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Resumo

Sistemas de vigilância em sequências de vídeo têm sido amplamente utilizados para o
monitoramento de cenas em diversos ambientes, tais como aeroportos, bancos, escolas,
indústrias, estações de ônibus e trens, rodovias e lojas. Devido à grande quantidade de
informação obtida pelas câmeras de vigilância, o uso de inspeção visual por operadores
de câmera se torna uma tarefa cansativa e sujeita a falhas, além de consumir muito
tempo. Um desafio é o desenvolvimento de sistemas inteligentes de vigilância capazes
de analisar longas sequências de vídeos capturadas por uma rede de câmeras de modo a
identificar um determinado comportamento. Neste trabalho, foram propostas e avaliadas
diversas técnicas de classificação, tendo como base o operador CENTRIST (Histograma
da Transformada Census), no contexto de identificação de eventos violentos em cenas
de vídeo. Adicionalmente, foram avaliados outros descritores tradicionais, como HoG
(Histograma de Gradientes Orientados), HOF (Histograma do Fluxo Óptico) e descritores
extraídos a partir de modelos de aprendizado de máquina profundo pré-treinados. De modo
a permitir a avaliação apenas em regiões de interesse presentes nos quadros dos vídeos,
técnicas para remoção do fundo da cena. Uma abordagem baseada em janela deslizante
foi utilizada para avaliar regiões menores da cena em combinação com um critério de
votação. A janela deslizante é então aplicada juntamente com uma filtragem de blocos
utilizando fluxo óptico da cena. Para demonstrar a efetividade de nosso método para
discriminar violência em cenas de multidões, os resultados obtidos foram comparados com
outras abordagens disponíveis na literatura em duas bases de dados públicas (Violence
in Crowds e Hockey Fights). A eficácia da combinação entre CENTRIST e HoG foi
demonstrada em comparação com a utilização desses operadores individualmente. A
combinação desses operadores obteve aproximadamente 88% contra 81% utilizando apenas
HoG e 86% utilizando CENTRIST. A partir do refinamento do método proposto, foi
identificado que avaliar blocos do quadro com a abordagem de janela deslizante tornou o
método mais eficaz. Técnicas para geração de palavras visuais com codificação esparsa,
medida de distância com um modelo de misturas Gaussianas e medida de distância entre
agrupamentos também foram avaliadas e discutidas. Além disso, também foi avaliado
calcular dinamicamente o limiar de votação, o que trouxe resultados melhores em alguns
casos. Finalmente, formas de restringir os atores presentes nas cenas utilizando fluxo
óptico foram analisadas. Utilizando o método de Otsu para calcular o limiar do fluxo
óptico da cena a eficiência supera nossos resultados mais competitivos: 91,46% de acurácia
para a base Violence in Crowds e 92,79% para a base Hockey Fights.



Abstract

Surveillance systems in video sequences have been widely used to monitor scenes in various
environments, such as airports, banks, schools, industries, bus and train stations, highways
and stores. Due to the large amount of information obtained via surveillance cameras, the
use of visual inspection by camera operators becomes a task subject to fatigue and failure,
in addition to consuming a lot of time. One challenge is the development of intelligent
surveillance systems capable of analyzing long video sequences captured by a network of
cameras in order to identify a certain behavior. In this work, we propose and analyze
the use of several classification techniques, based on the CENTRIST (Transformation
Census Histogram) operator, in the context of identifying violent events in video scenes.
Additionally, we evaluated other traditional descriptors, such as HoG (Oriented Gradient
Histogram), HOF (Optical Flow Histogram) and descriptors extracted from pre-trained
deep machine learning models. In order to allow the evaluation only in regions of interest
present in the video frames, we investigated techniques for removing the background from
the scene. A sliding window-based approach was used to assess smaller regions of the scene
in combination with a voting criterion. The sliding window is then applied along with block
filtering using the optical flow of the scene. To demonstrate the effectiveness of our method
for discriminating violence in crowd scenes, we compared the results to other approaches
available in the literature in two public databases (Violence in Crowds and Hockey Fights).
The combination of CENTRIST and HoG was demonstrated in comparison to the use of
these operators individually. The combination of both operators obtained approximately
88% against 81% using only HoG and 86% using CENTRIST. From the refinement of
the proposed method, we identified that evaluating blocks of the frame with the sliding
window-based approach made the method more effective. Techniques for generating a
codebook with sparse coding, distance measurement with a Gaussian mixture model and
distance measurement between clusters were evaluated and discussed. Also we dynamically
calculate the threshold for class voting, which obtained superior results in some cases.
Finally, strategies for restricting the actors present in the scenes using optical flow were
analyzed. By using the Otsu’s method to calculate the threshold from the optical flow at
the scene, the effectiveness surpasses our most competitive results: 91.46% accuracy for
the Violence in Crowds dataset and 92.79% for the Hockey Fights dataset.
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Chapter 1

Introduction

In this chapter, we present the problem investigated in this work, its associated research
challenges, the main goals and contributions, some research questions, the publication list,
as well as the text organization.

1.1 Problem Description
Video surveillance is an active research field whose main purpose is to monitor activities or
behavior by means of electronic equipment, for instance, closed-circuit television (CCTV)
cameras. The identification of anomalies in the scenes is a challenging task due to several
factors, such as illumination conditions, low-resolution cameras, and occlusions.

Human action recognition [15,16,17,18,19,20,21,22,23,24,25] via video processing has
been widely used in diverse domains, for instance, crime prevention, smart homes, health
monitoring, human-computer interaction, among others. In particular, detection of violent
scenes has received substantial interest in the last years.

For violence detection in crowded scenes, surveillance cameras are normally used for
detection on dense populations. The task of generating meaningful description from scenes
and actions can be considered quite complex due to the large number of possible events
that involve crowd of people, although few of them could be considered aggressive or
violent.

1.2 Research Challenges
Due to the advances in digital video technology, large volumes of data have been acquired,
stored and transmitted, which makes it impracticable to verify their content by human
operators. Such demand promotes the research and development of automatic video
analysis systems to deal with massive amounts of videos in a fast and scalable way.

The task of analyzing and detecting abnormal patterns in video sequences relies on
the amount of people present in the scene, presence of occlusion, difficulty in removing
the background, camera motion, and resolution of the video sequences. Moreover, it is
also dependent on the domain context, as the definition of normality and abnormality
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is particular to each application. Such task is very challenging and demanding, even for
human operators.

1.3 Objectives and Contributions
In this work, we describe and analyze methods for detecting violent events in video
sequences. The process aims to evaluate a video sequence at high level of abstraction,
without considering the position of people in the scene to identify abnormalities.

The recognition process consists of five main stages. Initially, the video sequences
are pre-processed in order to improve the perception about objects in the scene, where
operations to reduce the influence of lighting changes are applied. Then, the Census
Transform Histogram (CENTRIST) descriptor [26] is used to extract a set of features
from the video frames. The dimensionality from the extracted features is also tested in
order to reduce redundant or noisy information without losing the most representative
characteristics. Finally, the video frames are classified as violent or non-violent.

In order to evaluate the suitability of CENTRIST-based descriptors for violence
detection on crowded scenes, we analyze the performance of the CENTRIST descriptor
using several pre-processing filters and different classifiers. Furthermore, in addition to
CENTRIST, HOG descriptor [27] is also combined to CENTRIST using two different
approaches.

The first strategy is to concatenate both HoG and CENTRIST descriptors in only
one vector. The second strategy applies the CENTRIST descriptor to the output matrix
obtained with HoG descriptor. We also investigate alternatives to evaluate the scene
using such descriptor. To refine our method, we evaluate a sliding window strategy for
extracting features through small blocks of the frame. In addition, coding techniques are
applied between the feature extraction and training steps. Then, we evaluate approaches
based on optical flow to discriminate the regions of interest in the scene whose actors
would be performing the action. Finally, we analyze how to dynamically calculate a voting
threshold based on the value that maximizes the accuracy in the test set.

In order to validate our methodology, two public datasets are used. The results obtained
with the proposed method are compared to other approaches available in the literature.
As main contribution, we aim to achieve competitive recognition accuracy rates without
demanding high computational resources.

1.4 Research Questions
In this work, we aim to answer the following research questions on violence detection
highly focusing on crowd scenes:

• Are holistic techniques effective to detect violence, especially in crowd scenes?

• How does CENTRIST descriptor perform to detect violence?

• Which approaches using CENTRIST could improve its effectiveness?
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• Can the combination of CENTRIST and other descriptors improve violence detection?

1.5 Publication
The following paper [28] was derived from the development of this research work:

• F. Souza, H. Pedrini. Detection of Violent Events in Video Sequences based on
Census Transform Histogram. Conference on Graphics, Patterns and Images (XXX
SIBGRAPI). Niterói-RJ, Brazil, pp. 323-329, October 17-20, 2017.

1.6 Text Organization
The remainder of this dissertation is organized as follows. Section 2 briefly describes
some important concepts related to the topic under investigation. Section 3 presents the
methodology proposed in this work, describing the pre-processing, the feature extraction,
the feature reduction, as well as the classification process. Section 4 describes and analyzes
the experimental results using CENTRIST descriptor against other approaches. Among
them, HoG descriptor was used for direct comparison to other handcrafted descriptors.
Techniques based on deep learning, such as Inception-based models, were also used to
extract deep features used as feature vector for training. After some initial observations,
we explore variations and combinations to extract more discriminative features. Section 5
includes some final remarks and directions for future work.
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Chapter 2

Background

In this chapter, we describe some relevant concepts and works related to the topic under
investigation.

2.1 Violent Actions
Research in the action recognition field [15,16,17,18] has advanced significantly over the
last decades. Experiments performed in early works were conducted on datasets containing
simple actions performed by a single individual. Recent research focuses on more realistic
scenarios, in particular, for crowded scenes.

Two datasets, named Violence in Crowds [13] and Hockey Fights [14], have been
largely used by the community for evaluating violent event detection methods through the
exploration of different visual features, such as texture, color, shape and motion [10,13,29,
30].

2.2 Video Surveillance
In the context of video-surveillance systems, there is a great interest in providing some
automatic annotation of video archives. The solutions proposed to address this problem
inherit from the techniques first designed for the goal of image classification and content
retrieval. Local descriptors developed to describe image patches [31, 32], spatio-temporal
information [33,34] and motion clues [35] have been used to extract invariant features for
videos, such as spatio-temporal interest points (STIP) [36,37]. Some techniques address
temporal motion model involving trajectories [35,38,39,40,41,42,43,44].

To produce a single vector representing the video, the majority of the methods generate
and aggregate large sets of local descriptors that enable the use of discriminative classifiers.
Finally, to evaluate these local features, techniques derived from bag-of-words [45] are used
as codebook techniques. In our work, we address some of these techniques, as described in
Section 2.6.

Due to the combination of encoding techniques and the mentioned local descriptors,
simple human actions can be successfully identified in a controlled environment. Such
methods are also considered for the detection of actions in real movies and video clips.
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2.2.1 Motion Analysis
In addition to shape, motion is definitely one of the most reliable sources of information
for action recognition. However, it inevitably involves the background or camera motion
when dealing with uncontrolled and realistic situations. Despite the progress, the existing
descriptors suffer from incomplete handling of motion in the video sequence. Although some
attempts have been made to compensate camera motion in several ways [1,32,35,43,46,47]
to discriminate motion action caused by the camera, the task of compensating motion into
video description remains an open question.

Jain et al. [1] built an action recognition framework incorporating motion clues. They
separated dominant motion and the residual motion and tried to take into account
the impact of camera movement and independent actions. The 2D parametric motion
model describes the global (or dominant) motion between successive frames. Initially, the
dominant motion is estimated and employed to separate the dominant flow from the optical
flow. Then, kinematic features are introduced and used to obtain a more comprehensive
description of visual motion. Thus, dense trajectories are presented to compute local
descriptors as an action recognition approach. Figure 2.1 depicts the results before (left)
and after (right) the process to suppress the camera interference, compensating for the
camera motion to more appropriately evaluate events in the scene.

Figure 2.1: Optical flow field vectors (green vectors with red end points) before (left) and
after (right) dominant motion compensation. Most flow vectors due to camera motion are
suppressed after compensation. Source: Images extracted from Jain et al. [1].

.

Wang et al. [35] demonstrated that when local descriptors are computed over dense
trajectories, the performance improves considerably compared to when scene is calculate
over spatio-temporal features [34].

Most approaches to person identification via motion focus on the problems of recognizing
humans beings by observing gait through the movement of human legs and arms [48,49,
50,51]. Laptev et al. [52] assumed that similar patterns of motion contain similar events
with consistent motion in the image sequences. They demonstrated that local-temporal
image descriptors can be defined to carry important information from space-time events
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for subsequent recognition.

2.3 Image Descriptors
In this section, we provide an introduction and a brief explanation of the image descriptors
adopted in this research work.

2.3.1 Census Transform Histogram
As mentioned previously, the holistic descriptor known as CENTRIST (Census Transform
Histogram) [53,54] is employed to extract features from video frames due to their properties
for encoding structural information while suppressing detailed textural content. It models
the distribution of local structures and geometrical information through spatial descriptors.

CENTRIST compares the intensity value of the center pixel with its eight neighbors,
as shown in Equation 2.1. If the intensity of a neighbor pixel is lower than or equal to the
intensity of the center pixel, value 1 is assigned to its cell; otherwise, value 0 is assigned.
Then, all Census Transform values are concatenated and converted to an unsigned 8-bit
integer. CENTRIST descriptor can be compared to obtaining histograms from the LBP
descriptor [55] when using 8 neighbors with distance 1. In sequence, all values are combined
into a histogram vector with 256 bins that represents the appearance frequency of the
Census Transform. Finally this histogram is normalized in order to turn the comparison
independent from the image size.

32 64 96

32 64 96

32 32 96

⇒

1 1 0

1 0

1 1 0

⇒ (11010110)2 ⇒ (214)10 (2.1)

2.3.2 Histogram of Oriented Gradients
Histogram of Oriented Gradients [56], or simply HoG, is a well-known descriptor for
human detection in images, such as in video scenes [27]. This technique counts occurrences
of gradient orientation in parts of an image. Although the method is similar to other
descriptors, such as Edge Orientation Histograms [57], Scale-Invariant Feature Transform
(SIFT) [58], and Shape Contexts [59], it is computed on a dense grid of uniformly spaced
cells and uses overlapping local contrast normalization for improved accuracy.

The HoG descriptor has some advantages: for instance, it operates in local cells and is
invariant to geometric and photometric transformations, except for object orientation. Such
changes would appear only in larger spatial regions. To calculate a HoG descriptor [2, 56],
it is necessary to compute the horizontal and vertical gradients, since we need to generate
a histogram of gradients. This is easily achieved by filtering the image with the following
kernels [−1, 0, 1] and [−1, 0, 1]T , equivalent to applying the Sobel operator with kernel size
1. Subsequently, we can find the magnitude and direction of gradient using the following
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expression:

g =
√
g2

x + g2
y (2.2)

θ = arctan gy

gx

(2.3)

The x-gradient increases on vertical lines and the y-gradient increases on horizontal
lines. The magnitude of the gradient raises whenever there is a sharp change in intensity.
None of them fire when the region is smooth. The gradient image removes a lot of
non-essential information (for instance, the constant colored background), but outlines
highlighted.

At each pixel, the gradient has a magnitude and a direction. For color images, the
gradients of the three channels are evaluated (as shown in Figure 2.2). The magnitude of
the gradient in a pixel is the maximum of the magnitude of gradients of the three channels,
whereas the direction is the angle corresponding to the maximum gradient.

(a) (b) (c) (d)

Figure 2.2: (a) Source image. (b) gradient extraction: absolute value of x-gradient. (c)
gradient extraction: absolute value of y-gradient. (d) gradient extraction: magnitude of
the gradient. Source: Images modified from Histogram of Oriented Gradients [2].

To calculate the Histogram of Gradients in n× n cells, the image is divided into n× n
cells and a histogram of gradients is calculated for each n× n cell (Figure 2.3). One of
the important reasons for using a feature descriptor to represent an image patch is that
it provides a compact representation. For example, for 8×8 cells, an 8×8 image patch
contains 8×8×3=192 pixel values. The gradient of this patch contains 2 values (magnitude
and direction) per pixel, which adds up to 8×8×2=128 numbers.

In the end, these 128 numbers are represented using a 9-bin histogram, which can
be stored as an array of 9 numbers. Not only is the representation more compact, the
calculation of a histogram on a patch makes this representation more robust to noise.
Individual gradients may have noise, but a histogram over an 8×8 patch makes the
representation much less sensitive to noise [2].
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Figure 2.3: Left: source image. Center: RGB patch and gradients represented using arrows.
Right: gradients in the same patch represented as numbers. Source: Images extracted
from Histogram of Oriented Gradients [2].

In our work we make usage of the implementation provided by OpenCV library [60]
(version 2.4.13) using the following parameters: Number of orientation bins = 8, Size (in
pixels) of a cell = (16, 16), Number of cells in each block = (1, 1), Block normalization
method = ’L2-Hys’.

2.3.3 Gabor Filter
A Gabor Filter [61] is a linear filter used for texture analysis, which means that it basically
analyzes whether there is any specific frequency content in the image in specific directions
in a region located around the point or region under analysis. Gabor filters can serve as
proper band-pass filters for one-dimensional signals. A complex Gabor filter is defined as
the product of a Gaussian kernel multiplied by a complex sinusoid [62].

Frequency and orientation representations of Gabor filters are similar to those of
the human visual system and have been considered particularly suitable for texture
representation and discrimination. In the spatial domain, a 2D Gabor filter is a Gaussian
kernel function modulated by a sinusoidal plane wave. When a Gabor filter is applied to
an image, it provides the highest response at edges and at points where texture changes.

Gabor filters with different frequencies and orientations in different directions have
been used to localize and extract text-only regions from complex document images [63,64],
for facial expression recognition [65] and have also been widely used in pattern analysis
applications [66]. For instance, the Gabor space is very useful in image processing
applications such as optical character recognition, iris recognition (in the case of Daugman’s
algorithms [67]) and fingerprint recognition. For example, the effects of Gabor filter can
be observed in the second image of Figure 2.4.

The Gabor Filter, expressed in Equation 2.4, has several parameters that affect the
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(a) original image (b) after Gabor filtering

Figure 2.4: Images before and after applying Gabor filters. Source: Images extracted from
Gabor Filter: A practical overview [3].

source image in different aspects

g(x, y; k, σ, θ, λ, γ, ψ, ktype) = exp
(
−x

2 + γ2y′2

2σ2

)
exp

(
i

(
2π
(
x′

γ

)
+ ψ

))
(2.4)

where

1. k: is the size of the Gabor kernel. If k = a, b, we then have a Gabor kernel of size
a× b pixels. As with many other convolution kernels, k is preferably odd and the
kernel is a square (just for the sake of uniformity).

2. σ: is the standard deviation of the Gaussian function used in the Gabor filter and
controls the width of the Gaussian envelope used in the Gabor kernel.

3. θ: is the orientation of the normal to the parallel stripes of the Gabor function. This
is perhaps one of the most important parameters of the Gabor filter. It decides what
type of features the filter responds to. For instance, assigning theta a value of zero
means that the filter is responsive only to horizontal features. Therefore, to obtain
features at various angles in an image, we divide the interval between 0 and 180 into
16 equal parts and compute a Gabor kernel for each value of theta thus obtained. In
our implementation, we chose exactly 16 splits, because that was the default value
in the OpenCV [60] implementation. These parameter values could be modified to
suit specific purposes.

4. λ: is the wavelength of the sinusoidal factor in Equation 2.4.
5. γ: is the spatial aspect ratio. Gamma controls the ellipticity of the Gaussian. When
γ = 1, the Gaussian envelope is circular.

6. ψ: is the phase offset.
7. ktype: indicates the type and range of values that each pixel in the Gabor kernel can

hold.

In our work, we employ the implementation provided by OpenCV library 2.4.13 [60]
using the following parameters: σ = 4.0, θ = 16, k = 31, λ = 10, ψ = 0.5 , γ = 0 and
ktype=cv2.CV_32F.



24

2.3.4 Histogram of Optical Flow
Optical flow is the pattern of apparent motion of objects, surfaces, and edges in a visual
scene caused by the relative motion between an observer and a scene.

Sequences of ordered images, such as in Figure 2.5, allow the estimation of motion as
either instantaneous image velocities or discrete image displacements [4]. The optical flow
methods aim to calculate the motion between two video frames that are taken at times
t and t+ ∆t at every voxel position. These methods are called differential, as they are
based on local Taylor series approximations of the image signal; that is, they use partial
derivatives with respect to the spatial and temporal coordinates.

Figure 2.5: Ball moving in 5 consecutive frames. The arrow shows its displacement vector.
Source: Images extracted from Beauchemin et al. [4].

Fleet and Weiss [68] provided a tutorial introduction to gradient-based optical flow.
Barron et al. [69] provided a performance analysis of various optical flow techniques. It
emphasizes the accuracy and density of measurements.

For a 2D+ t dimensional case (3D or n-D cases are similar), a voxel at location (x, y, t)
with intensity I(x, y, t) will be moved by ∆x, ∆y and ∆t between the two image frames,
and the following brightness constancy constraint can be expressed as:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (2.5)

Assuming the movement is small, the image constraint at I(x, y, t) with Taylor series
can be developed to obtain:

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) + ∂I
∂x∆x+ ∂I

∂y∆y + ∂I
∂t∆t+ H.O.T. (2.6)

where ∆x,∆y are the x and y components of the velocity or optical flow of I(x, y, t) and
∂I
∂x ,

∂I
∂y and ∂I

∂t are the derivatives of the image at (x, y, t) in the corresponding directions,
and H.O.T. are high order terms. Ix, Iy and It can be written for the following derivatives.

For processing dense optical flow, the method developed by Lucas and Kanade [70] has
been widely used. By combining information from several nearby pixels, it is often possible
to resolve the inherent ambiguity of the optical flow equation. It is also less sensitive to
image noise than point-wise methods. On the other hand, since it is a purely local method,
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it cannot provide flow information within uniform regions of the image.

[
u(x, y, t)
v(x, y, t)

]
=
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−
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i
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 (2.7)

This method assumes that the displacement of the image contents between two nearby
instants (frames) is small and approximately constant in a neighborhood of the point
p under consideration. Thus, the optical flow equation can be assumed to hold for all
pixels within a window centered at p. Thus, Lucas-Kanade method [70] takes a 3×3 patch
around the point. All the 9 points have the same motion. We can find (fx, fy, ft) for these
9 points. The problem is now reduced to solve 9 equations with two unknown variables
that are over-determined. A better solution is obtained with least square fitting method.
In Equation 2.7, it is the final solution that is a two equation-two unknown problem.

After evaluating the optical flow, a histogram is calculated from the output matrix.
In this case, it is possible to use the magnitude (HOF), such as orientation (HOOF).
Histogram of optical flow orientation, proposed by Dalal et al. [71], is introduced as a
descriptor that encodes the moving information of each video frame.

The histogram of the optical flow has been used in action recognition [71, 72] and
abnormal event detection in video streams [35].

2.3.5 Background Subtraction using Mixture of Gaussians
The background subtraction method using Mixture of Gaussians (MoG) has been widely
used for foreground detection. KaewTraKulPong and Bowden [73] presented an adaptive
mixture model of background scene for real-time tracking of moving objects. They used
different equations in distinct phases and this allowed their system to learn faster and
more accurately, as well as adapting effectively to changing environments. In addition, a
shadow detection scheme was also introduced based on a computational color space that
uses their background model.

In our work, we use the implementation of BackgroundSubtractorMOG [74] provided
by OpenCV library version 2.4.13, using its default parameters: length of the history = 3,
number of Gaussian mixtures = 5, background ratio = 0.001, noise strength sigma = 0.

2.4 Otsu’s Method
Otsu’s method [75] is a non-parametric and unsupervised method of automatic threshold
selection for image segmentation. An optimal threshold is selected by the discriminant
criterion to maximize the separability of the resulting classes in gray levels. The procedure
is very simple, utilizing only the zero- and first-order cumulative moments of the gray-level
histogram [75].

Otsu’s method was cited by Sezgin et al. [76] to automatically perform the clustering-
based image thresholding, or reduction of a gray-level image to a binary image. The
algorithm assumes that the image contains two classes of pixels following a bi-modal his-
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togram (foreground pixels and background pixels), then calculates the optimum threshold
that separates the two classes so that their combined spread (intra-class variance) is mini-
mal, or equivalently (because the sum of pairwise squared distances is constant), so that
their inter-class variance is maximal [75]. Consequently, Otsu’s method is approximately a
one-dimensional, discrete analog of Fisher’s Discriminant Analysis [77]. Otsu’s method is
also directly related to the Jenks’s optimization method [78].

In Otsu’s method, an exhaustive search for the threshold that minimizes the intra-class
variance (the variance within the class), defined as a weighted sum of variances of the two
classes:

σ2
w(t) = ω0(t)σ2

0(t) + ω1(t)σ2
1(t) (2.8)

Weights ω0 and ω1 are the probabilities of the two classes separated by a threshold t t,
and σ2

0 and σ2
1 are variances of these two classes.

The class probability ω0,1(t) is computed from the L bins of the histogram:

ω0(t) =
t−1∑
i=0

p(i) ω1(t) =
L−1∑
i=t

p(i) (2.9)

Otsu showed that minimizing the intra-class variance is the same as maximizing
inter-class variance [75]:

σ2
b (t) = σ2 − σ2

w(t) = ω0(µ0 − µT )2 + ω1(µ1 − µT )2

= ω0(t)ω1(t) [µ0(t)− µ1(t)]2
(2.10)

which is expressed in terms of class probabilities ω0, ω1 and class means µ0, µ1 while the
class mean µ0,1,T (t)µ0,1,T (t) is:

µ0(t) =
t−1∑
i=0

i
p(i)
ω0

µ1(t) =
L−1∑
i=t

i
p(i)
ω1

µT =
L−1∑
i=0

ip(i) (2.11)

The following relations can be easily verified as:

ω0µ0 + ω1µ1 = µT ω0 + ω1 = 1 (2.12)

The class probabilities and class means can be computed iteratively. This idea yields
an effective algorithm. To compute the histogram and probabilities of each intensity level,
the next steps must be followed: (i) set up initial ωi(0) and µi(0); (ii) step through all
possible thresholds t = 1, . . ., maximum intensity; (iii) update ωi and µi; (iv) compute
σ2

b (t); (v) the desired threshold corresponds to the maximum σ2
b (t). [79]

2.5 Classifiers
In our work, we evaluate several classifiers to achieve high accuracy rates. In the following
subsections, we present some potential classification approaches to identify violent actions
in video scenes.



27

2.5.1 SVM Classifier
Support vector machines (SVMs) [80] are supervised learning models with associated
learning algorithms that analyze data used for classification and regression analysis. Given
a set of training examples, each marked as belonging to one or the other of two categories,
an SVM training algorithm builds a model that assigns new examples to one category or
the other, making it a non-probabilistic binary linear classifier.

An SVM model is a representation of the examples as points in a mapped space, so
that examples can be categorically divided by a clear gap that is as wide as possible. New
examples are then mapped into that same space and predicted to belong to a category
based on which side of the gap they fall [81].

In addition to performing linear classification, SVMs can efficiently perform a non-linear
classification using what is called the kernel trick [82], implicitly mapping their inputs into
high-dimensional feature spaces.

More formally, an SVM constructs a hyperplane or set of hyperplanes in a high (or
infinite)-dimensional space [80], which can be used for classification, regression and other
tasks. Intuitively, a good separation is achieved by the hyperplane that has the largest
distance to the nearest training-data point of any class (known as functional margin), since,
in general, the larger the margin, the lower the generalization error of the classifier [81].

In our work, we mainly use the implementation provided by Scikit-Learn library versions
0.17.1 and 0.18.2 [83]. During the experiments to refine our results, we apply grid search
with the following variations of γ = [10−2, 10−1, 1, 10, 102] and C = [1, 10, 50, 102] for RBF
kernel, and C = [1, 10, 50, 102] for linear kernel.

2.5.2 Stochastic Gradient Descent
Stochastic gradient descent (SGD) learning is a regularized linear model classifier [84].
The gradient of the loss is estimated for each sample at a time and the model is updated
along the way with a decreasing strength schedule (known as learning rate).

For best results using the default learning rate schedule, the data should have zero
mean and unit variance. This implementation works with data represented as dense or
sparse arrays of floating-point values for the features [84]. n-stochastic (or on-line) gradient
descent, the true gradient of Q(w) is approximated by a gradient in a single example:

w = w − η∇Qi(w) (2.13)

As the algorithm sweeps through the training set, it performs the update shown in
Equation 2.13 for each training example. Several steps can be done in the training set
until the algorithm converges. If this is done, the data can be shuffled for each pass to
avoid cycles. The model loss parameter can be controlled and typical implementations can
use an adaptive learning rate for the algorithm to converge. In most implementations, by
default, it uses a linear support vector machine (SVM) for discriminative learning, such
as the implementation sklearn.svm.SVC provided by Scikit-Learn library [83] and used
in our work. Other parameters used in this implementation are: default loss function =
’hinge’, penalty = l2, maximum number of passes over the training data = 1000, stopping
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criterion = 10e−3, epsilon = 10.

2.5.3 Random Forests
Random forests [85] are a combination of tree predictors so that each tree depends on the
values of a random vector sampled independently and with the same distribution for all
trees in the forest. The combination of the results makes the model more robust with
respect to noise.

A random forest classifier consists of a collection of tree-structured classifiers
h(x, k), k = 1, ..., where k are independent identically distributed random vectors and
each tree casts a unit vote for the most popular class in input x. The strength of the
individual trees in the forest and their correlation directly impacts the final error [85].

In our work, we use the sklearn.ensemble.RandomForestClassifier implementation
provided by Scikit-Learn library version 0.18.2 [83] using its default parameters: number
of decision trees = 10, maximum depth = 2, function to measure the quality of a split =
Entropy.

2.5.4 AdaBoost
The AdaBoost classifier, short for Adaptive Boosting, is a machine learning meta-algorithm
formulated by Schapire and Freund [86]. It can be used in conjunction with many other
types of learning algorithms to improve their performance. The output of the other learning
algorithms (known as weak learners) is combined into a weighted sum that represents the
final output of the boosted classifier.

AdaBoost is adaptive in the sense that subsequent weak learners that combines several
minor results in favor of a global stronger result. Moreover, in some problems, it can be
less susceptible to the overfitting problem than other learning algorithms. The individual
learners can be weak, but as long as the performance of each one is slightly better than
random guessing, the final model can be proven to converge to a strong learner [86].

In the training step, AdaBoost [86] refers to a specific training method of a boosted
classifier. A boost classifier is a classifier that takes the results from a weak learner as
input and returns a value indicating the class of the object. For example, in the two class
problem, the sign of the weak learner output identifies the predicted object class and the
absolute value gives the confidence in that classification [87]. Similarly, the T -th classifier
will be positive if the sample is believed to be in the positive class and negative otherwise.
Finally, it is used voting criteria to determine which is more likely class.

In our work, we use the sklearn.ensemble.AdaBoostClassifier implementation, named
AdaBoost SAMME [88], provided by Scikit-Learn library [83], as well as the following
parameters: base estimator = Decision Tree using max_depth=1, number of estimators =
50, learning rate = 1.

2.5.5 Extreme Gradient Boosting
The Extreme Gradient Boosting (XGB) [89] is an optimized distributed gradient boosting
system designed to be highly efficient, flexible and portable. It implements machine
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learning algorithms under the Gradient Boosting framework. XGB also provides a parallel
tree boosting. According to the author of the algorithm, what makes XGBoost a unique
boosting approach is that it uses a more regularized model formalization to control
over-fitting, which gives it better performance [89] and, consequently, helps to reduce
overfitting.

In our work, we use the implementation called XGBoost Python package, provided
by XGBoost library version 1.0.0 [90] using its default parameters: maximum depth = 3,
learning rate = 0.1, number of estimators = 100, objective function = ’binary:logistic’,
and booster function = ’gbtree’.

2.6 Codebook Techniques
In this section, we present some techniques used in this work to obtain a more representative
feature space from the data.

2.6.1 K-Means Classifier
K-means clustering [91] is a method of vector quantization [92], originally from signal
processing field, popular in cluster analysis in data mining. K-means clustering aims to
partition n observations into k clusters in which each observation belongs to the cluster
with the nearest mean, serving as a prototype of the cluster.

In our work, we use the sklearn.cluster.k_means implementation provided by Scikit-
Learn library version 0.16.2 [83] with the following parameters: method for initialization
= ’k-means++’ (selects initial cluster centers for K-means clustering in a smart way to
speed up convergence), maximum number of iterations = 100.

2.6.2 Gaussian Mixture Models
A Gaussian Mixture Model (GMM) [93] is a probabilistic model that assumes that all
data points are generated from a mixture of a finite number of Gaussian distributions
with unknown parameters. Mixture models can be thought of as generalizing K-means
clustering to incorporate information about the covariance structure of the data, as well
as the centers of the latent Gaussian [94].

To select the number of components in a classical Gaussian Mixture Model, the Bayesian
Information Criterion (BIC) [95] can be used efficiently. In theory, it gathers the number
of components only in the asymptotic regime (for instance, if much data is available and
assuming that the data was actually generated independent and identically distributed
from a mixture of Gaussian distribution) [94].

In our work, we use the sklearn.mixture.GMM implementation provided by Scikit-Learn
library version 0.16.2 [83] with the following parameters: covariance type = ’full’ (each
component has its own general covariance matrix, parameters updated in the initialization
process = ’wmc’ (combination of ’w’ for weights, ’m’ for means, and ’c’ for covariances),
convergence threshold = 1e−3, number of iterations = 200.
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2.6.3 Sparse Coding
The purpose of sparse coding [96] is to find a set of basis vectors φi such that we can
represent an input vector x as a linear combination of these basis vectors:

x =
k∑

i=1
aidi = aD (2.14)

It learns an over-complete set of basis vectors to represent input vectors x ∈ Rn (that
is, such that k > n). Thus the basis vectors are better able to capture structures and
patterns inherent in the input data. In the process, the following steps are performed:

• Learning:

– Given training data X.
– Learn dictionary D [97] and sparse code a [96].

• Encoding:

– Given test data x, dictionary D.
– Learn sparse code a [96].

To implement sparse coding technique [98], we use two methods provided by Scikit-Learn
library version 0.18.2 [83]. The former, sklearn.decomposition.MiniBatchDictionaryLearning
corresponds, to the implementation for “online dictionary learning for sparse coding” [97].
The latter, sklearn.decomposition.sparse_encode, is used to find a sparse array code [96]
regarding the dictionary defined in the previous step.

2.7 Related Work
In this section, we initially introduce some approaches related to anomaly detection, action
recognition, and abnormal crowd behavior. Then, we describe relevant results from the
literature achieved in the datasets on which our work is focused.

2.7.1 Anomaly Detection
Li et al. [5] proposed a detector based on the video representation that accounts for both
appearance and dynamics by using a set of mixture of dynamic textures (MDT) models.
These models implement a center surround discriminant saliency detector that produces
spatial saliency scores, and a model of normal behavior that is learned from training data
and produces temporal saliency scores.

Spatial and temporal anomaly maps are then defined at multiple spatial scales, by
considering the scores of these operators at progressively larger regions of support. The
multi-scale scores act as potentials of a conditional random field that guarantees global
consistency of the anomaly judgments [5].
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Figure 2.6: An MDT is learned per scene subregion, at training time. A temporal anomaly
map is produced by measuring the negative log probability of each video patch under the
MDT of the corresponding region. Source: Image extracted from Li et al. [5].

2.7.2 Abnormal Crowd Behavior
Cao et al. [99] employed a method of abnormal crowd behavior detection based on spatio-
temporal LBP-weighted social force model. This algorithm integrates the time domain
characteristics and regional information contained in the spectral characteristics of spatio-
temporal LBP sequence into the social force model, becoming the crowd model more
accurate.

Yin et al. [100] used the parameter of population density to make full use of the crowd
density characteristics and dynamic characteristics. It was proposed a novel method by
increasing the dimension of feature vector to increase the information content in order
to improve the recognition accuracy. Crowd dynamic and crowd density information are
combined to form a higher dimension of feature vectors, which is named as the crowd
behavior feature vector to improve the robustness of the algorithm. The authors utilize
Local Binary Pattern Co-Occurrence Matrix (LBPCM) for crowd density estimation to
ensure the excellent accuracy. At the same time, they adopts high accuracy optical flow
histograms of the orientation of interaction force to extract the crowd dynamic information
(HOIF). Finally, an SVM is adopted to detect the abnormal events using the crowd
behavior feature vector.

Sousa [101] proposed the CENTRIST3D descriptor, a spatio-temporal variation of the
CENTRIST descriptor. The method created a histogram of spatio-temporal features from
successive frames by extracting histograms of the volumetric Census Transform from a
spatial representation using a modified spatial pyramid matching algorithm. The approach
was evaluated on different datasets, focusing on detecting anomaly, violence and actions.
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2.7.3 Spatio-Temporal / Audio Features
A method for violent scene identification was proposed by Nam et al. [102], where a spatio-
temporal dynamic activity, an audio-visual flame detector, and a blood-detector were
approached as feature descriptors for violence detection. In their work, they attempted to
detect violence using audio and color matching criteria.

Giannakopoulos et al. [103] combined 7 audio features with 1 visual feature to detect
violent videos on video sharing sites. Bilinski et al. [104] proposed an extension of the
Improved Fisher Vectors (IFV) that allows representing a video using both local features
and their spatio-temporal positions. Using the sliding window approach to violence
detection, they reformulated the IFV and used the summed area table data structure to
speed up the method. They showed that the proposed improvements make the violence
recognition more accurate compared to the standard IFV, the IFV with spatio-temporal
grid, and other state-of-the-art methods and make the violence detection significantly
faster.

2.7.4 Spatio Temporal Interest Points (STIP)
Nievas et al. [14] applied two spatio-temporal descriptors, Space-Time Interest Points
(STIP) and Motion scale-invariant feature transform (MoSIFT) in combination with bag-
of-words to discriminate local image features and provide a more compact representation
for the patterns.

The authors estimated the spatio-temporal extents of the detected events and computed
their scale-invariant spatio-temporal descriptors. Using such descriptors, the method
classifies events and constructs video representation in terms of labeled space-time points.
In the context of human motion analysis, the method allows for detection of walking
people in scenes with occlusions and dynamic backgrounds [14].

2.7.5 Violent Flows Descriptor (ViF)
Hassner et al. [13] proposed a representation, named Violent Flows (ViF) descriptor, for
real-time crowd violence detection.

The authors described a novel approach to real-time detection of breaking violence in
crowded scenes. The method considers statistics of how flow-vector magnitudes change
over time. These statistics, collected for short frame sequences, are represented using the
Violent Flows descriptor. ViF descriptors are then classified as either violent or non-violent
using linear SVM. Magnitudes of the optical flow are used to model the frequencies of the
ViF words as bag-of-features [13].

2.7.6 Oriented Violent Flows Descriptor (OViF)
Gao et al. [29] described a feature descriptor, called Oriented VIolent Flows (OViF), which
explores information of motion magnitude changes in statistical motion orientations.

In their work, the combination of features using AdaBoost and linear SVM have
achieved high accuracy rate on the Violent Flows benchmark.
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2.7.7 Histogram of Tracklets (HOT)
Mousavi et al. [6] considered orientation and magnitude in a two-dimensional histogram
to encode the motion patterns expected in each cuboid. The method classifies frames as
normal and abnormal by using Latent Dirichlet Allocation (LDA) and Support Vector
Machines (SVM).

The term tracklets is used to name compact spatio-temporal representations of moving
rigid objects (Figure 2.7). They represent fragments of an entire trajectory of individual
point movement, generated by frame-wise association between point localization results
in the neighboring frames. They captured the evolution of patches that were originally
introduced to describe human motions for action recognition proposals. In their work, the
effectiveness of tracklets using HOT descriptors for abnormal behavior understanding is
explored in crowded scenarios [6].

Figure 2.7: Tracklets represent fragments of an entire trajectory of individual point
movement. Source: Images extracted from Mousavi et al. [6].

2.7.8 Substantial Derivative and Fluid Dynamics
Mohammadi et al. [7] presented a novel video descriptor based on an important concept in
fluid mechanics that captures the rate of change of a fluid property as it travels through a
velocity field.

Unlike standard approaches that only use temporal motion information, their descriptor
explores the spatio-temporal characteristic of substantial derivative (SD). In particular, the
spatial and temporal motion patterns are captured by convective and local accelerations,
respectively [7].

After estimating the convective and local field from the optical flow, the standard
bag-of-word procedure for each motion pattern separately is followed, and the two resulting
histograms are concatenated to form the final descriptor. Figure 2.8 illustrates the
derivative descriptor proposed by Mohammadi et al. [7], where the optical flow is extracted
from the input picture (left) and used to calculate the local convective forces (center).
Then, a standard bag-of-words method is executed separately for local and convective
forces. Finally, local and convective forces are combined for the selected patches region
and used as descriptors (right).

Wang et al. [8] proposed a modified algorithm based on the combination between a
streakline model based on fluid dynamics and an abnormal behavior detection method



34

Figure 2.8: Summary of the social force approach to abnormal behavior detection in crowd
videos. Source: Images extracted from Mohammadi et al. [7].

presented by Hassner et al. [13] in order to improve the recognition accuracy of abnormal
crowd behavior. In Figure 2.9, we give an example of how the streaklines behave. To
calculate them, it is assumed to have a particle position (xi(t), yi(i)) at time t. Then,
the particle position through point p at any time instant t is computed, as described in
Equation 2.15.

xp
i (t+ 1) = xp

i (t) + u(xp
i (t), yp

i (t), t) (2.15)
yp

i (t+ 1) = yp
i (t) + v(xp

i (t), yp
i (t), t) (2.16)

where u and v are optical flow field.

Figure 2.9: Streakline visualization. Source: Images extracted from Wang et al. [8].

2.7.9 Social Force (SF)
Mehran et al. [9] detected abnormal behavior in crowd videos using Social Force (SF)
model. For their proposal, a grid of particles is placed over the image and space-time
average of optical flow is used to evaluate the content.

By treating the moving particles as individuals, their interaction forces are estimated
using the social force model. Figure 2.10 illustrates the social force descriptor proposed by
Mehran et al. [9]. They incorporated a holistic approach to analyzing videos of crowds using
the particle advection. The interaction force is mapped onto the image plane to obtain the
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Force Flow for every pixel in each frame. They evaluated the change of interaction forces
over time to determine the ongoing behavior of the crowd. Spatio-temporal volumes of
Force Flow are randomly selected and used to model the normal behavior of the crowd in
a bag-of-word approach [9].

Figure 2.10: Summary of the social force approach to abnormal behavior detection in
crowd videos. Source: Images extracted from Mehran et al. [9].

2.7.10 Holistic Features
Marsden et al. [10] presented an approach to detect anomaly in crowd behavior that uses
a set of efficiently computed scene-level holistic features. Two features from the literature
are combined: crowd collectiveness and crowd conflict, with two developed crowd features:
mean motion speed and a new formulation of crowd density.

Figure 2.11 illustrates the descriptor proposed by Marsden et al. [10], where the
crowd density is estimated through the percentage of cells occupied in the scene. The
collectiveness is analyzed by tracklet positions and velocities found in the current frame to
build a weighted adjacency matrix. The edge weights in each matrix column are summed
and averaged. This mean value corresponds to the overall collectiveness level for the
current frame. Conflict is another holistic crowd property that can be defined as the
level of friction/interaction between neighboring points. In their work, it is calculated by
summing the velocity correlation between each pair of neighboring points tracked in a
given frame [10].

Figure 2.11: Crowd density calculation grid for a scene from the violent-flows dataset.
Each green square corresponds to an occupied grid cell (crowd density in this frame =
57%). Source: Images extracted from Marsden et al. [10].

In their work, two strategies were used for recognition:



36

• when only normal training data is available, a GMM for outlier detection is used.

• when both normal and abnormal training data are available, an SVM for binary
classification is used.

2.7.11 WLD-based Descriptors (WLD, MoWLD, IWLD)
Chen et al. [105] proposed a simple, but very powerful and robust local descriptor. It is
inspired by Weber’s Law, which is a psychological law and it consists of two components:
differential excitation and orientation.

It states that the change of a stimulus (such as sound, lighting) that will be just
noticeable is a constant ratio of the original stimulus. When the change is smaller than this
constant ratio of the original stimulus, a human being would recognize it as a background
noise rather than a valid signal.

Motivated by this point for a given pixel, the differential excitation component of the
proposed Weber Local Descriptor (WLD) is computed based on the ratio between the two
terms: one is the relative intensity differences of a current pixel against its neighbors.

WLD first computes the salient micro-patterns, such as differential excitation, and
then builds statistics on these salient patterns along with the gradient orientation of the
current point. Thus, Zhang et al. [106] used WLD approach to detect violence for video
surveillance scenes.

Zhang et al. [107] proposed a novel Motion Weber Local Descriptor (MoWLD) based
on the well-known WLD. They extended the WLD spatial descriptions by adding a
temporal component to the appearance descriptor, which implicitly captures local motion
information as well as low-level image appear information.

To eliminate redundant and irrelevant features, the non-parametric Kernel Density
Estimation (KDE) is employed on the MoWLD descriptor. In order to obtain more
discriminative features, it adopts the sparse coding and max pooling scheme to further
process the selected MoWLDs.

Zhang et al. [11] described the Improved WLD (IWLD) and moIWLD. Two major
improvements and a more effective algorithm for detecting violence from motion images
were proposed. The first, the improved WLD (IWLD) to better depict low-level image
appearance information and to extend the spatial IWLD descriptor by adding a temporal
component to capture local motion information and hence form the MoIWLD.

The second one proposed a modified sparse-representation-based classification (SRC)
model to both control the reconstruction error of coding coefficients and minimize the
classification error [11]. Based on the proposed sparse model, a class-specific dictionary
containing dictionary is learned by using class labels of training samples. With this
dictionary, besides representation residual also the representation coefficients become
discriminative. A classification scheme integrating the modified sparse model is developed
to explore such discriminative information:

• it controls the reconstruction error of coding coefficients and minimizes the classifi-
cation error.
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• based on the proposed sparse model, a class-specific dictionary containing dictionary
atoms corresponding to the class labels is learned by using class labels of training
samples.

• with this learned dictionary, not only the representation residual, but also the
representation coefficients become discriminative.

In Figure 2.12, it is shown how the method proposed by Zhang et al. [11] performs the
preprocessing step before extracting features in order to build the sparse representation
and to produce the discriminative model that classify video scene.

Figure 2.12: Method proposed by Zhang et al. [11].

2.7.12 Temporal Robust Features
Moreira et al. [108] explored a content description method for violence detection based
on temporal robust features that grasp video sequences, automatically classifying violent
videos. The method also generated promising results for fast and effective classification of
other recognition tasks (for instance, pornography and other sensitive content).

When compared to more complex approaches to violence detection, their method shows
similar classification quality, while being several times more efficient in terms of run-time
and memory footprint. Their work employed a fast end-to-end Bag-of-Visual-Words
(BoVW)-based framework for violence classification. They adapted Temporal Robust
Features (TRoF) [109], a fast spatio-temporal interest point detector and descriptor, which
is customized for sensitive content detection, such as violence [108].

2.7.13 Violence Detection in Surveillance Video using Low-
Level Features

Zhou et al. [110] extracted low-level features from the motion regions after segmenting the
motion regions. As, in general, it is very common that the torsos or legs in action videos
are not visible due to the occlusion among people, the standard Histogram of Oriented
Gradient (HoG) descriptor [56] cannot be considered effective for human detection. Aiming
at this task, their work was proposed to represent the actions in videos using the features
of Local Histogram of Oriented Gradient (LHoG).
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To make full use of the temporal information, another descriptor (LHOF) is proposed
to capture dynamic changes. LHoG and LHOF could independently describe parts of
the person and extract meaningful information from partially occluded persons, which is
suitable for violence detection. LHoG features are obtained from RGB images and LHOF
features are captured from the motion magnitude images. Information from different
modalities is complementary and expresses different characteristics of an action. An LHoG
(or LHOF) descriptor is extracted from a “block”, composed of “cells”. The number and
size of motion regions are different for different video clips, leading to different-length
features.

Under the framework of BoW model, the extracted low-level features are represented
as a fixed-length vector using a histogram which reflects the frequency of different words.
The visual words in the BoW model are typically defined as the cluster centers which are
obtained using K-means clustering method over the low-level features (LHoG or LHOF).
The number of visual words could be set according to the practical application requirement.
Intuitively, BoW approach collects the statistic information of the feature distributions.
Thereon, the vectors with the same length could be further processed using a standard
classifier.

Zhou et al. [110] evaluated that previous methods process features with BoW framework
after fusing the features. For instance, MoWLD [107] is a long vector by directly combining
HoG and HOF, followed by the BoW method. However, HoG and HOF features may not
share the same class space, which will reduce the discriminative ability.

Unlike the previous early-fusion strategy, the authors applied a late-fusion for the
extracted features. They argued that the class space of LHoG features is different from
that of LHOF features, and based on these arguments, they used these features that are
processed using the BoW model, resulting in two types of vectors with the same length.
Then, the two types of vectors are combined before feeding into the classifier. Experimental
results demonstrated that the late-fusion method outperformed the early-fusion method
for the low-level features. In the classification stage, an SVM with a Radial Basis Function
(RBF) kernel is used as the classifier to distinguish the violent video sequences.

Lohithashva et al. [111] proposed method that uses Local Binary Pattern (LBP) and
GLCM (Gray Level Co-occurrence Matrix) as feature descriptors for the detection of a
violent event. Prominent features are used with five different supervised classifiers and the
results are fused when evaluating Hockey Fights and Violent in Crowds datasets. GLCM
is a texture-based feature descriptor that can be used to extract spatial variation from the
matrix. The GLCM texture features [112] provide 14 texture features measured from the
probability matrix to extract the characteristics from the texture statistics of the frames.
In their work, they used only four statistical properties: contrast, correlation, energy and
homogeneity. Each element (x, y) in GLCM specifies the number of times that the pixel
with value x occurred horizontally next to a pixel with value y. GLCM metrics were
used to allow rotational invariance through a set of rotational parameter. Generally, 8
orientations separated π/4 radian aside, where N indicates the intensity value present in
the frame. The properties (energy, correlation, contrast and homogeneity) are calculated
using the normalized GLCM. The contrast property is used to measure local variations in
GLCM [111].
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2.7.14 Deep Learning Networks
Over the last decade, several approaches based on deep learning have been considerably
increased in various research fields and yielding substantial gains in several benchmarks.
The history of convolutional neural network design started with LeNet-style models [113],
which were simple stacks of convolutions for feature extraction and max-pooling operations
for spatial sub-sampling.

Since ImageNet competition [114], neural networks such AlexNet [115] have been
successfully applied to a wide variety of computer vision tasks. Deep learning techniques
have overcome traditional approaches in various visual detection and classification prob-
lems: object-detection [116], segmentation [117], human pose estimation [118,119], video
classification [120], object tracking [121], and super-resolution [122]. In the following
paragraphs, we will provide a brief description of the techniques involved in the evolution
of deep learning techniques.

The Inception deep convolutional architecture was introduced as GoogLeNet by Szegedy
et al. [123], here referred to as Inception-v1. The idea behind the Inception module is
to make this process easier and more efficient by explicitly factoring it into a series
of operations that would independently analyze cross-channel correlations and spatial
correlations [12]. More precisely, the typical Inception module first examines the cross-
channel correlations via a set of 1×1 convolutions, mapping the input data into 3 or
4 separate spaces that are smaller than the original input space, and then maps all
correlations in these smaller 3D spaces, through regular 3×3 or 5×5 convolutions [12].

Subsequently, the Inception architecture was refined in several ways. For instance,
Inception-v2 introduced batch normalization [124], Inception-v3 received additional fac-
torization ideas [125], and Inception-v4 used cheaper Inception blocks than the original
Inception [126].

Each Inception block is followed by filter-expansion layer (1×1) convolution without
activation) that is used for scaling up the dimensionality of the filter bank before the
residual addition to match the depth of the input. This is necessary to compensate for the
dimensionality reduction induced by the Inception block. Szegedy and Ioffef et al. [126]
raised the question: “Are there any benefits to combining Inception [125] architectures
with residual connections [127]”. Thus, through Inception-v4, they provided empirical
evidence that training with residual connections significantly speeds up training of the
Inception networks. For ImageNet classification challenge, it achieved 3.08% for top-5
error in the test set.

In the work by Chollet al. [12], Xception modeled based on the fundamental building
block of Inception-style models, which is the Inception module (shown in Figure 2.13).
It considers a simplified version of an Inception module that uses only one convolution
size (for instance, 3×3) and does not include an average pooling tower. After having
reformulated it as a large 1×1 convolution followed by spatial convolutions that would
operate on non-overlapping segments of the output channels (shown in Figure 2.14), a
stronger hypothesis is assumed: cross-channel correlations and spatial correlations could
be mapped completely separately [12].

An “extreme” version of an Inception module (shown in Figure 2.15) is based on
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Figure 2.13: A canonical Inception module (Inception-v3). Source: Images extracted from
Chollet et al. [12].

Figure 2.14: A strictly equivalent reformulation of the simplified Inception module. Source:
Image extracted from Chollet et al. [12].

this stronger hypothesis, which would first use a 1×1 convolution to map cross-channel
correlations and would then separately map the spatial correlations of every output channel.
In short, the Xception architecture is a linear stack of depthwise separable convolution
layers with residual connections. This makes the architecture very easy to define and
modify, unlike architectures such as Inception-v2 or Inception-v3, which are much more
complex to define [12].

Compared to Inception-v3, Xception shows little gain in classification performance
on the ImageNet dataset and large gains on the JFT dataset. Figure 2.16 illustrates the
results obtained by Chollet al. [12] that demonstrate the difference in performance between
Xception and Inception-v3 using weights based on training with ImageNet dataset.

Although most of the deep learning approaches previously mentioned have gradually
outperformed the benchmarks for several datasets, such as ImageNet, it is possible to
observe that the results are highly dependent on the amount of data available for training.
Furthermore, although the increase in model size and computational cost tends to translate
into immediate quality gains for most tasks (as long as enough labeled data is provided
for training), there is still a lack of data needed to train this model to achieve good results
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Figure 2.15: An “extreme” version of their Inception module, with one spatial convolution
per output channel of the 1×1 convolution. Source: Image extracted from Chollet et
al. [12].

Figure 2.16: Accuracy comparison between Xception and Inception V3 on the ImageNet
dataset, as the gradient descent steps evolve. Source: Image extracted from the work
described by Chollet et al. [12].

in real-world scenarios. Therefore, computational efficiency and low parameter count are
still essential factors for various use cases, such as mobile vision and big-data scenarios.

2.7.15 Deep Neural Network for Violent/Non-Violent Video
Classification

Mondal et at. [128] proposed the construction of a frame-level descriptor by combining
motion and shape features extracted from each frame and using a deep neural network
architecture trained for video classification in violent and non-violent categories based on
their video-level descriptor. They were inspired by the Weber Local Descriptor (WLD) [107]
in relation to differential excitation and orientation, and so they restricted themselves to
some salient interest points selected by Shi-Tomasi’s corner point detection algorithm [129],
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which finds the most appropriate interest points for tracking. Thus they reduced processing
time and also unnecessary computation for most pixels in the frame belonging to the static
background [128].

The optical flow for interest points is determined based on the Lucas-Kanade algo-
rithm [70]. Then, they estimated the movement of interest points and extracted the
magnitude and orientation of the movement. The frame-level descriptors of training videos
are clustered into two groups using K-means clustering. The cluster for which majority
descriptor corresponds to frames of violent sequences is the reference cluster for violent
videos and the other one is the reference for non-violent videos. Vectors representing the
center of the corresponding clusters are taken as the prototype vectors for violent and
non-violent frame.

For classification, they proposed a deep neural network architecture with four fully
connected hidden layers with 20, 15, 10 and 5 nodes and the input layer has the same number
of nodes as the dimension of video-level descriptor. The neural network is trained using
backpropagation algorithm [130] and uses stochastic gradient-based optimizer proposed by
Kingma et al. [131].

2.7.16 Temporal Segment Networks for Action Recognition in
Videos

Want et al. [132] presented a general and flexible video-level framework for learning
action models in videos. This method, called temporal segment network (TSN), aims to
model long-range temporal structures with a new segment-based sampling and aggregation
module. This unique design allows TSN to efficiently learn action models using all action
videos.

The authors adapted the model for action recognition in both trimmed and untrimmed
videos with simple average pooling and multi-scale temporal window integration, respec-
tively. They also studied a number of good practices that instantiate a temporal segment
network framework given limited training samples.

Their approach obtained the state-the-of-art performance on four challenging ac-
tion recognition benchmarks: HMDB51 [133](71.0%), UCF101 [134](94.9%), THU-
MOS14 [135](80.1%), and ActivityNet v1.2 [133](89.6%). Using the proposed RGB
difference for motion models, their method has achieved competitive accuracy on
UCF101 [134](91.0%) while running at 340 FPS. Furthermore, based on the tempo-
ral segment networks, it won the video classification track at the ActivityNet challenge in
2016 among 24 teams, which demonstrates the effectiveness of temporal segment network
and the proposed good practices.

2.7.17 CNN + LSTM
To recognize a video as violent or non-violent, the network proposed by Ammar et al. [136]
has the ability to encode localized spatial attributes and how they change over time. CNNs
are capable of generating discriminating spatial features, however, for temporal encoding
using Long Short Term Memory (LSTM), existing methods use the features extracted
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from the fully connected layers. The output of the fully-connected layers represents the
global descriptor of the entire image. Since existing methods do not encode the located
spatial changes, they used methods that involve adding more data streams, such as optical
flow images, resulting in increased computational complexity [136].

In the context of their work, the use of LSTM becomes relevant since it encodes the
convolutional features of the CNN. In addition, the convolutional gates in the LSTM are
trained to encode temporal changes from local regions. This allows the entire network to
encode localized spatio-temporal characteristics.

Convolutional neural networks process information as separate data points. However,
other types, such as Recurrent Neural Networks (RNN [137]) or LSTM networks [138],
also have promising results by considering previous steps over time.

The main attraction of RNNs is to take in account a step back in time, in combination
with the current input to determine how they respond to new data. Sequential information
is preserved in the hidden state of the recurring network, which spans many steps as it
falls forward, affecting each new input processing. This architecture can be very useful,
as it is a sequence of events that happen over time. By taking advantage of sequential
information, it can perform tasks that are impossible for feed-forward networks [136].

An LSTM network, instead of just using the information passed by one step in the
past, learns through many steps of time, allowing them to link causes and effects that
occur over an extended period of time [136]. This type of network can effectively use the
temporal information of the video as input to interpret events that depend on a sequence
of actions. In the case of violence detection, this type of neural network points to a hidden
transitional state between a non-violent and a violent state, and the identification of this
hidden state can be valuable information to predict whether there will be a violent scene
before the violence action actually occurs.

Hanson et al. [139] proposed a Bidirectional Convolutional LSTM architecture, called
Spatiotemporal Encoder, which includes bidirectional temporal encoding and elementwise
max pooling. This approach takes advantage of temporal knowledge to decide whether
the current frame is still in the previous state or moves to a different one.

2.7.18 Two-Stream CNN and 3D-CNN
Perez et al. [140] proposed a pipeline, in which they evaluate the impact of different feature
extractors, using two-stream CNN, 3D CNN and a local interest point descriptor, as well as
different classifiers, such as end-to-end CNN, LSTM and SVM. Their results confirmed how
challenging the problem is and highlighted the importance of explicit motion information
to improve performance. They tackled this problem by first proposing the CCTV-Fights
dataset [140], a challenging dataset containing 1,000 videos of real fights, with more than 8
hours of annotated CCTV footage that contain a diverse range of characteristics: different
nature, duration of the videos, number of videos, purpose, recording source, staged or not,
etc. The first step of the pipeline of their model, the feature extraction, consists of using
the RGB information from the frames to extract meaningful features for the task at hand.
These features are meaningful if they are discriminative enough for a decision-making
method to correctly classify that feature as coming from a violent action or not. Depending
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on how these features are generated, they can be used to describe a single frame or a small
snippet of the video. The feature extraction for the two-stream based solution [141] is
performed by using a 2D-CNN architecture to generate two different models, one for the
spatial stream of the videos (RGB data of Frames) and another for the temporal stream
(Stack of Optical Flows). The authors aggregated this information at the end by average
pooling the scores or by concatenating the features from the last fully-connected layer
before feeding it to a classifier.

The 3D-CNN solution [142] consists of a convolutional neural network architecture
that enables convolutional on three dimensions. This approach can be explored not only
for the spatial correlation in a single frame, but also for the temporal correlation between
a short sequence of frames. Instead of using optical flow information, it is applied only
over a stack of sequential frames. For the local interest-points, the method used the local
features detector and descriptor named Temporal Robust Features (TRoF) based on the
approached proposed by Moreira et al. [108], a work related to fight localization [140].
The next step of their approach, frame/snippet prediction, denotes the moment when
the classifier will determine whether the feature comes from a positive case (fight) or a
negative case, according to what it has learned before with the training and split of the
data. The predictions, represented by a confidence score, are produced in this step at frame
or snippet level [140]. In the last step, predictions from the previous step are aggregated
to produce well-defined temporal segments for the predicted fight instances. Here, some
higher-level intuition about the continuity of an event can be used to smooth the punctual
predictions from the frames/snippets and achieve more realistic segments than directly
using the scores independently. The authors addressed a straightforward smoothing and
aggregating strategy. Smoothing is a traditional mean filter applied to reduce the impact
of noisy prediction scores by using the score information from the neighboring snippets.
After smoothing the scores, continuous predictions that satisfy a pre-determined score
threshold are merged to create the final segments [140].

Ullah et al. [143] proposed a triple-staged end-to-end deep learning violence detection
framework. First, people are detected in the surveillance video stream using a lightweight
CNN model to reduce and overcome the massive processing of useless frames. Then, a
sequence of 16 frames with detected people is passed to 3D-CNN to extract spatio-temporal
features and feed the softmax classifier. Their method outperformed most state-of-the-art
methods in different datasets.

Unlike most existing violent video detection models ignore the fact that the audio-visual
data in the same violent video may correspond semantically, Gu et al. [144] proposed
a novel violent video detection model based on the semantic correspondence between
audio-visual data of the same video. Based on the fact that deep neural networks are
used to extract features from three different modalities (appearance, motion and audio),
their work fused these multimodal features through shared subspace learning. Semantic
correspondence is used to guide this process via multitask learning and semantic embedding
learning. To assess the effectiveness of their model, they conducted experiments on several
public datasets and a self-built dataset, named Violence Correspondence Detection, and
achieved competitive results [144].
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2.7.19 Literature Results
Hockey Fights dataset [14] was created specifically from National Hockey League matches
and contains different view points of person-to-person violence. The benchmark contains
1000 movies and its content is approximately two hours long. Table 2.1 presents some
results for the Hockey Fights dataset using methods available in the literature.

Table 2.1: Literature Results for the Hockey Fights dataset [14].
Method Year Accuracy (%)
SRC [145] 2009 94.40±1.07
HoG+BoW [14] 2011 91.00
HOF+BoW [14] 2011 88.60
MoSIFT+BoW [14] 2011 90.90
MoWLD+BoW [107] 2015 91.90
MoWLD+SparseCoding [107] 2015 93.70±1.68
MoWLD+KDE+SparseCoding [107] 2015 94.20±1.91
MoIWLD+BoW [11] 2015 91.80±1.03
RVD [106] 2015 92.10±1.01
AMDN [146] 2015 89.70±1.13
moIWLD+ZhangSRC [11] 2016 96.80±1.04
STIFV [104] 2016 93.40
Three streams+LSTM [147] 2016 93.90
Mondal et al. [128] 2017 94.92±1.59
ConvLSTM [148] 2017 97.10±0.55
FightNet [149] 2017 97.01
LHoG+LHOF+Bow [110] 2018 95.10±1.15
BiConvLSTM SpatialTemporalEnconder [139] 2018 97.90±0.37
BiConvLSTM SpatialEnconder [139] 2018 98.10±0.58
CNN+LSTM (Darknet19) [136] 2019 98.00±0.55
Ullah et al. [143] 2019 96.00
LBP+GLCM [111] 2020 91.51±1.51

Violence in Crowds dataset [13] is a real-world, video footage of crowd violence, along
with standard benchmark protocols designed to test both violent/non-violent classification
and violence outbreak detections. The dataset contains 246 videos. All videos were
downloaded from YouTube. The shortest clip duration is 1.04 seconds, the longest clip is
6.52 seconds, and the average length of a video clip is 3.60 seconds. Table 2.2 presents
some results for the Violence in Crowds dataset using different methods covered in the
literature.
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Table 2.2: Literature results for the Violence in Crowds dataset [13].
Method Year Accuracy (%)
HoG [33] 2008 57.43±0.37
HOF [33] 2008 58.53±0.32
HNF [33] 2008 56.52±0.33
LTP [150] 2009 61.53±0.17
SRC [145] 2009 89.38±0.13
MoSIFT+BoW [14] 2011 57.09±0.37
ViF (SVM) [13] 2012 81.30±0.21
Fluid Mechanic [8] 2014 92.30
AMDN [146] 2015 84.72±0.17
SD [7] 2015 85.43±0.21
HOT [6] 2015 82.30
RVD [106] 2015 82.79±0.19
MoWLD+BoW [107] 2015 82.56±0.19
MoWLD+SparseCoding [107] 2015 86.39±0.15
MoWLD+KDE+SparseCoding [107] 2015 89.78±0.13
Holistic Features (SVM) [10] 2016 85.53±0.17
Holistic Features (GMM) [10] 2016 65.00±0.15
OViF (SVM) [29] 2016 76.80±3.90
OViF (AdaBoost) [29] 2016 74.00±4.90
ViF+OViF (SVM) [29] 2016 86.00±1.41
ViF+OViF (AdaBoost+SVM) [29] 2016 88.00±2.45
ViF+OViF (AdaBoost) [29] 2016 82.40±3.58
MoIWLD+BOW [11] 2016 88.78±0.19
moIWLD+ZhangSRC [11] 2016 93.19±0.12
STIFV [104] 2016 96.40
CENTRIST3D [101] 2017 78.00
Mondal et al. [128] 2017 94.92±1.59
ConvLSTM [148] 2017 94.57±2.34
LHOG+LHOF+BoW [110] 2018 94.31±1.65
BiConvLSTM [139] 2018 94.54±4.13
BiConvLSTM SpatialTemporalEnconder [139] 2018 96.32±1.52
BiConvLSTM SpatialEnconder [139] 2018 93.87±2.58
CNN+LSTM (Darknet19) [136] 2019 92.19±0.12
Ullah et al. [143] 2019 98.00
3D-ResNet [151] 2020 94.54±4.13
LBP+GLCM [111] 2020 89.06±3.32
Semantic Correspondence [144] 2020 97.69
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Chapter 3

Proposed Method

In this chapter, we describe the proposed methodologies we approached to detect violent
events. Initially, our work focused on evaluating holistic approaches to discriminating
violence. To do so, we start by evaluating CENTRIST and the combination between this
descriptor and Histogram of Gradients (HoG) [27] through two well-known datasets used
to detect crowd violence: Violence in Crowds and Hockey Fights.

First, we assess how the capture frame rate influences performance. Then, we evaluate
which preprocessing methods can make CENTRIST more accurate. Following the influence
of using three different scales (80%, 100%, 120%) to extract features, they were also
compared. In addition, we also experiment deep features generated through pre-trained
deep learning models for comparison purposes. Then, we assess approaches based on code
generation to convert handcrafted descriptors into a more representative feature descriptor.
For this perspective, we address feature vectors obtained using sparse coding and evaluate
distances to centroids obtained from K-means clusters or GMM Gaussians. Finally, we
explore the generation of descriptors using dense optical flow and combine them with
CENTRIST.

After achieving the CENTRIST limit using holistic approaches, we evaluated other
methods. In order to assess smaller parts of the scene, the sliding window was used
with different block sizes to evaluate the detection performance using the same types of
descriptors. Then, we refine our method using optical flow to discriminate less relevant
blocks, comparing their local optical flow level with the global optical flow.

The main stages of our method are illustrated in Figure 3.1, which are detailed in the
following sections. This pipeline was used to evaluate the proposed CENTRIST-based
descriptors, as well as other handcrafted descriptors.

Figure 3.1: Main stages of the proposed methodology.
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3.1 Preprocessing
In the first step of our pipeline, we read the videos and apply the preprocessing filters.
For the video reading, we initially identify the frame rate at which each video footage
was recorded. Then, the reading is performed through two approaches: reading all frames
or using a fixed frame rate, which depends on the approaches adopted in the feature
extraction and training steps.

Depending on the type of video descriptor, the image is converted to a specific image
color format. For CENTRIST and other handcrafted descriptors used in our work,
we convert the image into gray-scale color space. Each individual video frame is then
preprocessed to make it more suitable for further processing. For methods based on deep
features, presented in Section 3.3.2, we pass RGB channels as input to the deep models
used to extract features.

Different preprocessing techniques are applied to evaluate their influence in the clas-
sification process, including the following: (i) histogram equalization to distribute pixel
intensities to enlarge the contrast range in order to reduce illumination interference, (ii)
Gaussian blur filter or Gabor filter are applied to reduce noise effect, and (iii) a background
subtraction using Mixture of Gaussians (MoG) [73] in larger order to avoid objects not
related to the people in the scene. Additionally, video frames are also evaluated at multiple
scales, in which their dimensions are reduced or increased by a constant factor.

3.2 Feature Extraction
To evaluate the video recording, we consider not using all frames due to the relative
similarity between consecutive frames. Thus, in our research, we compare the processing
of all frames and the skipping of some intermediate frames, described as follows: (i) to
skipping a fixed interval between the frames to be captured (10 or 20 frames), and (ii)
specifying a frame processing rate (for instance, 1.0Hz or 2.0Hz), considering that the
video recording frame rate is relevant.

In our work, we employ the descriptors to extract feature vectors from the video frames
in two different strategies: (i) the descriptor is used to evaluate the entire content of each
frame at a specific frame capture rate, as shown in Figure 3.2, and (ii) a grid with specific
dimension is used to split each frame into blocks. A sliding window of specific size (64×64,
72×72, 96×96 and 128×128 pixels) is used to individually evaluate frames in stages at half
the specified block size, as shown in Figure 3.3, in order to evaluate overlapping regions
and avoid processing cut regions from actors that are set at the borders of the block.

Figure 3.2: The figure depicts how the entire frame content is processed at specific frame
rates.
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Figure 3.3: First four iterations for the sliding window using step equal to half of the
block size (N). The first three steps move to right to the end of the row, then the sliding
window is moved by N/2 pixels below the beginning of the next row.

In addition to the methods mentioned previously, we also explored a preprocessing
approach using multi-resolution (Figure 3.4 by extracting features from the current frame
with different resolutions (80%, 100% and 120%) [152].

Figure 3.4: Strategy for constructing the feature descriptor using frames at multiple
resolutions.

Additionally, two different approaches are assessed to refine the prediction step in order
to consider a video as violent or not: (i) the classification is performed frame-by-frame
and the prediction uses 50% as a decision threshold and (ii) looking for a threshold that
discriminates more efficiently violence we calculate its value according to the value that
maximizes accuracy in the training dataset.

3.3 Block Selection Criteria Based on Optical Flow
Evaluation

Regarding the experiments that will shown in Section 4.7, we identify that the camera
motion can be considered the major challenge for finding the regions of interest. After
observing several pictures, it is possible to determine that most of the scene movement
corresponds to camera motion. To deal with this problem, methods based on optical flow
have been employed as a likely tool for selecting regions of interest in which the actors are
performing the action in the scene.

To evaluate each region, we consider using two approaches based on the optical flow:
(i) to check if the block presents some optical flow value greater than the global threshold
value and (ii) to calculate a local measure value and compare it to a threshold obtained
from the global measure value.

Three measures are used to analyze the optical flow of the entire frame and at patches
of this frame in order to identify in which regions the motion is more relevant. The
notation (Avg/Median/Otsu) will be used here and in Section 4.10.1 to identify which
filtering approach was used in each experiment.
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1. Avg: Average of optical flow.
2. Median: Median of optical flow.
3. Otsu: Otsu’s method.

In our work we assess three approaches to evaluate the local optical flow in order to
determine if the blocks can be considered relevant at the scene:

1. select blocks whose optical flow mean value (Avg) is greater than the threshold
obtained through one of statistic measures (Avg/Median/Otsu).

2. select blocks whose optical flow median value is greater (Median) than the threshold
obtained through one of the statistic measures (Avg/Median/Otsu).

3. selected blocks that contain at least one pixel (Any) whose optical flow value
is greater than the threshold obtained through one of the statistic measures
(Avg/Median/Otsu).

For instance, Figure 3.5 illustrates the dense optical flow for consecutive frames using
2Hz frame rate. Initially, an image from dense optical flow is obtained using OpenCV
library to combine the orientation and magnitude of the optical flow.

To do so, the Farneback’s method is used to obtain the orientation and and magnitude
and the combination is done by a cartographic to polar operation followed by a conversion
from HSV to BGR [153]. Then, the global threshold is calculated through Otsu’s method
and points whose value is below the threshold are removed. Finally, when moving the
sliding window, we compare if there is any point in the block whose value is greater than
the threshold. Thus, only blocks whose relative motion is greater than the global scene
motion are evaluated.

3.3.1 Census Transform Histogram
As described in Section 2.3.1, Census Transform (CT) is a non-parametric local transform
originally designed to match local patches [26, 54]. Similar to other non-parametric local
transforms, which are based on intensity comparisons (for instance, ordinal measures [26,
154]), Census Transform is robust to illumination changes and gamma variation.

As mentioned by Wu and Rehg et al. [26], histogram of CT values for an image or
an image region can be easily computed. We used the CENTRIST (Census Transform
Histogram) as our visual descriptor with length 256. CENTRIST can be computed very
efficiently. It involves only 16 operations to compute the CT value for a center pixel (8
comparisons and 8 additional operations to set bits to 0 or 1). The cost of computing
CENTRIST is linear in the number of pixels of the region under consideration. Thus, the
histogram is generated through the values computed for each pixel of the frame. Figure 3.6
illustrates a sample of the CENTRIST histogram processed over a violence scene region.

To evaluate images of different sizes or resolutions, a normalization is applied to make
the descriptor independent of the image size. After generating the vector histogram, each
term is divided by the number of elements presented in the histogram. Therefore, the
resulting histogram will contain elements with values in the range between 0 and 100%.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: Images that illustrate each step of the process to filter the blocks using optical
flow. In this example, images are extracted for a specific 2-frame sequence using frame
rate of 2Hz to evaluate the dense optical flow. (a) image under evaluation; (b) grid with
the blocks to be evaluated by the sliding window; (c) heat map for the dense optical flow
obtained by combining the optical flow’s magnitude and orientation; (d) pixels whose
intensity is superior than the threshold obtained through the Otsu’s method; (e) image
obtained from the values of the optical flow orientation; (f) image obtained from the values
of the optical flow magnitude; (g) blocks selected by evaluating that the average of the
magnitude of the block is greater than the value obtained by the Otsu’s method; (h)
regions selected after block filtering.

Figure 3.7 shows how any variation in orientation or reflection impacts the distribution
in the histogram over the CENTRIST descriptor. Depending on the type of image
structure, the histogram will concentrate most of the values in a specific region. Thus, it is
possible to observe that, although CENTRIST can be considered invariant to illumination,
it is important to guarantee the dataset is diverse enough to turn the model robust to
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Figure 3.6: CENTRIST extracted over a region that contains a person who participates in
a violent scene.

orientation and reflection variations.

Figure 3.7: CENTRIST extracted from hand gestures A (left) and B (right) in different
positions.

3.3.2 Feature Extraction using Deep Features
In addition to handcrafted features, deep learning models based on pre-trained networks,
such as Inception-v3 and Xception, were also used to extract features from the video
frames. In Figure 3.8, it is illustrated how the pipeline was modified to be executed using
deep features. Unlike the process used for handcrafted descriptors (shown in Figure 3.1),
after applying preprocessing filters on the frames, a deep learning model is used directly
as descriptor to extract features that are passed to traditional machine learning models,
for instance SVM, Adaboost, among others.

Figure 3.8: Main stages of the pipeline using deep features.

Due to reduced amount of data to train a deep learning model, we opted for using a
pre-trained model to extract features and use traditional machine learning techniques to
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detect violence. Therefore, as described in Section 2.7.14, we applied models previously
trained on the ImageNet competition as basis for extracting features from each frame
individually. To obtain the features, the values that are passed in general to the latest
classification layer are used.

To work with pre-trained models, we use models compatible with the TensorFlow [155]
and Keras [156] frameworks. Using Keras API, it is possible to directly load the network
structure of Inception-v3 [125] and Xception [12] models and the respective weights
obtained from the dataset used for the ImageNet competition.

3.3.3 Encoding Techniques
In addition to directly evaluating the features, Figure 3.9 illustrates the stages of our
method when the encoding technique is applied to obtain a more representative code. The
training and classification steps are applied after the feature vector is converted to the
new encoding.

Figure 3.9: Main stages of the proposed methodology using the encoding technique.

For this method, we proposed three different techniques to encode the feature vectors
from CENTRIST-based descriptors:

1. Euclidean-distance [157] from K-means clusters [91].
2. Mahalanobis-distance [158] from GMM [93].
3. sparse coding [96] (described in Section 2.6.3).

In our work, two methodologies based on K-means are adopted:

1. We will apply K-means to split our data into two specific clusters, where each one
will represent one of the our two classes (violence and non-violence). Then, the
prediction for an unknown sample will be returned, since the probability of the
feature vector belongs to the cluster that contains samples of violence.

2. K-means will be used to group N clusters. Then, the distance to each cluster will be
used as dictionary to train the model using a secondary classifier (for instance, an
SVM). In this approach Euclidean distance [157] is used to measure the distance
from the feature vector to each cluster.

Similarly to K-means, using GMM two methodologies are also adopted:
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1. the training will be carried out using two Gaussian distributions, where each rep-
resents a specific class (violence and non-violence). Then, the distance to each
Gaussian will be related to the class.

2. similarly to K-means, GMM will be used to generate N Gaussians. Then, the
Mahalanobis distance [158] to each Gaussian is used as dictionary [159]. The
resulting feature vector will be employed for training using a secondary classifier (for
instance, an SVM).

To apply these techniques, we use the tools provided by the Scikit-Learn library [83].

3.4 Data Transformation
Once the descriptor was extracted, data scaling normalization was optionally applied in
some experiments to transform the data with zero mean and unit variance. Principal
Component Analysis (PCA) [160] technique can also be applied for dimensionality reduction.
We evaluate the effectiveness of the normalization and dimensionality reduction of the
features in our experiments.

Initially, PCA is applied using a percentage number of components of the used descriptor.
After empirically testing different percentage values (between 25 and 50%) to process
PCA, it was identified that 35% would obtain satisfactory results without demanding high
computational time. Thus, most experiments were performed using 35% for the number of
components. After identifying the best techniques, we approached the 99% of cumulative
variance as a measure to define the number of components to be used in PCA.

3.5 Classification
In the training step, we evaluate the use of the Support Vector Machine (SVM) classi-
fier [161] with Radial Basis Function (RBF) and linear kernels, as well as Random Forests
(RF) [85] and Stochastic Gradient Descent (SGD) [162], and techniques based on boosting,
such as Adaboost [88] and eXtreme Gradient Boosting (XGB) [90] classifiers.

After the training step, each video sequence from the test dataset is individually
evaluated. In order to make the final decision, we use a simple vote strategy to evaluate the
prediction for each video frame based on the proportion of violent frames. For our sliding
window approach, considering in short video (3 to 5 seconds duration) that only a few
frames are processed, we keep using this generic voting approach based on the proportion
of violence results obtained from all frames. For the direct extraction approach, since the
result for each frame corresponds exactly to the result of a feature, we can generalize our
formulation as

output =

violence, if VF / (VF + NVF) > T
non-violence, otherwise

(3.1)

where VF represents the number of features considered violent, NVF represents the
number of features considered non-violent, and T is a threshold.
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3.6 Benchmark Protocol
In this section, we present the protocol for evaluating the Violence in Crowds and Hockey
Fights datasets used in our experiments.

To assess the accuracy of the classification process, we employ the same protocol
specified by Hassner et al. [13], that is, a k-fold cross-validation protocol. We split the
video sequences into k sets, where k is equal to 5 sets for both datasets evaluated during
our research. In each set, half of the videos depict the violent crowd behavior and half the
non-violent behavior. In some cases, different videos originate from the same YouTube
clip or the same scene. In such cases, these videos are all included in the same set (the
sets are mutually scene exclusive).

For each test, four out five sets are used for training and the performance for the
violence labeling is then assessed on the remaining set. After obtaining the results through
the five different combinations of datasets, the final result is calculated by the prediction
accuracy rate and its respective standard deviation.
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Chapter 4

Experimental Results

In this chapter, we describe in chronological order the experiments carried out during this
research work, supporting the decision we made according to the established premises.

The results for the Violence in Crowds and HockeyFights datasets were evaluated
according to the 5-fold cross-validation protocol specified by Nievas et al. [14]. In this
protocol, the dataset is split into 5 smaller sets, where a model is trained using 4 these
folds and evaluated in the remaining fold. Finally, the mean and standard deviation are
calculated from the five outcomes for possible variations and, therefore, these values are
used as final measure to assess the method efficiency.

The first sections are divided as follows: specification of hardware used during our
research, individual results for the Violence in Crowds dataset using CENTRIST, results
from the combination between HoG+CENTRIST. Next, we experiment Deep Features to
evaluate the violence detection and present our preliminary conclusions. After identifying
the most promising approaches using the entire frame, we applied them to the Hockey
Fights dataset to evaluate their efficiency in a different scenario.

We also examine alternative strategies for assessing the scene in order to improve
the method efficiency, such as Gabor [61] as preprocessing filter and different coding
approaches as training methods. Then, we apply the Sliding Window approach to evaluate
blocks from the video scene instead of extracting descriptors from the entire scene at once.
In addition, we attach information related to motion from descriptors obtained through
the Optical Flow attributes. Next, we use the Optical Flow magnitude to filter out the
blocks that may be most relevant across the scene. Finally, we analyze the most relevant
results in each approach and determine which would be the most competitive. Finally, we
conduct cross-dataset experiments to evaluate generalization aspects in Section 4.11.

4.1 Hardware and Software Specifications
During our research, we carried out a large number of experiments that demanded different
types of resources as they progressed. Thus, we used different hardware specifications
according to the availability and needs of the experiments. At beginning of the research,
we started very simple configurations, since we were using relatively simple approaches. To
execute the techniques that extract entire frames from the Violent in Crowd and Hockey
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Fights datasets, only 8 GB of RAM memory was sufficient. Since we explored techniques
that demanded more computational resources, we moved to a dedicated server to deal with
CPU and memory requirements. Furthermore, when we explored deep learning models to
generate deep features, as shown in Section 3.3.2, the use of a GPU (Graphic Processing
Unit) was crucial to train the models with TensorFlow in a reasonable time. Although
the specification gains have provided substantial improvements in execution speed, this
change has not made it possible to compare training and prediction times.

The hardware configurations used in our experiments were:

1. Laptop Dell Inspiron 4200 with an Intel i5-4200 CPU 1.8 GHz, 12 GB RAM, NVidia
GeForce 740M 2GB, Ubuntu 14.04 64-bit operating system.

2. Desktop computer with an Intel i7-2600 CPU 2.4GHz, 8 GB RAM, NVidia GeForce
1050Ti 4GB, Ubuntu 14.04 64-bit operating system.

3. Server with an Intel Xeon E3-1200 CPU 3.3 GHz, 32 GB RAM, Ubuntu 14.04 64-bit
operating system.

4. Laptop Dell G3 with an Intel i7-9750H CPU 2.60 GHz, 12 GB RAM, NVidia GeForce
1660Ti with Max-Q 6GB, Ubuntu 14.04 64-bit operating system.

The software versions required by the platform to run our experiments were:

1. CUDA: 7.5
2. OpenCV: 2.4.13.7
3. Python 2.7
4. wxPython: 2.8.10.1
5. ffmpeg
6. OpenJDK-7

4.2 Results Using CENTRIST
At the beginning of the research, we focused our efforts on identifying the potential of
CENTRIST as a descriptor for discriminating violence scenes. Then, using the Violence
in Crowds dataset, we performed experiments using the entire frame and different input
parameters.

Initially the video capture frequency was analyzed to determine how many frames
could be ignored due to the great similarity between consecutive frames. Thus, our first
approach was to define the number of frames that could be discarded without reducing
effectiveness. However, since each video was recorded using a specific frame rate, we also
evaluate frame selection based on the frame rate for each video, rather than skipping a
fixed number of consecutive frames for all videos.

In Table 4.1, we report our results using the CENTRIST descriptor, skipping either 10
or 20 frames and using different frame rates (1 Hz, 2 Hz). These tests were performed
using three different classifiers: SVM (Support Vector Machine) with both linear and RBF
kernels, AdaBoost, and Random Forest. The features were extracted by applying only
Histogram Equalization [163] as preprocessing filter.
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Table 4.1: Accuracy for Violence in Crowds dataset [13] using different frame rates.
Method 10 20 2.0 Hz 1.0 Hz
CENTRIST (AdaBoost) 83.71±4 81.68±5 84.55±4 84.48±4
HoG+CENTRIST (AdaBoost) 84.93±4 85.38±4 87.85±2 88.61±1
CENTRIST (SVM-RBF) 82.90±3 82.06±2 85.71±3 84.48±4
HoG+CENTRIST (SVM-RBF) 87.78±2 86.18±1 87.81±2 88.61±1
CENTRIST (SVM-Linear) 81.72±3 84.60±3 86.93±3 82.93±1
HoG+CENTRIST (SVM-Linear) 84.58±3 82.96±4 88.61±2 85.75±3
CENTRIST (RandomForest) 86.16±4 82.50±4 82.91±5 82.93±2
HoG+CENTRIST (RandomForest) 85.00±4 80.11±6 85.40±4 83.33±2

From Table 4.1, we can observe that the use of fixed values to skip frames generates
less effective results than skipping frames in the temporal interval.

To assess the influence of contrast in addressing the problems related to low scene
illumination, we apply histogram equalization to the video frames and verify how it
affects the descriptor performance. Although the Census Transform is described as robust
to illumination and gamma variations, by increasing the illumination contrast, we aim
to facilitate visual inspection and enable the comparison of results between descriptors
that are not considered robust against illumination issues. In Table 4.2, results of the
experiments are presented using histogram equalization before extracting the descriptors.

Table 4.2: Accuracy for Violence in Crowds dataset [13] using different frame rates after
applying histogram equalization.
Method 10 20 2.0 Hz 1.0 Hz
CENTRIST (AdaBoost) 81.25±7 82.53±8 84.51±3 82.10±2
HoG+CENTRIST (AdaBoost) 81.28±7 86.60±2 84.18±3 88.21±3
CENTRIST (SVM-RBF) 82.88±2 82.88±4 85.75±2 85.31±2
HoG+CENTRIST (SVM-RBF) 83.00±5 82.16±5 83.76±2 79.31±6
CENTRIST (SVM-Linear) 81.71±2 80.51±3 86.60±4 84.60±3
HoG+CENTRIST (SVM-Linear) 86.20±3 85.78±4 87.03±4 86.63±3
CENTRIST (Random-Forest) 83.75±3 85.75±5 84.51±3 84.60±2
HoG+CENTRIST (Random-Forest) 86.60±2 81.28±7 85.83±4 82.15±3
CENTRIST (PCA+AdaBoost) 80.06±4 82.11±2 84.15±7 79.71±3
HoG+CENTRIST (PCA+AdaBoost) 82.93±5 82.51±3 84.15±2 82.11±6
CENTRIST (PCA+SVM-RBF) 80.88±5 82.91±5 84.50±3 82.46±3
HoG+CENTRIST (PCA+SVM-RBF) 83.00±5 82.16±5 83.76±2 79.31±6
CENTRIST (PCA+SVM-Linear) 80.97±4 80.48±1 87.00±2 82.10±4
HoG+CENTRIST (PCA+SVM-Linear) 86.20±3 86.18±2 86.63±5 86.63±3
CENTRIST (PCA+Random-Forest) 78.46±3 77.21±1 82.46±3 74.43±3
HoG+CENTRIST (PCA+Random-Forest) 64.70±6 72.80±3 78.88±5 69.13±2

Summarizing the information shown in Tables 4.1 and 4.2 in a line graphic, we can
identify the influence of the capture frame rate for the results. According to the results
illustrated in Figure 4.1, it is possible to observe that the use of adaptive capture frame
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rate based on the video recording frame rate is shown to be more effective than using a
fixed rate to skip consecutive frames. For instance, we obtained higher results for SVM
as classifier using 2 Hz for frame rate and using 1 Hz for AdaBoost. Furthermore, we
observe that, using 1 or 2 Hz, the standard deviation is considerably lower for most
classifiers. Thus, when comparing the results mentioned previously, in which the histogram
equalization (HEq) was applied, it is possible to notice that, when contrast is normalized,
we obtain statistically similar results, but approximately inferior to the results evaluated
without this preprocessing step.

(a)

(b)

Figure 4.1: (a) Accuracy for Violence in Crowds dataset [13] at different frame rates; (b)
Accuracy for Violence Crowds dataset using PCA [13] at different frame rates.

From Table 4.3, it is possible to notice that, for some combinations, we achieved results
that overcome the baseline [13] and other methods available in the literature (shown
in Table 2.2). For instance, the CENTRIST descriptor combined with PCA and SVM
techniques was able to obtain an accuracy of 86.16±2.8%. Even though the concepts
involved in the process are relatively simple, the result was superior to other works. On
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Table 4.3: Results for Violence in Crowds dataset [13] using Multiscale and Background
Subtraction (MoG).

Method Accuracy (%)
CENTRIST (SVM) 85.75±5.57
CENTRIST Multiscale (SVM) 84.90±5.40
CENTRIST (PCA+SVM) 86.16±2.80
CENTRIST Multiscale (PCA+SVM) 85.81±2.64
CENTRIST (MoG, SVM) 82.51±2.72
CENTRIST Multiscale (HEq+MoG, SVM) 81.70±2.66
CENTRIST (MoG, PCA+SVM) 83.73±2.21
CENTRIST (HEq+MoG, PCA+SVM) 82.88±2.98
CENTRIST (SGD) 87.80±1.84
CENTRIST (MoG, SGD) 83.35±1.30
CENTRIST Multiscale (HEq+MoG, SGD) 82.96±2.50
CENTRIST (MoG, PCA+SGD) 83.30±2.55

the other hand, we can also identify that the multi-scale approach was slightly inferior to
its single-scaled version, achieving 85.81%±2.6% of accuracy at maximum, with scales 0.8,
1.0, and 1.2.

Then, we assess the influence of applying the Gaussian filter [164] to each frame before
extracting features to reduce the effect of noise and illumination. Multi-scaling was also
explored, as mentioned in Section 3.2. Two extra scales (80% and 120%) associated with
the standard resolution (100%) in the training step were evaluated.

In Figure 4.2, the results using different preprocessing approaches are compared
through CENTRIST and HoG+CENTRIST using SVM. We can observe that, for most
preprocessing approaches used, performance using raw image is still among the best
options. For CENTRIST, although this descriptor is considered robust for illumination
issues, accuracy using histogram equalization was the only result that overcomes the
accuracy using raw input. For HoG+CENTRIST, the result using histogram equalization
shows to be slightly worse than using the raw image. In addition, trying to reduce noise
was not effective using Gaussian blur filter or Gabor filter for both descriptors. When
looking at the multiscale approaches, despite expectations when augmenting our dataset,
the results did not seem to be promising.

4.2.1 Results using HoG+CENTRIST
As mentioned in Section 2.3.2, HoG [2] was used in combination with CENTRIST to add
more descriptive information to our descriptor. As shown in Table 4.4, when applying the
background subtraction, the combination of CENTRIST and HoG descriptors reached the
best accuracy rate (87.45±2.7%) when using only dimensionality reduction with PCA,
and SVM with RBF kernel as classifier for the Violence in Crowds dataset.

However, in experiments without using background subtraction, the results are still
representative (86.96±3.8%), as the use of background subtraction was not sufficiently
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Figure 4.2: Accuracy for Violence in Crowds dataset [13] at different 2 Hz using different
preprocessing approaches.

meaningful. After visually analyzing the dense optical flow from several video scenes,
it is possible to state that regions of interest can be highly affected by camera motion.
However, the use of background subtraction using MoG is not as relevant to the results in
terms of accuracy.

In addition, we also conducted experiments with different classifiers. The combination of
HoG and CENTRIST descriptors was evaluated using SGD (Stochastic Gradient Descent),
AdaBoost and Random Forests that produced, respectively, the following accuracy rates:
85.81%, 86.61% and 86.20%, which are results similar to the formers obtained using SVM
classifier.

Table 4.4: Results for Violence in Crowds dataset [13] with HoG+CENTRIST using
different classifiers.

Method Accuracy (%)
HoG+CENTRIST (SVM-RBF) 86.96±3.1
HoG+CENTRIST (PCA+SVM-RBF) 86.61±3.6
HoG+CENTRIST (AdaBoost) 86.61±4.1
HoG+CENTRIST (SGD) 85.81±5.8
HoG+CENTRIST (Random Forest) 86.20±6.0
HoG+CENTRIST (HEq, SVM-RBF) 86.96±3.8
HoG+CENTRIST (MoG, SVM-RBF) 87.40±1.4
HoG+CENTRIST (HEq+MoG, SVM-RBF) 87.45±2.7
HoG+CENTRIST (HEq+MoG, SGD) 85.00±4.3

In Figure 4.3, we have a comparison using different classifiers with CENTRIST and
HoG+CENTRIST. When analyzing such information, we can identify that the SVM
obtained satisfactory results for both descriptors. Although SGD achieved the best result
using CENTRIST, the same was not true using HoG+CENTRIST. For the combination,
the results considerably improved for all descriptors. Furthermore, the accuracy is similar
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Figure 4.3: Accuracy for Violence in Crowds dataset [13] at different frame rates using
different classifiers.

using all different classifiers. This fact shows us that the combination of these descriptors
makes the performance more robust.

Another fact that we identified is related to the use of PCA. In general, the difference
between the results obtained through PCA and SVM is practically insignificant to the
results without PCA. While we cannot conclude whether or not using the PCA is better,
we can point out that the feature length can be reduced using PCA without a significant
lost of effectiveness.

Moreover, to ensure that the HoG+CENTRIST combination is not due to HoG
individually, we also performed some experiments using HoG to identify its relevance
compared to CENTRIST. As shown in Table 4.5, we can state that HoG individually is
not responsible for obtaining sufficient information to discriminate violence. Thus, we can
conclude that the HoG and CENTRIST feature vectors, when combined, are actually more
effective than when evaluated individually. In addition, we can observe that, although both
descriptors evaluate the histogram of characteristics of the image structure, CENTRIST
seems to be considerably more representative than HoG for violent detection.

Table 4.5: Accuracy for Violence in Crowds dataset [13] using HoG.
Method Accuracy (%) Accuracy (%) using PCA
HoG (SVM-RBF) 80.93±6.8 77.71±8.3
HoG (RandomForest) 74.95±8.3 66.70±7.1
HoG (XGB) 76.46±2.6 78.55±9.5
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4.2.2 Best Results for the Approach using Direct Frame Extrac-
tion

After evaluating the results using different classifiers, we concluded that SVM (using both
RBF and linear kernels), SGD and AdaBoost could obtain promising results. In addition,
considering that HoG+CENTRIST could be used effectively to find relevant features
to discriminate the scene, we explore the descriptor in more details. In Section 3, we
described more deeply which techniques were addressed.

In Table 4.6, we report our best results using the CENTRIST and HoG+CENTRIST
descriptors for the Violence in Crowds dataset, after applying histogram equalization
(HEq). From these results, it is possible to observe that, using 2 Hz, we reached the best
results for HoG+CENTRIST compared to Tables 4.1 and 4.2.

Table 4.6: Accuracy for the dataset Violence in Crowds dataset [13] using different frame
rates after applying histogram equalization.
Method 10 20 2 Hz 1 Hz
CENTRIST (HEq, AdaBoost) 81.25±7 82.53±8 84.51±3 82.10±2
CENTRIST (HEq, SVM-RBF) 82.88±2 82.88±4 85.75±2 85.31±2
CENTRIST (HEq, SVM-Linear) 81.71±2 80.51±3 86.60±4 84.60±3
HoG+CENTRIST (HEq, AdaBoost) 86.60±2 81.28±7 88.21±3 84.18±3
HoG+CENTRIST (HEq, SVM-RBF) 88.21±2 87.45±3 88.25±3 87.40±1
HoG+CENTRIST (HEq, SVM-Linear) 86.20±3 85.78±4 87.03±4 86.63±3

When comparing the results obtained with the techniques described previously, such
as Gaussian blur or background subtraction, no representative result can be highlighted.
Although these techniques have been shown to be effective in the literature, we noticed
that, for Violence in Crowds dataset, this is not true. By analyzing this dataset, we found
that the low quality of the images presents high influence when the smoothing filter is used.
Moreover, when background subtraction using MoG is applied, we notice that, due to
camera motion, the quality of the focused regions is not appropriate for the identification
of violence. In general, instead of identifying the movement of the actors, we can see the
camera motion is considerably present.

4.2.3 Results using Deep Features
In this section, we present results using approaches based on deep features mentioned in
Section 3.3.2. To compare the handcrafted approaches, we evaluate techniques based on
pre-trained deep learning models to extract features from the scene. At the beginning of
the work, we used the SqueezeNet model [165] to evaluate the Violent in Crowds dataset
and, after training approximately 100 epochs, we obtained very low results compared
to the results obtained using CENTRIST (shown in Table 4.1). Thus, using only the
Violence in Crowds dataset, we assume that the amount of data was not enough to train a
model for deep learning and choose to employ a pre-trained model using a larger dataset
to extract features that would be passed to a traditional classification model.



64

In our work, we explored SVM using only two kernel types (linear and RBF) and
AdaBoost, because here we intend to determine whether this approach would be more
promising than the use of handcrafted descriptors. In Table 4.7, we have few results
from experiments using the two different deep learning models: Inception-v3 [125] and
Xception [12], pre-trained using the ImageNet dataset, to extract features that have been
eventually used as input to traditional machine learning models.

Table 4.7: Accuracy for dataset [13] using different frame rates.
Method Accuracy (%) Accuracy (%)

(1.0 Hz) (2.0 Hz)
Inception-v3 (SVM-RBF) 78.88±4.0 76.43±3.6
Inception-v3 (SVM-linear) 65.11±5.4 63.48±5
Xception (SVM-RBF) 68.33±2.8 66.25±3.3
Xception (AdaBoost) 68.35±4.4 70.75±2.5

When evaluating different frame rates using Inception-v3, we found that applying all
frames to extract features could not make the model more robust. Although using all
frames for training with Inception-v3 allowed 76.83±6.1% for lower frame rates, it was
possible to obtain better results. For instance, when using 1.0 and 2.0Hz for video capture,
we obtained similar or superior results, as shown in Table 4.7. After identifying this fact,
to save time, we chose not to evaluate all the frames in the following experiments, using
deep learning models. Therefore, when comparing the results of Inception-v3 and Xception,
although Xception was slightly superior to Inception-v3 on the ImageNet dataset (shown
in Section 2.7.14), the results show the opposite effectiveness on the Violence in Crowds
dataset. While deep features using Xception achieved accuracy rate ranging from 68 to
70%, Inception-v3 reached 78.88% when using SVM-RBF for training.

Nevertheless, when comparing results from deep features (Table 4.7) with previous
results using CENTRIST and HoG (Table 4.4 and Table 4.3), in fact, it is easily noticeable
that the results using deep features are inferior to the results gathered through the
handcrafted methods used previously. After obtaining poor results by skipping some
consecutive frames, we decided to evaluate all frames to confirm that the result was really
related to the number of processed frames. Then, using Inception-v3 to extract features
from all frames and SVM-RBF for training, we obtained an accuracy rate of 76.83±6.1%.
Thus, we conjecture that our dataset was not representative enough to make a model
based on deep learning robust.

4.3 Using Coding Techniques
Using methods based on the CENTRIST descriptor, instead of deep learning models,
we seek a more representative input feature vector for training and classification. As an
alternative, we include an intermediate coding layer between the descriptor extraction
and the classifiers. For this, we pass the descriptors through a clustering method, such as
K-means, Gaussian Mixture Models, or Sparse-Coding.



65

During the development of the work, we identified that the eXtreme Gradient Boosting
(XGB) [166] classifier obtained relevant results in several pattern recognition tasks. In
the following sections, results using XGB are also presented, confirming its robustness in
comparison to the other classifiers evaluated in our experiments.

We now present results for the three approaches used to encode feature vectors into
an alternative coding structure. Initially, in Tables 4.8 and 4.9, we obtained results using
Euclidean distance over N clusters obtained using K-means and, respectively, SVM and
XGB. In Table 4.10, we have results for Mahalanobis distance [158] over N Gaussians
obtained through GMM [159]. Finally, in Table 4.11, we applied Sparse Coding [167] using
a different number of components to find the most effective representation.

Table 4.8: Results for Violence in Crowds dataset [13] using K-means at 2.0Hz.
Method Accuracy (%)
CENTRIST (HEq, K-means-12, SVM-RBF) 79.26±3.7
CENTRIST (HEq, K-means-32, SVM-RBF) 80.86±2.3
CENTRIST (HEq, K-means-64, SVM-RBF) 78.43±5.4
CENTRIST (HEq, K-means-128, SVM-RBF) 80.36±3.9
CENTRIST (HEq, K-means-256, SVM-RBF) 81.70±4.6
CENTRIST (HEq, K-means-512, SVM-RBF) 82.10±4.3
CENTRIST (HEq, K-means-12, PCA+SVM-RBF) 80.48±4.4
CENTRIST (HEq, K-means-32, PCA+SVM-RBF) 78.46±5.3
CENTRIST (HEq, K-means-64, PCA+SVM-RBF) 78.46±5.3
CENTRIST (HEq, K-means-128, PCA+SVM-RBF) 80.48±3.5
CENTRIST (HEq, K-means-256, PCA+SVM-RBF) 82.10±4.3
CENTRIST (HEq, K-means-512, PCA+SVM-RBF) 82.10±4.3
HoG+CENTRIST (HEq, K-means-12, SVM-RBF) 82.95±4.0
HoG+CENTRIST (HEq, K-means-24, SVM-RBF) 82.90±5.6
HoG+CENTRIST (HEq, K-means-32, SVM-RBF) 75.48±9.4
HoG+CENTRIST (HEq, K-means-64, SVM-RBF) 68.21±7.2
HoG+CENTRIST (HEq, K-means-256, SVM-RBF) 58.55±3.0
HoG+CENTRIST (HEq, K-means-512, SVM-RBF) 56.11±1.0
HoG+CENTRIST (HEq, K-means-12, PCA+SVM-RBF) 75.48±9.4
HoG+CENTRIST (HEq, K-means-24, PCA+SVM-RBF) 64.53±6.5
HoG+CENTRIST (HEq, K-means-32, PCA+SVM-RBF) 68.56±9.8
HoG+CENTRIST (HEq, K-means-64, PCA+SVM-RBF) 61.70±6.4
HoG+CENTRIST (HEq, K-means-128, PCA+SVM-RBF) 56.43±4.2
HoG+CENTRIST (HEq, K-means-256, PCA+SVM-RBF) 53.60±3.4

Tables 4.8 and 4.9 provide results for K-means for different numbers of clusters using,
respectively, SVM and XGB for classification and PCA for dimensionality reduction. From
the results of SVM or XGB using CENTRIST, it is possible to observe that, using XGB,
the accuracy rate increases as the number of clusters is incremented until reaching a
threshold. On the other hand, using SVM, the rate accuracy is not generally improved
and, in some cases, can get worse.

Although XGB has obtained results that outperform SVM (85.00% versus 82.10%),
the best accuracy is achieved when the number of clusters reaches 256. For SVM, the
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Table 4.9: Results using XGB for Violence in Crowds dataset [13] using K-means at 2.0Hz.
Method Accuracy (%)
CENTRIST (HEq, K-means-12, XGB) 80.11±3.2
CENTRIST (HEq, K-means-32, XGB) 80.95±2.9
CENTRIST (HEq, K-means-64, XGB) 83.33±0.7
CENTRIST (HEq, K-means-256, XGB) 85.00±3.5
CENTRIST (HEq, K-means-512, XGB) 83.76±4.1
CENTRIST (HEq, K-means-12, PCA+XGB) 80.93±3.5
CENTRIST (HEq, K-means-32, PCA+XGB) 83.35±3.8
CENTRIST (HEq, K-means-64, PCA+XGB) 81.73±4.3
CENTRIST (HEq, K-means-256, PCA+XGB) 84.18±4.3
CENTRIST (HEq, K-means-512, PCA+XGB) 82.93±3.4

accuracy improves as we increase the number of clusters until reaching 82.10% when using
(512). In addition, when analyzing the impact of applying PCA for preprocessing, we can
identify that the results in general are lower for both XGB and SVM.

However, when the CENTRIST+HoG combination is used (shown in Table 4.8), the
opposite behavior can be observed. The accuracy rate decreases as the number of clusters
increases. Thus, our best result was obtained using 12 clusters, respectively with SVM
and PCA+SVM: 82.95% and 75.48%.

To compare K-means, we apply GMM as an alternative to encode the feature vector.
Instead of using Euclidean distance, we use Mahalanobis distance since we look for a more
appropriate distance measure for the Gaussian space [159]. In Table 4.10, we present
few results for GMM due to the high computational cost to process each experiment. In
general, it requires 5 times more time than using K-means. As in our first experiments,
applying background subtraction in the preprocessing step obtained a considerably low
result of 56.10%, we chose not to perform other tests using GMM as a preprocessing
approach.

Table 4.10: Results for Violence in Crowds dataset [13] using GMM at 2.0Hz.
Method Accuracy (%)
CENTRIST (HEq, GMM-32, AdaBoost) 82.46±3.0
CENTRIST (HEq, GMM-64, AdaBoost) 84.10±4.9
CENTRIST (HEq, GMM-32, SVM-RBF) 81.65±4.8
CENTRIST (HEq, GMM-64, SVM-RBF) 81.65±4.8

Table 4.10 reports results for two different classifiers. Using AdaBoost classifier, the
result improves by increasing the number of Gaussians (from 82% using 32 Gaussians to
84% using 64 Gaussians), while using SVM-RBF we obtain the same result (81.65%) for
both number of Gaussians (81.65%).

Comparing the results shown in Tables 4.8 and 4.10, we can observe that, using
64 clusters (or Gaussians for GMM) with SVM-RBF, we obtained 78.43% and 81.65%,
respectively, however, for 32 clusters (or Gaussians), we obtained 81.73% for K-means and
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81.65% for GMM.
Table 4.11 presents results using features encoded through Sparse Coding 2.6.3. When

analyzing the Sparse Coding for each approach, we can observe that, for CENTRIST,
such as for HoG+CENTRIST, the accuracy rate varies approximately when the number of
components is increased from 16 to 512. For CENTRIST, for instance, the results range
from 79.65 to 82.96 and from 77.21 to 81.63 when using PCA previously. In addition, for
AdaBoost, we obtained results between 83.68 and 85.36. For XGB, the results range from
83.67 to 84.96% without PCA and from 82.03 to 85.33% using PCA.

For HoG+CENTRIST using SVM, the results appear to be lower for a few components
and to be improved by increasing this number. For instance, using 12 components, we
obtained 56.06%, whereas we reached 82.91% using 128 components. The same occurs
when applying PCA previously: from 56.06 to 80.90%. For XGB, the results are still
stable using a different number of components (from 32 to 512 components), however, this
approach achieves the best result for 64 components: 87.43%.

In addition to the experiments mentioned previously, we try to analyze regions of
interest by also evaluating background subtraction through MoG as preprocessing filter,
in order to remove the background from the scene and restrict the feature extraction to
only parts of the scene where the movement is present.

In Tables 4.12 and 4.13, we compare the results found in the previous experiments for
coding and the equivalent of applying MoG for background subtraction before the feature
extraction. However, after conducting several experiments, we were able to easily identify
that this approach presents poor results in almost all methods that use coding techniques.

4.4 Using Gabor Filter
In relation to previous works that used Gabor filter and obtained expressive results in
image recognition (Gdyczynski et al. [168] and Gangwar et al. [169]), we carried out
experiments using Gabor as low-pass preprocessing filter to preserve more relevant details.

Table 4.14 presents results in which Gabor before processing CENTRIST and
HoG+CENTRIST descriptors for non-coding and coding techniques. Comparing SVM
and XGB classifiers using Gabor preprocessing, we observed that CENTRIST and
HoG+CENTRIST using Gabor obtained results approximately close to both classifiers.
For CENTRIST using SVM, we obtained 86.58% (Table 4.14) against 85.71% (Table 4.2)
and, for HoG+CENTRIST and SVM, we obtained 87.78% (Table 4.14) against 87.81%
(Table 4.2) without Gabor.

In addition, when evaluating coding techniques such as K-means and Sparse Coding, we
obtained 81.68% (shown in Table 4.11) for SVM over K-means using 24 clusters processed
with HoG+CENTRIST, against 82.90% and 82.95% using, respectively, 24 and 12 clusters
(shown in Table 4.11). For CENTRIST, we obtained 81.68% (Table 4.2) against 71.56%
(Table 4.14) using 24 components.

Comparing sparse coding method, for Gabor using 512 components and SVM-RBF, we
obtained 82.56% and 83.78% (shown in Table 4.14) for CENTRIST and HoG+CENTRIST,
respectively. Furthermore, without Gabor, we obtained 82.91% for HoG+CENTRIST
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Table 4.11: Results for Violence in Crowds dataset [13] using Sparse Coding.
Method Accuracy (%)
CENTRIST (HEq, SparseCod-16, SVM-RBF) 82.48±5.3
CENTRIST (HEq, SparseCod-32, SVM-RBF) 81.73±4.1
CENTRIST (HEq, SparseCod-64, SVM-RBF) 79.65±2.9
CENTRIST (HEq, SparseCod-128, SVM-RBF) 80.86±2.3
CENTRIST (HEq, SparseCod-512, SVM-RBF) 82.96±5.6
CENTRIST (HEq, SparseCod-16, XGB) 83.71±2.4
CENTRIST (HEq, SparseCod-32, XGB) 84.96±2.9
CENTRIST (HEq, SparseCod-64, XGB) 83.75±2.1
CENTRIST (HEq, SparseCod-128, XGB) 83.68±3.1
CENTRIST (HEq, SparseCod-512, XGB) 84.53±2.8
CENTRIST (HEq, SparseCod-16, PCA+SVM-RBF) 77.21±5.7
CENTRIST (HEq, SparseCod-32, PCA+SVM-RBF) 80.80±5.8
CENTRIST (HEq, SparseCod-64, PCA+SVM-RBF) 81.30±1.9
CENTRIST (HEq, SparseCod-128, PCA+SVM-RBF) 81.26±4.4
CENTRIST (HEq, SparseCod-512, PCA+SVM-RBF) 81.63±5.0
CENTRIST (HEq, SparseCod-16, PCA+XGB) 82.03±5.8
CENTRIST (HEq, SparseCod-32, PCA+XGB) 83.33±2.3
CENTRIST (HEq, SparseCod-64, PCA+XGB) 84.95±2.7
CENTRIST (HEq, SparseCod-128, PCA+XGB 84.10±2.9
CENTRIST (HEq, SparseCod-512, PCA+XGB) 85.33±2.5
HoG+CENTRIST (HEq, SparseCod-32, AdaBoost) 84.13±2.4
HoG+CENTRIST (HEq, SparseCod-64, AdaBoost) 85.36±3.2
HoG+CENTRIST (HEq, SparseCod-128, AdaBoost) 83.68±5.4
HoG+CENTRIST (HEq, SparseCod-32, SVM-RBF) 56.06±3.7
HoG+CENTRIST (HEq, SparseCod-64, SVM-RBF) 67.03±4.5
HoG+CENTRIST (HEq, SparseCod-128, SVM-RBF) 82.91±8.2
HoG+CENTRIST (HEq, SparseCod-32, XGB) 86.18±2.9
HoG+CENTRIST (HEq, SparseCod-64, XGB) 87.43±3.4
HoG+CENTRIST (HEq, SparseCod-128, XGB) 86.60±3.5
HoG+CENTRIST (HEq, SparseCod-512, XGB) 85.38±2.2
HoG+CENTRIST (HEq, SparseCod-32, PCA+SVM-RBF) 56.06±3.7
HoG+CENTRIST (HEq, SparseCod-64, PCA+SVM-RBF) 66.25±4.7
HoG+CENTRIST (HEq, SparseCod-128, PCA+SVM-RBF) 80.90±5.6
HoG+CENTRIST (HEq, SparseCod-128, PCA+XGB) 84.55±3.9
HoG+CENTRIST (HEq, SparseCod-512, PCA+XGB) 83.31±1.6

using 128 components.

4.5 Tests Performed on Hockey Fights Dataset
After obtaining considerable results for the Violence in Crowds dataset, we intend to confirm
our results over a secondary crowd-based dataset involving violence. Thus, using the
Hockey Fights dataset [14], we performed experiments using CENTRIST-based descriptors,
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Table 4.12: Results for Violence in Crowds dataset [13] for K-means and Sparse Coding
using Histogram Equalization, compared to applying or not Background Subtraction (Part
1).
Method Accuracy (%) Accuracy (%)

with MoG
CENTRIST (HEq, K-means-512, SVM-RBF) 82.10±4.3 78.85±3.3
CENTRIST (HEq, K-means-256, PCA+SVM-RBF) 82.10±4.3 77.66±2.6
CENTRIST (HEq, K-means-512, PCA+SVM-RBF) 82.10±4.3 78.06±3.0
CENTRIST (HEq, K-means-12, XGB) 80.11±3.2 79.65±3.5
CENTRIST (HEq, K-means-32, XGB) 80.95±2.9 78.03±5.0
CENTRIST (HEq, K-means-64, XGB) 83.33±0.7 78.81±5.1
CENTRIST (HEq, K-means-256, XGB) 85.00±3.5 80.46±4.2
CENTRIST (HEq, K-means-512, XGB) 83.76±4.1 79.63±3.1
CENTRIST (HEq, K-means-12, PCA+XGB) 80.93±3.5 77.97±4.4
CENTRIST (HEq, K-means-32, PCA+XGB) 83.35±3.8 78.43±4.6
CENTRIST (HEq, K-means-64, PCA+XGB) 81.73±4.3 80.86±2.9
CENTRIST (HEq, K-means-256, PCA+XGB) 84.18±4.3 81.65±3.2
CENTRIST (HEq, K-means-512, PCA+XGB) 82.93±3.4 78.88±4.0
CENTRIST (HEq, SparseCod-64, SVM-RBF) 79.65±2.9 77.63±1.9
CENTRIST (HEq, SparseCod-128, SVM-RBF) 80.86±2.3 77.58±6.3
CENTRIST (HEq, SparseCod-512, SVM-RBF) 82.96±5.6 79.23±2.6
CENTRIST (HEq, SparseCod-64, XGB) 83.75±2.1 81.30±4.9
CENTRIST (HEq, SparseCod-128, XGB) 83.68±3.1 82.13±3.1
CENTRIST (HEq, SparseCod-512, XGB) 84.53±2.8 80.48±2.7
CENTRIST (HEq, SparseCod-64, PCA+SVM-RBF) 81.30±1.9 80.10±5.3
CENTRIST (HEq, SparseCod-128, PCA+SVM-RBF) 81.26±4.4 79.61±4.4
CENTRIST (HEq, SparseCod-512, PCA+SVM-RBF) 81.63±5.4 79.68±4.6
CENTRIST (HEq, SparseCod-64, PCA+XGB) 84.95±2.7 79.75±4.3
CENTRIST (HEq, SparseCod-128, PCA+XGB 84.10±2.9 75.55±5.5
CENTRIST (HEq, SparseCod-512, PCA+XGB) 85.33±2.5 78.91±5.4

such as when using the Violence in Crowds dataset, and achieved promising results, as
shown in Table 4.16. Our method obtained an accuracy rate of 90.19% when extracting
features over the full frame content and using only PCA and SVM. When background
subtraction is previously applied to specific regions of the frame, the resulting accuracy
was 90.89%. By visually inspecting some videos in both datasets, we identified some
differences that may have contributed to the background subtraction being more effective
for the Hockey Fights dataset:

1. it contains better resolution and less dark images. Consequently, the Mixture of
Gaussians can discriminate the actor region with more quality. Even by visual
inspection, it is hard to notice the actors in the Violent in Crowds dataset.

2. there are fewer actors on the scene in most of the videos in the Hockey Fights dataset.
Consequently, the background subtraction is less likely to consider many actors
together as the background itself.
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Table 4.13: Results for Violence in Crowds dataset [13] for K-means and Sparse Coding
using Histogram Equalization, compared to applying or not Background Subtraction (Part
2).
Method Accuracy (%) Accuracy (%)

with MoG
HoG+CENTRIST (HEq, K-means-12, SVM-RBF) 82.95±4.0 75.28±5.3
HoG+CENTRIST (HEq, K-means-24, SVM-RBF) 82.90±5.6 75.23±4.9
HoG+CENTRIST (HEq, K-means-32, SVM-RBF) 75.48±9.4 75.30±5.4
HoG+CENTRIST (HEq, K-means-64, SVM-RBF) 68.21±7.2 71.98±5.7
HoG+CENTRIST (HEq, K-means-64, SVM-RBF) 68.21±7.2 75.25±3.8
HoG+CENTRIST (HEq, K-means-12, PCA+SVM-RBF) 75.48±9.4 47.93±6.7
HoG+CENTRIST (HEq, K-means-24, PCA+SVM-RBF) 64.53±6.5 59.00±5.5
HoG+CENTRIST (HEq, K-means-32, PCA+SVM-RBF) 68.56±9.8 58.55±3.3
HoG+CENTRIST (HEq, K-means-64, PCA+SVM-RBF) 61.70±6.4 54.90±3.1
HoG+CENTRIST (HEq, SparseCod-32, AdaBoost) 84.13±2.4 80.90±3.7
HoG+CENTRIST (HEq, SparseCod-64, AdaBoost) 85.36±3.2 80.58±5.0
HoG+CENTRIST (HEq, SparseCod-128, AdaBoost) 83.68±5.4 80.50±3.8
HoG+CENTRIST (HEq, SparseCod-32, SVM-RBF) 56.06±3.7 59.68±4.0
HoG+CENTRIST (HEq, SparseCod-64, SVM-RBF) 67.03±4.5 71.55±7.7
HoG+CENTRIST (HEq, SparseCod-128, SVM-RBF) 82.91±8.2 82.10±4.8
HoG+CENTRIST (HEq, SparseCod-32, XGB) 86.18±2.9 79.70±1.4
HoG+CENTRIST (HEq, SparseCod-64, XGB) 87.43±3.4 81.21±5.0

When applying the combination of HoG+CENTRIST, we slightly improved the result
using SVM: 90.99%. In addition, we also conducted experiments with two other classifiers,
Random Forests and AdaBoost, whose results achieved 90.60% and 92.29%, respectively.
The latter was our best accuracy rate for the Hockey Fights dataset, using the entire frame
to extract the descriptors.

Similarly to our results for Violence in Crowds dataset, our method reached results
very close to those available in the literature at the time these experiments were performed:
94.40% with SRC [145] and 94.20% with MoWLD [107]. Some time later, however,
MoIWLD, a method developed by Zhang et al. [11] achieved 96.80%, which demonstrated
that our approach would need to be refined.

4.6 Automatic Threshold Selection as Voting Crite-
ria

After having observed individually the results of several video recordings, we identified
that the confidence in the decision in the majority of the evaluations varies between 40%
and 70%. For this reason, we also decided to evaluate the threshold that would maximize
the hit rate. To do this after performing the training stage using the training set, we
evaluate the confidence in each frame that is considered violent in the training set.

Then, we found the threshold that splits the classes more efficiently, evaluating the hit
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Table 4.14: Results for Violence in Crowds dataset [14] by adding Gabor as preprocessing
filter.
Method Accuracy (%)
CENTRIST (HEq+Gabor, SVM-RBF) 86.58±3.8
CENTRIST (HEq+Gabor, PCA+SVM-RBF) 82.96±5.3
CENTRIST (HEq+Gabor, XGB) 86.58±4.5
CENTRIST (HEq+Gabor, PCA+XGB) 79.28±3.8
HoG+CENTRIST (HEq+Gabor, SVM-RBF) 87.78±4.3
HoG+CENTRIST (HEq+Gabor, PCA+SVM-RBF) 75.21±3.8
HoG+CENTRIST (HEq+Gabor, XGB) 84.61±3.5
HoG+CENTRIST (HEq+Gabor, PCA+XGB) 79.76±4.8
CENTRIST (HEq+Gabor, K-means-32, SVM-RBF) 78.00±6.4
CENTRIST (HEq+Gabor, K-means-64, SVM-RBF) 81.26±5.4
CENTRIST (HEq+Gabor, K-means-512, SVM-RBF) 81.68±3.5
HoG+CENTRIST (HEq+Gabor, K-means-32, SVM-RBF) 71.56±2.8
HoG+CENTRIST (HEq+Gabor, K-means-64, SVM-RBF) 66.6±4.9
HoG+CENTRIST (HEq+Gabor, K-means-512, SVM-RBF) 58.1±3.8
CENTRIST (HEq+Gabor, PCA+K-means-32,SVM-RBF) 76.75±5.9
CENTRIST (HEq+Gabor, PCA+K-means-64,SVM-RBF) 78.38±7.8
CENTRIST (HEq+Gabor, PCA+K-means-512,SVM-RBF) 80.85±5.0
HoG+CENTRIST (HEq+Gabor, PCA+K-means-32, SVM-RBF) 56.88±4.2
HoG+CENTRIST (HEq+Gabor, PCA+K-means-64, SVM-RBF) 54.06±2.9
HoG+CENTRIST (HEq+Gabor, PCA+K-means-512, SVM-RBF) 52.06±3.2
CENTRIST (HEq+Gabor, SparseCod-32, SVM-RBF) 83.66±4.1
CENTRIST (HEq+Gabor, SparseCod-64, SVM-RBF) 78.88±3.4
CENTRIST (HEq+Gabor, SparseCod-512, SVM-RBF) 82.56±2.4
HoG+CENTRIST (HEq+Gabor, SparseCod-32,SVM-RBF) 59.73±4.8
HoG+CENTRIST (HEq+Gabor, SparseCod-64,SVM-RBF) 69.50±5.4
HoG+CENTRIST (HEq+Gabor, SparseCod-512,SVM-RBF) 83.78±5.5
CENTRIST (HEq+Gabor, PCA+SparseCod-32, SVM-RBF) 84.06±5.9
CENTRIST (HEq+Gabor, PCA+SparseCod-64, SVM-RBF) 80.43±6.0
CENTRIST (HEq+Gabor, PCA+SparseCod-512, SVM-RBF) 75.26±4.5
HoG+CENTRIST (HEq+Gabor, PCA+SparseCod-32, SVM-RBF) 60.13±6.3
HoG+CENTRIST (HEq+Gabor, PCA+SparseCod-64, SVM-RBF) 68.68±6.1
HoG+CENTRIST (HEq+Gabor, PCA+SparseCod-512, SVM-RBF) 84.61±4.7

Table 4.15: Results for Violence in Crowds dataset [13] using different preprocessing filters.
Method Raw (%) HEq (%) MoG (%) HEq+Gabor (%)
HoG+CENTRIST (SVM-RBF) 88.25±3.1 86.96±3.8 87.40±1.4 87.78±4.3

rate using all confidence values between 0.05 and 0.95, varying with step 0.05. We use this
threshold to evaluate features obtained in the test fold. Finally, for each result, we use the
voting criteria to determine which class the video footage will belong to.

Table 4.17 presents the results for extraction in the entire image using automatic
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Table 4.16: Results for Hockey Fights dataset [14].
Method Accuracy (%)
CENTRIST (HEq+MoG, PCA+SVM-RBF) 91.19±2.3
CENTRIST (MoG, PCA+SVM-RBF) 90.89±1.8
CENTRIST (Blur+MoG, SVM-RBF) 91.19±2.3
CENTRIST (Blur+MoG, PCA+SVM-RBF) 90.39±2.9
CENTRIST (Blur, PCA+SVM-RBF) 90.69±2.5
CENTRIST (Blur+HEq, PCA+SVM-RBF) 90.09±2.2
CENTRIST (Blur+HEq, SVM-RBF) 89.89±2.4
CENTRIST (Blur+HEq+MoG, SVM-RBF) 89.89±2.4
CENTRIST (Blur+HEq+MoG, PCA+SVM-RBF) 89.89±1.7
HoG+CENTRIST (Blur+HEq, SVM-RBF) 80.40±4.4
HoG+CENTRIST (HEq, PCA+SVM-RBF) 90.29±2.2
HoG+CENTRIST (HEq, SVM-RBF) 90.99±2.7
HoG+CENTRIST (HEq, AdaBoost) 92.29±3.7
HoG+CENTRIST (HEq+MoG, AdaBoost) 92.29±3.7
HoG+CENTRIST (HEq+MoG, Random Forest) 90.60±3.0

Table 4.17: Results for the dataset Violence in Crowds dataset [14] using automatic
threshold selection.
Method Accuracy

(%)
HoG+CENTRIST (HEq, K-means-12, PCA+SVM-RBF, AutoThresh-0.5) 68.16±10.3
HoG+CENTRIST (HEq, K-means-32, PCA+SVM-RBF, AutoThresh-0.5) 68.56±9.8
HoG+CENTRIST (HEq, AdaBoost, AutoThresh-0.56) 88.25±5.6
HoG+CENTRIST (HEq, K-means-32, AdaBoost, AutoThresh-0.435) 87.43±4.9
HoG+CENTRIST (HEq, K-means-64, AdaBoost, AutoThresh-0.57) 86.63±3.8
HoG+CENTRIST (HEq, XGB, AutoThresh-0.5) 83.28±6.1
HoG+CENTRIST (HEq, K-means-12,XGB, AutoThresh-0.5) 87.01±4.6
HoG+CENTRIST (HEq, K-means-32,XGB, AutoThresh-0.54) 85.38±4.9
HoG+CENTRIST (HEq, K-means-64,XGB, AutoThresh-0.5) 86.61±5.1

selection for voting threshold. The AutoThresh-X parameter indicates which threshold
was identified by our intermediate step as confidence X to maximize the hit rate in the
training set.

In Table 4.17, we can observe that, in most results, the threshold 0.5, or a very close
value, was identified as the best confidence to discriminate the classes. Therefore, we
assume that we could continue to use 0.5 as threshold value instead of trying to determine
it for each experiment. In any case, this evidence does not mean that we could not use the
automatic threshold selection criteria to refine models whose results are already promising
using 0.5 as a threshold value.
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4.7 Block Evaluation using Sliding Window
As mentioned in Section 3.2, feature extraction was also performed using block evaluation.
To do this, we initially tackled Sliding Window approach using blocks with 128×128 pixels
to extract features using CENTRIST and HoG+CENTRIST. Then, we evaluate different
dimensions of blocks to identify which one would improve accuracy.

In Table 4.18, we can easily observe that the results using Sliding Window outperform
the results based on the holistic method. In addition, we also applied a coding technique
before the classification step to find how the Sliding Window approach would behave.
However, we noticed that, using Sparse Coding technique, the efficiency was reduced from
89.86% to 87.41%.

Table 4.18: Results for Violence in Crowds dataset [13] using Sliding Window.
Method Accuracy (%)
CENTRIST (HEq, blocks-64, SVM-RBF) 89.85±3.3
CENTRIST (HEq, blocks-96, SVM-RBF) 89.88±5.0
HoG+CENTRIST (HEq, blocks-64, SVM-RBF) 91.05±1.6
HoG+CENTRIST (HEq, blocks-64, PCA+SVM-RBF) 91.46±1.4
HoG+CENTRIST (HEq, blocks-72, SVM-RBF) 90.26±1.8
HoG+CENTRIST (HEq, blocks-96, SVM-RBF) 89.86±2.7
HoG+CENTRIST (HEq, blocks-96, PCA+SVM-RBF) 89.03±1.5
HoG+CENTRIST (HEq, blocks-96, SparseCod-64, SVM-RBF) 87.41±2.3
HoG+CENTRIST (HEq, blocks-96, PCA+SparseCod-64, SVM-RBF) 89.00±3.1

4.7.1 Results using Sliding Window for Hockey Fights Dataset
For the Sliding Window approach, according to the results reported in Table 4.19, the
CENTRIST and HoG+CENTRIST methods reached 91.69% and 92.79%, respectively,
on the Hockey Fights dataset. The latter was approximately superior to the result of the
evaluation of entire frames (92.29%, as shown in Table 4.16).

In addition to AdaBoost, we used XGB, identified during the development of our
research, as an alternative boosting classifier. Through these experiments, we confirmed
that the results using XGB generally slightly outperformed AdaBoost. Moreover, for the
Hockey Fights dataset, unlike the results for the Violent in Crowds dataset, we can see
that the best results were obtained using a larger block size instead of 64×64 pixels. This
fact allows us to assume that not always reducing the block size will improve the accuracy.
After performing a visual inspection of the datasets, we can identify the actors’ height are
generally different and could probably have been cut when using smaller block sizes.

4.8 Comparing Results to HoG Descriptor
To identify that the efficiency of our combination was not obtained only due to the HoG
property, we also performed experiments using the HoG descriptor individually to extract
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Table 4.19: Results for Hockey Fights dataset [14] using Sliding Window.
Method Accuracy (%)
CENTRIST (HEq, blocks-64, AdaBoost) 90.79±1.9
CENTRIST (HEq, blocks-64, SVM-RBF) 90.99±2.4
CENTRIST (HEq, blocks-64, XGB) 91.19±2.3
CENTRIST (HEq, blocks-96, AdaBoost) 89.69±1.7
CENTRIST (HEq, blocks-96, SVM-RBF) 91.69±2.9
CENTRIST (HEq, blocks-96, XGB) 91.29±2.0
HoG+CENTRIST (HEq, blocks-64, AdaBoost) 90.79±1.8
HoG+CENTRIST (HEq, blocks-64, SVM-RBF) 90.99±2.4
HoG+CENTRIST (HEq, blocks-64, XGB) 91.59±2.7
HoG+CENTRIST (HEq, blocks-96, AdaBoost) 90.19±1.7
HoG+CENTRIST (HEq, blocks-96, SVM-RBF) 92.79±3.0
HoG+CENTRIST (HEq, blocks-96, XGB) 91.29±2.0

features from the video frames. For this, we use both approaches to analyze frames: entire
content and Sliding Window over blocks.

Table 4.20: Results for Violence in Crowds dataset [14] for HoG descriptor using Sliding
Window.

Method Accuracy (%)
HoG (HEq, SVM-RBF) 78.46±5.7
HoG (HEq, K-means-64+SVM-RBF) 68.28±8.6
HoG (HEq, SparseCod-64+SVM-RBF) 69.11±8.6
HoG (HEq+MoG, SVM-RBF) 77.25±3.7
HoG (HEq+MoG, K-means-64+SVM-RBF) 63.51±8.4
HoG (HEq+MoG, SparseCod-64+SVM-RBF) 74.83±7.5
HoG (HEq, PCA+SVM-RBF) 78.08±4.5
HoG (HEq, PCA+K-means-64+SVM-RBF) 64.20±7.4
HoG (HEq, PCA+SparseCod+SVM-RBF) 78.08±4.5
HoG (HEq, XGB) 76.05±4.6
HoG (HEq, K-means-64+XGB) 80.48±7.2
HoG (HEq, SparseCod-64+XGB) 80.48±3.5
HoG (HEq, PCA+XGB) 78.43±7.5
HoG (HEq, PCA+K-means-64+XGB) 73.16±3.4
HoG (HEq, PCA+SparseCod-64+XGB) 78.01±5.1

Table 4.20 presents results for the HoG descriptor. In summary, we compare the results
of experiments using the HoG descriptor only to the results provided by the CENTRIST
descriptor 4.6. Then, we can observe that the effectiveness of HoG is approximately less
when applied individually. It is important to mention that the coding techniques using
eXtreme Gradient Boosting (78.46±5.7%) obtained results slightly superior to the results
achieved using only SVM (80.48±3.5%).

The HoG descriptor was also applied individually using Sliding Window followed by



75

Table 4.21: Results for Violence in Crowds dataset [14] for HoG using grid without and
with automatic threshold selection.

Method Accuracy (%)
HoG (HEq, blocks-96, SVM-RBF) 82.15±4.6
HoG (HEq, blocks-64, SVM-RBF) 80.91±3.1
HoG (HEq, blocks-96, K-means-64+SVM-RBF) 80.48±3.0
HoG (HEq, blocks-64, K-means-64+SVM-RBF) 79.68±3.7
HoG (HEq, blocks-96, SparseCod-64+SVM-RBF) 81.76±6.2
HoG (HEq, blocks-64, SparseCod-64+SVM-RBF) 78.55±6.5
HoG (HEq, blocks-96, XGB) 78.10±8.6
HoG (HEq, blocks-64, XGB) 75.65±4.3
HoG (HEq, blocks-96, K-means-64+XGB) 76.08±5.3
HoG (HEq, blocks-64, K-means-64+XGB) 72.78±2.7
HoG (HEq, blocks-96, SparseCod-64+XGB) 73.23±9.0
HoG (HEq, blocks-64, SparseCod-64+XGB) 72.03±5.2
HoG (HEq, blocks-96, PCA+XGB) 77.31±6.2
HoG (HEq, blocks-64, PCA+XGB) 76.48±6.4
HoG (HEq, blocks-96, PCA+K-means-64+XGB) 76.91±6.6
HoG (HEq, blocks-64, PCA+K-means-64+XGB) 73.58±3.2
HoG (HEq, blocks-96, PCA+SparseCod-64+XGB) 73.61±6.6
HoG (HEq, blocks-64, PCA+SparseCod-64+XGB) 72.41±4.6
HoG (HEq, blocks-96, XGB, AutoThresh-0.665) 82.08±2.2
HoG (HEq, blocks-64, SVM-RBF, AutoThresh-0.74) 82.05±3.3
HoG (HEq, blocks-96, PCA+XGB, AutoThresh-0.72) 83.75±4.8
HoG (HEq, blocks-64, SVM-RBF, PCA+AutoThresh-0.77) 80.50±6.0

coding techniques. Table 4.21 shows results using only feature extraction. Although
the extraction approach using the entire frame seems to have improved effectiveness,
they do not outperform the results of experiments using only the CENTRIST descriptor
(Table 4.6).

Another point to be highlighted is that, when the automatic threshold selection is
performed, for XGB using Sliding Window approach with a block size of 96×96, the
accuracy improved from 78% to 82% and from 77% to 83% using PCA. However, for
SVM-RBF, observing the standard deviation, the effectiveness seems more stable near
88% when using HoG+CENTRIST for all different frame rates.

4.9 Results using Optical Flow-based Descriptors
In this section, we show results related to techniques that explore optical flow through
the transition between frames to evaluate when violence occurs. Results are presented for
two different approaches: the first is based on the Histogram of the Dense Optical Flow
(HoDenseOF) and the second is based on the application of the CENTRIST descriptor on
the image generated from the Dense Optical Flow (CENTRISTofDenseOF). In the following,
we also combine the mentioned methods with the CENTRIST and CENTRIST+HoG
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descriptors.

Table 4.22: Results for Violence in Crowds dataset [14] using descriptors based on Optical
Flow.

Method Accuracy (%)
HoDenseOF (HEq, XGB) 65.05±4.5
HoDenseOF (HEq, SVM-RBF) 82.15±4.6
HoDenseOF (HEq, SVM-linear) 63.06±7.1
CENTRISTofDenseOF (HEq, XGB) 82.15±4.6
CENTRISTofDenseOF (HEq, SVM-RBF) 82.15±4.6
CENTRISTofDenseOF (HEq, SVM-linear) 82.15±4.6
HoDenseOF+CENTRIST (HEq, XGB) 83.31±4.7
HoDenseOF+CENTRIST (HEq, SVM-RBF) 85.41±3.2
HoDenseOF+HoG+CENTRIST (HEq, SVM-RBF) 89.06±3.6
HoDenseOF+HoG+CENTRIST (HEq, SVM-RBF) 86.60±3.0
CENTRISTOfDenseOF+HoG+CENTRIST (HEq, XGB) 85.40±3.8
CENTRISTOfDenseOF+HoG+CENTRIST (HEq, SVM-RBF) 87.86±4.0

By comparing the results shown in Table 4.22, it is possible to identify that the
CENTRIST of the Dense Optical Flow, by itself, obtains results certainly better than
using Histogram of the Dense Optical Flow. Moreover, by comparing them to the results of
Table 4.6, the combination of Histogram of Dense Optical Flow with CENTRIST does not
seem to aggregate information to CENTRIST. Furthermore, when combining Histogram
of Dense Optical Flow with CENTRIST and HoG, the results appear to be inferior to
using only CENTRIST+HoG.

In Table 4.18, we present results of experiments in which we applied Sliding Window
and used the combination of Histogram and CENTRIST of the Optical Flow. Table 4.23
presents results for both combinations. For HoDenseOF+HoG+CENTRIST and CEN-
TRISTOfDenseOF+HoG+CENTRIST, we obtained 89.83% and 89.85%, respectively,
against 90.26% from HoG+CENTRIST using the same 72×72 block size.

Table 4.23: Results for Violence in Crowds dataset [14] using grid with descriptors based
on Optical Flow.
Method Accuracy

(%)
HoDenseOF+HoG+CENTRIST (HEq, blocks-72, SVM-RBF) 89.06±3.6
HoDenseOF+HoG+CENTRIST (HEq, blocks-96, SVM-RBF) 89.83±1.2
CENTRISTOfDenseOF+HoG+CENTRIST (HEq,blocks-72,SVM-RBF) 89.85±2.1
CENTRISTOfDenseOF+HoG+CENTRIST (HEq,blocks-96,SVM-RBF) 89.85±1.1
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4.10 Results using Block Selection Criteria based on
Optical Flow Evaluation

As previous results related Background Subtraction using MoG showed substantial decline
compared to the standard Sliding Window approach, we noticed that the background and
the camera motion significantly impact training and, consequently, our final results. Based
on this fact, we addressed how we could identify the most relevant parts of the scene and
focused our efforts on evaluating the difference between the background motion and the
motion produced by the actors in the scene.

Taking this into account, we raise the assumption that whenever the camera moves
in one direction and considering that no actor is moving in the scene, all the pixels in
the scene move in the same direction and speed. Consequently, if there is movement in
the scene, the background pixels should keep moving according to the camera motion
and only the movement of the actors could be discriminated in comparison to the rest of
the scene. Therefore, we could identify regions of interest by evaluating the movement in
specific regions of the scene in comparison to the global motion. To do so, we compare the
regions of the scene whose average optical flow is sufficiently different compared to the
global average optical flow.

In this section, we explore methods to analyze the relevance of the blocks selected
by the Sliding Window approach. In the following subsection, experimental results are
presented to filter the least relevant blocks for the scene.

4.10.1 Results for Violence in Crowds Dataset using Sliding
Window using Block Filtering

In order to restrict more relevant regions of interest, we compare the values obtained
between the global optical flow and the local optical flow for each block of the Sliding
Window.

Table 4.24 contains the results for the Sliding Window using optical flow and different
approaches to evaluate the optical flow in order to obtain a threshold value to filter the
most relevant blocks according to the criteria used. In addition to the Otsu’s method, we
also use mean and median to evaluate a threshold value, since they can be considered
simpler than our previous approach. In this table, the following legend: local block measure
> global measure, where local block measure is the value obtained through a statistical
method applied to evaluate each block region, whereas global measure is the threshold
value obtained using a method to assess the entire frame region. Thus, the block will be
passed to the next pipeline layer, if the local measure is equal to or greater than the global
measure.

In these experiments, we evaluated different approaches that have already been used in
Section 3.3. These functions showed similar results when evaluating the scene. In general,
we can identity that, compared to the global threshold, using values greater than the
threshold is more efficient than calculating local metrics. This statement was true for
all global metrics. Furthermore, when evaluating the best local metric, the mean local
optical flow obtained good results compared to the local median. In general, when visually
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inspecting the video recordings, in the majority of the videos, actors are arranged over
much of the scene. Thus, when methods were used to remove many blocks at once, we
significantly reduced the amount of relevant descriptors produced for training.

Table 4.24: Results for Violence in Crowds dataset [14] using Sliding Window with filters
based on statistics from the Optical flow and Otsu’s method.

Method Accuracy (%)
HoG (HEq, blocks-96, SVM-RBF, Otsu) 82.15±4.6
CENTRIST (HEq, blocks-96, SVM-RBF, Avg>Median) 89.45±3.8
HoG+CENTRIST (HEq, blocks-96, SVM-RBF, Avg>Median) 88.63±4.1
CENTRIST (HEq, blocks-96, SVM-RBF, Any>Median) 87.35±4.1
HoG+CENTRIST (HEq, blocks-96, SVM-RBF, Any>Median) 87.35±4.1
CENTRIST (HEq, blocks-96, SVM-RBF, Avg>Avg) 89.03±2.9
HoG+CENTRIST (HEq, blocks-96, SVM-RBF, Avg>Avg) 89.03±2.9
HoG+CENTRIST (HEq, blocks-96, SVM-RBF, Median>Otsu) 62.16±3.5
HoG+CENTRIST (HEq, blocks-96, SVM-RBF, Avg>Otsu) 89.03±2.9
HoG+CENTRIST (HEq, blocks-96, SVM-RBF, Any>Otsu) 90.23±2.4
HoG+CENTRIST (HEq, blocks-64, PCA+SVM-RBF, Any>Otsu) 91.45±1.5
HoG+CENTRIST (HEq, blocks-64, SVM-RBF, Any>Otsu) 91.48±2.2

4.11 Experiments using Cross Dataset
In order to evaluate the effectiveness of our proposed methods in a more challenging
scenario, we executed cross-dataset experiments using both Violence in Crowds and
Hockey Fights datasets.

Results when training with the Violence in Crowds dataset and evaluating on the
Hockey Fight dataset are presented in Table 4.25. It is possible to observe that there is a
small difference between applying blocks of 64×64 or 96×96 and applying block filtering.
In summary, we obtained an accuracy close to 51%, as well as precision and recall rates of
76.92% and 4.00%, respectively.

Table 4.25: Cross-dataset results for HoG+CENTRIST and Sliding Window on Hockey
Fights dataset using Violence in Crowds as training set.
Method Accuracy Precision Recall
HEq, blocks-96 51.00 77.78 2.80
HEq, blocks-96+OptFlowDenseFilter (Any>Avg) 51.00 77.78 2.80
HEq, blocks-96+OptFlowDenseFilter (Any>Otsu) 51.00 75.00 3.00
HEq, blocks-96+OptFlowMagnitFilter (Any>Avg) 51.00 72.97 5.40
HEq, blocks-64 51.70 72.97 5.40
HEq, blocks-64+OptFlowDenseFilter (Any>Avg) 51.40 76.92 4.00
HEq, blocks-64+OptFlowDenseFilter (Any>Otsu) 51.40 76.92 4.00
HEq, blocks-64+OptFlowMagnitFilter (Any>Avg) 51.40 76.92 4.00
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On the other hand, Table 4.26 presents the results when training on the Hockey Fights
dataset and evaluating on the Violence in Crowds dataset.

Table 4.26: Cross-dataset results for HoG+CENTRIST and Sliding Window on Violence
in Crowds dataset using Hockey Fights as training set.
Method Accuracy Precision Recall
HEq, blocks-96 55.28 52.79 100.00
HEq, blocks-96+OptFlowMagnitFilter (Any>Avg) 55.28 52.79 100.00
HEq, blocks-96+OptFlowDenseFilter (Any>Otsu) 55.69 53.02 100.00
HEq, blocks-96+OptFlowDenseFilter (Any>Avg) 55.69 53.02 100.00
HEq, blocks-64 55.69 53.02 100.00
HEq, blocks-64+OptFlowMagnitFilter (Any>Avg) 57.72 54.19 100.00
HEq, blocks-64+OptFlowDenseFilter (Any>Otsu) 58.13 54.42 100.00
HEq, blocks-64+OptFlowDenseFilter (Any>Avg) 58.13 54.42 100.00

Comparing the results in Tables 4.25 and 4.26, we observe that, even tough applying
the same technique, the dataset used for training directly impacts the violence detection.
This can be evidenced by observing the difference between the recall rates when training
with each dataset. When using Hockey Fights for training, the obtained recall rate is
almost 100%, allowing us to conclude that the false positive rate is extremely high.

In Tables 4.27 and 4.28, we report cross-dataset results for Violence in Crowds and
Hockey Fights by classifying each frame individually and adopting voting criteria through
results of all descriptors from the same frame.

Table 4.27: Cross-dataset results for HoG+CENTRIST, Sliding Window and Classification
per Frame on Hockey Fights dataset using Violence in Crowds as training set.
Method Accuracy Precision Recall
HEq, blocks-96 52.51 77.96 7.22
HEq, blocks-96+OptFlowDenseFilter (Any>Avg) 52.21 85.71 5.57
HEq, blocks-96+OptFlowDenseFilter (Any>Otsu) 52.20 85.71 5.57
HEq, blocks-96+OptFlowMagnitFilter (Any>Avg) 52.21 85.71 5.57
HEq, blocks-64 52.71 74.35 8.52
HEq, blocks-64+OptFlowDenseFilter (Any>Avg) 52.14 80.91 5.91
HEq, blocks-64+OptFlowDenseFilter (Any>Otsu) 52.21 81.82 5.97
HEq, blocks-64+OptFlowMagnitFilter (Any>Avg) 52.14 80.91 5.91

In Table 4.27, we have results using Sliding Window approach with blocks of 64×64 and
96×96 pixels. In addition, techniques using block filtering were also applied. In general
even having obtained precision considerably higher than expected (77.96%), the recall rate
is extremely low (7.22%). When comparing only the Sliding Window, we noticed that the
precision worsens when the blocks size is reduced. A similar behavior can be observed
when applying block filtering, although precision has increased (85.71%) and recall has
decreased (5.57%).

When evaluating the reverse cross-dataset experiment, we observe that the opposite
behavior occurs. Although the results related to recall are expressive (98%), the precision
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Table 4.28: Cross-dataset results for HoG+CENTRIST, Sliding Window and Classification
per Frame on Violence in Crowds dataset using Hockey Fights as training set.
Method Accuracy Precision Recall
HEq, blocks-96 62.16 60.80 98.54
HEq, blocks-96+OptFlowMagnitFilter (Any>Avg) 63.69 62.34 98.35
HEq, blocks-96+OptFlowDenseFilter (Any>Otsu) 63.64 62.33 98.25
HEq, HEq,blocks-96+OptFlowDenseFilter (Any>Avg) 63.69 62.34 98.35
HEq, blocks-64 64.77 62.41 99.27
HEq, blocks-64+OptFlowMagnitFilter (Any>Avg) 66.01 63.76 99.28
HEq, blocks-64+OptFlowDenseFilter (Any>Otsu) 65.97 63.73 99.28
HEq, blocks-64+OptFlowDenseFilter (Any>Avg) 66.01 63.76 99.28

is relatively low (62%). Comparing results using blocks with 64×64 and 96×96 pixels, it
is possible to notice that both precision and recall rates were slightly improved for 62.41%
and 99.27%, respectively. After filtering blocks using sliding window approach, we notice
a small improvement for precision (63.76%) and recall (99.28%) using HoG+CENTRIST.

From the cross-dataset experiments, we identified a sensibility of our method using the
CENTRIST descriptor. The dataset used for training makes our model highly sensitive
to scenario variations. We obtained high precision and low recall when using the Violent
Flow dataset as training set and Hockey Fights dataset as test set. On the other hand,
we obtained lower precision and higher recall when using the Hockey Fights dataset as
training set. Therefore, in addition to motion occurrence, the actions used for training are
very important to evaluate the real-world scenarios.

4.12 Final Considerations
In Tables 4.29 and 4.30, we summarize the best results for each approach based on
the CENTRIST descriptor. By comparing the results obtained via CENTRIST and
HoG+CENTRIST, we can observe that they reached results that overcome most traditional
handcrafted techniques for the Violence in Crowds dataset (shown in Table 2.2) and for
the Hockey Fights dataset (shown in Table 2.1).

It is possible to see that the sliding window approach achieved competitive results for
violence detection on both datasets, especially when optical flow block filtering was added
to the pipeline. When applying PCA to reduce the dimensionality of HoG+CENTRIST,
we achieved 91.46%. When applying block filtering using Otsu’s method to obtain the
global threshold to filter blocks, we obtained 91.45±1.5 and 91.48±2.2 with and without
PCA, respectively. The latter result was the highest we obtained in this work for the
Violent in Crowds dataset [13].

In Table 4.30, we have the best results for the Hockey Fights dataset [14]. Although
most of the techniques related to this work have focused on the Violent in Crowds
dataset [13], we can observe that the combination of CENTRIST and HoG achieved
considerably high results, even without requiring the sliding window approach. Using
different classifiers, we obtained an accuracy rate greater than 92%. Then, using the sliding
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Table 4.29: Accuracy for the Violence in Crowds [13] and Hockey Fights [14] datasets.
Method Violence

in Crowds (%)
Baseline - ViF (SVM) [13] 81.30±0.21
3D-ResNet [151] 94.54±4.1
LHoG+LHOF+Bow [110] 94.60±1.7
BiConvLSTM SpatialTemporalEnconder [139] 96.32±1.5
Semantic Correspondence [144] 97.69
Ullah et al. [143] 98.00
CENTRIST (SVM) 85.75±5.6
CENTRIST (PCA+SVM) 86.16±2.8
CENTRIST (SGD) 87.80±1.8
CENTRIST (MoG, PCA+SVM) 83.73±2.2
CENTRIST (MoG, PCA+SGD) 83.30±2.5
CENTRIST (MoG, SVM) 82.51±2.7
CENTRIST (MoG, SGD) 83.35±1.3
CENTRIST Multiscale (SVM) 84.90±5.4
CENTRIST Multiscale (PCA+SVM) 85.81±2.6
CENTRIST Multiscale (MoG, SVM) 81.70±2.6
CENTRIST Multiscale (MoG, SGD) 82.96±2.5
HoG+CENTRIST (SVM) 86.96±3.1
HoG+CENTRIST (AdaBoost) 86.61±4.1
HoG+CENTRIST (SGD) 85.81±5.8
HoG+CENTRIST (Random Forest) 86.20±6.0
HoG+CENTRIST (MoG, SVM) 87.40±1.4
HoG+CENTRIST (MoG, SGD) 85.00±4.3
HoG+CENTRIST (MoG, AdaBoost) 80.16±4.7
HoG+CENTRIST (MoG, Random Forest) 74.85±3.8
CENTRIST (blocks-96, SVM) 89.88±5.0
CENTRIST (blocks-64, SVM) 89.85±3.3
CENTRIST (blocks-64, PCA+Adaboost) 87.76±2.4
HoG+CENTRIST (blocks-96, SVM) 89.86±2.7
HoG+CENTRIST (blocks-96, SVM, Any>Otsu) 90.23±2.4
HoG+CENTRIST (blocks-72, SVM) 90.26±1.8
HoG+CENTRIST (blocks-64, SVM) 91.05±1.6
HoG+CENTRIST (blocks-64, SVM, Any>Otsu) 91.48±2.2
HoG+CENTRIST (blocks-64, PCA+SVM) 91.46±1.4
HoG+CENTRIST (blocks-64, PCA+SVM, Any>Otsu) 91.45±1.5

window approach, we slightly improved our best result for the Hockey Fights dataset [14]
to 92.79% using 96×96 block size with sliding window. This shows that the block size
cannot be reduced indefinitely to improve the performance of our model. When visually
comparing the differences between videos from the Violent in Crowds and Hockey Fights
datasets, we can notice that the actors in the Hockey Fights dataset are considerably larger
and well defined compared to the actors in the Violent in Crowds dataset. Therefore, our
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main assumption is that small block sizes are not efficient for cropping regions that are
considerably smaller than the actor height. It could only crop pieces of the image that
do not contain any relevant information. Furthermore, against the behavior shown for
Violent in Crowds dataset, even though it improved most of the results for the sliding
window, the approach using block filtering based on optical flow did not outperform the
best result for our secondary dataset.

Table 4.30: Accuracy for the Hockey Fights [14] dataset.
Method Hockey

Fights (%)
ConvLSTM [148] 97.10±0.5
FightNet [149] 97.01
BiConvLSTM SpatialTemporalEnconder [139] 97.90±0.3
CNN+LSTM (Darknet19) [136] 98.00±0.5
BiConvLSTM SpatialEnconder [139] 98.10±0.5
CENTRIST (SVM) 89.99±1.7
CENTRIST (PCA+SVM) 88.69±1.8
CENTRIST (SGD) 88.49±7.1
CENTRIST(MoG, PCA+SVM) 91.19±2.3
CENTRIST (MoG, PCA+SVM) 91.19±2.3
CENTRIST (MoG, SGD) 90.69±3.6
CENTRIST Multiscale (PCA+SVM) 88.19±3.8
CENTRIST Multiscale (SVM) 89.59±3.8
CENTRIST Multiscale (MoG, SGD) 89.39±2.1
HoG+CENTRIST (SVM) 90.99±2.8
HoG+CENTRIST (AdaBoost) 92.29±3.7
HoG+CENTRIST (Random Forest) 89.50±2.7
HoG+CENTRIST (MoG, SVM) 90.99±2.7
HoG+CENTRIST (MoG, AdaBoost) 92.29±3.7
HoG+CENTRIST (MoG, Random Forest) 90.60±3.0
CENTRIST (blocks-96, SVM) 91.69±2.9
CENTRIST (blocks-64, SVM) 90.69±3.1
CENTRIST (blocks-64, PCA+Adaboost) 89.19±2.1
HoG+CENTRIST (blocks-96, SVM) 92.79±3.0
HoG+CENTRIST (blocks-72, SVM) 91.99±2.75
HoG+CENTRIST (blocks-96, SVM, Any>Otsu) 85.59±3.4
HoG+CENTRIST (blocks-64, SVM) 90.99±2.4
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Chapter 5

Conclusions and Future Work

In this work, we presented a method for detecting violence events in video scenes based on
the CENTRIST descriptor. Several experiments were carried out on two benchmarks to
demonstrate the effectiveness of our method.

Although the proposed approach has not overcome the best results reported in the
literature, the accuracy rates are very competitive, using a conceptually simple technique
capable of capturing discriminative characteristics for violence classification in video scenes.
In addition, its combination with preprocessing strategies, such as histogram equalization
and background subtraction, provides improvements to the descriptor.

Some relevant experimental results obtained with our method are summarized as
follows:

(a) Violence in Crowds dataset:

• entire frame approach: CENTRIST (86.96%) and HOG+CENTRIST (87.45%).
• block-based approach: CENTRIST (89.88%) and HOG+CENTRIST (91.46%).
• block-based approach using optical flow filter (Any>Otsu): HOG+CENTRIST
(90.23%) using 96×96 and HOG+CENTRIST (91.48%) using 64×64.

(b) Hockey Fights dataset:

• entire frame approach: CENTRIST (90.69%) and HOG+CENTRIST (92.29%)
• block-based approach: CENTRIST (91.69%) and HOG+CENTRIST (92.79%)

From these results, it is possible to draw some conclusions related to the experiments
conducted using the entire video frame as input to the feature extraction stage:

• CENTRIST has its performance increased when combined with the HOG descriptor.

• Background subtraction slightly improved the results when evaluating the entire
frame and when using sliding window for Hockey Fights dataset.

Additionally, as mentioned in Section 3.3, we identified by visual inspection the
background interference and motion when identifying the action in the scene. By using
pre-trained models to evaluate different datasets, as shown in the experiments using the
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cross datasets, described in Section 4.11, we can conclude that the CENTRIST-based
descriptors are still sensitive to different types of actions. When evaluating the Hockey
Fights dataset, we can notice that having different action patterns on the scene directly
implies the precision result. Furthermore, by analyzing video recording (or movies) whose
content is not fully related to crowded scenes, it is possible to notice that identifying
regions of interest is still a problem when evaluating the scene.

Overall, although the combination CENTRIST+HoG is useful for characterizing crowd
scenes, it is important to highlight that when the object detection is relatively small in the
image, we cannot accurately detect the abnormality in the scene. In addition, as reported
by additional experiments using cross datasets (shown in Section 4.11, the precision is
highly affected due to the characteristics of the dataset). Thus we can state that using
CENTRIST or HoG for training through Violence in Crowds dataset would not be so
effective for evaluating another datasets, such as Hockey Fights. This assumption allows
us to conclude that our proposed descriptor would not have enough effect to discriminate
between normal and unknown abnormal actions based on a limited dataset.

Moreover, although we tried to discriminate regions of interest in the image, we were
unable to effectively identify these regions through optical flow only. In many cases,
especially when the camera is being moved too far, it is not possible to discriminate
between actors and background. In these cases, the descriptors are extracted from samples
of part of the background and used incorrectly in the training process. Consequently,
even using different features or training methods, their performance has been considerably
affected.

In conclusion, we can answer the research questions formulated in Section 1.4:

• Are holistic techniques effective to detect violence, especially in crowd scenes?
Answer: Holistic features, such as HoG, CENTRIST and HoF, presented reasonable
results when evaluating the Violence in Crowds and Hockey Fights datasets, even
when extracted directly from the entire frame. Thus, we conclude that the application
of the holistic feature can be effective in discriminating crowd scenes.

• How does CENTRIST descriptor perform to detect violence?
Answer: CENTRIST has obtained results that overcomes the traditional handcraft
descriptors such as HoG and HOF to evaluate crowed scenes. In Table 4.6 we observe
the CENTRIST outperforms traditional feature descriptors, and can be enhanced
when combined to descriptors with complementary characteristics.

• Which approaches using CENTRIST could improve the effectiveness?
Answer: Using small portions of the scene proved to be more effective than evalu-
ating the entire video frame. In general, when the camera motion is less intense, the
method is more robust. Using block filtering with less restrictive approaches (for
instance, Local(Any)>Global(Otsu) and Local(Any)>Global(mean)) can remove
less relevant blocks.

• Can the combination between CENTRIST and other descriptor improve violence
detection?
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Answer: Regarding the experiments reported in Section 4.2, using various frame
capture rates and different classifiers, it is possible to observe in Table 4.1 that
the results combining HoG and CENTRIST surpassed most results using only
CENTRIST and this fact is more evident when comparing CENTRIST+HoG to
results using only HoG. In Table 4.5 we can clearly see that the results using HoG
only are considerably lower than using CENTRIST+HoG.

In conclusion, although our method obtained competitive results for crowded scenes
when evaluating a specific dataset, we have identified some weaknesses that are relevant
when considering applying it to real-world scenes. Among them we can highlight:

• the cross-dataset validation showed that our method is not suitable for generalizing
different types of violence scenes.

• the sliding window approach depends on the actor dimensions used to train the
model; therefore, the block size cannot be reduced too much.

• the optical flow block filtering was unable to detect relevant interest regions due to
camera motion.

Based on these statements, new descriptors and representations must be investigated
to make the training step more robust and generalist to identify abnormal actions and
violent behavior, as well as more invariant to motion influence. In addition, multiscale
could be used in combination with the sliding window approach in order to make the
model more robust when smaller blocks are used. Deep learning networks have potential
to explore such events when large amount of data is available.
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