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Resumo

O câncer de pulmão é o tipo mais comum de câncer em homens e o terceiro mais comum
em mulheres. Devido ao mau prognóstico, o câncer de pulmão é responsável pela maior
taxa de mortalidade, atingindo 1,8 milhão de mortes por ano. O diagnóstico e o trata-
mento nos estágios iniciais podem aumentar as chances de sobrevivência. A tomografia
computadorizada (TC) é a modalidade de imagem preferida para detectar e diagnosticar
câncer de pulmão, pois fornece imagens 3D do tórax em alta resolução, facilitando a de-
tecção de pequenos nódulos. No entanto, a natureza 3D das imagens dificulta sua análise
visual. Como conseqüência, o número de falsos positivos ainda é alto e, mesmo contando
com a opinião de vários especialistas, o diagnóstico é frequentemente sujeito a alguma
falta de consenso.

Os sistemas de Diagnóstico Assistida por Computador (CAD) foram desenvolvidos
para solucionar o problema, auxiliando especialistas na tarefa de detecção e classificação
mais rápidas e precisas de anormalidades. As técnicas usadas nos sistemas CAD podem
ser divididas em dois grupos: sistemas CAD que exploram features de imagem baseados
em conhecimento e sistemas CAD que aprendem os features de imagens anotadas, prin-
cipalmente baseadas em aprendizado profundo por meio de redes neurais convolucionais
(CNNs).

Na última década, muitos métodos computacionais (sistemas CAD) foram desenvol-
vidos para auxiliar os médicos na detecção de nódulos pulmonares. Tais métodos são
baseados principalmente em CNNs, que alcançaram resultados promissores na detecção
precoce de nódulos pulmonares. No entanto, esses métodos geram várias regiões candida-
tas por nódulo, de modo que um algoritmo de não-máxima supressão (NMS) é necessário
para selecionar uma única região por nódulo, eliminando as redundantes. O GossipNet
é uma rede neural 1D para NMS, que pode aprender os parâmetros do NMS em vez de
confiar nos parâmetros artesanais. No entanto, o GossipNet não tira proveito dos features
de imagem para aprender NMS.

Neste trabalho, propomos um sistema CAD automatizado para detecção de nódulos
pulmonares, que consiste em quatro módulos: pré-processamento, a definição de uma
região de interesse (por exemplo, por segmentação pulmonar), detecção de nódulos e
a eliminação de candidatos redundantes. Para a segmentação pulmonar, usamos uma
abordagem recente baseada em sequências de transformações florestais de imagem (IFTs)
denominada ALTIS, fornecendo uma segmentação mais precisa dos pulmões em compara-
ção com o método usado no desafio LUNA16. Para a detecção de nódulos e a eliminação
de candidatos redundantes, usamos o 3D Faster R-CNN com ResNet18 para a detecção
de regiões candidatas com nódulos e apresentamos FeatureNMS — uma rede neural que
fornece features de imagem adicionais à entrada do GossipNet, que resultam de uma
transformação sobre as intensidades de voxel de cada região candidata na imagem da TC.
Para validação, usamos o conjunto de dados de desafio LUNA16.



Abstract

Lung cancer is the most common type of cancer in men and the third most common
one in women. Due to poor prognosis, lung cancer is responsible for the largest mortality
rate, reaching 1.8 million deaths per year. Diagnosis and treatment at the early stages can
increase the chances of survival. Computerized Tomography (CT) is the imaging modality
of preference to detect and diagnose lung cancer since it provides high-resolution 3D
images of the thorax, facilitating the detection of small nodules. However, the 3D nature
of the images makes their visual analysis difficult. As a consequence, the number of false
positives is still high and, even by counting on the opinion of multiple specialists, the
diagnosis is often subjected to some lack of consensus.

Computer-Aided Detection (CAD) systems have been developed to address the prob-
lem, assisting to specialists in the task of quicker and more accurate detection and classi-
fication of abnormalities. The techniques used in CAD systems may be divided into two
groups: CAD systems that explore knowledge-based image features and CAD systems
that learn the features from annotated images, mostly based on deep learning through
Convolutional Neural Networks (CNNs).

In the last decade, many computational methods (CAD systems) have been developed
to assist physicians in lung nodule detection. Such methods are mostly based on CNNs,
which have achieved promising results in early detection of lung nodules. However, these
methods generate several candidate regions per nodule, such that a Non-Maximum Sup-
pression (NMS) algorithm is required to select a single region per nodule while eliminating
the redundant ones. GossipNet is a 1D Neural Network (NN) for NMS, which can learn
the NMS parameters rather than relying on handcrafted ones. However, GossipNet does
not take advantage of image features to learn NMS.

In this work, we propose an automated CAD system for lung nodule detection which
consists of four modules: pre-processing, the definition of a region of interest (e.g., by lung
segmentation), nodule detection, and the elimination of redundant candidates. For lung
segmentation, we use a recent approach based on sequences of Image Foresting Transforms
(IFTs) named ALTIS providing a more accurate segmentation of the lungs compared to
the method used in the LUNA16 challenge. For nodule detection and the elimination
of redundant candidates, we use 3D Faster R-CNN with ResNet18 for the detection of
candidate regions with nodules and present FeatureNMS — a neural network that provides
additional image features to the input of GossipNet, which result from a transformation
over the voxel intensities of each candidate region in the CT image. For validation, we
use the LUNA16 challenge dataset.



List of Figures

1.1 Candidate regions derived from a nodule detection algorithm based on
CNN [46]. Note that there are redundant candidates for each nodule. . . . 14

2.1 Anatomy of the respiratory system [5]. . . . . . . . . . . . . . . . . . . . . 18
2.2 3-Layer neural network architecture. The input layer has 3 nodes,

hidden layer has 4 nodes and output layer has 2 nodes. Vi,j is the value of
node j in layer i. Wki,j is the weight associating the node i in layer k with
node j in layer k + 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Feedforward process [27] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Update procedure of an output weight. Arrows show the derivative steps [27] 22
2.5 Convolution operation [27] . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Due to the curved spine of a patient with scoliosis, image segmentation

based on shape models may fail [40]. The right and left lungs, and trachea
are represented by the colors blue, green, and yellow, respectively. Magenta
lines describe the expected boundaries of the objects. . . . . . . . . . . . . 24

2.7 Lungs-and-trachea extraction pipeline [40]. (a) Minimum cost map after
the first axial slice-by-slice IFT. (b) Original image. (c) Residual image ob-
tained by subtracting (b) from (a). The lungs-and-trachea are enhanced.
(d) Thresholding and largest component selection from (c). (e) Morpho-
logical closing from (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Seed estimation, seed labeling, and object delineation pipeline [40]. (a)
Volume of interest obtained from the lungs-and-trachea extraction. (b)
Lungs and background seeds obtained by simultaneous dilation and erosion
from (a). (c) Geodesic distance map from the lung seeds. (d) Trachea seeds
obtained by thresholding and highest component selection from (c). (e)
Labeled seeds seen from the 3D rendition: green for the right lung seeds,
blue for the left lung seeds, red for the trachea seeds, and white for the
background seeds. (f) Gradient image of I 2 (Fig. 6c). (g) Resulting object
delineation and (h) its 3D rendition. . . . . . . . . . . . . . . . . . . . . . 26

2.9 Example of a lung region left unsegmented (red circle) by the IFT with
the first seed set (left). By increasing the internal seed set, the second IFT
corrects segmentation (right) [40]. . . . . . . . . . . . . . . . . . . . . . . . 27

2.10 The pipeline of an automated CAD system for lung nodule detection using
the NMS algorithm to eliminate redundant candidates. . . . . . . . . . . . 28

2.11 Nodule annotations from LUNA16 challenge [27]. . . . . . . . . . . . . . . 29
2.12 Views of a CT scan from LUNA16 challenge [27]. . . . . . . . . . . . . . . 30

3.1 Pipeline for different detection frameworks [5] . . . . . . . . . . . . . . . . 33



4.1 The pipeline of the proposed method. Each module is represented by a
color rectangle (orange or green), while white rectangles are the techniques
used for each module. In the output CT image, red rectangles are the
detected nodules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 HU values distribution on LUNA16 [5]. . . . . . . . . . . . . . . . . . . . . 37
4.3 Architecture for the FeatureNMS Network. . . . . . . . . . . . . . . . . . . 40

5.1 Performance comparison among GreedyNMS, GossipNet, and FeatureNMS
(proposed). FeatureNMS achieves superior results as compared to the other
methods. In all cases, the lung segmentation provided in the LUNA16
challenge is used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 A qualitative comparison among the methods. (a) Real nodules. Results
of (b) GreedyNMS, (c) GossipNet, and (d) FeatureNMS. Note that Fea-
tureNMS can eliminate all redundant regions, differently from the others.
In all cases, the lung segmentation provided in the LUNA16 challenge is
used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Performance comparison among GreedyNMS, GossipNet, and FeatureNMS
(proposed). FeatureNMS achieves superior results as compared to the other
methods. In all cases, the ALTIS algorithm is used for lung segmentation. . 45



List of Tables

5.1 FEM results for GreedyNMS at several overlapping thresholds (θ). In this
case, the lung segmentation provided in the LUNA16 Challenge is used. . . 43

5.2 FEM results for GreedyNMS at several overlapping thresholds (θ). In this
case, the ALTIS algorithm is used for lung segmentation. . . . . . . . . . . 44

5.3 FEM results among methods using the ALTIS algorithm for lung segmenta-
tion, the lung segmentation provided in the LUNA16 challenge, and with-
out using any lung segmentation. . . . . . . . . . . . . . . . . . . . . . . . 44



Contents

1 Introduction 13
1.1 Motivation and overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Fundamentals 17
2.1 Anatomy of the lung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Lung cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Computerized Tomography imaging . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Computer-Aided Detection systems . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Training algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 22

2.6 Automatic Lung and Trachea Image Segmentation . . . . . . . . . . . . . . 24
2.6.1 Lungs-and-trachea extraction . . . . . . . . . . . . . . . . . . . . . 25
2.6.2 Seed estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.3 Seed labeling and object delineation . . . . . . . . . . . . . . . . . . 26

2.7 Non-Maximum Suppression algorithm . . . . . . . . . . . . . . . . . . . . . 26
2.8 LUNA16 challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8.2 Challenge tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8.3 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Related works 32
3.1 Detection framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Lung nodule detection and NMS algorithms . . . . . . . . . . . . . . . . . 34

4 Proposed method 36
4.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Definition of a region of interest . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Nodule detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Elimination of redundant candidates . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 FeatureNMS Network . . . . . . . . . . . . . . . . . . . . . . . . . . 39



5 Experiments and results 41
5.1 Dataset and evaluation metric . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 ALTIS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5.1 Using the lung segmentation from LUNA16 challenge . . . . . . . . 42
5.5.2 Using the lung segmentation performed by the ALTIS algorithm . . 43
5.5.3 Without using any lung segmentation at all . . . . . . . . . . . . . 45

6 Conclusions and future work 46
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 48



13

Chapter 1

Introduction

1.1 Motivation and overview

Lung cancer is the most common type of cancer in men and the third most common
one in women. According to the International Agency of Research on Cancer (IARC),
lung cancer is the leading type of cancer with new cases — 2.1 million in 2018. Due to
poor prognosis, lung cancer is also responsible for the largest mortality rate, reaching 1.8
million deaths per year. Diagnosis and treatment at the early stages can increase the
chances of survival. According to the World Health Organization (WHO) and the Forum
of International Respiratory Societies (FIRS), the premature detection of lung cancer
provides 5-year survival rates within 70% − 90%. However, in the majority of the cases,
lung cancer is only detected at an advanced stage, dropping the one-year survival rate
from 80% − 85% to 15% − 19%, when it is compared with the detection at a premature
stage.

A lung nodule is a small round growth of tissue within the chest cavity (see Figure
2.11). Generally, nodules are considered less than 30 mm in size, larger sizes are called
masses and are presumed to be malignant (cancerous). Nodules between 5− 30 mm may
be benign or malignant, and the probability that a nodule be malignant increases with
its size.

Initially, chest radiography screenings (chest X-ray) were used to detect and diagnose
lung cancer, but chest radiography screenings present two main problems: (i) lack of
3D information about the nodules and (ii) occlusion due to the 2D projection. This
makes Computerized Tomography (CT) the method of preference since it provides high-
resolution 3D images of the thorax, facilitating the detection of small nodules. However,
the 3D nature of the images makes their visual analysis difficult. As a consequence, the
number of false positives is still high and, even by counting on the opinion of multiple
specialists, the diagnosis is often subjected to some lack of consensus.

Computer-Aided Detection (CAD) systems have been developed to address the prob-
lem, assisting to specialists in the task of quicker and more accurate detection and classi-
fication of abnormalities. A full CAD system to detect and diagnose lung cancer consists
of two modules: CADe for the detection of nodules and CADx for the classification of the
degree of malignancy of nodules. The techniques used in CAD systems may be divided
into two groups: CAD systems that explore knowledge-based image features and CAD
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Redundant 
candidates for the 
same nodule.

Figure 1.1: Candidate regions derived from a nodule detection algorithm based on
CNN [46]. Note that there are redundant candidates for each nodule.

systems that learn the features from annotated images, mostly based on deep learning
through Convolutional Neural Networks (CNNs). This work is focused on CADe systems
— for the detection of lung nodules.

As it is often the case with medical images, CAD systems that learn features mostly
based on deep learning have been limited by the relatively small number of annotated
images. However, the publicly available LIDC-IDRI dataset [3] and the LUNA16 chal-
lenge [35] have had a big influence on deep learning methods proposed for lung nodule
detection. Relevant work has been published in the context of the LUNA16 challenge.

In the last decade, many computational methods (CAD systems) have been developed
to assist physicians in lung nodule detection [11, 10, 5, 46]. Such methods are mostly
based on CNNs, which have achieved promising results in early detection of lung nodules.
However, these methods usually generate redundant candidate regions for the same object
(Figure 1.1). Traditional Non-Maximum Suppression (NMS) algorithms [26, 32] have
been proposed to eliminate redundant candidates and select one candidate region per
object, usually based on handcrafted parameters. In [16], these algorithms are referred
to as the GreedyNMS approach since they select the region with the highest object score
among each group of overlapping candidate regions. GreedyNMS presents two major
difficulties: (i) the overlapping percentage for rejection must be high enough to eliminate
regions with high scores containing the same object, while (ii) it must be low enough to
avoid eliminating regions of detected objects that are close to each other — a common
situation in images with several nodules. Improvements in NMS have also been proposed
in the past years. The Soft-NMS [4] algorithm applies a decay function to the object
scores of candidate regions to avoid losing neighboring objects. GossipNet [16] uses a 1D
NN to analyze geometric features from overlapping candidate regions and modify their
scores, such that each object should be represented by a single region with the highest
score among the overlapping ones. Different from other NMS approaches, GossipNet can
learn the NMS parameters rather than relying on handcrafted ones. However, GossipNet
does not take advantage of image features to learn NMS.

In this work, we propose an automated CAD system for lung nodule detection which
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consists of four modules: pre-processing, the definition of a region of interest (e.g., by
lung segmentation), nodule detection, and the elimination of redundant candidates. For
lung segmentation, mostly methods [10, 11, 46] have used the provided segmentation
in the LUNA16 challenge which is based on [44]. However, we use a recent approach
based on sequences of Image Foresting Transforms (IFTs) named ALTIS providing a
more accurate segmentation of the lungs which has a positive impact on the results. For
nodule detection and the elimination of redundant candidates, we use 3D Faster R-CNN
with ResNet18 [46] for the detection of candidate regions with nodules and propose a
transformation over the voxel intensities of those regions in the CT image to include image
features in GossipNet [16] for NMS. The new neural network with a modified GossipNet
is called FeatureNMS (Figure 4.3). For validation, we use the LUNA16 challenge dataset.

1.2 Objectives

The aim of this work is to develop an automated CAD system for lung nodule detection
with high sensitivity and low false-positive rate, taking as input CT images. In order
to achieve high sensitivity and low false-positive rate in our CAD system, we use the
ALTIS algorithm for lung segmentation and propose the FeatureNMS for the elimination
of redundant candidates.

1.3 Contributions

In this work, we propose an automated CAD system for lung nodule detection which
consists of four modules: pre-processing, the definition of a region of interest (e.g., by
lung segmentation), nodule detection, and the elimination of redundant candidates. In
order to achieve high sensitivity and low false-positive rate in our CAD system, differently
from other methods using the lung segmentation provided in the LUNA16 challenge, we
use the ALTIS algorithm for lung segmentation providing a slight improvement when it
is tested on LUNA16 dataset. On average, the number of voxels segmented by the ALTIS
algorithm is 8% less than the number of voxels segmented by the method used in the
LUNA16 challenge. This shows that the ALTIS algorithm is more accurate.

For the elimination of redundant candidates, after the 3D Faster R-CNN with ResNet18
[46] produces the candidate regions with nodules, we propose a transformation over the
voxel intensities of those regions in the CT image to include image features in Gossip-
Net [16] for NMS. The new neural network with a modified GossipNet is named Fea-
tureNMS (Figure 4.3). When the FeatureNMS is tested on the LUNA16 dataset, results
indicate a considerable improvement when it is compared to the original GossipNet and
the best GreddyNMS.

To summarize, this work has two main contributions. The first is the incorporation
of the ALTIS algorithm for lung segmentation providing a slight improvement when it is
compared to the method used in the LUNA16 challenge. The second contribution is the
proposed FeatureNMS for the elimination of redundant candidates. Results indicate that
FeatureNMS outperforms the original GossipNet and the best GreedyNMS.
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The results of the proposed FeatureNMS for the elimination of redundant candidates
as part of our CAD system for lung nodule detection were published in [6].

1.4 Organization

The present work is organized as follows: Chapter 2 presents the fundamentals to under-
stand the main concepts used in the remaining chapters. Chapter 3 presents the related
works for lung nodule detection and NMS algorithms. The proposed method is presented
in Chapter 4. The experiments that were performed to validate the proposed method
are presented in Chapter 5. Finally, Chapter 6 presents the conclusions of the work and
discusses opportunities for future work.



17

Chapter 2

Fundamentals

2.1 Anatomy of the lung

The purpose of the lungs is to provide oxygen to the blood. They are a pair of large and
spongy organs that are localized in the thorax lateral to the heart and on the upper part
of the diaphragm (see Figure 2.1). Each lung is surrounded by a membrane called pleura
that provides the lung with space to expand. The left and right lungs are slightly different
in size and shape due to the heart which is located near the left lung. Therefore, the left
lung is slightly smaller than the right lung and consists of 2 lobes while the right lung has
3 lobes. The interior of the lungs is made of around 30 million sacks which are called the
alveoli. Alveoli are lined with thin simple squamous epithelium that allows air entering
the alveoli to exchange its gases with the blood passing through the capillaries.

The air, which contains oxygen and other gases, comes into the body through the
lungs. In the lungs, the oxygen is moved into the blood-stream and carried through the
body. Red blood cells collect the carbon dioxide and transport it back to the lungs, where
it leaves the body when we exhale.

2.2 Lung cancer

Lung cancer is commonly due to smoking and it is mainly caused by the uncontrollable
irregular growth of cells in lung tissue. A lung nodule is a small round growth of tissue
within the chest cavity (see Figure 2.11). Generally, nodules are considered less than 30

mm in size, larger sizes are called masses and are presumed to be malignant (cancerous).
Nodules between 5 − 30 mm may be benign or malignant, and the probability that a
nodule be malignant increases with its size. There are three main types of lung cancer [1],
which are non-small cell lung cancer (NSCLC), small cell lung cancer, and lung carcinoid
tumor. NSCLC is the most common type of lung cancer, which constitutes about 85% of
all lung cancers.

Lung cancer is the leading cause of cancer-related death in the world [2], representing
18.4% in 2018. Detection and treatment at an early stage can effectively overcome this
burden and increase the chance of survival of patients. According to the World Health
Organization (WHO) and the Forum of International Respiratory Societies (FIRS), the
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Figure 2.1: Anatomy of the respiratory system [5].

premature detection of lung cancer provides 5-year survival rates within 70% − 90%.
However, in the majority of the cases, lung cancer is only detected at an advanced stage,
dropping the one-year survival rate from 80%− 85% to 15%− 19%, when it is compared
with the detection at a premature stage.

2.3 Computerized Tomography imaging

Initially, chest radiography screenings (chest X-ray) were used to detect and diagnose lung
cancer. However, chest radiography screenings present two main problems: (i) lack of 3D
information about the nodules and (ii) occlusion due to the 2D projection. Therefore, a
more effective non-invasive imaging technique is required that enables specialists to see
inside the body without the risks of exploratory surgery and thus the diagnostic of the
presence of nodules.

Computerized Tomography (CT) is the method of preference since it forms 3D images
of the thorax, resulting in a higher resolution of nodules and tumor pathology, facilitating
the detection of small nodules. CT images are primarily used today to assist specialists
in the diagnosis of abnormalities, however, using CT images for nodule detection and
classification present three main problems:

• Due to the 3D nature of CT images, it requires analyzing hundreds of images at
a time, specialists are overwhelmed with the amount of data to process since it is
time-consuming and the fatigue also reduces the effectiveness.

• As a consequence, the number of false positives generated after analyzing CT images
remain high.
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• As multiple specialists are consulted to analyze the same exam of CT, the lack of
consensus on a diagnosis can arise, demanding that more specialists have to analyze
that image to obtain a verdict.

2.4 Computer-Aided Detection systems

The Computer-Aided Detection (CAD) system has been developed to assist specialists
in the task of quicker and more accurate detection and classification of abnormalities.
Existing CAD systems may be divided according to the techniques used into two groups:
(i) CAD systems that explore knowledge-based image features and (ii) CAD systems based
on deep learning with automatic feature extraction. Approaches in the first group often are
called traditional techniques and measure radiological trails such as nodule size, location,
shape, texture, and apply a classifier to determine if a nodule is malignant or benign. In
the second group, such models based on deep neural networks can automatically learn
features for the detection and diagnosis of lung nodules in CT images. In the last years
CAD systems based on deep learning have shown more promising results for lung nodule
detection and classification [34, 11, 10, 5, 7, 46, 41, 37, 36, 45, 20, 47, 8].

Traditional CAD systems involve manually designed features or descriptors for lung
nodule detection [25, 21]. Thus traditional CAD systems use image processing techniques
to generate a large number of candidates for the location of nodules [35], followed by a false
positives reduction, and finally, classification is used to know the degree of malignancy of
nodules. The process of detecting and classifying nodules in CT images is still primarily
performed using traditional techniques and trained pulmonary specialists.

A full CAD system to detect and diagnose lung cancer consists of a detection system
(often abbreviated as CADe) and a diagnostic system (often abbreviated as CADx). On
one hand, the CADe system detects candidates being nodule or non-nodule performing an
initial high-sensitive nodule detection. On the other hand, the goal of the CADx system
is to classify the degree of malignancy of nodules.

2.5 Deep learning

Deep learning is a new area in the machine learning field, which has been growing very
fast in general data analysis in the last years. Deep learning is an improvement of artificial
neural networks (ANN), consisting of more layers that allow a higher level of abstraction
and improved prediction from data [23]. To date, deep learning is emerging as the leading
machine learning tool in the general imaging and computer vision domains. The major
prove is that deep learning is surpassing and improving the traditional techniques based on
image processing and traditional machine learning algorithms like support vector machine
or shallow neural network, in every critical task: image recognition, recognizing speech,
characterizing images, generating natural [39].

Since deep learning depends on a lot of data to learn, training a complex neural network
from scratch on lung nodule images may not prove very successful. However, transfer
learning, or training a network on a large dataset and then using these trained weights for
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Figure 2.2: 3-Layer neural network architecture. The input layer has 3 nodes,
hidden layer has 4 nodes and output layer has 2 nodes. Vi,j is the value of node j in layer
i. Wki,j is the weight associating the node i in layer k with node j in layer k + 1.

a new task on new datasets has been shown to work well for a wide range of image datasets
and tasks [29]. The main advantage is that deep learning algorithms extract the features
in the data by themselves. Therefore, there is no need for human intervention during the
training process. Besides, this feature extraction mechanism generates features that are
hard for a human to think and implement. In this section, we explain the theoretical
background of deep learning.

2.5.1 Multilayer Perceptron

Multilayer Perceptron (MLP) consists of at least three layers of nodes and weights (edges)
associating nodes in consecutive layers (see Figure 2.2). The first layer is called the input
layer, the middle layers are called the hidden layers, and the last layer is called the output
layer. The number of nodes in the input layer and the output layer depends on the data
and the problem. For example, in order to design a network architecture for handwritten
digit recognition where numbers are stored in 28× 28 size images, there will be 784 nodes
(one input node for one pixel, 28× 28 = 784) in the input layer and 10 nodes (one node
for each number) in the output nodes.

The value of a node in an MLP system is obtained by a linear combination of pre-
decessor nodes with their corresponding weights. Therefore, in order to distinguish data
that is not linearly separable, non-linear activation functions are applied to node values.
The most commons activations functions used are: Sigmoid, Tanh, and Rectified Linear
Unit (Relu).
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Figure 2.3: Feedforward process [27]

2.5.2 Training algorithm

When a MLP is trained, there are two main steps, the feedforward and backward (back-
propagation).

• Feedforward step: In the feedforward step (see Figure 2.3), starting from input
nodes, they are multiplied by their corresponding weights, and results are summed.
The resulting summation is processed with a non-linear activation function. The
output of the activation function becomes the value of that node. The process ends
when the node values of the output layer are calculated.

• Backward step: Once the feedforward step is completed, there is an error that can
be easily computed between the output layer and the real output values according to
the trained data. In order to measure how good an MLP system is, we define a cost
function, being the objective to minimize this cost function. The backpropagation
algorithm computes the partial derivates of the cost function with respect to each
weight and updates its value using the chain rule, in order to minimize the cost
function (Figure 2.4).

The training algorithm can be summarized as follows:

1. Initialize the weights.

2. Apply the feedforward procedure for each sample.

3. Use backpropagation to update weights.

4. Repeat steps 2 and 3 until there is a convergence.
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Figure 2.4: Update procedure of an output weight. Arrows show the derivative steps [27]

2.5.3 Convolutional Neural Networks

One of the problems using MLP is discarding the spatial relationship between adjacent
pixels, which in images is very important. For example, in the classification problem of
hand-written digits (28× 28 pixels), MLP gets each pixel individually and forms a vector
whose size is 784. However, by vectorizing the input, the spatial relationship between
adjacent pixels is lost. The same situation happens for natural language processing, each
word or syllable depends on its previous or next word or syllable.

In the Convolutional Neural Networks (CNNs), this spatial information between ad-
jacent pixels is taken into account by a convolution step. CNNs are usually composed of
convolutional layers, pooling layers, and fully connected layers. CNNs extract the specific
patterns by using the filters, then pooling layers help the model ignore redundant data.
By applying convolutions and pooling respectively, only certain patterns remain and as a
final step, the resulting data is vectorized and MLP is used in the last step.

• Convolutional layer: Convolution is a mathematical operation of two functions.
The main function of a convolutional layer is to extract features from the input data.
In the CNNs, the convolutional operation slides a kernel function, which is also called
filter, over the main data by performing an inner product among the elements. For
each sliding window, the sum-up of the elements is the output. The whole output of
the convolutional operation is called a feature map. In the convolution layer, many
kernels are used on the original data. Each of these kernels learns different patterns
and features of the input data. For example, they can learn to detect the edges,
curves, blobs, and smooth areas. In Figure 2.5, a matrix of size 5 × 5 is convolved
with a kernel of size 3 × 3. When considering the convolution operation in CNNs,
there are three design issues to think about: kernel size, number of kernels, and
stride. These hyper-parameters have an effect on the shape of the output data and
memory usage.
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Figure 2.5: Convolution operation [27]
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Figure 2.6: Due to the curved spine of a patient with scoliosis, image segmentation based
on shape models may fail [40]. The right and left lungs, and trachea are represented
by the colors blue, green, and yellow, respectively. Magenta lines describe the expected
boundaries of the objects.

• Pooling layer: The pooling layer reduces the spatial size of the output of the
convolutional layer in order to reduce the number of parameters and computation
in the network, also it is used for controlling overfitting. Max pooling and average
pooling are two of the most used pooling methods. For a given window, max-
pooling takes the maximum value in that window and average pooling takes the
average value of the values in the window. For pooling operation, there are two
important hyper-parameters which are window size and stride value.

• Fully Connected Layer: Convolution and pooling layer generate rectangular-
shaped outputs. These outputs are flattened so that they can be multiplied by
their weights. For example, if there are 64 feature map layers each of which has
5× 5× 3 voxels, in the fully connected layer these volumes are flattened to 4800× 1

(5× 5× 3× 64 = 4800). The layer before the fully connected layer represents high-
level features. With the help of a fully connected layer, these high-level features can
be multiplied by the weights of the hidden layers. The rest of the system works as
MLP does.

2.6 Automatic Lung and Trachea Image Segmentation

Automatic Lung and Trachea Image Segmentation (ALTIS) [40] is a fast method for
lungs and trachea segmentation. It relies on the Image Foresting Transform (IFT) frame-
work [12] to design a fast sequence of image processing operations based on relative-shape
and intensity-based features, and image properties that are robust to account for most
appearance variations of abnormal lungs, separating the trachea, left lung, and right lung.
One of the main advantages of ALTIS against other methods is its robustness when lungs
are deformed by disease or abnormal shape of the thoracic cage (Figure 2.6).
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Figure 2.7: Lungs-and-trachea extraction pipeline [40]. (a) Minimum cost map after
the first axial slice-by-slice IFT. (b) Original image. (c) Residual image obtained by
subtracting (b) from (a). The lungs-and-trachea are enhanced. (d) Thresholding and
largest component selection from (c). (e) Morphological closing from (d).

ALTIS consists of a sequence of Image Foresting Transforms (IFTs) organized in three
main steps: (i) lungs-and-trachea extraction, (ii) seed estimation inside background, tra-
chea, left lung, and right lung, and (iii) their delineation such that each object is defined
by an optimum-path forest rooted at its internal seeds.

2.6.1 Lungs-and-trachea extraction

The strategy for lungs-and-trachea extraction starts by enhancing the majority of voxels
inside the lungs and trachea, which appears darker than the surrounding tissues. For
that, a minimum cost map slice-by-slice is computed using IFT. Then a residual image
is obtained subtracting the original image from the minimum cost map image. A thresh-
olding and largest component selection is applied, and finally a morphological closing to
get the volume of interest for the lungs-and-trachea extraction. Figure 2.7 shows the
lungs-and-trachea extraction pipeline.

2.6.2 Seed estimation

For the given volume of interest from lungs-and-trachea extraction, it is estimated the
markers (seed set) outside the lungs-and-trachea object, markers inside each of the lungs,
and markers inside the trachea for the subsequent object delineation by optimum seed
competition.

The lungs and background seeds are obtained by simultaneous dilation and erosion
from the volume of interest. In order to get the trachea seed, a Geodesic distance map from
the lung seeds is computed, and then thresholding and highest component are applied.
Figure 2.8 shows the seed estimation, seed labeling, and object delineation pipeline.
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Figure 2.8: Seed estimation, seed labeling, and object delineation pipeline [40]. (a) Volume
of interest obtained from the lungs-and-trachea extraction. (b) Lungs and background
seeds obtained by simultaneous dilation and erosion from (a). (c) Geodesic distance map
from the lung seeds. (d) Trachea seeds obtained by thresholding and highest component
selection from (c). (e) Labeled seeds seen from the 3D rendition: green for the right lung
seeds, blue for the left lung seeds, red for the trachea seeds, and white for the background
seeds. (f) Gradient image of I 2 (Fig. 6c). (g) Resulting object delineation and (h) its
3D rendition.

2.6.3 Seed labeling and object delineation

The objects of interest are delineated by optimum seed competition. Once the lungs, tra-
chea, and background seeds are estimated, they compete with each other to propagate the
corresponding labels to their most closely connected voxels. The process is implemented
by a sequence of two IFTs.

The first IFT allows propagating along optimum paths to create a label map. This
first object delineation can correctly segment most parts of the lungs and trachea, but
the high gradient values at voxels in narrow parts of these objects may leave those parts
conquered by background seeds 2.9. The second IFT is used to solve this problem.

2.7 Non-Maximum Suppression algorithm

Object detectors in the last years have moved to the end-to-end learning paradigm: pro-
posals, features, and the classifier becoming one neural network improving results on
general object detection. The task of object detection can be interpreted as mapping an
image to a set of candidate regions: one candidate per object of interest in the image
and each candidate enclosing as much as possible an object. In this way, detectors should
return exactly one candidate per object.
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Figure 2.9: Example of a lung region left unsegmented (red circle) by the IFT with the first
seed set (left). By increasing the internal seed set, the second IFT corrects segmentation
(right) [40].

Uncertainty is an inherent part of the detection process causing each candidate to be
associated with a confidence score. The detection process estimates the probabilities of
object classes being present for every candidate in an image. Initially, these candidates
are proposed from a search space (e.g. sliding window, proposals), and the estimation of
class probabilities for each candidate is computed independently of any other candidate.
Therefore, current detectors generate several candidate regions for the same object with
different scores, being necessary a post-processing step to eliminate redundant candidates
for the same object.

The Non-Maximum Suppression (NMS) algorithm has been proposed to eliminate
redundant candidates and select one candidate region per object. This NMS algorithm
relies on handcrafted parameters and greedy clustering with a fixed distance threshold
which forces a trade-off between recall and precision.

The input for the NMS algorithm is a list of candidates C, corresponding confidence
scores S and overlap threshold N and the output is a list of filtered candidates D. The
following steps summarized the algorithm:

1. Select the candidate with the highest confidence score from C and remove it from
C, then add it to the final candidate list D (initially D is empty).

2. Now compare this candidate with all remaining candidates from C — calculate the
IOU (Intersection over Union) of this candidate with every remaining candidate
from C. If the IOU is greater than the threshold N, remove that candidate from C.

3. This process is repeated until there are no more candidates left in C.

When we analyze the NMS algorithm, this presents two major difficulties: (i) the
overlapping percentage for rejection must be high enough to eliminate regions with high
scores containing the same object, while (ii) it must be low enough to avoid eliminating
regions of detected objects that are close to each other — a common situation in images
with several nodules.
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Figure 2.10: The pipeline of an automated CAD system for lung nodule detection using
the NMS algorithm to eliminate redundant candidates.

In figure 2.10 we have the pipeline of an automated CAD system for lung nodule
detection. We can see that the nodule detector generates several candidate regions for
the same nodule with different scores, being necessary a post-processing step for the
elimination of redundant candidates. In this case, the NMS algorithm was used as the
post-processing step, however, we still have some redundant candidates for the same
nodule.

2.8 LUNA16 challenge

The LUng Nodule Analysis 2016 (LUNA16) challenge invites participants to develop a
CAD system that automatically detects pulmonary nodules in CT scans. The challenge
provides the dataset and the reference annotations from the publicly available LIDC-IDRI
database [3]. This dataset can be used for training of the systems and the evaluation of
the algorithms is performed on the same dataset. To prevent biased results as a result
of training and testing on the same dataset, participants are instructed to perform cross-
validation.

2.8.1 Data

In the LUNA16 challenge, the dataset was collected from the publicly available LIDC-
IDRI database [3]. The LIDC-IDRI database contains a total of 1018 CT scans. CT
images come with associated XML files with annotations from four experienced radiol-
ogists. Scans with a slice thickness greater than 3 mm were excluded. On top of that,
scans with inconsistent slice spacing or missing slices were also excluded. This led to the
final list of 888 scans considered for the LUNA16 challenge. These scans were provided
as MetaImage (.mhd) images that can be accessed and downloaded from the LUNA16
website.

Each LIDC-IDRI scan was annotated by experienced thoracic radiologists in a two-
phase reading process [3]. In the first phase, four radiologists annotated the scans in-
dependently. All lesions were marked as nodule ≥ 3 mm; nodule < 3 mm; non-nodule
(any other pulmonary abnormality). For lesions annotated as nodule ≥ 3 mm, diameter
measurements were provided. In the second phase, the anonymized blinded results of all
other radiologists were revealed to each radiologist, who then independently reviewed all
marks. No consensus was forced.
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Figure 2.11: Nodule annotations from LUNA16 challenge [27].

In the 888 scans, a total of 36,378 annotations were made by the radiologists. The
LUNA16 challenge only considered annotations categorized as nodules 3 mm as relevant
lesions, as nodules < 3 mm, and non-nodule lesions are not considered relevant for lung
cancer screening protocols. This resulted in a set of 2290, 1602, 1186, and 777 nodules
annotated by at least 1, 2, 3, or 4 radiologists, respectively. The LUNA16 challenge
considered the 1186 nodules annotated by the majority of the radiologists (at least 3
out of 4 radiologists) as the positive examples. Figure 2.11 shows some nodules (true
positives). These are the lesions that the algorithms should detect.

In Figure 2.12, three different views of a CT scan from the LUNA16 challenge dataset
can be seen. The upper left view is called the axial plane, the upper-right view is called
the sagittal plane, and the lower right view is called the coronal plane. When 2D images
are used in the algorithms, generally, the axial plane is used.

2.8.2 Challenge tracks

The participants develop their algorithms and upload their predictions in one of two
separate tracks: (1) the complete nodule detection track or (2) the false-positive reduction
track.

In the complete nodule detection track, participants require to develop an entire CAD
system to predict nodules locations, taking as input only the CT scans. In order to train
the algorithms, the 1188 nodules locations are provided with their diameters. For the
false-positive reduction track, participants require to classify a number of locations in
each scan as being a nodule or not. A list of candidates are provided to the participants,
in total, there are 551,066 candidate points.
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Figure 2.12: Views of a CT scan from LUNA16 challenge [27].

2.8.3 Cross-validation

Participants have to perform the 10-fold cross-validation when they use the provided
dataset in LUNA16 challenge both as training and test data. The dataset has been
randomly split into ten subsets of equal size on a patient level. The following steps
describe how to perform the 10-fold cross-validation for the fold n (n = 1, 2, ..., 10):

1. Use the subset n as the test set and the remaining 9 sets as the training set.

2. Train the algorithm with the training set.

3. Test the training algorithm on the test set and generate the result file.

4. After iterating this process for all folds, merge the result files to get the result for
all cases.

2.8.4 Evaluation

For the complete nodule detection track, participants are required to submit their results
in the form of a comma-separated value (CSV) file. The CSV file contains all the can-
didates produced by the CAD system. For each CAD mark, the position (x, y, and z
coordinates) and the probability to be a nodule should be provided.

A CAD mark is considered a true positive if it is located within a distance r from the
center of any nodule included in the reference standard (true positives), where r is set to
the radius of the reference nodule. When a nodule is detected by multiple CAD marks, the
CAD mark with the highest score is selected. CAD marks that detect irrelevant findings
are discarded from the analysis and are not considered as either false positive or true
positive. CAD marks not falling into previous categories are marked as false positives.
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Results are evaluated using the Free-Response Receiver Operating Characteristic
(FROC) analysis (International Commission on Radiation Units and Measurements, 2008).
The sensitivity is defined as the fraction of detected true positives (TPs) divided by the
number of nodules in the reference standard. In the FROC curve, sensitivity is plotted
as a function of the average number of false positives per scan (FPs/scan). For each
scan, it is taken a maximum of 100 CAD marks that were given the highest scores. The
95% confidence interval of the FROC curve is computed using bootstrapping with 1000

bootstraps, as detailed in Efron and Tibshirani (1994). In order to evaluate and compare
different systems easily, it is defined one overall output score. The overall score is defined
as the average of the sensitivity at seven predefined false positive rates: 1/8, 1/4, 1/2,
1, 2, 4, and 8 FPs per scan. The performance metric was introduced in the ANODE09
challenge and is referred to as the Competition Performance Metric (CPM) in Niemeijer
et al. (2011) .

The evaluation script is publicly available on the LUNA16 website and can thus be
viewed and used by all participants.
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Chapter 3

Related works

3.1 Detection framework

One of the first attempts for the detection problem using a Convolutional Neural Network
(CNN) was made in 2014 by LeCun et al., proposing the OverFeat [33] — a network with
a small receptive field applied to the input image at different scales and positions in a
sliding window fashion. In the same year, a region-based CNN (R-CNN) [15] (see Figure
3.1a) was published, which consists of four modules: (i) find regions of interest, called
region proposal, (ii) feature extraction using a CNN for each proposal, (iii) the feature
vector is fed into support vector machine (SVM) for classification and (iv) linear regression
for the localization.

Later, due to the high amount of computation required by R-CNN, the Fast R-
CNN [14] fixed this issue. The main improvement in the Fast R-CNN comes from the
feature extraction directly performed on the entire image using a CNN, the generated fea-
ture map is then cropped based on the proposed regions. Then a region of interest pooling
layer (RoIpool) is applied with the assumption that the feature map is still embedding
some spatial information. The sub-patches of the feature map go into the final part of
the network, which performs the classification and regression of the bounding box (see
Figure 3.1b). However, the Fast R-CNN model still relies on an external region proposal
algorithm which is the bottleneck of the computations.

The first end-to-end deep learning detection algorithm is the Faster R-CNN [31]. Shao-
qing et al. introduced a Region Proposal Network (RPN), generating region proposals
with a CNN. The main improvement aiming to reduce computations is sharing parameters
between RPN and the detection network (Fast R-CNN) by using the same first convolu-
tional layers (see Figure 3.1c). Also, they use a key concept used later by all detection
frameworks called anchors [13].

Region-based Fully Convolutional Network (R-FCN) [9] is a modified version of the
Faster R-CNN. Compared with Faster R-CNN, the feature map is cropped later on, on
the very last convolution before the classification and regression of the bounding box
(see Figure 3.1d). Other systems remove the need for RPN as they perform the object
classification and class-specific bounding box regression directly (see Single Shot MultiBox
Detector (SSD) [24] and You Only Look Once (YOLO) [30]). At the end of each of these
algorithms, a post-processing operation is conducted, the NMS algorithm [26].
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Figure 3.1: Pipeline for different detection frameworks [5]
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3.2 Lung nodule detection and NMS algorithms

As it is often the case with medical images, deep learning methods have been limited
by the relatively small number of annotated images and several researchers have used
different datasets being difficult to compare techniques with the same dataset. However,
the LUNA16 challenge [35] has had a big influence on deep learning methods proposed for
lung nodule detection. Relevant work has been published in the context of the LUNA16
challenge.

The common pipeline in the detection consists of nodule detection and false positive
reduction. The nodule detection works on the images and outputs often a high number
of candidate regions, producing high sensitivity but at the same time high false-positive
rate. This motivates to use the false-positive reduction stage.

In 2017, due to the successful results obtained by the Faster R-CNN in the general
object detection, Ding et al. [10] proposed a 2D Faster R-CNN [31] (RPN + Fast R-CNN)
with a feature extractor based on VGG-16 [38] for lung nodule detection, and a 3D CNN
with 6 convolutional layers and 3 fully connected layers for false-positive reduction stage.
The principal problem of original 2D Faster R-CNN lies in the fact that lung nodules are
much smaller than natural objects, thus the original 2D Faster R-CNN, which utilizes five
group convolutional layers of VGG-16 for feature extraction, cannot explicitly capture
the features of nodules and result in a limited performance for lung nodule detection. To
address this problem a deconvolutional layer was added, after the last layer of the original
feature extractor. They use 6 anchors of sizes ranging from 4 mm to 32 mm leading to
high computational cost. As the network only sees three consecutive slices at a time,
screening a full CT scan is expensive and time-consuming.

Dou et al. [11] propose a method that employs a 3D fully convolutional network
(FCN) with online sample filtering to detect candidate nodules followed by a residual
convolutional network for false positive reduction. The 3D FCN can not only leverage rich
volumetric spatial information to extract high-level features for accurate nodule detection
but also rapidly produce the probability prediction in a volume-to-volume manner. The
3D FCN consists of 5 convolutional layers and 1 max-pooling layer. The model is trained
with small 3D patches of nodules and non-nodules, and tested on the entire CT scan
in a fully convolutional manner. A residual convolutional network with Hybrid-Loss 3D
Residual Learning is used for false positive reduction. However, in order to reduce the
workload of the residual network, a GreedyNMS algorithm is applied over the candidates
in order to obtain one detected region per object.

In 2018, Qin et al. [28] explore the use of a full 3D CNN model that employs 3D
U-Net architecture as the backbone of a region proposal network (RPN) to generate
nodule candidates. A multi-task residual learning and online hard negative example
mining strategy are adopted to accelerate the training process and improve the accuracy
of nodule detection. Then, a 3D DenseNet-based model is presented to reduce false-
positive nodules. Similarly, Tang et al. [42] propose the use of a U-Net-inspired 3D Faster
R-CNN trained using online hard negative mining for candidate extraction and a 3D CNN
classifier for false-positive reduction.

Antoine et al. [5] use an only stage for lung nodule detection based on the RPN of the
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Faster R-CNN [31] framework with RestNet for feature extraction. The network uses 3D
convolutions and requires a volume as input. The final network relies on fewer convolutions
and fewer trainable parameters compared to previous methods [10, 11, 28, 42]. As a
post-processing filtering operation a GreedyNMS algorithm is applied after the candidate
selection to obtain one candidate region per object.

Wentao et al. [46] introduced a fully automated lung computed tomography cancer di-
agnosis system called DeepLung. Deeplung consists of two components: nodule detection
(identifying the locations of candidate nodules) and classification (classifying candidate
nodules into benign or malignant). A 3D Faster R-CNN with 3D dual path blocks is
designed for nodule detection and a U-net-like encoder-decoder scheme is employed to ef-
fectively learn the features. For nodule classification, a gradient boosting machine (GBM)
with 3D dual path network features is proposed. Since the detector produces several re-
dundant candidates for the same nodule, a GreedyNMS algorithm was applied to obtain
one candidate region per nodule.

The majority of the previous lung detectors generate several candidate regions for
the same nodule even by considering a false-positive reduction stage. Therefore, a post-
processing step is required for the elimination of redundant candidates. The GreedyNMS
algorithm was employed to address this problem. However, the GreedyNMS present
difficulties to eliminate effectively the redundant candidates, so several works have been
proposed in the last years.

In 2014, Rothe, Guillaumin, and Gool [32] propose the use of Affinity Propagation
Clustering for NMS by treating the object score as a similarity factor to map the detected
regions into a similarity space. Thereby, Affinity Propagation is applied to select the most
likely candidate to contain the object.

In 2017, to avoid the greedy factor of traditional NMS, Bodla et al. [4] propose Soft-
NMS — a decay function to decrease the object score of detected regions instead of
rejecting the regions. However, this method generates false positives when a new object
score of a false positive region is above the score of a real object detection.

Hosang, Benenson, and Schiele [16] propose a 1D NN to learn NMS, namely GossipNet.
This network analyzes all pairs of detected regions with some degree of overlapping. Its
output is a new object score for each detected region and, ideally, each nodule should be
represented by a single region with the highest object score among the overlapping ones.
Different from other NMS approaches, GossipNet can learn the NMS parameters rather
than relying on handcrafted ones. However, GossipNet does not take advantage of image
features to learn NMS.
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Chapter 4

Proposed method

The proposed method for lung nodule detection consists of four modules: pre-processing,
the definition of a region of interest (e.g., by lung segmentation), nodule detection, and
the elimination of redundant candidates (see Figure 4.1).

For lung segmentation, mostly methods [10, 11, 46] have used the provided segmenta-
tion in the LUNA16 challenge which is based on [44]. However, we use a recent approach
based on sequences of Image Foresting Transforms (IFTs) named ALTIS [40] providing
a more accurate segmentation of the lungs which has a positive impact on the results.
For nodule detection and the elimination of redundant candidates, inspired by recent and
promising works [16] and [17], we use 3D Faster R-CNN with ResNet18 for the detection
of candidate regions with nodules and propose a transformation over the voxel intensities
of those candidates in the CT image, such that the resulting image features are presented
as an additional input to GossipNet, rather than using the all-zero input vectors of the
original GossipNet. The new network for NMS with this modified GossipNet is named
FeatureNMS (Figure 4.3). Note that our proposed FeatureNMS aims to reduce the num-
ber of redundant candidates without losing true positives. For validation, we use the
LUNA16 challenge dataset.

In the following sections are described each module composing the entire proposed
method.

4.1 Pre-processing

The pre-processing is performed before the data is processed. The main objective of pre-
processing is to remove noise and irrelevant information during the data acquisition. CT
scans come in different scales and resolutions. Therefore, we resample the CT scans to
an isotropic resolution of 1 mm between the center of two consecutive voxels in the axial,
coronal and sagittal views. We use interpolation to determine the final voxel values.

The pixels’ values of a CT scan in the LUNA16 challenge are given in Hounsfield
units (HU). Values in HU lower than −1000 do not have any semantic meaning and they
are used for padding. On the other hand, values in HU higher than 400 do not bring
any information for lung nodule detection — they represent bones or foreign bodies like
pacemakers. Therefore, we have clipped the pixels’ values between −1000 and 400 HU.
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Figure 4.1: The pipeline of the proposed method. Each module is represented by a
color rectangle (orange or green), while white rectangles are the techniques used for each
module. In the output CT image, red rectangles are the detected nodules.

Figure 4.2: HU values distribution on LUNA16 [5].

Figure 4.2 represents the HU distribution in the LUNA16 challenge dataset. As a final
step, pixels’ values are standardized such that they have a zero mean and unit variance.

4.2 Definition of a region of interest

We use the segmentation of the lungs as a crucial step since the nodules are only present
inside the lungs. Mostly methods [10, 11, 46] have used the provided segmentation in the
LUNA16 challenge which is based on [44] and other methods [34] have not even considered
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any lung segmentation module, producing candidate regions outside the lungs, which only
increase the number of false-positive candidates and the computational cost.

In the present work, the segmentation of lungs refers to the process of partitioning
the pre-processed CT image into multiple regions to separate the pixels belonging to
lung tissue from the surrounding anatomy. Differently from other methods, we use the
ALTIS [40] algorithm for lung segmentation providing a more accurate segmentation of
the lungs which has a positive impact on the results.

The ALTIS algorithm segments a CT image into three regions: the left lung, the right
lung, and the trachea. For the purpose of our method, only the left lung and the right
lung are considered.

4.3 Nodule detection

Inspired by the successful results obtained by the Faster R-CNN in object detection, we
use 3D Faster R-CNN with ResNet18 for the detection of candidate regions with nodules.
The Faster R-CNN consists of two modules. The first module is called Region Proposal
Network (RPN) which is a fully convolutional network that proposes candidate regions,
and the second module is the Fast R-CNN detector that uses those candidate regions.
The complete system is a single and unified network for object detection. The Region
Proposal Network tells to the Fast R-CNN where to look.

The Region Proposal Network (RPN) takes as input an image and outputs a set of
rectangular object proposals, each of them with an object score. The RPN and the Fast
R-CNN share common convolutional layers for feature extraction, in our case, we use the
first 17 layers from ResNet18. The RPN slides a small network (sliding window) over the
feature map of the last shared convolution layer and it predicts several bounding boxes
(k) at each sliding window. These k reference boxes are actually the anchors [31] which
are centered at the sliding window and have different scales and aspect ratio. Finally, the
features for each anchor is fed into two sibling fully-connected layers: (i) a box-regression
layer and an (ii) box-classification layer. The multi-scale and aspect ratios issues in object
detection are addressed using multiple anchors.

The Fast R-CNN takes as input the candidate regions proposed by the RPN (with
an object score), deciding whether a region is a nodule or not. The same convolutional
layers used for feature extraction in the RPN are also used in the Fast R-CNN. In the Fast
R-CNN a Region of Interest (RoI) Pooling Layer is slide to map each candidate region to
a small feature map with a fixed spatial size of W × H. The RoI Pooling Layer works
dividing the candidate region in W × H grid of sub-windows and then max-pooling the
values in each sub-window. After RoI Pooling Layer is applied, a fully connected network
is added, which is composed of two 4096-way fully connected layers. Finally, a classifier
and a regression produce the probability for the candidate region to be a nodule or not,
and the bounding box respectively.
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4.4 Elimination of redundant candidates

For the elimination of redundant candidates, after 3D Faster R-CNN with ResNet18
produces the candidate regions with nodules, we propose a transformation over the voxel
intensities of those candidates in the CT image, such that the resulting image features
are presented as an additional input to GossipNet, rather than using the all-zero input
vectors of the original GossipNet. The new network for NMS with this modified GossipNet
is named FeatureNMS (Figure 4.3). Note that our proposed FeatureNMS aims to reduce
the number of redundant candidates without losing true positives.

Additionally to the all-zero input vector, GossipNet receives geometric features from
each pair of detected regions with some degree of overlapping — in our case, pairs of
regions with more than 15% of Intersection over Union (IoU).

FeatureNMS essentially adapts GossipNet to receive image features from the detected
regions. This modification aims not only to improve nodule detection but also to speed
up the overall convergence process.

4.4.1 FeatureNMS Network

Architecture

FeatureNMS adds a key ingredient to the architecture of GossipNet: a 3D RoI pooling
layer that extracts voxel intensities from each detected region in the CT image and trans-
forms it into suitable image features. Since the diameter of the nodules can largely vary,
we use a 3D RoI pooling on each region with output size of 4× 4× 4 voxels for standard-
ization, flatten the ROI into a feature vector, and increase its size by a Fully Connected
(FC) layer into 128 dimensions — the same size of the all-zero input vector of GossipNet.

When analyzing geometric information from all pairs of overlapping candidate regions
with more than 15% of IoU, GossipNet processes all of them in the same mini-batch
through three FC layers before feeding the result into each of its blocks. In the same
spirit, the image features from the corresponding candidate regions are also processed in
the same mini-batch and provided as input to the first block of GossipNet (see Figure 4.3).

The geometric features of each pair of detected regions under consideration are twelve:
(1) the intersection over union (IoU); (2-4) their normalized distances along x, y, and z;
(5-7) the normalized L2 distances between their centers in the xy, xz, and yz planes; (8)
the normalized L2 distance between their centers; (9-10) the normalized ratio between
their diameters; and (11-12) their detection scores by the 3D Faster R-CNN.

Loss function

Lung nodule detectors can be judged based on a benchmark evaluation criterion, which
defines a matching strategy to decide whether or not a nodule has been correctly detected.

The matching strategy in the LUNA16 Challenge [35] considers as true positive the
region with the highest score among the candidate ones whose location is within a distance
R from the center of the real nodule, whereas all other overlapping candidates for that
nodule are ignored. In this work, R = 0.5d, where d is the diameter of the real nodule.
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Figure 4.3: Architecture for the FeatureNMS Network.

Nodule candidates falling outside the distance R are considered false positives decreasing
the precision of the detector. We use this matching strategy to define labels at training
time for our FeatureNMS network.

After candidate region detection by the 3D Faster R-CNN, successfully matched can-
didates receive positive labels, while unsuccessfully matched candidates are assigned to
negative labels for training the FeatureNMS network. Due to the severe class imbalance,
we adopt the weighted binary cross-entropy loss function during the training phase.
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Chapter 5

Experiments and results

5.1 Dataset and evaluation metric

For validation, we use the LUNA16 challenge dataset [35] which contains 888 CT scans
with annotations from the publicly available LIDC-IDRI dataset [3] for pulmonary nod-
ules. We applied the 10-fold cross validation, as described in the LUNA16 challenge.

In the LUNA16 challenge [35], the performance for nodule detection is evaluated by the
Free-Response Receiver Operating Characteristic (FROC) [22] analysis, which quantifies
a trade-off between sensitivity and specificity. We use the same evaluation metric, by
measuring the detection sensitivity and false positives per scan (FPs/scan). The Final
Evaluation Metric (FEM) is the average of sensitivity at seven different FPs/scan rates:
0.125, 0.25, 0.5, 1, 2, 4, 8.

5.2 ALTIS algorithm

For the definition of a region of interest by lung segmentation, we use the ALTIS algorithm
which assumes that the patient orientation in the CT scan is from inferior to superior
along the axial slices (z-axis), from right to left along the sagittal slices (x-axis), and from
anterior to posterior along the coronal slices (y-axis). Therefore, in a coronal slice, the
lungs and trachea appear in the upright position, being the right lung on the left side of
the slice.

We linearly interpolated the CT scans from the LUNA16 challenge dataset to the same
voxel size, 1.25 × 1.25 × 1.25mm3 as it is described in [40]. Then, we apply the ALTIS
algorithm to obtain the lung segmentation taking only the left lung and right lung. Finally,
we interpolate again the CT scans to an isotropic resolution of 1× 1× 1mm3 in order to
train and test the nodule detector and the elimination of redundant candidates.

5.3 Training

To train the 3D Faster R-CNN responsible for nodule candidate selection, we use the
10-fold cross validation of LUNA16, as shown in [35]. The network is trained with the
stochastic gradient descent (SGD) optimizer for 100 epochs, with momentum of 0.9, weight
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decay of 0.0001, and initial learning rate of 0.01, which is decreased after the 50th and
80th epochs.

For a given left-out fold, once the Faster R-CNN training is complete, the correspond-
ing model is used to generate nodule candidates for the entire dataset. These candidates
are used to train, validate, and test the GossipNet and FeatureNMS, maintaining the
same training-validation split used in the Faster R-CNN. Both training processes (Faster
R-CNN and GossipNet/FeatureNMS) are performed in sequence for each fold, but both
the GossipNet and FeatureNMS are trained on samples preprocessed by the Faster R-
CNN. The number of candidates produced is approximately 70k for training, 10k for
validation, and another 10k for testing.

The optimizer used for GossipNet and FeatureNMS was ADAM with 200k iterations,
starting with a learning rate of 0.001 and weight decay of 0.1 after 10k and 80k iterations.

5.4 Baseline

For the lung segmentation, we compare the ALTIS algorithm with the provided segmen-
tation in the LUNA16 challenge which is based on [44]. Furthermore, we report results
without using any lung segmentation in order to show the importance of this module for
lung nodule detection.

Since the 3D Faster R-CNN is common to all methods, we compare FeatureNMS
with the original GossipNet [16] and a GreedyNMS algorithm (used in [46]) using several
overlapping thresholds.

5.5 Results and discussion

In order to perform the comparison among the different techniques for each module of
our proposed method, we experiment for three scenarios: (i) using the lung segmentation
provided in the LUNA16 challenge which is based on [44], (ii) using the ALTIS algorithm
for lung segmentation and (iii) without using any lung segmentation at all. For these three
scenarios, we employ 3D Faster R-CNN with RestNet18 for candidate region detection and
compare our proposed FeatureNMS with the original GossipNet [16] and a GreedyNMS
algorithm (used in [46]) using several overlapping thresholds.

5.5.1 Using the lung segmentation from LUNA16 challenge

For all these experiments, the lung segmentation provided in the LUNA16 challenge is
used. Table 5.1 shows the FEM results for GreedyNMS at various overlapping thresholds.
Starting with a threshold of θ = 0, the nodule candidate with the highest score suppresses
all touching neighbors, including real nearby nodules which reduces the number of true
positives detected by the method (low sensitivity). As θ increases, the numbers of both
true positives and false positives increase as well. This shows a trade-off between sensi-
tivity and specificity based on the selected threshold. The best threshold for GreedyNMS
occurs when θ = 0.20, which results in 83.12% of FEM on the LUNA16 challenge dataset.



43

Table 5.1: FEM results for GreedyNMS at several overlapping thresholds (θ). In this
case, the lung segmentation provided in the LUNA16 Challenge is used.

θ > 0.0 > 0.15 > 0.2 > 0.25 > 0.3
FEM 69.54% 82.18% 83.12% 81.45% 80.24%
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Figure 5.1: Performance comparison among GreedyNMS, GossipNet, and FeatureNMS
(proposed). FeatureNMS achieves superior results as compared to the other methods. In
all cases, the lung segmentation provided in the LUNA16 challenge is used.

The performance comparison among the best GreedyNMS, GossipNet, and our Fea-
tureNMS is summarized in Figure 5.1. Notice that GossipNet already improves nodule
detection by 1.42%, when compared to the best GreedyNMS. On its turn, FeatureNMS
achieves an improvement of 2.33% as compared to the best GreedyNMS, and a further
boost of 0.91%, when compared to GossipNet. These results indicate the effectiveness of
feeding image features into the first block of GossipNet and that FeatureNMS is a compet-
itive method against state-of-the-art approaches. Notice that no false-positive reduction
was applied to the detected nodules.

Figure 5.2 shows the performance of FeatureNMS when compared to the traditional
GreedyNMS and GossipNet on a randomly selected CT image from LUNA16. Note that
the FeatureNMS suppresses more redundant regions per nodule than the GreedyNMS and
GossipNet.

5.5.2 Using the lung segmentation performed by the ALTIS al-
gorithm

For all these experiments, we use the ALTIS algorithm for lung segmentation. Table 5.2
shows the FEM results for GreedyNMS at various overlapping thresholds. The best
threshold for GreedyNMS occurs when θ = 0.20, which results in 84.08% of FEM on the
LUNA16 challenge dataset.

The figure 5.3 summarize the performance comparison among the best GreedyNMS,
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Figure 5.2: A qualitative comparison among the methods. (a) Real nodules. Results of (b)
GreedyNMS, (c) GossipNet, and (d) FeatureNMS. Note that FeatureNMS can eliminate
all redundant regions, differently from the others. In all cases, the lung segmentation
provided in the LUNA16 challenge is used.

Table 5.2: FEM results for GreedyNMS at several overlapping thresholds (θ). In this
case, the ALTIS algorithm is used for lung segmentation.

θ > 0.0 > 0.15 > 0.2 > 0.25 > 0.3
FEM 70.23% 83.12% 84.08% 82.97% 81.15%

GossipNet, and our FeatureNMS using the ALTIS algorithm for lung segmentation. The
results show that GossipNet already improves nodule detection by 1.44%, when it is
compared to the best GreedyNMS. On the other hand, our FeatureNMS achieves an
improvement of 2.40% as compared to the best GreedyNMS, and a further boost of
0.96%, when it is compared to GossipNet. These results confirm again that FeatureNMS
is a competitive method against state-of-the-art approaches. Notice that no false-positive
reduction was applied to the detected nodules.

The performance comparison among methods using the ALTIS algorithm for lung seg-
mentation and the lung segmentation provided in the LUNA16 challenge is summarized
in the table 5.3. The GreedyNMS improves nodule detection by 0.96% using the AL-
TIS algorithm for lung segmentation rather than the lung segmentation provided in the
LUNA16 challenge. On their turn, GossipNet and FeatureNMS improve nodule detection
by 0.98% and 1.03% respectively by using the ALTIS algorithm for lung segmentation.
These results indicate the effectiveness of using the ALTIS algorithm for lung segmenta-
tion rather than the lung segmentation provided in the LUNA16 challenge.

Table 5.3: FEM results among methods using the ALTIS algorithm for lung segmentation,
the lung segmentation provided in the LUNA16 challenge, and without using any lung
segmentation.

Lung segmentation From LUNA16 From ALTIS Without any segmentation
GreedyNMS 83.12% 84.08% 67.56%
GossipNet 84.54% 85.52% 67.72%

FeatureNMS 85.45% 86.48% 68.02%
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Figure 5.3: Performance comparison among GreedyNMS, GossipNet, and FeatureNMS
(proposed). FeatureNMS achieves superior results as compared to the other methods. In
all cases, the ALTIS algorithm is used for lung segmentation.

5.5.3 Without using any lung segmentation at all

For the proposed method, the definition of Region of Interest through lung segmentation
is a crucial module since it constraint the searching inside the lungs avoiding candidate
regions with nodules outside of them. In order to show the crucial role that plays the lung
segmentation for nodule detection, we experiment the proposed method without using any
lung segmentation, that is, processing the entire CT image for lung nodule detection.

The performance comparison among methods whether lung segmentation is used or
not is summarized in the table 5.3. The GreedyNMS without using any lung segmen-
tation decreases nodule detection by 16.52% and 15.56% when it is compared to such a
method using the ALTIS algorithm for lung segmentation and the lung segmentation pro-
vided in the LUNA16 challenge respectively. On their turn, GossipNet decreases nodule
detection by 17.80% and 16.82%, and FeatureNMS decreases nodule detection by 18.46%

and 17.43%, when they are compared to such methods using the ALTIS algorithm for lung
segmentation and the lung segmentation provided in the LUNA16 challenge respectively.
These results indicate the crucial role that plays the lung segmentation for lung nodule
detection.
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Chapter 6

Conclusions and future work

We have presented a method for lung nodule detection consisting of four modules: pre-
processing, the definition of a region of interest (e.g., by lung segmentation), nodule
detection, and the elimination of redundant candidates. For lung segmentation, we use a
recent approach based on sequences of Image Foresting Transforms (IFTs) named ALTIS
providing a more accurate segmentation of the lungs which has a positive impact on
the results. For nodule detection and the elimination of redundant candidates, we rely
on a 3D Faster R-CNN with ResNet18 for the detection of candidate regions followed
by the proposed FeatureNMS for NMS. FeatureNMS essentially adapts GossipNet to
receive image features from the detected regions. It uses an RoI pooling layer, followed
by flattening, and one FC layer to feed image features to GossipNet and obtain a more
suitable object score per detected region.

A CAD system for lung nodule detection without using any lung segmentation de-
crease considerably nodule detection by 16.52%, 17.80%, and 18.46% for the methods
GreedyNMS, GossipNet, and FeatureNMS respectively, when they are compared to such
methods using the ALTIS algorithm for lung segmentation. These results show the crucial
role that plays the lung segmentation for lung nodule detection.

The effectiveness of the ALTIS algorithm has been shown when it is tested in dif-
ferent samples of the LUNA16 dataset. The experiments indicate that when the ALTIS
algorithm is used for lung segmentation, an improvement of 0.96%, 0.98%, and 1.03%

is reached for the methods GreedyNMS, GossipNet, and FeatureNMS respectively, when
they are compared to such methods using the lung segmentation provided in the LUNA16
challenge.

FeatureNMS has proven to be very effective for lung nodule detection when trained
and tested in different samples of the LUNA16 dataset. The experiments indicate that
FeatureNMS can perform slightly better (0.96%) than the original GossipNet using the
ALTIS algorithm for lung segmentation, and an improvement of 0.91% than the original
GossipNet using the lung segmentation provided in the LUNA16 challenge. Furthermore,
FeatureNMS outperforms the GreedyNMS by 2.40% and 2.33% using the ALTIS algorithm
and the adopted LUNA16 method for lung segmentation respectively. Note that we have
not used any false-positive reduction step which might further improve our results.
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6.1 Future work

In our proposed method we have considered a 3D Faster R-CNN with RestNet18 for the
detection of candidate regions with nodules. However, it can be explored other alternatives
for the nodule detector and the pre-trained model. For the nodule detector, there are
other alternatives such as the Single Shot MultiBox Detector (SSD) [24], You Only Look
Once (YOLO) [30], Region-based Fully Convolutional Network (R-FCN) [9] and some
recent approaches based only on RPN [5]. Similarly, for the pre-trained model, it can be
considered the VGGNet [38], DenseNet [19], or SENet[18]. On top of these alternatives,
our proposed FeatureNMS can be used for the elimination of redundant candidates and
check its effectiveness for nodule detection.

For the elimination of redundant candidates, we proposed FeatureNMS — a 1D neural
network that learns the parameters for NMS instead of relying on handcrafted parameters.
It proposes a transformation over the voxel intensities on the candidate regions with
nodules in the CT image. However, we did not explore the possibility to consider for these
candidate regions the image features from RestNet18 rather than the voxel intensities.
We believe that it cannot only lead to better results for the elimination of redundant
candidates since FeatureNMS would learn more complex patterns to learn the parameters
for NMS, but also to faster convergence. Additionally, it can be considered other image
features for the candidate regions rather than the voxel intensities.

As we have mentioned in the present work, we have not used any false-positive reduc-
tion stage in our proposed method for lung nodule detection, which might further improve
our results. As it was shown in several works [10, 11, 28], adding a false-positive reduction
stage can have a positive impact on nodule detection. After the nodule detector generates
the candidate regions with nodules, the false-positive reduction stage can be used. Also, it
can be explored to use an end-to-end framework for nodule detection, integrating nodule
candidate screening, and false-positive reduction into one model, trained jointly as it is
presented in [43]. At the end or after generating the candidate regions with nodules, our
proposed FeatureNMS can be incorporated for the elimination of redundant candidates.

Most of the current detectors process each candidate region individually, without ex-
ploiting their relations during learning. This is the main reason behind detectors gener-
ating several candidate regions per object. With the same spirit of GossipNet and our
proposed FeatureNMS, it can be used relation networks for object detection [17]. They
process a set of objects simultaneously through interaction between their appearance fea-
ture and geometry, thus allowing modeling of their relations. For these relation networks,
a post-processing step for the elimination of redundant candidates could not be neces-
sary since it exploits implicitly the relations among candidate regions as GossipNet and
FeatureNMS do.
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