
UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://ieeexplore.ieee.org/document/8835898

DOI: 10.1109/access.2019.2940947

Direitos autorais / Publisher's copyright statement:

©2019 by Institute of Electrical and Electronics Engineers. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo
CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/355840579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.repositorio.unicamp.br/


Received August 4, 2019, accepted August 19, 2019, date of publication September 13, 2019, date of current version September 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2940947

Performance Analysis and Optimization
of a N-Class Bipolar Network
PLÍNIO S. DESTER 1, PAULO CARDIERI 1, PEDRO H. J. NARDELLI 2,3,
AND JOSÉ M. C. BRITO 4
1School of Electrical and Computer Engineering, State University of Campinas, são paulo 13083-970, Brazil
2School of Energy Systems, LUT University, 53851 Lappeenranta, Finland
3Centre for Wireless Communications, University of Oulu, 90014 Oulu, Finland
4National Institute of Telecommunications, santa rita do sapucaí 37540-000, Brazil

Corresponding author: Plínio S. Dester (plinio@decom.fee.unicamp.br)

This work was supported in part by the Foundation for Research Support of the State of São Paulo under Grant 2017/21347-0, in part by
the Brazilian National Council for Scientific and Technological Development under Grant 311485/2015-4, in part by the Academy of
Finland via the ee-IoT Project under Grant 319009, in part by the FIREMAN Consortium under Grant CHIST-ERA 326270, in part by the
EnergyNet Research Fellowship under Grant 321265 and Grant 328869, in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior–Brazil (CAPES) under Grant 001, in part by the RNP, with resources from MCTIC, under the Radiocommunication
Reference Center (CRR) Project of the National Institute of Telecommunications (Inatel), Brazil, under Grant 01250.075413/2018-04.

ABSTRACT A wireless network with unsaturated traffic and N classes of users sharing a channel under
random access is analyzed here. Necessary and sufficient conditions for the network stability are derived,
along with simple closed formulas for the stationary packet transmission success probabilities and mean
packet delays for all classes under stability conditions.We also show, through simple and elegant expressions,
that the channel sharing mechanism in the investigated scenario can be seen as a process of partitioning a
well-defined quantity into portions, each portion assigned to each user class, the size of which determined by
system parameters and performance metrics of that user class. Using the derived expressions, optimization
problems are then formulated and solved to minimize the mean packet delay and to maximize the channel
throughput per unit of area. These results indicate that the proposed analysis is capable of assessing the
trade-off involved in radio-resource management when different classes of users are considered.

INDEX TERMS Design optimization, queueing analysis, stochastic processes, wireless networks.

I. INTRODUCTION
Efficient use of radio resources has always been an important
aspect in the deployment of large-scale wireless communica-
tions systems [1]. This situation is nowmore exacerbated due
to the growth of the number of applications that require higher
data rates like video streaming services [2]. On top of it,
the number of terminals is exponentially increasing; in a not
very far future, there will be more machines communicating
to each other than humans [3]. In a new world of the Internet
of Things (IoT), wireless communication systemswill need to
serve both human- and machine-type communications while
being capable of delivering data rates of up to tens of Gb/s,
latency in the order of milliseconds, and reduced energy con-
sumption to 10% of the current values. All these are set as tar-
gets for the fifth-generation cellular system (5G System) [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Guangdeng Zong.

In one scenario envisioned for the 5G systems, a number
of subnetworks will co-exist in the same geographic area,
sharing radio resources. Each of these subnetworks will be
dedicated to serve a particular type of application and/or
scenario, with its own requirements, such as coverage, trans-
mission rates and maximum acceptable latency [5]. It seems
to be a consensus in the academic and industrial communities
that the goals imposed on 5G systems will only be achieved
through the use of heterogeneous networks [6]. Although
extensively studied by the scientific community, there is still a
lack of understanding of the theoretical limits of interference-
limited wireless networks where the relative positions of
terminals and their activities are unknown.

We are interested here in studying the performance of
a network composed by N classes of users that share the
same radio resources, namely radio spectrum and transmit
power. Packets arrive at the transmitters randomly, which are
modeled by queues where packets waiting for transmission

135118 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-0614-0755
https://orcid.org/0000-0002-7761-0240
https://orcid.org/0000-0002-7398-1802
https://orcid.org/0000-0003-3455-8363


P. S. Dester et al.: Performance Analysis and Optimization of a N-Class Bipolar Network

are stored. Each of these N classes has its own charac-
teristics (e.g., terminal density, transmit power, and traffic
intensity) and quality of service requirements (communica-
tion link quality and maximum tolerable mean delay). IoT
scenarios covered by 5G systems can be viewed in this way
since thousands of wireless terminals connected to sensors
access the wireless network to transmit their messages [7].
Each sensor is associated with a specific application that
imposes different requirements: automatic control systems
may required millisecond-delay and 99.999% reliability [8],
while telemetry applications may accept minutes of delay and
weaker reliability constraints [9]. The wireless connections
may involve an access point (cellular mode) or direct device-
to-device links (D2D mode) [10].

In the scenario investigated here, links of all user classes
share the same channel, causing mutual interference, which
in turn makes the queues of the terminals coupled, since
the transmission success probability of a transmitter (i.e.,
the service rate of the associated queue) depends on the state
of the queues of other transmitters (whether their queues are
either empty or non-empty). The analysis of networks with
coupled queues is still a fertile research field, especially when
the capture model is adopted [11]. This model assumes that a
packet is successfully received if the corresponding signal to
interference plus noise ratio (SINR) at the receiver is above
a certain threshold (in contrast to the collision model [11],
according to which a packet transmission is successful only
if there are no concurrent transmissions). The concept of
stochastic dominance was employed in several works found
in the literature (see, for instance, [12], [13]) to determine
the conditions for queue stability under coupled queues sce-
narios. Stochastic dominance is based on the comparison of
the original system network with a simpler and sub-optimal
system that, for example, transmits dummy packets for a
given set of users. If it is proven that the sub-optimal network
is stable, then the original (dominated) network is stable as
well [14].

Stamatiou and Haenggi [15] investigated the scenario
described above, by combining the use of the stochastic domi-
nance technique with stochastic geometry models and queue-
ing theory results. They studied the stability and the delay of
random networks, where terminals are located according to
a Poisson point processes (PPP), and obtained necessary and
sufficient conditions for stability in a network with one or
two classes of users. Afterwards, many other works explored
this combination between queueing theory and stochastic
geometry to study random networks (see, for instance, [16]–
[18] and references therein).

The present work extends the results presented by Sta-
matiou and Haenggi [15], generalizing the formulation that
describes the behavior of users in a random network with N
classes of users. We assume that each transmitter (generated
by a ‘‘mother’’ PPP) chooses the closest terminal within the
pool of potential receivers generated by its ‘‘son’’ PPP to
transmit its packet, as illustrated in Fig. 1. We establish the
necessary and sufficient conditions relating user densities,

FIGURE 1. Example of a bipolar high-mobility random network with
N = 3 user classes (one for each color). The queues represent the
transmitters, and the potential receivers are represented by circular
shapes of the corresponding color. Each transmitter communicates with
the closest potential receiver, as it is shown by the dashed lines.
Unconnected circles represent inactive receivers. The quantities λ, a, ps
and φ are related to density of users, rate of arrival of packets, rate of
service of packets and link quality, respectively.

transmit power levels and traffic intensities that ensure sta-
bility for the terminal queues of all classes. For the case
of stable networks, we show that the portion of the radio
resource allocated to each class of users is well-defined by
a simple expression relating its average delay, intensity of
traffic, density of terminals, and the minimum acceptable
link signal-to-interference ratio of that class. Our results
evince the interplay among stability, traffic intensity, density
of users and outage probability in a scenario where termi-
nals share radio resources, through a simple formulation that
allows for insights into the existing trade-offs among key
network parameters for N classes of users (Proposition 2 and
Corollary 1).

The scenario considered in this paper was studied by
other authors, as discussed in the following paragraphs.
Liu et al. [18] derived analytic expressions for the mean
delay and the throughput of the channel, but their solutions
are not in closed form1 [19]. Also, they considered static
PPPs and, in this case, it is not possible to find the conditions
for network stability, since for almost2 all PPPs there is
a subset of unstable users, i.e., users with a transmission
distance greater than a critical value, such that their queues
are unstable.

Zhong et al. [20] also studied the problem of stability
in Poisson networks under random access, but for a static
network. The authors introduce the concept of ε-stability,
according to which a network is said ε-stable when the

1In this present paper, a closed form expression is defined as a finite com-
bination of elementary functions, which are limited to sum, multiplication,
exponentiation and their inverses in the field of complex numbers C.

2Almost in the sense of having probability measure one.
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portion of unstable queues in the network is less than ε.
The necessary condition and the sufficiency condition for
ε-stability are then determined. However, the authors do not
analyze the queueing delay.

Another work that explores this combination of stochas-
tic geometry and queueing theory was presented by
Gharbieh et al. [21], where the authors compare the perfor-
mance (in terms of transmission success probability, buffer
queue length, access delay time, and scalability) of scheduled
protocol with random access protocol for the uplink in the
context of IoT. The conclusion is that the best performing pro-
tocol depends on the operational scenario regarding terminal
densities and traffic rates.

Gharbieh et al. [22] investigated the delay and stability
in cellular wireless networks where base stations serve IoT
devices, which are modeled as queues with geometric arrival.
The performance of power-ramping and backoff transmission
strategies was studied, by modeling the time evolution of
queues using discrete time Markov chains. Due to the inter-
action among queues, caused by mutual interference, the pro-
posed Markov chains were solved using iterative algorithms.

In another related work, Zhong et al. [23] studied the delay
in wireless networks, considering however the downlink of a
heterogeneous cellular network, with K tiers of base stations.
Downlink traffic arrives at the base stations in bursts, to be
delivered to users, which are spatially distributed according to
a Poisson point process. Each user has a delay requirement in
terms of maximum acceptable mean packet delay. Different
scheduling mechanisms are investigated, including random
access, FIFO and robin-round scheduling.

Yang and Quek also investigated the downlink perfor-
mance of a wireless network composed of user terminals
served by small access points (SAP) [24]. The locations of
SAPs and user terminals are modeled by means of Poisson
point processes, and SAPs are equipped with a set of queues,
each one dedicated to a user terminal. The SAPs share the
same downlink channel, causing mutual interference among
transmissions, which in turn results in a interacting queues
scenario. The main focus of the paper is on the effects of
spatial geometry of interfering terminals and the traffic inten-
sity on the SAP coverage. Numerical results show that higher
traffic intensity requires lower SINR threshold if the coverage
is to remain unchanged.

Chen et al. [25] studied delay and throughput in a cognitive
radio network, in which secondary users share the channel
with a single primary user. Secondary users are allowed to
access the channel with a probability that depends on the
length of the queue of the primary user. Using results from
queueing theory and stochastic geometry, the authors devel-
oped an analytic framework to investigate the relationship
between the delay of the primary users and the throughput
of the secondary network. Optimization problems are then
proposed and solved to maximize the secondary network
throughput under delay constraints for the primary users.

Following a different approach from the ones aforemen-
tioned, Kountouris et al. investigated the delay in wireless

networks using tools from stochastic network calculus [26].
For a static Poisson network, they derived bounds on the delay
violation probability and on the effective capacity distribu-
tion, using network calculus.

A. MAIN CONTRIBUTIONS
The main contributions of our work when compared to
the results presented in the aforementioned papers, particu-
larly the one presented by Stamatiou and Haenggi [15], are
twofold. Firstly, we have extended the analysis of stability
and delay in random-access wireless network to the case
of a network with an arbitrary number N of user classes.
Secondly, we have expanded this analysis to show that the
channel sharing mechanism in the investigated scenario can
be seen as a process of partitioning a fixed and well-defined
quantity into portions, each portion allotted to each user class,
the size of which varying in accordance with the user class
parameters.

More specifically, the contributions of the paper are:
• We propose a tractable scenario to study the perfor-
mance and stability of a bipolar network with an arbi-
trary number N of classes of users sharing the same
channel;

• a simple and elegant expression relating mean delays,
arrival rates, user densities, mean link distances and bit
rates of all N classes is derived for the case of stable
network. This expression clearly shows that each class
of user takes a well-defined portion of the available finite
resource in the RF channel (Proposition 2);

• a closed form [19] solution to the fixed-point system
of equations that determine the stationary transmission
success probabilities for N user classes is found;

• an intuitive equation is presented relating link quality,
packet arrival rate, density of users and stationary mean
delay (Proposition 1);

• we prove the necessary and sufficient conditions
that determine whether a given network is stable
(Theorems 1 and 2);

• we establish a simple necessary condition for sta-
bility that does not depend on the transmit powers
(Corollary 1);

• the optimum transmit powers per user class that achieve
the optimum stationary mean delays for each user class
(Proposition 3) are derived;

• the optimum packet arrival rates per user class that
achieve the maximum channel throughput per unit of
area (Proposition 4) are derived;

• we conclude that depending on the channel and user
classes, the best strategy to maximize channel through-
put is to share the channel, instead of using one single
class per channel;

The paper is organized as follows: Section II describes the
model used throughout the paper and provides some impor-
tant results from the literature to be used in the following
sections; Section III presents the main results of the paper,
i.e., necessary and sufficient conditions for stability when we

135120 VOLUME 7, 2019
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TABLE 1. Notations and symbols used in the paper.

have N interacting user classes, and shows a simple expres-
sion for the stationary mean delay and the packet success
probability; Section IV applies the obtained results in two
general scenarios: one scenario optimizes the transmission
power of different user classes with different delay require-
ments sharing the same channel and the other optimizes the
throughput per unit of area; Section V concludes the paper.

The notations used in the paper are summarized in Table 1.

II. PRELIMINARIES
A. SYSTEM MODEL
We consider a network composed by N classes of users that
share the same RF channel under Aloha protocol. Time is
slotted and for each time slot t ∈ N and each user class
n ∈ N , {1, 2, . . . ,N }, we have a homogeneous Poisson
point process (PPP) denoted by 8n(t) ⊂ R2 of density λn,
which represents the position of the sources. These PPPs
are independent from each other and from the past. Each
transmitter (TX) of user class n transmits with power Pn. The
position of the transmitters are given by {Xi n(t)}i, i ∈ N,
i.e., 8n(t) = {Xi n(t)}i. More precisely, for each time slot
the position Xi n(t) of the i-th TX is reallocated following
the high-mobility random walk model [27]. The i-th TX of
user class n communicates with a receiver (RX) located at
Yi n(t). Thus, the distance between the i-th transmitter of class
n and its destination is given by Ri n(t) = ||Xi n(t) − Yi n(t)||.
In this work, we assume that each transmitter is associated
to a ‘‘son’’ PPP that models the locations of its potential
receivers. The receiver associated to the i-th transmitter of
class n is chosen as the closest point in the respective son
PPP to the point Xi n(t). As a consequence, {Ri n(t)}t are
iid Rayleigh random variables3 [28, Eq. (2.35)]. Rayleigh

3The iid random variables for the TX-RX separation distance are of grave
importance for the theoretical model. Otherwise, there is at least one unstable
queue and, consequently, the queueing network is unstable.

distributed TX-RX separation distance has been used in sev-
eral other works investigating similar scenarios (e.g., [29]–
[31]). We denote the mean transmission distance E[Ri n(t)]
by Rn. The occupation of the buffer at each TX is represented
by its queue length {Qi n(t)} of infinite capacity. The packet
arrival probability at each queue is denoted by an and the
medium access probability by pn. Within each slot, the first
event to take place for each TXwith a non-empty queue is the
medium access decision with probability pn. If it is granted
access and the signal to interference ratio (SIR)4 is greater
than a threshold θn > 0, a packet is successfully transmitted
and leaves the queue. Then, we have the arrival of the next
packet with probability an. The last event to take place is the
displacement of the transmitters and destinations.

The queue lengths of the i-th TX, user class n are Markov
Chains represented by

Qi n(t + 1) = (Qi n(t)− Bi n(t))+ + Ai n(t), t ∈ N,

where (·)+ , max{·, 0}, {Ai n(t)} are iid Bernoulli random
variables of parameter an and represents the arrival process,

Bi n(t) = ei n(t)1SIRi n>θn

represents the departure process, where {ei n(t)} are iid
Bernoulli random variables of parameter pn, the constant θn
represents the SIR threshold for successful communication,
and the SIR of user i and user class n is given by

SIRi n=
Pn hi n,i n ||Xi n − Yi n||−α∑

(j,k)6=(i,n)

Pk hj k,i n ej k 1Qj k>0 ||Xj k − Yi n||
−α
, (1)

where the dependence on t has being omitted, {hj k,i n(t)}t are
iid exponential distributed random variables of parameter one
and represent the Rayleigh fading coefficient from the j-th TX
of class k to the i-th RX of class n. Coefficient α > 2 is the
path loss exponent.
Remark 1: The numerator of (1) represents the power of

the signal received by a given RX that was transmitted by
its corresponding TX. The denominator of (1) represents
the sum of the interfering signal powers from all other TXs
transmitting at that time slot, i.e., TXwith non-empty queues.

B. DEFINITIONS AND LITERATURE RESULTS
This subsection is devoted to present the usual definitions
found in the literature and some known results that are useful
to prove the main results of the paper. Let us start by defining
the concept of stability in a queueing system. Let us use the
definition proposed by Szpankowski [14], presented next.
Definition 1: A queue Q(t) is stable if for x ∈ Z+

lim
t→∞

P(Q(t) < x) = F(x) and lim
x→∞

F(x) = 1,

where F : R+ −→ [0, 1] is the limiting distribution function.
The system network is stable when the queue of the typical

user from n-th class is stable for all n ∈ N . The stability

4We assume thermal noise is negligible; refer to [32] for further details.
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region R is given by the set of arrival rates a ∈ [0, 1)N that
makes the system network stable.

Throughout the paper, stationary success transmission
probability ps,n refers to the limiting probability of a success-
ful transmission from a typical user of class n, i.e.,

ps,n , lim
t→∞

P(SIRi,n(t) > θn).

This probability does not depend on the user i, by symmetry.
The stationary mean delay Dn to transmit packets of class n
is defined as the limiting (as t tends to infinity) expected time
a packet spends in the buffer and the server.

The following results from the literature are used in many
proofs throughout the paper. In a wireless network, let us
assume that (i) the separation distance between a given pair
TX -RX is equal to r , (ii) the positions of the interferers (users
whowill transmit packets in a given time slot) follow a PPP of
density λeff, and (iii) every transmitter has the same transmit
power. Then, the probability of a successful transmission
between TX and RX is given by [33, Sec. III.A]

P(SIR > θ)=E[e−θr
αI ]

= exp
(
−π 0(1+ δ)0(1− δ) θ δ r2 λeff

)
, (2)

where δ , 2/α and I ,
∑

X∈8 ||X ||
−α is the interference

received by RX normalized by the transmit power and 8
is a PPP of density λeff, which is the effective density of
active sources. This result can be generalized for the case of
N classes of interferes, each class n ∈ N with an effective
density λ(n)eff and transmit power Pn. The proof with two user
classes was presented byYin et al. [34, Proposition 3] and it is
easily extended to N user classes as follows. Let the analyzed
transmitter be from class k ∈ N , then

P(SIRk > θ)=E

[
exp

(
−
θ rα

Pk

∑
n∈N

Pn In

)]

=

∏
n∈N

E
[
exp

(
−θ rα

Pn
Pk
In

)]

=

∏
n∈N

exp

(
−πr2 θ δ

πδ

sin(πδ)
Pδn
Pδk
λ
(n)
eff

)

= exp

(
−πr2 θ δ

πδ

sin(πδ)

∑
n∈N

Pδn
Pδk
λ
(n)
eff

)
, (3)

where we used Euler’s reflexion formula 0(1+ δ)0(1− δ) =
(πδ)/ sin(πδ) and In is the interference from the n-th class
normalized by the transmit power. It is assumed that {In}n∈N
is iid.

III. MULTIPLE-CLASS NETWORK
As described in Section II, we consider a network with N
classes of users. The following proposition presents the sta-
tionary success probability andmean delaywhen transmitting
a packet in a stable network. The results that guarantee sta-
bility are presented later in the paper, in Theorem 1.

Proposition 1: If the network is stable, then the stationary
success probability and mean delay for a typical user of class
n ∈ N are given by

ps,n =

(
1+

φn

Pδn

∑
j P
δ
j ajλj

1−
∑

j φj ajλj

)−1
, (4)

Dn =
1− an

pn ps,n − an
, (5)

where the sums are taken over the set of user classes N ,
δ , 2/α, and

φn ,
4R

2
n θ

δ
n πδ

sin(πδ)
. (6)

Proof: The buffer (plus server) is a discrete time
Geo/Geo/1 queue [15] and the equation for the delay Dn
is found in the literature [35, Chapter 4.6]. As t → ∞,
the effective PPP density of active sources λ(n)eff for each user
class n ∈ N converges (by hypothesis) to λn pn ρn, where
ρn = an/(pn ps,n) is the load of the queue (or the probability
of having a non-empty queue), which is the ratio between
the arrival rate and the service rate of packets. Thus, λ(n)eff =

λn an/ps,n.
Then, to calculate the transmission success probability ps,n,

we use (3), which assumes that the link distance between TX
and RX is constant. Thus, by deconditioning the transmission
success probability on Ri n, we take into account that Ri n is
Rayleigh distributed, that is

ps,n = lim
t→∞

P(SIRi n(t) > θn)

=

∫
∞

0
lim
t→∞

P(SIRi n(t) > θn | Ri n(t) = r) fRn (r) dr

=

∫
∞

0

π r

2R
2
n

exp

{
−
π r2

4R
2
n

(
1+ φn

∑
k∈N

Pδk
Pδn
λ
(k)
eff

)}
dr

=

(
1+

φn

Pδn

∑
k∈N

Pδk
akλk
ps,k

)−1
. (8)

This expression can be rearranged as

Pδn
φn

(
1− ps,n
ps,n

)
=

∑
k∈N

Pδk
akλk
ps,k

. (9)

Note that the right-hand side of (9) does not depend on n.
Then, for all j ∈ N , we can write

Pδj
φj

(
1− ps,j
ps,j

)
=
Pδn
φn

(
1− ps,n
ps,n

)
. (10)

For each j, we can solve the above equation for ps,j and plug
it into the sum of (8). Then, we can solve it for ps,n, which
ends the proof. �
The following theorem shows the conditions for which the

network is stable, i.e., it presents the region formed by all
arrival rates a that make the system stable.
Theorem 1: A necessary and sufficient condition for the

network stability is that a ∈
⋃
ν∈V Cν , where V is the space

of all bijective functions fromN toN (or permutations) and

135122 VOLUME 7, 2019
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FIGURE 2. Stability region R according to theorem 2 for p1 = 1/3,
p2 = 2/3, p3 = 1, φ1λ1 = 1, φ2λ2 = 2, φ3λ3 = 3, φ1/P1 = 1/3,
φ2/P2 = 1/2, φ3/P3 = 1.

Cν is defined in (7), as shown at the bottom of this page, with
the convention

∑0
k=1 · = 0.

Proof: See Appendix B. �
Theorem 1 requires verifying N×N ! inequalities, whereas

the following theorem is equivalent and it involves only N
inequalities. Thus, Theorem 2 presents a simpler form of
verifying the conditions for stability.
Theorem 2: The system network is stable iff a ∈ R, where

R ,
{
a ∈ [0, 1)N

∣∣ an < pn,

φn

Pδn

an
pn − an

<
1−

∑
k φk akλk∑

k P
δ
k akλk

∀n ∈ N
}
.

Proof: See Appendix C. We show that R =
⋃
ν∈V Cν .

�
Remark 2: The convoluted conditions of Theorem 1 are

extensively reduced in Theorem 2, for which we can see
that as the density of users λn increases or the quantity φn
(which is inversely related to link quality, see (6)) increases
for some n ∈ N , then the stability region R decreases for
all user classes. On the other hand, if the transmission power
Pn increases for some n ∈ N , then the stability region R
increases for the n-th class and decreases for all other classes.
Surprisingly, when the access probability pn varies, the only
affected class regarding stability region is the n-th class (as
long pn > an).

Figure 2 shows an example of stability region for N = 3
classes, wherewe have used only three non-linear inequalities
instead of 18. The following corollary establishes a simple
result on stability, which is used in Section IV to propose and
solve optimization problems regarding delay and throughput.

FIGURE 3. Maximum stability region S0 according to corollary 1 for
p1 = 1/3, p2 = 2/3, p3 = 1, φ1λ1 = 1, φ2λ2 = 2, φ3λ3 = 3.

Corollary 1: There exists a vector of transmit powers
P ∈ RN

+ such that the network is stable iff a ∈ S0, where

S0 =

{
a ∈ [0, 1)N

∣∣ 0 ≤∑
n∈N

φnλn
1
an
−

1
pn

< 1

}
.

Proof: First, let us show thatR ⊂ S0 for all P ∈ RN
+.

If a ∈ R, then for all n ∈ N
φn

Pδn

an
pn − an

<
1−

∑
k φk akλk∑

k P
δ
k akλk

.

Multiplying both sides of the above equation by Pnanλn and
summing over all n ∈ N result in∑

n∈N
φnλn

pn an
pn − an

< 1

after some manipulations. Thus, a ∈ S0.
Now, let us show that S0 ⊂ R for some P ∈ RN

+. In
particular, let us choose Pn = φnan/(pn − an), n ∈ N . Then,
the inequalities that describe the regionR can be rewritten as
one unique inequality

1 <
1−

∑
k φkakλk∑

k φka
2
kλk/(pk − ak )

that does not depend on n anymore. It is easy to show that this
inequality is the same as the one that defines the region S0.
Thus, if a ∈ S0, then a ∈ R for that choice of P (or any scalar
multiple). This ends the proof. �
Figure 3 shows the region of arrival rates, according to

Corollary 1, for which it is possible to find transmit powers
that make the network stable. On the other hand, out of this

Cν ,
{
a ∈ [0, 1)N

∣∣ 0 ≤ φν(n)

Pδν(n)

aν(n)
pν(n) − aν(n)

<
1−

∑n−1
k=1 φν(k)aν(k)λν(k)∑n−1

k=1 P
δ
ν(k)aν(k)λν(k) +

∑N
k=n P

δ
ν(k)pν(k)λν(k)

∀n ∈ N
}

(7)
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region, the system is always unstable. It is worth mentioning
that φn, defined in (6), is related to the quality of the link
between receiver and transmitter for class n ∈ N ; the larger
is the value of φn, the poorer is the quality of the link. Also,
the stability region R showed in Fig. 2 is contained in S0.
This is expected, since we used the same parameters for both
sets and Corollary 1 considers the best case scenario, where
we can choose the transmit powers P for each a.
From now on, we assume that whenever there is a packet

in the buffer, the corresponding TX attempts to transmit, i.e.,
the medium access probability pn = 1 for all n ∈ N . We
discuss in Appendix A the validity of this assumption and the
high-mobility assumption. The motivation is that, when the
access probability of all classes is equal to one, we maximize
the stability regionR. This is easy to see with the inequalities
of Theorem 2, where the right-hand side does not depend on
pn and the left-hand side decreases monotonically with pn.
Thus, the stability region is maximized when pn = 1 for
all n ∈ N . The same occurs in Corollary 1. This result is
surprising and might be explained from the fact that we have
independence between adjacent time slots and, therefore, for
each time slot there is a new scenario (a new effective PPP).
Then, it makes sense to always try re-transmission. This
approach also minimizes the mean delay according to (5),
since the success probability ps,n in (4) does not depend on
the access probability in a stable network.

Using Proposition 1, Proposition 2 is introduced, which
presents an equation that relates all performance param-
eters independently of the transmission powers. Also,
the conditions for stability are extensively simplified, see
Corollary 1.
Proposition 2: If the network is stable and pn = 1 for all

n ∈ N , then the following identities hold (at stationary state):∑
n∈N

φn λn
Dn

Dn − 1
an

1− an
= 1, (11)

and
φj

Pδj

(
Dj

Dj−1
1

1−aj
− 1

)
=

φk
Pδk

(
Dk

Dk−1
1

1−ak
− 1

)
∀ j, k ∈ N .

Proof: We start with the terms of the sum,

φn λn
Dn

Dn − 1
an

1− an

(i)
= φnλn

an
1− ps,n

= Pδn
λn an
ps,n

(
φn

Pδn

ps,n
1− ps,n

)
(ii)
=

Pδn
λn an
ps,n∑

j P
δ
j
λj aj
ps,j

,

where (i) comes from (5) with pn = 1 and (ii) comes from
(9). Summing overN ends the proof of the first identity. For
the second relation of Proposition 2, we use (5) once again to
find

φn

Pδn

(
Dn

Dn − 1
1

1− an
− 1

)
=
φn

Pδn

ps,n
1− ps,n

.

Comparing this expression with (10) ends the proof. �

Proposition 2 is an elegant form to see that a channel is a
limited resource regarding traffic intensity and delay. Let us
rewrite the identity (11) in terms of physical parameters,

N∑
n=1

4 λn R
2
n θ

2/α
n

Dn
Dn − 1

an
1− an

=
sin(2π/α)
2π/α

. (12)

Note that an
1−an

and sin(2π/α)
2π/α are monotonic increasing func-

tions and Dn
Dn−1

is a monotonic decreasing function. The right
hand-side of (12) can be seen as the amount of resource
available to all users of the channel. Larger α results in
higher sin(2π/α)

2π/α , meaning that a larger amount of resource
is available to users. This can be explained recalling that
larger path loss exponent leads to stronger isolation among
links sharing the channel and, consequently, more users can
be accommodated in the network. Therefore, the larger the
path loss exponent α, the larger (smaller) the terms λn, Rn,
θn, an (Dn) can be. The identity (12) also tells us that the
n-th class of user takes a well-defined portion of the amount
of resource available in the network, which is given by the
n-th term in the summation. This means that the values of λn,
Rn, θn, an and Dn for a given class n can be adjusted, while
keeping the quantity λn R

2
n θ

2/α
n

Dn
Dn−1

an
1−an

unchanged. For
instance, we can make a direct exchange between decreasing
the delay Dn and decreasing the arrival rate of packets an (by
controlling the ratio of transmit power levels), such that the
term Dn

Dn−1
an

1−an
remains constant; or else, increase the arrival

rate of packets and decrease the density of users, such that
the term λn

an
1−an

remains constant. Therefore, Proposition 2
reveals, through a simple expression, the interplay among
traffic intensity, mean delay, density of users, link distance,
and outage probability, when the network is stable.
Remark 3: Corollary 1 and Proposition 2 are the simplest

and the most meaningful results of the present paper, as they
translate the behavior of the network in simple equations,
which do not directly depend on the transmission powers.

IV. INTERPRETATION AND APPLICATION
In this section, we solve two optimization problems using
the proposed formulation, applied to scenarios of different
classes of terminals sharing a radio channel.

A. DELAY OPTIMIZATION
Let us consider the scenario withN classes sharing a channel.
Each class may represent a particular user application, with
each application having a different delay requirement in the
network. Let us suppose we are interested in adjusting the
transmit power of each user class, such that the weighted
average delay among all classes is minimized. This problem
is addressed as follows. For fixed arrival rates of vector a
that satisfies Corollary 1, i.e., for a ∈ S0, let us minimize
the delays D by changing the ratio between the transmit
powers P. Each user class requires a different response time,
then we weight the optimization problem with the vector
(c1, c2, . . . , cN ) ∈ RN

+. The larger the coefficient of a class,
the smaller the resultingmean delay to deliver packets for that
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FIGURE 4. These figures represent the optimization of a 3-class network with the following parameters: a1 = a2 = a3 = a, φ1 λ1 = 0.1, φ2 λ2 = 0.3,
φ3 λ3 = 0.6 and c1 =

10
16 , c2 =

5
16 , c3 =

1
16 .

class. Then, we have

min
P∈RN+

∑
n∈N

cnDn= min
P∈RN+

∑
n∈N

cn (1−an)(
1+

φn
Pδn

∑
j P
δ
j ajλj

1−
∑

j φj ajλj

)−1
−an

, (13)

where Dn is given by Proposition 1. Note that as thermal
noise is not considered in our model, we have a degree of
freedom for the optimum solution P∗, which agrees with the
formulation in (13).
Proposition 3: The minimum of the optimization problem

(13) is attained by

P∗n
δ
=

β

λnan

(
anAn

1−
∑

k Ak
+

√
cnAn∑

k
√
ck Ak

)
, n ∈ N ,

(14)

where β is any positive real constant, An , φn λn
an

1−an
and

the sums are over N .
Proof: Since we have one degree of freedom for the

solution P∗, let us set
∑

j P
δ
j ajλj = 1 −

∑
j φj ajλj to exten-

sively simplify the algebraic manipulations. Then, we use
the Karush-Kuhn-Tucker conditions [36, Section 3.3.1] in the
Lagrangian function

L(P, µ) =
∑
n∈N

cn(1− an)(
1+ φn

Pδn

)−1
− an

+µ

∑
j∈N

Pδj ajλj −

1−
∑
j∈N

φj ajλj

 ,
where µ ∈ R is the Lagrange multiplier. The objective
function is strictly convex (the Hessian is a diagonal matrix
with positive eigenvalues) and the feasible region is a hyper-
plane, therefore the solution is the global optimum. Now,
we return to the original problem that does not have the
artificial constraint. Thus, we multiply the solution by an
arbitrary constant β > 0 to obtain the general solution. �

It is interesting to note that we must have
∑

k Ak < 1,
by Corollary 1. Therefore, P∗n

δ is always a positive
quantity. Also, if cn = An for all n ∈ N ,
then the optimum delays are all equal and given by
D1 = D2 = · · · = DN =

(
1−

∑
k Ak

)−1. Thus, we can
always choose transmit powers, such that we have the same
mean delay for all classes!

As an example, let us consider a 3-class network, where
Class 1 has a more restrictive delay requirement than Class 2,
which is more restrictive than Class 3. We consider that all
classes have the same arrival rate of packets, i.e., a1 =
a2 = a3 = a. Figure 4(a) shows the expected waiting
time of a packet before a successful transmission, which is
D∗n − 1, (n = 1, 2, 3) since a transmission takes exactly
one time slot. As expected, the optimization resulted in
monotonic increasing functions and D∗1 < D∗2 < D∗3 for
all a.

Figure 4(b) shows the normalized5 transmit powers per unit
of area λnP∗n

δ as a function of a. In this case, we do not have
a clear hierarchy among the transmit powers, as it depends
on the traffic intensity. For n ∈ N , if the network is close to
saturation, i.e.,

∑
k Ak tends to 1, then the normalized λnP∗n

δ

approachesAn/
∑

k Ak and, at first order, it does not depend
on the coefficients c1, c2, . . . , cN . On the other hand, if the
network is at low traffic, i.e.,

∑
k Ak tends to 0, then the

normalized anλnP∗n
δ approaches

√
cnAn/

∑
k
√
ckAk .

B. THROUGHPUT OPTIMIZATION
Now, let us maximize the total throughput of the channel
per unit of area with the constraint that the system is stable.
Since each TX performs re-transmissions until the packet is

5Whenever we refer to normalized fnP∗n
δ , it means that we choose β in

Proposition 3 such that
∑

k fkP
∗
k
δ
= 1 and fn is any function that depends

on n, for example fn = λn or fn = anλn.
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correctly received by the intended RX, then all packets are
successfully transmitted (eventually) in a stable system. Thus,
the throughput per TX is given by the packet arrival rate an.
The density of users per unit of area is given by λn, then the
throughput of the n-th user class per unit of area is simply
λn an and the throughput per unit of area of the entire system
is the sum of the throughput for all classes n ∈ N . Using
Corollary 1, we can formulate the optimization problem as
max
a∈S0

∑
n λn an. However, the strict inequality in the region

S0 of Corollary 1 results in an optimization problem that is
not well-posed. In this case, if the optimum solution lies in
the boundary of the feasible region, then the solution does
not exist. To circumvent this problem, we propose a new
region Sε ⊂ S0 by adding an arbitrarily small parameter
ε ∈ (0, 1) in the inequality, i.e., the new region is given
by

Sε =
{
a ∈ [0, 1)N

∣∣ ∑
n∈N

φn λn
an

1− an
≤ 1− ε

}
.

As the parameter ε increases, the system becomes less sensi-
ble to perturbations6. Now, the optimization problem is posed
as

max
a∈Sε

∑
n∈N

λn an. (15)

The following proposition presents the solution to the opti-
mization, i.e., the optimum arrival rates a∗ that maximize the
throughput per unit of area and maintain the system stable.
Proposition 4: If∑

k∈N
λkφk

(√
maxn φn
φk
− 1

)
< 1− ε, (16)

then the solution of (15) is attained by

a∗n = 1−

∑
k λk
√
φnφk

1− ε +
∑

k λkφk
, n ∈ N , (17)

where the sums are overN . If the inequality (16) is not satis-
fied, then the m-th class is excluded, where m = argmaxn φn,
and the inequality is checked again.

Proof: It is a direct application of the Karush-Kuhn-
Tucker conditions [36, Section 3.3.1] in the Lagrangian
function

L(a, µ) =
∑
n∈N

λnan + µ

[∑
k∈N

φkλk
ak

1− ak
− (1− ε)

]
,

where µ ∈ R is the Lagrange multiplier associated with
the constraint of stability. Equation (16) guarantees that the
solution a∗ ∈ [0, 1)N .
The objective function is convex (affine function) and the

region Sε is strictly convex (the Hessian of the function
that defines the region is a diagonal matrix with negative

6When the system parameters suffer a sufficiently small change, the sys-
tem remains stable

TABLE 2. Network parameters for fig. 5.

eigenvalues), therefore the presented solution is the global
optimum and it is unique. �

In the optimization (15), we still have freedom to choose
the transmit powers P, as long the network remains sta-
ble. The best way of choosing P is by minimizing the
delays, which we have already done in Subsection IV-A,
Proposition 3, where the arrival rates a ∈ Sε ⊂ S0 are
fixed. When the optimization is performed in this sequence
(maximization of throughput, then minimization of delay),
we have the optimum throughput (per unit of area) and the
optimum delays for the optimum configuration of arrival
rates. Later in this section, we illustrate this procedure with a
numerical example.

In order to solve the optimization problem (15) we did not
have to handle with the transmit powers P directly, which
would make the solution and the problem formulation more
cumbersome. This shows the usefulness of Corollary 1.

Let us illustrate the throughput optimization problem with
a system for which the parameters are shown in Table 2.
Figure 5(a) shows the optimum arrival rates a∗ that maxi-
mizes the throughput per unit of area.

It is quite interesting that the optimum solution is not nec-
essarily solely activating the class with the best link quality
(i.e., the class with the smallest φ, which is Class 1 in this
example). In Fig. 5(b) it is shown the optimum throughput
for each class and the total throughput of the system. For
comparison, we plotted a dashed curve representing the total
throughput if we only use the best performing user class,
regarding throughput. The dashed curve is below the opti-
mum total throughput for all ε. Therefore, the best solution
is always a combination of all user classes, as long as (16) is
satisfied. On the other hand, if this equation is not satisfied,
it means that there is at least one user class with a bad link
quality, such that it is better (regarding throughput efficiency)
to reallocate this user class to another channel.

Now that we have, for each ε, the arrival rate configu-
ration a∗(ε) which gives the maximum throughput, we can
use Proposition 3 to find the best configuration of transmit
powers P∗(ε) that minimizes the sum of the mean delays for
each optimum configuration of arrival rates a∗(ε). Figure 5(c)
shows the result of this optimization, which is a direct appli-
cation of (14). It is worth noting that as we increase ε
the system is farther from instability, which corresponds to
having a smaller delay to transmit packets, as we can see
in Fig. 5(c), and a smaller throughput, as shown in Fig. 5(b).
Figure 5(d) shows the optimum distribution of power per unit
of area required by each user class. Notice that the first user
class, which has the best link quality, uses the smallest power
per unit of area. However, this behavior is more intricate; it
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FIGURE 5. These figures represent the optimization of the throughput and mean delay of a 3-class network with the parameters given in table 2.

also depends on the density of users of the corresponding
class. Notice, for example, the inversion between user class
2 and 3 as we increase ε in Fig. 5(d).

Another interesting and direct result from Corollary 1 is to
provide an upper bound for the total throughput per unit of
area in a stable system, which is given by 1/(minn φn). This
is not a tight bound, however it is interesting on its own, due
to its simplicity and the fact that it does not depend on the
density of users. The proof follows∑

k∈N
akλk ≤

1
minn φn

∑
k∈N

φk ak λk

<
1

minn φn

∑
k∈N

φk λk
ak

1− ak

< (minn φn)−1 , (18)
where the last inequality comes from Corollary 1.

V. CONCLUSION

In this paper, it is proposed a modified model to study the
stability and delay of slotted Aloha in high-mobility Poisson
bipolar networks. The model presented in the paper consid-
ers a scenario where transmitters with buffer communicate
with the closest receiver belonging to a son Poisson point
process. We derived necessary and sufficient conditions for
stability in a network with N user classes; we also provided
simple closed-form expressions for the packet success prob-
ability and mean delay. As shown by the results in the paper,
the advantage of using this model as a base to model other
network effects is its analytic tractability. As an example,
wewere able to derive simple conditions to verify the stability
of a interference-limited network with undetermined transmit
powers (see Corollary 1). We also solved (analytically and
in closed form) two optimization problems regarding the
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FIGURE 6. Queue load ρ as a function of the access probability p.
Simulation results with a static network are presented in marks and the
theoretical results with the high-mobility assumption are presented in
curves.

minimization of the delays in a network (see Proposition 3)
and maximization of the total throughput per unit of area (see
Proposition 4). An interesting insight from the optimization
problem is that the best solution to maximize the throughput
of a channel is not necessarily using solely the user class with
the best link quality, i.e., a mix with other user classes may
result in a better use of the channel. All in all, this paper
provides a simple way to evaluate the existing trade-offs
involved in the design of wireless networks when different
classes of nodes co-exist. In the future, we plan to further
extent this analysis to more practical machine-type commu-
nications (5G) scenarios, including long range technologies
and transmission of critical messages.

APPENDIX A
HIGH-MOBILITY ASSUMPTION
In this appendix, we address the high-mobility assumption,
which may not be realistic in real wireless networks, since the
mobility of transmitters does not change drastically between
adjacent time slots. Therefore, the independence assumption
would not hold. Nevertheless, in a stable wireless network
which has a small packet arrival rate a per user or a small
access probability p, the correlation might be sufficiently
small such that the independence (high-mobility) assumption
is reasonable. In [29] the authors show that if the access
probability p is sufficiently small, then the independence
assumption provides a good approximation.

When the packet arrival rate a or the access probability
p are small, the typical user sees a significantly different
PPP of transmitters, which justifies the independence (high-
mobility) assumption. We verified this claim through simu-
lations and the result is shown in Fig. 6, where it is used one
user class with λcR

2
= π/4, α = 3 and θ = 1.

The mean load of the queues ρ, which is equivalent to the
percentage of queues with packets to transmit, are plotted

as a function of the access probability p for several values
of arrival rate a. As expected, for small values of a or p,
the theoretical model presents good estimations of the aver-
age queue load. It is important to emphasize that we did not
plot the mean delay D, because in a static PPP there might
exist a set of unstable users, whose queues and delays tend
to infinity. This would raise the average delay to infinity
too. Then, we chose to plot the mean load ρ, which is equal
to 1 for unstable users and does not tend to infinity as the
mean delay D.

To establish Proposition 2, we suppose that the access
probability p is equal to one for all users. In the context of
high-mobility this approach makes sense, since the typical
user sees a different interference scenario for each time slot.
Thus, it makes sense to attempt a re-transmission every time
slot until the packet is successfully transmitted. This also
minimizes the mean delayD, which is in accordance with (5),
as ps,n does not depend on pn in a stable network.

There is another scenario, which does not require high-
mobility to achieve spatial independence between adjacent
time slots. This scenario is a network that uses the frequency-
hopping scheme over a set of channels [37]. For each time slot
there is a different PPP pattern, since the transmitting nodes
select with equal probability one channel to transmit. Thus,
the spatial correlation between time slots decreases with the
number of channels available for selection.

APPENDIX B
PROOF OF THEOREM 1

Proof: Using the concept of stochastic dominance
[38, Section 2.1.2], it is possible to derive necessary and
sufficient conditions for stability. In the dominant network,
all the user classes in the set D ⊂ N transmit dummy
packets. If the dominant network is stable, then the original
network is stable. On the other hand, if the queues of the
user classes in D are not empty in the original network, then
this system behaves exactly as the dominant network (both
systems are indistinguishable [14, Section 3.2]). Therefore,
if the dominant network is unstable, then the original network
will be unstable as well. In order to have necessary and
sufficient conditions, we must perform this verification for
all D ⊂ N .

Let us start with D = N , i.e., all users transmit dummy
packets. For each step of the verification, we remove the
stable user class from the set D. This procedure repeats until
the set D becomes empty. In order to attain stability of the
dominant network we must have an arrival rate smaller than
the service rate [39]. Thus, a sufficient condition for the
first user class stability is, for any queue i of this class (by
symmetry),

a1 < p1 P(S̃IRi,1 > θ1) = p1

(
1+

φ1

Pδ1

N∑
k=1

Pδk pkλk

)−1
,

where S̃IR represents the signal-interference ratio in the dom-
inant network and the second equality comes from the same
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procedure to obtain (8) with λ(n)eff = λn (all users are active,
since every TX transmits dummy packets).

This guarantees stability for the first user class. Let us
remove it from the set D. Then, we calculate the stationary
success probability of the first user class p̃(1)s,1 for this dominant
network. At steady state, we have

p̃(1)s,1 =

(
1+

φ1

Pδ1

(
Pδ1 p1λ1

a1

p1̃p
(1)
s,1

+

N∑
k=2

Pδk pkλk

))−1
,

which can be solved for p̃(1)s,1,

p̃(1)s,1 =
1− φ1 λ1 a1

1+ φ1
Pδ1

∑N
k=2 P

δ
k pkλk

.

The next step is to verify the conditions of stability for
the second user class, when the first user class is at steady
state. After that, we remove the second user class from the
set D and calculate the stationary success probability of the
two stable user classes in the dominant network. We repeat
these steps until we remove all user classes, i.e, D = {}.
We show this by induction; we suppose stability of the user
classes 1, 2, . . . , j−1. LetD = {j, j+1, . . . N }; the j-th user
class is stable, given that all the user classes in N \ D are
stable, when

aj < pj P(S̃IRi,j > θj)

= pj

1+
φj

Pδj

 j−1∑
k=1

Pδk λk
ak

p̃(j)s,k
+

N∑
k=j

Pδk pkλk

−1 ,
(19)

where p̃(j)s,k is the k-th user class success probability (1 ≤ k <
j) at steady state in the dominant network at the j-th step.
To calculate this probability, we must solve the following
system of equations. For k ∈ {1, 2, . . . , j− 1}

p̃(j)s,k =

1+
φk

Pδk

 j−1∑
`=1

Pδ` λ`
a`

p̃(j)s,`
+

N∑
`=j

Pδ` p`λ`

−1 .
Using an analogous approach as the one presented in the
proof of Proposition 1, we have that for k ∈ {1, 2, . . . , j−1},

p̃(j)s,k =

(
1+

φk

Pδk

∑j−1
`=1 P

δ
` a` λ` +

∑N
`=j P

δ
` p`λ`

1−
∑j−1
`=1 φ` a` λ`

)−1
.

Comparing the last two equations, it is easy to see that

j−1∑
`=1

Pδ` λ`
a`

p̃(j)s,`
+

N∑
`=j

Pδ` p` λ`

=

∑j−1
`=1 P

δ
` a` λ` +

∑N
`=j P

δ
` p`λ`

1−
∑j−1
`=1 φ` a` λ`

.

Finally, we can use this result to rewrite (19) as, for all j ∈ N ,

0 ≤
φj

Pδj

aj
pj − aj

<
1−

∑j−1
k=1 φk ak λk∑j−1

k=1 P
δ
k akλk +

∑N
k=j P

δ
k pkλk

.

This concludes the proof, since the extension for the other
partitions of N is analogous. �

APPENDIX C
PROOF OF THEOREM 2

Proof: The proof consists of showing that the set R is
equal to the set defined in Theorem 1. First, let us prove that⋃
ν∈V Cν ⊂ R. For that we suppose a ∈ Cν and we show

a ∈ R for all ν ∈ V by induction. For simplicity of exposition
let us take Cν with ν : n 7−→ n, n ∈ N . We assume the
inequality

φN−j

PδN−j

aN−j
pN−j − aN−j

<
1−

∑N
k=1 φk akλk∑N

k=1 P
δ
k akλk

. (20)

is true for all j ∈ {0, . . . ,m − 1} and we prove that it is also
true for j = m. First, we have to prove the base case m = 1.
Since a ∈ Cν , then for j = 0 (n = N )

φN

PδN

aN
pN − aN

<
1−

∑N−1
k=1 φk akλk∑N−1

k=1 P
δ
k akλk + P

δ
N pNλN

=
1−

∑N
k=1 φk akλk + φN aNλN∑N

k=1 P
δ
k akλk + P

δ
N (pN − aN )λN

.

Then, using simple manipulations, we can show that the
above inequality is equivalent to

φN

PδN

aN
pN − aN

<
1−

∑N
k=1 φk akλk∑N

k=1 P
δ
k akλk

.

Thus, the base casem = 1 is true. Now, for j = m and a ∈ Cν ,
we know that

φN−m

PδN−m

aN−m
pN−m − aN−m

<
1−

∑N−m−1
k=1 φk akλk∑N−m−1

k=1 Pδk akλk +
∑N

k=N−m P
δ
k pkλk

=
1−

∑N
k=1 φk akλk +

∑N
k=N−m φk akλk∑N

k=1 P
δ
k akλk +

∑N
k=N−m P

δ
k (pk − ak )λk

.

Through simple manipulations we can show that the above
inequality is equivalent to
φN−m

PδN−m

aN−m
pN−m − aN−m

<
1−

∑N
k=1 φk akλk +

∑N
k=N−m+1 φk akλk∑N

k=1 P
δ
k akλk +

∑N
k=N−m+1 P

δ
k (pk − ak )λk

.

Now, we only need to verify that

1−
∑N

k=1 φk akλk +
∑N

k=N−m+1 φk akλk∑N
k=1 P

δ
k akλk +

∑N
k=N−m+1 P

δ
k (pk − ak )λk

<
1−

∑N
k=1 φk akλk∑N

k=1 P
δ
k akλk

.

Again, simple manipulations lead to the equivalent inequality∑N
k=N−m+1 φk akλk∑N

k=N−m+1 P
δ
k (pk − ak )λk

<
1−

∑N
k=1 φk akλk∑N

k=1 P
δ
k akλk

,
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which is true from the base case. This can be seen bymultiply-
ing (20) by PδN−j(pN−j−aN−j) at both sides of the inequality
and summing over j ∈ {0, . . . ,m − 1}. Thus, Cν ⊂ R
for the mapping ν : n 7−→ n. The extension for another
instances of ν ∈ V is analogous. This concludes the proof
that

⋃
ν∈V Cν ⊂ R.

However, we still need to prove the converse, that is
R ⊂

⋃
ν∈VCν . Note that the set of arrival rates that makes

the system stable in Theorem 1 requires that at least one an
(n ∈ N ) satisfies

φn

Pδn

an
pn − an

<
1∑N

k=1 P
δ
k pkλk

. (21)

Let us show that R requires the same restriction by contra-
diction. Suppose that there exist a ∈ R such that

φn

Pδn

an
pn − an

≥
1∑N

k=1 P
δ
k pkλk

∀n ∈ N . (22)

Multiplying (22) by Pδn(pn − an)λn > 0 at both sides and
summing over n ∈ N we have

N∑
n=1

φnanλn ≥

∑N
n=1 P

δ
n(pn − an)λn∑N

k=1 P
δ
k pkλk

,

which is equivalent to(
N∑
n=1

φnanλn

)(
N∑
k=1

Pδk pkλk

)
≥

N∑
n=1

Pδn(pn − an)λn.

(23)

Since a ∈ R, then

φn

Pδn

an
pn − an

<
1−

∑
k φk akλk∑

k P
δ
k akλk

∀n ∈ N . (24)

Again, multiplying (24) by Pδn(pn − an)λn > 0 at both sides,
summing over n ∈ N and performing some manipulations
we have(

N∑
n=1

φnanλn

)(
N∑
k=1

Pδk akλk

)

<

(
1−

N∑
k=1

φk akλk

)(
N∑
n=1

Pδn(pn − an)λn

)
. (25)

Then, through some manipulations on (23) and (25), we have

0 ≤
N∑
n=1

Pδnanλn −

(
1−

N∑
k=1

φk akλk

)(
N∑
n=1

Pδnpnλn

)
< 0,

which clearly is a contradiction, since R is a non-empty set.
Thus, there exists at least one an, n ∈ N that satisfies (21).
For simplicity of exposition, let us suppose that the arrival

rate an that satisfies this restriction is from the first user class
(n = 1). The next step is to show that as in the set

⋃
ν∈V Cν ,

the setR also requires that we have at least one an, aside from
a1, that satisfies

φn

Pδn

an
pn − an

<
1− φ1 λ1 a1

Pδ1 a1λ1 +
∑N

k=2 P
δ
k pkλk

.

We can also prove this by contradiction and then, for simplic-
ity of exposition, suppose that a2 is the one that satisfies this
restriction. We repeat this procedure until we reach all user
classes. Let us show the j-th step for completeness, j ∈ N .
Suppose that for all n ∈ {j, j+ 1, . . . ,N },

φn

Pδn

an
pn − an

≥
1−

∑j−1
k=1 φkakλk∑j−1

k=1 P
δ
kakλk +

∑N
k=j P

δ
kpkλk

. (26)

Multiplying (26) by Pδn(pn − an)λn > 0 at both sides,
summing over n ∈ {j, j + 1, . . . ,N } and manipulating we
have N∑

n=j

φnanλn

 N∑
k=1

Pδk akλk+
N∑
k=j

Pδk (pk−ak )λk


≥

1−
j−1∑
k=1

φkakλk

 N∑
n=j

Pδn(pn−an)λn

 . (27)

Once again, multiplying (24) by Pδn(pn − an)λn > 0 at both
sides, summing over n ∈ {j, j + 1, . . . ,N } and manipulating
we have N∑

n=j

φnanλn

( N∑
k=1

Pδk akλk

)

<

(
1−

N∑
k=1

φk akλk

) N∑
n=j

Pδn(pn − an)λn

 . (28)

Then, through some manipulations on (27) and (28), we have

0 ≤

(
1−

N∑
k=1

φk akλk

) N∑
n=j

Pδn(pn − an)λn


−

 N∑
n=j

φnanλn

( N∑
k=1

Pδk akλk

)
< 0.

As expected, we have a contradiction. Then, we must have at
least one an, n ∈ {j, j+ 1, . . . ,N } that satisfies

φn

Pδn

an
pn − an

<
1−

∑j−1
k=1 φk ak λk∑j−1

k=1 P
δ
k akλk +

∑N
k=j P

δ
k pkλk

. (29)

We assume that this is satisfied by the j-th class and in this
case, R ⊂ Cν for ν : n 7−→ n. Without the assump-
tion of the ordering in which (29) is satisfied, we conclude
that (29) must hold for at least one permutation of N . This
region is exactly

⋃
ν∈V Cν . Therefore,R ⊂

⋃
ν∈V Cν . Finally,

R =
⋃
ν∈V Cν . �
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