapter, a proof of concept for our controller design is presented. We evaluate
a prototype that includes use cases. First, an experiment is conducted to see how
the KDN balances the 16 traffic flows in a fat-tree topology, where each route of
traffic data, there are four probable paths between the sender and receiver. In the
next section, we will see how reducing the input variables to the neural network can
increase load balancing performance. Experiments also show that our ANN-based
SDN controller design is working as expected.

4.1 First Scenario: ANN-based Load Balancing
This first experiment serves to illustrate how the load balancing delivers the data
plane to program the switches in the resulting route with less load, as predicted by
the neural network.

The knowledge acquired from other load balancers helps to create a neural net-
work model to improve load balancing. The neural network model establishes the
knowledge plan created for the proposed load balancing method in the context of
KDN.

4.1.1 Dataset

The dataset is composed of the traffic matrix (the egress and ingress ports). In order
to train and validate a neural network, we use two datasets where data has been
collected from the static load balancer and the equal-cost multi-path (ECMP) load
balancer.

The input traffic matrix: [Input, Label]

• Input: They are formed by the available bandwidth of the output and input
ports of each switch, for example, some of the inputs of the neuronal network
to predict the less load path using the TR1 traffic flow, are shown in Table
6, which are: { s1-eth1, s1-eth3, s3-eth1, s3-eth3, s5-eth2, s7-eth2, s8-eth2,
s17-eth2, s18-eth2, s19-eth2, s20-eth2 }
The total number of inputs to the neural network is 64.

• Label: The neuronal network’s output is multiclass (R1, R2, R3, and R4),
with four possible exit routes between source and destination node.
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All data collected from the load balancing methods were normalized in range 0 to
1.

The distribution of the load traffic can be observed in Table 8. To generate the
traffic was used the iPerf tool.

Table 8 – The distribution of traffic flows in the datacenter.

Traffic number Source - Destination
TR1 h1 → h5
TR2 h2 → h6
TR3 h3 → h7
TR4 h4 → h8
TR5 h5 → h9
TR6 h6 → h10
TR7 h7 → h11
TR8 h8 → h12
TR9 h9 → h13
TR10 h10 → h14
TR11 h11 → h15
TR12 h12 → h16
TR13 h13 → h1
TR14 h14 → h2
TR15 h15 → h3
TR16 h16 → h4

The simulation parameters used in load balancers are:

Load balancing 1: The static (random) load balancer

Table 9 – Experiment parameters of the load balancer 1.

Name Description
Topology Fat-tree, k=4 (POD)
Links 64 (egress and ingress ports)
Bandwidth 10 Mbps
Network simulation tool Mininet 2.1.0
SDN controller OpenDaylight Controller (Helium)
Open vSwitch in Mininet 2.0.0
Data Collector sFlow-RT
Experiment time 400 seconds

Load balancing 2: The equal-cost multi-path (ECMP) load balancer.
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Table 10 – Experiment parameters of the load balancer 2.

Name Description
Topology Fat-tree, k=4 (POD)
Links 64 (egress and ingress ports)
Bandwidth 10 Mbps
Network simulation tool Mininet 2.1.0
SDN controller OpenDaylight Controller (Helium)
Open vSwitch in Mininet 2.0.0
Data Collector sFlow-RT
Experiment time 400 seconds

We collect 1600 data from the load balancers.

4.1.2 Training and Evaluating of MLP

Before utilizing the MLP, it is indispensable to train the neural network with a
massive amount of dataset to achieve the least error in the prediction made by
ANN.

Inside the ANN module (see Seccion 3.2.6), the number of neurons in the hidden
layer can not be easily determined. In the training procedure for the neuronal model
choosing the number of neurons with different amounts for each hidden layer, then
according to the results, we choose the neural model. Therefore, we created the five
models with the value of [12,16], [20,6], [30,12], [50,22], and [80,42] that is the number
of neurons used for the first and second hidden layer, respectively. Consequently, we
can get these different neural network models to evaluate the performance of every
MLP.

For example, we used the TR1 dataset to create the MLP 1 model; the experimental
results of these five neural networks are shown in Table 11.

Table 11 – Training results with different number of neurons in the hidden layer of the
model (MLP 1).

No. of Test Number of hidden node Error Training time (sec)1 Layer 2 Layer
1 12 6 0,45 13.86
2 20 6 0,22 14.19
3 30 12 0,002 14.55
4 50 22 0,00085 15.95
5 80 42 0,0000032 17.81

In Table 11, we can choose the last result that has fewer errors, but the computa-
tional cost is higher to select the least loaded path, due to the number of neurons
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used to create the neural network model. Then the fourth result can be preferred
with a reasonable error of 0.00085 and a training time of 15.95 sec.

Therefore, to control the 16 traffics through the proposed load balancing. The knowl-
edge plan needs 16 neural network models. Each neural network model controls one
traffic. The neural network model is an MLP, and its code is in Appendix B. The
ANNs have been trained, validated, and stored for later use in the knowledge plan.

Table 12 shows the simulation parameters for the neural networks:

Table 12 – Model training information.

Name Description
ANN MLP
Layer Input 64 nodes
Layer Hidden 50 and 22 nodes
Layer Output 4 nodes
Matrix Features and Label Bandwidth and Latency
Learning algorithm Backpropagation
Learning rate 0.01
Maximum training epoch 1000
Bach size 50
Data set 1600
TensorFlow 2.00

With the configuration parameters in Table 12, we performed the training and
validation for the 16 models of neural networks where we achieved the loss and
accuracy of each model created. Figures 27 and 28 show the loss and accuracy of
MLP 1 created with the TR1 dataset. According to this, the training loss decreases,
and the training accuracy increases with each epoch. That’s what we would assume
when running gradient descent optimization. Although that isn’t the problem of the
validation loss and accuracy, a model that performs better on the training data isn’t
necessarily a model that will do better on data of validation.

Figure 27 – Training and validation loss
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Figure 28 – Training and validation accuracy

The Table 13 is the summary of the 16 neural network models:

Table 13 – ANN accuracy.

Name Test accuracy (%)
MLP 1 91.6
MLP 2 90.2
MLP 3 88.2
MLP 4 91.6
MLP 5 90.8
MLP 6 89.8
MLP 7 91.2
MLP 8 90.2
MLP 9 93.1
MLP 10 90.6
MLP 11 89.8
MLP 12 91.1
MLP 13 91.4
MLP 14 90.0
MLP 15 92.4
MLP 16 89.8

4.1.3 Evaluation Based on Classifier Performance

A common way to evaluate the performance of a classifier is to look at the confusion
matrix. The rows represent the actual classes and the columns of the predicted
classes.

4.1.3.1 MLP 1

The confusion matrix for the four-class:

As we have four classes, we create a four by four matrix. The first row in the matrix
considers that 436 (323 + 56 + 43 + 14 = 436) samples are of class R1, where 323
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Table 14 – The confusion matrix for neural network (MLP 1)

Predicted Class
R1 R2 R3 R4

Actual Class

R1 323 56 43 14
R2 108 382 21 25
R3 36 52 454 14
R4 14 26 15 81

of them were classified as class R1, 56 to be a class R2, 43 to belong to the class
R3, and 14 to be R4. Then, we see that of 436 samples, 74.08 % (365 samples) have
been correctly classified as R1, and 25.94 % (102 samples) were misclassifications.
In the case of class R2: 71.26 % was correctly classified, and 28.74 % was incorrectly
classified. For class R3: 81.65 % was correctly classified, and 18.35 % was incorrectly
classified. Finally, for class R4: 59.55 % was correctly classified, and 40.45 % was
wrongly classified.

The neural network classifier is not able to predict class R4 with high precision.
Therefore, the model could not distinguish class R4 because there are few samples
of class R4 in the dataset.

In Python’s scikit-learn1, we can easily calculate the F1-score, precision and re-
call for each class in a multi-class classifier. A convenient function to use here is
classification_report. The result is mentioned in Table 15.

Table 15 – Performance metrics for neural network (MLP 1)

Precision Recall F1-score
R1 0.67 0.74 0.70
R2 0.74 0.71 0.72
R3 0.85 0.81 0.83
R4 0.60 0.57 0.60

One way to compare classifiers is to measure the area under the curve (AUC). A
perfect classifier will have a ROC Area Under the Curve (ROC AUC) equal to 1,
whereas a purely random classifier will have a ROC AUC equal to 0.5 (GÉRON,
2019). In Figure 29, we can see the AUC values, and class R4 has a value of 0.78,
which represents a lower level compared to the other classifiers. Therefore, we should
increase the number of samples for class R4 or perform data balancing.

1 https://scikit-learn.org/stable/
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Figure 29 – Receiver operating characteristic for multi-class data (MLP 1)

Table 16 summarizes the performance of the ROC curve of each classifier with the
four output classes. These classifiers are described in Appendix 5.

Table 16 – Performance result with the neural network model (MLP-PCA).

ANN AUC
R1 R2 R3 R4

MLP 1 0.81 0.80 0.87 0.78
MLP 2 0.73 0.83 0.80 0.70
MLP 3 0.78 0.75 0.83 0.78
MLP 4 0.87 0.90 0.90 0.76
MLP 5 0.86 0.88 0.87 0.83
MLP 6 0.74 0.73 0.80 0.84
MLP 7 0.77 0.81 0.59 0.92
MLP 8 0.83 0.84 0.85 0.70
MLP 9 0.71 0.76 0.76 0.82
MLP 10 0.87 0.85 0.75 0.84
MLP 11 0.73 0.86 0.88 0.81
MLP 12 0.88 0.84 0.69 0.88
MLP 13 0.70 0.88 0.89 0.85
MLP 14 0.87 0.87 0.87 0.77
MLP 15 0.89 0.80 0.81 0.95
MLP 16 0.84 0.75 0.79 0.77

We describe only three main classifiers, which were classified as good, regular, and
poor, using the ROC curve’s values.

4.1.3.2 Good: MLP 4

The performance evaluation of the neural network (MLP 4) is summarized in Ta-
ble 17 and Figure 30. The MLP 4 can be used to map 64 features and predict any of
the four targets. Besides, it is possible to observe in Table 17 that the main diagonal
of the confusion matrix gathers more samples. Therefore the values of the classi-
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fier are higher. The neural network classifier has high precision in the four classes,
although there are few samples of classes R1, R3, and R4 in the dataset.

Table 17 – The confusion matrix for neural network (MLP 4)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 211 50 0 15 0.76
R2 22 817 23 22 0.90
R3 18 15 251 12 0.81
R4 5 35 53 115 0.62

Precision 0.82 0.89 0.76 0.70

The neural network classifier has high precision in the four classes, although there
are few samples of classes R1, R3, and R4 in the dataset.

The AUC values in Figure 30 are close to 1, and it indicates the classifiers are good,
besides the R4 class has a value of 0.76, representing a lower level than the other
classes.

Figure 30 – Receiver operating characteristic for multi-class data (MLP 4)

4.1.3.3 Regular: MLP 11

The performance evaluation of the neural network (MLP 11) is summarized in Ta-
ble 18 and Figure 31. It is possible to observe in Table 18 that the confusion matrix’s
main diagonal gathers more samples, but the precision is low for classes R2, R3, and
R4. Therefore the classifier has regular behavior when classifying its classes. The
neural network classifier has few samples for classes R1, R3, and R4 in the dataset.

The neural network classifier is not able to predict class R4 with high precision,
because there are few samples of class R4 in the dataset.
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Table 18 – The confusion matrix for neural network (MLP 11)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 150 85 50 39 0.46
R2 2 472 14 72 0.84
R3 6 26 387 37 0.85
R4 3 32 52 237 0.73

Precision 0.93 0.77 0.77 0.62

Figure 31 – Receiver operating characteristic for multi-class data (MLP 11)

We can see the AUC values in Figure 31, where the R1 class has a value of 0.73,
which represents a lower level compared to the other classifiers.

4.1.3.4 Bad: MLP 9

The performance evaluation of the neural network (MLP 11) is summarized in Ta-
ble 19 and Figure 32. It is possible to observe in Table 19 that the confusion matrix’s
main diagonal does not group the most significant samples. Besides, the precision
and recall are low for classes. Therefore the classifier has bad behavior when classi-
fying its classes. The neural network classifier is not able to predict class R3 with
high accuracy, because there are few samples of class R3 in the dataset.

Table 19 – The confusion matrix for neural network (MLP 9)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 172 49 54 93 0.45
R2 28 269 107 12 0.65
R3 31 41 195 17 0.68
R4 3 66 79 448 0.75

Precision 0.74 0.63 0.45 0.79
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We can see the AUC values in Figure 32, where the R1 class has a value of 0.71,
which represents a lower level compared to the other classifiers.

Figure 32 – Receiver operating characteristic for multi-class data (MLP 9)

4.1.4 Load Balancing Experiments

In order to evaluate the load balance study based on MLP, all datasets must be
used to train the ANN using the exact same methodology. There are 16 traffic, and
each one generates an MLP, according to the data entered by the load balancers
(ECMP and Random). Table 13 shows the validation accuracy for each dataset. The
16 classifiers were created, and we evaluated the performance (see Section 4.1.3).
These classifiers were used in the knowledge plan for load balancing.

Finally, we compare it with two other load balancing methods, namely (random)
static load balancer, and equal-cost multi-path (ECMP) load balancer. Therefore
we have 16 MLP, which choose a path with less traffic between the four possible
routes.

The following tables show the simulation parameters for the neural network and the
software defined network:
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Table 20 – Model training information.

Name Description
ANN MLP
Layer Input 64 nodes
Layer Hidden 50 and 22 nodes
Layer Output 4 nodes
Matrix Features and Label Bandwidth and Latency
Learning algorithm Backpropagation
Learning rate 0.01
Maximum training epoch 1000
Bach size 50
Data set 1600
TensorFlow 2.00

Table 21 – Experiment parameters in the datacenter.

Name Description
Topology Fat-tree, k=4 (POD)
Links 64 (egress and ingress ports)
Network simulation tool Mininet 2.1.0
SDN controller OpenDaylight Controller (Helium)
Open vSwitch in Mininet 2.0.0
Data Collector sFlow-RT
Experiment time 400 seg.

Figure 33 shows the results of the proposed study compared with the other two
methods used for the training of the ANN. The proposed load balancing has the
highest bandwidth in the 16 controlled traffic.
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Figure 33 – Results obtained with the three load balancing methods (MLP).
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4.2 Second Scenario: Reduction of Features and Dataset Bal-
ance
Unbalanced classification problems produce problems in various learning algorithms.
These problems are characterized in several datasets used to train MLP’s with an
uneven proportion of cases that are available for each class. Therefore, It is possible
to improve the classifier by balancing the data between the four classes and not
having dominant classes. Besides, a reduction in the input variables to the classifier
will allow fewer features to choose the less loaded path.

4.2.1 SMOTE for Balancing Data

It shows the imbalanced dataset for the four classes in Figure 34. Then class R4 has
136 samples, which means our models will learn more about types R1, R2, and R3,
and very little in class R4.
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Figure 34 – TR1 dataset

An unbalanced dataset causes the classifier to have a high recognition rate (sensi-
tivity) for the dominant classes R1, R2, and R3. The F1 score of the model could
be unreliable in an imbalanced dataset.

There are several approaches for dealing with class imbalance include upsampling
the minority class, downsampling the majority class, and the generation of synthetic
training samples. There’s no universally best solution. A technique for dealing with
class imbalance is the generation of synthetic training samples. The most widely
used algorithm for synthetic training sample generation is Synthetic Minority Over-
sampling Technique (SMOTE). SMOTE is configured to create data synthetically
for the minority class to match the dominant class. In this case, an additional 420
samples will be created and added to class R4, providing 2224 samples in total.
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Figure 35 – TR1 dataset (SMOTE)

Summary table of the unbalanced and balanced datasets:

Table 22 – The unbalanced and balanced dataset

Dataset Unbalanced Balaced
R1 R2 R3 R4 R1 R2 R3 R4

TR1 436 536 556 136 556 556 556 556
TR2 180 432 248 804 804 804 804 804
TR3 356 316 332 660 660 660 660 660
TR4 276 884 296 208 884 884 884 884
TR5 304 512 192 656 656 656 656 656
TR6 440 456 368 400 456 456 456 456
TR7 504 656 272 232 656 656 656 656
TR8 604 504 432 124 604 604 604 604
TR9 368 416 284 596 596 596 596 596
TR10 652 304 140 568 652 652 652 652
TR11 324 560 456 324 560 560 560 560
TR12 728 292 332 312 728 728 728 728
TR13 456 356 224 628 628 628 628 628
TR14 520 664 316 164 664 664 664 664
TR15 596 360 532 176 596 596 596 596
TR16 224 320 268 852 852 852 852 852

4.2.2 Feature Space Dimension Reduction to Train ANN

In dimensionality reduction, we can simplify the data without losing too much infor-
mation. It is often possible to considerably reduce the number of features, turning
an intractable problem into a tractable one. There are many ways to achieve dimen-
sionality reduction. Here are some of the most important algorithms:

• Principal Component Analysis (PCA)

• Kernel PCA
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• Locally-Linear Embedding (LLE)

• t-distributed Stochastic Neighbor Embedding (t-SNE)

To analyze and build new feature subspace of lower dimensionality than the original
one by PCA. Following steps are used in general:

a) Standardizing the data.

b) Constructing the covariance matrix.

c) Obtaining the eigenvalues and eigenvectors of the covariance matrix.

d) Select the optimal number of principal components (PC).

e) Construct new featured dataset from chosen components.

The optimal number of principal components is determined by looking at the cu-
mulative explained variance ratio as a function of the number of components. The
resulting plot (see Figure 36) indicates that the first 6 principal components corre-
spond to approximately 60 % of all variance. Also, We see that these 21 components
account for just over 95 % of the variance in the dataset. That would lead us to use
these 21 components. We would recover most of the essential characteristics of the
data.

Figure 36 – Principal component index (MLP 1)

The 21 principal components are: { 1_3_1-eth1, 1_2_1-eth1, 4_2_1-eth3, 4_1_1-
eth2, 2_3_1-eth1, 4_2_1-eth2 , 4_2_1-eth1, 4_1_1-eth4, 1_0_1-eth1, 4_1_1-
eth1 , 0_2_1-eth2, 3_2_1-eth1, 1_2_1-eth2 , 1_2_1-eth3, 1_0_1-eth3, 4_1_2-
eth1, 1_3_1-eth3 , 4_1_2-eth2, 2_2_1-eth1, 3_1_1-eth1 }

In Figure 37, we can see our TR1 dataset in its 2D feature subspace. The samples
of the four routes are on the same diagonal line because we only predict a variable
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that is latency. PCA can often perform well even with a small percentage of outliers
in the training set.

Figure 37 – Principal component by TR1 dataset

Finally, we can use the PCA for training the neural networks using 21 principal com-
ponents. These principal components are different in every neural network model.

For example, we used the TR1 dataset to create the MLP-PCA 1 model, using five
neural models and we chose only one that has the best performance; the experimen-
tal results of these five neural network models are shown in Table 23.

Table 23 – Training results with different number of neurons in the hidden layer of the
MLP-PCA 1 model.

No. of Test Number of hidden node Error Training time (sec)1 Layer 2 Layer
1 4 2 0,55 10.07
2 8 5 0,11 10.10
3 14 7 0,05 9.86
4 16 9 0,04 9.97
5 22 15 0,04 10.29

In Table 23, the number of neurons in hidden layers of an ANN has a strong impact
on error. If the number is insufficiently small (i.e., four neurons), the ANN model
cannot accurately characterize a prediction the route less load. An increase in the
number of neurons improves the accuracy of the model. However, when the number
of neurons is 14, there’s no more improvement in training time for the following
neural models. Therefore, model 4 can be chosen for its average training time.
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With the configuration parameters in Table 24, we performed the training and
validation for the 16 models of neural networks where we achieved the loss and
accuracy of each model created.

Table 24 – Model training information.

Name Description
ANN MLP
Layer Input 21 nodes
Layer Hidden 14 and 7 nodes
Layer Output 4 nodes
Matrix Features and Label Bandwidth and Latency
Learning algorithm Backpropagation
Learning rate 0.01
Maximum training epoch 300 Aprox.
Bach size 50
Data set 1600
TensorFlow 2.00

Figures 38 and 39 show the loss and accuracy of MLP-PCA 1 created with the TR1
dataset.

Figure 38 – Training and validation loss
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Figure 39 – Training and validation accuracy

The Table 25 is the summary of the 16 neural network models:

Table 25 – ANN accuracy.

Name Test accuracy (%)
MLP 1 92.5
MLP 2 94.1
MLP 3 93.3
MLP 4 93.7
MLP 5 94.4
MLP 6 95.1
MLP 7 94.5
MLP 8 93.7
MLP 9 95.3
MLP 10 93.1
MLP 11 92.3
MLP 12 94.6
MLP 13 94.9
MLP 14 93.5
MLP 15 95.9
MLP 16 92.1

4.2.3 Evaluation Metrics

The performance evaluation of theMLP-PCA 1 model with the reduction of features
by PCA and dataset balance are summarized in Table 26 and Figure 40. In Table 26,
as the classifier has a balance of data to train the neural network, it is possible to
observe an improvement in the classification. The confusion matrix results allow us
to observe that the classified samples are more concentrated on the diagonal, thus
achieving a high level in the prediction than the MLP 1, as shown by the ROC curve
(see Figure 40).
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Table 26 – The confusion matrix for neural network (MLP-PCA 1)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 514 27 11 4 0.88
R2 9 528 4 15 0.80
R3 10 44 490 12 0.82
R4 0 8 2 546 0.93

Precision 0.92 0.94 0.73 0.87

Figure 40 – Receiver operating characteristic for multi-class data (MLP-PCA 1)

In Figure 41, the PCA result for the TR1 dataset, it is still possible to observe some
outliers present. A majority of the samples are on the same diagonal line because
the only output is the latencies of routes R1, R2, R3, and R4.

Figure 41 – Result MLP-PCA 1 for multi-class data
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Table 27 shows the AUC score summary:

Table 27 – Performance result with the neural network model (MLP-PCA).

ANN AUC
R1 R2 R3 R4

MLP-PCA 1 0.92 0.89 0.86 0.94
MLP-PCA 2 0.92 0.86 0.85 0.90
MLP-PCA 3 0.88 0.87 0.85 0.84
MLP-PCA 4 0.95 0.94 0.94 0.90
MLP-PCA 5 0.88 0.86 0.87 0.86
MLP-PCA 6 0.88 0.86 0.87 0.86
MLP-PCA 7 0.85 0.84 0.86 0.81
MLP-PCA 8 0.85 0.84 0.86 0.81
MLP-PCA 9 0.88 0.90 0.94 0.90
MLP-PCA 10 0.84 0.88 0.93 0.87
MLP-PCA 11 0.87 0.86 0.89 0.88
MLP-PCA 12 0.91 0.89 0.86 0.94
MLP-PCA 13 0.92 0.92 0.93 0.93
MLP-PCA 14 0.79 0.86 0.87 0.97
MLP-PCA 15 0.88 0.80 0.83 0.86
MLP-PCA 16 0.86 0.74 0.80 0.85

4.2.4 Load Balancing Experiments

To evaluate the load balancing based on the neural network model (MLP-PCA).
We compare it with three load balancing methods, namely Static (Random) load
balancer, ECMP load balancer, and MLP. There is 16 traffic, and each one gener-
ates an MLP-PCA, according to the data entered by the ECMP and Random load
balancers. Therefore we have 16 MLP-PCA, which choose a path with less traffic
between the four possible routes.

The following tables show the simulation parameters for the neural network and the
software defined network:
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Table 28 – Model training information.

Name Description
ANN MLP-PCA
Layer Input 21 nodes
Layer Hidden 14 and 7 nodes
Layer Output 4 nodes
Matrix Features and Label Bandwidth and Latency
Learning algorithm Backpropagation
Learning rate 0.001
Maximum training epoch Aprox. 300
Bach size 50
Data set 1600
TensorFlow 2.00

Table 29 – Experiment parameters in the datacenter.

Name Description
Topology Fat-tree, k=4 (POD)
Links 64 (egress and ingress ports)
Network simulation tool Mininet 2.1.0
SDN controller OpenDaylight Controller (Helium)
Open vSwitch in Mininet 2.0.0
Data Collector sFlow-RT
Experiment time 400 seg.

Figure 42 shows the results of the proposed study compared with the two meth-
ods used for the training of the ANN and the neural network model (MLP). The
proposed load balancing has the highest bandwidth compared to traditional load
balancing methods and MLP.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10
x 10

6

Traffic

B
an

d
w

id
th

 (
b

p
s)

 

 

Random

ECMP

MLP

MLP−PCA

Figure 42 – Results obtained with the three load balancing methods (MLP-PCA).
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We can emphasize that it was very successful to use the PCA and balanced dataset
to create the neural network models.

The following traffics {2, 3, 4, 7, 8, 9, 10, 11, 15, and 16} show greater bandwidth.
For traffic five, the MLP-PCA 5 model has the highest bandwidth along with MLP
because the two classifiers are close in the same AUC score.

The cases where the neural network model (MLP-PCA) was the second-best posi-
tioned in bandwidth was in traffic {4, 6, 12, 13, and 14}. The cause may be a lack
of data to be able to map all the cases using the neural network.

4.3 Three Scenario: The Neural Network Model vs Multiple
Linear Regression
Regression models are mathematical models that relate the behavior of one variable
Y with another X, variable X is the independent variable, which is the model inputs,
variable Y is the dependent variable, which is output from the model. The model
is called simple when it involves only two variables and multiple when it has more
than two variables.

Regression analysis is a statistical methodology that uses the relationship between
two or more quantitative variables in such a way that one variable can be predicted
from another.

The objective of linear regression is to search for the equation of a regression line
that minimizes the sum of the squared errors (MSE), the difference between the
observed value of Y and the predicted value.

The basic linear regression formula is shown below:

y = θ0 + θ1x1 + θ2x2 + ...+ +θnxn+ e (4.1)

where y is the target, θ are the linear regression parameters, and x are the features.
The predicted data is called the target, and the data used to make predictions are
called the features. We have built an linear regression (LR). The source code can
be found in Appendix F.:

Now we will create a model considering all the features in the dataset using the
egress and ingress ports as the linear regression parameters, we can now construct
the linear regression model that can be used to predict Latency. The model would
look something like this:

Latency=θ1∗(s1−eth1)+θ2∗(s1−eth3)+...+θ63∗(s20−eth2)+θ64∗(s20−eth4) (4.2)
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The evaluation model with the TR1 dataset, we will predict the y_test from the
x_test dataset using the selected model (i.e. LinearRegression() ).

The coefficient of determination (R2) is used to describe how well our models pre-
dicted.

R2 score is 0.57, and MSE is 0.44. R2 suggests that 57% of the dependent variable is
predicted by the independent variable. The value of R2 means that it is still possible
that there is a non-linear relationship between the observed and predicted values.

In figure 43 we use a single input variable to be able to view it in 2D, to do that
the port s9-eth1 is a variable that has a more significant correlation with the output
(latency), this was analyzed in the PCA. In this graph, data that are closer to the
diagonal can be predicted with a lower MSE. Therefore, as little data is diagonal,
so the linear regression (LR) will not predict latency with high precision.

Figure 43 – Latency vs the s9-eth1 port

In Table 30, the performance analysis with the confusion matrix shows that the
classification is not right, and the main diagonal does not concentrate most of the
data, so the classifier does not have a high level to predict latency values. Also, the
values of precision and recall are low.

Table 30 – The confusion matrix for lineal regression (LR 1)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 139 284 7 6 0.32
R2 22 421 91 2 0.78
R3 37 99 412 8 0.74
R4 11 43 13 69 0.50

Precision 0.66 0.49 0.73 0.81

The ROC curve for this linear regression presents low values for the four routes,
which indicates the predicted values are not good.
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Figure 44 – Receiver operating characteristic for multi-class data (LR 1)

The linear regression model is put inside the knowledge plan after we start to control
the TR1 traffic flow and other traffic.

Table 31 compares MLP-PCA and RL, where the neural network can have the
highest bandwidth. The performance was also better on the ROC curve and the
confusion matrix.

Table 31 – MLP-PCA vs RL.

Name MLP-PCA (Mbps) RL (Mbps)
TR 1 5.8 4.3
TR 2 8.1 3.8
TR 3 6.3 2.5
TR 4 5.2 3.1
TR 5 6.0 4.3
TR 6 6.5 3.3
TR 7 6.5 3.7
TR 8 7.2 3.9
TR 9 8.2 4.2
TR 10 7.1 3.3
TR 11 8.5 4.2
TR 12 4.2 2.9
TR 13 5.4 3.3
TR 14 5.9 4.2
TR 15 5.0 3.7
TR 16 6.7 3.9

We will highlight some disadvantages of the linear regression model and leave rec-
ommendations for when to use it and when not:

• A significant limitation of the linear regression model is that the machine does
not learn the shape of nonlinearity. This part is the responsibility of the person



Chapter 4. Experimental Evaluation 90

who is assembling the model. In other words, it is necessary to force-code the
nonlinearity in the algorithm, and this is done by forging new variables.

• They only consider a linear relationship;

• It takes the average of the dependent variable as a basis

• Sensitive to Outliers;

• Linear regression assumes that the data is independent.

Thus, it is recommended to use linear regression only in cases of simpler nonlinear-
ities.
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5
Conclusions and Future Work

This research has explored different load balancing estudies using SDN as a base
technology. OpenFlow-based SDN can be used to monitor network switches and al-
low the dynamic reprogramming of network devices through an external controller.
We leverage the concept of Knowledge-Defined Networking architecture, a novel net-
working paradigm that combines Software-Defined Networking, Network Analytics,
and Artificial Intelligence (AI) techniques, and add a so-called Knowledge Plane for
network control and management operations. These technologies provide robustness
and stability for the network.

Our proposed design is a load-balancing based on MLP classifiers to change the
routes according to the proposed traffic metrics. Traffic metrics as Bandwidth uti-
lization ratios and path latencies are collected and integrated into the Artificial
Neural Network to represent the path load condition. Thus, The MLP chooses the
least loaded path between the four possible routes. The selected route is sent to the
SDN controller, which creates the forwarding rules and installs on each OpenFlow
switch.

Experimental results using Mininet and the OpenDaylight controller point to the
performance opportunities of applying the KDN-based networks in data center sce-
narios. The load balancing method proposed achieves higher performance by reduc-
ing features with PCA and dataset balance with SMOTE, by comparing it with
(random) static load balancer and equal-cost multi-path (ECMP) load balancer.
Therefore, the results showed that network performance has increased after running
the load balancing algorithm, which increases throughput and improves network
utilization.

In our future research, we plan to run larger scale experiments with diverse topolo-
gies, network size, and explore different routing configurations. We propose to change
the neural network model by the ML techniques, such as Q-learning techniques,
LSTM, convolutional neural networks, and deep learning. In addition to applying
KDN to data center scenarios, we will also consider video streaming scenarios over
wireless access networks using Mininet-WiFi.
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APPENDIX A – Mininet

A.1 Topology

1 ’’’
2 @author: Milad Sharif (msharif@stanfor.edu)
3 ’’’
4

5 from mininet.topo import Topo
6 from mininet.node import Controller, RemoteController, OVSSwitch, CPULimitedHost
7 from mininet.net import Mininet
8 from mininet.link import TCLink
9 from mininet.cli import CLI

10 from mininet.util import custom
11 from mininet.log import setLogLevel, info, warn, error, debug
12

13 from dctopo import FatTreeTopo, NonBlockingTopo
14

15 from DCRouting import Routing
16

17 from subprocess import Popen, PIPE
18 from argparse import ArgumentParser
19 import multiprocessing
20 from time import sleep
21 from monitor.monitor import monitor_devs_ng
22 import os
23 import sys
24

25 import json
26 import re
27

28 import termcolor as T
29

30 import requests # funtion GET
31

32 # Number of pods in Fat-Tree
33 K = 4
34

35 # Queue Size
36 QUEUE_SIZE = 100
37

38 # Link capacity (Mbps)
39 BW = 10
40

41 parser = ArgumentParser(description="ECMP routing")
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42

43 parser.add_argument(’-d’, ’--dir’, dest=’output_dir’, default=’log’,
44 help=’Output directory’)
45

46 parser.add_argument(’-i’, ’--input’, dest=’input_file’,
47 default=’inputs/all_to_all_data’,
48 help=’Traffic generator input file’)
49

50 parser.add_argument(’-t’, ’--time’, dest=’time’, type=int, default=30,
51 help=’Duration (sec) to run the experiment’)
52

53 parser.add_argument(’-p’, ’--cpu’, dest=’cpu’, type=float, default=-1,
54 help=’cpu fraction to allocate to each host’)
55

56 parser.add_argument(’-n’, ’--nonblocking’, dest=’nonblocking’, default=False,
57 action=’store_true’, help=’Run the experiment on the noneblocking topo’)
58

59 parser.add_argument(’--iperf’, dest=’iperf’, default=False, action=’store_true’,
60 help=’Use iperf to generate traffics’)
61

62 parser.add_argument(’--hedera’,dest=’hedera’, default=False,
63 action=’store_true’, help=’Run the experiment with hedera GFF scheduler’)
64

65 parser.add_argument(’--ecmp’,dest=’ECMP’,default=False,
66 action=’store_true’,help=’Run the experiment with ECMP routing’)
67

68 parser.add_argument(’--random’,dest=’RANDOM’,default=False,
69 action=’store_true’,help=’Run the experiment with RANDOM routing’)
70

71

72 args = parser.parse_args()
73

74 def dumpTopology(net,agent=’192.168.1.106’):
75 topoData = {’nodes’: {}, ’links’: {}}
76 for s in net.switches:
77 topoData[’nodes’][s.name] = {’name’: s.name, ’dpid’: s.dpid, ’ports’: {},’agent’: agent}
78 path = ’/sys/devices/virtual/net/’
79 for child in os.listdir(path):
80 parts = re.match(’(.*)-(.*)’, child)
81 #print parts.group(1)
82 print child
83

84 if (parts == None) or (child == ’ovs-system’) : continue
85 ifindex = open(path+child+’/ifindex’).read().split(’\n’,1)[0]
86 topoData[’nodes’][parts.group(1)][’ports’][child] = {’name’: child, ’ifindex’: ifindex}
87 # print json.dumps(topoData)
88 #sleep(2)
89 i = 0
90 for s1 in net.switches:
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91 j = 0
92 for s2 in net.switches:
93 if j > i:
94 intfs = s1.connectionsTo(s2)
95 for intf in intfs:
96 s1ifIdx = topoData[’nodes’][s1.name][’ports’][intf[0].name][’ifindex’]
97 s2ifIdx = topoData[’nodes’][s2.name][’ports’][intf[1].name][’ifindex’]
98 linkName = ’%s-%s’ % (s1.name, s2.name)
99 info(’topology link %s: %s %s %s %s %s %s\n’ % (linkName, s1, intf[0].name, s1ifIdx, s2, intf[1].name, s2ifIdx))

100 topoData[’links’][linkName] = {’node1’: s1.name, ’port1’: intf[0].name, ’ifindex1’: s1ifIdx, ’node2’: s2.name, ’port2’: intf[1].name, ’ifindex2’: s2ifIdx}
101 j += 1
102 i += 1
103

104

105 topofile = ’topology.json’ #Store the topology in JSON format
106

107 #Now identify the leaf/edge switches
108 print ’host**********************************************’
109 sleep(2)
110

111 for h in net.hosts:
112 for s in net.switches:
113 intfs = h.connectionsTo(s)
114 if intfs:
115 topoData[’nodes’][s.name][’tag’] = ’edge’
116

117 f = open(topofile, ’w’)
118 f.write(json.dumps(topoData, indent=4))
119 f.flush()
120 f.close
121

122 #Send the data to sFlow
123 os.system(’sudo /home/mininet/hedera/sflow_topology_load.sh’)
124

125

126 def FatTreeNet(k=4, bw=10, controller=’hashed’, dir = -1):
127 ’’’ Create a Fat-Tree network ’’’
128

129 pox_c = Popen("~/pox/pox.py --no-cli riplpox.riplpox --topo=ft,%s --routing=%s --mode=reactive 1> %s/pox.out 2> %s/pox.out" % (k, controller,dir, dir), shell=True)
130

131 info(’*** Creating the topology’)
132 topo = FatTreeTopo(k)
133

134 link = custom(TCLink, bw=bw)
135

136 net = Mininet(topo, link=link, switch=OVSSwitch, controller=RemoteController)
137

138 return net
139
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140 def progress(t):
141 while t > 0:
142 print T.colored(’ %3d seconds left \r’ % (t), ’cyan’),
143 t -= 1
144 sys.stdout.flush()
145 sleep(1)
146 print ’\r\n’
147

148 def start_tcpprobe():
149 ’’’ Install tcp_probe module and dump to file ’’’
150 os.system("rmmod tcp_probe; modprobe tcp_probe full=1;")
151 Popen("cat /proc/net/tcpprobe > ~/hedera/tcp.txt" , shell=True)
152

153 def stop_tcpprobe():
154 os.system("killall -9 cat")
155

156 def iperfTrafficGen(args, hosts, net):
157 ’’’ Generate traffic pattern using iperf and monitor all of thr interfaces
158

159 input format:
160 src_ip dst_ip dst_port type seed start_time stop_time flow_size r/e
161 repetitions time_between_flows r/e (rpc_delay r/e)
162

163 ’’’
164

165 host_list = {}
166 for h in hosts:
167 host_list[h.IP()] = h
168

169 port = 5001
170

171 data = open(args.input_file)
172

173 start_tcpprobe()
174

175 info(’*** Starting iperf ...\n’)
176 for line in data:
177 flow = line.split(’ ’)
178 src_ip = flow[0]
179 dst_ip = flow[1]
180 if src_ip not in host_list:
181 continue
182 sleep(0.2)
183 server = host_list[dst_ip]
184 server.popen(’iperf -s -p %s > ~/hedera/server.txt’ % port, shell = True)
185

186 client = host_list[src_ip]
187 #client.popen(’iperf -c %s -p %s -t 45 > ~/hedera/client.txt’ % (server.IP(), port ), shell=True)
188 client.popen(’iperf -c %s -p %s -t 35 > ~/hedera/client.txt &’ % (server.IP(), port ), shell=True)
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189

190 port += 1
191

192 monitors = []
193 monitors.append(multiprocessing.Process(target = monitor_devs_ng, args =
194 (’%s/rate.txt’ % args.output_dir, 5.0))) #cada 5 segundos
195

196

197 #Collect the Bandwidth
198 for m in monitors:
199 m.start()
200

201 #Collect data from sFlow
202 os.system(’sudo /home/mininet/hedera/dados_flow_port.sh %s &’ % args.output_dir)
203

204 t=args.time
205 temp = 0
206 while t > 0:
207 print T.colored(’ %3d seconds left \r’ % (t), ’cyan’)
208 t -= 1
209 sys.stdout.flush()
210 sleep(1)
211 print ’\r\n’
212 temp +=1
213 print T.colored(’ %3d seconds left \r’ % (temp), ’red’)
214

215 if (int(temp)%55) == 0:
216 port = 5001
217 data = open(args.input_file)
218 info(’*** Starting iperf refresh ...\n’)
219 for line in data:
220 flow = line.split(’ ’)
221 src_ip = flow[0]
222 dst_ip = flow[1]
223 if src_ip not in host_list:
224 continue
225 sleep(0.2)
226 server = host_list[dst_ip]
227 #server.popen(’iperf -s -p %s > ~/hedera/server.txt’ % port, shell = True)
228

229 client = host_list[src_ip]
230 #client.popen(’iperf -c %s -p %s -t 45 > ~/hedera/client.txt’ % (server.IP(), port ), shell=True)
231 client.popen(’iperf -c %s -p %s -t 35 > ~/hedera/client.txt &’ % (server.IP(), port ), shell=True)
232

233 port += 1
234

235 for m in monitors:
236 m.terminate()
237
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238 info(’*** stoping iperf ...\n’)
239 stop_tcpprobe()
240

241 Popen("killall iperf", shell=True).wait()
242

243 def trafficGen(args, hosts, net):
244 ’’’ Run the traffic generator and monitor all of the interfaces ’’’
245 listen_port = 12345
246 sample_period_us = 1000000
247

248 traffic_gen = ’cluster_loadgen/loadgen’
249 if not os.path.isfile(traffic_gen):
250 error(’The traffic generator doesn\’t exist. \ncd hedera/cluster_loadgen; make\n’)
251 return
252

253 info(’*** Starting load-generators\n %s\n’ % args.input_file)
254 for h in hosts:
255 tg_cmd = ’%s -f %s -i %s -l %d -p %d 2&>1 > %s/%s.out &’ % (traffic_gen,
256 args.input_file, h.defaultIntf(), listen_port, sample_period_us,
257 args.output_dir, h.name)
258 h.cmd(tg_cmd)
259

260 sleep(1)
261

262 info(’*** Triggering load-generators\n’)
263 for h in hosts:
264 h.cmd(’nc -nzv %s %d’ % (h.IP(), listen_port))
265

266

267 monitor = multiprocessing.Process(target = monitor_devs_ng, args =
268 (’%s/rate.txt’ % args.output_dir, 0.01))
269

270 monitor.start()
271

272 sleep(args.time)
273

274 monitor.terminate()
275

276 info(’*** Stopping load-generators\n’)
277 for h in hosts:
278 h.cmd(’killall loadgen’)
279

280 def FatTreeTest(args,controller):
281

282 net = FatTreeNet( k=K, bw=BW, controller=controller, dir = args.output_dir)
283

284 net.start()
285

286 #Create topology.json for sflow
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287 dumpTopology(net=net)
288

289 #Wait for the switches to connect to the controller
290 info(’** Waiting for switches to connect to the controller\n’)
291 sleep(1)
292 info(’*Waiting for switches to connect to the Sflow***’)
293 os.system(’sudo /home/mininet/Downloads/comandos/seed/multipath_riplpoxhedera2.sh’)
294 sleep(3)
295

296 hosts = net.hosts
297

298 if args.iperf:
299 iperfTrafficGen(args, hosts, net)
300 else:
301 trafficGen(args, hosts, net)
302

303

304 net.stop()
305

306

307 def clean():
308 ’’’ Clean any the running instances of POX ’’’
309

310 p = Popen("ps aux | grep ’pox’ | awk ’{print $2}’",
311 stdout=PIPE, shell=True)
312 p.wait()
313 procs = (p.communicate()[0]).split(’\n’)
314 for pid in procs:
315 try:
316 pid = int(pid)
317 Popen(’kill %d’ % pid, shell=True).wait()
318 except:
319 pass
320

321 if __name__ == ’__main__’:
322

323 setLogLevel( ’info’ )
324 if not os.path.exists(args.output_dir):
325 print args.output_dir
326 os.makedirs(args.output_dir)
327

328 clean()
329

330 if args.nonblocking:
331 NonBlockingTest(args)
332 elif args.ECMP:
333 FatTreeTest(args,controller=’hashed’)
334 elif args.RANDOM:
335 FatTreeTest(args,controller=’random’)
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336 else:
337 info(’**error** please specify either hedera, ecmp, or nonblocking\n’)
338

339 clean()
340

341 Popen("killall -9 top bwm-ng", shell=True).wait()
342 os.system(’sudo mn -c’)
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APPENDIX B – Artificial Neural
Network

B.1 The MNIST digits classification with TensorFlow

1 n_inputs = 64 # Number of variables
2 n_l1 = 50 # Number of first layer neurons
3 n_l2 = 22 # Number of second layer neurons
4 n_outputs = 5 # Number classes
5

6 graph = tf.Graph() # Create a graph
7 with graph.as_default(): # The following code creates the graph represented in Figure ..:
8

9 # Input Layers
10 with tf.name_scope(’input_layer’): # Input layer name scope
11 x_input = tf.placeholder(tf.float32, [None, n_inputs], name=’images’)
12 y_input = tf.placeholder(tf.int64, [None], name=’labels’)
13

14 # Layer 1
15 with tf.name_scope(’first_layer’): # First layer name scope
16 # Layer variables
17 W1 = tf.Variable(tf.truncated_normal([n_inputs, n_l1]), name=’Weights’)
18 b1 = tf.Variable(tf.zeros([n_l1]), name=’bias’)
19

20 l1 = tf.add(tf.matmul(x_input, W1), b1, name=’linear_transformation’)
21 l1 = tf.nn.relu(l1, name=’relu’)
22

23 # Layer 2
24 with tf.name_scope(’second_layer’): # Second layer name scope
25 # Layer variables
26 W2 = tf.Variable(tf.truncated_normal([n_l1, n_l2]), name=’Weights’)
27 b2 = tf.Variable(tf.zeros([n_l2]), name=’bias’)
28

29 l2 = tf.add(tf.matmul(l1, W2), b2, name=’linear_transformation’)
30 l2 = tf.nn.relu(l2, name=’relu’)
31

32 # Output layer
33 with tf.name_scope(’output_layer’): # Output layer name scope
34 # Layer variables
35 Wo = tf.Variable(tf.truncated_normal([n_l2, n_outputs]), name=’Weights’)
36 bo = tf.Variable(tf.zeros([n_outputs]), name=’bias’)
37

38 scores = tf.add(tf.matmul(l2, Wo), bo, name=’linear_transformation’) # Logits
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39 #Cross entropy - Training loss
40 error = tf.reduce_mean(
41 tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_input, logits=scores),
42 name=’error’)
43

44 # Calculate accuracy
45 # This returns a 1D tensor full of boolean values, so we need to cast these booleans to floats and then compute the average. This will give us the network’s overall accuracy.
46 correct = tf.nn.in_top_k(scores, y_input, 1)
47 # Convert from bool to float32
48 accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
49 # Optimizer
50 optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(error)
51

52 # Initializer
53 init = tf.global_variables_initializer()
54

55 # To save the trained model
56 saver = tf.train.Saver()
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APPENDIX C – sFlow-RT
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)

co
lo

r
=

’g
ra

y’
;

el
se

if
(u

ti
li

za
ti

on
<

20
00

00
0)

co
lo

r
=

’b
lu

e’
;

el
se

if
(u

ti
li

za
ti

on
<

40
00

00
0)

co
lo

r
=

’c
ya

n’
;

el
se

if
(u

ti
li

za
ti

on
<

60
00

00
0)

co
lo

r
=

’g
re

en
’;

el
se

if
(u

ti
li

za
ti

on
<

80
00

00
0)

co
lo

r
=

’y
el

lo
w’

;
el

se
co

lo
r

=
’r

ed
’;

//
Se

nd
da

ta
wi

th
po

si
ti

ve
va

lu
e

if
(u

ti
li

za
ti

on
<

0)
ut

il
iz

at
io

n
=

0;

//
Se

nd
da

ta
to

sv
g

va
r

pr
op

s
=

{’
co

lo
r’

:c
ol

or
,’

wi
dt

h’
:1

0,
’m

et
er

’:
ut

il
iz

at
io

n}
;

re
tu

rn
pr

op
s;

} //
Ed

it
ta

bl
e

of
li

nk
s

to
ma

tc
h

SV
G

ma
p

ID
s

wi
th

ag
en

ts
an

d
da

ta
so

ur
ce

s

se
tH

tt
pH

an
dl

er
(f

un
ct

io
n(

re
q)

{

va
r

to
pp

;

to
pp

=
ge

tT
op

ol
og

y(
);

va
r

li
nk

s
=

{

’0
_0

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"0

_0
_1

"]
["

po
rt

s"
][

"0
_0

_1
-e

th
1"

].
if

in
de

x}
],
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’0
_2

_1
-e

th
2’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"0

_2
_1

"]
["

po
rt

s"
][

"0
_2

_1
-e

th
2"

].
if

in
de

x}
],

’0
_0

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"0

_0
_1

"]
["

po
rt

s"
][

"0
_0

_1
-e

th
3"

].
if

in
de

x}
],

’0
_3

_1
-e

th
2’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"0

_3
_1

"]
["

po
rt

s"
][

"0
_3

_1
-e

th
2"

].
if

in
de

x}
],

’0
_1

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"0

_1
_1

"]
["

po
rt

s"
][

"0
_1

_1
-e

th
1"

].
if

in
de

x}
],

’0
_2

_1
-e

th
4’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"0

_2
_1

"]
["

po
rt

s"
][

"0
_2

_1
-e

th
4"

].
if

in
de

x}
],

’0
_1

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"0

_1
_1

"]
["

po
rt

s"
][

"0
_1

_1
-e

th
3"

].
if

in
de

x}
],

’0
_3

_1
-e

th
4’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"0

_3
_1

"]
["

po
rt

s"
][

"0
_3

_1
-e

th
4"

].
if

in
de

x}
],

’0
_2

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"0

_2
_1

"]
["

po
rt

s"
][

"0
_2

_1
-e

th
1"

].
if

in
de

x}
],

’4
_1

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"4

_1
_1

"]
["

po
rt

s"
][

"4
_1

_1
-e

th
1"

].
if

in
de

x}
],

’0
_2

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"0

_2
_1

"]
["

po
rt

s"
][

"0
_2

_1
-e

th
3"

].
if

in
de

x}
],

’4
_1

_2
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"4

_1
_2

"]
["

po
rt

s"
][

"4
_1

_2
-e

th
1"

].
if

in
de

x}
],

’0
_3

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"0

_3
_1

"]
["

po
rt

s"
][

"0
_3

_1
-e

th
1"

].
if

in
de

x}
],

’4
_2

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"4

_2
_1

"]
["

po
rt

s"
][

"4
_2

_1
-e

th
1"

].
if

in
de

x}
],

’0
_3

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"0

_3
_1

"]
["

po
rt

s"
][

"0
_3

_1
-e

th
3"

].
if

in
de

x}
],

’4
_2

_2
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"4

_2
_2

"]
["

po
rt

s"
][

"4
_2

_2
-e

th
1"

].
if

in
de

x}
],

’1
_0

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"1

_0
_1

"]
["

po
rt

s"
][

"1
_0

_1
-e

th
1"

].
if

in
de

x}
],

’1
_2

_1
-e

th
2’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"1

_2
_1

"]
["

po
rt

s"
][

"1
_2

_1
-e

th
2"

].
if

in
de

x}
],

’1
_0

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"1

_0
_1

"]
["

po
rt

s"
][

"1
_0

_1
-e

th
3"

].
if

in
de

x}
],

’1
_3

_1
-e

th
2’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"1

_3
_1

"]
["

po
rt

s"
][

"1
_3

_1
-e

th
2"

].
if

in
de

x}
],

’1
_1

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"1

_1
_1

"]
["

po
rt

s"
][

"1
_1

_1
-e

th
1"

].
if

in
de

x}
],

’1
_2

_1
-e

th
4’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"1

_2
_1

"]
["

po
rt

s"
][

"1
_2

_1
-e

th
4"

].
if

in
de

x}
],

’1
_1

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"1

_1
_1

"]
["

po
rt

s"
][

"1
_1

_1
-e

th
3"

].
if

in
de

x}
],

’1
_3

_1
-e

th
4’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"1

_3
_1

"]
["

po
rt

s"
][

"1
_3

_1
-e

th
4"

].
if

in
de

x}
],

’1
_2

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"1

_2
_1

"]
["

po
rt

s"
][

"1
_2

_1
-e

th
1"

].
if

in
de

x}
],

’4
_1

_1
-e

th
2’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"4

_1
_1

"]
["

po
rt

s"
][

"4
_1

_1
-e

th
2"

].
if

in
de

x}
],

’1
_2

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"1

_2
_1

"]
["

po
rt

s"
][

"1
_2

_1
-e

th
3"

].
if

in
de

x}
],

’4
_1

_2
-e

th
2’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"4

_1
_2

"]
["

po
rt

s"
][

"4
_1

_2
-e

th
2"

].
if

in
de

x}
],

’1
_3

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"1

_3
_1

"]
["

po
rt

s"
][

"1
_3

_1
-e

th
1"

].
if

in
de

x}
],



APPENDIX C. sFlow-RT 109

’4
_2

_1
-e

th
2’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"4

_2
_1

"]
["

po
rt

s"
][

"4
_2

_1
-e

th
2"

].
if

in
de

x}
],

’1
_3

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"1

_3
_1

"]
["

po
rt

s"
][

"1
_3

_1
-e

th
3"

].
if

in
de

x}
],

’4
_2

_2
-e

th
2’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"4

_2
_2

"]
["

po
rt

s"
][

"4
_2

_2
-e

th
2"

].
if

in
de

x}
],

’2
_0

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"2

_0
_1

"]
["

po
rt

s"
][

"2
_0

_1
-e

th
1"

].
if

in
de

x}
],

’2
_2

_1
-e

th
2’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"2

_2
_1

"]
["

po
rt

s"
][

"2
_2

_1
-e

th
2"

].
if

in
de

x}
],

’2
_0

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"2

_0
_1

"]
["

po
rt

s"
][

"2
_0

_1
-e

th
3"

].
if

in
de

x}
],

’2
_3

_1
-e

th
2’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"2

_3
_1

"]
["

po
rt

s"
][

"2
_3

_1
-e

th
2"

].
if

in
de

x}
],

’2
_1

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"2

_1
_1

"]
["

po
rt

s"
][

"2
_1

_1
-e

th
1"

].
if

in
de

x}
],

’2
_2

_1
-e

th
4’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"2

_2
_1

"]
["

po
rt

s"
][

"2
_2

_1
-e

th
4"

].
if

in
de

x}
],

’2
_1

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"2

_1
_1

"]
["

po
rt

s"
][

"2
_1

_1
-e

th
3"

].
if

in
de

x}
],

’2
_3

_1
-e

th
4’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"2

_3
_1

"]
["

po
rt

s"
][

"2
_3

_1
-e

th
4"

].
if

in
de

x}
],

’2
_2

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"2

_2
_1

"]
["

po
rt

s"
][

"2
_2

_1
-e

th
1"

].
if

in
de

x}
],

’4
_1

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"4

_1
_1

"]
["

po
rt

s"
][

"4
_1

_1
-e

th
3"

].
if

in
de

x}
],

’2
_2

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"2

_2
_1

"]
["

po
rt

s"
][

"2
_2

_1
-e

th
3"

].
if

in
de

x}
],

’4
_1

_2
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"4

_1
_2

"]
["

po
rt

s"
][

"4
_1

_2
-e

th
3"

].
if

in
de

x}
],

’2
_3

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"2

_3
_1

"]
["

po
rt

s"
][

"2
_3

_1
-e

th
1"

].
if

in
de

x}
],

’4
_2

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"4

_2
_1

"]
["

po
rt

s"
][

"4
_2

_1
-e

th
3"

].
if

in
de

x}
],

’2
_3

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"2

_3
_1

"]
["

po
rt

s"
][

"2
_3

_1
-e

th
3"

].
if

in
de

x}
],

’4
_2

_2
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"4

_2
_2

"]
["

po
rt

s"
][

"4
_2

_2
-e

th
3"

].
if

in
de

x}
],

’3
_0

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"3

_0
_1

"]
["

po
rt

s"
][

"3
_0

_1
-e

th
1"

].
if

in
de

x}
],

’3
_2

_1
-e

th
2’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"3

_2
_1

"]
["

po
rt

s"
][

"3
_2

_1
-e

th
2"

].
if

in
de

x}
],

’3
_0

_1
-e

th
3’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"3

_0
_1

"]
["

po
rt

s"
][

"3
_0

_1
-e

th
3"

].
if

in
de

x}
],

’3
_3

_1
-e

th
2’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
p.

no
de

s[
"3

_3
_1

"]
["

po
rt

s"
][

"3
_3

_1
-e

th
2"

].
if

in
de

x}
],

’3
_1

_1
-e

th
1’

:
[{

ag
t:

’1
92

.1
68

.0
.1

06
’,

ds
:t

op
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C.2 The transmission rate in the input and output ports.

[
{
"value": 789785.7163159391,
"agent": "192.168.0.106",
"key": "1_2_1-eth2"

},
{
"value": 747670.5886217935,
"agent": "192.168.0.106",
"key": "0_0_1-eth1"

},
{
"value": 746795.1898133202,
"agent": "192.168.0.106",
"key": "0_2_1-eth1"

},
{
"value": 699042.1515834683,
"agent": "192.168.0.106",
"key": "1_0_1-eth2"

},
{
"value": 691332.9161517477,
"agent": "192.168.0.106",
"key": "4_1_1-eth2"

},
{
"value": 20071.34802618815,
"agent": "192.168.0.106",
"key": "0_2_1-eth2"

},
{
"value": 18448.330913986203,
"agent": "192.168.0.106",
"key": "1_2_1-eth1"

},
{
"value": 17009.575149372824,
"agent": "192.168.0.106",
"key": "0_0_1-eth2"

},
{
"value": 16701.59207744502,
"agent": "192.168.0.106",
"key": "4_1_1-eth1"

},
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{
"value": 16412.999380434692,
"agent": "192.168.0.106",
"key": "1_0_1-eth1"

},
{
"value": 4.538829872768871E-37,
"agent": "192.168.0.106",
"key": "0_2_1-eth4"

},
{
"value": 4.130379519497393E-37,
"agent": "192.168.0.106",
"key": "4_1_2-eth1"

},
{
"value": 3.993174509831626E-37,
"agent": "192.168.0.106",
"key": "3_2_1-eth3"

},
{
"value": 3.5964122777503437E-37,
"agent": "192.168.0.106",
"key": "0_1_1-eth4"

},
{
"value": 3.5413279153475595E-37,
"agent": "192.168.0.106",
"key": "0_1_1-eth2"

},
{
"value": 3.0598538807422476E-37,
"agent": "192.168.0.106",
"key": "3_1_1-eth1"

},
{
"value": 2.868489040191135E-37,
"agent": "192.168.0.106",
"key": "4_1_2-eth3"

},
{
"value": 2.6105249355333748E-37,
"agent": "192.168.0.106",
"key": "3_2_1-eth1"

},
{
"value": 2.282801661370805E-37,
"agent": "192.168.0.106",
"key": "3_0_1-eth1"
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},
{
"value": 2.241492771840971E-37,
"agent": "192.168.0.106",
"key": "3_2_1-eth4"

}
]
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APPENDIX D – OpenDaylight

D.1 Reading input and output ports of switches

{
{

"node": [
{

"id": "openflow:1",
"flow-node-inventory:ip-address": "192.168.0.106",
"flow-node-inventory:description": "None",
"flow-node-inventory:hardware": "Open vSwitch",
"flow-node-inventory:serial-number": "None",
"flow-node-inventory:software": "2.3.90",
"flow-node-inventory:table": [

{
"id": 5,
"opendaylight-flow-statistics:aggregate-flow-statistics": {

"packet-count": 0,
"flow-count": 0,
"byte-count": 0

},
"opendaylight-flow-table-statistics:flow-table-statistics": {

"active-flows": 0,
"packets-matched": 0,
"packets-looked-up": 0

}
},
{

"id": 39,
"opendaylight-flow-statistics:aggregate-flow-statistics": {

"packet-count": 0,
"flow-count": 0,
"byte-count": 0

},
"opendaylight-flow-table-statistics:flow-table-statistics": {

"active-flows": 0,
"packets-matched": 0,
"packets-looked-up": 0

}
},

],
"flow-node-inventory:manufacturer": "Nicira, Inc.",
"flow-node-inventory:switch-features": {
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"max_tables": 254,
"capabilities": [

"flow-node-inventory:flow-feature-capability-flow-stats",
"flow-node-inventory:flow-feature-capability-group-stats",
"flow-node-inventory:flow-feature-capability-queue-stats",
"flow-node-inventory:flow-feature-capability-port-stats",
"flow-node-inventory:flow-feature-capability-table-stats"

],
"max_buffers": 256

},
"opendaylight-meter-statistics:meter-features": {

"max_meter": 0,
"max_color": 0,
"max_bands": 0

},
"opendaylight-group-statistics:group-features": {

"max-groups": [
4294967040

],
"group-capabilities-supported": [

"opendaylight-group-types:select-weight",
"opendaylight-group-types:select-liveness",
"opendaylight-group-types:chaining"

],
"actions": [

134217729
],
"group-types-supported": [

"opendaylight-group-types:group-ff",
"opendaylight-group-types:group-select",
"opendaylight-group-types:group-all",
"opendaylight-group-types:group-indirect"

]
},
"node-connector": [

{
"id": "openflow:1:4",
"opendaylight-port-statistics:flow-capable-node-connector-statistics": {

"collision-count": 0,
"transmit-drops": 0,
"receive-errors": 0,
"receive-drops": 0,
"duration": {

"second": 11032,
"nanosecond": 926000000

},
"transmit-errors": 0,
"receive-over-run-error": 0,
"bytes": {



APPENDIX D. OpenDaylight 116

"received": 796,
"transmitted": 682532

},
"receive-crc-error": 0,
"receive-frame-error": 0,
"packets": {

"received": 10,
"transmitted": 4357

}
},
"flow-node-inventory:hardware-address": "F6:36:2C:A8:38:FA",
"flow-node-inventory:maximum-speed": 0,
"flow-node-inventory:peer-features": "",
"flow-node-inventory:current-feature": "copper ten-gb-fd",
"flow-node-inventory:port-number": "4",
"flow-node-inventory:supported": "",
"flow-node-inventory:name": "0_0_1-eth4",
"flow-node-inventory:configuration": "",
"flow-node-inventory:state": {

"link-down": false,
"live": false,
"blocked": false

},
"flow-node-inventory:advertised-features": "",
"flow-node-inventory:current-speed": 10000000

},
{

"id": "openflow:1:3",
"opendaylight-port-statistics:flow-capable-node-connector-statistics": {

"collision-count": 0,
"transmit-drops": 0,
"receive-errors": 0,
"receive-drops": 0,
"duration": {

"second": 11032,
"nanosecond": 939000000

},
"transmit-errors": 0,
"receive-over-run-error": 0,
"bytes": {

"received": 692204,
"transmitted": 682975

},
"receive-crc-error": 0,
"receive-frame-error": 0,
"packets": {

"received": 4356,
"transmitted": 4355

}
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},
"flow-node-inventory:hardware-address": "12:64:B4:A2:7E:80",
"flow-node-inventory:maximum-speed": 0,
"flow-node-inventory:peer-features": "",
"flow-node-inventory:current-feature": "copper ten-gb-fd",
"flow-node-inventory:port-number": "3",
"flow-node-inventory:supported": "",
"flow-node-inventory:name": "0_0_1-eth3",
"flow-node-inventory:configuration": "",
"flow-node-inventory:state": {

"link-down": false,
"live": false,
"blocked": false

},
"flow-node-inventory:advertised-features": "",
"flow-node-inventory:current-speed": 10000000

},
{

"id": "openflow:1:LOCAL",
"opendaylight-port-statistics:flow-capable-node-connector-statistics": {

"collision-count": 0,
"transmit-drops": 0,
"receive-errors": 0,
"receive-drops": 0,
"duration": {

"second": 11032,
"nanosecond": 972000000

},
"transmit-errors": 0,
"receive-over-run-error": 0,
"bytes": {

"received": 0,
"transmitted": 0

},
"receive-crc-error": 0,
"receive-frame-error": 0,
"packets": {

"received": 0,
"transmitted": 0

}
},
"flow-node-inventory:hardware-address": "6A:C6:83:10:BD:4C",
"flow-node-inventory:maximum-speed": 0,
"flow-node-inventory:peer-features": "",
"flow-node-inventory:current-feature": "",
"flow-node-inventory:port-number": "LOCAL",
"flow-node-inventory:supported": "",
"flow-node-inventory:name": "0_0_1",
"flow-node-inventory:configuration": "PORT-DOWN",
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"flow-node-inventory:state": {
"link-down": true,
"live": false,
"blocked": false

},
"flow-node-inventory:advertised-features": "",
"flow-node-inventory:current-speed": 0

},
{

"id": "openflow:1:1",
"opendaylight-port-statistics:flow-capable-node-connector-statistics": {

"collision-count": 0,
"transmit-drops": 0,
"receive-errors": 0,
"receive-drops": 0,
"duration": {

"second": 11032,
"nanosecond": 963000000

},
"transmit-errors": 0,
"receive-over-run-error": 0,
"bytes": {

"received": 690781,
"transmitted": 682141

},
"receive-crc-error": 0,
"receive-frame-error": 0,
"packets": {

"received": 4358,
"transmitted": 4353

}
},
"flow-node-inventory:hardware-address": "22:EC:72:A1:1F:47",
"flow-node-inventory:maximum-speed": 0,
"flow-node-inventory:peer-features": "",
"flow-node-inventory:current-feature": "copper ten-gb-fd",
"flow-node-inventory:port-number": "1",
"flow-node-inventory:supported": "",
"flow-node-inventory:name": "0_0_1-eth1",
"flow-node-inventory:configuration": "",
"flow-node-inventory:state": {

"link-down": false,
"live": false,
"blocked": false

},
"flow-node-inventory:advertised-features": "",
"flow-node-inventory:current-speed": 10000000

},
{
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"id": "openflow:1:2",
"opendaylight-port-statistics:flow-capable-node-connector-statistics": {

"collision-count": 0,
"transmit-drops": 0,
"receive-errors": 0,
"receive-drops": 0,
"duration": {

"second": 11032,
"nanosecond": 951000000

},
"transmit-errors": 0,
"receive-over-run-error": 0,
"bytes": {

"received": 706,
"transmitted": 683065

},
"receive-crc-error": 0,
"receive-frame-error": 0,
"packets": {

"received": 9,
"transmitted": 4357

}
},
"flow-node-inventory:hardware-address": "D2:CC:DE:7B:C8:A2",
"flow-node-inventory:maximum-speed": 0,
"flow-node-inventory:peer-features": "",
"flow-node-inventory:current-feature": "copper ten-gb-fd",
"flow-node-inventory:port-number": "2",
"flow-node-inventory:supported": "",
"flow-node-inventory:name": "0_0_1-eth2",
"flow-node-inventory:configuration": "",
"flow-node-inventory:state": {

"link-down": false,
"live": false,
"blocked": false

},
"flow-node-inventory:advertised-features": "",
"flow-node-inventory:current-speed": 10000000

}
]
}
]
}
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APPENDIX E – The ROC curve’s values

E.1 MLP 2
The performance evaluation of the neural network (MLP 2) is summarized in Ta-
ble E.1 and Figure E.1. The MLP 2 is used to map 64 features and four targets.

Table E.1 – The confusion matrix for neural network (MLP 2)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 141 22 5 12 0.78
R2 53 307 42 30 0.71
R3 62 7 159 20 0.64
R4 361 41 18 384 0.45

Precision 0.41 0.81 0.71 0.86

The neural network classifier is not able to predict class R1 with high precision
because there are few samples of class R1 in the dataset.

We can see the AUC values in Figure E.1, and class R4 has a value of 0.70, which
represents a lower level compared to the other classifiers.

Figure E.1 – Receiver operating characteristic for multi-class data (MLP 2)
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E.2 MLP 3
The performance evaluation of the neural network (MLP 3) is summarized in Ta-
ble E.2 and Figure E.1. The MLP 3 is used to map 64 features and four targets.

Table E.2 – The confusion matrix for neural network (MLP 3)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 287 46 6 17 0.80
R2 113 195 0 8 0.62
R3 61 23 226 22 0.68
R4 147 102 13 398 0.60

Precision 0.47 0.53 0.92 0.89

The neural network classifier is not able to predict the R1 and R2 classes with high
precision, because there are few samples of the R1 and R2 classes in the data set.

We can see the AUC values in Figure E.2 , and the R2 class has a value of 0.75,
which represents a lower level compared to the other classifiers.

Figure E.2 – Receiver operating characteristic for multi-class data (MLP 3)
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E.3 MLP 5
The performance evaluation of the neural network (MLP 5) is summarized in Ta-
ble E.3 and Figure E.3. The MLP 5 is used to map 64 features and four targets.

Table E.3 – The confusion matrix for neural network (MLP 5)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 271 6 10 17 0.89
R2 83 410 14 5 0.80
R3 30 2 154 6 0.80
R4 115 30 65 446 0.68

Precision 0.54 0.91 0.63 0.94

Figure E.3 – Receiver operating characteristic for multi-class data (MLP 5)

The neural network classifier is not able to predict the R1 and R3 classes with high
precision, because there are few samples of the R1 and R3 classes in the dataset.

We can see the AUC values in Figure E.3, and the R4 class has a value of 0.83,
which represents a lower level compared to the other classifiers.

E.4 MLP 6
The performance evaluation of the neural network (MLP 6) is summarized in Ta-
ble E.4 and Figure E.4. The MLP 6 is used to map 64 features and four targets.

The neural network classifier is not able to predict class R3 with high precision,
because there are few samples of class R3 in the data set.

We can see the AUC values in Figure E.4, and the R2 class has a value of 0.73,
which represents a lower level compared to the other classifiers.
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Table E.4 – The confusion matrix for neural network (MLP 6)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 221 1 162 56 0.50
R2 3 220 104 129 0.48
R3 28 4 307 29 0.83
R4 7 13 40 340 0.85

Precision 0.85 0.92 0.50 0.61

Figure E.4 – Receiver operating characteristic for multi-class data (MLP 6)

E.5 MLP 7
The performance evaluation of the neural network (MLP 7) is summarized in Ta-
ble E.5 and Figure E.5. The MLP 7 is used to map 64 features and four targets.

Table E.5 – The confusion matrix for neural network (MLP 7)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 300 155 6 43 0.60
R2 19 628 3 6 0.86
R3 32 178 52 10 0.69
R4 14 15 0 203 0.86

Precision 0.82 0.64 0.85 0.77
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Figure E.5 – Receiver operating characteristic for multi-class data (MLP 7)

The neural network classifier is not able to predict the R3 and R4 classes with high
precision, because there are few samples of the R3 and R4 classes in the dataset.

We can see the AUC values in Figure E.5, and the R3 class has a value of 0.59,
which represents a lower level compared to the other classifiers.

E.6 MLP 8
The performance evaluation of the neural network (MLP 8) is summarized in Ta-
ble E.6 and Figure E.6. The MLP 8 is used to map 64 features and four targets.

Table E.6 – The confusion matrix for neural network (MLP 8)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 503 93 7 1 0.83
R2 64 417 14 9 0.83
R3 92 31 307 2 0.71
R4 33 40 0 51 0.51

Precision 0.73 0.72 0.94 0.81
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Figure E.6 – Receiver operating characteristic for multi-class data (MLP 8)

The neural network classifier has high precision to class R4, although there are few
samples of class R4 in the dataset.

We can see the AUC values in Figure E.6, and the R4 class has a value of 0.70,
which represents a lower level compared to the other classifiers.

E.7 MLP 10
The performance evaluation of the neural network (MLP 10) is summarized in Ta-
ble E.7 and Figure E.7. The MLP 10 is used to map 64 features and four targets.

Table E.7 – The confusion matrix for neural network (MLP 10)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 627 15 1 9 0.96
R2 57 223 2 22 0.73
R3 61 1 72 6 0.52
R4 113 33 19 403 0.71

Precision 0.73 0.82 0.77 0.92

The neural network classifier has high precision in the four classes, although there
are few samples for the R2, and R4 classes in the dataset.

We can see the AUC values in Figure E.7, and the R3 class has a value of 0.75,
which represents a lower level compared to the other classifiers.
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Figure E.7 – Receiver operating characteristic for multi-class data (MLP 10)

E.8 MLP 12
The performance evaluation of the neural network (MLP 12) is summarized in Ta-
ble E.8 and Figure E.8. The MLP 12 is used to map 64 features and four targets.

Table E.8 – The confusion matrix for neural network (MLP 12)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 717 237 80 4 0.98
R2 37 202 32 21 0.69
R3 123 10 135 64 0.41
R4 46 7 4 255 0.82

Precision 0.77 0.89 0.79 0.74

Figure E.8 – Receiver operating characteristic for multi-class data (MLP 12)

The neural network classifier has high precision in the four classes, although there
are few samples for the R2, R3, and R4 classes in the dataset.
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We can see the AUC values in Figure E.8, and the R3 class has a value of 0.69,
which represents a lower level compared to the other classifiers.

E.9 MLP 13
The performance evaluation of the neural network (MLP 13) is summarized in Ta-
ble E.9 and Figure E.9. The MLP 13 is used to map 64 features and four targets.

Table E.9 – The confusion matrix for neural network (MLP 13)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 188 49 52 167 0.41
R2 1 291 12 52 0.82
R3 1 11 187 25 0.84
R4 12 14 10 592 0.94

Precision 0.93 0.80 0.72 0.71

Figure E.9 – Receiver operating characteristic for multi-class data (MLP 13)

The neural network classifier has high precision in the four classes, although there
are few samples for the R2, R3, and R4 classes in the dataset.

We can see the AUC values in Figure E.9, and the R1 class has a value of 0.70,
which represents a lower level compared to the other classifiers.

E.10 MLP 14
The performance evaluation of the neural network (MLP 14) is summarized in Ta-
ble E.10 and Figure E.10. The MLP 14 is used to map 64 features and four targets.

The neural network classifier is not able to predict the R2 and R4 classes with high
precision, because there are few samples of the R2 and R4 classes in the dataset.
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Table E.10 – The confusion matrix for neural network (MLP 14)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 496 23 1 0 0.95
R2 125 524 6 9 0.79
R3 61 20 234 1 0.74
R4 66 5 2 91 0.56

Precision 0.66 0.92 0.96 0.90

We can see the AUC values in Figure E.10, and the R4 class has a value of 0.76,
which represents a lower level compared to the other classifiers.

Figure E.10 – Receiver operating characteristic for multi-class data (MLP 14)

E.11 MLP 15
The performance evaluation of the neural network (MLP 15) is summarized in Ta-
ble E.11 and Figure E.11. The MLP 15 is used to map 64 features and four targets.

Table E.11 – The confusion matrix for neural network (MLP 15)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 587 4 2 3 0.98
R2 105 224 15 16 0.62
R3 105 20 339 68 0.64
R4 3 4 1 168 0.95

Precision 0.73 0.89 0.95 0.66

The neural network classifier is not able to predict class R4 with high precision,
because there are few samples of class R4 in the data set.

We can see the AUC values in Figure E.11, and the R2 class has a value of 0.80,
which represents a lower level compared to the other classifiers.
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Figure E.11 – Receiver operating characteristic for multi-class data (MLP 15)

E.12 MLP 16
The performance evaluation of the neural network (MLP 16) is summarized in Ta-
ble E.12 and Figure E.12. The MLP 16 is used to map 64 features and four targets.

Table E.12 – The confusion matrix for neural network (MLP 16)

Predicted Class
R1 R2 R3 R4 Recall

Actual Class

R1 158 3 1 62 0.71
R2 4 161 18 137 0.50
R3 1 1 170 96 0.63
R4 34 10 45 763 0.90

Precision 0.80 0.92 0.73 0.72

The neural network classifier has high precision in the four classes, although there
are few samples for the R1, R2, and R3 classes in the dataset.

We can see the AUC values in Figure E.12, and the R2 class has a value of 0.75,
which represents a lower level compared to the other classifiers.
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Figure E.12 – Receiver operating characteristic for multi-class data (MPL 16)
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APPENDIX F – Linear Regression

1 import pandas as pd
2 from sklearn import linear_model
3 from sklearn.model_selection import train_test_split
4 from sklearn.metrics import mean_squared_error
5

6 df_x = pd.DataFrame(dataset.data, columns = dataset.feature_names)
7 df_y = pd.DataFrame(dataset.target)
8

9 # Feature Scaling
10 """from sklearn.preprocessing import StandardScaler
11 sc_X = StandardScaler()
12 X_train = sc_X.fit_transform(X_train)
13 X_test = sc_X.transform(X_test)
14 sc_y = StandardScaler()
15 y_train = sc_y.fit_transform(y_train)"""
16

17 # Fitting Multiple Linear Regression to the Training set
18 model = linear_model.LinearRegression()
19

20 # Training and testing the model
21 x_train, x_test, y_train, y_test = train_test_split(df_x, df_y,
22 test_size = 0.3, random_state = 4 )
23

24 # Fitting Multiple Linear Regression to the Training set
25 from sklearn.linear_model import LinearRegression
26 regressor = LinearRegression()
27 regressor.fit(X_train, y_train)
28

29 # Predicting the Test set results
30 y_pred = regressor.predict(X_test)
31

32 regressor = LinearRegression()
33 regressor.fit(X_train, y_train)
34 y_pred = regressor.predict(X_test)
35

36 mse = mean_squared_error(y_test, y_pred)
37 rmse = (np.sqrt(mse))
38 r2 = round(regressor.score(X_train, y_train),2)
39

40 print("The model performance for training set")
41 print("--------------------------------------")
42 print(’RMSE is {}’.format(rmse))
43 print(’R2 score is {}’.format(r2))
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