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“ There’s only so much you can learn in one place,
The more that I wait, the more time that I waste

I haven’t got much time to waste, it’s time to make my way
I'm not afraid what I'll face, but I'm afraid to stay

I'm going down my own road and I can make it alone

I’ll work and T’ll fight till T find a place of my own

Are you ready to jump?

Get ready to jump

Don’t ever look back, oh baby,
Yes, I'm ready to jump

Just take my hands

Get ready to jump

We learned our lesson from the start, my sisters and me

The only thing you can depend on is your family

And life’s gonna drop you down like the limbs of a tree

It sways and it swings and it bends until it makes you see ...”

(Madonna, Jump)



Resumo

Neste trabalho, abordamos aspectos qualitativos de varios fendmenos em sistemas de
Filippov e em sistemas Hamiltonianos. No contexto de sistemas dinamicos suaves por
partes, concentramos nossa atencao em problemas em dimensoes 2 e 3. No caso planar,
desenvolvemos um mecanismo para analisar o desdobramento de policiclos que passam
por certas singularidades de sistemas de Filippov (conhecidas como Y¥-singularidades) em
uma configuragao tipica, e o utilizamos para descrever completamente o diagrama de
bifurcacao de sistemas de Filippov em torno de alguns policiclos elementares. No caso
tridimensional, obtivemos uma caracterizacao completa dos sistemas que sao localmente
estruturalmente estaveis em um ponto p da variedade de descontinuidade. Mais ainda,
caracterizamos completamente os sistemas de Filippov robustos em uma vizinhanca da
variedade de descontinuidade, os quais sao chamados de sistemas semi-localmente estru-
turalmente estaveis. Além disso, estudamos alguns fendmenos globais em sistemas de
Filippov 3D. Primeiramente, descrevemos o diagrama de bifurcacdo de um sistema em
torno de um lago (“loop”) do tipo homoclinico de codimensao um em uma singularidade
genérica denominada dobra-regular, o qual nao possui contrapartida no contexto suave.
Em seguida, analisamos uma classe de sistemas que apresenta conexoes robustas entre
certas singularidades tipicas, conhecidas como T-singularidades, as quais garantiram a
existéncia de um comportamento cadtico nas folheagoes associadas a tais sistemas de
Filippov.

Em relacao aos sistemas Hamiltonianos, estudamos alguns problemas que apresentam
fendbmenos exponencialmente pequenos. Mais especificamente, consideramos um modelo
de interagao kink-defect dado por um Hamiltoniano singularmente perturbado H. (¢ >
0 representa o parametro perturbativo) com dois graus de liberdade, e determinamos
condicoes sobre a energia do sistema para a existéncia de certas conexoes heteroclinicas
que surgem da quebra (¢ > 0) de uma 6rbita heteroclinica contida no nivel de energia
zero do sistema limite Hy. Finalmente, investigamos a existéncia de solugoes breather de
equagoes diferenciais parciais reversiveis do tipo Klein-Gordon, as quais podem ser vistas
como 6rbitas homoclinicas de um sistema Hamiltoniano de dimensao infinita.

Palavras-chave:
Sistemas de Filippov, Teoria da Bifurcacao, Estabilidade Estrutural, Policiclos, Feno-
menos Exponencialmente Pequenos



Abstract

In this work, we discussed qualitative aspects of several phenomena in Filippov and
Hamiltonian systems. In the context of piecewise smooth dynamical systems, we have
focused on problems in dimensions 2 and 3. In the planar case, we have provided a
mechanism to analyze the unfolding of polycycles passing through certain singularities of
Filippov systems (known as Y-singularities) in a typical scenario and we have used it to
completely describe the bifurcation diagram of Filippov systems around some elementary
polycycles. In the three-dimensional case, we have obtained a complete characterization
of the systems which are locally structurally stable at a point p in the switching manifold
>.. Moreover, we have completely characterized the Filippov systems which are robust in
a neighborhood of the whole switching manifold, named semi-local structurally stable sys-
tems. In addition, we have studied some global phenomena in 3D Filippov systems. First
we described the bifurcation diagram of a system around a codimension one homoclinic-
like loop at a generic singularity named fold-regular singularity, which has no counterpart
in the smooth context. Second, we analyzed a class of systems presenting robust connec-
tions between certain typical singularities, known as T-singularities, which have lead us to
the existence of a chaotic behavior in the foliations associated to such Filippov systems.

Concerning to Hamiltonian Systems, we have studied some problems exhibiting ex-
ponentially small phenomena. More specifically, we considered a model of kink-defect
interaction given by a singularly perturbed 2-dof Hamiltonian H. (¢ > 0 stands for the
perturbation parameter) and we have provided conditions on the energy of the system
for the existence of certain heteroclinic connections arising from the breakdown (¢ > 0)
of a heteroclinic orbit lying in the zero energy level of the limit system H,. Finally, we
have investigated the existence of breathers of reversible Klein-Gordon partial differential
equations, which can be seen as homoclinic orbits of an infinite-dimensional Hamiltonian
system.

Keywords: Filippov Systems, Bifurcation Theory, Structural Stability, Polycycles,
Exponentially Small Phenomena
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Introduction

igﬁ\ @HIS work is devoted to the study of phenomena in Bifurcation Theory of Dynamical

%‘ & Systems. It is mainly divided into two parts. The first one is concerned about
structural stability and generic bifurcation of Filippov systems in dimensions 2 and 3.
The second one is dedicated to the study of problems of exponentially small splitting of
separatrices in analytic Hamiltonian systems.

Piecewise Smooth Dynamical Systems

Discontinuities appear commonly in an extensive range of natural phenomena, as body
collisions and systems having on/off switches (see [18, 32} [60] for more examples). In light
of this, Mathematicians and Physicists have pursued ways to understand such intriguing
aspects.

In the attempt to provide a mathematical description of the nonsmoothness inherent
to the real world, the Piecewise Smooth Vector Fields (PSVF for short) have arisen. In
fact, the Theory of Dynamical Systems have been essentially used to explain phenomena
through differential equations, and thus, it seems reasonable to consider piecewise smooth
differential equations to deal with such discontinuities.

Generally speaking, a PSVF is a system defined by smooth relations with different
nature in some regions of the phase space. The separation set between these regions is
referred as the switching set associated to the PSVF. In this case, a PSVF is multi-valued
on the switching set, since we have two (or more) different rules governing the dynamics
at these points. Typically, the switching set is a codimension one manifold, and for such
a reason, it is also referred as switching manifold.

The Theory of Piecewise Smooth Dynamical Systems started to gain strength with the
works of A. F. Filippov, which have provided the existence of solutions of PSVF through
the method of differential inclusions (see [39]). Nevertheless, such an approach allows a
PSVF to present several different solutions in the switching set. Therefore, a question
was raised in the community:

What solution should be considered in the switching set?

Such a non-determinism of solutions has been extensively discussed over the years
and it still remains without a final conclusion. Although, certain conventions of solutions
have been highlighted due to their applicability to model real phenomena. Among all of
them, we mention Utkin’s convention and Filippov’s convention (see [I5, [55] an references
therein).
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Throughout the last decades, PSVF governed by Filippov’s convention (known as Fil-
ippov systems) have been the most considered systems to model discontinuous phenomena,
and [39] seems to be unanimously accepted as an important contribution to the Theory
of Dynamical Systems. Based on that, we were encouraged to develop a well established
mathematical framework to deal with this kind of system.

In light of this discussion, we have contributed to the Theory of Piecewise Smooth
Vector Fields by studying local and global aspects of structural stability and bifurcations
of Filippov systems (in dimensions 2 and 3) having a codimension one switching mani-
fold. We highlight that Structural Stability and Bifurcations of Smooth Vector Fields are
matured topics which play a crucial role in the knowledge of the dynamics of a smooth sys-
tem, and their counterparts in the nonsmooth context bring several complications which
give rise to appealing problems.

Analytic Hamiltonian Systems

Since 1833, Hamiltonian systems are used to describe equations of motion of con-
servative mechanical systems, and thus they are frequently employed to study physical
phenomena (see [76]). Special attention must be given to their applications in Celestial
Mechanics which have been very fruitful over the years. The versatility of this class is
one of the reasons which allows us to classify Hamiltonian systems as one of the most
important research topics in Dynamical Systems. In addition, they exhibit a rich dynam-
ics which may involve global instabilities, deterministic chaos and Arnold diffusion orbits
(see [29] and references therein).

As a result of years of work, nowadays, the mathematical community has an extensive
knowledge on Hamiltonian structures, nevertheless there are still many questions which
remain open. Among the massive range of topics investigated on Hamiltonian system,
the study of homoclinic and heteroclinic connections in this class is a classical problem
which has been treated by many researchers. More specifically, one is interested to know
what happens with a homoclinic/heteroclinic connection in nearly-integrable Hamiltonian
systems.

In the study of the splitting of separatrices for regularly perturbed systems, Poincaré
and later Melnikov (see [56, [75]) developed a general method which measures the distance
between the invariant manifolds of hyperbolic critical points or periodic orbits. This
method has been extended for general normally hyperbolic manifolds in [29].

However, in the case of rapidly forced systems and in singularly perturbed systems
which are degenerate when the parameter vanishes, a difficult problem arises due to
the fact that the Melnikov function depends on the perturbed parameter and, in fact,
it turns out to be exponentially small with respect to this parameter. In [90], Henri
Poincaré has considered the problem of exponentially small splitting of separatrices as
the Fundamental Problem of Mechanics, nevertheless, there was a lack of rigorousness in
most works regarding this topic until the end of the 80’s and the beginning of the 90’s.

Later on, rigorous approaches came out revealing the necessity of sophisticated tech-
niques to obtain correct asymptotic formulas for the exponentially small splitting of sepa-
ratrices as the complex parameterization of invariant manifolds, matching in the complex
plane, Singular Perturbation Theory and Resurgence Theory(see [41], 52, [54, 80, O2] and
references therein). Such phenomena are also known as beyond all orders problems. In
fact, the breakdown of separatrices in the presence of exponentially small phenomena
can not be seen for any truncated expansion of the system. In [§], one finds a detailed
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historical description of the mechanisms which were employed to succeed on asymptotics
beyond all orders.

We emphasize that Melnikov Theory does not apply to problems of exponentially small
splitting of separatrices. Nevertheless, in some specific cases, Melnikov function still is a
first order for the distance between the invariant manifolds. On the other hand, there are
also cases where Melnikov function is “too small” and does not give a first order for the
formula of splitting, and in such cases, the first order can be obtained by the study of the
so-called inner equation associated with the problem. See [§] for more details.

In this work, we analyze two singularly perturbed problems exhibiting exponentially
small phenomena. More specifically, the first one concerns about a 2-degrees of freedom
analytic Hamiltonian system for which we study the existence of certain heteroclinic
connections, and the second one consists on the computation of an asymptotic formula
for the splitting of separatrices of a infinite dimensional Hamiltonian system. It is worth
mentioning that Melnikov function is a first order approximation for the splitting of
separatrices in the first problem, nevertheless it does not work as a first order for the
second one.

An Overall Description of the Main Results

In what follows, we roughly describe the problems treated in each chapter of this work,
as well as the main results achieved.

First, we notice that Chapter [1] is devoted to establish some basic concepts which
are required to the reading of Chapters 2] 8] [} B} and [6] Apart of that, each chapter of
this thesis is self-contained and can be read independently from the others. Also, except
when explicitly mentioned, the notation assigned in each chapter does not apply to the
remaining ones. It is worth saying that, even with our efforts to take into account the
terminology previously used in the literature, we had to introduce several new concepts
and notations in order to provide a rigorous treatment for this work.

Chapter [2: Polycycles of Planar Filippov Systems

Local bifurcations of planar Filippov systems at singularities contained in the switching
manifold (3-singularities) have been extensively studied in the last years (see [55] 65] and
references therein). In fact, local bifurcations of codimensions 0 and 1 are completely
understood, and thus the interest on cycles (loops) passing through such singularities
(which will be referred as Y-polycycles) has recently grown (see [4], 40, [79]).

In light of the current works, we have observed the lack of a mechanism to deal with
such global phenomena. In order to fill the absence of an approach to this problem, we
developed a scheme to study the crossing orbits of Filippov systems Z = (X,Y’) around
Y-polycycles, which we called Method of Displacement Functions.

In Theorems [A]and B we have provided some tools which can be used to characterize
aspects of the mentioned methodology. It is worth mentioning that such results were
heavily based on the analysis of the contact of the smooth components X and Y of a
Filippov system Z = (X,Y’) with the switching manifold X.

The effectiveness of this approach has been shown in its application to obtain the com-
plete description of bifurcation diagrams of Filippov systems around certain Y-polycycles,
which are elementary in some sense. In fact, Theorems [C], [D] and [E] are devoted to de-
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scribe the bifurcation diagrams of Filippov systems around three distinct codimension-two
Y-polycycles displayed in Figure [I}

(a) (b)
Figure 1: Y-polycycles passing through: (a) a cusp-regular singularity, (b) two fold-regular
singularities and (c) a visible-invisible fold-fold singularity.

It is worthwhile to mention that this chapter is based on [3].

Chapter [3; Generic Singularities of 3D Filippov Systems

On the contrary of the planar case, the understanding of the local structure of generic
Y-singularities of 3D Filippov systems has shown to be a challenging problem which has
been considered by many researchers throughout the years. In particular, there are many
works regarding the local structural stability (or instability) of a Filippov systems at a
T-singularity, nevertheless the problem was still open (see [24] 25, 26, [38]).

In light of this, we offered a rigorous mathematical treatment of this problem. In
Theorem [F], we provide intrinsic conditions in Filippov systems which completely char-
acterize the local structurally stability at a T-singularity.

It is worth mentioning that, the proof of Theorem [F]relied on the existence of the so-
called nonsmooth diabolo at certain types of T-singularity. Such an object has already been
studied for semi-linear Filippov systems (see [60] and references therein), nevertheless its
existence was still not clear for general systems (without neglecting higher order terms).
See Figure 2]

Figure 2: A nonsmooth diabolo at a T-singularity p.

In Theorem [G] we review the local structural stability of Filippov systems at the
remaining flavors of fold-fold singularities (hyperbolic and parabolic). We emphasize that
such a result was already known as a consequence of works [24], 25], notwithstanding we
provided a new proof in this setting for completeness.
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Finally, Theorems [H| and [I| have completely characterized the locally structurally
stable systems and have shown that local structural stability is an open non-generic
property of Filippov systems.

It is worthwhile to mention that this chapter is based on [44].

Chapter [4: Semi-Local Structural Stability

Taking into account the results on the local structural stability of Filippov systems
at generic Y-singularities, the next step towards the characterization of 3D structurally
stable Filippov systems (from a global point of view) is to conceive a good description
of the Filippov systems which are robust around the entire switching manifold (not only
point-wisely).

In light of this, we have introduced two notions of topological equivalence on the space
of all Filippov systems having a compact, connected and simply-connected switching
manifold ¥ (e.g. ¥ = S§?), denoted by Q": the sliding topological equivalence and the
semi-local equivalence. The concepts of sliding structural stability and semi-local structural
stability were defined in the natural way.

Roughly speaking, the sliding topological equivalence identifies all elements of 2" with
the same sliding dynamics (in the unstable and stable sliding regions) and the semi-local
equivalence (at X) identifies Filippov systems having the same behavior in a small 3D
neighborhood of the entire switching manifold ¥. The semi-local equivalence regards all
orbits lying in an open set of R? containing 3, whereas the sliding equivalence concerns
only with the features lying in 3 (2-dimensional).

In Theorem [J| we provide a sliding version of the classical Peixoto’s Theorem which
has completely characterized the sliding structurally stable Filippov systems, and in The-
orem [K| a complete characterization of the semi-local structural stability in Q" is estab-
lished. As a consequence, we have obtained that sliding structural stability is a generic
property in )", nevertheless, the semi-local structural stability is an open non-generic
property in Q"

Also, in order to study structural stability from the semi-local point of view, we have
provided an approach, called Y-blocks mechanism, based on the definition of the isolating
blocks introduced by Conley (see [27]), which can be used to analyze analogous problems
in higher dimensions.

It is worthwhile to mention that this chapter is based on [45].

Chapter [5: Quasi-Generic Loops in 3D Filippov Systems

Aiming to contribute to the development of Global Theory in three-dimensional Fil-
ippov systems, we devoted a chapter of this thesis to the study of an elementary 3D
homoclinic-like connection. More specifically, we have considered 3D Filippov systems
Z = (X,Y) having a loop I' passing through a fold-regular singularity p (X has a quadratic
contact with ¥ at p and Y is transverse to ¥ at p, or vice-versa). See Figure [3|

In Theorem [[] we show that, under some generic conditions, homoclinic-like loops
passing through a fold-regular singularity are generic in one-parameter families, and in
Theorem [M] we describe the versal unfolding of some classes of such a global connection
(see Figure [4)).

In Theorem [N| we provide a characterization of the basin of attraction of the con-
sidered loop, based on the study of the sliding dynamics and the first return map of Z.
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Figure 3: A homoclinic-like loop T’y of Zj at a fold-regular singularity py.
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Figure 4: Versal unfolding of a homoclinic-like loop at a fold-regular singularity.

Aspects of modulus of stability inside this class were also discussed in Theorem [O] (for
certain equivalence relation).
It is worthwhile to mention that this chapter is based on [46].

Chapter [6; T-Chains - A Chaotic 3D Foliation

Still with the purpose of a global understanding of nonsmooth phenomena in dimension
3, we have presented a robust global connection arising in 3D Filippov systems Z =
(X,Y), which brings a chaotic behavior in the foliation generated by the orbits of X and
Y.

More specifically, we have considered that Z has a diabolo at a T-singularity p filled
by crossing orbits, and we imposed some generic global assumptions in order to establish
a communication between the two branches of such a diabolo (stable and unstable). In
this scenario, Z has a robust homoclinic-like connection at p (see Figure |5)).

In Theorem [P} we have proved that the first return map associated with the foliation
generated by Z has a Smale horseshoe, which induces chaos on the crossing orbits and
pseudo-orbits (concatenation of orbits of X and V') of Z.

Chapter [7; Critical Velocity in Kink-Defect Interaction Models

In [47], the authors have studied a toy-model which describes the interaction of kinks
(solitons) of the sine-Gordon equation with a weak defect. More specifically, they consid-
ered a finite-dimensional reduction of the partial differential equation, which is given by
a 2-degrees of freedom Hamiltonian H., and they derived the so-called critical velocity
v, (or critical energy h.), for which each solution with velocity greater than v, is a kink.
However, the computations given in [47] are not rigorous.
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Figure 5: A Filippov system 7, satisfying hypotheses (T'C') and (R) having two T-chains
I'y and I'y passing through ¢; and ¢, respectively.

In light of this, we have presented a rigorous study on the Hamiltonian H.. The exis-
tence of kinks with small amplitude has been associated with the existence of heteroclinic
connections of certain objects (critical points and periodic orbits) at infinity. We have
provided a geometric approach to give conditions on the energy of the system to admit
kinks. Generally speaking, the employed methods relied on computing the exponentially
small transversality of invariant manifolds W™?* of critical points and periodic orbits at
infinity.

Theorems [Q], [R] and [S|are devoted to show that the heteroclinic orbit in the energy
level 0 of H. (with ¢ = 0) is destroyed giving rise to heteroclinic connections between
certain elements (at infinity) for exponentially small (in €) energy levels.

Finally, in Theorem [T} we have obtained an asymptotic expression for the critical
energy h. such that the system admits kinks with small amplitude only for h > h..

It is worthwhile to mention that this chapter is based on [43].

Chapter 8t Breakdown of Breathers for Reversible Klein-Gordon
Equations

Breathers are nontrivial time-periodic and spatially localized solutions of a wave equa-
tion which were introduced by [I] in the context of the sine-Gordon partial differential
equation. Since then, the problem of existence of small breathers for classical partial
differential equations has shown to be a hard subject to deal with.

The existence of small amplitude breathers for the Klein-Gordon equations have been
considered in several works (see [31], [62], [7T), 93, 94] and references therein), nevertheless it
still remains as an open problem. In light of this, we considered reversible Klein-Gordon
equations

1
qu—agquu—gu?’—f(u) =0,

where f is a real-analytic odd function which satisfies f(u) = O(u”), and we have asso-
ciated the existence of time-reversible breathers u(x,t), with the existence of homoclinic
orbits (with respect to the variable z) of the equation at the origin (which is a singular
point).

From this problem, we derived a singular perturbed Hamiltonian H., with infinite
degrees of freedom, having a homoclinic orbit for ¢ = 0. In Theorem [U] we have
computed an asymptotic formula for the distance between the invariant manifolds W™
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of H. in a transversal section, which turns out to be exponentially small with respect to
the parameter .
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Chapter 1

A Prelude on Filippov Systems

é‘i\(IZﬁHIS chapter is devoted to shortly introduce Piecewise Smooth Vector Fields. More
% & specifically, we present the concept of solution provided by Filippov’s convention
which will be adopted throughout this thesis. The definitions presented here are required

to read Chapters [2| [3} [4] [}, and [6]

1.1 Basic Concepts

Let M be an open bounded connected set of R™ and let f : M — R be a smooth
function having 0 as a regular value. Therefore, ¥ = f~1(0) is an embedded codimension
one submanifold of M which splits it in the sets M* = {p € M;£f(p) > 0}. N

A germ of vector field of class C" at a compact set A C M is an equivalence class X
of C" vector fields defined in a neighborhood of A. More specifically, two C" vector fields
X7 and X5 are in the same equivalence class if:

e X; and X, are defined in neighborhoods U; and Us of A in M, respectively;
o There exists a neighborhood Us of A in M such that Uz C U; N Us;
° Xl‘Usz XQ‘Us'

In this case, if X is an element of the equivalence class X , then X is said to be a
representative of X. The set of germs of vector fields of class C" at A will be denoted by
X"(A), or simply x". For the sake of simplicity, a germ of vector field X will be referred
simply by its representative X.

Analogously, a germ of piecewise smooth vector field of class C" at a compact set
A C M is an equivalence class Z = (y ,Y) of pairwise C" vector fields defined as follows:
Zy = (X1,Y1) and Zy = (X5, Y3) are in the same equivalence class if, and only if,

e X; and Y are defined in neighborhoods U; and V; of A in M, respectively, i = 1, 2.

o There exist neighborhoods Us and V3 of A in M such that U3 C U; N U, and
Vs CcVins.

U X1 X2’U3ﬁm and Yi

‘Ugﬂm: ‘ngﬁz }/2’\/30?'
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In this case, if Z = (X,Y) is an element of the equivalence class Z, then Z is said to be

a representative of Z. The set of germs of piecewise smooth vector fields of class C" at A
will be denoted by Q"(A), or simply 2.

We emphasize that the germ language is used due to its effectiveness to describe local
and semi-local phenomena.

If Z = (X,Y) € Q" then a piecewise smooth vector field is defined in some
neighborhood V of A in M as

Z(p) = Fi(p) +sen(f(p)) Fa(p),

where Fy(p) = X(p);rY(p) and Fy(p) = X(p)gY(p)‘

The Lie derivative X f(p) of f in the direction of the vector field X € x" at p € &
is defined as X f(p) = (X(p), Vf(p)). Accordingly, the tangency set between X and ¥
is given by Sx = {p € ; X f(p) = 0}.

Remark 1.1.1. Notice that the Lie derivative is well-defined for a germ X e X" since all
the elements in this class coincide in 2.

For Xi,---, X} € X", the higher order Lie derivatives of f are defined recurrently as

X Xaf(p) = Xp(Xp—1 - X f) (),

i.e. X X1f(p) is the Lie derivative of the smooth function Xj_; - - - Xj f in the direction
of the vector field X}, at p. In particular, X*f(p) denotes X}, --- X1 f(p), where X; = X,
fori=1,---,k.

For a piecewise smooth vector field Z = (X, Y') the switching manifold X is generically
the closure of the union of the following three distinct open regions:

o Crossing Region: ¥°(Z) ={p € 3; Xf(p)Y f(p) > 0}.
 Stable Sliding Region: ¥*(Z) ={p € 3; X f(p) <0, Y f(p) > 0}.
« Unstable Sliding Region: ¥X*(Z) = {p € &; Xf(p) >0, Y f(p) < 0}.

Remark 1.1.2. If there is no misunderstanding, the dependence of these regions on Z
will be omitted. In addition, 3 can be denoted by X.(Z), in order to distinguish the regions
of X corresponding to Z, when necessary.

The tangency set of Z will be referred as S; = Sx U Sy. Notice that X is the disjoint
union ¢ U X% U X* U Sy, Herein, ¥° = X% U X" is called sliding region of Z. See

Figure [L.1]

X
Y (a) (b) (0)

Figure 1.1: Regions in ¥: X¢ in (a), £* in (b) and X* in (c).

The concept of solution of Z follows the Filippov’s convention (see, for instance, [39,
55}, 103]). The local solution of Z = (X,Y) € Q" at p € ¥* is given by the sliding vector

field
1

Y i) - Xf(p)

Fz(p) Yfp)X(p) - Xf(p)Y (D).
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Notice that F is a C" vector field tangent to ¥2°. The critical points of Fz in X* are called
pseudo-equilibria of Z.

Definition 1.1.3. We defined the normalized sliding vector field FY of Z by

F7 (p) =Y f(p)X(p) = Xf(P)Y (p).
for every p € ¥°.
Notice that F is also a C" vector field tangent to 3°.

Remark 1.1.4. The normalized sliding vector field can be C" extended beyond the bound-
ary of ¥°. In addition, if R is a connected component of %%, then FY is a re-parameterization
of Fz in R, and so the phase portraits of both coincide. If R is a connected component
of X%, then FY is a (negative) re-parameterization of Fy in R, then they have the same
phase portrait, but the orbits are oriented in opposite direction.

If p € 3¢, then the orbit of Z = (X,Y) € Q" at p is defined as the concatenation of the
orbits of X and Y at p. Nevertheless, if p € ¥\ 3¢, then it may occur a lack of uniqueness
of solutions. In this case, the flow of Z is multivalued and any possible trajectory passing
through p originated by the orbits of X, Y and F is considered as a solution of Z. More
details can be found in [39, [55].

In the following definition, we introduce the so-called Y-singularities of a Filippov
system.

Definition 1.1.5. Let Z = (X,Y) € 0", a point p € ¥ is said to be:
i) a tangential singularity of Z provided that X f(p)Y f(p) =0 and X(p),Y (p) # 0;

it) a X-singularity of Z provided that p is either a tangential singularity, an equilibrium
of X or'Y, or a pseudo-equilibrium of Z.

Remark 1.1.6. A point p € X which is not a X-singularity of Z is also referred as a
regular-regular point of Z.

We say that v is a regular orbit of Z = (X,Y) if it is a piecewise smooth curve
such that vy N M™ and v N M~ are unions of regular orbits of X and Y, respectively, and
YN CXe
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Chapter

Polycycles of Planar Filippov Systems

@I@N 1882, the concept of limit cycle was introduced by Henri Poincaré and since then, the

@ @ detection of such an object has become one of the most interesting (and complicated)
problems in Dynamical Systems. Over the years, other global structures were investigated,
and the concept of polycycle have been established. Roughly speaking, a polycycle is a
collection of certain singularities and some connections between them, having a first return
map. This class of minimal sets has been extensively studied throughout the years, as in
the so-called Dulac’s Problem.

In Filippov systems, certain Y-singularities present local invariant manifolds, and thus
it leads us to study their global connections, which have no counterpart in the smooth
context. Considering these new singularities appearing in the piecewise smooth context,
the concept of polycycle is easily carried to Filippov systems.

In this chapter, we provide results on generic bifurcation of planar Filippov systems
around polycycles. More specifically, we develop a mechanism to detect crossing phe-
nomena bifurcating from a polycycle and we apply it to obtain the complete bifurcation
diagram of vector fields around certain elementary polycycles.

2.1 Introduction

In the last years, the homoclinic-like connections through Y-singularities of planar
Filippov system have received attention of the mathematical community. In fact, since
the local structure of many X-singularities is well established, it is reasonable to study
such phenomena in order to contribute to the development of the Theory of Filippov
Systems. Besides that, these objects frequently appear in applications (see [4, [I1] and
references therein), and thus the knowledge of bifurcations around global connections is
also of interest to describe natural phenomena.

In [65], Kuznetsov et al. provided a catalog of bifurcations occurring in one-parameter
families of Filippov systems. Among them, they presented the critical crossing cycle
bifurcation (C'C-bifurcation), which consists in a one-parameter family Z, of Filippov
systems, for which Zj has a homoclinic-like connection at a fold-regular singularity. See
Figure[2.1] Nevertheless, the authors have provided only one example of family presenting
such a phenomenon and no study on generic bifurcation of this connection was done. We
highlight that a fold-regular singularity is one of the simplest >-singularities in the planar
case, and thus homoclinic-like connections through such a singularity are one of the most
elementary global connections in this scenario.
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a<0 a=0 a>0

Figure 2.1: A one-parameter family Z, presenting a crossing critical cycle bifurcation at
a = 0. For a <0, Z, has a sliding cycle, and for a > 0, Z, has a crossing limit cycle.

In [55], Guardia et al. have approached the C'C-bifurcation phenomena presented
in [65] by means of Bifurcation Theory in a general setting. Finally, in [40], Freire et
al. provided non-degeneracy conditions for which a Filippov system presents a C'C-
bifurcation. They have also shown, through a Poincaré map analysis, that the unfolding
of a C'C-bifurcation provided by [65] holds for this generic scenario. In [2], Andrade has
provided a different proof for the results presented in [40]. It is worth mentioning that
such a global phenomenon has already appeared in the local unfolding of »-singularities
with higher degeneracies, as the fold-cusp singularity studied in [21), 22].

Recently, more complicated homoclinic-like connections through >-singularities were
considered. In [79], Novaes et al. studied a codimension-two homoclinic-like connection
at a visible-visible fold-fold singularity (see Figure [2.2}(a)) and its complete bifurcation
diagram was provided. In [4], Andrade et al. have studied a class of systems presenting a
homoclinic-like connection at a saddle-regular singularity (also know as boundary-saddle
singularity), some bifurcations were described and a physical model realizing such a con-
nection was given (see Figure 2.2}(b)). Other examples of global connections between
Y-singularities appear in [11} 67, 68, [70].

(a) (b)
Figure 2.2: A homoclinic-like connection at a visible-visible fold-fold singularity (a) and
at a saddle-regular singularity (b).

2.1.1 Description of the Results

Now we provide a briefly description of the results contained in this chapter. First,
we establish a variation of the classical concept of polycycle for Filippov systems. In
particular, we focus on X-polycycles, which are polycycles having all their singularities
contained in the switching manifold . It means that a »-polycycle is given by an oriented
simple closed curve composed by a collection of X-singularities connected by regular orbits.
The objects mentioned in [4], 1T}, 40, 55, [65], 67, 68, [70] [79] are examples of X-polycycles.

Following the techniques used in [4, [79], we develop a mechanism, named Method of
Displacement Functions (see Section , to study the unfolding of Y-polycycles in a
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typical scenario. It is worth mentioning that such a methodology presents certain novelty
in comparison to the classical Melnikov theory and Lin’s method (see [69]) commonly used
to study global connections of smooth dynamical systems. Generally speaking, given a
Filippov system Z; having a Y-polycycle I'y, our method associates each Z near Z, to
a system of nonlinear equations (depending smoothly on Z), which provides information
on the crossing orbits of Z in a neighborhood of T'y.

In Theorems [A] and [B], we provide some tools which can be used to characterize the
system given by the method of displacement functions. Finally, in Theorems [C] and
[E] we use such a mechanism to obtain a complete description of the bifurcation diagrams
of certain X-polycycles.

In what follows, we discuss Theorems [C| [D] and [E] in order to provide a smooth
reading of the chapter.

Theorem [C} X-Polycycles at a Regular-Cusp Singularity

Recall that Zy = (Xj, Yy) has a regular-cusp singularity at pg € X if X has a contact
of order 3 with ¥ at py and Yj is transverse to X at pg, or vice-versa. Denoting the space
of planar Filippov systems by 2", we consider the class Qrc C 2" of systems such that,
Zy = (X0, Yo) € Qge if, and only if, Z, has a X-polycycle I'y with a unique ¥-singularity
po € X contained in I'g, which is a regular-cusp singularity of Z.

Theorem [C which will be formally presented in Section [2.5.3] can be roughly stated
as follows

Let Zy € Qge. There exist neighborhoods V of Zy in Q7, V of the origin in R?, and
a surjective function (6,A1) : V — V with (8, \)(Zo) = (0,0), such that the parameters

B, A1 completely describe the bifurcation diagram of Zy around its X-polycycle T'y, which
is illustrated in Figure[2.5,

Figure 2.3: Bifurcation diagram of Z, € Qe around I'y. V, I, A and the B-axis are
codimension-one bifurcation curves.
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A formal and complete description of the bifurcation diagram in the Figure [2.3]is done
in Theorem [Cl

Theorem [D} X-Polycycles having Two Regular-Fold Singularities

In light of the extensively studied critical crossing cycle bifurcation, we consider a
generalization of such Y-polycycle. More specifically, we allow the >-polycycle to have
two X-singularities of fold-regular type, instead of only one.

We consider the class Qprr C Q" of systems such that, Zy = (Xo, Y) € Qpgr if, and
only if, Zy has a X-polycycle I'y with exactly two Y-singularities, p; € ¥ and py € X,
contained in I'y such that

i) p; and ps are regular-fold singularities of Zy;

ii) there exist two curves ; and 7, connecting p; and ps, oriented from p; to p and from
pa to p1, respectively, such that I'g = v, U 79, 71 is tangent to X at p; and transverse
to X at po, and 7, is tangent to X at p, and transverse to X at p;.

Theorem [D] which will be formally presented in Section 2.5.5] can be roughly stated
as follows

Let Zy € Qprp. There exist neighborhoods V of Zy in Q7, V of the origin in R?, and
a surjective function (1, 52) : V — V with (B1, 52)(Zy) = (0,0), such that the parameters

b1, Ba completely describe the bifurcation diagram of Zy around its ¥-polycycle Ty, which
is illustrated in Figure [2.4)

Figure 2.4: Bifurcation diagram of Z, € Qprr around I'y. In this case, v1, 72, the [;-axis
and the fy-axis are codimension-one bifurcation curves.



30

A formal description of the bifurcation diagram in the Figure [2.4]is done in Theorem
Dl

Theorem [E} Y-polycycles at a Visible-Invisible Fold-Fold Singularity

In order to complete the description of >-polycycles having a unique fold-fold singu-
larity, we consider the visible-invisible case (the visible-visible case was treated in [79] and
the invisible-invisible case does not appear in 3-polycycles).

Consider the class Qpp C 2" of systems such that, Zy = (Xo, Yo) € Qpp if, and only
if, Zy has a ¥-polycycle I'y with a unique »-singularity, pp € X, contained in Iy, such that

i) po is a fold-fold singularity of visible-invisible type;

ii) Ty is a hyperbolic limit cycle of Xj.

Theorem [E| (combined with Propositions [2.6.5] [2.6.6|and [2.6.7]), which will be formally
presented in Section [2.6.2 can be roughly stated as follows

Let Zy € Qpp. There exist neighborhoods V of Zy in Q7, V of the origin in R?, and
a surjective function (o, 5) : V — V with («a, 5)(Zy) = (0,0), such that the parameters

a, B completely describe the bifurcation diagram of Zy around its ¥-polycycle Iy, which is
illustrated in Figure[2.5

A formal description of the bifurcation diagram in the Figure [2.5]is done in Theorem
D] and Propositions [2.6.5] [2.6.6] and [2.6.7]

We emphasize that a first return map (relative to Zp) is defined in both sides of I'y (see
Figure[I}(c)). In this case, the stability of I'y as a X-polycycle of Zj is totally determined
by the stability of I'y as a hyperbolic limit cycle of the smooth vector field Xy. In light
of this, some situations presented in [33, [37] are not feasible, since the vector field Y can
not modify the stability of (the external side of) I'y.

2.1.2 Organization of the Chapter

The results of this chapter are organized as follows. Preliminary concepts are provided
in Section 2.2

In Section [2.3] we develop the method of displacement functions which makes use of
transition maps, mirror maps and displacement functions introduced in Sections [2.3.1]

2.3.2] and [2.3.3] respectively.
Section is devoted to the characterization of the transition maps and to state and

prove Theorems [A] and [B]

The Y-polycycles containing only X-singularities of regular-tangential type are an-
alyzed in Section [2.5] More specifically, in Section [2.5.1] we characterize the system
of equations, given by the mechanism of displacement functions, for such class of X-
polycycles. In Section [2.5.2) we prove general properties of X-polycycles containing a
unique Y-singularity of regular-tangential type and in Section [2.5.3, we state and prove
Theorem [C] Finally, Section [2.5.4]is devoted to extend the properties described in Section
to a wider class of systems and Theorem [D]is stated and proved in Section [2.5.5]

Finally, »-polycycles having a unique fold-fold singularity are considered in Section
2.6l In particular, Theorem [E] is stated and proved in Section [2.6.2]
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Figure 2.5: Bifurcation diagram of Zy € Qpp around I'y. In this case, §;, 1 < i < 5, the
a-axis and the (-axis are codimension-one bifurcation curves.

2.2 Preliminaries

In this section we introduce an overall description of basic concepts. Furthermore, we
establish some definitions which will be used to study global closed connections of planar
Filippov systems in a systematic way. Throughout this chapter, we consider piecewise
smooth vector fields defined on an open bounded connected set M C R? with switching
manifold ¥ = A1(0) where h : M — R is a smooth function having 0 as a regular value.

Remark 2.2.1. Notice that, in this chapter, Q" and x" stand for the sets of planar
piecewise smooth vector fields and planar smooth vector fields, respectively.

Definition 2.2.2. Let Z = (X,Y) € Q", a point p € ¥ is said to be:
i) a tangential singularity of Z provided that Xh(p)Y h(p) =0 and X (p),Y (p) # 0;

it) a X-singularity of Z provided that p is either a tangential singularity, an equilibrium
of X orY, or a pseudo-equilibrium of Z.

Definition 2.2.3. X € " has an n-order contact with ¥ at p if X'h(p) = 0, for
i=1,---,n—1, and X"h(p) # 0. In particular, for n = 2,3, p is said to be a fold point
and cusp point of X, respectively.
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Definition 2.2.4. Let p € ¥ be a tangential singularity of Z = (X,Y), we say that p is:

i) a regular-tangential singularity of order n of Z provided that X (resp. Y ) has
a n-order contact with ¥ at p and Y h(p) # 0 (resp. Xh(p) #0);

it) a tangential-tangential singularity of Z provided that Xh(p) = Y h(p) = 0.

Remark 2.2.5. We remark that, in the literature, it is common to distinguish regular-
tangential singularities (when Y h(p) # 0) from tangential-reqular singularities (when
Xh(p) # 0), nevertheless, we make no difference between them throughout this chapter.

In Definition i, for n = 2 and n = 3, p is said to be a regular-fold singularity
and regular-cusp singularity of Z, respectively. In Definition 1, if p is a fold
point of both X and Y, then p is said to be a fold-fold singularity of Z. In this case p
is called

i) visible-visible if X?h(p) > 0 and Y?h(p) < 0.
visible-invisible if X2i(p) > 0 and Y2h(p) > 0.

ii

1v

)
iii) invisible-visible if X?A(p) < 0 and Y?h(p) > 0.
) invisible-invisible if X?h(p) < 0 and Y?h(p) > 0.

Now, motivated by [55], we define the concept of local separatrix at a point p € X,
which will play an important role in this paper.

Definition 2.2.6. If p € X, the stable (unstable) separatriz Wi(p) (Wi(p)) of
Z = (X, X_) at a tangential singularity p in XF is defined as

Wi (p) = {a = ox.(t(q),p); x.(I(q),p) C M and d,,t(q) > 0},
where, §, = 1, 6 = —1, and I(q) is the open interval with extrema 0 and t(q).

If v is a regular orbit of Z = (X,Y’), then 07 is referred as the ending points of ~.
Accordingly, a cycle is a closed regular orbit I' of Z. If ' N X # (), then T is called a
crossing cycle of Z. Now, we define the concept of cycle for planar Filippov systems.

Definition 2.2.7. A closed curve T is said to be a polycycle of Z = (X,Y) if it is
composed by a finite number of points, p1,pa,...,pn and a finite number of reqular orbits
of Z, Y1,%2, - Yn, Such that for each 1 < ¢ < n, ~; has ending points p; and p;.1.
Moreover:

i) T is a S'-immersion and it is oriented by increasing time along the regular orbits;
it) if p; € ¥ then it is a 3-singularity;

iii) if p; € M then it is an equilibrium of either X |, orY|,,-;

iv) there exists a non-constant first return map defined, at least, in one side of I.

In particular, if p; € X, for all 1 < i < n, then I' is said to be a X-polycycle.

Remark 2.2.8. Condition (i) in Definition provides the minimality of polycycles
of Z € ¥ (i.e. a polycycle ' can not be written as union of two or more polycycles),
avoiding connections as illustrated in Figure[2.0. This condition also establish the notion
of sides of ', ext(I") and int(I"), which is invoked in Condition (iv).
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Iy

Figure 2.6: Example of a closed connection I'y which is not an S!—immersion.

The next example illustrates the importance of condition (7v) in Definition [2.2.7]

Example 2.2.9. Let Zy = (X, Yy) be a nonsmooth vector field with h(x,y) = y satisfying
the following conditions:

i) (0,0) is a visible reqular-fold singularity of Xy and m o Xo(0,0) > 0,

i) (a,0), a > 0, is a visible reqular-fold singularity of Yo and m o Yy(a,0) > 0;
i) W(0,0) reaches ¥ transversally at (a,0);

iv) W*(a,0) reaches ¥ transversally at (0,0).

Therefore, Zy presents a closed connection Ty (see Figure . Nevertheless, there exists
e > 0 such that for each (x,0) € X, with 0 < z < €, the orbit of Xo through (x,0) reaches
the sliding region of 3 and slides to the reqular-fold singularity (a,0), then it returns to
(0,0) through the flow of Yo. Hence, it is defined a first return map P : [0,e) x {0} —
[0,e) x {0} given by P(x,0) = (0,0). Consequently, Iy is not a X-polycycle.

We remark that there exist nonsmooth vector fields Z sufficiently close to Zy which
present 3-polycycles and crossing limit cycles near Ty (see Figure . However, the
methods described in this paper cannot be applied to this kind of connection.

(a) (0) (c)
Figure 2.7: Example of (a) a closed connection I'g, which has a constant first-return map
defined in the interior side of I'g, (b) a X-polycycle, and (¢) a crossing limit cycle of Z
close to Z.

Definition 2.2.10. A X-polycycle T' of Z = (X,Y) € Q" is said to be a regular-
tangential Y -polycycle or a tangential-tangential Y-polycycle provided that all
the Y-singularities of Z contained in I' are reqular-tangential singularities or tangential-
tangential singularities, respectively.
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One of our main goals in this paper is to characterize qualitatively the systems in a
neighborhood of a polycycle. To do this we introduce the following notions of equivalence
and modulus of stability.

Definition 2.2.11. Let K be a compact set of M. We say that Z and Zy are (topologically)
equivalent at IC if there exist neighborhoods U and V' of K and an orientation preserving
homeomorphism h : U — V' which carries orbits of Z onto orbits of Zy.

Definition 2.2.12. A compact invariant set K of Z is said to be k-stable if for any
small neighborhood of Z in )" there exists a k-parameter family of topologically distinct
systems such that every system in this neighborhood of Z is equivalent at K to a system in

this k-parameter family. If k is the smallest integer with this property, then we say that
K has modulus of stability k. Define S(K) := k.

2.3 Method of Displacement Functions

The aim of this section is to provide a systematic methodology for studying aspects
of structural stability of X-polycycles in 2D nonsmooth vector fields via displacement
functions as well as to describe the bifurcations of these objects.

In what follows, given a Y-polycycle 'y of Zy € )", we outline the method developed
in this work for detecting all the crossing limit cycles with the same topological type of
[y bifurcating from I'y. By “the same topological type” we understand the cycles which
can be continuously deformed into I'g inside a small annulus A around I'y. In general,
our method consists in reducing the problem of finding crossing limit cycles to the study
a system of nonlinear equations.

If 'y contains k Y-singularities p;, i = 1,- -+, k+1 (p1 = pr+1), then for each nonsmooth
vector field Z € Q" near Zj, we associate the following system

A(Z) (21, 22) = 0;
Ay(Z)(x2,23) = 0;
Akq(Z:)(xk,l,xk) = 0; (2.3.1)
Ar(Z)(zk, 21) = 0;

v, €042),i=1,--,k,

where 0;(Z) is a finite union of real intervals such that AN X C U ,04(Z), and A; is a
displacement function which measures the splitting of the connection between p; and p; 1
thorugh Iy, for i = 1,---, k. In this case, is referred as crossing system.

The remainder of this section is devoted to construct the displacement functions A;
in (2.3.1]), which will be given via transition maps and mirror maps. We shall see that
each solution z(Z2) = (x1(Z), -+, xx(Z)) of will correspond to a closed orbit I'(7)
of Z contained in A satistying z;(Z) =I'(Z)Noy(Z), i =1,---, k. In addition, if (Z) is
an isolated solution of such that z;(Z) € int(04(Z)) for each i = 1,- -k, then it
corresponds to a crossing limit cycle of Z. On the other hand, if there exists i € {1,---,k}
such that x;(Z) € 0o;(Z) then this solution corresponds to a ¥-polycycle. Reciprocally,
if I" is a closed orbit of Z in A and x; =T'Noy(Z) fori = 1,---, k, then (z1,...,2;) is a
solution of (2.3.1]). Therefore, system describes the whole crossing dynamics of Z
in A.
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2.3.1 Transition Maps

In order to understand the behavior of the nonsmooth vector fields near 7, in A we
shall study how the crossing trajectories of Z; behave near the ¥-singularities in I'y. With
this purpose, we establish a precise definition for transition maps at points p € X.

We shall see that a transition map is defined for each component, X and Y, of a
nonsmooth vector field Z = (X,Y’). In light of this, we consider a smooth vector field X, €
x" on M and we study the behavior of its trajectories passing through the codimension
one manifold ¥ C M given in Section [2.2]

Assume that X satisfies the following set of hypotheses (T') at a point py € X:

(Ty) Xo(po) # (0,0);
(Ty) there exists ¢ty € R such that gy = px, (to; po) € M*,

where ¢y, denotes the flow of Xj,.

Let 7 C M™* be a local transversal section of X, at go. From the Implicit Function
Theorem for Banach Spaces there exist neighborhoods Uy C x" of Xy and Vy C M of py,
e > 0, and a unique smooth function s : Uy x Vo — (to — ¢, to +¢) such that s(Xo, po) = to
and px(s(X,p);p) € 7 for every (X,p) € Uy X V. Then, we define the full transition
map of X € U, at py as the map

TT;’g: ENW)p — T
p — px(s(X,p);p),

where (XN Vj),, is the connected component of ¥ N Vj containing py.

Throughout this paper, when py and p; belong to the same orbit of X, pop1|x will
denote the oriented arc-orbit of X with extrema py and py, i. e. popi|x= ¢x(I;po)
where I = [0,t1], po = ©x(0,p0), and p; = @x(t1,po). We shall omit the index X if there
is no ambiguity. Since we are constructing transition maps for nonsmooth vector fields, it
is only considered orbits of X which are contained in either M+ or M—. So, the domain
of the full transition map has to be restricted to the following set

ox = {p € (2N Vo) pT,5(p) is contained in ]\/[i} :

Accordingly, the transition map of X at pq is defined as T;g = Tng ox-

It is worth to notice that py may not be contained in the domain ox of the transition
map 1% (see Figure . However, if X is defined in M* and ¢y € M™* (recall that g
defines the local transversal section 7), then py € ox provided that the arc-orbit poqp of
X is contained in M*.

In Section , we characterize the full transition map ﬁ for vector fields Xy € x”

having a n-order contact with ¥ at py. Moreover, we describe how TT;’g behaves for X in
a small neighborhood of X, in x".

2.3.2 Mirror Maps

Assume that Xy has a 2n-order contact with X at py for some n € N. We shall see
that, for each p € ¥ near pg, with p # py, there exists a time t(p) such that t(pg) = 0 and
©x,(t(p);p) € ¥. Moreover, the flow of X, will define a germ of diffeomorphism at py,

p: (Z,p) — (2,p0)
P ox,(t(p);p)
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ad A

[P

Figure 2.8: Unfolding of a transition map at a cusp point. Left: py ¢ ox. Right: py € ox.

In this case, p(po) = po and we say that p is the involution associated with X, at py.
Through a local change of coordinates and a rescaling of time, we can assume that
po = (0,0), h(z,y) =y, and

XO(xvy) - ( gOmanl +1(9(x2",y) ) ) (2'3'2)

where £y > 0. In this case, for each p € X the orbit connecting p and p(p) will be contained
in M~ (see Figure .

.upo f;(p) b

iy 2

Figure 2.9: Involution p of Xj at py.

Notice that px,(t(z); (x,0)) € X if, and only if, m5 0 px, (t(x); (x,0)) = 0. In this case,
p(x) =z + t(x). Expanding ¢y, around t = 0 we get

2n th
o 0 ox,(t; (x,y)) =y + Z ( )tl + O, (2.3.3)
From (2.3.2), we see that
i o, @n =1 2n—i+1
Xoh(z,y) = fomx +O0(x Y). (2.3.4)
Now, define the map
2n
S(s,x) = éox%ﬁz o px,(sz; (z,0)).

Notice that, if S(s,x) =0, x # 0, and s # 0, then m o px,(sz, (z,0)) = 0. From ({2.3.3)
and ([2.3.4) we obtain that

(1+s)™—1
S

S(s,z) = + O(x2).
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Since S(—2,0) = 0 and 0;5(—2,0) = n > 0, it follows from the Implicit Function
Theorem that there exists s(z) = —24O(x) such that S(s(z), z) = 0. From the definition
of S, for t(x) = xs(x), we have that px,(t(x); (2,0)) € ¥, and then the involution p is
straightly defined.

From the construction above, it follows that there exists a compact neighborhood
Vo C M of py such that the involution p : (XN Vp),, — (XN Vo), is well defined and
characterized as

plx) =z +t(x) = —x+ O(2?). (2.3.5)

Now, we show that the a vector field X € x" sufficiently near X, still induces an
involution in (XN V;),, but a finite set of points. In what follows we also characterize it.
For simplicity, identify (X N Vp),, with the interval [—¢, €o] and py with 0.

From definition of p, there exists €} > 0 such that the intervals I = [—¢g¢y, —€0/2] and
p(I) = [}, €] are connected by orbits of X contained in M ~, and X is transverse to ¥ at
every point of IUp(I). Since I is compact, given € > 0, there exists a small neighborhood
Uy C X" of X such that, for each X € U, there exist €%, ex > 0 satisfying

i) ek — ¢l lex —eol< &

ii) each point of I is connected to a unique point of [e%,ex]| through an orbit of X
contained in M ~;

iii) X is transverse to X at each point of I U [e%,ex].

Notice that [—£¢/2, %] and the orbit connecting —e(/2 and &% give rise to a compact
region K~ of M~ such that X is regular at every point of K~ (see Figure . Thus,
each orbit of X entering in K~ must leave it through another point. It allows us to see
that X h has at least one zero in (—e(/2,¢%) and it has to be an even order contact of X
with ¥ having the same concavity of pg. Throughout this section, an even order contact of
a vector field X with ¥ having the same concavity of py will be called invisible, otherwise
it will be called visible.

£ S PR
—e0—% QL. % X

Figure 2.10: Compact region K~ for X € U;.

Since Xoh(x) = loyz®"~ ! + O(2®"), there exist a neighborhood Uy C U; of Xo, C”
functions a; : Uy — (—¢,¢) such that a;(Xo) = 0,7 = 0,---,2n — 2, and a positive
function ¢ : Uy — (bo — &, 0o + €) with £(X) = {y satisfying

Xh(x) = Px(z) + O(z*),

where Py (z) = Y202 a;(X)2® + £(X)z? L. Furthermore, we can take the initial neigh-
borhood V; sufficiently small such that the zeroes of Xh in [—&, o] are controlled by the
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polynomial Py. Hence, it follows that there exist exactly Nx points r; € (—£¢/2,¢%),
with 1 < Ny < 2n — 1, such that X has a n;-order contact with ¥ at r; for some
n; >2,1=1,---, Nx. In this case, n; < 2n. Accordingly, let £x be the finite subset of
(—e0/2,€%) containing

i) r;, 1 =1,---, Nx, such that either n; is odd or n; is even and X has a visible contact
with ¥ at r;;

i) p € (—e0/2,€%), such that p and r; belong to the same orbit of X, for some i =
1,--+, Ny, and the arc-orbit of X with extrema p and r; is contained in M~ (see

Figure [2.11)).

Figure 2.11: Example of some points in Ex, pi, p3, ps satisfy condition (i) and po, py
satisfy condition (7).

If r; € (—e0,ex) \ €x, for some i = 1,---, Nx, then X has an invisible even order
contact with ¥ at r;. So, applying the same process above we find €; , & > 0 sufficiently
small and an involution p’ : (r; —e; 7 +¢&) — (r; —&; ,r; +¢&; ) induced by the flow of

X at r;. In this case, pl is a diffeomorphism with a unique fixed point at r;, and
P () =1 — (x —13) + O((x — 15)?). (2.3.6)

Now, if p € [—ep,ex] \ (Ex U{r1, -+, rny}), then X is transverse to ¥ at p and there
exists a unique point p* € (—eo/2,e%) \ (ExU{ry, -+, 7N, }) such that X is transverse to
>: at p*, p and p* belong to the same orbit of X, and the arc-orbit of X with extrema p
and p* is contained in M~. It allows us to extend the involutions p% to an involution

Px t[—eo,ex] \ Ex = [—€0.ex] \ €x,

induced by the flow of X. We refer px as the involution of X at p,.

Notice that px is a diffeomorphism for which r;, ¢ = 1,---, Ny, are its only fixed
points. Moreover, these points are invisible ever order contact of X with X and the
expansion of px at these points is given by . Thus px is completely characterized

and px, = p, where p is given by (2.3.5)).

Remark 2.3.1. Consider the points r; for which X has a visible even contact with ¥ and
the points p such that p and r; belong to the same orbit of X and the arc-orbit of X with
extrema p and r; is contained in M—. Notice that they are connected with two or more
distinct points of ¥ through a unique orbit of X contained in M—. Thus, px cannot be
uniquely extended to such points. Consequently, they had to be included in the set Ex.
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On the other hand, the involution px could be extended to points r for which X has
an odd order contact with 3. Indeed, the orbit of X through r enters in K~ and leaves it
through a unique point of 3. Nevertheless, in this case, px would not be differentiable at
px(r) as we can see in the following example: Assume that X has a cusp point at r, so
the orbit of X through r reaches X at v transversally, and the arc-orbit of X with extrema
r and T is contained in M—. Then, we define a germ of involution px : (X,7) — (X,7)
induced by X (see Figure with p3 =7 and py = r). Combining the results of Section
with transversality arguments, we shall see that px is differentiable at r and, moreover,
px(z) =7+ Alx — )3+ O((z — r)t), with A # 0. Consequently, px has the following
expansion at r

px(x) =7+ (gj; r>l/3 +O((z — 7)),

which implies that px is not differentiable at 7.

We aim to use these involutions for detecting closed connections of nonsmooth vector
fields. Thus, in order to avoid pseudo-connections (see [55] for more details), we restrict
px to the set

O':L)z—w = {p S [—60,6)(] \gx; Xh(p) < 0}

oo 1s referred as mirror map of X at p,. The
X

Accordingly, the restriction px = px
condition Xh(p) < 0 on the domain ¢V comes from the initial assumptions which imply
that the orbit connecting p and px(p) is contained in M~ for every p € o%¥. When
considering nonsmooth systems these orbits could be contained in M. In this case, the
condition on o is changed to Xh(p) > 0.

Example 2.3.2. Consider the family of vector fields Xy(x,y) = (1,23 — Ax), for A >0,
and ¥ = {y = 0}. Notice that the orbits of X, are given by the level curves of Hy(x,y) =
y—at/4+ \x?/2. If X\ = 0, then px,(z,0) = (—x,0) is the involution associated with
Xq at the origin. Now, for A > 0, the orbilt passing through the origin, which is a visible
fold point, splits ¥ into three sets: Dy = (—00, —v/2X) U (V2X, +00), Dy = (—v/2),0),
and D3 = (0,v/2)\) (see Figure . Hence, X defines the following involution on
D, =D;UDyUDs:

—x, for x € Dy,
x, () =¢ —V2X\ =22, for x € D,
V2N — 22, for x € Ds.

In this case, the mirror map px, of Xy is the restriction of px, to 0% = (—oo0, —v2A)U

(—V2\, =V AU (0, V.

2.3.3 Displacement Functions

Now, we are able to define the displacement functions associated with a Y-polycycle
Ty of Zy = (Xo,Yy). Assume that Iy has k tangential singularities p; of order n; € N,
1 <@ < k. Let 7; be the regular orbit of Zy connecting p; to p;11, 1 =1,...,k — 1, vy be
the regular orbit of Z, connecting py and p;, and consider sufficiently small neighborhoods
U; of p;, 1 <i < k. Notice that for each p;, i € {1,...,k}, one of the following statements
hold:

(E) ToNU; \ {p:} is contained in either M or M~;
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(a) (b)
Figure 2.12: Involution of X in Example for: (a) A =0 and (b) A > 0.

(O) T'oNU; \ {p;} has one connected component in M* and the other one in M~.

Suppose that (O) holds for p; and assume, without loss of generality, that W*"(p;) N
FoNU; € M and W#(p,)NToNU; € M~. Let 7/ and 77 be transversal sections of X, and
Yy at the points ¢ € Wi(p;) and ¢f € W?(p;), which are contained in Uj;, respectively.
From the construction performed in Section [2.3.1] there exist transition maps of X, and
Yo at po, T : 04(Xo) — 7 and T} : 0;(Yy) — 77, respectively.

Now, suppose that (E) holds for p; and assume, without loss of generality, that I’y N
U € M*. Let 77 and 7" be transversal sections of X, at the points ¢f € W3 (p;)
and ¢ € Wi(p;), which are contained in Uj;, respectively. In this case, we have two
distinguished situations:

(I) If XN U; \ {p:} has one connected component in the sliding region of Zy, then let
JZ”(XO) be the restriction to M of a local transversal section of X, at p;,. Clearly, the
flow of Xy induces maps T : 67(Xy) — 7 and T¢ : of'(Xy) — 7¢, which are restrictions
of diffeomorphisms.

(I1) If SN U; \ {p;} C X¢, then besides the maps T : o'(Xy) — 7 and T7 : 0(Xy) —
77, induced by the flow of X, we can also define other maps in the following way: first,
notice that this situation is only possible when Y; has an invisible even order contact with
¥ at p;, and thus, we consider the mirror map p; : 0i"(Yy) — X N U; of Yy at p; (see
Section . Now, let T2 : 07 (X) — 77 and T° : 0;7(X) — 7 be the transition
maps of Xy at pp with respect to the transversal sections 7 and 7}, respectively. Now,
define the section

0i(Zo) = pi (7 (Xo) N pi(07" (Y0))),

and the maps
T8 o7 (Xo) — 77, TP =T,

(2

T 0l (Zy) — 18, TP =T o p;.

(2

(2.3.7)

Thus, in this case, we have maps T;"* induced by crossing orbits of Zj.

Summarizing, if p; has type (O), (E-I) or (E-II), then we define 0;(Zy) as o;(Xy) N
o:(Yy), o(Xo) or o' (Xo) U (6(Zs) No; (Xy)), respectively. So, in any case, we construct
maps T;"° : 0;(Zy) — 7;°° induced by crossing orbits of Z;. We refer the maps T;"° as
transfer functions (see Figure [2.13).

Now, the regular orbit v; connecting p; to p;11, 7 = 1,-- -, k, induces a diffeomorphism
D; : 7 — 77,4 such that D;(p;) = pis1.
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Figure 2.13: Transfer functions of types (a)-(O), (b)-(E-I) and (c)-(E-II).

For a sufficiently small neighborhood V C Q2" of Z; in €2", we see that all the maps used
to construct the transfer functions T,"* above are also defined for each Z € V (see Sections
2.3.1]and [2.3.2] ). Thus, for each Z € V, the transfer functions 7;"*(Z) : 0,(Z) — 7,"° and
the diffeomorphisms D;(Z) : 7;* = 77, can be constructed in the same way as described
above. In particular, the domain o{'(Xj) is perturbed into

oM (X) = {p € o7(Xo); pmﬂx and mpb( are contained in M+}.

We now relate all these informations through displacement functions.
Definition 2.3.3. The i-th displacement function of Z is defined as
AN(Z): o0i(Z)xoi1(Z) — R
(@i, Tit1) — ¢oTH(Z)(x;) —dpo Dt o T3 (2) (i),
where ¢ : 7" — R is a parameterization of T;*.

Clearly, the zeroes of the i—th displacement function of Z does not depend on the
parameterization of 7;. It is straightforward to see that two points, x; € 0;(Z) and
Tir1 € 0;41(Z), are connected through an orbit of Z if, and only if, A;(Z)(z;, xi41) = 0.

Di Di+1

Figure 2.14: Construction of the i—th displacement function of Z € V.

Remark 2.3.4. We emphasize that the construction of displacement functions as in Def-
inition allows us to describe the complete bifurcation diagrams of a vector field in
Q" around many different types of Y-polycycles, in particular the ones analyzed later on
in this paper. We highlight that in all the cases all the bifurcating crossing limit cycles
with the same topological type of T'g are detected by this method. However, there exist tan-
gential singularities which admit bifurcation of global connections in their local unfoldings,
for instance the cusp-cusp singularity. In these cases, such global connections would not
be detected by our method for Y-polycyles through these singularities.
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Figure 2.15: In (a) we a have a Y-polycycle T'y of Zy through a tangential-tangential
singularity py which is a visible fold for Xy and an invisible 2n-order contact of Y, with
¥, n > 1. In (b) we have a X-polycycle I" in a neighborhood T'y occurring for Z € Q" near
Zy which is not detected by the proposed method.

2.4 Characterization of Transition Maps

In this section we characterize the transition maps of Zy = (X, Yp) at p € ¥ and we
also study how they typically change for unfoldings of Z.

Firstly, notice that if X € x" is transversal to ¥ = h~'(0) at p, then the transition
map TpX |» is a diffeomorphism at p and o is an open set of ¥ containing p.

Now, assume that X € x" has a n—order contact with ¥ at p. Consider coordinates
(z,y) at p (i.e. xz(p) = y(p) = 0) such that h(x,y) = y and write X = (X3, X3) in this
coordinate system. In this case X;(0,0) # 0, and thus X;(x,y) # 0, for every (z,y)
in some neighborhood U of the origin. By performing a time rescaling, we obtain that

X(ZL‘,y) and X({L‘,y) = (Sgn(X1(070))7 f(xvy))v with f(xay) = XQ(J:?y)/le/(gvy)L have
the same integral curves in U. It is easy to see that Xh(wz,y) = |X1(2,y)|Xh(z,y). In
general, X'h(0,0) = 0 if, and only if, X’h(0,0) = 0. Moreover, one can prove that
X'h(0,0) and X'h(0,0) have the same sign. In what follows, without loss of generality,

we take X (z,y) = (9, f(z,y)), with 6 = £1.

Lemma 2.4.1. Assume that X = (0, f(x,y)), with § = £1, has a n-order contact with ¥
at (0,0), i.e. X'h(p)=0,i=0,1,...,n—1, and X"h(p) # 0. Then:

ai—lf _ an—lf
(a) W(O,O) =0, fori=1,2,...,n—1, and W(O’O) #0.
(b) Xh(x,0) = az"'+ O(z"), where sgn(a) = " Lsgn(X"h(0,0)).
Proof. Firstly, the statement (a) follows by noticing that 0 = Xh(0,0) = f(0,0) and
ai—lf
Oxi—1

Now, since Xh(z,0) = (X(x,0),(0,1)) = f(z,0), expanding Xh(z,0) in Taylor series
around x = 0, we obtain that

X'h(0,0) = 61 (0,0).

an—lf n—1 n

Hence, the statement (b) follows by taking a = 6"~ X™h(0,0). O
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From Lemma it follows that X is transversal to X for every (x,0) € VN3\{(0,0)},
where V' is a small neighborhood of the origin O. Let X be defined in M* and assume
that

(A) either the oriented arc-orbit éaﬂ x or &(TO] x is contained in M*.

In the first case ¢o = px(70;0,0) # (0,0), and in the second one gy = @x(—Tp;0,0) #
(0,0), for some T > 0.
Let qo = (w0, yo). Since m (X (q0)) = d # 0, it follows that

7={(70,9); ¥y € (Yo —&,%0 +¢)} (2.4.1)

is a transversal section of X at g, for e sufficiently small. Take € > 0 such that 7 C
V' N M*. Therefore, the full transition map of X at (0,0) is T : (V N'X)y — 7 given by

Tx(z,0) = (zg, m2(px(dxg — d0x; 2,0))).
Now, we use Lemma to determine the domain o of the transition map of X at (0, 0).

Corollary 2.4.2. Assume that X has a n-order contact with ¥ at (0,0). Then, the
following statements hold:

i) if n is odd, then o = (—e,g) x {0}, for e > 0 sufficiently small;

i) if n is even, then o = I x {0}, where I is either [0,¢) or (—¢,0], for e > 0 sufficiently
small.

Proof. 1f n odd, then Xh(z,0) = az® + O(zF1), where k = n — 1 is even. It means
that sgn(a)Xh(xz,0) > 0 for x € (—¢,¢) \ {0} and € > 0 sufficiently small. So all
the orbits of X passing through (—¢,¢) x {0} enter (or leave) M*. If n is even, then
Xh(z,0) = azf + O(z*1), where k is odd. Tt means that sgn(a)Xh(z,0) > 0, for
z € (0,¢), and sgn(a) X h(z,0) <0, for x € (—¢,0), where € > 0 is sufficiently small. We
conclude the proof by observing that the transition map is defined in the unique domain
where Xh(z,0) has the same sign of Xs(qp). O

In what follows we describe the expression of the full transition map T'x of X at (0,0),
when the origin is a n-order contact.

Theorem A. Suppose that X € x" has a n-order contact with 3 at p = (0,0). In addition,
assume that X satisfies condition (A). Then the full transition map Tx : (V NX)y — 7

(where T is given znm is given by:
Tx(x,0) = (wo, yo + kz" + O(z")),
where sgn(k) = —0™sgn(X™h(0,0)).

Proof. As we have seen before, we can assume that X = (6, f(x,y)). Consider the change
of coordinates ¢(u,v) = (z(u,v),y(u,v)), where x(u,v) = du and y(u,v) = % (u;0,v)
(0% denotes 7y 0 px). Notice that

—ax(o, 0) =4, —&U(o, 0) = 0, % (0,0) = £(0,0) = 0, and

ou ov ou

o ” (2.4.2)
0.0 = 22X (0:0,0) = 1.
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Therefore, ¢ is a diffeomorphism around the origin. In addition, it can be proved that ¢
is a conjugation between X and S(u,v) = (1,0) (see [57]). In this new coordinate system,
(u,v), ¥ and T becomes, respectively,

= ¢ (D) = {(u,v) € R% % (u;0,v) = 0} and 7 = {(dz¢,v); v € (—¢,¢)}.

See Figure [2.16]
Since ¢%(0;0,0) = 0 and from (2.4.2), the Implicit Function Theorem implies the
existence of v : (—=7,7) — R such that v(0) = 0 and ¥ = {(u,y(u)) € R* u e (—n,n)}.
Notice that ¢gs(t;u,v) = (t + u,v), so the full transition map Ts : ¥ — 7 is given by

Ts(u,y(u)) = @s(0x0 — u, u,y(w)) = (530, 7(w)).

Now, we must characterize the function v around v = 0. Computing the k-th
derivative of ¢%(u;0,7v(u)) = 0 in the variable u, and using that px(u;0,7(u)) =
(6u, 9% (u, 0,7(u))) = (0u, 0), we get

oty 0%,
Cer(60.0) (% 010

W () = =+

I k-
+ > P )y (u), (2.4.3)

i=1
where P/ are continuous functions. From Lemma (a) and equation ([2.4.3|) we obtain
that ”y(k)(O) =0, for every 1 <k <n—1and
8n—1f
Oxn—1

Consequently, Ts(u,v(u)) = (dzg, au™ + O([u|"*1)), where o = —X"1h(0,0).
From the above construction, the following diagram is commutative.

-

X
=
Ts

A (0) = — g1 (0,0) = =X"h(0,0).

T
¢—1

x

Since m; 0 ¢~ '(z,0) = éx and ¢~ (x,0) € %, it follows that ¢~'(z,0) = (dz, y(dz)).
Also, observe that (zg,y0) = ¢x(T0,0,0) = (6Tp, % (T0,0,0)). So, dxg = Ty. Hence,
Tx(x,0) = ¢oTso¢ '(z,0)
= ¢oTs(dz,y(x))
= ¢(dxg, ad™x™ + O(z™1))
= (x0, % (00; 0, ad™z" + O(z"1)))
= (z0, % (T0; 0, ad™x™ + O(z"1)))

2

- <:U0, 0% (T0;0,0) + aaSOyX(TO; 0,0)(ad"z"™ + O(z" 1)) + (9(12”)>
2

= (l’o, Yo + aa(pyX(Tm 07 O>a5nxn =+ O(xn-l-l))

= (xo,yo + K™ + O(z"t1h)),
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where 922
Px
= — 15,0,0)X™h(0,0)0".
K ay ( 05 Y ) ( ) )
. 0% 0ok
Finally , we can take | 7| small enough such that a—(TO; 0,0) > 0 since 5 (0;0,0) =
Y Y
1 > 0. Therefore, sgn(x) = —6"sgn(X"h(0,0)). O

Figure 2.16: Tllustration of the change of coordinates ¢! (u,v) at a fold and a cusp point.

Now, let X € x" satisfy the assumptions of Theorem[A] We know that there exist ¢ >
0 and a neighborhood U of Xy such that a full transition map T : (—¢,¢) — (yo—¢, yo+¢€)
is defined for each X € U (see Section [2.3.1)). In what follows we shall characterize this

map.

Theorem B. Suppose that Xy € X" has a n-order contact with ¥ at p = (0,0), with
n > 2. In addition, assume that X, satisfies condition (A). Then, there exist a neigh-
borhood Uy of Xo in X", n — 2 surjective functions \; : Uy — (=9,9), i =1,---,n — 2,
depending continuously on X, such that for each X € Uy there exists a diffeomorphism
hx : (—€,e) = (—¢,¢) x {0} for which the full transition map Tx : (—e,e) x {0} — 7 is
given by:

Tx(hx(z)) = (ZEO, Ao(X) + k(X)x™ + nzl AZ(X)xZ + O(xn—i—l))7

where A\g = m2 0 Tx(0,0), sgn(k) = —d"sgn(X"h(0,0)) and § = £1.

Proof. In what follows, for the sake of simplicity, we shall identify (—&,¢) x {0} and 7
with the intervals (—¢,¢) and (yo — €, yo + €), respectively.
From the discussion above, define the continuous map

T: U — COR,R)/~
X — [TX — Tx(O)],
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where Ci°(R,R)/~ is the space of germs of C* functions f : R — R such that f(0) = 0,
with the equivalence relation

f ~ g if, and only if, f — g = O(z™*?).

As usual, [f] denotes the equivalence class of C§°(R,R)/~ which contains f € C5°(R, R).

Denote T'(Xy) by Ty and notice that 7" is surjective onto an open neighborhood of Ty in
C°(R,R)/~. In fact, consider the vector field X in the straightened form & = (1,0), then
Y is the graph {(z,h(x)); x € (—¢,¢)} in these coordinates, for some £ > 0 sufficiently
small, and To(z) = h(z) (see proof of Theorem [A]). Therefore, any sufficiently small
perturbation of A in the space of functions corresponds to the transition map of a vector
field X in U by considering a small change in the coordinate system.

From Theorem [A| it follows that Ty = [fo], where fy(z) = ka™. Now, since the stable
unfolding of fy is given by Fi(z) = ka™ + X2 \iz?, there exists a neighborhood W of Ty
in C3°(R,R)/~ such that, for each f € W, there exist n — 2 parameters A\; = \;(f) and a
diffeomorphism hy : R — R, such that

n—2
f(hp(z)) = k™ + > Na' + O(2™H).
i=1
In addition, the parameters \; and h; depend continuously on f.
Taking Uy = T~ (W), we have that for each X € U
n—2
Tx(hx(z)) = Xo + k™ + > Na' + Oz,
i=1
where \; : Uy — (=6,0), for i = 1,--- n — 2, are surjective functions depending continu-
ously on X and A\g = my 0 T'x(0). O

2.5 Regular-Tangential >.-Polycycles

This section is devoted to apply the method of displacement functions, described in
Section for obtaining bifurcation diagrams of nonsmooth vector fields around some
regular-tangential 3-polycycles (see Definition . More specifically, in Section ,
we describe the displacement functions appearing in the crossing system for such
Y-polycycles. In Section [2.5.2) we prove that at most one crossing limit cycle bifurcates
from >-polycycles having a unique regular-tangential singularity. Then, in Section [2.5.4]
we generalize the previous result for ¥-polycycles having several regular-tangential sin-
gularities. In particular, the bifurcation diagrams of ¥-polycycles having either a unique
Y-singularity of regular-cusp type or only two singularities of regular-fold type are com-
pletely described in Sections [2.5.3] and [2.5.5] respectively.

2.5.1 Description of the Crossing System

Assume that Zy = (X, Yy) € Q" has a Y-polycycle I'y containing k regular-tangential
singularities p; of order n; € N, 1 <14 < k. Consider a coordinate system (x,y) satisfying
that, for each i € {1,2,...,k}, x(p;) = ai, y(p;) =0, and h(z,y) = y near p;.

Firstly, we shall characterize I'y locally around each point p;, ¢ = 1,...,k. Assume
that, for a given ¢ € {1,...,k}, p; satisfies Yoh(p;) # 0 and consider a small neighborhood
U; of p;. Accordingly, p; has one of the following types
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(R1) XN U; \ {p:} has a connected component contained in ¥¢ and another in »°, and

Lo N W (p;) # 0 (see Figure (a));

(Re) XN U; \ {p;} has a connected component contained in ¥¢ and another in »° and
either Do N W3 (p;) = 0 or Ty N W(p;) = 0 (see Figure (b,c));

(R3) XNU; \ {pi} C 3¢ (see Figure (d)).

The points p; satisfying Xh(p;) # 0 are classified analogously.

e T r I

(a) (b) () (d)
Figure 2.17: Types of local characterization of 'y around the regular-tangential singularity
pi: Figure (a) and its time reversing illustrate type R;; Figures (b,c) and their time
reversing illustrate type Rs; Figure (d) and its time reversing illustrate type Rs. Bold
lines represent the intersection I'y N W3 (p;). Dashed lines represents ¢.

If p; is of type Ry, then we consider 0;(Zy) = {a;} x (—¢&;, +&;)NM™. So, we can follow
the case (E-I) from Section to construct the transfer functions 7;"° : 0y(Xo) — 7,°
defined by the flow of Xj. Recall that 7 and T} are restrictions of germs of diffeomor-

phisms (see Figure [2.18]).

Figure 2.18: Construction of the maps T;"°: type R;.

If p; is of type Ry or Rj, we consider the tangential section 0;(Zy) = (a; — €;,a; +
i) X {0} N X¢, where ¢; is sufficiently small. So, we can follow the case (O) from Section
to construct the transfer functions T* : 0,(Zy) — 7% and T? : 04(Zy) — 77 induced
by the flows of Xy and Y{, respectively. Notice that 7} is the restriction of a germ of
diffeomorphism and Theorem [Alis applied to characterize T}" (see Figure .

Now, in order to describe the displacement functions associated with I'g, we charac-
terize the unfolding of each tangential singularity.

If p; is of type Ry, then T and T* are germs of diffeomorphisms at p;. So, as described
in Section , for any Z = (X,Y) € Q" in a small neighborhood V; of Zj, there exist
transfer functions 77(Z2) : 0y(Z) — 77 and T}(Z) : 0,(Z) — 77 which are also germs of
diffeomorphisms at p;.
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(a) (b) (
Figure 2.19: Construction of the maps 7;"°: types Rs ((a) and (b)) and Rj3 (c).

From Theorem [B|there exists a neighborhood V of Z; such that for each Z = (X,Y) €
V the transfer function corresponding to p;, for i € {1,2,...,k}, is given by

n;—2

TH(Z)(hy(x)) = ki Z) (2 — a:)" + Z:O N(Z)(@ — a:)’ + O((z — a;)" "), (2.5.1)

where hiy : (a; —€,a; +€) = (a; — €, a; + €) x {0} is a diffeomorphism, with h% (a;) = a;,
sgn(k;(2)) = sgn(ki(Zp)), and A;(Z), for j € {0,1,...,n; — 2}, are parameters.

Notice that T7(Z) is a germ of diffeomorphism on ;(Z). Thus, for Z € V and for each
i =1, -,k we have obtained two maps 7;"“(Z) defined in a neighborhood of p; which
describes the behavior of the orbits contained in M ™ connecting points of 7;"* and o;(Z).
In addition, each transversal section 7;*, is connected to 7 via a diffeomorphism D;(Z)
satisfying:

[Dir(Z)] 71 o T} (Z)(hy(2)) = € (Z) + diea(Z) (2 = ;) + Oa(z — az), (2.5.2)
where ¢_1(Zy) = q* ,, and sgn(d;_1(Z)) = sgn(d;_1(Z)) (see Figure @ . Recall that,
in the above expression, we are assuming that Yph(p;) # 0. The case Xoh(p;) # 0 follows
analogously.

Now, let A be an open annulus around Iy containing the sections 0;(Zy). Using the
above characterization of the transfer functions and their unfoldings and Definition [2.3.3
we obtain that:

Ai(Z)(hg (i), By (i) = A Z) (], 2841) + O () + Ongn (24),

where 7 = z; — a;, Ti | = Ti41 — a;41, and

Ni(Z)(a},2i) = B Z) + P (o) + Qi (2344)-
Here, (;(Z) = AJ(Z)(hi(a;), hif (ais1)) and satisfies $;(Zy) = 0. In addition, P}V

and QM are non-vanishing polynomials of degree N; < max{2, n; — 2} and M; <

max{2, n,1 — 2} with coefficients depending on Z and satisfying P;"'(0) = Qi (0) = 0.

)
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Finally, the crossing system ([2.3.1]) is equivalent to the auxiliary crossing system:

A(Z) (2}, 25) + Onyg1(2) + Ongy 41 (25) = 0,

Ay(Z)(xy, 23) + Onyy1(2}) + Ongygr(25) = 0,

Ap 1 (Z) (g1, 73) + Ony (23 _y) + Ong 11 (zf) = 0, (2.5.3)
Ap(Z) (g, 23) + Ony1a(2g) + Oap 41 (27) = 0,

xfﬂl = fisvu<xi) = X; — Gy, 1= 17 T k?

hzZ(ZEZ) < O'i(Z), 1= 1, . ',k?.

2.5.2 X-Polycycles having a unique regular-tangential singular-
ity

Without loss of generality, the following conditions characterize the nonsmooth vec-
tor fields Zy = (Xy, Yy) which admit a X-polycycle having a unique regular-tangential
singularity of order n (see Figure [2.20)):

i) There exists p € X such that X, has a n-order contact with ¥ at p, n > 2 and
Yoh(p) # 0.

ii) Wi (p) intersects X¢ at g # p and the arc-orbit pg|x, is contained in M™;
iii) W*(p) intersects X¢ at r # p and the arc-orbit pr|y, of Yj is contained in M~;
iv) If r # ¢, there exists a regular orbit of Z, connecting r and q.

Accordingly, consider T'y as the union of the arc-orbits pr|z,, 7q|z,, and qp|z,-

(a) (0)
Figure 2.20: An example of Y-polycycle I'g having a unique regular-tangential singularity
of order n, when ¢ = r, (a) n is even and when (n) n is odd.

Following the previous section for £ = 1, a; = 0, and x; = x5 = x the displacement
function A(Z) : 0(Z) — R writes

A(Z)(hz(z)) = T“(Z)(hz(x)) — [D(Z)]7' o T*(Z)(hz(x))
= MN(Z) +K(Z)z™ + nz: N(Z)x? + O(z"™)

—HZ) — d(Z)x + Os2),
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where sgn(d(Z)) = sgn(d(Zp)). Here, it is easy to see that assumptions (i)-(iv) imply

that d(Zp) < 0. Taking
B(Z)=20(Z2) —eZ), NZ)=M(Z2)=d(Z), and 0(Z)=(8(Z),\2)), (25.4)
the displacement function A(Z)(hyz(x)) writes

A(Z)(hz(@)) = B(Z) + MZ)z + Oy(x). (2.5.5)

Notice that n : V — V is a surjective function onto a small neighborhood V" of (0, —d(Z,))
satisfying 5(Zy) = 0 and A\(Zy) = —d(Zp) # 0. In this case, the auxiliary crossing system
(2.5.3)) is reduced to the equation 3(Z) + AN(Z)x + Oz(x) =0, hz(x) € o(Z).

As a first result on the X-polycycle I'y we have the following proposition.

Proposition 2.5.1. Let Iy be a X-polycycle having a unique reqular-tangential singularity
of order n satisfying (i)-(iv). Then, Ty attracts the orbits passing through the section o(Zy)
(domain of T"(Zy)). In this case, we say that Ty is C-attractive.

Proof. Notice that the first return map associated with the Y-polycycle I'y of Zj is given

by Po(x) = ([D(Z)] " 0 T*(Zy)) " 0 T(Zy)(x), where, from [@5.1) and [25.2) (recall
that hy, = Id),

T"(Zo) () = #(Zo)2" + Onsa(w) and  [D(Z0)] ™" 0 T*(Zy)(x) = d(Zo) @ + Os(a).

Hence,
r(Z%o)
Po(z) = =—= 2" 4+ Opyq(x).
d(Zo)
Therefore, for x small enough, |Py(z)|< |z|, which means that Iy attracts the orbits
passing through the section o(Zy) (domain of T"(Zy)). O

In what follows we state the main result of this section.

Proposition 2.5.2. Let Zy be a nonsmooth vector field having a X-polycycle Iy containing
a unique regqular-tangential singularity of order n satisfying (i)-(iv). Then, the following
statements hold.

i) There ezist an annulus Ay at Ty and a neighborhood V of Zy such that each Z € V
has at most one crossing limit cycle bifurcating from Ty in Ay, which is hyperbolic
and attracting.

i) Let Zg x be a continuous 2-parameter family in V such that Z, iz = Zy and satis-
fying Zgx € n7Y(B, \), for every (8,\) € V. Then, for each \ near —J(Zo) and for
each connected component C' of 0(Zg ) N Ao, there exists a non-empty open interval
I\ ¢, satisfying Ixc x {\} C V, such that Zzx has a hyperbolic attracting crossing
limit cycle passing through C', for each € I c.

Proof. Consider the function n: ¥V — V given by (2.5.4). For each Z = (X,Y) € V, we
associate the displacement function A(Z) given in (2.5.5). From Section [2.3.3 we have
that there exists € > 0 such that, for each Z € V, there exists a function A(Z) : (—¢,¢) —
R which is an extension of A(Z).

Define the C” function F : V x V x (—¢,¢) — R as

F(Z,8, M z) = A(Z)(hz(x)) — B(Z) = M Z)z + § + Az,
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and notice that

F(Z0,0,—d(Z),0) =0, and 0,F(Zy,0,—d(Zp),0) = —d(Z) # 0.

From the Implicit Function Theorem for Banach Spaces and reducing V and V if
necessary, there exists a unique C” function X' : VxV — (—¢,¢) such that F(Z, 5, \,x) =
0 if, and only if, x = X(Z, 5, \).

Since

F(Z,B,\,x) = 5+ Ax + Oy(x),
it follows that X(Z,0,)\) = 0, for every (Z,0,\) € V x V. Consequently, we can see that

B

It follows from the definition of the function F that
X*(Z)=X(Z,8(Z),\2)) (2.5.7)

is the unique zero of A(Z) in (—e,). Hence, A(Z) has at most one zero in o(Z).
Moreover, since

P2 (e (2)) = ~d(22) >0,
it follows from that
2D e (2) = M2) + 0o (2)) >0,

for Z sufficiently near Z,. Therefore, the crossing limit cycle is hyperbolic and attracting
(from construction). The proof of item (i) follows by taking Ay = {p € M;d(p,T) < €},
where d denotes the Hausdorft distance.
Now, consider the family Zs given in item (ii). The unique zero of A(Zs.,) is given
by
P80 = X (Zpa) = =5 + 0u(8) (25.9)

Recall that each isolated zero, xo, of A(Zs,) is either a crossing limit cycle (if zp €
int(c(Zs))) or a X-polycycle (if xy € 9do(Zg,)). So, let C' = (a,b) be a connected
component of 0(Z3 ) C (—¢,¢) for some fixed parameter A € my(V'). Hence, from (12.5.8]),
there exists a non-empty open interval I, ¢ such that I ¢ x{\} C V and 2*(3, \) € int(C)
whenever 3 € I c. O

Remark 2.5.3. If we change the roles of s and w in the assumptions (i)-(iv) in order to
reverse the orientation of the cycle, all the results remain the same reversing the stability.

Let Z be a nonsmooth vector field sufficiently near Zj, and consider X*(Z) given by
(2.5.7). Propositions [2.5.1] and [2.5.2] provides the following possibilities for the crossing
dynamics in a small annulus Ajg of I'y:

i) if X*(Z) ¢ 0(Z), then Z has no crossing limit cycles or X-polycycles;
ii) if X*(Z) € int(c(Z)), then Z has a unique crossing limit cycle with the same stability
of Fo,
iii) if X*(Z) € 0o(Z), then Z has a unique X-polycyle containing m < n — 1 regular-
tangential singularities of order n;, with >, n; < n.

In addition, items (i) and (ii) occur in open regions of the parameter space and item (iii)
occurs in a hypersurface of the parameter space.
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2.5.3 X-Polycycles having a unique regular-cusp singularity

In the previous section, assuming that Z; has a -polycycle 'y admitting a unique
regular-tangential singularity of order n, n > 2, we have identified all the possible crossing
behavior of nonsmooth vector fields Z = (X, Y") sufficiently near Z; in a small annulus Ay
of I'y. Nevertheless, the domain o(Z), of the displacement function , has some par-
ticularities depending on the order n. In order to illustrate it, we describe the bifurcation
diagram of Zy around I'y assuming that n = 3. Furthermore, we shall see that S(I'y) = 2

(see Definitions [2.2.12)).

As before, the displacement function writes
A(Z)(x) = B(Z) + MNZ)x + Oq(x). (2.5.9)

For the sake of simplicity, we are omitting the parametrization hyz(z) in the displacement
function (2.5.9).

As we have shown before, A(Z) has a unique zero z*(n(Z)) in an interval (—¢,¢).
Now, we have to study how the domain o(Z) of A(Z) changes with Z. Now, we use
the parameter \(Z), defined in (2.5.4)), to characterize o(Z). Recall that A(Z) = d(Z) —
A1(Z) and Ai(Z) is given in the unfolding of T% . Analogously to the proof of Theorem
B] we consider a coordinate system (z,y) which trivializes the flow of X at (0,0). In
this coordinate system, ¥ = {(Z,7x,(2)(%));Z € (—¢,€)} and the transition map T%(2)
becomes T(Z)(Z) = Y, (2)(Z), where 1y, (2)(Z) = K(Z)Z° + M (Z)T + O4(Z) and k(Zy) =
—X3h(0,0).

There is no loss of generality in assuming that x(Zy) < 0, since the case k(Zp) > 0 is
completely analogous. Hence, we have the following situation (see Figure :

p4

M(Z)=0 Alo(Z) <0

b))

Figure 2.21: Unfolding of the regular-cusp singularity in the coordinate system (a) (Z,7)
and (b) (z,y).

i) If \{(Z) < 0, all the orbits of X are transversal to X, Therefore, o(Z) = (—¢,¢);
i) If A\ (Z2) =0, 0(Z) = (—¢,¢) (see Corollary [2.4.2));
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23

A
If \i(Z) > 0, then v),(z)(z) has a minimum at I(\) = —H—i + O1(\) and

A
a maximum at V(A;) = \/—3—1 + O1(A1). Therefore, X has a visible regular-fold
K
singularity at V(A1) and an invisible regular-fold singularity at 7(A;). In addition,
the orbit passing through the visible regular-fold singularity intersects ¥ backward
in time at a point A(A;) < I(\1). This means that o(Z) = (—¢, A(\)] U [V (A1), )
and A(/\l), V()\l) — 0 as )\1 — 0.

From the discussion above we have the following result.

Theorem C. Let Zy be a nonsmooth vector field having a C-attracting X-polycycle T'y
containing a unique reqular-cusp singularity. Therefore, there exists an annulus Ag around
[y such that for each annulus A, with I'y C A C Ay, there exist neighborhoods V C Q" of
Zy and V C R? of (0,0), a surjective function (8,\1) : V — V, with (3, \1)(Zy) = (0,0),

and

three smooth functions A, V., I:V — R with A(Zy) = V(Zy) = I(Zy) = 0, for which

the following statements hold inside A.

1.

10.

If M(Z) < 0, then Z has a unique crossing limit cycle of Z, which is hyperbolic
attracting.

If M\ (Z) =0 and B(Z) # 0, then Z has a unique crossing limit cycle of Z, which is
hyperbolic attracting.

If \(Z) = B(Z) =0, then Z has a unique S-polycycle, containing a unique reqular-
cusp singularity of Z, which is C-attracting.

If M(Z) > 0 and B(Z) > V(Z), then Z has a unique crossing limit cycle of Z,
which is hyperbolic attracting.

If \\(Z) > 0 and B(Z) = V(Z), then Z has a unique X-polycycle, containing a
visible unique regqular-fold singularity, which is C-attracting.

If M(Z) >0 and V(Z) < B(Z) < 1(Z), then Z has a sliding cycle containing a
visible regular-fold singularity.

If M(Z) > 0 and I(Z) = B(Z), then Z has a sliding cycle containing a visible
reqular-fold singularity and an invisible reqular-fold singularity.

If M(Z) > 0 and A(Z) < B(Z) < I(Z), then Z has a sliding cycle containing a
unique visible reqular-fold singularity.

If \i(Z) > 0 and B(Z) = A(Z), then Z has a unique S-polycycle, containing a
unique reqular-fold singularity, which is C-attracting.

If \i(Z) > 0 and A(Z) < B(Z), then Z has a unique crossing limit cycle of Z,
which is hyperbolic attracting.

In addition,

A(Z) = d(2)AM(Z)) + 0:(\(Z), A(M(2))),

V(Z)= d(2) —Q;E§;+01(A1(Z)), (2.5.10)
1(2)= —d(2) —Al(z>+01(A1<Z)),

3k(Z)
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where A(M(Z)) and V(M (Z)) are defined as the extrema of o(Z) as follows o(Z) =
(=&, AM(2)] U [V (M(Z)),€).

The theorem above provides the bifurcation diagram of 7, in the (8, A\;)-parameter

space (see Figure [2.3)).

Proof. From the construction of the auxiliary crossing system , performed in Section
2.5.1] we get the existence of an annulus Ay around I'y and neighborhoods V, C Q" of Z,
and Vo C R? of (0,0), for which the equation is well defined.

Now, given an annulus A, with I'y C A C Ay, let ¢ > 0 satisfy (—¢,¢) x {0} C A.
Consider the function X : Vy x Vy — (—¢,¢) given by (2.5.6), and for a sufficiently small
neighborhood U C R? of the origin, define B:V x U x (—¢,¢) — R by

5 g
B(Z,B,)\l,v) X(Z,ﬁ,)\l d(Z)) v )\1 —d~(Z) ’U—f—Og(ﬁ)

Notice that

1
B(Z5,0,0,0) =0, and 838(Z,0,0,0) = < 0
(Zo, ) 5B(Zo ) ) #
From the Implicit Function Theorem for Banach Spaces, there exist 6 > 0, an open
interval J containing 0, and a unique C” function f* : V X J X (—¢,e) — (=6, 0) such that
B(Z,B,\,v) =0 if, and only if 5 = 5*(Z, A\;,v). Also, we can see that

B(Z, M\, v) = d(Z)v — A\v + Os(v).
Notice that, if A(Z) = 8*(Z,\M(Z),A(M(Z))) and V(Z) = *(Z, \M(Z),V(M(2))),
then X*(Z, A(Z),\(Z)) = A\ (Z)) and X*(Z,V(Z),\(Z)) = V(M (Z)). Since

M(2)

+ O1(\i(2)),

we get V(Z) from (2.5.10)).

From construction of the maps T%(Z), T*(Z) and D(Z) given in and (2.5.2), it
follows that the points I(A(Z)) and V(A(Z)) are connected by an orbit of Z = (X,Y)
if, and only if,

G(2) = T"(Z)(V(\(2))) = [D(Z)] " o T*(Z)(1(M(2))) = 0.

Notice that

6(2) = (2) +d(2), - 357

Thus, applying the Implicit Function Theorem to the function G : V x (=6,0) — R,
given by G(Z,3) .= G(Z) — 5(Z) + B, at the point (Zy,0), we get a unique C" function
I:V — (=0,6) such that G(Z,8) = 0 if, and only if, 3 = I(Z). Hence, the points
V(A (Z)) and A(M\(Z)) are connected by an orbit of Z if, and only if 3(Z) = I(Z). In

this case,

+ O01(M(2)).

- - M(Z)

1(2) = =d(Z)\ =517, + Ou(2)

From here, the proof follows directly from the definitions of the curves A,V and I,
and Propositions [2.5.1] and [2.5.2] O
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2.5.4 >-Polycycles having several regular-tangential singulari-
ties

Now we perform an analysis of a class of 2-polycyles having several regular-tangential
singularities and we obtain similar results for those in Section Consider the class
of nonsmooth vector fields Zy = (Xp, Yy) which admit a ¥-polycycle having k regular-
tangential singularities, p; € X, of order n;, ©+ = 1,. .., k satisfying the following property:

(A) for each i = 1,... k, there exists a curve 7; connecting p; and p;, 1, oriented from p;
to pir1, such that v; \ {p;, pir1} is a regular orbit of Zj, v; is tangent to X at p; and
transversal to ¥ at p;y1, where pry1 = p1 (see Figure [2.22]).

In what follows, without loss of generality, we assume that h(x,y) = y, p1 = (0,0),
and p; = (a;,0),1=2,--- k.

D1 D2

Figure 2.22: Y¥-polycycles satisfying hypothesis (A).

Following the constructions presented in Sections [2.5.1] and [2.5.2] the displacement
functions A;(Z) : 0,(Z) — R are given by

N(Z) (W), Wi (wi41)) = Bi(Z) + M(Z)x5 1y + Oa(2) + Oa(25,y),
where 5" = z; — a;, Bi(Z) = Aif(Z)(hiy(a;), he (aiyn)) satisfies 5;(Zy) = 0, and A (Z) =

M (Z) — di(Z) satisfies N\j(Z) = —d;(Zy) # 0. Thus, there exists a neighborhood V of Z,
such that for each Z € Vand i =1,...,k, \i(Z) = —d;(Z) # 0 and the crossing system

[£53) is given by

No(Z) (WY (22), hy(23)) = Ba(Z) + Xa(Z) x5 + Os(7%) + Oa(a5) =

Aecs(Z) (" (), B (20)) = B (Z) + er(Z)a + Oala_,) + Osla) = O,
A(Z) (), By (1)) = Bu(Z) + M(Z)25 + Oalat) + Osla) = 0,

S,u .
i _ai7l_]—7"'7k7

T €T;
hZZ(IZ) S O'i(Z), 1= 1, e ',k.

(2.5.11)
So for the Y-polycycle I'y we have the following proposition.
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Proposition 2.5.4. Let I'y be a Y-polycycle having k reqular-tangential singularities p; €
Y, of order n;, i = 1,...,k, satisfying the property (A). Then, Ty attracts the orbits
passing through the section o1(Zy) (domain of T{"(Zy)). In this case, we say that Ty is
C-attracting.

Proof. Notice that the first return map associated with the 3-polycycle 'y of Zj is given
by

Po(z) = (D] ' o T7) o Tt o ([Da] o T3) o T 0o ([Di] 7 o T3) ™ o T (x)

where, from (2.5.1]) and (2.5.2)) (recall that h}, = Id),

T (z) = ki(Zo) 2™ + Op,1(x) and  [D;1] 7' o TP (2) = di(Zo) & + Oy(x).

(2

Hence,
k
i(Z :
Po(z) =] 'f( 0) 2" 4+ On(z), N=n;+ns+---+ng+1.
i=1 di(Zo)
Therefore, for |z| small enough, |Po(z)|< |z|, which means that [y attracts the orbits
passing through the section o1(Zy) (domain of 71 (Zp)). O

Setn(Z) = (8(2),M2)) with B(2) = (6:(Z), ..., B(Z)) and N(Z) = (\i(Z), ..., Mu(2)),
and denote d(Z) = (di(Z),...,dr(Z)). Notice that : V — V is surjective onto a neigh-

borhood of (0, —d(Zy)) € V. Now, we present the main result of this section which is an
extension of the Proposition [2.5.2]

Proposition 2.5.5. Let 'y be a X-polycycle of Zy = (Xo,Yo) € Q" having k reqular-
tangential singularities p; € X, of order n;, i = 1,..., k, satisfying property (A). Then,
the following statements hold.

i) There exists an annulus Ao at T'g and a neighborhood V of Zy such that each Z €V
has at most one crossing limit cycle bifurcating from Ty in Aqg, which is hyperbolic
attracting.

i) Let Z,BS be a continuous 2k-parameter family in V such that Zo,—cT(ZO) = Zy and

satisfying Z,5 € (B, \), for every (B,\) € V. Then, for each X near —d(Zy) and
for each connected component C; of O'Z'(Zﬁ ;)ﬂAo, there exist non-empty open intervals

IX,CH satisfying ]X,Cl X X ]X,Ck X {5\} C V, such that Zg » has a hyperbolic attracting

crossing limit cycle passing through Cy X - - x Cy, for each 8 € I5 o XX I -

Proof. As seen before, there exists a neighborhood V of Z; in Q" such that, for each
Z = (X,Y) € V, we associate the displacement functions A;(Z), ¢ = 1,...,k, given in

(2.5.11), which can be extended to A;(Z) : (—¢,€) = R (see Section [2.3.3).
Define the C" function F : V x V x (—¢,¢)F — RF as

F(Z7/87 X721:) - (}‘1(27/67 X7‘r)7"‘7‘F‘l€(Z’/67 X7x>>’
where V is an open neighborhood of (0, —d(Zy)) € R*¥ x R¥ and, for i = 1,... .k,
FiZ, B, N x) = Ai(Z) (hiy(w:), hif (i) — Bl Z) = M(D)zir + B + Nz,

with .1 = x; and h’?l = hlz.
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Notice that F(Zy,0,—d(Z),0) = (0,...,0) and

0 —dy(Zo) 0 0

0 0 —ds(Zy) - 0

D,F(Zy,0,-d(Z),0) = : : : :
0 0 0 e —di(Z0)

—dy(Zp) 0 0 0

From the Implicit Function Theorem for Banach Spaces and reducing V and V' if
necessary, there exists a unique C" function X : VxV — (—¢,¢)" such that F(Z, 3, \,z) =
0 if, and only if, x = X(Z, 8, A). Since

F(Z, 5, 5\715) = (b1 + 5\11’2, ooy B+ S\k—lxlm B + Xkﬂh) + Oy (),
it follows that X (Z,0,)) = 0, for any (Z,0,\) € V x V. Consequently,

o (BB B
X(Z,8,)\) = <Xk’ Xl""’XH) + Os(8).

From the definition of the function F, the unique zero of A(Z) = (Ay(Z),...,A(Z))
in (—¢,¢)* is given by N
X*(2) = X(2,8(2) X(2)).

Hence, system (12.5.11)) has at most one zero in 01(Z) X --- x 0x(Z). Moreover, since

ON(Zo) , -, -
a(o)(?( (Z0)) = —di(Zy) > 0,
Tit1
it follows that
8aAaf<Z) (X*(2)) = M(2) + OU(X*(2) >0, i=1,... .k (2.5.12)
i+1

for Z sufficiently near Zj.
Now, for Z € V suppose that the solution X*(Z) = (23(2),...,z5(Z)) € int(o1(Z) X
- X o,(Z)) of system is associated with a crossing limit cycle of Z. From the
Implicit Function Theorem, for each z; sufficiently close to x7(Z) the orbit of Z, starting at
(x1,0) € 01(Z) x {0}, intersects each int(c;(Z)) x {0} at (&;(x1),0) with &(z1) near x}(2).

Notice that A;(Z)(h% (& (1)), By (&v1(21))) =0, for i = 1,..., k — 1. Consequently,

21 = Dp(Z) (B (&n(2)), hiy (1))

is the displacement function associated with the crossing limit cycle defined in neighbor-
hood of zj(Z) in int(0q(Z)) x {0}. Clearly, the above displacement function vanishes at
23(Z). Moreover, from (2.5.12)), the derivative of displacement function at z7 is positive.
Therefore, when the crossing limit cycle exists, it is hyperbolic and attracting.

The proof of item (7) follows by taking Ay = {p € M;d(p,Ty) < €}, where d denotes
the Hausdorft distance.
) Now, consider the family Z, 5 given in item (ii). The unique zero of AZ 53) Is given

y

XH(Z,5) = - (5’“ b @"H) + Os(8). (2.5.13)

AT N



o8

Recall that each isolated solution x* of system (|2.5.11)) represents either a crossing limit
cycle (if 2" € int(01(Z,5) x -+ X 0u(Z,3))) or a X-polycycle (if 2* € O(01(Z,5) x -+ - X
Uk(Zﬁ,X)»' So, for i = 1,~...,/€, let C; be a connected component of O’Z'(ZBS) C (—¢,¢)
for some fixed parameter A € m(V). Hence, from (2.5.13), there exists a non-empty open
interval I3 , such that I3, x ... XI5, x {A} CV and X*(Z;5) € int(Cy x ... x Cy)

whenever j3; € IX,CZ-' ]

Remark 2.5.6. Regarding Propositions [2.5.4) and [2.5.5, if we change the orientation in
property (A) in order to reverse the orientation of the X-polycycle, all the results remain
the same reversing the stability the X-polycycle and the crossing limit cycle.

These results are illustrated in the next section for the case where the »-polycycle has
two fold-regular singularities.

2.5.5 X-Polycycles having two regular-fold singularities

Firstly, without loss of generality, we assume some conditions in order to characterize
the nonsmooth vector fields Zy = (Xo, Yp) € Q" which admit a X-polycycle 'y satisfying
(A) and having only two regular-fold singularities (see Figure [2.23)). So, consider a co-
ordinate system (z,y) such that x(p1) = a1, y(p1) = 0, z(p2) = az > 0, y(p2) = 0 and
h(z,y) =y in neighborhoods of p; and py. Consider the following sets of hypotheses:
(DRF-A):  — p; is a visible regular-fold singularity of X, and m o X¢(p1) > 0;

— po is a visible regular-fold singularity of Yy and 71 o Yy(p2) < 0;

— WZ¥(p1) reaches X transversally at po;

— W"(ps) reaches ¥ transversally at p;

(DRF-B):  — p; is a visible regular-fold singularity of X, and m o Xy(p1) < 0;
— peo is a visible regular-fold singularity of Yy and m; o Yy(p2) > 0;
— WZ¥(p1) reaches X transversally at po;
— W*(ps) reaches X transversally at p;

P1 b2 P2

(a) (b)
Figure 2.23: X-polycycle I'y of Z; under the set of hypotheses (a) (DRF-A) and (b)
(DRF-B), respectively.

Hypotheses (DRF-A) and (DRF-B) fix the orientation and the stability of the X-
polycycle T'g. Indeed, in this case I'y is C-attracting. According to Remark [2.5.6] the
stability of I'y is reversed if we change the orientation.
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Remark 2.5.7. Notice that there are other closed connections containing two reqular-
fold singularities which are not X-polycycles since they violate condition (iv) of Definition

(see Ezample[2.2.9).

Here we shall assume that 7, satisfies (DRF-A), the case (DRF-B) will follow analo-
gously. In this case, Z, admits a 3-polycycle I'g given by the union W¥(a,0)UW(ay,0)U
{(a1,0), (az,0)}. We shall see that S(I'y) = 2.

Since regular-fold singularities are locally structurally stable, they persist under small
perturbations. Consequently, without loss of generality, we may assume that the dif-
feomorphisms h%, i = 1,2, provenient from Theorem [B| may be taken as the identity.
Accordingly, the displacement functions write

A(Z) (a1, 22) = T{(Z)(x1) — [Di(2)]7! 0 T5(Z)(22)
= MN(2) + ri(Z) (21 — @1)* + O3(21 — a1)
—51(2) — dl(Z)(l’g - CLQ) + OQ(IQ - CLQ),
Do(Z) (w2, 1) = T3(Z)(x2) — [Da(2)]7" 0 T3(Z)(21)
= N(Z) + r2(Z)(x2 — az)* + O3(x2 — a)
—52(2) — dQ(Z)(Il - al) + 02(1’1 - CL1>,

where k1(Z) < 0, k2(Z) > 0, and d;(Z) > 0, for i = 1,2. Therefore, denoting 3;(Z) =
No(Z) —@(2), i =1,2, (see Figure 2.24)) the auxiliary crossing system (2.5.3)) becomes
) =

Bi(Z) — di(Z)6z + £1(2)E} + Oa(&2) + O5(&1)

Bo(Z) — do(Z)61 + £a(Z)E3 + Oa(&2) + O5(&)
fi:xi_aiai: 1727
(.1'1,1'2) € 01<Z) X UQ(Z) = [al,al +€) X (CLQ —E,CLQ].

0,
0

(2.5.14)

Figure 2.24: Splitting of the separatrices for a perturbed system Z € V.

In what follows we use the auxiliary crossing system ([2.5.14)) to describe the bifurcation
diagram of Z; at I'y assuming the set of hypotheses (DRF-A) (see Figure .

Theorem D. Let Zy be a nonsmooth vector field having a %-polycycle satisfying the set
of hypotheses (DRF-A). Therefore, there exists an annulus Ao around Ty such that for
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each annulus A, with Ty C A C Ay, there exist neighborhoods V C Q" of Zy and V C R?
of (0,0), a surjective function (51, 52) : V — V with (51, 52)(Zy) = (0,0), and two smooth
functions 1,72 : V — R with v1(Zy) = v2(Zo) = 0, for which the following statements
hold inside A.

1. If Bo(Z) > 0 and B1(Z) > y1(Z), then Z has a sliding cycle containing the regular-
fold singularity po and a unique sliding segment.

2. If B2(Z) > 0 and B1(Z) = y1(Z), then Z has a C-attracting X-polycycle containing
the reqular-fold singularity ps.

3. If 2(Z) > 0 and 0 < B1(Z) < y1(Z), then Z has a hyperbolic attracting crossing
limit cycle.

4. If Bo(Z) > 0 and p1(Z) = 0, then Z has a hyperbolic attracting crossing limit cycle
and a heteroclinic connection between p; and ps.

5. If Bo(Z) > 0 and B1(Z) < 0, then Z has a hyperbolic attracting crossing limit cycle.

6. If Bo(Z) =0 and B1(Z) < 0, then Z has a hyperbolic attracting crossing limit cycle
and a heteroclinic connection between py and ps.

7. If Bo(Z) = p1(Z) = 0, then Z has a C-attracting X-polycycle containing two reqular-
fold singularities.

8. If B1(Z) < 0 and y2(Z) < 2(Z) < 0, then Z has a hyperbolic attracting crossing
limit cycle.

9. If B1(Z) < 0 and Po(Z) = v(Z), then Z has a C-attracting X-polycycle containing
the reqular-fold singularity p;.

10. If B1(Z) < 0 and B2(Z) < vo(Z), then Z has a sliding cycle containing the regqular-
fold singularity p; and a unique sliding segment.

11. If Bo(Z) < 0 and B1(Z) = 0, then Z has a sliding cycle containing two regular-fold
singularities and one sliding segment.

12. If Bo(Z) < 0 and B1(Z) > 0, then Z has a sliding cycle containing two regular-fold
singularities and two sliding segments.

13. If Bo(Z) = 0 and $1(Z) > 0, then Z has a sliding cycle containing two regular-fold
singularities and one sliding segment.

_ w4
dy(2)?

_ KQ(Z)
d\(Z)?

Bo(Z)? + O3(B2(2)) and (Z) = Bi(Z)? + Os(61(2)).

In addition, in the cases (1), and (10) — (13), Z does not admit limit cycles.

Proof. From the construction of the auxiliary crossing system ([2.5.3)), performed in Section
2.5.1] we get the existence of an annulus Ag around I'y and neighborhoods Vy C Q" of Z,
and Vo C R? of (0,0), for which the auxiliary crossing system (2.5.14)) is well defined.
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Now, given an annulus A, with I'y C A C Ay, let € > 0 satisfy [a;,a; +¢) x {0} C A
and (ay — €, as] x {0} C A. Consider the function F : Vy x (—¢,€)? x Vy — R? given by

F(Z, §1a§2,51,52) = (Fl(Za 51,52,51)aF2(Z7 51752,52)),

where

Fi(Z,&,&,51) = E(Zfb&) = Bi(2) + b,
F2(Za 517627ﬁ2) = F2(27 61762) - B2(Z) + 527

and F; and F are given by the left-hand side of the first two equations 0f~.

Notice that F'(Zp,0,0,0,0) = (0,0) and det[D(¢, ¢,)F(Zo,0,0,0,0)] = —d1(Zo)da(Zo) #
0. From the Implicit Function Theorem for Banach Spaces, there exist neighborhoods
YV CVand V C Vj and unique C" functions Z1,Z5 : V X V — (—¢,¢) such that

F(Z’El<Z’ ﬂ1762)752(27 Bl:ﬁ2)7ﬁlvﬁ2) = (O,O)

Consequently, for each Z € V), the auxiliary crossing system (2.5.14) has at most one
solution. In fact, (2.5.14) is satisfied if, and only if,

(€1,62) = (21(Z, B1(Z), B2(2)), Z2(Z, B1(Z), B2(Z))) € [0,¢) x (—¢,0]. (2.5.15)

Therefore, each Z € V has either a »-polycycle having a unique regular-fold singularity
(which occurs when & = 0 or & = 0) or at most one crossing limit cycle.

In what follows, we find parameters (5;1(2), f2(Z)) satisfying (2.5.15)).

First, Z9(Z, 51(Z), P2(Z)) = 0 implies the existence of a X-polycycle of Z passing
through the regular-fold singularity ps. Applying the Implicit Function Theorem to
9(Z,&1,82) = F5(Z,61,0,82) at (Zo,0,0), we obtain the existence of a unique C" func-
tion =,(Z, B2) such that g(Z,Z,(Z, f2), B2) = 0. In addition,

21(Z, Bs) = i + Oq(B2) = O1(B2).
do(Z)
Now, applying the Implicit Function Theorem to h(Z, B, 32) = F1(Z, él(Z, Ba),0, 1) at
the point (Zy,0,0) we obtain a function 51(Z, 33) such that h(Z, 51(Z, 52),52) = 0. It
follows directly from the expression of h that

- fl(Z)

Bi(Z, B2) = y (2)253 + O3(B2).
2

Hence, it shows that F(Z,Z,(Z, 52(2)),0, B1(Z, B2(Z)), B2(Z)) = (0,0). From uniqueness
of the solution,

=21(2,B1(Z.52(2)), B2(2)) = Ei(Z. 52(2))  and  Es(Z, Bi(Z. $2(2)), Ba(Z)) = 0.

Thus, Z5(Z, 51(Z), 2(Z)) = 0 if, and only if, 51(Z) = Bi(Z,32(Z)). Moreover, since
dy(Z) > 0, it follows that Z,(Z, 82(Z)) € [0, &) if, and only if, 55(Z) > 0. Finally, defining
1 (Z) = B1(Z, B2(Z)), we have that each Z € V, satisfying 5,(Z) = 71(Z) and 35(Z) > 0,
has a Y-polycycle containing a unique regular-fold singularity, namely p, = (as, 0).

Analogously, =;(Z, 51(Z),52(Z)) = 0 implies the existence of a ¥-polycycle of Z
passing through the regular-fold singularity p;. Following the same ideas above, we obtain
a unique C" function EQ(Z, p1) such that Fy(Z,0, éQ(Z, p1), 51) = 0. Furthermore

é2(Z> p1) = jlﬁ(lz) + O3(B1).
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Also, we obtain a unique C" function 35(Z, 8;) such that Fy(Z,0, EQ(Z, B1),B2(Z,31)) =0
and )
__ Ko 9
Z, ) = —= +0 .
B ) = 5 O
Therefore, F(Z,0,25(Z, $1(Z)), 51(Z), B2(Z, 31(Z))) = (0,0). Again, from uniqueness of
the solution, it follows that

Z1(Z, ﬁl(Z)aE(Za 51(Z))) =0 and Z=y(Z, 51(2)75(2, 51(2))) = é2(Za 51(2)).
Hence, Z1(Z, 61(Z), 82(Z)) = 0 if, and only if, 52(Z) = B2(Z, 51(Z)). Also, since dy(Z) >

0, it follows that Z5(Z, 51(Z)) € (—¢,0] if, and only if, 51(Z) < 0. Defining 7»(Z) =
Ba(Z, 31(Z)), we have that each Z € V satisfying $2(Z) = 12(Z) and 5,(Z) < 0 has a
Y-polycycle containing a unique regular-fold singularity given by p; = (aq,0).

The C-attractiveness of the X-polycycle detected above is given by Proposition [2.5.4]
Hence, items (2), (7) and (9) are proved.

In what follows we shall identify when the solution (21(Z, 81(2), f2(2)), Za(Z, p1(Z), f2(Z)))
of the auxiliary crossing system corresponds to a crossing limit cycle.

Note that

=.(2.51(2), ol 2)) = 32(12)52@) + 0y(B1(2). 5al 2)),

(2.5.16)
EQ(Z, Bl(Z)a B2(Z))

_ gl(Z)ﬁl(Z) + O2(61(2), B2(2)).

Recall that Zo(Z,71(Z2),52(Z)) = 0. Using (2.5.16), we expand Zy(Z, f1(Z2), f2(Z))
around (3,(Z) = 1 (Z) as

1
d\(Z)

=,(Z,Au(2), B 2)) = ( ' ol<62<z>>) (B1(2) = 14(2)) + OuB1(Z) - 1(2)).

Since dy(Z) > 0, it follows that Z5(Z, 51(Z), 32(Z)) € (—&,0) if, and only if, 5(Z) <
71(Z). Also, E1(Z,m(2), B2(2)) € (0,¢) for f>(Z) > 0 and, thus, Z1(Z, 51(2), B2(2)) €
(0,e) for Bo(Z) > 0 and B,(Z) sufficiently close to (7). Finally, we conclude that
G2, :(2), B:(2)), (2, B1(2), Bo(2))) € (0,2) x (—£,0) with B5(Z) > 0 if, and only
if, 1(Z) < 71(Z). Hence, we get the existence or not of crossing limit cycles in items
(1) (3), (4), and (5).
Analogously, since Z,(Z, 81(Z),v2(Z)) = 0, the expansion of Z,(Z, 81(Z), f2(Z)) around

Po(Z) = 72(Z) writes

=2 4(2).5(2) = (17 + O (2D (2(2) = (2) + Oul5a(2) = (2)

Recalling that dy(Z) > 0, we obtain Z1(Z, 1(Z), 52(Z)) € (0,¢) if, and only if, 5(Z) >
v2(Z). Also, Zo(Z, 51(Z),72(Z)) € (—¢,0) for §1(Z) < 0. Therefore, Z5(Z, p1(Z), f2(Z)) €
(—¢,0), for 51(Z) < 0 and [y(Z) sufficiently close to v9(Z). Finally, we conclude that
(El(Z7 ﬁ1(2)7ﬁ2(2)), EZ(ZJ 61(2)762(2))) S (076> X (_670) with BI(Z) <0 1f7 and Only
if, B2(Z) > v2(Z). Hence, we get the existence or not of crossing limit cycles in items (6),

(8) and (10).
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Now, notice that

=1(Z2,0,6:(2)) = Ba(Z) + O2(B2(Z)),

Jz(Z>

32(2761(2), ) Bl( )+02<51(Z))

dl( )
Therefore, =1(Z,0,52(Z)) < 0 and Z5(Z,0, 52(Z)) > 0, provided that 55(Z) < 0 and
p1(Z) > 0. This means that has no solutions when (;(Z) = 0 and f5(Z) < 0
or B2(Z) = 0 and $1(Z) > 0. From continuity, if follows that =Z,(Z, 51(Z2), 52(Z)) €
(—¢&,0) x (0,¢) for 51(Z) > 0 and B2(Z) < 0. Hence, we conclude the non-existence of
crossing limit cycles in items (11), (12) and (13).

Notice that f,(2) = T(Z)(@)) — [Dy(Z)] ™ 0 T3(Z)(a) and Bx(2) = T(Z)(a) —
[Do(Z)] 7' o T§(Z)(a1). Heterocline connections exist when 1(Z) = 0 or 51(Z) = 0. If
either 51(Z) =0 and (2(Z) > 0 or B1(Z) < 0 and f2(Z) = 0, the heteroclinic connection
is not contained in a sliding cycle. This correspond to items (4) and (6).

Finally, the sliding region corresponding to Z is given by ¥° = (a1 — ¢,a;) x {0} U
(ag, ag—e)x{0}, for every Z € V, the sliding vector field F is regular in X%, m0F%(ay,0) >
0, and m o Fz(as,0) < 0. Therefore, the sliding phenomena detected in items (1) and
(10) — (13) follows straightforwardly. Hence, the proof is concluded. O

Remark 2.5.8. We notice that the set of displacement functions associated with a non-
smooth vector field Zy at a S-polycycle satisfying the hypotheses (DRF-B) generates the
same system of equations obtained for the case (DRF-A). Nevertheless, the do-
main oy X oo will be given by o1 X 09 = (a1 — €, a1] X [ag, as +€). The bifurcation diagram
of Zy can be obtained analogously and has the same structure and objects of the case
(DRF-A). Therefore, we shall omit it here.

2.6 Fold-Fold >-Polycycle

This section is devoted to study X-polycycles having fold-fold singularities by means of
the displacement functions method described in Section [2.3] More specifically, in Section
2.6.1, we describe the displacement functions appearing in the crossing system for
such ¥-polycycles. In Section [2.6.2] the bifurcation diagram of a X-polycycle having a
unique X-singularity of visible-invisible fold-fold type is completely described.

2.6.1 Description of the Crossing System

Assume that Zy = (Xo, Yp) € Q" has a X-polycycle 'y containing &k Y-singularities p;,
where p; is either a regular-tangential singularity of order n;, for some n; € N, or a fold-fold
singularity. Consider a coordinate system (z,y) satisfying that, for each i € {1,2,...,k},
x(pi) = a;, y(pi) = 0, and h(z,y) = y near p;.

Assume that, for some i € {1,...,k}, p; is a fold-fold singularity and consider a small
neighborhood U; of p;. Notice that p; is not an invisible-invisible fold-fold point, since
there are no X-polycycles containing this type of singularity. Accordingly, one of the
following properties hold for p;:

(Fy) Either To N Wi (p;) # 0 or To N W™*(p;) # 0 (see Figure [2.25] (a) and (
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(F») Either TonWi(p;) # 0 and ToNW? (p;) # 0 or ToNW3(p;) # 0 and ToNW*(p;) # 0
(see Figure (c)).

\1}// p;

(a) (0)

(¢)

Figure 2.25: Examples of fold-fold singularity of type Fy ((a) and (b)) and Fy (c).

In what follows the description of the crossing system will be distinguished in two
cases, namely visible-visible and visible-invisible.

Visible-Visible Fold-Fold Singularity

Let p; be a visible-visible fold-fold singularity. If p; satisfies (F}), then the transfer
functions T : 0;(Zy) — 7,"° can be obtained analogously to the case (R;) in Section
2.5.1] In this case, these functions are restrictions of germs of diffeomorphisms. If p;
satisfies (F%), then the maps T} : 0;(Zy) — 7 and 1} : 0,(Zy) — 77 can be obtained
following the case (O) in Section [2.3.3] Without loss of generality, we assume that
LoNW(p;) # 0, To N W2 (p;) # 0, m1(Xo(p:)) > 0 and m1(Yo(pi)) < 0 (see Figure
(c)). In this case, the tangential section o;(Zp) is given by 0;(Zy) = [a;,a; + ;) x {0},
where ¢; > 0 is sufficiently small.

From Theorem [B] there exists a neighborhood V of Z, such that for each Z = (X,Y) €
V the transfer functions corresponding to p; are given by

TH(2)(h7' () = A5'(2) + kui(X) (@ — ai)” + Os(z — a;), € {u, s},
where b’ @ (a;—¢€;,a;4¢;) — (a;—&4, a;+¢;) x {0} is a diffeomorphism and sgn(k, ;(Z)) =
Sgn(li*’i(Zo)).

Without loss of generality, we can assume for each Z € V the fold point of X is fixed
at (a;,0) and also h%'(z) = (a; + (z — a;) + Oa(z — a;),0). In this case, the fold point of
Y is given by (a;(Z),0), where o;(Z) = (h%")~' o h'(a;). Moreover, the domain ¢;(Z) of
the transfer functions 7;""(Z) is given by 0;(Z) = [max{a;, a;(Z)}, a; + ¢;) and

T3 (Z2)(hz'(x)) =T;(Z) o hy'((hz")~" o hy'(x))

)

= N(2) + Fei(X) (2 — i(2))? + Os(z — i(2)),

where sgn(%;;(Z)) = sgn(ks,i(Zo)) and o (Zy) = ;.

Thus, for each Z € V, we have characterized the maps 7;""(Z) in the domain (%)
under the parameterization hy’. Since the transversal section 7 | is connected to 77 via
a diffeomorphism D;(Z), we obtain

[Di1(Z)] o TP (Z2)(hy' (2)) = &-1(Z) + dia(Z)(x — i(Z))* + O3(x — ai(Z)),
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where ¢;_1(Zy) = ¢!, and sgn(czi_l(Z)) = sgn(ci-_l(Zo)).

It is worthwhile to say that the parameter o;(Z) locally unfolds the fold-fold singularity
pi (see [59]).

N /\j

<a,

(Z) > a;

Figure 2.26: Unfolding of a visible-visible fold-fold singularity.
Visible-Invisible Fold-Fold Singularity

Let p; be a visible-invisible fold-fold singularity. In this case, p; satisfies (F}). As we
have seen in Section [2.3.3] the transfer functions associated with p; are defined in the
domain ;(Z,) which has two components of'(Xy) and ot(Zy) N o; (Xo). The first one is
a restriction to M of a transversal section of Xo at p; and the second one is contained
in 2.

For Z sufficiently near Z; the transfer functions 7;°(Z) : 0;(Z) — 7, restricted to
o'(X) can be obtained analogously to the case (R;) in Section [2.5.1l In this case, these
functions are restrictions of germs of diffecomorphisms (see Figure (2.27)).

Figure 2.27: Transfer functions 7;° restricted to the transversal section o'(X).

Now, the transfer functions 7;"* restricted to o} (Zy)Uo; (Xo) are obtained following the
case (E-II) in Section [2.3.3] Without loss of generality, we assume that [o N\W}"* (p;) # 0,
m1(Xo(pi)) > 0 and 71 (Yo(pi)) > 0 (Figure 2.2] (a)). In this case, the tangential section
ol(Zo) No; (Xo) is given by of(Zy) No; (Xo) = (a; — €;,a;] x {0}, where ¢; is sufficiently
small.

From Theorem [B| there exists a neighborhood V of Z; such that for each Z = (X,Y) €
V the trasition maps corresponding to p; are given by

T (hx (7)) = AE(2) + k(X)) (2 — a;)? + Os(z — @), (2.6.1)

where hx : (a; —¢i,a;+¢;) = (a;—&;, a;+¢;) x {0} is a diffeomorphism and sgn(k4 (X)) =
sgn(k+(Xp)). As before, we can assume that hx(z) = (a; + (x — a;) + Oz2(x — a;),0).
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Since p; is an invisible fold point of Yj, we have that Y has a unique fold point
pY = (a),0) in a neighborhood of p;, for every Z = (X,Y) € V. Hence, from (2.3.6) the
involution p) associated to Y is given by

hy' (pi (hy(2))) = ai = (=] ) + Oa(w — af ),

where hy : (a; — &;,a; + ¢;) — (a; — €;,a; + €;) x {0} is a diffeomorphism such that
hy(z) = (@) +1(Y)(x —a)) + Oy(x —a}),0) and (V) > 0.

Now, from the transfer functions 7;"* : 0;(Z) — 7,"°, restricted to o}(Z) U
o7 (X), are given by T = TX and T{* = T o p!'. Therefore, taking o;(Z) = h'(p)), we

get

TP (Z2)(hx(x)) = A" (2) + k(X)) (@ — @) + Os(z — ay),

and

TH(Z)(hx(2)) = A (2) + kui(X) (@ = 200(Z) + a; + Os(x — ai(2)))”
‘f‘Og(x — 20[1(2) + a; —+ OQ(ZL’ — OéZ(Z))),

where Ay (Z) = M\ (Z), NJ'(Z) = Mg (Z), kus(X) = ky(X), kei(X) = k_(X), and
a;(Zy) = a;.

Notice that, if Z = (X,Y) € V, then X has a visible fold point at (a;,0) and Y has
an invisible fold point at hx(ca;(Z)) = pY. In this case, the domain ¢?(Z) No; (X) of the
transfer functions 7;7"(Z) is given by

(ai — &4, 0 (0;,0)], @(2) < a,

0i(Z)No; (X) = {

(a; — €, a4), a;(Z) > a,,
see Figure [2.28|
& I\/‘/ l\/‘/
\\ "'""’j’,//4 / N> /
a(Z) <0 a(Z)=0 a(Z) >0

Figure 2.28: Unfolding of a visible-invisible fold-fold singularity.

Thus, for each Z € V, we have characterized the maps T;“(Z) in the domain 0;(2)
under the parameterization hy. Since the transversal section 7, is connected to 7 via
a diffeomorphism D;(Z), we obtain

[Di-1(2)] 7" 0 T (Z2)(hx (2)) = &-1(Z) + diea(Z)(x — a;)* + Os(2 — ay), (2.6.2)
where &_1(Zo) = ¢* ,, and sgn(d;_1(Z)) = sgn(di_1(Zy)).
As in the visible-visible case, the parameter «;(Z) locally unfolds the fold-fold singu-
larity p;.
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2.6.2 X-Polycycles having a unique fold-fold singularity

We characterize the nonsmooth vector fields Z, = (Xo,Yy) € Q" which admit a X-
polycycle I'y having a unique singularity p; of fold-fold type. So, consider a coordinate
system (z,y) such that z(p;) = 0, y(p1) = 0, and h(z,y) = y in a neighborhoods of p;.
Consider the following sets of hypotheses:

(VV-A):  — (0,0) is a visible-visible fold-fold singularity of Zp;
— 1 0 Xo(0,0) > 0 and m o ¥5(0,0) < 0;
— WZ¥(0,0) reaches 3 transversally at p;
— W™(0,0) reaches ¥ transversally at g;

— p and q are connected by regular orbit fo Zy;

(VV-B):  — (0,0) is a visible-visible fold-fold singularity of Zy;
— the trajectory of Zy through (0, 0) crosses ¥ transversally n—times at gy, - -, ¢y,
satisfying:
— if n =0, then I'y is a hyperbolic limit cycle of Xj;
— if n # 0, then, for each i = 1,...,n, there exists ¢; > 0 such that
0z, (ti; ¢i) = Giv1, where g1 = (0,0). Moreover, [yNX = {q1,...,¢s,(0,0)}.

(VI):  — (0,0) is a visible fold point of X and an invisible fold point of Yp;
— m 0 X0(0,0) > 0, and 7 0 Y;(0,0) > 0;
— the trajectory of Z; through (0, 0) crosses X transversally n—times at gy, - - -, ¢,
satisfying:
- if n =0, then I'y is a hyperbolic limit cycle of Xj;
- if n # 0, then, for each ¢ = 1,...,n, there exists ¢; > 0 such that
0z, (ti; ¢;) = Giv1, where g, 1 = (0,0). Moreover, [yN% = {q1, ..., ¢, (0,0)}.

Notice that the analysis remains similar if we change the roles of Xy and Y, and the
orientation of the orbits. Some examples of this kind of Y-polycycle are presented in
Figure [2.29

It is worthwhile to emphasize that the case (VV-A) has been mentioned only for
completeness, since the complete description of the bifurcation diagram in this case has
been provided in [79]. The case (VV-B) will be avoided since it can be easily obtained by
combining grazing bifurcation and visible-visible fold-fold bifurcation [65].

In what follows, we consider Filippov systems satisfying (VI). For simplicity, we assume
that n = 0, nevertheless, we stress that similar results can be obtained for Y-polycycles
satisfying (VI) with n > 0.

From (2.3.6)), the involution p associated with the smooth vector field Yy at (0,0) is
given by

p(x) = —x + Ox(x),

for  small enough.

Remark 2.6.1. Observe that, fixing a system of coordinates (x,y), the first derivative of
p does not depend on the vector field Yy. It is an intrinsic property of an invisible 2n-order

contact point (see Section .
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\j < e
(a) (b) ()
)

AVA RvaN
L N N

(d) (e ()

Figure 2.29: Examples of ¥-polycycles satisfying (VV — A) (a), (VV — B) (b), and (V)
with n =0 (¢), n =2 (d,e) and n =4 (f).

Consider two local transversal sections 7° and 7" to X, at ¢° € W3(0,0) and ¢* €
WZ(0,0), which are sufficiently near to (0,0). Since I'y does not have other singularities
and is transversal to ¥ up to (0,0), the first return map Py : 7% — 7%, given by the flow
of Zy, is a piecewise diffeomorphism for which Py(py) = po. Now, we show that Py is, in
fact, a diffeomorphism in a neighborhood of py.

Lemma 2.6.2. Let Zy = (X, Yy) be a nonsmooth vector field which admits a X-polycycle
Lo satisfying (VI) for n = 0. Then, the first return map defined around Ty is a local
diffeomorphism.

Proof. Let 7° and 7 be the two local transversal sections defined above and let Py be the
first return map of Zy, defined in a neighborhood of ¢* in 7. Since (0,0) is the unique
Y-singularity of Z, in Iy, Py is written as Py(x) = EoD(Zy)(x), where D(Zy) : 7% — 7° is
the diffeomorphism induced by the flow of Xy and E is the piecewise C" function defined
by
©x,(t(q); 9); if ¢ > ¢°,
E(q) =1 4" if ¢ =g,
T“(Z) o (TX°)"N(q), ifq<¢’,

where t(q) > 0 is the flying time from 7° to 7%, T"%(Z)) is the transfer function associated
with Z, corresponding to the unstable invariant manifold of (0, 0) and 7-X° is the transition
map of X, with respect to the stable invariant manifold of (0,0) (see Figure [2.30). It is
sufficient to prove that E is a local diffeomorphism around ¢°.

Now, recall that T%(Zy) = p*® o T}°, where T is the transition map of X, with
respect to the unstable invariant manifold of (0,0) and p*® is the involution associated
with Y at the invisible fold point (0, 0).

As we have seen, the derivative of p¥ at (0,0) does not depend on Yy, it only depends
on the fact that (0,0) is an invisible fold point. In particular, if Yy = X,, we have
that 7%(Zo) o (T™°)~(q) = ¢x,(t(¢); q), which is a local diffeomorphism from 7° to 7.
Therefore, it follows that the left lateral derivative of E at ¢® is equal to the right lateral
derivative of E, and they coincide with the derivative ¢x,(t(q);q) at ¢°. Hence E is
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d
derivative at ¢° and E'(qs) = 2o PXo (t(9); @) =ys- Since px,(t(q); ¢) is a diffeomorphism
q

at ¢°, we conclude that FE is a local diffeomorphism around ¢°. O

Figure 2.30: First return map Pj.

Remark 2.6.3. Notice that, if I'g is a hyperbolic limit cycle of Xo then a hyperbolic
cycle persists under small perturbations of Zy that do not break the fold-fold singularity.
The persistent hyperbolic cycle can be either a crossing limit cycle or a limit cycle of Xg
contained in M. These cases will be distinguished latter.

Now, following Section [2.6.1], we have that the displacement function associated with
Z = (X,Y) € V near Zj in the domain ¢*(Z) N o~ (X) is written as

A(Z)(hx(z)) = T*(Z)(hx(x)) = [D(Z2)] o T*(Z)(hx(x))
= MN(2)+K(2)y* —eZ) — d(Z)a® + Os(y) + Os(x),
where hx : (—¢,e) = (—¢,¢) x {0} is a diffeomorphism such that hx(z) = (x4 Os(x),0),
with sgn(k(Z)) = sgn(k(Zy)), sgn(d(Z)) = sgn(d(Zy)). The new variable y is given by

y(l’) =T — 201(2) + (92<x7 O[(Z)),
and a(Zy) = 0. Also, we notice that X has a visible fold point at (0,0) and Y has an

invisible fold point at hx(a(Z)). From assumption (V'I), k(Zy) > 0 and d(Z,) > 0.
Taking

p(Z2) = Xo(2) —c(Z), and n(Z) = (a(2),5(2)), (2.6.3)
the displacement function A(Z)(hx(x)) writes
A(Z)(hx(x)) = B(Z) + K(2)y* = d(Z)z* + Os(y) + Os(x), (2.6.4)
and
y=1z—2a(2)+ Oz, a(2)). (2.6.5)

Notice that 7 : V — V is a surjective function onto a small neighborhood V' of (0, 0)
satisfying a(Zy) = B(Zy) = 0. In this case, the auxiliary crossing system (2.5.3)) is reduced
to the system

B(Z) + k(Z)y? — d(Z)x* + Os(y) + Os(x) =0,
y=1z—2a(2)+ Oy(z,a(2)), (2.6.6)
hx(z) € (=& &(a(2))],
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where & satisfies {(a(Z2)) = a(Z)—|a(Z)|[+O02(a(Z)) and £(a(Z)) = 0, for every a(Z) > 0.
The parameter [ controls the existence of connections and ¥-polycycles while o unfolds
the fold-fold singularity (see Figure [2.31)).

Figure 2.31: Illustration of the parameters a and f.

From the hyperbolicity of the ¥-polycycle, we deduce the following property:

Lemma 2.6.4. Consider the notation above. If Zy = (Xo,Yy) has a X-polycycle Ty
satisfying (V1) which is a hyperbolic limit cycle of Xo, then d(Zy) # k(Zy). In addition:
(1) If Ty is attracting, then x(Zy) — J(ZO) < 0;
(i1) If Ty is repelling, then k(Zo) — d(Zy) > 0.
Proof. Let Py : 7™ — 7" be the first return map of Z at I'y and notice that, if z € 7¢,
then 730(23) = TU(ZQ) @) ([D(ZQ)]il o Ts(Zo))il, with )\0(Z0) = E(Zo) and &(Zo) = 0. From
[79], we have that ([D(Zy)]~! o T*(Zy))~" is given by

(DZ) o T2 ) = =\ *E 4 O1(a — (),

for each = € [¢(Zy),¢(Zy) + 6) and some ¢ > 0 sufficiently small.
Using the expansions of T%(Z,), we have that

— & ), v
Po(x) = &(Zo) + 3 Z0) (x = &(Z0)) + Oz — (%)),
for each x € [¢(Zy),¢(Zy) + ). Hence,

Po(x) = Po(c(Zo))  K(Zo)

lim — = = .
z—&(Zo)* x —&(Zp) d(Zy)
The result follows directly from this expression. O]

Now, we reduce V in such a way that, for each Z € V, either x(Z) —d(Z) < 0if I'g is
attracting or x(Z) — d(Z) > 0 if Iy is repelling.
Using the expansion of hx, we have that there exists a C" function ¢ such that hx(z) €

(—&,&(a(2))] if, and only if, x € (—¢,((a(Z))], where
((a(2)) = a(Z) — |a(Z2)|+ 05 (a(2)). (2.6.7)

Following similar technicalities used in [79], we obtain the next theorem.
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Theorem E. Let Zy be a nonsmooth vector field having a X-polycycle Iy satisfying the hy-
pothesis (VI) and assume that Ty is an attracting hyperbolic limit cycle of Xo. Therefore,
there exists an annulus Ag such that for each annulus A, with 'y C A C Ay, there exist
neighborhoods V C Q" of Zy and V' C R? of (0,0), a surjectwe functzon (o, 8): V=V,
with (o, B)(Zy) = (0,0), and three smooth functions By, B2, B3 : V — (—0,0), for which the
following statements hold inside A.

1. If either 5(Z) < pi(Z) and a(Z) > 0 or B(Z) < B3(Z) and a(Z) < 0, then Z
admits no crossing limit cycles.

2. If B(Z) = B1(Z) and a(Z) > 0, then Z has a semi-stable crossing limit cycle, which
is repelling from inside and attracting from outside;

3. If 1(Z) < B(Z) < B2(Z) and a(Z) > 0, then Z has two nested hyperbolic crossing

limit cycles such that the outer one is attracting and the inner one is repelling.

4. If B(Z) = B2(Z) and a(Z) > 0, then Z has a hyperbolic repelling crossing limit
cycle and a 3-polycycle passing through a unique reqular-fold singularity (0,0) (with
Xh(0,0)=0).

5. If Bo(Z) < B(Z) and a(Z) > 0 or if B(Z) > p3(Z) and a(Z) < 0, then Z has a

unique crossing limit cycle in Vy, which is hyperbolic attracting.

6. If B(Z) = p3(Z) and a(Z) < 0, then Z has E-polycycle passing through a unique
regular-fold singularity (0,0) (with Xh(0,0) = 0) and admits no crossing limit cy-
cles.

In addition,

81(2) maw + 04(a(2)), BaZ) = ~AK(Z)al2)* + Oula(2))

and

B5(Z) = 4d(Z)ol(Z)? + Os(a(2)).

Proof. From the construction of the auxiliary crossing system , performed in Section
2.5.1] we get the existence of an annulus Ay around I'y and neighborhoods V, C )" of Z,
and Vo C R? of (0,0), for which the auxiliary crossing system is well defined.

Now, given an annulus A, with I'y C A C Ay, let ¢ > 0 satisfy (—¢,¢) x {0} C A.
Considering ([2.6.4]) and (2.6.5)), the displacement function A(Z) satisfies

A(Z)(hx(2)) = B(Z) + K(Z) (& = 20(2))* = d(Z)a® + Ap(Z,a(Z), @),

for x € (—¢,¢), where Ag(Z,a(Z),z) = Osz(x,a(Z)). Define the auxiliary function F :
X (—8,0)? x (—e,e) — R, given by

F(Z,o,B,2) = B+ k(Z)(x —20)* —d(Z2)x* + Ap(Z, a, 1),

and notice that F(Z,a(Z), 5(Z),x) = A(Z)(hx(z)).
Throughout this proof, in order to simplify the notation, the parameters § > 0 and
e > 0 will be taken smaller (if necessary) with no distinction.
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Claim: There exist a neighborhood V C V), of Z; and functions zgy : VX (—0,0) — (—¢,¢)
and Bsx : V X (=0,0) — (=9, 9) such that 0,F(Z,«, 5,2) = F(Z,«, 5,x) = 0 if, and only
if, B = Psn(Z, ) and x = zgn(Z, ). In addition

B 2k(7) N N
I’SN(Z, Oz) = —/{(Z) _ (Z(Z) + 02( ),
e (2)d(2)
k(Z)d(Z)
Bsn(Z, o) = "2 —d2)" + O3(a)

In fact, notice that

O F(Z, e, B,2) = 2(k(Z) + d(Z))x — 4k(Z)a + Oz(z, ).

Therefore, 0,F(Z,0,5,0) = 0, for every Z,5 € Vy x (—0,9), and 92F(Zy,0,0,0) =
2(k(Zy) — d(Zy)) # 0. It follows from the Implicit Function Theorem for Banach Spaces
that there exist a neighborhood V C V, of Z and a function Zgy : V X (—6,8)? — R such
that 0,F(Z,a, f,2) = 0 if , and only if, z = zsx(Z, o, §). In addition,

2r(2)

Tsn(Z,a, 8) = m@ + Os(a).

Now, consider the function F(Z, a, 8) = F(Z,a, B, Tsn(Z, a, 3)). Notice that

w(2)d27)

N

Os(a).

Again, reducing V if necessary, it follows from the Implicit Function Theorem that there
exists a function fgx : V X (—4,d) — (—6,0) such that F(Z,«, 5) = 0 if, and only if, § =
Psn(Z, ). Hence, the proof of Claim 1 follows by taking xsn(Z, o) = Zsn(Z, «, Bsn(Z, @)).

Now, in order to find all the zeroes of F, we use the curve Sgy provided in Claim 1 .
Define
P = {(Z,Oé,ﬁ) €V x (_5a 6)2a /8 2 BSN(Za Oé)}

Claim: There exist functions x4 : P — (—¢,¢) such that F(Z, «, 5,z) = 0 if, and only
if, t=2,(Z,a,p) or v = x_(Z,«, 3). In addition

m-i-(ZaaaﬁSN(Za CV)) = 'CE—(ZaaaﬁSN(Za Oé)) = $SN(Z> Oé))

and

_ 22 | BB o B~ B
) = ) iJ /{(Z)—J(Z)+02<’ 7 o).

where fsn = fsn(Z, ).

Recall that the remainder term Ay in the function F does not depend on . Also, de-
noting fsn = Bsn(Z, ) and xsn = wsn(Z, @), we have F(Z, Bsn, o, xsx) = 0o F (Z, Bsn, @, Tsx) =
0 and O2F(Z, Bsn, o, wsn) = 2(k(Z) — d(Z)) + O(«) # 0. Thus, F writes

.F(Z, a, 3, JI) = — PBsn + (K(Z) — J(Z) -+ O(a)) (Z)E - xSN)Q + 03(1’ — :L’SN).
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Now, define
G(Z 0, B,u) = B — Bsx + (K(Z) — d(Z) + O(@)) u + Osa(u)

in such way that F(Z,a,8,r) = 0 if, and only if, G(Z,a, B,u) = 0 and u = (v — TN )2
Since G(Z, a, fsn,0) = 0 and 0,G(Z,0,0,0) = k(Zy) — d(Zy) # 0, it follows from the
Implicit Function Theorem that there exists a function ug : V x (=6,0)* x (—¢,¢) such

that G(Z, v, B,u) = 0 if, and only if, u = ug(Z, a, 8). In addition

B — Bs

R?ﬁ;ﬁ5+0ﬂM5—&mxﬁ—&m3

UO<Z,04,6> ==

Since ug(Z,a, f) > 0 if, and only if, § > fsn, the proof Claim 2 follows by taking
I:I:(Z7Oé7ﬁ) = xSN(Za Oé) + \/ UO(Z,()[7B).

From Claim 2, we have found all the zeroes of F in a neighborhood of (Z,,0,0,0).
Now, we must analyze whether 1 (Z, o, ) € (—¢,((a)], where ( is given by .

First, assume that o« > 0, hence ((a) = Oz(a). In this case, since k(Z) — d(Z) > 0,
Kk(Z),d(Z) > 0, it follows that

__2(2) _|__B—Bs N
x_<ZJOé7/6)_C(Oé>_K(Z)_dV(Z) \l H(Z)—J(Z)+O2< ’ 5 ﬁSN><07

for every § > PBsn. Thus, z_(Z,«, ) € int(c(Z)) corresponds to a crossing limit cycle.
Also, since 0, F (Z, a, f,x_(Z,a, B)) < 0 for B > [y, it follows that the crossing limit cycle
corresponding to z_ is hyperbolic attracting.

Notice that

B 2r(2) N N
x+(Z’a7B)_C(a)_M+/{(Z)—J(Z) +02( nu)’
where
| B8«
= J "2 _d2) (2.6.8)

Define H(Z, o, p) := x4 (Z, o, ) — ((a). Applying the Implicit Function Theorem to H,
we obtain the existence of a function pf : V x (—4,8) — R such that H(Z,a, u) = 0 if,
and only if, u = ud (Z,a). Also,

2k(Z)

pd (Z, ) = —m(x + Oy(ar) > 0.

Thus, taking (Z,a) = fsx(Z, ) = —(k(Z) — d(2))(ud (Z, )2, we obtain that
BH(Z,a) = —4k(Z)a* + Os(a).
Moreover, x, (Z, a, ) € 0o(Z) if, and only if, 5 = f7(Z, «). In this case, 2, (Z, o, 3)
corresponds to a 3-polycycle passing through the visible point (0,0) of X. On the other

hand, since H is increasing in the variable p, =, (Z,«, ) € int(c(Z)) if, and only if,
Bsn(Z,a) < B < BT (Z,«). In this case, x4 (Z, a, ) corresponds to a crossing limit cycle
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of Z. Also, 0,F(Z,a, B, (Z,a, 3)) > 0 for B > Pgn, then the crossing limit cycle (resp.
Y-polycycle) corresponding to z is hyperbolic repelling (resp. C-unstable).

If 3 = Bsn(Z,a), then zgn(Z, ) — ((a) > 0 (with equality if, and only if, o =
0), and thus zgn(Z,a) corresponds to a crossing limit cycle. Since x_(Z, «, fsn) =
ry(Z,a,Psn) = xsn(Z,a), and B > fsy v (Z,, B) < x4 (Z, a, B) corresponds, respec-
tively, to a repelling and an attracting crossing limit cycle, it follows that zgx corresponds
to a semi-stable crossing limit cycle which is repelling from inside and attracting from
outside.

Now, assume that o < 0. In this case ((a) = 2a + Oz(a) and

_2d(2) N B —DBsn N —
ij(Zﬂﬁ)_C(a)_—H(Z)—J(Z) -I—J m(Z)—J(Z)+02( /B 5SN>>07

for every 8 > fBsn(Z, ). It means that x(Z, «, 8) ¢ o(Z) for every a < 0 and 3 > [sn.
For the other zero, we have that

2d(Z)
r_(Z,a,p)—((a)=—pup+ ——~—a+ 0Oz (a, ),
( B) —((a) H W(2) —d(Z) 2 (cv, 1)
where p is given by (2.6.8). Similarly, we obtain that there exists a function 5~(Z, «)
satisfying B
B (Z,a) = 4d(Z)a* + Os(a).

In this case, z_(Z,«a, ) € 0o(Z) if, and only if, 5 = f7(Z,«) which corresponds to a
Y-polycycle of Z passing through the origin. Also, x_(Z,«, 5) € int(o(Z)) if, and only
if, fsn(Z, ) < B < B~(Z, «), which corresponds to a hyperbolic attracting crossing limit
cycle of Z.

The proof follows by taking 51(Z) = Bsn(Z, a(Z)), Po(Z) = BT (Z,a(Z)) and p5(Z) =
5(7,0(2)). a

In the remainder of this section, in order to complete the bifurcation diagram of Z,
satisfying the hypotheses of Theorem [E], we study the existence of limit cycles of Z € V
passing through the section o"(Z) (see Proposition as well as the sliding phenomena
(see Propositions [2.6.6| and [2.6.7)).

Proposition 2.6.5. Let Z, = (Xo,Yy) be a nonsmooth vector field in the setting of
Theorem [H. Therefore, for an annulus A, with Ty C A C Ay, the following statements
hold inside A.

1. If B(Z) < 0, then Z admits a unique limit cycle, which is hyperbolic attracting limit
cycle of X in M.

2. If B(Z) =0, then Z admits a unique S-polycycle passing through (0,0), which is a
hyperbolic attracting limit cycle of X in M.

8. If B(Z) > 0, then Z has no limit cycles contained in M+ or M~.

Proof. From the study on the tangential section already done, we have that 7%(Z)(0,0) =
Mo(Z) and [D(Z)]7* o T#(Z)(0,0) = ¢(Z), which means that

B(2) =T"(2)(0,0) — [D(Z)] " o T*(Z)(0, 0).
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Now, since I'y is a hyperbolic attracting limit cycle of Xy, we have that its associated
first return map Py’ defined in the section {0} X (—¢, ) has a unique attractor hyperbolic
fixed point (0, px). So, (0,px) corresponds to a hyperbolic attracting limit cycle of X in
M if, and only if, px > 0. Also, px = 0if, and only if, X has a hyperbolic attracting limit
cycle tangent to 3 at the origin. Finally, the result follows by noticing that px3(Z) < 0,
and px = 0 if, and only if, 5(Z) = 0. ]

Now we proceed with the analysis of the sliding dynamics. In this present setting,
(0,0) is a visible-invisible fold-fold singularity of Zy and for each Z = (X,Y") € V we have
that X has a visible fold point at (0,0) and Y has an invisible fold point at hx(a(Z)) of Y.
Recall that the parameter a(Z) locally unfolds the visible-invisible fold-fold singularity.
For o # 0, there exists either a stable sliding region or an unstable sliding region between
the two regular-fold singularities, (0,0) and hx(a(Z)). In both cases, the sliding vector
field F; has no pseudo-equilibria. Moreover, 71 o Fiz(x,0) > 0 for all (x,0) between (0, 0)

and hy(a(Z)) (see Figure [2.32)).

VAL NS

a(Z) <0 a(Z)=0 alZ) >0

Figure 2.32: Bifurcation diagram of the visible-invisible fold-fold singularity.

Proposition 2.6.6. Let Z, = (Xo,Yy) be a nonsmooth vector field in the setting of
Theorem [E. Therefore, for an annulus A, with Ty C A C Ay, there exists a C" function
By :V — R such that, for «(Z) > 0 and p2(Z) < (Z) < 0, the following statements hold
inside A.

1. If B(Z) < Bu(Z), then Z has a sliding cycle through (0,0) for which the trajectory
through (0,0) crosses ¥.¢ once before it reaches ¥2° from M~

2. ]f B(Z) = Bu(Z), then Z has a sliding cycle that contains py = (0,0) and py =
hx(a(Z)) for which the arc-orbit popy |z is contained in M™;

3. If B(Z) > Pu(Z), then Z has a sliding cycle through (0,0) for which the trajectory
through (0,0) reaches X% from M™ without crossing X°.

In addition,
Bu(Z) = —k(Z)a(Z)? + Os(a(2)).

Proof. For o > 0, a connection of Z = (X,Y’) between py and py is characterized as the
zero of the function

Si(Z,a,B) = T (hx(a)) = [D(Z)] ™ 0 T*(2)(0,0),

where T is the transition map of X given by (2.6.1]) (with a; = 0) and [D(Z)] "' o T%(Z)
is given by ([2.6.2)). Thus, it follows from (2.6.3)) that

Si(Z,a,B) = M(Z) +K(Z)a? + Os(a) — &(Z)
= B+ kr(Z)a®+ Oy(a).
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From the Implicit Function Theorem, there exists a function 5} (Z, &) such that S, (Z, «, )
0 if, and only if, § = 85 (Z, «).

Notice that S, (Z,a, ) < 0 is equivalent to § < B (Z,«). In this case, since 5 >
Pa(a), the trajectory through (0,0) crosses ¥¢ once and reaches ¥* from M~. Then it
slides to (0,0).

Finally, S.(Z,«,8) > 0 is equivalent to 0 > S > [f(Z,«). In this case, the
trajectory through (0,0) reaches 3* directly from M™. The proof follows by taking
Pa(2) = B3 (Z,a(2)). O

Proposition 2.6.7. Let Z, = (Xo,Yo) be a nonsmooth vector field in the setting of
Theorem [E. Therefore, for an annulus A, with Ty C A C Ay, there exists a C" function
Bs 1V — R such that, for a(Z) < 0 and 0 < B(Z) < p3(Z), the following statements hold
inside A.

1. If0 < B(Z) < Bs(Z
trajectory through (

), then Z has a sliding cycle through (0,0) for which the negative
0,0) reaches 3° from M™ without crossing ¥¢;

2. If B(Z) = Ps(Z), then Z has a sliding cycle containing po = (0,0) and py =
hx(a(Z)) for which the arc-orbit pypo|z is contained in M™;

3. If Bs(Z) < B(Z), then Z has a sliding cycle through (0,0) for which the negative
trajectory through (0,0) reaches ¥° from M~ after it crosses 3¢ once.

In addition, B
B5(2) = d(Z)a(Z)? + Os(a(Z)).

Proof. For oo < 0, a connection of Z = (X,Y’) between py and py is characterized as the
zero of the function

S-(Z,0,8) =T¥(0,0) = [D(Z)] " o T*(Z)(hx(a)),

where T73* is the transition map of X given by (2.6.1)) (with a; = 0) and [D(Z)]™ o T%(2)
is given by (2.6.2)). Thus, it follows from (2.6.3]) that

S (Z,o,B) = N(Z)—EZ)—d(Z)o? + Oy(a)

= B—d(Z)a*+ Oq(a).
Following the same steps of the proof of Proposition we obtain the result. n

A complete description of the bifurcation diagram of a nonsmooth vector field Z,
satisfying the hypotheses of Theorem [E]is achieved by combining Theorem [E| Propositions
2.6.5] and [2.6.7, and noticing that Z has a visible-invisible fold-fold singularity at
the origin if, and only if, a(Z) = 0. This bifurcation diagram is illustrated in Figure 2.5

Remark 2.6.8. Suppose that Zy has a X-polycycle Ty satisfying conditions (VI) with
n > 1. If the first return map Py defined around Iy has a hyperbolic fixed point, then
a similar analysis can be performed in order to describe the bifurcation diagram of the
unfolding of T'y.
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2.7 Conclusion and Further Directions

In this work, we provided a method to study the unfolding of Y-polycycles in pla-
nar Filippov systems under certain hypotheses, and we have used such a mechanism to
completely describe the bifurcation diagrams of three different types of X-polycycles.

Despite the generality of Y-polycycles covered by the mentioned methodology, there
are some classes of Y-polycycles for which the Method of Displacement Functions does
not detect all bifurcating phenomena in their unfoldings. In fact, such X-polycycles seems
to exhibit a behavior much more complicated than the ones considered herein. Roughly
speaking, if global connections appear in the local unfolding of a Y-singularity, which is
contained in a X-polycycle I', then such a mechanism does not detect all the crossing
dynamics in the unfolding of I'. Nevertheless, it is worth mentioning that, even in these
cases, our method detects all the bifurcating crossing limit cycles with the same topological
type of the Y-polycycle.

In light of this, an accurate description of local bifurcations of X-singularities of
tangential-tangential type is needed. In particular, a detailed analysis of the unfold-
ing of a cusp-cusp singularity is very welcome, since >-polycycles through a visible-visible
fold-fold singularity bifurcate from such a singularity. The knowledge of the local struc-
ture of degenerated Y-singularities might lead us to the comprehension of -polycycles in
a most general scenario.

In addition, Y-polycycles passing through -singularities of Z = (X,Y) € Q" involving
equilibria of X or Y should be considered. As an example, we mention the homoclinic-like
connection through a boundary-saddle singularity studied in [4]. We emphasize that the
analysis of the problem becomes harder in this case due to the lack of normal forms (via
change of coordinates) for such a type of Y-singularity.
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Chapter

Generic Singularities of 3D Filippov Systems

ig[fﬁ HE aim of this chapter is to provide a discussion on current directions of research in-
% & volving typical singularities of 3D nonsmooth vector fields. A brief survey of known
results is also presented.

We describe the dynamical features of a fold-fold singularity in its most basic form
and we give a complete and detailed proof of its local structural stability (or instability).
In addition, classes of all topological types of a fold-fold singularity are intrinsically char-
acterized. Such proof essentially follows from some lines laid out by Colombo, Garcia,
Jeffrey, Teixeira and others and it offers a rigorous mathematical treatment under clear
and crisp assumptions and solid arguments.

One should to highlight that the geometric-topological methods employed lead us to
the mathematical understanding of the dynamics around a T-singularity. This approach
lends itself to applications in generic bifurcation theory. It is worth saying that such
subject is still poorly understood in higher dimension.

3.1 Introduction

Certain aspects of the theory of nonsmooth vector fields (piecewise smooth vector
fields) has been mainly motivated by the study of vector fields near the boundary of a
manifold. Concerning this topic, many authors provided results and techniques which
have been very useful in piecewise smooth systems. It is worthwhile to cite in the 2-
dimensional case works from Andronov et al., Peixoto, Teixeira (see [5, 83, 97]) and
in higher dimensions the works from Sotomayor and Teixeira, Vishik and Percell (see
[95], 84, 104]). In particular, in [I04] (1972), Vishik provided a classification of generic
points lying in the boundary of a manifold, using techniques from Theory of Singularities.

Many papers have contributed to the analysis and generic classification of singularities
of 2D Filippov systems (Kuznetsov et al., Guardia et al., Kozlova among others, see
[55] [63], 65]). Specifically with respect to the fold-fold singularity we point Ekeland (see
[34]) and Teixeira (see [98]). Regarding the n-dimensional problem, we point out the work
from Colombo and Jeffrey (see [26]) which analyzes an n-dimensional family having a two-
fold singularity, nevertheless the generic classification for n > 2 is much more complicated
and still poorly understood.

As far as we know, the first approach where a generic 3D fold-fold singularity was
studied was offered by Teixeira in [99] (1981) where one finds a discussion on some features
of the first return mapping defined around this singularity. Maybe due to this fact, the
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invisible fold-fold singularity is known as T-singularity.

In [39] (1988), Filippov provided a mathematical formalization of the theory of piece-
wise smooth vector fields. In the last chapter of [39], Filippov studied generic singularities
in 3D piecewise smooth systems, and a systematic mathematical analysis of the behav-
ior around a fold-fold singularity was officially arisen. However, most of proofs were only
roughly sketched and would require a better explanation and interpretation. In particular,
the proofs of the results concerning the fold-fold singularity were obscure and unfinished.
Many works appeared lately trying to explain it (see [24] 25 38, [101]).

In [101], Teixeira established necessary conditions for the structural stability of the
fold-fold singularity and he proved that it is not a generic property. Nevertheless, the case
of the invisible fold-fold point having a hyperbolic first return map was not understood.
He also provided results concerning asymptotic stability.

In [24], 25 B8], Jeffrey et al. also studied the problem of the classification of the
structural stability around a fold-fold singularity. More specifically, in [38], the authors
studied the behavior of a 2-parameter semi-linear model Z, g having a T-singularity at
Zo,0- By studying the first return map explicitly, they have found countably many curves
v, in a region of the parameter space, where the topological type [ of a system in
satisfies By # §; provided k # .

Guided by these results, we show that in the region of the parameter space considered
in [38], a general Filippov system Z having a T-singularity at p always has a first return
map with complex eigenvalues. It brings several consequences to the behavior of Z around
p, in particular, it produces a foliation of this region in the parameter space depending
on the argument of the eigenvalues of Z such that, two systems in different leaves are
not topologically equivalent near the T-singularity, which means that there is no class of
stability in this region of parameters.

A 3D fold-fold singularity is an intriguing phenomenon that has no counterparts in
smooth systems, and the complete characterization of the local structural stability of a
3D nonsmooth system around an elliptic fold-fold singularity has been an open problem
over the last 30 years. In this work, we believe that all mathematical existing gaps were
filled up and the precise statement of results and proofs were well established.

It is worth mentioning that the methods and techniques used in this chapter provide a
solution from a geometric-topological point of view. In addition, we present a generic and
qualitative characterization of a fold-fold singularity, in order to clarify any fact concerning
the generality of the results.

3.2 Setting the Problem

In what follows we summarize a rough overall description of the basic concepts and
results in order to set the problem.

Let M be a connected bounded region of R?, let f : M — R be a smooth function
having 0 as a regular value and assume that ¥ = f~1(0) is compact. Throughout this
chapter, we consider germs of piecewise smooth vector fields at X

Remark 3.2.1. Notice that, in this chapter, Q" stands for the set of germs of tridimen-
stonal piecewise smooth vector fields at 3.
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3.2.1 >-Equivalence
An orbital equivalence relation is defined in 2" as follows.

Definition 3.2.2. Let Zy, Z € Q" be two germs of nonsmooth vector fields. We say that
Zy is topologically equivalent to Z at p if there exist neighborhoods U and V' of p in
M and an order-preserving homeomorphism h : U — V' such that it carries orbits of Z
onto orbits of Z, and it preserves ¥, i.e. h(XNU)=XNV.

The concept of local structural stability at a point p € ¥ is defined in the natural way.

Definition 3.2.3. Z, € )" is said to be Y-locally structurally stable if Zy is locally
structurally stable at p, for each p € 3.

Denote the space of germs of monsmooth vector fields Z € )" which are ¥-locally
structurally stable by Y.

3.2.2 Reversible mappings

We introduce concepts which will be useful throughout this chapter. More details can
be found in |73, 100].

Definition 3.2.4. A germ of an involution at 0 is a C" germ of a diffeomorphism
¢ : R? = R? such that (0) = 0, ¢*(z,y) = (z,y) and det[©’(0,0)] = —1.

The set of all germs of involutions at 0 is denoted by I" and it is endowed with the C”
topology. Consider W" = I" x I" endowed with the product topology.

Definition 3.2.5. Let ¢ = (o, 1), ¥ = (o,11) € W™ be two pairs of involutions at
0. Then ¢ and 1 are said to be topologically equivalent at 0 if there exists a germ
of a homeomorphism h : (R?,0) — (R?,0) which satisfies hpg = oh and hpy = P1h,
simultaneously.

The local structural stability of a pair of involutions in W" is defined in the natural
way. The proof of the next theorem can be found in [99] as well as more details about
involutions.

Theorem 3.2.6. A pair of involutions (p,v) is locally and simultaneous structurally
stable at 0 if and only if 0 is a hyperbolic fized point of the composition ¢ o). Moreover,
the structural stability in the space of pairs of involutions is not a generic property.

3.3 Generic Singularities

Recall that, in a PSVF, if only one component of Z = (X,Y") is considered, say X,
then it is a germ of C” vector field defined on a manifold with boundary M+. Therefore,
the theory of vector fields on manifolds with boundary (see [83, 05, 07, 104]) is used to
distinguish some points of >.

Denote the space of germs of C" vector fields defined on the manifold with boundary
N by x"(N) (r > 1). If N is not specified, then consider N = M+ or N = M~.

Definition 3.3.1. A point p € ¥ is said to be a fold point of X € x"(M™T) if X f(p) =0
and X%f(p) # 0. If X2f(p) > 0 (resp. X?f(p) < 0), then p is a visible fold (resp.
invisible fold).
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Remark 3.3.2. If X € x"(M~), the visibility condition is switched.

Definition 3.3.3. A point p € X is said to be a cusp of X € X" (N) if X f(p) = X2f(p) =
0, X3f(p) # 0 and {df (p), dX f(p), dX?*f(p)} is a linearly independent set.

Generically, a fold point of X belongs to a local curve of fold points of X with the
same visibility, and cusp points occur as isolated points located at the extreme of curves
of fold points.

Definition 3.3.4. X € \"(N) is said to be simple if either Sx = 0 or Sx is just
composed by fold and cusp points of X. The set of all simple germs of x"(N) will be
denoted by x%.

In [104], S. M. Vishik used tools from Theory of Singularities to obtain sharpen results
on vector fields near the boundary of an n-manifold. In particular, when n = 3, the
following result is stated.

Theorem 3.3.5 (Vishik’s Normal Form). Let X € x%. If p € Sx then there exist a
neighborhood V (p) of p in M, a system of coordinates (x1,x2,x3) at p defined in V(p)
(x;(p) =0, i=1,2,3) and an integer k = k(p), k = 1,2, such that:

1. If p is a fold point, then k =1 and X|v ) is a germ at V(p) N X of the vector field

given by
1 = X,
To =1, (3.3.1)
23 =0.

2. If p is a cusp point, then k =2 and X|y ) is a germ at V(p) N Y of the vector field

given by
T = X,
1:2 = T3, (332)
23 =1.

3. ¥ is given by the equation x1 =0 in V(p).
The set X' is open and dense in x"(N).

Remark 3.3.6. If we perform the change of coordinates y; = x3, ya = 2 — 29, and
y3 = 2x1, then system is carried to the system 11 = 1, 4o = 0, 43 = 5 — ¥o.
Analogously, if we consider the change y, = x9, Yo = 3, and y3 = x1, then 18
carried to yj; = 1, yo = 0, 43 = y1. In both cases, X is given by the equation ys = 0.

In the piecewise smooth context, we consider the following tangential singularities.

Definition 3.3.7. Let Z = (X,Y) € Q. A tangential singularity p € ¥ is said to be
elementary if it satisfies one of the following conditions:

(FR) - Xf(p) = 0, X?f(p) # 0 and Yf(p) # 0 (resp. Xf(p) # 0, Yf(p) = 0 and
Y2f(p) #0). In this case, p is said to be a fold-regular (resp. regular-fold) point

of 2.

(CR) - Xf(p) = 0, X2f(p) = 0, X°f(p) # 0 and Yf(p) # 0 (resp. Xf(p) # 0,
Yf(p) =0, Y2f(p) = 0 and Y>f(p) # 0), and {df(p),dX f(p),dX*f(p)} (resp.
{df (p),dY f(p),dY?%f(p)}) is a linearly independent set. In this case, p is said to be
a cusp-regular (resp. reqular-cusp) point of 3.
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(FF) - If Xf(p) =0, X2f(p) # 0,Y f(p) =0, Y2f(p) # 0 and Sx t Sy at p. In this case,
p is said to be a fold-fold point of 3.

See Figure 3.1

(b-ii)

Figure 3.1: (a) Fold-Regular singularities ((i) visible and (ii) invisible) and (b) Cusp-
Regular singularities ((i) X?f(p) < 0 and (i) X3f(p) > 0).

Definition 3.3.8. Define Zy as the set of all Z € Q" such that each p € ¥ is either a
reqular-reqular point of Z or an elementary tangential singularity of Z.

Remark 3.3.9. An element Z € Zq is referred as an elementary piecewise smooth
vector field.

From Theorem [3.3.5] we derive the following proposition.
Proposition 3.3.10. =, is an open dense set of 2".

The elementary tangential singularities of type (FR) and (CR) determine certain local
behavior of the sliding solutions lying on ¥°, as we can see in the following result proved
in [101].

Lemma 3.3.11. Let Z = (X,Y) € Q" and assume that R is a connected component of
>:%. Then:

1. The sliding vector field Fy is of class C" and it can be smoothly extended beyond the
boundary of R through the normalized sliding vector field F} .

2. If p € OR is a fold point of X and a reqular point of Y, then Fy is transverse to OR
at p.

3. If p € OR is a cusp point of X and a regular point of Y, then Fy has a quadratic
contact with OR at p.

Theorem 3.3.12. Let Z = (X,Y) € Q", then:
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Z is locally structurally stable at a reqular-regular point p € X if and only if p € 3¢ or
p € X% and, in the second case, p is either a reqular point or a hyperbolic singularity
Of FZ .

7 is locally structurally stable at any fold-reqular singularity p € 3.

Z is locally structurally stable at any cusp-reqular singularity p € 3.

The proof of this result can be found in [39] 55].

3.4 Statement of the main results

Define the following subsets of 2":

Y(G): Z € Q" such that each point p € X is either a tangential singularity or a
regular-regular point.

Y(R): Z € Q" such that for each regular-regular point p € ¥ of Z we have either
p € X° or p € X° and, in the second case, p is either a regular point or a hyperbolic
singularity of Flz;

Y(H): Z € Q" such that for each visible fold-fold point p € ¥, the normalized
sliding vector field F has no center manifold in 3.

Y(P): Z € Q" such that for each invisible-visible point p € X, the normalized
sliding vector field F’ is either transient in ¥* or it has a hyperbolic singularity at
p. Moreover, if ¢x is the involution associated to Z then it satisfies:

1. ¢X<Sy) h Sy at D;
2. FY and ¢% F) are transversal at each point of X% N ¢x (X4);

3. ¢x(Sy) h FY in a neighborhood of p.

Y(E): Z € Q" such that for each T-singularity p € 3, the first return map ¢z
associated to Z has a fixed point at p of type saddle with both local invariant
manifolds W7 contained in X¢.

Remark 3.4.1. If Z has a visible-invisible fold-fold singularity at p, then the roles of X
and Y in the condition ¥.(P) are interchanged.

The main result of this chapter s the following theorem.

Theorem F. Z € Q7 is locally structurally stable at a T-singularity p if and only if it
satisfies condition X(E) at p.

The following theorem is proved in [24 [39] and a detailed proof clarifying some obscure
points is presented.

Theorem G. i) Z € Q" is locally structurally stable at a hyperbolic fold-fold singu-

larity p if and only if it satisfies condition %(H) at p.

it) Z € Q" is locally structurally stable at a parabolic fold-fold singularity p if and only

if it satisfies condition X(P) at p.
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Theorem H. ¥; = X(G)NXE(R)NYE(H)NXE(P)NYE(E).
Theorem 1. 3> is not residual in Q".
As a corollary of the characterization Theorem [H] we obtain:

Corollary 3.4.2. i) Xy is an open dense set in X(E). Moreover, X(FE) is maximal
with respect to this property.

it) If Z ¢ ¥(F) then Z has oo-moduli of stability.

In addition, if Z has a T-singularity at p and ¢z has complex eigenvalues, then a
neighborhood V of Z in 2" is foliated by codimension one submanifolds of 2" correspond-
ing to the value of the argument of the eigenvalues of the first return map. Moreover, the
topological type along the corresponding leaf is locally constant.

We conclude that the local behavior around a T-singularity implies in the non-genericity
of g in Q".

3.5 Fold-Fold Singularity

3.5.1 A Normal Form

In this section we derive a normal form to study the fold-fold singularity and we present
some consequences. This section is mainly motivated by the normal form of a fold point
obtained by S. M. Vishik in [104] and some variants such as [24], [38], [39].

Proposition 3.5.1. If Z = (X,Y) € Q" is a nonsmooth vector field having a fold-fold
point at p such that Sx M Sy at p, then there exist coordinates (x,vy, z) around p such that
f(z,y,2) =z and Z is given by:

« 7+O(|($ayaz)’)
X(z,y,2)=1| 1 and Y(z,y,z) = | B+O((z,y,2)]) |, (3.5.1)
0y z+ O(|(z,y,2)°)

where § = sgn(X2f(p)), sgn(y) = sgn(Y2f(p)), o, 3,7 € R.

Outline. Use the coordinates (z,y,z) of Theorem 2 from [104] to put X in the form
X(z,y,2) = (0,1,dy) and f(z,y,z) = z. Now, consider the Taylor expansion of Y in this
coordinate system and perform changes to put Y f(z,y,2) = z + O(|(z,y, 2)|?). O

Definition 3.5.2. If Z € Q" has a fold-fold singularity at p, then the coordinate system
of Proposition will be called normal coordinates of Z at p and the parameters of
Z in the normal coordinates will be referred as normal parameters of Z at p. Denote

Z = Z(a,B,7).

Remark 3.5.3. If v = £1, a = V' and 8 =V, then this normal form and the model
used in [24), 125, [38], have the same semi-linear part. Geometrically, V* (V=) measures
the cotangent of the angle 0% (0~ ) between X (0) (Y (0)) and the fold line Sx (Sy). See
[25] for more details.

Corollary 3.5.4. If Z = (X,Y) € Q" is a nonsmooth vector field having a fold-fold point
at p such that Sx M Sy at p, then there exist coordinates (x,y,z) around p defined in a
netghborhood U of p in M, such that:
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1. f(x,y,2) = z;
2. SxNU ={(2,0,0); x € (—¢,¢e)}, for e > 0 sufficiently small;

3. Sy NU =A{(9(y),y,0); y € (—¢&,¢)}, for e > 0 sufficiently small, where g is a C"
function such that g(y) = O(y?), i.e., Sy, is locally a smooth curve tangent to the
Y-QTis.

Outline. Tt follows directly from Proposition [3.5.1]and the Implicit Function Theorem. [

Proposition 3.5.5. Let Z = (X,Y) € Q" be a nonsmooth vector field having a fold-fold
point at p such that Sx m Sy at p. Then, the normalized sliding vector field of Z has a
singularity at p and it is given by

FY(x.y) = ( - ) - ( } ) +O((z.y)P),

in the normal coordinates of Z at p, where 6 = sgn(X%f(p)), sgn(vy) = sgn(Y2f(p)),
o, B,v €R.

Outline. It follows directly from the expression of Z in this coordinate system. n
Finally, we can classify a fold-fold singularity in four topologically distinct classes:
Definition 3.5.6. A fold-fold point p of Z = (X,Y) € Q" is said to be:
e a visible fold-fold if X?f(p) > 0 and Y%f(p) < 0,
o an invisible-visible fold-fold if X*f(p) <0 and Y?f(p) <0;
o a visible-invisible fold-fold if X*f(p) >0 and Y2f(p) > 0;

o an invisible fold-fold if X*f(p) < 0 and Y?f(p) > 0, in this case, p is also called
a T-singularity.

Remark 3.5.7. Notice that the visible-invisible case can be obtained from the invisible-
visible one by performing an orientation reversing change of coordinates. Also, we re-
fer to a wvisible, invisible-visible/visible-invisible, invisible fold-fold point as a hyperbolic,
parabolic, elliptic fold-fold point, respectively. See Figure[3.9

X\

G S

vl
(a)

Figure 3.2: Fold-Fold Singularity: (a) Hyperbolic, (b,c) Parabolic and (d) Elliptic.
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3.5.2 Sliding Dynamics

In this subsection we discuss the sliding dynamics around a fold-fold singularity. This
is a matured topic which has been well developed in [25] 39, [102].

From Proposition and Lemma we already know the behavior of the sliding
vector field near a fold-fold singularity in a generic scenario (not only for the truncated
system).

Let Z = Z(a, B,7) € Q" having a fold-fold singularity at p, and consider its normalized
sliding vector field FY in normal coordinates.

Consider:

RL ={(a,8,7) ER?xRT; aff >~ and a <0, 8 <0},
R =R? x R* \ R,
Ry ={(a,3,7) eR*xR™; af <~vand a >0, <0},
R%Z =R?> xR~ \ RL,

R}p:{(a,ﬂ,fy) eER?XR; af <~vyand f—a>—2/—7},

Ry ={(a,8,7) € R xR™; aff < v and a > 0},

Ry ={(a,8,7) ER*xR™; af >, f+a>0and f—a < —2,/7},
Ry ={(a,8,7) ER*XR™; af >, f+a<0and 8 —a < -2/}

We claim that:

Claim 1: If p is an elliptic fold-fold singularity and (a, 8,7) € RL then F has an
invariant manifold W in ¥* passing through p and each orbit of F is transverse to Sz
and reaches p asymptotically to W (for a finite positive time in X** and negative time in
Eus)'

Claim 2: If p is an elliptic fold-fold singularity and (o, 8,7) € R% then Fy has an
invariant manifold W in ¥° passing through p and each orbit is transverse to Sz and does
not reach p, with exception of W.

Claim 3: If p is a hyperbolic fold-fold singularity and («, 3,7) € R}, (resp. (o, 8,7) €
R?% ) then Fy is of the same type of claim 1 (resp. claim 2) for reverse time.

Claim 4: If p is a parabolic fold-fold singularity and («, 3,7) € R: then each orbit
in X% (resp. ") is transverse to Sx (resp. Sy) and reaches Sy (resp. Sx) transversally
for a positive finite time. In this case we say that F; has transient behavior in °.

Claim 5: If p is a parabolic fold-fold singularity and (c, 3,7) € R% then there exist
two invariant manifolds W and Wy in ¥¢ passing through p which divide ¥** (and X**)
in three sectors. The intermediate sector is of hyperbolic type and in the other sectors
the orbits are transversal to Sz and go away from p (the orientation of the orbits is given
in Figure .

Claim 6: If p is a parabolic fold-fold singularity and («, 3,7) € R% then there
exist two invariant manifolds W; and W5 in ¥° passing through p which divide ¥*° in
three sectors. In the intermediate sector each orbit reaches p for a finite positive time
asymptotically to Wi. In the left one each orbit is transverse to Sy and reaches p for a
finite positive time asymptotically to W;. In the right one, each orbit is transverse to Sx
and goes away from p. The behavior in »** is similar and can be seen in Figure [3.3]

Claim 7: If p is a parabolic fold-fold singularity and (c, 3,7) € R% then Fy has the
same behavior as in claim 6 for reverse time and changing the role of W7 and W5, Sx and
Sy, right and left.

Claim 8: If (a, 8,7) is not in any of these regions then F presents bifurcations in
3.
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All these claims can be straightforward verified by analyzing the linear part of the
normalized sliding vector field FY. We omitted the proofs due to its simplicity.

(a) (b) (c)

Figure 3.3: Sliding dynamics near a fold-fold singularity of type elliptic (a), hyperbolic
(b) and parabolic (c). In each case, the regions above are outlined in the («, §)-parameter
space for a fixed value of ~.

3.6 Proofs of Theorems [F] and [T

This section is devoted to prove Theorems [F| and [l In the sequel we develop some
Lemmas and Propositions which will lead us to the proof of the Theorems.

Assume that Z € " has a T-singularity at p. Therefore, we have a first return map
¢ of Z defined around p. In order to study the local structural stability of Z, it will be
crucial to study the dynamics of ¢. Now, we derive the existence and some properties of

o,

Lemma 3.6.1. Let Z = (X,Y) € Q" be a nonsmooth vector field having a T-singularity
at p such that Sx M Sy at p. There exist two involutions ¢x : (X,p) — (X,p) and
oy : (X,p) = (3,p) associated to the folds X andY such that:

o FZJ?((ﬁy) = Sy,‘
e ¢ = dx oy is a first return map of Z such that ¢(p) = p.

The proof of Lemma can be found in [23] (Lemma 1). A straightforward verifi-
cation shows the following results.
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Lemma 3.6.2. If ¢ = po), where ¢ and 1) are involutions of R? at 0, then ¢g"op = pog™"
and o ¢" = ¢~ " 01, for each n € Z.

Proposition 3.6.3. If ¢ = p o, where ¢ and ¥ are involutions of ¥ at p, then the
invariant manifolds W* and W* of ¢ at p are interchanged by ¢ and v in the following
way:

Y(W?®) C W* and (W) C W*.

Now, using the normal coordinates of Z = (X,Y) at an elliptic fold-fold singularity,
we obtain the following expressions for the associated involutions.

Lemma 3.6.4. Let Z = (X,Y) € Q" be a nonsmooth vector field having a T-singularity
at p such that Sx th Sy at p. Consider the normal coordinates (x,y,z) of Z at p. Then
the involutions ¢x and ¢y are given by

ox(z,y) = (z — 20y, —y) and ¢y (z,y) = (—m, —Qf:ﬂ + y) + h.o.t.,

in these coordinates, where «, 3,7 are the normal parameters of Z at p.

Finally, we associate the local structural stability of Z at an elliptic fold-fold singularity
with the local structural stability of the pair of involutions associated to Z.

Lemma 3.6.5. Let Zy = (Xo,Yy) € Q" such that p is a T-singularity for Zy. If Zy is
locally structurally stable at p in Q" then the pair of involutions (¢x,, dv,) associated to
Zy 18 locally and simultaneously structurally stable at O in WT.

Proof. In fact, since p is a T-singularity of Zj, there exist neighborhoods V of Z; in 2"
and V of p in M such that, each Z € V has a unique Teixeira singularity at ¢(Z) € VNX.
Consider the map F': V — W" given by:

F(X)Y) = (¢x, dv),

where ¢y and ¢y are the involutions at (0,0) of R? associated to X and Y, respectively.

From the continuous dependence of solutions with respect to initial conditions and
parameters, it follows that F' is a continuous map.

Moreover, there exists a neighborhood U of (¢x,, ¢y,) in W7, such that, for each
(1,v) € U, there exists a vector field Z = (X,Y) € V such that 7 = ¢x and ¢ = ¢y, and
it can be done in a continuous fashion.

Then, reducing V if necessary, it follows that F' : V — W is an open continuous map.

Since Zj is locally structurally stable at p in 2", V can be reduced such that every
Z €V is topologically equivalent to Zj.

Thus, if Z € V, there exist a fold-fold singularity ¢(Z) € 3 of Z (with the same type
of p) and a topological equivalence h : (Vi,p) — (Va,q(Z)) between Zy and Z, where V;
and V3 are neighborhoods of p in M, such that ¢(Z) € V5.

In particular, it induces a homeomorphism A : ¥NV; — YN V5, such that h(p) = ¢(Z).
Using coordinates, (z,y, z) around p and (u,v,w) around ¢(Z) such that f(x,y,z) = 2
and f(u,v,w) = w, the induced homeomorphism h can be seen as h : Uy — Us, where Uy
and Uy are neighborhoods of (0,0) in R? and A(0,0) = (0,0).

Now, given (z,y) € ¥.— Sk, (sufficiently near from (0, 0)), it follows from the definition
of the involution ¢y, that, the points (z,y) and ¢x,(x,y) are connected by an orbit vy, of
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Xo contained in M. Analogously, the points h(z,y) and ¢x(h(x,y)) are connected by
an orbit v of X contained in M.
Since h is a topological equivalence such that h(X) C X, it follows that k() = v and

h¢x,(z,y)) = ox(h(z,y)). (3.6.1)

It is trivial to see that is also true when (z,y) € Sx,, by observing that h(Sx,) =
Sx. Hence h is an equivalence between the germs of involution ¢x, and ¢x.

Analogously, by changing the roles of X and Y, it can be shown that h is also an
equivalence between the involutions ¢y, and ¢y.

We conclude that h is a (simultaneous) topological equivalence between the pairs of
involutions (¢x,, ¢y,) and (¢x, Py ).

Since Z is arbitrary in V), it follows that every pair of involutions in i/ is topologically
equivalent to (¢x,, Py, ), and since U is open in W it follows that (¢x,, Py, ) is local and
simultaneous structurally stable in WW". [

The following result is obtained by combining Theorem and Lemma [3.6.5]

Proposition 3.6.6. Let Z, € Q" having a T-singularity at p, and let (¢x,, Py,) be the
pair of involutions of R* at (0,0) associated to Zy. If 0 is not a hyperbolic fized point of
Oy, © Ox,, then Zy is locally structurally unstable at p.

A simple computation of eigenvalues and eigenvectors allows us to study the fixed
point p of the first return map ¢ (see Figure :

Lemma 3.6.7. Let Z = (X,Y) € Q" be a nonsmooth vector field having a T-singularity
at p such that Sx th Sy at p. Let (o, 3,7) be the normal parameters of Z at p.

1. If af(af — ) < 0, then 0 is not a hyperbolic fized point of ¢. In addition, if
af(af —v) <0, then ¢ has complex eigenvalues.

2. If ap(aff —~) >0, then 0 is a saddle point of ¢. In addition, if \, pu are the eigen-
values of ¢ such that |p|< 1 < |\, and vy, vy are the correspondent eigenvectors,
then:

(a) If « >0 and B > 0, then v,, v\ € £°.
(b) If « >0 and B <0, then v, € ¢ and vy € ¥°.
(¢) If « <0 and B >0, then v, € £, and v\ € X°.
(d) If « <0 and B <0 then v,, vy € X°.

Proposition 3.6.8. Let Zy = (Xo, Yy) € Q" be a germ of nonsmooth vector field having a
T-singularity at p. Let (o, B,7) be the normal parameters of Zy at p. If af(af —~) <0,
then Zy is locally structurally unstable at p.

Proof. 1t follows directly from Proposition and the fact that p is not a hyperbolic
fixed point of the first return map ¢y = ¢x, © ¢y, associated to Zy. In the sequel we
present an explicit argument for the local structural instability of Z,. It is mainly based
on [14] and the Blow-up procedure (see [6]).

Let ¢g : (X,p) — (3, p) be the (germ of) first return map associated to Zy at p. From
the conditions assumed in the Theorem, it follows that ¢y has eigenvalues Ay = a =+ ib,
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Figure 3.4: Regions of the («, 3)-parameter space with the corresponding behavior of the
first return map ¢, for a fixed value of v > 0.

where a? + b?> = 1. Using the normal form of Z; and basic linear algebra, it is easy to find
coordinates (z,y) of ¥ at p, such that:

do(z,y) = (ax — by, bz + ay) + O(|(z, y)|*).

Consider the germs of functions hy, hy : (R?,0) — (R?0), given by:

hi(z,y) = (z,y) and ha(z,y) = /22 + y*(z,9).

Notice that hy, hy are germs of homeomorphisms if we exclude the origin in their
domains.
If (z,y) # (0,0), a straightforward computation shows that:

Yo(z,y) = hy o dgohi(z,y) = \/#y?%(x? Y).

Therefore, ¢y and vy are topologically equivalent. Using the polar change of coordi-
nates ((r,0) = (rcos(#),rsin(f)), where r > 0 and 0 € R/277Z, we write 1y o ( as

Yoo (r,6) = ( S ) +O).

where a + ib = €',
If » — 0, ¢ blows up the singularity r = 0 into the circle S' = R/27Z, and the map
("t oy o ¢ induces a dynamics in S* (see Figure given by

do((0]) = [0+ 7.

Let Z be a small perturbation of Zj,, take it small enough such that the normal
parameters (@, 3,7) of Z are close enough to (a, 3, 7).

If ¢ is the first return map associated to Z at the fold-fold point ¢(Z) ~ p, then it has
eigenvalues Ay = @ = ib.

Applying the same procedure to ¢, we can blow-up its singularity ¢(Z) into S*, and
the dynamics in S* is induced by ¢ : S* — S, given by ¥(0) = 0 + 7, where a +ib = €.

Now, if h : V(p) — V(q(Z)) is an equivalence between Z; and Z, then h(Sx,) = Sx.
In adequate coordinates, it means that h(z,0) = (f(z),0), where f is a homeomorphism
of the real line such that f(0) = 0.
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Figure 3.5: Blow-up of p into S*.

Notice that the motion of Sx,N{z > 0} (resp. SxN{z > 0}) around the origin through
¢o (resp. ¢) is given by the orbit vo = {ty" (0),n € Z} (resp. v = {¢"(0),n € Z}).

Since h is an equivalence, it follows that the orbits 79 and v have the same topology.
Nevertheless, if 7 € Q (resp. 7 ¢ Q) we can take Z (sufficiently near of Z) such that
7 ¢ Q (resp. 7 € Q). Therefore, 7 is a periodic orbit and « is dense in S! (resp. v is
dense in S and 7 is a periodic orbit).

It means that, when 7 € Q (and 7y is periodic), the curves ¢"(Sx) are tangent to a
finite number of directions at p, i.e., there exist m vectors vy,---,v,, in T,% such that
T,0"(Sx) = span{vjn, }, for some i(n) € {1,---,m}, for each n € N. Hence, we conclude
that U ¢"(Sx) has zero measure in X.

On the other hand, if 7 ¢ Q (and ~, is dense), we have that for each v € T, there
exist a sequence ¢ (Sx), such that T,¢™(Sx) = span{v,}, and vy — v when k£ — oo.
We conclude that | ¢™(Sx) has full measure in X.

From these facts, we can see that the orbits ¢f(Sx,) and ¢"(Sx) do not have the same

topology (Figure [3.6).

#2(Sx) #(Sx)

Sx

Blow-up of p

N

Figure 3.6: Behavior of Sx when 6 ¢ Q.

Now, a ¥-equivalence between Z, and Z has to satisfy h(Sx,) = Sx and hopy = ¢oh.
Since ¢f(Sx,) and ¢"(Sx) have different topological type, it follows that there is no
Y-equivalence between Z; and Z.

We conclude that, in any neighborhood of Z; in 2" we can find a nonsmooth vector
field Z such that Z, is not topologically equivalent to Z at p. Therefore, Z; is locally
structurally unstable at p. O]

Remark 3.6.9. Let 74 be the argument of the eigenvalues a £ 1b of the first return map



92

¢ associated to Z.

If Zy is a monsmooth vector field satisfying the hypotheses of Proposition then
a neighborhood Vy of Zy in Q)" is foliated by codimension one submanifolds of 2" corre-
sponding to the value of Tz, i.e., Z1 € Vy and Zy € Vy lies on the same leaf if and only if
Tz, = TZ,-

The topological type of the first return map is locally constant along each leaf. More-
over, if Zy and Zs are elements of Vy lying on different leaves of the foliation then they
are not topologically equivalent.

We conclude that Zy has co-moduli of stability. (See [14, 128, [81] for more details.)

Now we can prove Theorem D.
Theorem 3.6.10. X is not residual in Q.

Proof of Theorem D. 1t follows directly from Theorem In fact, let Zy € Q)" and let
(v, Bo, o) be the normal parameters of Zy at p, they satisfy agBo(ao50 — 70) < 0.

From continuity (and Implicit Function Theorem), there exist neighborhoods V of Z
in Q" and V of p in M such that, each Z has a T-singularity at ¢(Z) € V.

Moreover, if we apply Proposition to Z at q(Z), the normal parameters (o, [3,7)
of Z at q(Z) also satisty af(af —~) < 0.

From Theorem [3.6.8 each Z € V is locally structurally unstable at the fold-fold
singularity ¢(Z) € V N Y. It means that each Z € V is locally structurally unstable at a
point ¢(Z) € X, hence each Z € V is 3-locally structurally unstable. Thus, ¥V C Q" \ ¥
and Y is not residual in Q". O

Notice that the results obtained until this point are mainly concerned with the foliation
F generated by a nonsmooth vector field near a T-singularity. The sliding dynamics does
not have influence on these results. Nevertheless, the existence of sliding vector fields will
be extremely important in the classification of the structural stability of a T-singularity
having a first return map with hyperbolic fixed point.

Proposition 3.6.11. Let Zy = (Xo, Yo) € Q" be a germ of nonsmooth vector field having
a T-singularity at p. Let («, 3,7) be the normal parameters of Zy at p. If either af > ~
and o, B >0 or a8 <0, then Zy is locally structurally unstable at p.

Proof. In the conditions of the theorem, we can use Lemma to conclude that the
first return map ¢q of Zy has a local invariant manifold of the saddle contained in >°.

Without loss of generality, assume that W* C . Notice that the map ¢3 has the
same invariant manifolds of ¢g, but it has both positive eigenvalues 0 < A < 1 < pu.

Generically (i.e. W* W at p, where W is the invariant manifold of claim 2 in Section
, we have that the sliding vector field Fy of Zj is transverse to W*® N %% for a small
neighborhood of p. Let V = U N ¥*, where U is a neighborhood of p such that Fj is
transverse to W* N V. See Figure [3.7]

Since A > 0, we have that ¢3(W*) C ¢Z(V) N'V. Moreover,

2(W*) C g2 (V) N o™ (V)N ng2(V) NV,

for each n € N.
Let R, be the open set ¢2"(V) N ¢a™ (V)N ---N¢2(V) N V. Notice that, in each
region ¢3'(V'), we have a (push-forwarded) vector field

F; = (¢3)" (Fo),
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Sy 1%

Sx

Figure 3.7: Vector field Fj near W*.

defined on it. Therefore, there are n + 1 vector fields defined on R,. Moreover, we can
reduce R,, such that F; and F} are transversal at each point of R,,, for ¢ # j, generically.
In fact, consider the expressions of ¢x, ¢y and F in the normal coordinates. Consider
the curves 4 (t) = tvy, where vy are the eigenvectors associated to the eigenvalues AL of
d¢3. A simple computation shows that:

Fj5(t) = det(Fy(1£(t)), F;(1£(t))) = Ajj(, B,7)¢* + O(t?),

where Aiij is a rational function depending on «, 8 and 7.

Clearly, if Aiij # 0, then F; and Fj are transversal in a neighborhood of v.. In
particular, they are transversal in a neighborhood of W*.

Since A;TS =0, for each 7,57 = 0,1, 2, defines a zero measure set in the parameter space
(o, 5,7), we achieved our goal.

Notice that, each vector field F; in R, defines a codimension one foliation F; of R,
(R, is foliated by the integral curves of the vector field F;). Moreover, (Fo,---,F,) is in
general position (by the reduction of R,). In particular, for n = 2, we obtain 3 foliations
(Fo, F1, F2) of Ry (see Figure [3.8)). This is called a 3-web in R, (see [13] and [85]).

W

Sx

Figure 3.8: Foliations Fy, F1, and Fy originated from the vector fields Fy, F; and Fy,
respectively, near W?.

Since R, is a 2-dimensional manifold, it follows that these foliations are structurally
unstable in the followmg sense. If (.FO, .7-"1, }"2) are the foliations correspondent to a non-
smooth vector field Z =~ Zy, then there exists at least one Z such that there is no
homeomorphism h : Ry — Ry satisfying h(F;) = F;, for every i = 0, 1,2, preserving the
leaves of each foliation.

Clearly the property above has to be preserved by a X-equivalence, hence there exists
a Z sufficiently near of Z, which is topologically different from Z; near p.

The instability of Zy at p follows directly from these facts. n
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Remark 3.6.12. In general, the Theory of Webs used in the last Theorem is developed for
foliations on C™. Nevertheless, we can identify ¥ with C at p (since X is 2-dimensional)
and apply the results of this theory for this case.

Now, let Zy = (Xo,Yp) € Q" be a germ of nonsmooth vector field having a Teixeira
singularity at p. Let («, 3,7) be the normal parameters of Z, at p and assume that af >
and «, f < 0.

Let Z € )" be any small perturbation of Z; and denote their first return maps by ¢
and ¢q, respectively. Our goal is to construct a topological equivalence between Z and
Zy.

Using the Implicit Function Theorem and the continuous dependence between Z; and
its normal parameters, we can deduce the following result.

Lemma 3.6.13. There exists a neighborhood V of Zy such that, for each Z € V, F} and
Fg} have the same topological type and the first return map ¢ of Z has a saddle at the
ortgin with both local invariant manifolds in 3°.

Remark 3.6.14. In what follows, V will denote the neighborhood of Lemma|3.6.15.

Now we prove the existence of an invariant nonsmooth diabolo in an analytic way, this
result was achieved by M. Jeffrey and A. Colombo for the semi-linear case (see [24]).

Proposition 3.6.15. Let Zy = (Xo, Yy) € Q" be a nonsmooth vector field having a T-
singularity at p such that the normal parameters (c, 5,7) of Zy at p satisfy af > v and
o, < 0. Then Zy has an invariant nonsmooth diabolo Dy which prevents connections
between points of X% and 3°° through orbits of Z.

Proof. From Lemma [3.6.13] it follows that the first return map ¢y = ¢x, o ¢y, associated
to Zp has a hyperbolic saddle at p with both eigenvectors in >:¢.

Notice that the local stable manifold of the saddle W*# is tangent to the eigenvector
v_ correspondent to the eigenvalue A and the local unstable manifold of the saddle W* is
tangent to the eigenvector v_ correspondent to the eigenvalue p, where |A[< 1 < |pl.

Moreover, W* and W*" are curves on Y passing through p transverse to Sx U Sy at p
and W* M W™ at p (p is hyperbolic). Using coordinates (z,y) at p (which put Z, in the
normal form [3.5.1), we can see that, Sy, = Fix(¢x,) is the z-axis, Sy, = Fix(¢y,) is a
curve tangent to the y-axis at 0, and W* and W™ are curves passing through 0 contained
in the second and the fourth quadrants which are transverse to Sx, U Sy, at 0.

Therefore we have the following situation:
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From Proposition m, it follows that ¢x,(W*) C W Now, the image of a point
in the semi-plane {y > 0} through ¢x, is a point in the semi-plane {y < 0} by the
construction of ¢x,. It means that the branch of W* in the second quadrant has to be
taken into the branch of W* in the fourth quadrant.

Also, ¢y, (W*) C W". Notice that, Sy, splits R? in two connected components, C_
and C,. From the construction of ¢y,, the image of a point in C_ through ¢y, is a point
in C'y. It means that the branch of W* in the fourth quadrant is taken into the branch
of W* in the second quadrant.

These connections produce an invariant (nonsmooth) cone with vertex at the fold-
fold point which contains ¥“¢ in its interior. Analogously, we prove that there exists an
invariant (nonsmooth) cone with vertex at the fold-fold point which contains ¥** in its
interior. These two cones produce the required nonsmooth diabolo (see Figure . O

Remark 3.6.16. In other words, there is no communication between ¥*° and >°° in this
case.

Figure 3.9: A nonsmooth diabolo Dy of Z,.

Remark 3.6.17. Notice that, the existence of the invariant diabolo Dy implies that the
T-singularity py has stable and unstable invariant manifolds of dimension 2, and this is
a phenomena which has no counterpart in smooth vector fields of dimension 3.

Now we proceed by constructing a homeomorphism between Z € V and Zj.

Lemma 3.6.18. If Z € V, there exists an order-preserving homeomorphism h : °(Zy) —
¥5(Z) which carries orbits of Fyz, onto orbits of Fy.

The proof of this lemma follows straightforward from Lemmas [3.3.11] and [3.6.13]

Definition 3.6.19. If ¢ : (R? 0) — (R%,0) is a germ of diffeomorphism at 0 having a
saddle at 0, then the deMelo-Palis invariant of ¢ is defined as:

_ log(1A)
log([u))’

P(¢)

where A, v are the eigenvalues of dp(0) such that |A[< 1 < |u].
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Remark 3.6.20. In fact, the deMelo-Palis invariant P is a moduli of stability for ¢. (See
28, 181].)

Proposition 3.6.21. If Z € V, there exists a homeomorphism h : X — > which is a
continuous extension of the homeomorphism h : ¥°(Zy) — X°(Z) given by Lemma
such that ¢ o h = h o ¢q, i.e. it is a topological equivalence between ¢ and ¢q.

Proof. The proof of this proposition is divided into steps.

Let h : ¥%(Zy) — £°(Z) be the homeomorphism obtained in Lemma [3.6.18]

Notice that Z has a T-singularity at ¢(Z) ~ p. Since F é\g and FY are transversal to
Sz, \ {p} and Sz \ {q(Z)}, respectively, we can easily continuously extend h on ¥*(Z)
via limit to obtain

h: Y5 (Zo) — S5(2).

Step 1: The first task is to define a fundamental domain for the first return maps,

¢ and ¢q.

We will detail it for ¢y. The process to construct the fundamental domain of ¢ is
completely analogous.

By the Linearization Theorem (see [57]), we may assume that ¢q is linear. Moreover,
we can consider coordinates (z,y) of ¥ at p such that:

do(7,y) = (Ao, poy),

where Ao, po are the eigenvalues of ¢y such that |ug|< 1 < |Agl.
By the position of Sx,, Sy, and the invariant manifolds of the saddle, obtained in
Proposition [3.6.15] it follows that:

« Sk, is a curve passing through 0, with one branch in the first quadrant and another
in the fourth;

e Sy, is a curve passing through 0, with one branch in the first quadrant and another
in the fourth;

« Sy, is tangent to the line y = koz;

o Sy, is tangent to the line y = Kyx;

e 0< ky < K.

We have the situation illustrated in Figure [3.10]

SYn SYn

Eus

Figure 3.10: Change of coordinates.

Without loss of generality, consider that Sx, = {y = koz} and Sy, = {y = Koz} and
assume that these lines are the fixed points of ¢x, and ¢y,, respectively. It will reduce
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our work, nevertheless it generates no loss of generality, since the same can be done with
the original sets.

From the existence of the invariant diabolo in Proposition [3.6.15] it follows that,
¢y (Sx,) is a line in the same quadrants containing Sy,, moreover, its inclination is
greater than K.

Define:

wo = {(x,y); koxr <y < Koz} and @y = ¢y, (wo).

Notice that Ry = wy U & is the region delimited by the lines Sx, and ¢ (Sx,).

Now it is immediate that ¢j(Sx,) — W" when n — oo and ¢ (Sx,) — W?* when
n — —oo. Therefore, the first and the third quadrants are partitioned by ¢f(Ry), n € Z.

In another words, if @ = {(x,y); xy > 0}, then

Q= 95(Ro).

neL

Therefore, we say that Ry is the fundamental domain of ¢g. See Figure [3.11

¢y H(Ro)  dve(Sx0) T Sy, wo

Sx,

> #(Io)

W'LL
Figure 3.11: Fundamental domain Ry = wg U Wy in the first quadrant.

Similarly, we can consider coordinates (z,y) of ¥ at p such that:

o(z,y) = (Az, py),

where A, are the eigenvalues of ¢ such that |u|]< 1 < |A|. Therefore, there exists
R = w U, where w is the region delimited by Sx and Sy and & = ¢y (w).

Also Q = U,ez 9" (R), and R is the region delimited by Sx and ¢~1(Sx).

In both cases, each orbit of ¢y (and ¢) passes a unique time in each sector of the
partition of ().

Step 2: Extending the domain of h into h: QQ — Q.

Notice that h : wyp — w is already defined (it is the homeomorphism h : ¥$(Z;) —
¥3(Z) in these coordinates).

If ¢ € @y, then g = ¢y, (q), for some ¢ € wy, therefore, define:

h(q) = ¢y (h(q))-
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Clearly, it is a continuous extension of h from wy into Ry. Now, we have defined a
homeomorphism h : Ry — R.

The extension to () follows in a natural way (since it is defined in a fundamental
domain).

In fact, if ¢ € @, there exists a unique ¢ € Ry and a unique n € Z, such that ¢ = ¢§(§).
Define:

h(q) = ¢"(h(q)).
Clearly, h : Q — @ is a homeomorphism satisfying:

h(¢o(q)) = ¢(h(q)),

for each q € Q.

Step 3: Extending h on both W* and W? in a continuous fashion.

This is the most delicate part of the proof. Consider an arbitrary continuous extension
of h on W*.

Now, the difficult task is to continuously extend it to W*, and it will be only possible
because

P(¢o) = =1 = P(9),

where P is the deMelo-Palis invariant.

Only the extension in the first quadrant will be detailed. The extensions in the other
quadrants are similar.

We extend ¢ in the following way.

Fix w = (d,0) € W*, then, there exists a sequence w; = ¢ (y;) such that N; — oo
when ¢ — oo and y; is a sequence contained in Sx, N {x,y > 0} such that y; — 0 when
© — 00, which satisfies:

lim ¢ (y;) = w.
Jim ¢y (yi) = w

Notice that, the homeomorphism h is already defined for the sequence w;. Since we
want a continuous extension and an equivalence, we must define:

hw) = Tim h(6" () = lim 6™ (h(y,)).

Our work is to prove that the limit above exists. In this case, h will be extended on
W by doing this process for every ¢ € [w, ¢o(w)] and then extend it through the images
of this fundamental domain by ¢q.

Now, we prove the existence of the limit.

Since h(Sx,) = Sx and ¢"(Sx) — W" as n — oo, it follows directly that:

lim 75(6™ (h(y))) = 0.

1—00

Therefore, my(h(w)) = 0 and it is well-defined. The problem happens for the first
coordinate. Consider:

2.y, = 0, y; € Sx,, for every i;

3. N; — such that ¢} (y;) = w; — w;
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Figure 3.12: Sequences (z;), (y;) and (w;).

4. t; — o0, z; — x € W* such that y; = ¢ (z;).

See Figure (3.12] N

Now, denote g; = h(yi), T; = h(x;), w; = ¢Ni@i), di = mi(w;), di = m(w;), a; = ma(x;)
and a; = mo(h(z;)). Hence, we must prove that d; converges.

Notice that, since h is continuously extended for W* and the sequence z; converges to
x € W2, it follows that a; is a convergent sequence. Denote a = lim a;, and notice that

di = m@Vi(h(w))) = ANm(G).
Now, observe that:

g = h(y;) = Mg (2:)) = "(T5) = (N1 (7)), u"'ma(T5)).
Since y; € Sx = {y = ka}, it follows that:

B 1 1,
m(y) = %@(yi) = %MtZWQ(ﬂfi)-

Hence: 1 ]
&= TN pm() = TN,

and applying the logarithm, we obtain:

log(dik) = N;ilog(X) + t; log (1) + log (d).

With the same process, we also obtain:

log(d;ko) = N;log(No) + t;log(uo) + log(a;).

Since log(d;ko) and log(a;) converge, it follows that N;log(\o) + ¢; log(uo) converges.
Now, using that P(¢o) = P(¢), it is immediate that N;log(A) + t;log(u) converges.

Since a; — a, it follows that d; converges and the proof is complete. n

Remark 3.6.22. Notice that, both ¢ and ¢y are composition of elements of W, therefore
a perturbation of the first return map ¢o still is a composition of two involutions. Hence
the diffeomorphism ¢q is perturbed only over the codimension one submanifold P~(—1)
of Diff(R?,0) (space of germs of diffeomorphisms at 0.).

It follows straightforward from the previous results:

Proposition 3.6.23. Let Zy = (Xo, Yo) € Q" be a germ of nonsmooth vector field having
a Teizeira singularity at p. Let (o, B,7) be the normal parameters of Zy at p. If aff > ~
and a, 5 < 0, then Zy is locally structurally stable at p.
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Finally, we conclude the proof of Theorem

Proof of Theorem[F. Notice that Z satisfies condition 3(E) at p if, and only if, the normal
parameters («, 3,7) of Z at p satisfy aff > v and a, 8 < 0.
The result follows directly from Propositions |3.6.8] [3.6.11| and |3.6.23], O]

3.7 Proofs of Theorems |G, [H and Corollary

In this section we intend to discuss the hyperbolic and the parabolic case of the fold-
fold singularity in order to complete the characterization of .

3.7.1 Hyperbolic Fold-Fold

Let Z = (X,Y) € Q" be a nonsmooth vector field having a hyperbolic fold-fold point
at p such that Sx M Sy at p. Consider the normal coordinates (z,y, z) of Z at p and let
(v, 5,7) be the normal parameters of Z at p. In this case we do not have any orbit of
X or Y connecting points of X, therefore the local structural stability of Z at p depends
only on the sliding dynamics which is generically characterized in section [3.5.2

Proposition 3.7.1. Let Zy = (X0, Yy) € Q" be a nonsmooth vector field having a visible
fold-fold point at p such that Sx, h Sy, at p. Let (ag, Bo, Vo) be the normal parameters of
Zy at p. Then, Zy is locally structurally stable at p if and only if (ag, Bo, o) € Ry U R%,.

Outline. The first implication is obvious since Fz, presents bifurcations in ¥°. To prove
the converse, let (g, 5o, 70) be the normal parameters of Z, at p. Using Implicit Function
Theorem we can find a neighborhood V of Zj in Q)" such that every Z € V has a hyperbolic
fold-fold point ¢(Z) near p and the normal parameters of Z at ¢(Z) are close to (v, 5o, 70)-

Now, it is easy to construct a homeomorphism 5 : ¥ — ¥ carrying sliding orbits of F,
onto sliding orbits of F;. Extend it to a germ of homeomorphism h : (M, p) — (M, q(Z))
using the flows in the same way of [39] (Lemma 3, page 271). O

3.7.2 Parabolic Fold-Fold

Let Z = (X,Y) € 2" be a nonsmooth vector field having an invisible-visible fold-fold
point at p such that Sy M Sy at p. Consider the normal coordinates (z,y, z) of Z at p,
and let (o, 8,7) be the normal parameters of Z at p.

Proceeding as in the elliptic case, Z has an involution ¢y associated to the invisible
fold of X, and recall that it is given by

¢X(x7y) = (‘T - QOéy, _y)7

in normal coordinates. Now we use it to study the connections between sliding orbits,
when they exist.

Lemma 3.7.2. Let Z = (X,Y) € Q" be a nonsmooth vector field having an invisible-
visible fold-fold point at p such that Sx th Sy at p. Let («, 3,7) be the normal parameters

of Z at p. Then, ¢x(Sy) M Sy at p if and only if o # 0.
Proof. From Corollary we have that Sy = {(g9(y),vy); y € (—¢,¢)}, for some € > 0,
where g is a smooth function with g(y) = O(y?). Therefore TySy = span{(0,1)}.

On the other hand, ¢x(Sy) = {(g9(y) — 2ay, —y); y € (—¢,¢)}. Then Togx(Sy) =
span{(—2c«, —1)}. The result follows from these expressions. O
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Lemma 3.7.3. Let Z = (X,Y) € Q" be a nonsmooth vector field having an invisible-

visible fold-fold point at p such that Sx th Sy at p. Let («, 5,7) be the normal parameters
of Z at p. Then, ¢x(X"$) N X% =0 if and only if a > 0.

Proof. In fact, in these coordinates, Sy = {(g(v),y); y € (—¢,¢)}, and ¢x(Sy) = {(9(y)—
20y, —y); y € (—¢,¢€)}, for some € > 0, where g is a smooth function with g(y) = O(y?).

Therefore, Tydx (Sy) = span{(—2«, —1)}. The sliding region 3 is the region delimited
by SX and Sy.

Since TpSy = span{(0,1)} and TpSx = span{(1,0)}, it follows that ¢x(Sy) C X* if
and only if o > 0.

We conclude the proof by noticing that, if ¢x(Sy) C X¢, then ¢x(X**) C £° Nev-
ertheless, if ¢x(Sy) C X*, then the region delimited by Sy and ¢x(Sy) in ¥"¢ is carried
into the region delimited by Sy and ¢x(Sy) in X%°. O

Remark 3.7.4. In another words, there exist orbits of X in M™* connecting distinct points
in the sliding region %° if and only if a > 0.

Definition 3.7.5. If ¢ : ¥ — ¥ is a diffeomorphism and F is a vector field in 3, then
define the reflected vector field of F' by ¢ as ¢*F.

Remark 3.7.6. The reflected vector field of F' by ¢ can also be referred as transport of
F by ¢.

Lemma 3.7.7. Let Z = (X,Y) € Q" be a nonsmooth vector field having an invisible-
visible fold-fold point at p such that Sx th Sy at p. Let (a, 3,7) be the normal parameters
of Z at p.

Assume that there exist a region S C X"° such that S = ox(S) C X%, and suppose
that S is maximal with respect to this property. If 2(a + B)(aB — ) # 0, then FY and
the transport of FY by ¢x are transversal vector fields defined in S.

Proof. Consider Fy = F} and F} = ¢*FY, where ¢x is the involution associated to X.
Clearly, Fy and F) are transversal at ¢ € ¥ if and only if Fy(q) and Fi(q) are linearly
independent vectors.
Considering the normal coordinates (z,y, z) at p. Define

D(z,y) = det ( Fo(w,y) )

Notice that D(z,y) # 0 if and only if F and Fj are transversal at (x,y). Now, we use
the expressions of the vector field in these coordinates to derive an approximation for the
function D.

Since ¢y is a linear involution, it follows that ¢y' = ¢x and déx = ¢x, therefore:

Fi(r.y) = dox(FJ(¢x'(z.9)))
= ¢x(F7 (¢x(2,y)))
In order to compute D, we must analyze the influence of the higher order terms in the
computation of FY. From Proposition , we have that:

o v+ F(z,y,2)
X(z,y,2) = 1 and Y(z,y,2) = | B+ G(z,y,2) |,
) T+ H(l‘,y, Z)
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where F(z,y,2) = O(|(z,y, )|}, G, y, 2) = O(|(2,y, 2)]) and H(z, y, 2) = O(| (. 2)[?).
Hence, the sliding vector field is given by:

N _(a ) (= aH(z,y) +yF(z,y)
FZ(“’)(l B) <y>+< H(z,y) +yG(z,y) )
where F(z,y) = F(z,y,0) = O(|(z,y)]), G(z,y) = G(z,y,0) = O(|(z,y)|) and H(z,y) =

H(z,y,0) = O(|(z, y)[*)-
Using the expressions of F} and ¢y (z,y) = (r — 2ay, —y), we obtain:

D(z,y) = y*[—2(a + B)(aB — v) + Pi(z,y)).

where Pl(xay) = O(|(xay>|>

Now, if (a + 8)(aB — ) # 0, then the z-axis is the only solution of D(x,y) = 0, near
the origin. Therefore the vector fields Fy and F; are transversal in the region SU S, since
it does not contain points of the z-axis.

[]

Remark 3.7.8. Notice that, in the curves a+ 3 =0 and a8 = vy, the higher order terms
may produce curves in S U S where the vector fields are not transversal, and they can be
broken by small perturbations (making o + 5 # 0 or aff # ). Clearly, this situation
implies the instability of the system.

Lemma 3.7.9. Let Z = (X,Y) € Q" be a nonsmooth vector field having an invisible-
visible fold-fold point at p such that Sx Sy at p. Let (o, B,7) be the parameters given
by Proposition associated to Z at p. If 2a(a + B) — v # 0, then FY is transversal
to ¢X(Sy> m X5,

Proof. In the coordinates of Proposition we have that Sy = {(¢(y),v,0); vy €

(—e,¢)}, for € > 0 sufficiently small, where g is a C" function such that g(y) = O(y?).
Therefore ¢x(Sy) = {(9(y) — 20y, —y); y € (—¢,¢)}. Since ¢px(Sy) is tangent to the

curve v(y) = (—2ay, —y) at the origin, it is sufficient to prove that F} is transversal to

.
Clearly, FY is transversal to v at v(y) if and only if

T(y) = F§ (v(y)) - (' ()" # 0. (3.7.1)

Now, we use the expression of FY in these coordinates to obtain an approximation of
T. In fact,

FY (v(y)) = F} (—2ay, —y) = (—20%y — vy, —2ay — By) + O(y?)

and
(Y(y) " = (=20, =1)" = (1, —2a).
Substituting these expressions in [3.7.1} we obtain:

T(y) = 2a(a+ B) — Yy + Oy?)

Therefore, if the condition 2a(a + B) — v # 0 is assumed and y # 0 then FY is
transversal to ¢x(Sy). Since 3° does not contain points where y # 0 (because they
belong to Sx), the result follows. O
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Remark 3.7.10. In the curve 2a(a + ) — v = 0, the higher order terms can be used
to produce a curve such that F} is tangent to px(Sy) in every point. Such structurally
unstable phenomena is avoided.

Proposition 3.7.11. Let Zy, = (Xo,Yy) € Q" be a nonsmooth vector field having an
invisible-visible fold-fold point at p such that Sx, th Sy, at p. Let (ao, Bo,70) be the
normal parameters of Zy at p. Then, Zy is locally structurally stable at p if and only if
the following statements hold

1. (ao, Bo,Y0) € Ui Rp;

2. ag #0;

3. 2ap(ao + Bo) — Y0 # 0;
4. a0+ Po # 0, if ap > 0.

Moreover, there exist only eleven topologically distinct classes of local structural stable
systems at invisible-visible fold-fold points.

Outline. Proceeding as is the proof of Theorem [3.7.1, Consider the neighborhood V of
Zy such that the correspondent parameters (a, 3,7) of any Z € V are in the same region

of (Oéo, 607 70)
Let Z = (X,Y) € V. If there is no orbits of X connecting points of >** and X%, then

the proof can be done in the following way. We omit some details in this case, since it is
very similar to the visible case.

o Construct h : ¥*(Zy) — ¥°(Z) carrying orbits of Fy onto orbits of F. In addition
extend it to Sy, U Sy, via limit. Hence h(Sx,) = Sx and h(Sy,) = Sy;

» For each p € ¥\ Syx,, there exists to(p) # 0 such that ¢x,(to(p),p) € X. Similarly,
there exists an analogous time t(p) # 0 for the vector field X;

o If p € 3% then h(p) is already defined. Assume that p € ¢ If oy, (to(p),p) € X%,
then define:

h(p) = px(—t(ex, (to(p), p)), h(ex, (to(p), p)))-
o Using Tietze Extension Theorem, we can extend h over X¢;
o Now, using the same idea of the third item, we can extend it to the whole ¥;
o Extend it to M using the flow of Xy, X and h: X — X;
o Following the same idea of the hyperbolic case, extend it to M~;

o Hence we construct a germ of homeomorphism A : M — M at p, with h(p) = ¢(Z2),
which is an equivalence between Zy, and Z. Then Z; is locally structurally stable at

Pp-

Suppose that there exists a connection between »% and ¥"* for Z; and Z. Denote by
So and S, the regions of ¥* presenting connections.

From the previous Lemmas of this subsection, it is possible to say that Fy and ¢% Fo
are transversal in each point of Sy, and the same holds for F; and ¢% Fz in S.
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Therefore, the orbits of Fy and ¢% Fy define a coordinate system in Sp, such as the
orbits of Fz and ¢%F in S.

Hence, let h be a function carrying Sy, onto Sy, and h(0) = 0. Now we can use these
coordinate systems to construct h : Sy — S satisfying

ho¢X0:¢Xoh'

By the transversality of Fy to ¢x,(Sy,) (resp. Fz to ¢x(Sy)), it is possible to extend h
on X*(Zy) using the sliding orbits. Then we have a homeomorphism h : ¥°(Z,) — ¥°(Z)
carrying sliding orbits onto sliding orbits.

By construction, if x € S, then ¢x(h(x)) = h(¢px,(x)). With this, we can use the
same idea from the previous case without connections to extend such map to a germ of
homeomorphism h : M — M at p, with h(p) = ¢(Z), which is a topological equivalence
between Zy and Z at p. O

3.7.3 Proof of Theorem

Notice that Z satisfies condition 3(H) at p if, and only if, the normal parameters
(o, B,7) of Z at p satisfy the hypotheses of Proposition [3.7.1]
Moreover, Z satisfies condition ¥(P) at p if, and only if, the normal parameters

(a, B,7) of Z at p satisfy the hypotheses of Proposition [3.7.11]
The result follows directly from Propositions [3.7.1] [3.7.11]

3.7.4 Proof of Theorem [H

From Proposition it follows that ¥y C X(G).
The result follows from Theorem [3.3.12] [F] and [G]

3.7.5 Proof of Corollary

From the characterization of 3y, we can see that X(G), X(R), X(H), X(P) are open
dense sets in Q".

Nevertheless, we also prove that X(F) is not residual in ". Therefore, it follows that
Yo NX(E) is open dense in (F) and 3(FE) is the biggest set with this property.

3.8 Conclusion and Further Directions

In this chapter we have obtained a complete characterization of the locally structurally
stable 3D Filippov systems. As a consequence, we have proved that it is not a generic
property in 7. Also, it is worthwhile to mention that the geometrical comprehension
of the problem was imperative to the characterization of the local structural stability in
dimension 3.

In light of this, we believe that the characterization of local structural stability in
higher dimensions is a challenging problem which deserves attention. In addition, the
characterization of YX-singularities generic in k-parameter families, £ > 1 for n-dimensional
Filippov systems n > 3 is an arduous task which might reveal interesting behavior.
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Chapter

Semi-Local Structural Stability

@I@N this chapter, our main purpose is to provide a non-local approach to study aspects

@ @ of structural stability of 3D Filippov systems. We introduce a notion of semi-local
structural stability which detects when a piecewise smooth vector field is robust around
the entire switching manifold, as well as, provides a complete characterization of such
systems. In particular, we present some methods in the qualitative theory of piecewise
smooth vector fields, which make use of geometrical analysis of the foliations generated
by their orbits. Such approach displays surprisingly rich dynamical behavior which is
studied in detail in this work.

It is worth mentioning that this subject has not been treated in dimensions higher
than two from a non-local point of view, and we hope that the approach adopted herein
contributes to the understanding of structural stability for piecewise smooth vector fields
in its most global sense.

4.1 Introduction

In the classical theory of smooth vector fields, the structural stability concept deter-
mines the robustness of a model with respect to the initial conditions and parameters as
well as its efficiency. From our point of view, it is of the most importance to establish
this concept to PSVF in a systematic way.

In attempt to reach this goal, many papers have emerged with the purpose of the
characterization of the structural stability for PSVF. In dimension 2, the concept of local
structural stability was extensively studied in [55] [63] [65]. In [I9], Broucke et al. have
studied the problem in dimension 2 from a global point of view. In dimension 3, the
local approach has been completely characterized from papers [24, 25, 44, 05, 101]. In
higher dimension, some models were treated in [26], but it remains poorly understood,
even locally.

To the best of the authors’ knowledge, in dimension 3, non-local aspects of structural
stability of PSVF have not yet been studied, maybe due to its high complexity. In light
of this, we introduce in this work a concept of semi-local structural stability, in order to
understand what happens around the whole switching manifold (not only point-wise) of a
robust PSVF. We attempt to provide all results in the most rigorous way by considering
the problem from a geometric-topological point of view.

We consider piecewise smooth vector fields Z defined in R? having a compact switching
manifold ¥, and we denote this set by Q". Roughly speaking, Z, € Q" is semi-local
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structurally stable at ¥ if all systems Z € " sufficiently near Z, present the same
behavior as Zj in a neighborhood V' C R3? of X. In this work, we completely characterize
all the semi-local structurally stable systems at Y, and conclude that it is not a generic
property in 2". Also, a version of Peixoto’s Theorem for sliding vector fields is obtained.

It is worth mentioning that the characterization of structural stability of 3D PSVF
from a global point of view is one of the most complex and intriguing topic in the theory
of PSVF. The semi-local approach studied herein, allows us to find constraints in the
characterizing problem, and it is our hope that it can be used to study global connections
between points of X (see [66], for example) and serves as a guideline to solve more general
problems.

This chapter is structured as follows. An overview of basic concepts and 3D generic
tangential singularities is given in Section The topological orbital equivalences used
throughout this work are described in Section [d.3] Section [4.4] presents a formal language
to deal with this problem. In Section the main results are presented. Sections [4.0]
and are devoted to proving the main results. In Section 4.9 we discuss future
directions this work can take.

4.2 Preliminaries

In what follows we present an overall description of some useful basic concepts and
results.

Throughout this chapter, let M = R? and let f : M — R be a smooth function
having 0 as a regular value. Suppose that ¥ = f~1(0) is an embedded codimension 1
submanifold of M. Assume that 3 is compact, connected and simply connected (i.e. X
is homeomorphic to S?). We consider germs of piecewise smooth vector fields at X.

Remark 4.2.1. As in Chapter(3, Q" stands for the set of tridimensional piecewise smooth
vector fields at 3.

Also, in this chapter, ¥ can be denoted by ¥(Z), in order to distinguish the regions
of 3 corresponding to Z, when necessary.

As we are interested in studying structural stability in Q" it is imperative to take into
account all the leaves of the foliation in M generated by the orbits of Z = (X,Y) (orbits
of X, Y and Fy). For more details see Section [£.8.1]

In this chapter, we consider all the notations, definitions and results introduced in
Section [3.3] We also consider the following concept.

Definition 4.2.2. Let Zy € Q", we say that 'y C ¥° is a X-separatrixz of a fold-fold
point py of Zy, if it satisfies one of the following conditions:

1. po is a singularity of saddle type of Fg) and Iy is a saddle separatriz of Fg} at po;
2. po is a singularity of nodal type of Fé\é and Iy is a strong manifold of Fé\; at po.

If Ty is both a X-separatriz of two distinct fold-fold points, we say that 'y is a connec-
tion of YX-separatrices of fold-fold points.
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4.3 Topological Equivalences in ()"

We are concerned with the persistence of the foliation of the state space generated
by a vector field Z = (X,Y) in Q". In light of this, we consider orbital equivalences
throughout this work.

4.3.1 Sliding Topological Equivalence

Firstly, we consider a topological equivalence to relate piecewise smooth vector fields
having similar behavior in the sliding region.

Definition 4.3.1. Let Zy, Z € Q" be two germs of piecewise smooth vector fields at 3.
We say that Zy is sliding equivalent to Z if there exists a homeomorphism h : ¥ — 3,
which carries Sz, onto Sy preserving the topological type of the singularity and sliding
orbits of Zy onto sliding orbits of Z.

The concept of sliding structural stability is defined in a natural way. We stress that
such kind of stability only concerns with the sliding features (contained in X) of Z € Q".
The set of all sliding structurally stable piecewise smooth vector fields is denoted by

r
SLR*

4.3.2 Semi-Local Topological Equivalence

In the literature, the local topological equivalence is commonly used to relate piecewise
smooth vector fields presenting similar behavior around a point. In this work, we shall
consider an extension of this type of equivalence with the purpose of understanding the
behavior of a piecewise smooth vector field around a compact set.

Definition 4.3.2. Let N # () be a compact subset of ¥ and let Zy, Z € Q. We say that
Zy is semi-locally equivalent to Z at N if there exist a neighborhood U of N in M and
a Y-invariant homeomorphism h : U — U which carries orbits of Zy onto orbits of Z.

The concept of semi-local structural stability at a compact subset N of ¥ is defined
in a natural way.

We remark that the local term is frequently used with respect to phenomena occurring
around a point, and for this reason we use the semi-local term to refer to a phenomenon
occurring in a neighborhood (in M) of a compact set.

In particular, if N is a point of X, say it p, then Definition turns out to be
the classical local topological equivalence at a point p € ¥, which is extensively studied
in [19, 24, 25, 26 44, 101, 104]. It follows from [39, 5] that each Z, € Q" is locally
structurally stable at regular-regular, fold-regular and cusp-regular points.

Notice that, if N = X, then the semi-local equivalence is quite different from the
sliding equivalence. Indeed, the sliding equivalence is concerned only with the elements
lying in 3 (dimension 2), whereas the semi-local equivalence at 3 regards all orbits lying
in an open set of M (dimension 3) containing .

4.3.3 A Review on the Fold-Fold Singularity

In Chapter [3] one can find a complete intrinsic characterization of piecewise smooth
vector fields which are locally structurally stable at fold-fold points. For the sake of clarity,
we outline the results of this chapter which will be used throughout this work.
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The local structural stability of Z, = (Xo, Yy) € Q" at a fold-fold singularity pg is
strongly related with the existence of local connections between sliding regions (%** and
%) through orbits of Xy and Yj.

Indeed, if py is a hyperbolic fold-fold singularity, then there is no local connections
between Y*° and 3", In this case, the local structural stability of Zy at py depends only
on the local sliding dynamics at py.

If py is a parabolic fold-fold point, say it is of invisible-visible type, then the flow of
Xp induces an involution ¢x, : (X,p9) — (X, po). A deep analysis of the dynamics of such
mapping allows us to conclude the existence of local connections between the regions
> and % via the orbits of Xjy. In the presence of some transversality hypotheses
on these connections, it can be proven that Zj is locally structurally stable at py. The
visible-invisible case is analogous.

Finally, if pg is an elliptic fold-fold singularity, then we have a first return map defined
around pg, and it was that Z; is locally structurally stable at py if, and only if, there is
no local connection between the regions > and ¥*° through orbits of Xy and Yj. In this
case, Zy presents piecewise smooth invariant cones (with vertices at pg) isolating such
regions.

All formal conditions to characterize the local structural stability at fold-fold singu-
larities are stated in Section [L.5] of this article.

4.4 >Y-Blocks’ Mechanism

The main purpose of this work is to classify all Z € Q" which are semi-locally struc-
turally stable at . Now, we introduce a formal language to deal with this problem. We
highlight that it is useful to prove the results obtained in the present paper for piece-
wise smooth vector fields having a non-simply connected switching manifold (e.g. 2-dim
torus). Also, the present mechanism can be easily adapted to attack the problem in higher
dimension.

The following definition is motivated by the isolating blocks theory considered in [27].

Definition 4.4.1. A subset U # 0 of ¥ is said to be a X-block of Z € Q" if U is a
compact connected set such that:

1. u(Sz) = 0, where p is the volume measure on % (with respect to the euclidean metric
defined on X);

2. int(U) is a 2-dimensional manifold;

3. int(U) is Z-invariant;

4. int(U) is mazximal, i.e., every neighborhood of int(U) in X is not Z-invariant.
In addition, if U = X, then U is said to be a trivial X-block of Z.

Remark 4.4.2. Notice that, if the condition 1 in Definition[].4.1]is dropped, then we may
face degenerate situations. As an example, we point out the system X (z,y, z) = (—y,x,0),
Y(z,y,2) = (z,y,2) and f(z,y,x) = 2*> + y* + 22 — 1. In this case, Sz = %, and X
induces a dynamics on X which is Z-invariant. It is easy to see that it is a structurally
unstable situation (consider the perturbation X (z,y,z) = (—y,z,ez)). Also, condition 1

of Definition is satisfied for every Z € 2.
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Notice that, a ¥-block of Z € Z; is a connected component of ¥%(Z). Also, if Z has
a trivial 3-block, then Sz = (). In this case, either ¥ = X% or ¥ = X4,

Proposition 4.4.3. If Zy = (X, Yy) € Zg has no X-blocks, then Sz, = 0, ¥ = X¢ and
Zy is semi-locally structurally stable at 3.

Proof. In fact, if Sz, # (), then from Theorem W, it follows that »® has non-empty
interior in Y, which means that Z; would have at least one X-block. It follows that
Sz, = 0 and consequently 3 = X¢.

From continuity of the maps F,G : x" x ¥ — R, given by F(X,p) = X f(p) and
G(Y,p) =Y f(p), and compactness of ¥, there exist neighborhoods U of Xy and V of Yg,
such that Xh(p)Yh(p) > 0, for each X e U, Y € V and p € %.

Therefore, ¥¢(Z) = 3, and thus Z, and Z are semi-locally equivalents at 3, for each
Z=(X,Y)eUxV. O

Definition 4.4.4. A wvector field Zy € Q" is said to be ¥-block structurally stable if
either Zy has no Y-blocks or Zy is semi-locally structurally stable at each Y-block of Z,.
Denote the set of all Z € Q0" which are ¥-block structurally stable by €5,.

Proposition 4.4.5. Let Zy € Zy. Then, Zy is X-block structurally stable if and only if
Zy s semi-locally structurally stable at 3.

Proof. To prove the non-trivial implication, assume that Zj is ¥-block structurally stable.
If Zy has no X-blocks then, from Proposition Zy is semi-locally structurally stable
at 2.

Let Uy, - -+, Uy be all the ¥-blocks of Z,. From hypothesis, for each 7 = 1,-- -, k, there
exists a neighborhood U; of Z, in Q)" such that Z; and Z are semi-locally equivalent at
U, for each Z € U;.

TakeU = UN---Uy, and let Z € U. Hence, there exist disjoint compact neighborhoods
V; of U; in M, and homeomorphisms h; : V; — V; which carry orbits of Z; onto orbits
of Z, for each ¢ = 1,---, k. Notice that Z; and Z are transverse to dV; N ¥ and we can
construct h; such that h;|gy,= id.

Now, let V.=V, U---UV,. Since Zy € Zo, X\ V C X%(Zp) and X\ V C X4(Z). Setting
hly,= h; and h|s\v= id, we can use the flows of Z, and Z to construct a homeomorphism
h:U — U (see [55]), carrying orbits of Z, onto orbits of Z, where U is a neighborhood
of . Hence Z; is semi-locally structurally stable at . O]

From Proposition [4.4.5] to classify the vector fields in 2" which are robust around
Y, it is enough to understand the Y-block structurally stable systems. Notice that all
results in this section remain valid if we drop the simply connectedness condition on the
switching manifold.

4.5 Main Goal and Statement of the Main Results

Our strategy is to use informations of Z € Q" around points of ¥ to understand its
behavior around the switching manifold. In order to do this, we use the concepts of sliding
and Y-block structural stability introduced in Section to formalize the problem and
we give a complete characterization of the sets 2%, , and (25,.

Let ¥o(SLR) be the set of Z = (X,Y) € Q" such that:
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G) Z € E.O;

Fy) If p € ¥ is either a hyperbolic or an elliptic fold-fold singularity of Z then F’ Y has
no center manifold in V,, N 3¢, where V,, is a neighborhood of p in ¥;

Fy) If p € ¥ is a parabolic fold-fold singularity of Z then F is transient in V, NXs or
it has a hyperbolic singularity at p, where V), is a neighborhood of p in ¥;

F3) There is no connection between Y-separatrices of fold-fold points of Z in ¥*;

Fy) There is no connection between a Y-separatrix of fold-fold of Z and a saddle sepa-
ratrix of F7 contained in X°;

I) F}|ss has a finite number of pseudo-equilibria. All of them are hyperbolic and
contained in int(%?);

I,) F}|ss has a finite number of periodic orbits. All of them are hyperbolic and con-
tained in int(X*);

I3) FY does not present any saddle connection in Y5

B1) There is no orbit of F contained in 3* connecting two tangency points of F2 with
0x*;

B,) Each saddle separatrix of F' is transversal to 9¥° (except at fold-fold points).
R) F% has no recurrent orbit.

Theorem J (Peixoto’s Theorem - Sliding Version). The set Q%, p is residual in Q" and
it coincides with Xo(SLR).

Now, consider the following properties (see Chapter |3| for more details):

E(P): If p € ¥ is an invisible-visible fold-fold point of Z € Q", then the germ of the
involution ¢x at p associated to Z satisfies:

1. ¢X(Sy) h Sy at yo
2. FY and ¢% FY are transversal at each point of 3% N ¢x (X4%);

3. ¢X<Sy) h Fév at p.

E(FE): If p € ¥ is an elliptic fold-fold point of Z € Q" then the germ of the first return
map ¢z at p associated to Z has a fixed point at p of saddle type with both local
invariant manifolds W’ contained in X°.

Remark 4.5.1. If Z has a visible-invisible fold-fold point at p, then the roles of X and
Y are interchanged in the property Z(P).

Let Xy be the set of Z € Q" satisfying the following properties:
S) Z € Qgpp;
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F) If p € ¥ is a fold-fold point of Z then Z(P) and Z(F) are satisfied at p.
Theorem K (Classification of Q%). The following statements hold:

(i) Q5 = Xo;

(ii) Q% is not residual in Q7;

(iii) Q% is residual in S(E), where X(F) is the set of Z € Q" satisfying Z(F). Moreover,
Y(E) is mazximal with respect to this property.

4.6 Robustness of Tangency Sets

In this section we discuss about the structure of the tangency set of Z € =. Firstly,
we analyze the local behavior of an elementary tangential singularity and secondly, some
global features of the tangency set of Z are also discussed.

4.6.1 Local Analysis

Let X € x" be a C" vector field defined around ¥ (which is the common boundary of
M and M~). The local behavior of X at a point p € 3 is a very matured topic and the
results of this section can be found in [104, 95, 97] from a different point of view.

The following propositions provide a geometric interpretation of fold and cusp points
in X.

Proposition 4.6.1. Let Xy € x" having a fold point at py € X, then there exist neigh-
borhoods V of Xo in X" and V' of py in X such that

(a) for each X € V, there exists a unique C" curve of fold points vx C V of X in X
which intersects OV transversally at only two points;

(b) po € 7x, and sgn(X>f(p)) = sgn(X3 f(po)), for each p € yx and X € V.

Proof. Consider the map F : x" x ¥ — R given by F(X,p) = X2f(p). It satisfies
F(Xo,po) # 0. From continuity, there exist neighborhoods V; of X in x" and V; of pg in
¥ such that X2 f(p) # 0 for each X € V; and p € Vi, and the sign of X3 f(po) is preserved.

Let ¢ : (—e1,61) X (—e9,82) — V5 be a local chart of ¥ around p, such that Vo C V7,
and notice that ¢ is a C" diffeomorphism. Consider G : X" X (—¢1,e1) X (—&2,82) — R
given by G(X,z1,29) = X f(¢(x1,22)), and notice that G is a C" function such that
G (Xo,0,0) = 0.

Since X3 f(p) # 0, we have that d X f(po) is a nonzero linear transformation, and since

¢ is a diffeomorphism, it follows that a(G>(XO, 0,0) = dXof(po) o dp(0,0) is nonzero.
X1, T2
We conclude that %(XO, 0,0) # 0 or a—G(XO, 0,0) # 0.
orq 01y

0
Without loss of generality, assume that G—(XO,O,O) # 0, now we use the Implicit
o)

Function Theorem (for Banach Spaces) to find a neighborhood V of X in x" contained
in V, real numbers a,b such that —e; < a < 0 < b < g1, and a C" function « :
V % (a,b) — (—&2,€2) such that G(X,zy,22) = 0 with X € V and z; € (a,b) if and only
if xo = a(X, x1).
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Notice that, for each X € V, the curve cx : (a,b) — (a,b) X (—e2,e3) given by
cx(t) = (t,a(X, 1)), is transverse to each horizontal line x; = xo, with zo € (a,b).
Setting V' = ¢([ag, bo] x (—€2,€2)), for some a < ap < 0 < by < b, it follows that,
for each X € V, the curve vx = ¢ o cx intersects OV (transversally) only at the points
vx(ap) and vx(by), therefore it satisfies part (a) of the statement. In addition, vyx,(0) =
¢(0,0) = po, which proves part (b).
[

Proposition 4.6.2. Let Xy € x" having a cusp point at py € Y. Then, there exist a
neighborhood V of Xq in X", real numbers ag < 0 < by, and a neighborhood V' of py in 3
such that, for each X € V:

(a) there exists a unique C" curve vyx : |ag,bo] — V of tangential singularities of X in
V' which intersects OV transversally at only two points;

(b) there exists ag < t(X) < by such that p(X) = vx(t(X)) is a cusp point of X. In
addition, sgn(X3f(p(X))) = sgn(X3 f(po))-

(c) vx(t) is a fold point of X for every t € [ag,bo] such that t # t(X). In addition,
X2f(vx(8) X2 f(yx(s)) <0, for each ag <t < t(X) and t(X) < s < by.

Proof. From the linearly independence of {df(po),dXof(po), dX2f(po)}, it follows that
dXof(po) # 0. Using the same notation and ideas as in the proof of Proposition we
can find neighborhoods V of X in x", V' of py in X, real number ag < 0 < by and curves
vx : [ag, bo] = V, for each X € V, such that

Xf(p) =0, with X e Vand p €V & p=~x(t), for some t € [ay, by],

and sgn(X?f(p)) = sgn(X3 f(po)), for each X € V and p € V.

In addition, vyx intersects OV transversally at vyx(ao) and vyx(by), and vx(t) € int(V)
for each t € (ag,by). Therefore, item (a) is proved.

To prove (b), consider the C" function H : x" x R® — R3 given by H(X,p) =
(f(p), X f(p), X%f(p)). Since py is a cusp point of Xy, it follows that H(Xy, py) = (0,0,0)
and a—p(Xo,po) is invertible. Now, we use the Implicit Function Theorem for Banach
spaces to obtain a C" function 5 : YV — V (reduce the initial neighborhoods V and V, if
necessary) such that H(X,p) = (0,0,0), with X € V and p € V, if and only if p = S(X).

Reducing V to VN B3~ (int(V)), we conclude that each X € V has a unique cusp point
p(X) = B(X) in V which is contained in int(V'). Since X f(p(X)) = 0, it follows that,
there exists t(X) € (aop, bp) such that yx(t(X)) = p(X).

To prove (c), notice that, for t # t(X), H(X,vx(t)) # (0,0,0), and f(yx(t)) =
X f(yx(t)) = 0. Thus, X?f(yx(t)) # 0 and yx(t) is a fold point.

Let X € V, then h(t) = X2f(vx(t)) is a real smooth function such that h(¢t(X)) =0
and h(t) # 0 otherwise. Notice that h/(t) = dX?f(yx(t)) - v (t).

If W (¢(X)) = 0, then dX?f(p(X)) is orthogonal to 74 (t(X)), and since X f(yx(t)) =
f(yx(t)) = 0 for every t € [ag, byl, it follows that dX f(p(X)) and df (p(X)) are orthogonal
to vy (t(X)). Since span{~% (£(X))}* has dimension 2, we have that {df (p(X)), dX f(p(X)),
dX?f(p(X))} is linearly dependent, which is a contradiction because p(X) is a cusp point
of X.

Therefore, h'(t(X)) # 0 and h(t(X)) = 0. If follows that h(t)h(s) < 0 for each
—e <t <t(X)<s<eg, for some € > 0 sufficiently small. O
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4.6.2 Global Analysis

Now, the tangency set Sx of X € x" is analyzed. We shall prove that a Y-block of a
piecewise smooth vector field Z € = is robust under small perturbations in €2".

Proposition 4.6.3. If X € x" is simple and Sx # (), then there exists n € N such that
Sx = ", S%, where each S is diffeomorphic to the unit circle S'. Moreover, Sx has at
most a finite number of cusp points.

Proof. From continuity of X f in 3, it follows that Sx = X f~1(0) is a compact subset of
Y. In addition, from Propositions [4.6.1) and 4.6.2} it follows that S is locally connected.
Therefore, the connected components of Sx are open in the induced topology of Sx and by
compactness, we can conclude that Sx has only a finite number of connected components.

Let ¢ : S? — ¥ be a diffecomorphism and consider the C” function F' : S* — R given
by F(p) = X f(o(p))-

Notice that, F~1(0) = ¢~'(Sx) and dF(z) = dX f(é(x)) o dp(z), for every x € S%
Since Sx is composed by fold and cusp points, and ¢(p) € Sy, for each p € F~(0), it
follows that dX f(¢(p)) # 0. As d¢(p) is an isomorphism, we conclude that dF'(p) # 0,
and thus 0 is a regular value of F'.

So, F7(0) is a 1-dimensional embedded submanifold of S?. Also, Sy has a finite
number of connected components, and thus F~!(0) has a finite number of connected
components.

Since every connected component is a closed set in ¥, it follows that each connected
component of F~1(0) is a compact connected 1-dimensional embedded submanifold of S?,
and thus, diffeomorphic to S!.

Finally, we use Propositions [4.6.1] and [4.6.2] to construct an open cover of Sy such
that each element of this cover has only fold points and at most one cusp point. By
compactness, we conclude that Sx has just a finite number of cusp points. O]

See Figure [4.1]

Figure 4.1: Structure of the tangency set Sx of a simple vector field X € x".

Remark 4.6.4. Since ¥ is a compact manifold, the tangency set Sx of X € x5 with
Y is diffeomorphic to a union of circles. From Proposition the cusp points occur
as isolated points in a circle of fold points. In addition, if p is a cusp of X, then, there
exists a smooth curve of fold points of X in 3 passing through p, which has their visibility
changed at p. Therefore, the number k of cusp points in a fold circle is always even and
it has k/2 arcs of visible fold points and k/2 arcs of invisible fold points.
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Now, we prove the persistence of the connected components of the tangency set Sx of
X € x5

Proposition 4.6.5. Let X, € X" be a simple vector field such that Sx, # 0, and let Cy be
a connected component of Sx, containing ko cusp points. Then there exist neighborhoods
V of Xo and V' of Cy in X such that, for each X € V:

(a) Sx has a unique connected component in V' containing exactly ko cusp points.

(b) The number of connected components of Sx and Sx, coincide for any X € V.

Proof. Given p € Cy, from Propositions {4.6.1/and 4.6.2}, there exist neighborhoods V,, C X
of pand V, C x" of X, such that, for each X € V,, there exists a smooth curve ~% :
la,, b,] — V, satisfying the following properties:

(i) Y% (t(X)) is a point of same nature of p, for some a, < t(X) < by;
(i1) Y% (t) is a fold point of X for each ¢ # ¢t(X).

In addition, this curve contains all tangency points of X inside V), and intersects V,,
transversally at 7% (a,) and 7% (b,). Notice that 7% is a local parametrization of Cy at p.

Clearly, U = {V,;p € Cp} covers Cp, and from compactness, we extract a finite
subcover of Y. Then, Cy C Vi U--- UV, with V, e, i=1,--- k.
From connectedness of Cy, and the fact that Cy is a circle, we can order Vi,---,V,

such that, for each 1 < i < k — 1, there exists p; € Cy such that p; € int(V; N V1) and
€ CNVyN VL

From the construction of the neighborhoods, p; is contained in both curves 72(0 and
75!, and from continuity of v on X, 7% and +%" have at least a point (for each curve)
in V; N V4, for each X € V; N V;y1 (reduce V; and V; if necessary). From uniqueness,
7% and ~& must coincide in V; N Viyq.

Let V=ViU---UVyand V =V, N---N V. Therefore, for each X € V), we construct
a C" curve vy : |ay,b,] — V which is injective in (aq, b,) such that vx(a1) = vx(b,) and
’YX([GI; bn]) nv;= Im(%{)a =1,k

It follows that, for each X € V, C' = Im(yx) is a connected component of Sy in V
and p € V is a tangency point of X if and only if p € C. The part (a) of the statement
is proved.

To prove (b), let C?,--- C? be all connected components of Sx,. From (a), there exist
disjoint open neighborhoods W; of C? and W of X such that, for every X € W;, Sx has
a unique connected component contained in W;.

Define W =W U---UW; and W = W; N --- N W, and notice that X, f(p) # 0 for
each p € ¥\ W. From continuity, for each p € ¥\ W, there exist neighborhoods V,, of p
in ¥ and V, of Xy in x", such that X f(q) # 0, for each X € V, and ¢ € V.

From compactness of 3\ W, we find a neighborhood V C W of X, such that X f(p) # 0,
for each X € V and p € ¥\ W. Therefore, Sx C W, for each X € V, and we are done.

]

Notice that Proposition 4.6.5| concerns with smooth vector fields defined in manifolds
with boundary. Now, we extend this analysis to elementary piecewise smooth vector
fields.

Let Z € =y. If C is a connected component of S, composed only by fold-regular and
cusp-regular points, then the normalized sliding vector field FY of Z is transversal to C,
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except at cusp points. Indeed, at each cusp-regular point p, FY has a quadratic contact
with C.

At each quadratic contact of FY with C, say it p, the orientation of the orbits of FJ
reaching C' is changed in a neighborhood V of p. More specifically, " reaches C NV in
either negative or positive time, depending on the side of C'\ {p}. Also, if we compute
FY along C, it gives a complete turn between two cusp-regular points.

Hence, the classical index I(F, Sy) of FY along C provides the number of complete
turns that it gives along C, and from Remark [4.6.4] we conclude that it coincides with
half of the number of cusp-regular points of C.

Based on the discussion above, we have the following result.

Proposition 4.6.6. Let Z = (X,Y) € Zy. On each connected component C' of Sz,
composed by fold-reqular and cusp-regular points, the number of cusp-regular points of Z
in C' 1is given by

Ncusp = QI(FéV, C),

where I is the index of F} along C.

Recalling that the fold-fold points of Z € =, are isolated in X, we obtain the next
result directly from Proposition and compactness of 3.

Proposition 4.6.7. Let Z = (X,Y) € Zq such that Sz # 0. Then:

(a) there exists n € N such that S; = U'_,S%, where each S% is diffeomorphic to the
unit circle St and is contained in either Sx or Sy. In addition, Sz has at most a
finite number of cusp-reqular and fold-fold points.

(b) p € Sz is a fold-fold point of Z if and only if p is contained in the intersection of
two circles S% and S%, for some 1 <i,j <n. In this case, Si, C Sx and S}, C Sy.

See Figure [4.2]

M - Tangency set Sy of X
W - Tangency set Sy of YV
@ - Fold-fold point of Z

Figure 4.2: Structure of the tangency set S of an elementary piecewise smooth vector
field Z = (X,Y) with (i) and without (i7) fold-fold points.

Combining Proposition with the transversality of Sx and Sy at fold-fold points
of Z = (X,Y), we obtain the following result.

Proposition 4.6.8. Let Zy = (X, Yy) € Zy be an elementary piecewise smooth vector
field such that Sz, # 0, and let Cy be a connected component of Sz, containing ng cusp-
reqular points and mg fold-fold points, then there exist neighborhoods V of Zy and V' of
Cy in X such that:

(a) for each Z = (X,Y) €V, Sz has a unique connected component C' in 'V containing
exactly ng cusp-regqular points and myq fold-fold points.



116

(b) For each circle Sy of Sx, (resp. Sy,) contained in Cy, there ezists a neighborhood
Vo CV of Sy such that each Z = (X,Y) € V has a unique circle S of Sx (resp. Sy)
contained in Vy, with the same number of cusp-reqular and fold-fold points of Sy.

(c) If two circles Sp and Sg of Sx, contained in Cy intersect themselves at fold-fold points
P1, D2, -, Dok, then, for each Z € V, the correspondent circles of item (b) intersect
themselves at fold-fold points p1(Z), -+, pox(Z). In addition, p;(Z) is sufficiently
close to p; and they have the same visibility.

(d) for each Z = (X,Y) € V, Sz has the same number of connected components of Sz,
for each Z € V.

We see that, for a small neighborhood V of Z, € =, each Z € V has a tangency set
Sz with exactly the same characteristics of Sy, i.e., each circle of Sy is near to a circle
of Sz, and they present the same configuration of intersections. It allows us to conclude
that, if Zy has a X-block Uy, then there exists a neighborhood Vj of Uy in X, such that
each Z € V has a unique Y-block U contained in Vj and it has the same structure as Uj.

We complete the characterization of the tangency sets by exhibiting another property
concerning the number of fold-fold points of Z € =.

Proposition 4.6.9. If Z € =g, then the number of fold-fold points of Z is even.

Proof. In fact, if p is a fold-fold points of Z, then p is contained in the transversal inter-
section of two circles of Sy, say it C and Cs.

From Jordan Curve Theorem, C; divides ¥\ C} into two connected components, and
since (5 is a closed curve, it follows that v must intersect C; again in another point
different from p, say it ¢q. Since Z € =, ¢ is a fold-fold point.

To complete the proof, it is enough to notice that if p is another fold-fold point different
from p and ¢, then by the same argument as above we can find another fold-fold point ¢
different from the others, and the result follows by induction and the fact that Z has a
finite number of fold-fold points (due to compactness of 3). O

Remark 4.6.10. Due to the similarity on the behavior between a fold-fold point and the
vertex defined in [83], it will be referred as a vertex of Sz. In addition, if Sz has no
vertices, then each X-block of Z € Zy has a smooth boundary.

Finally, we notice that, if Z; € =, the transversality of Sy, and Sy, at vertices can not
be dropped. Indeed, if S, is tangent to Sy, at p then 7,,Sx, = T, Sy, and the intersection
between Sy and Sy can be easily broken by translations. In this case, the structure of
the tangency set is quite different for small perturbations of Zj.

4.7 Sliding Structural Stability

In this section we discuss the concept of sliding structural stability and we prove
Theorem [J.

Let Zy € Zy having a 3-block Uy. As we can see in [44] [55], the first element to
construct a semi-local equivalence at Uy between 7, and some Z € ()" is the existence
of a sliding equivalence between Z; and Z. Based on this, we propose a sliding version
of Peixoto’s Theorem for typical piecewise smooth vector fields. It is worth mentioning
that in [83], the authors have mentioned that the case where the boundary is piecewise
smooth can be considered with the addition of some conditions on the boundary.
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The most relevant difference between the classical case and the one to be considered in
Theorem [J]is the existence of persistent singularities of PSVF at vertices in the boundary
(fold-fold points of Zy). Notice that it is a typical object of the nonsmooth universe. Actu-
ally, the boundary changes with the sliding vector field in such a way that the singularity
remains in the vertex.

Recall that Fy, is defined on int(Uy), but it is not defined on dUy. Since Uy is con-
nected, Lemma [3.3.11] allows us to extend F, to 0U, through the normalized sliding
vector field F é\g, and then the stability of Fz, on Uj is determined by the stability of F! g}
on Ug.

Notice that a vertex is a singularity of F é\g, but it is not a critical point of Fy, (the
vector field is not even defined on these points). Thus, if a trajectory of F, reaches a
vertex, it does in a finite time, differently from a trajectory of F é\g :

4.7.1 Proof of Theorem [J]

Let Zy = (X0, Yp) € Xo(SLR). If ¥ = ¥%(Z)), then Fy, is defined in the entire ¥ and
for a small neighborhood V of Z; in )", the sliding vector field F; of Z € V is also defined
in ¥ = 3°(Z). Therefore, the result follows from Lemma and the classical version
of Peixoto’s Theorem.

Assume for instance that 3°(Zy) # 3. Since Z; has a typical tangency set, it follows
that ¥%(Zy) is a compact set which is properly contained in 3\ {po}, for some py € X.
Thus, we perform a change of coordinates in X\ {po} (stereographic projection) which
brings ¥¢(Z,) into a compact subset of R%. Denote this identification by 5(Zy) ~, Mj.

=p
See Figure [4.3]

Figure 4.3: Interpretation of the identification 34(Zy) ~, Mj.

Since Zy € Z, the boundary 0M, is composed by fold-regular points, a finite (even)
number n. of cusp-regular points, p;(Zy), i = 1,---,n., and a finite (even) number ns of
fold-fold points, ¢;(Zy), j =1,---,ny.

Notice that each ¥-block Uy C M of Z; is a path-connected region, and the boundary
0Uy of Uy is composed by a union of circles which are pairwise transversal. Also, the
circles of Uy intersect themselves only at a finite number of points. In addition, each
circle is composed by fold-regular, cusp-regular and fold-fold points of Z;, and two circles
intersect themselves at p if, and only if, p is a fold-fold point of Zy. See Figure [4.4

Now each ¥-block Uy of Zj is path-connected, but Uy = Uy \ {q1(Z0), -+, Gn;(Z0)} is
not connected. Call the closure of the connected components of (70 of all the X-blocks Uy
of Zy by Ri(Zy), i =1,---,1, where [ is the number of connected components of Uj.

From the characterization of Uy, it follows that, each R;(Zy) is a simple polygon with
a; < ny vertices and a finite number of holes in its interior. Notice that, if a; = 0, then
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Figure 4.4: Example of a ¥-block My of Zy = (Xo, Yy). The stable and unstable sliding
regions are represented by the colors blue and red, respectively.

ORi(Zy) is smooth. See Figure [4.5]

0 " -

i)
Figure 4.5: Example of regions R;(Zy): (i) a; = 0, (i) a; = 2 and (4i7) a; = 4.

From Proposition 4.6.8, it follows that, for a small neighborhood V of Z; in Q", the
region My = ¥5(Z) C R? (use the same previous change of coordinates) has exactly the
same configuration as My, for each Z € V. Indeed, My = Ry(Z) U --- U R)(Z), where
R;(Z) is a region with the same characteristics as R;(Zp), i.e., R;(Z) is a simple polygon
with a; vertices and the same number of holes as R;(Zp) in its interior.

Also, for each fold-fold (vertex) q(Zy) of R;(Zy), there exists a unique fold-fold of ¢(2)
of R;(Z) with the same visibility of ¢(Zy), which is sufficiently close to ¢(Zp).

Lema 4.7.1. There exists a homeomorphism h%, : R;(Zy) — R;(Z) which preserves
the type of the singularity of the boundary and carries sliding orbits of Z; onto sliding
orbits of Z, for i = 1,---,1. In addition, h'(q;(Zy)) = ¢;(Z) for each ¢;(Zy) € Ri(Zy),
j=1,npi=1,--- 1

Proof. Let R be one of the regions R;(Z) and let Z € V.

If R has no vertices, then R is smooth and so there exists a diffeomorphism ¥ : R —
é, where R = Ri(Z). Thus, we construct a homeomorphism h : R — R between Z; and
V.7, via the classical Peixoto’s Theorem, and h = ¥ o h satisfies the properties of the
Lemma.

Now, for simplicity, assume that R is a simple polygon with only two vertices ¢; and
@2, which has no holes. We stress that there is no loss of generality in this assumption,
since the following construction can be easily extended to any configuration of R.

Therefore, R has two vertices ¢1 and ¢ which are sufficiently near to ¢; and go,
respectively. See Figure [4.6]

Notice that R = A; U Ay, where A;, i = 1,2, is an open arc with extrema ¢; and ¢
just composed by fold-regular and cusp-regular points of Z;. Recall that, from Lemma
3.3.11, F ZNO is transverse to A; at fold-regular points and it has a quadratic contact with A;
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q G, .
° o
q1 q2

Figure 4.6: Persistence of the region R.

at cusp-regular points, + = 1, 2. Hence, F. é\(’) satisfies all hypotheses of Peixoto’s Theorem,
with exception of the points ¢; and gs.

Now, we must clarify what happens around points ¢; and ¢, i.e., fold-fold points of
Zy. Let q be either ¢, or ¢o. From the description of the sliding dynamics around ¢ given
in Section [3.5.2] we obtain that under hypotheses F} and Fj, there exists a neighborhood
V of ¢ in R?, such that A; is transversal to OV and F g) satisfies either one of the following:

I —

IT —

I —

IV —

(¢) Fj is transversal to OV N R, (ii) there exists a unique orbit T of F} departing
from ¢ and reaching OV N R, and (iii) each orbit passing through another point of
V' N R departs from an arc A;, i = 1,2, and reaches 0V N R at finite time.

(i) Fj is transversal to dV N R, (ii) each orbit passing through a point of V' N R
departs from (OVNR)U (A1 NV)U (A2 NV) and reaches ¢ at infinite positive time.

(¢) Fj is transversal to 9V N R, with exception of a point 2o € OV Nint(R), where
FJ has a quadratic contact with OV N R. (ii) Each orbit of V' N R either departs
from A; and reaches A, or it departs from 0V and reaches 0V

(i) Fg is transversal to dV N R, (i) there exists a Y-separatrix (nodal type) Ty of
g which reaches OV N R at z, and (ii) the orbit passing through another point of
V N R\ Ty either departs from A;, and reaches 0V or it departs from ¢ and reaches
A;, N OV, {iy,is} = {1,2}.

(1) F é\g is transversal to OV N R, with exception of a point 2y € OV Nint(R), where
FJ' has a quadratic contact with 0V N R. (ii) There exist two separatrices (type
saddle) of ¢ which reaches OV at x; and x9, respectively, and z is between x; and
Ty. (7i1) Each orbit through a point of V' N R either departs from 0V and reaches
A;, or it departs from 9V and reaches OV or it departs from A;, and reaches 0V,

{i1,i2} = {1,2}.

See Figure[4.7] We remark that all situations I —V can happen also for negative time.
Let g be the point ¢; which is near to ¢. Since Z is sufficiently near to Zj, it follows
that ¢ € V and F} also satisfies the same property of F}\ (I — V) in V. Hence it is

straightforward to construct a homeomorphism h, : VAR — VN R, such that h,(q) = q,
which carries sliding orbits of Z, onto sliding orbits of Z, see [24], [44], 97, [102].
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oV

Figure 4.7: Description of the sliding dynamics near a fold-fold point: I-V.

Notice that v € 9V N A; is a vertex point in the sense of [83] (it is not a fold-fold
point of Z), and it satisfies that F g} is transversal to both 0V and A; at v. Therefore
FJ¥ satisfies condition B5 of [83].

In addition, we reduce the neighborhoods V' of each fold-fold point of R in order that
there is no trajectory of F! é\g connecting two vertices. Hence it also satisfies condition B6
of [83].

Figure 4.8: Construction of the homeomorphism h%, using distinguished neighborhoods of
hyperbolic equilibrium points, hyperbolic periodic orbits, and quadratic tangency points
of FJi in R\ W obtained via Peixoto’s Theorem.

After doing this process for the points ¢; and ¢o, we obtain two neighborhoods V; and
V5 as above, let W = V3 U V5. Since Z; satisfies the hypotheses from Peixoto’s Theorem
inside R\ W, we use the same methods as used in [83] to extend the homeomorphisms
hg, and hg, into a homeomorphism hy : R — R satisfying the properties of the claim. See

Figure 4.8 O

Thus, we use all the homeomorphisms A%, to construct a homeomorphism h$, : My —
M. Now, returning to the initial coordinates of ¥ — {po}, we obtain a homeomorphism

h3, : 3%(Zy) — ¥%(Z). Hence, considering any extension hy : ¥ — ¥ of hj,, we conclude
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Therefore, ¥o(SLR) C 25, 5. Now, if Z, does not satisfy some condition of ¥y(SLR),
then we conclude that Zy ¢ Q% p (see [44] 82, 83]). It follows that Q%; = Xo(SLR).
Since Yo(SLR) is a residual set in 2", the proof is complete.

Remark 4.7.1. From the proof of Theorem [J, it follows that the construction of the
equivalence h : X — X around fold-fold points can be made in several ways. In particular,
any local equivalence hy at a fold-fold q can extend itself into a sliding equivalence h : X —

Y of Definition [{.3.1]

4.8 Proof of Theorem K

Let Zy € Xy, we shall prove that Z; is Y-block structurally stable. If Z; has no
Y-blocks, then Zy € Q% (see Proposition . Let Uy be a X-block of Zj.

If Uy = ¥, then condition S of ¥, allows us to find a neighborhood V of Z; such that,
for each Z € V), there exists a homeomorphism h; : ¥ — X carrying sliding orbits of Z,
onto sliding orbits of Z preserving the tangential singularities. We follow the same idea as
the proof of Proposition to construct a neighborhood U of ¥ and a homeomorphism
h : U — U satisfying Definition 4.3.2] (N = X), such that h|x= hs, and conclude that
Zy € Qg

Finally, assume that Uy # X. It implies that Sz, # (). Hence, U is a reunion of circles
of Sy, and Sy, intersecting themselves transversally at fold-fold points of Z, (Proposition
4.6.7)).

From Proposition , there exist neighborhoods V, of Z; in Q" and V{ (compact) of
Up in X, such that 0V C ¥¢(Zy), and each Z € V, has a unique X-block U in V; with the
same characteristics of Uy, i.e., Z € V satisfies the following properties:

(i) Up and U have the same number of cusp-regular and fold-fold points of the same
type;

(ii) There exists 9 > 0, such that, if p € QU is either a cusp-regular or a fold-fold
point, then there exists a unique point pyg € OUy of the same type of p such that
lp — pol< €o;

(iii) If pj and p2 are points of AU, connected by a curve Iy of either visible or invisible
fold-regular points contained in OUy, then there exist points p' and p? of U of the
same type of p} and pZ, respectively, and a unique curve I' C 9U of fold-regular
points of the same type of T'g, such that d(I',Ty) < &¢ (d denotes the Hausdorff
distance).

Notice that, it implies that both Uy and U have the same circles configuration, for
each Z € V. Given Z € V, we shall construct a semi-local equivalence between Z, and
Z at U().

4.8.1 Local Description of the Invariant Manifolds of Elemen-
tary Tangential Singularities

Firstly, we use Vishik’s Normal Form Theorem to distinguish the local invariant
manifolds of elementary tangential singularities.
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Fold-Regular

Let pg be a fold-regular point of Zy in dU,, and without loss of generality, assume that
Po € SXO.

From Theorem [3.3.5] there exists a diffeomorphism W Vi, = Ry, (denote the coordi-
nate functions of ¥ by (2, yw, 2v)) such that U(py) = 0, V,,, is a compact neighborhood
Of Po in M7 Rpo = [_l(pO)al(pO)] X [_H(p0)7H<p0)]2 C RS? fOI" some H(po),l<p0) > O,
f(zw,yw, zv) = zy and the orbit through a point p € V), of Xj is carried into the orbit
of Xvo(x, y,2) = (0,1, &y) passing through ¥(p), where = sgn(XZf(po))-

Notice that {(pg) can be taken small enough such that Yy f(q) # 0, for each ¢ € V.
The flow of X is given by

(t+ yo)? vg
9 + 20 g 9 )

Firstly, consider & > 0 and notice that X, is not transverse to the sides of R,, " MT
only at the fold-regular lines L(a) = {(x,y, 2);|z|< l(po),y = 0,2 = a}, a = 0, H(po),
2 2
and sgn(Xo f(p)) =sgn(Xo f(po)), for each p € L(0) U L(H (po)).
Now, the trajectory of X, through (z,0,0) € L(0) reaches z = H(po) at the points

xt = (m,j:,/QH(po),H(po)), when t = +,/2H (py), respectively. Choosing H(pg) suffi-
ciently small, it follows that z* € R,,, for every x € L(0).

In addition, using the Flow Box Theorem, we reduce H (py) and find a diffeomorphism
& : R,y NM~ — R, NM~ such that @|,_o= Id and the orbit of Y{, through p € R,, N M~
is carried onto the orbit of Yy(z,y,z) = (0,0,1) passing through &(p). Considering the
homeomorphism © : V,, — R,, (which is a piecewise diffeomorphism) given by

| U(p) it peMT,
@(p)_{\lloé(p) it peM~,

o (Lo, Yo, 20) = <$07 t+yo, €

we define the local 2-dimensional invariant manifold of X, at p, as:

Whpy = Ch (szg U Wp?)) ’

where Wb = {(:c,t,tQ/Q); lz|< U(po), |t|< \/QH(pO))}, and W, = {(,0,1); |2]< I(po), —H(po) <
t <0}.

Remark 4.8.1. Notice that © preserves the foliation generated by Zy and ZJ = ()A(E, }70),
however it does not preserve the orientation of the orbits.

It is worth mentioning that, since W,, depends exclusively on the flow of Xy and Y
and on the tangential curve of Xy with X, it follows that the existence of W, does not
depend on ©. Although, © provides a complete characterization of W, .

In this case, the foliation F generated by Z; in int(V,,) is characterized in the following
way. Let NN, be the normal vector of ¥ at p and consider the 2-dimensional manifold
A ={p+AN,; A > 0,p € Sz, }NV,,. Thus, each leaf of F\ W, is either a piecewise smooth
curve which passes transversally through a point of ¥ and intersects 9V, transversally
in two points (one in M and another in M ™) or it is a smooth curve which passes
transversally through a point in A and intersects 0V}, in two points of M*. See Figure
4.9
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Figure 4.9: The local invariant manifold W), for a visible fold-regular point.

Now, if £ < 0, we define the same objects by changing the roles of L(0) and L(H (po)),
and we consider W, = {(z,y,1); |2|< l(po), —H(po) <t <0, y=0o0ry=+,/2H(po)}.
Also, in this case, the leaves of the foliation passing through A are also piecewise smooth,

intersect 0V}, at two points of M~ and intersect X at two points, which are in opposite
sides in relation to Sz,). See Figure [£.10]

L(H(po)).

Rpo

Figure 4.10: The local invariant manifold W), for an invisible fold-regular point.

Remark 4.8.2. Notice that, if Xy € X" is a smooth vector field defined in X+ having a
fold point at py, then we construct the local invariant manifold of Xy at py in the same
way.

Cusp-Regular

Let po be a cusp-regular point of Z, in 0U,, and assume that py € Sk, .
Following the same arguments and notation as used in Section [4.8.1] there exists a
diffeomorphism ¥(py) = 0, V,,, such that f(zy,yw,2¢) = z¢ and the orbit of X, through
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a point p € V,, is carried into the orbit of /)%(a:, y,z) = (1,0,&x% + y) passing through
U (p), where £= sgn(X3f(po)) in this case.

We only consider § = 1, since the invariant manifolds obtained when { = —1 are
completely analogous. The flow of X is given by

t+10)3 x?

QOXNO(t;any())ZO) = <t+l‘07 Yo, 3

Now, X, is not transverse to the sides of R,, N M only at the points of the curves

L(a) = {(z,y,2); |2[< \/l(po),y = —2% 2 = a}, a = 0, H(po). In addition,

sen(Xo f((x,y,2))) = sgn(z),

for each (z,y,2) € L(0) U L(H(py)) with 2 # 0, and (0,0, a) are cusp points of X, such
that sgn(?(vogf(((),(),oz))) =1

Let, p, = (z,—22,0) be a visible fold-regular point of L(0) (x > 0), then the orbit
through p, is given by v,(t) = (t + z, —22, (t + x)3/3 — 2%t — 23/3). In particular, if
ho = 3/4H(py) > 0, then 7, intersects z = H(po) at (—hg, —h3, H(po)) € L(H(po))
(take H(po) such that hg < /l(po)). Also, notice that 7, is the orbit through the visible
fold-regular point (—hg, —h3, H(po)).

In addition, =y, is tangent to the planes z = 0 and z = 4/3h3 = §;, and it is contained
in the plane y = —h?. Also, 7, intersects z = 0 at the points (h, —h?0) and P, =
(—2h,—h2,0), and it intersects z = §, at Qy = (—h, —h?,d,) and (2h, —h?% d;). Notice
that, P,, @, — 0 and 6, — 0 as h — 0. Therefore, it presents the behavior illustrated in
Figure 4.11} Consider W5 (0) = {7.(t); 0 <z </l(po), t € I, = [T_(x), T} (x)]}, where
I, is the maximal interval such that v, (I,) C R,,.

Changing the roles of z = 0 and z = H(py), we define an analogous 2-manifold
W (H(po)) = {ox; (L2, —2% H(po)); —\/l(po) <z <0, tel, =[T_(x), T (x)]}, where
I, is the maximal interval such that ¢+ (1,;z, —2%, H(po)) C R,,. See Figure .

Notice that, W;"(0) and W, (H(po)) intersect themselves transversally at the curve
Vho- Let Wi =W, (0) U W, (H (po)) and consider S = (W, US) N {z =0}, hence the
invariant manifold W, is constructed as in the fold-regular case, but herein we take it as
the image of the flow of Y; through S, for —H (po) < t < 0.

In this case, the local 2-dimensional invariant manifold of Zj at p, is given by W, =
o~ (W uw,,).

In Figure the foliation of Z, in R,, is described. For simplicity, we characterize
it on each plane y = k, where —l(py) < k < I(py). Notice that R,, is partitioned in
regions where the behavior is of type either transversal or visible fold-regular or invisible
fold-regular, and the formal description of this regions can be found in Section [4.8.1]

Fold-Fold

If pg is a fold-fold point of Zj, then we construct the invariant manifolds of X, and Y;
for the fold-lines of X, and Y}, respectively, by following Section (see Remark .
The resultant manifolds can be seen in Figure for each type of fold-fold singularity.

In addition, if py satisfies the conditions of local structural stability at py, then The-
orems 3 and 4 in [44] allows us to construct a homeomorphism h,, : V,, — V,, which
carries orbits of Z, onto orbits of Z.
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Figure 4.11: The local invariant manifold Wg(O) for a cusp point and its description in
the slice y = —h? of R,,.

Also, notice that, all trajectories outside the local invariant manifolds intersect 0V,
transversally, and if we consider a neighborhood V' of ¥ in M sufficiently small, an orbit
contained in V' can intersect ¥ more than one time only inside neighborhoods V, of elliptic
fold-fold points.

Therefore, there exist only local first return maps in V', and since hy, is a local equiva-
lence between Zy and Z at py, we extend it into a semi-local equivalence between Z, and
Z at ¥. Hence, local first returns are not an obstruction to have semi-local structural
stability at .

4.8.2 Existence of the Invariant Manifold of a Tangency Set

Now, we must show that the local invariant manifolds of the elementary tangential
singularities give rise to global invariant manifolds of Sy, defined in a neighborhood A of
the entire ¥ in M. The process mainly consists in the use of the compactness of ¥ to
concatenate the local manifolds in a smooth way.

Remark 4.8.3. The term global invariant manifold is used to emphasize that it is defined
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.................... O
h L T
P,
h<—hy "
____________________ Qb
Th
Py =4,
—hg<h<0

Figure 4.12: The local invariant manifold W5 (H (po)) for a cusp point and its description

in the slice y = —h? of R,,. We denote by P,, @ and 7, the elements analogous to
Py, @y and vy, in Figure , respectively.

in a neighborhood of the entire . In fact, it is a collection of local invariant manifolds.

Let N, be the normal vector of X at p pointing toward X. Consider the following
A-lamination of ¥
Ey={p+ AN,; pe X},

where \ € R.

Let p € X, since Zy € =y, p is either a regular-regular or a fold-regular or a cusp-
regular or a fold-fold point of Z,. Hence, let V,, be a compact neighborhood of p in M
such that:

(i) If p is regular-regular, then each ¢ € ¥ NV, is a regular-regular point of Z, and
Xo, Yo are transverse to OV);

(ii) If p is an elementary tangential singularity, consider the neighborhood V), given in

Section [4.8.1]
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W (H(po))
) ERTANG! W (H(po)) = Wy (0)
y < —hj y = —hj
Wl (H(po)) Wb (H(po))
w0 Wi (0)
—h3<y<0 y=0
|:| Regular Sector
|:| Invisible Fold Sector
|:| Visible Fold Sector
y >0

Figure 4.13: Foliation generated by Zj in the slices y = k (k is a constant) of the neigh-
borhood R,, N{z > 0}.

From compactness of X, we find a finite subcover V.=V, U---V, of ¥. Thus, there
exists A* > 0 such that A = Uy¢j_x- x«j2 is contained in V.

Notice that, for each p € Sz, the laminations ¥, NV}, correspond to the planes
z = £k in the neighborhood R,, for some k > 0. For simplicity, we assume H(p) = k.

Since A is constructed by laminations of ¥ in the direction of the normal vectors of
Y, it follows that the same tangency set Sz, persists on OA. See Figure 4.14]

Figure 4.14: Example of neighborhood A, where Sz, = {(x,y,0); 2* + y*> = 1}. The
distinguished points represent cusp points of Xj.

Recall that the local invariant manifolds of an elementary tangential singularity po
depends only on the tangency set of Zy with z =0, z = H(p) and z = —H (p). Therefore,
they depend intrinsically on the tangency set of Z; with ¥ and > -.

It is enough to prove that all the local invariant manifolds characterized in Section
extend themselves to global invariant manifolds of Sy, .



128

In order to clarify these ideas, we explain how the local invariant manifolds originate
a global invariant manifold when Sz, = Sx,, and S, is a connected set composed by
fold-regular points and two cusp-regular points.

Let p,q be the cusp-regular points of Z;, therefore Sx, is composed by two arcs A,
and Ay with extrema p, ¢, such that the fold-regular points of A\ {p, ¢} (resp. A2\{p, q¢})
are visible (resp. invisible).

At each point p € Aj, consider the neighborhoods V,, found in Section {#.8.1 From
compactness of Ay, a finite number of them covers Ay, say it V4, - - -, V,,. By connectedness,
they intersect each other at least in one point. See Figure [4.15]

//’ A1 T~
vi| ] S| W
4 N\
p >q
N /|

Figure 4.15: Arcs A; and Ay of Sy,.

Now, in each V;, the local manifold is given by the image of the flow ¢x,(¢;p), with
T (p) <t <T.(p), where T" (p) < 0 < Ti(p) and p € A, NV;. Let ¢ € A; Nint(V; NV;),
and restrict the values of ¢ to the interval with extrema T, (q) = min{T"%7(¢)} and T_(q) =
min{T"/(¢)}. Tt is enough to reduce the heights of the neighborhoods R; to concatenate
the local manifolds. Repeating this process, we extend the manifolds to the arc A;
obtaining W;t.

Notice that, in the neighborhoods V; and V,,, we have cusp-regular points, therefore,
the invariant manifold in V5, U --- U V,,_; concatenates with the local invariant manifolds
of the cusp-regular points having visible fold-regular points.

The construction of the global manifold of the arc Ay is done in an analogous way.
Notice that, in this case, the concatenation has to be done in the visible fold-regular
points at the lamination. Following this process, we obtain the global invariant manifold

W5 (see Figure [4.16]).

4.8.3 Construction of the Homeomorphism

Finally, we construct the semi-local equivalence between Z; and Z at U,. Firstly,
define h : Uy — U by using Theorem [J]

Consider the neighborhood A of the previous section. From Remark [1.7.1] if py € 90U,
is a fold-fold singularity, then we extend A into a neighborhood W,, = V,, N A, i.e.
h : Wy, — W, through the remarks in Section {.8.1]

Since h carries the tangential singularities of Z; onto the tangential singularities of Z
of the same type, then h carries QUy onto QU. Therefore, we use the flows of Zy and Z
to carry the global invariant manifolds of Z; onto the global invariant manifolds of Z.

Recall that, outside the global manifolds, the flows of Z; and Z are transversal to OA.
Consider any extension of h into a small compact neighborhood W of Uy U U in X.
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Figure 4.16: Global manifolds W5 (a) and Wi (b).

Let V.= {p+ AN,; p € W, X € [-X*,\*]}, then, we extend h into V through the
flow of Zy and Z. In fact, the behavior of both piecewise smooth vector fields are trivial
outside global manifolds, and we use the local foliations characterized in Section [4.8.1and
transversality arguments to do this extension (see [39, 44, 05| 97] for more details).

It follows from the construction that h carries orbits of Zy onto orbits of Z. Hence Z,
is semi-local equivalent to Z at U,.

Conclusion of the Proof

We have shown that 3y C QF. From Local Theory, it is easy to see that, if Zy ¢ 3
then Zj is not semi-locally structurally stable at 3. Therefore, we have proven item (7).
Items (ii) and (7iz) of Theorem [K]| follows directly from Corollary 4.1 in [44].

4.9 Conclusion and Further Directions

In this chapter, we have found necessary conditions for the structural stability in €.
First of all, remark that all the results stated in Section hold for vector fields having a
compact oriented switching manifold > (without the simply connectedness assumption).
In fact, the proofs of Theorems [J] and [K] for Filippov systems having compact oriented
non-simply connected switching manifold ¥ follow in the same way as those ones exhibited
here. For simplicity, we have considered Y diffeomorphic to S? just for technical reasons.

We highlight that the problem remains open for non-orientable switching manifolds.
In this case, even the definition of piecewise smooth vector fields is still not established.
It certainly presents lots of mathematical challenges.

The behavior of continuous piecewise smooth vector fields is trivial around the switch-
ing manifold, nevertheless they may present a completely non-trivial dynamics from the
global point of view. In light of this, the characterization of structural stability is a rather
challenging problem.

Finally, the most natural extension of this work is to study global continuations of
the invariant manifolds defined in Section £.8.2] It originates applications in generic
bifurcation theory.
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Chapter

Quasi-Generic Loops in 3D Filippov Systems

@ @IMING to contribute to the characterization of structural stability of 3D Filippov

LA systems from a global point of view, we analyze a homoclinic-like loop at a fold-
regular singularity. We provide conditions on a piecewise smooth vector field to have a
loop which is robust in one-parameter families. Moreover, the basin of attraction at the
loop is computed as well as its bifurcation diagram.

5.1 Introduction

The study of global connections in smooth systems is a challenging problem which
has been extensively studied throughout the last decades due to its importance in the
understanding of the dynamics of a smooth vector field. In fact, once the singular elements
(singularities, limit cycles, etc.) of the system are detected, the dynamics of the system
inside a region is determined by the existence or not of global connections between them.

In the nonsmooth context, one finds new types of singular elements, such as the so-
called -singularities (see Definition , and thus, it gives rise to an extensive class of
global connections which has no counterparts in the smooth context.

Therefore, in order to follow the Peixoto’s program to characterize the structurally
stable 3D Filippov systems from a global point of view, it is imperative to understand
non-local connections between generic Y.-singularities.

5.1.1 Historical Facts

In dimension 2, there are plenty of works dealing with global connections to -
singularities of Filippov systems. In fact, homoclinic-like loops at a fold-regular singularity
have been studied in [67, 87], and in [40], the authors have described the bifurcation di-
agram of such connection. In [2], a review on such results is provided. Also, in [I7], the
authors regularized the bifurcation diagram of this kind of connection. It is worth men-
tioning that, such loops appear in the unfolding of more degenerate phenomena, such as
the fold-saddle singularity studied in [2I] and the homoclinic-like loop at a visible-visible
fold-fold singularity approached in [79].

As we have seen in Chapter [2, we provide a method to deal with X-polycycles in
planar system in a general scenario, and we also study the generic bifurcation of some
codimension 2 global connections to Y-singularities. As far as we know, this topic has not
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been treated for 3D Filippov systems in the literature. So, with the recent development
of planar phenomena, it is natural to extend these studies to dimension 3.

5.1.2 Description of the Results

Now, we provide a roughly description of the results of this chapter. We consider global
connections involving fold-regular singularities in 3D Filippov systems. More specifically,
we present a class Ay of Filippov systems Zj having a homoclinic-like loop I'y at a fold-
regular singularity.

We prove that Zy € A; is generic in one-parameter families. It means that, given a C"
family of Filippov systems Z(\), A € [—&o, €], such that Z(0) = Z, € Ay, then any one-
parameter family Z sufficiently near to Z (in the C” topology) has a point Ay € [—&y, &¢]
such that Z(\g) € A;.

We provide the bifurcation diagram of Z; € A; around I'y under certain generic
conditions. Also, we compute the basin of attraction of I'y. It is worth mentioning that,
the use of sliding features of Z; is crucial to obtain these results.

Finally, we introduce a notion of weak equivalence in A; and we obtain a modulus of
stability which allows us to conclude that there are infinitely many different elements in
A1 under this equivalence relation.

This chapter is organized as follows. In Section we discuss some scenarios where
a 3D Filippov system admits a global connection involving a fold-regular singularity. In
Section we present the Filippov systems approached in this chapter and we state our
main results. Section is devoted to present the necessary tools to prove our results. In
Section we present some models realizing the bifurcation diagram presented in Section
in order to illustrate the result. Finally, in Section [5.6] we prove the main results stated
in Section 5.3l

5.2 A discussion on some global connections

Throughout this chapter, we consider Filippov systems defined in R3 with switching
manifold ¥ = f71(0), where f : R* — R is a C" function having 0 as a regular value (see
Chapter [I)). Denote the set of such systems by " = x" x x", where x" is the space of C"
vector fields. Endow 2" with the product topology.

Let Zy = (Xo,Yy) € Q" be a Filippov system having a visible fold-regular singularity
at py € X (see Definition [3.3.7). Denote the flows of Xj and Y; by ¢x,(t;p) and ¢y, (¢;p),
respectively. Assume that Zj satisfies the following set of global hypotheses (G):

(G1) There exists T, > 0 such that p§ = px,(T;po) € 2;
(G2) T§ ={ox,(t;po); t € (0,T1)} € M+ and X, is transverse to ¥ at p{;
(G3) There exist a point gy € X and a regular orbit T'f of Z, connecting pj and gp.

Without loss of generality, assume that I'J in (G3) is a regular orbit of Y contained
in M~. Using properties of a fold-regular singularity (see [104]) and the transversality
condition (Gs), we define the germs Py : (Z,p0) — (X,p¢) and Py : (3, p5) — (2, o)
induced by the flows of X and Yj, respectively (see Figure . Thus, consider

Po="P, o 7)8-, (521)

and notice that the restriction of Py to 3¢ is a first return map of Z; in X.
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Figure 5.1: Action of the maps Py and P, .

Remark 5.2.1. Notice that, in Figure the points py # po have the same_image
through Py". We will see that Py is a non-invertible C" map and its restriction to X¢ is a
C" homeomorphism.

Since py is a visible fold-regular singularity, it follows that Z, has a (compact) C" curve
o C X of visible fold-regular singularities containing po (see [104]). It follows that, o is
brought to a (compact) C" curve {y C 3 by Py such that gy € (p.

Also, still from Local Theory, the sliding vector field Fy, of Z, is transverse to the
curve vy anywhere, and there exists a neighborhood Vj of int(7y) in ¥ (with compact
closure) such that:

i) Yj is transverse to 3 at any point of Vj;

ii) 7o divides Vj into two connected components, one contained in ¥* and the other one
contained in X¢;

iii) Fy, is C"-extended onto V (see Lemma (3.3.11]).
See Figure

Figure 5.2: Neighborhood Vj C X.

For our purposes, we assume that (;, C V5. Accordingly, we consider Py : Vo — V4.
In this case, we distinguish the following situations: (a) (o C X*, (b) (o C X¢, (¢) (o is
transverse to Yo at go, and (d) (o is tangent to o at gy (see Figure [5.3).

Notice that configurations (a), (b) and (c¢) are robust in Q". However, configuration
(d) is easily broken by small perturbations. In fact, the degree of degeneracy in case (d)
depends on the degree of contact between 7 and (y at go. The most degenerate situation
occurs when vy = (p (as shown in Figure [5.3).

Now, we discuss the possible dynamics concerning the robust situations (a), (b) and

(c).
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Figure 5.3: Relative positions between the curves 7, of fold-regular singularities and its
image (o through the flow of Zy: (a) (o C X%, (b) (o C X¢, (¢)vo M (o and (d) (o = 7o-

5.2.1 Cases (a) (y C ¥* and (b) ¢, C X

If (o C %€, then the dynamics of Zj is trivial around the orbit connecting py and ¢q.
In fact, consider

i) a section IT™ at py such that II is the restriction to M ™ of a local transversal section
of Xy at pg which intersects > at 7p;

ii) a section I~ which consists on a neighborhood of py intersected with 3¢;
i) =TT UTll".

Thus, using the local structure of a fold-regular singularity (see [104]), we obtain that
all orbits of Z; in a neighborhood of pg intersect I1. Also, for a neighborhood Ng of ¢
contained in ¥¢ we construct a tubular flow box between II and N, along the orbits of
X and Yy (see Figure .

Now, consider that (5 C >*. As we have seen, each point p € 7, is brought to a point
Po(p) € (o through the flow of Z, (orbits of Xy and Yp). Since Fy, is regular in V; and
transverse to 7, each point ¢ € (y reaches v at a unique point v(g) through a sliding
trajectory of Zy. It defines the C" map

o 1 p € Y01 — Y5(Po(p)) € 70, (5.2.2)

which induces a dynamics in the fold curve ~y. We refer to ¢y as the fold line map
associated to Z.
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Figure 5.4: Tubular flow of Zy between Il and Nj.

In this case, the orbits of Xy, Y, and Fz, connect 7, to itself and they give rise to a
Zo-invariant manifold M which is a piecewise-smooth 2D-cylinder or a piecewise-smooth
Moébius strip, depending on the identification provided by . Also, the dynamics of 7
in M is completely characterized by the dynamics of ¥y in vy. Thus,

(Slg) if po € 70 is a regular point of vy, then the dynamics of Zy in M is trivial. It means
that there are no minimal sets contained in M;

(Sls) if po € o is a fixed point of 1y, then Zy has a sliding connection I'y through pg
contained in M (see Figure .

M
N

(a) (b)

Figure 5.5: A sliding connection I'g of Zy in M where M is a piecewise-smooth cylinder
(a) or a piecewise-smooth Mébius strip (b).

If (Slg) is satisfied, then the sliding connection T'y of Z, can be persistent, depending
on the properties of ¥y at pg. In fact, we mention the following cases.

i) If pg is a hyperbolic fixed point of 1, then each Z € ()" nearby Z, presents a sliding
connection I' near I'y, in the Hausdorff distance, with the same stability of I'y;

ii) If po is a fixed point of ¥y of saddle-node type, i.e. |1;(po)|= 1 and |1 (po)|# 1, then
Zy belongs to a codimension one submanifold of ". A versal unfolding of Z; in Q"
around [’y is illustrated in Figure [5.0]
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Figure 5.6: A versal unfolding Z, of Z; around I'y when conditions (Slg) and (ii) are
satisfied (saddle-node bifurcation).

Remark 5.2.2. Observe that, if po is a fived point of 1y having a higher degree of degen-
eracy, then Z € Q" nearby Zy presents complicated sliding features contained in M (which
is a Z-invariant manifold nearby M having the same topological type of M) bifurcating
from T'.

5.2.2 Case (c): () and v, are transverse at ¢

Assume that Zy = (Xo, Yy) € Q" satisfies (G) and the following assumption

(T):¢o N0 = {qo} and ¢y th o at go.

If go # po, then for Z ~ Z, (= stands for nearby), hypothesis (T) implies that there
exist curves in 3, v and ¢, analogous to 7o and (p, satisfying ( Ny = {q} for some ¢ = ¢
and ¢ M v at ¢. Also, there exists p = py which is mapped to ¢ through the flow of Z,
and q # p. It follows that the connection between py and ¢ of Zj is persistent for Z € Q"

nearby Z (see Figure [5.7).

Figure 5.7: A robust connection I'y of Z, between py and ¢q.

Now, if hypothesis
(H): po = qo,

is also satisfied, then Z; has a homoclinic-like loop T'y at py (see Figure . In contrast
to the previous case, this phenomenon is not persistent in €2".
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- Y

N

Figure 5.8: A homoclinic-like loop I'y of Z; at a fold-regular singularity po.

5.3 Quasi-generic loops

Our aim is to describe the bifurcation diagram of vector fields Z, € Q" satisfying
hypotheses (G), (T), and (H) around its homoclinic-like loop I'y at po (see Figure [p.§),
and characterize the dynamical features arising from such connection.

Generally speaking, we prove that, under some constraints, such connection is generic
for one-parameter families in 2". In what follows, we consider some classes of vector fields
in 2" and we state our main results concerning this topic.

Consider Z € " satisfying (G), (T), and (H), and recall that the sliding vector field
Fy, is defined in the entire neighborhood V; (via extension) and it foliates Vg by curves
transverse to 7. In light of this, the fold line map ¥y : v9 — 7o given in ([5.2.2) is still
defined herein in the same way. Nevertheless, in this case, 1)y is defined through orbits of
Xo, Yp and virtual sliding orbits of Z; for some points of .

In fact, remark that py splits the curve 7, into two connected components named C’,}
and C2. Analogously, po splits (o into C¢ and CZ. Without loss of generality, assume that
C’i and Cg are mapped onto Cé and Cg through the orbits of Xy and Y, respectively.
Now, one of the components of (y, say it Ccl, is contained in »° and the other one is
contained in X°.

Thus, the points p € vy and ¥y(p) € Yo are connected by an orbit of Z; if, and only

if p e @ (which is mapped onto C'Cl C X3¢ by orbits of Zy). It follows that only the
restriction of ¢y to @ describes the dynamics of Zj.

Definition 5.3.1. Define Ay as the set of vector fields Zy € ) such that
i) Zy satisfies hypotheses (G), (T) and (H);
it) Fy, is transverse to (y at po;
iii) The fold line map 1o : yo — Yo induced by Zy has a hyperbolic fized point at py.

If Zy € Ay, then we say that Zy has a quasi-generic loop 'y at the fold-regular
stngularity p.

Remark 5.3.2. Throughout the text, we also refer to a quasi-generic loop at a fold-reqular
singularity simply by quasi-generic loop.

In the result below, we show the robustness of quasi-generic loops in one-parameter
families of Filippov systems.
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Theorem L. Given Zy € Ay. There exist a solid torus Ay around I'y, a neighborhood V,
of Zy in Q" and a C" function ¢ : Vo — R, such that ((Zy) =0, and {(Z) = 0 if, and only
if, Z has a unique quasi-generic loop I' at a fold-reqular singularity p contained in Ay.
Furthermore, 0 is a regular value of ¢, and thus Ay is a codimension one C"-submanifold

of Q.
Now, we distinguish the following situations
(Cyl): 9 preserves the connected components C; and Cg of o3
(Mob): 1 exchanges the connected components Cg and Cg of .

Define A{ and A as the subsets of A; containing the Filippov systems Z, satisfying
(Cyl) and (Mob), respectively, and consider the cases

(IN): The hyperbolic fixed point py of vy is attractive;
(S): The hyperbolic fixed point py of 1y is repulsive.

Notice that, if Zy € A{, then ~y self-connects through orbits of Xy, Y, F. 7, and virtual
orbits of Fz, as a topological cylinder. Nevertheless, if Zy € AM, then v, self-connects as
a topological Mobius strip. See Figure [5.9

Figure 5.9: Quasi-generic loop I'y of (a) Zy € A{ and (b) Z, € AM.

It is worth mentioning that, if Z, € A{, all the iterations of the fold line map 1
(defined in the fold line 7y) captures the dynamics of Zy, since ¢o(C1) C C! and thus

Yolgr defines a dynamical system in 07% Although, it does not hold when Z, € A} since
el —
Yo(C1) C C2, which means that o|zr can not be iterated. In Section |5.4.4) below, we
Y

discuss how to adapt the fold line map 1y to correctly describe the dynamics of Z, € AM
in 7.

In the remaining results of this section, we consider only vector fields Z, € A{, in
order to provide an amenable analysis, nevertheless we believe that the same conclusions
hold for vector fields in A} through slight modifications.

The next result is devoted to identify minimal sets bifurcating from a quasi-generic
loop of a Filippov system Z, € AY.

Theorem M. Let Zy € AY having a quasi-generic loop Ty at a fold-regular singularity
po € X and consider the torus Ag given by Theorem . If Z : (—e,e) = Q" is a one-
parameter C1 family such that Z(0) = Zy and Z is transverse to Ay, then the following
statements hold.
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1. If Zy satisfies condition (N), then Z(y) has a unique closed connection I', in Ay
which is a sliding cycle when v < 0 and an attractive hyperbolic crossing limit cycle
when v > 0, or vice-versa (see Figure .

2. If Zy satisfies condition (S), then Z(y) has a unique hyperbolic crossing limit cycle
for either v < 0 or~v >0, and it has at most a unique sliding cycle in Ajg.

r
r, o

5 @y i@
N ,

N

v <0 v=0 v >0
Figure 5.10: A versal unfolding of Z, € A¢ satisfying (N) in Q.

Now, we combine the informations encoded by the first return map and the sliding
dynamics to analyze the stability of a quasi-generic loop.

Theorem N. Let Zy € AY having a quasi-generic loop Ty at a fold-regular singularity
po € X and consider the torus Ay given by Theorem[L]. The following statements hold.

1. If Zy satisfies condition (N), then Ty is an asymptotically stable minimal set;

2. If Zy satisfies condition (S), then there exists a piecewise-smooth curve [3 passing
through py such that the basin of attraction of Iy is given by

B ={p € Ay; there ezist a time t(p) such that vz, (t(p);p) € B} .

Furthermore, B has one of the two connected components of 5\ {po} contained in
3% and the other one contained in >°.

We introduce a notion of equivalence in A; which allows us to obtain a modulus of
stability for Z,.

Definition 5.3.3. Let Z,Zy € Ay having quasi-generic loops I' and I'y at fold-reqular
singularities p € X and py € X3, respectively. We say that Z and Zy are weakly topolog-
ically equivalent at (', Ty) if there exist sufficiently small solid tori Ay and A containing
[y and I, respectively, and an order-preserving homeomorphism h : A — Aq such that

i) ANY and Ay MY have connected curves Sy and Sz, of fold-reqular singularities of
Z and Zy intersecting 0A N % and 0Ay N X transversally, and there are no more
Y-singularities of Z and Zy contained in AN and Ay N %, respectively;

it) h: Sz — Sz, is a diffeomorphism such that h(p) = po;
iii) h(I') =Ty and h(ANXE) = Ay N E;
i) h carries orbits of Z onto orbits of Z,.

Remark 5.3.4. Notice that, it follows from Section [5.3 that, given Z € Ay, we can find
a sufficiently small torus A, such that item (i) of Definition m is satisfied.
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Finally, given Z, € Ay, we define the modulus of weak-stability of Z, as
W(Zy) = 1 (po)-

Theorem O. Let Z, Zo € A have quasi-generic loops Ty and Fo at fold-reqular singular-
ities po, po € % of type (S), respectively. If Zy and Zo are weakly topologically equivalent
at (Do, Ty), then -

W(Zo) = W(Zo)'

A direct consequence of Theorem D is given in the next corollary.

Corollary 5.3.5. If Zy € AY satisfies (S), then Zy has oo-moduli of weak-stability in AS.
It means that there are infinitely many Filippov systems Z, € A{, n € N, such that Z,,
and Z,, are not weakly topologically equivalent, for every ny,ne > 0 and ny # na.

5.4 Structure of a homoclinic-like loop

In this section, we characterize the first return map P, and the fold line map g
associated to a homoclinic-like loop I'y of a system Z, € )". Furthermore, given a small
solid torus Ag around I'y and a vector field Z sufficiently near to Z,, we associate a first
return map Pz and a fold line map vz which describe the dynamics of Z inside Aj.

Let Zy = (Xo, Yo) € Q" satisfying (G), (T) and (H). In order to characterize the first
return map P, given in (5.2.1)), we shall write it as

Py =Dy o T,

where Dy is a diffeomorphism and 7 is a C" map describing the trajectories around a
fold-regular singularity. We refer 7, as the transition map of Z, at the fold-regular
singularity py (see Section for a planar version of transition maps).

In Section [5.4.1] we construct and characterize the transition map 7,. In Section[5.4.2]
we describe the complete first return map Py. Finally, in Section [5.4.3] we characterize
the fold line map .

5.4.1 Transition Map

Without loss of generality, assume that pg is a fold point of Xy and a regular point of
Yy. In this case, the transition map will depend only on the smooth vector field Xj.

Since pp is a visible fold-regular singularity of Zy, it follows from Proposition [4.6.1]
that there exist ag < 0 < by, and neighborhoods V, of Zy in 2" and Vj of py in ¥ such
that:

i) Vy is compact;

ii) each Z € V, has a curve 7z : [ag, bo] — Vo, composed by visible fold-regular singular-
ities of Z;

iii) Vo \ Im(7z) has only regular-regular points of Z;
iv) 7z intersects Vj transversally at yz(ag) and vz(by);

v) vz(t) € int(Vp) for each ¢ € (ag, by);
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Vi) Y2 (0) = Po-

From Vishik’s Normal Form Theorem (see Theorem [3.3.5)), there exist neighborhoods
Uy C R? of py and W, C R3 of the origin such that V, C Up, and a local coordinate system
(x,y,2) : (Up,po) = (Wpy,0) such that f(x,y,z) =z and X, is given by

XO(L?J,Z) = (Oa ]-7y)

We denote the set Vj in the coordinates (,y, z) by Vp. Notice that Im(vz,) coincides
with a segment of the z-axis in the plane z = 0 containing the origin, and the flow of X

is given by : » ,
y+1)? oy )

2 2

Given € > 0 sufficiently small, let 7 be a local transversal section of X, at pi =
(0,1/2¢,¢) contained in the plane z = ¢ and notice that the origin is connected to p
through an orbit of X,. From the Implicit Function Theorem for Banach Spaces, we
reduce V, such that, for each Z = (X,Y) € V,, a point (z,y,0) € V; reaches 7 through
the flow of X for a positive time t(X;x,y).

Therefore, given Z = (X,Y) € V;, we define the full transition map 7 : Vo — 7 of
Z by

ox,(tx,y, 2) = <w7y+t,z+

Tz(x,y,0) = ox (H(X;2,); 2,9, 0), (5.4.1)
and notice that the dependence of T on Z is of class C". See Figure [5.11]

Tz

Figure 5.11: Full transition map 7z for a vector field Z near Zj.

Using the expression of the flow of X, an easy computation allows us to see that

To == Tz, is given by
To(z,y,0) = (z,/y* + 2¢, ).

Finally, for each Z = (X,Y) € V), we construct a finite cover of Im(vyz) by domains
of Vishik’s coordinate system (due to the compactness of 7z), to see that the orbit of
X connecting p € V; and a point of 7 is contained in M if, and only if, p € V, N Xe.
Therefore, T, describes the real behavior of the trajectories of Z between ¥ and 7 only
in the domain N

Oz = ‘/0 N ﬁ

Accordingly, we define the transition map of Z as Tz = Ty|, .

Notice that T is a homeomorphism onto its image and 7Ty is a natural C" extension
of Tz to Vg induced by the setting of the problem. Nevertheless, 7, is a non-invertible
map.
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5.4.2 First Return Map

Consider the coordinate system and the local transversal section 7 introduced in Sec-
tion , and recall that Y| is transverse to each point of V; and X is transverse to .
From conditions (G), (T), and (H), it follows from the Implicit Function Theorem that,
for each Z € Vy (reduce V) if necessary), there exists a diffeomorphism Dy : 7 — X onto
its image induced by regular orbits of Z. In particular, denoting Dy = Dy,, we obtain

Dy(0,v,¢) = (0,0,0).
We define the full first return map P : ‘76 —Xof ZeV,as
Pz(z,y,0) = Dz o Tz(z,y,0), (5.4.2)

where T is the full transition map of Z given in . Accordingly, the first return
map of 7 is defined by P; = Dy o T, where Ty is the transition map of Z.

If p € oz, then p and Pz(p) are connected by a trajectory of Z, nevertheless, if
p € Vo \ 0z, then p and Py(p) are related by a virtual trajectory of Z. It follows that Py
is a C" homeomorphism (onto its image) which completely describes the crossing dynamics
of Z inside the torus Ag generated by I'y and V4.

Notice that both P; and P have a CL dependence on Z. Also, P is a non-invertible
map which is a C" extension of Pz to V. In particular, the origin is a fixed point of
Po = Pgz,, corresponding to the homoclinic-like loop I'y of Zj.

5.4.3 Fold Line Map

Finally, we characterize the fold line map 1)y of Z; induced by the sliding dynamics.
In addition, we construct this map for every Z € Q" sufficiently near Z,. Consider the
same notation used above in Section [5.4l N

Denote the fold line vz of Z by Sz. Since Sz, N Vp is composed by fold-regular
singularities of Zy, it follows from Lemma that, reducing Vj if necessary, the sliding
vector field F7, is extended onto Vj, and it is transverse to Sy, at py. Define the C" map
G:VyxVy xR — ¥ given by

G(Z,(2,y,0),s) = X f(er,(s:2,9,0)),
where Z = (X,Y). Since Sz, = Xof1(0), it follows that
G(Zp,(0,0,0),0) = Xof(0,0,0) =0 and 09;G(Zy,(0,0,0),0) = dXof(0,0,0)-Fg (0,0,0) # 0.
From the Implicit Function Theorem, reducing Vo and V), if necessary, there exists a
unique C” function s* : Vo x Vo — R such that G(Z, (x,y,0),s*(Z, (v,y,0))) = 0.
Consider the full first return map Py : Vo= % given by (5.4.2). Now, for a sufficiently

small neighborhood Vi of (0,0,0) contained in Vb and reducing V) if necessary, we define
the full fold line map ¥V, : S; N V1 — Sz N VO by

Vz(p) = ¢r,(s"(Z,Pz(p)); Pz(p)), (5.4.3)

for each Z € V.
In order to analyze the dynamics encoded by the full fold line map, it is convenient to
restrict it to the following domain

= P, (P2(S; N V) NEo). (5.4.4)

Accordingly, we define the fold line map as ¢, = \I/Z|U§L. Notice that, (0,0,0) is a
fixed point of g = 1z,, and ¥, is a C" extension of ¢ .
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Remark 5.4.1. Consider a map H : Vo X [ao, bo] — Vo such that, for each Z € V),
Hz = H(Z,-) : |ao,bo] — Sz NV is a diffeormorphism onto its image in such a way
that, for some ay < a3 < 0 < by < by, ’HZ|[ parameterizes Sz N Vy. Therefore,
H, oV, 0Hy : [ar,bi] — [ao, bo] is a family of real diffeomorphisms (onto their image)
which s of class C" on Z. Therefore, if py is a hyperbolic fixed point of 1y, we can use
such parameterizations to see that, reducing Vo if necessary, the full fold line map ¥z has
a unique hyperbolic fived point (with the same type) in Sz N'Vy, for each Z € V.

a1,b1]

5.4.4 Properties

In what follows, we use the full transition map P, and the full fold line map ¥, to
characterize Py = Py, and ¢y = 1z,. We consider the coordinate system (x,y, z) at py as
in Section [5.4.1] and from now on, we identify the points (z,y,0) € ¥ and (z,y,e) € 7
with (z,y). Also, consider the neighborhoods V; and V; of (0,0, 0) and Z; given in Section

[5.4.3] respectively.

Lemma 5.4.2. Given Z, € Q" satisfying conditions (G), (H), and (T), there exist real
constants o, Bi; € R, i =10,1,2 and 7 = 0,1 such that the Taylor expansion of the full
first return map Py of Zy at the origin is given by

Po(z,y) = ( (5.4.5)

Q1,0T + a071y2 + Oé2,o$2 + 041,13392 + O(23, 22y, y*)
51,055 + Bo,1y2 + 52,096'2 + 51,1$y2 + 0(5537 x2y2, ?J4)

Furthermore, the following statements hold.
i) d= 10601 — 1P10 #0;

i) sgn(d) = sgn(JDy(0,v/2¢)), where Dy : 7 — X is the diffeomorphism induced by the
flow of Zy and JDy denotes the Jacobian of Dy;

iii) If Fy, is transverse to Py(Sz, N V1) at the origin, then ayg # 0.
Proof. Since Dy is a diffeomorphism such that Dy(v/2¢,0) = (0,0), it follows that,

ar0r + ag1(y — V2¢€) + agor? + ay12(y — V2e) + ag2(y — v2e)? + Os(x,y — /2¢) )

DO(I7y) -
bLol’ + bO,l(y — \/%) + bg’ol’Q + bLlI(y — \/2_8) + b072<y — \/2_5)2 + 03(1', Yy — \/2_6)

where a; ;, b; . € R are constants satisfying a; 9by1—ao,101,0 7# 0. Also, using the expression

of Tp given in (5.4.1)), it follows that

To(z,y) = ( VI 4 Ky Ou(y) ) ,

where K > 0. Straightforwardly, we obtain (5.4.5)) and prove items (¢) and (ii).
Finally, assume that Fy, is transverse to Sz, at the origin. Denoting Yy(z,y,2) =
(f1, f2, f3) in this coordinate system, where f; = fi(z,y, 2), i = 1,2, 3, we obtain

}/E)f(xayvz) - f3($7y72)'
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Recalling that f(z,y,2) = z and Xy(z,y, z) = (0, 1, y), we have that the correspondent
sliding vector field is expressed as

Yof(ﬂ% Y, O)Xo(xaya O) — XOf('r?ya 0)}/0(x7y7 O)
Ybf(ﬂ?,y,()) - XOf(xayao)
f3<$,y, O)(07 17y> B y(f1(«77; Y, 0)7 fQ(xa Y, 0)7 f3(x7 Y, 0))

FZo(xvy)

fa(r,9,0) —y
< _yfl(x7y70> f3<x,y,0)_yf2($,y,0)>
fa(2,y,0) =y’ fa(2,y,0) —y '

Since Yj is transverse to ¥ at py, it follows that ag = f3(0,0,0) # 0, and consequently,
F7,(0,0) = (0,1).
Now, notice that Sz, = {(x,0); z € (—¢,¢)} and therefore

Co = P[)(SZO N ‘7;) = {(Ck1701’ -+ OQ(I’), 517033 + Og(l’)), T € (—8,8)} , (546)

for some € > 0. It follows that To(y = span{(aq 0, 81,0)}, and since Fy, is transverse to (o
at the origin, we obtain that ;¢ # 0. n

Remark 5.4.3. Notice that Py(Sz, N 171) coincides with the curve {y given in Section .
The proof of the following lemma is straightforward and will be omitted.

Lemma 5.4.4. Consider the same hypotheses of Lemma/[5.4.9 and assume that oo # 0.
Then, the local change of coordinates at the origin of the plane X given by

Qo1 o

U=z —-—y,
10

v=1Y,

brings the full first return map Py into
05170U
Po(u,v) = d | +u*Ai(u,v) + uw?Ag(u, v) + v' As(u, v),
ﬂl,ou + O{iv
1,0

where A;(u,v) are bounded vector-valued functions.

Notice that, the change of coordinates exhibited in Lemma does not modify the
structure of the problem in the coordinate system (z,y). In fact, the tangency set of Z
remains fixed through this change of coordinates and it is expressed as Sz, = {(u,0); u €
(—¢,¢)}, for some € > 0 sufficiently small. For the sake of simplicity, we make no difference
between the coordinates (u,v) and (x,y) and so Py writes as

ax

Po(z,y) = ( ) + 2? Ay (2, y) + 2y As(z,y) + v As(z, ), (5.4.7)

b + cy?

d .
where a = a1, b = $19, c = —, and A; are bounded vector-valued functions, ¢ = 1, 2, 3.
1.0

Lemma 5.4.5. Let Zy € Ay. Consider the full fold line map Vo and the full first return
map Py of Zy given by (5.4.3) and (5.4.7), respectively. The following statements hold:
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i) a#0, |al# 1, b#0 and ¢ # 0;
i) Wo(z,0) = (ax + O(x?),0), for z small;
iii) the origin is a hyperbolic fixed point of Py with real eigenvalues 0 and o;

i) the eigenspaces of Py corresponding to the eigenvalues 0 and « are given by & =
span{(0,1)} and &, = span{(«a,b)}, respectively.

Proof. First, notice that items (i7i) and (iv) follows straightly from item (i) and the
expression of Py given in (5.4.7). Now, we prove items (i) and (ii). Since Zy € Ay, it
follows from Lemma that o # 0 and ¢ # 0.

From (5.4.6) (with oy = « and S = b), we deduce that Ty = span{(1,0)} and
ToCo = span{(a,b)}, where 79 = Sz, N Vi and ¢ = Po(70). From hypothesis (T), we
have that 7o h (o at the origin. It implies that the vectors (1,0) and («,b) are linearly
independent. Hence, b # 0.

Now, from the computations done in the proof of Lemma [5.4.2] we derive that

FZo(xay) = (07 1) + (F17F2)7

where Fy, Fy = O1(z,y). Denoting PFp = (1, p2), we have that:

{ o1(t;z,y) = o+ Fi(x,y)t + O(t),
ea(tiz,y) =y + (1+ F2(z, y))t + Oa(1),

for t, x,y small enough.

Now, ©5(0;0,0) = 0 and 0;¢2(0;0,0) = 1. Thus, we use the Implicit Function Theorem
to obtain a unique C" function t*(z, y) such that t*(0,0) = 0 and o (t*(x,y); x,y) = 0, for
(x,y) small enough, with ¢*(0,0) = 0. Also, we have that 9,¢*(0,0) = 0 and 0,t*(0,0) =
—1. Thus,

t*(z,y) = —y + Os(x,y).

Notice that, 70 = {(z,0); = € (—¢,¢)}, for ¢ > 0 sufficiently small. Therefore, the full

fold line map Wy : vy — o writes as

Wo(x,0) = (1(t"(Po(x,0)); Po(x,0)), 0).
Hence, it is straightforward to check that
Uy(x,0) = (ax + Oy(x),0).

Since Zy € A, we conclude that the full fold line map ¥, of Z; has a hyperbolic fixed
point at the origin. Therefore |a|# 1. O

Remark 5.4.6. Notice that the curve (o is tangent to the eigenspace &, at the origin.
So, it is an intrinsic degeneracy of this problem which can not be avoided.

Using Lemma [5.4.5 we can apply some near-identity transformations to express the
map Py given by (5.4.7) in a more accurate normal form.
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Proposition 5.4.7. There exists a change of coordinates 1 : (R?,0) — (R?,0) such that

2 2
— - axr — cay® + cx® + Os(z, y)
Po(a,y) =noPoon ' (z,y) = ( N : (5.4.8)
In addition, Po is symmetric with respect to an involution Z such that
. B ,
Fir(Z) = {(l’,y); y=Jao+ (93(95)},
where
B bd2my 0 Py(0,0) + a(a — 1)9%my 0 Py (0, O). (5.4.9)

a?(a—1)

Proof. First, we consider the change of coordinates

_ Jj—ALUQ_"OZi(ny)
m(z,y) = ( y— Ba? + Os(z,y) )’

such that
Ly ) = x + Az?
U v Y) = y—|—B$2 )
with B given by (5.4.9) and A = 92m; 0 Py(0,0)(a(a—1))~!. Thus, using that Py is given
by (5.4.7)), we obtain

moPoon (z,y) = ( az + Gi(z, ) )

br + cy? + Ga(x,y)

where G (x,y) = Os(x,y) and Gy(z,y) = Os(z,y), and 7y 0 Py oy * is symmetric with
respect to the symmetry Z(z,y) = (z, —y — 2Bx?), which has the following set of fixed
points

Fix(Z;) = {(x,y); y = Bx2} :

Now, considering the change of coordinates

bx + G 2
e = (O 4 )

)
and taking n = 19 o 1y, the proof follows directly. [

Remark 5.4.8. Notice that the change of coordinates n provided by Proposition
carries the fold line Sz, of Zy onto the set Fix(Z).

The next result follows straightly from Lemma[5.4.5]and the Stable Manifold Theorem
for C" maps (see Theorem 10.1 in [91]).

Proposition 5.4.9. Let Zy € Ay, and consider the non-invertible full first return map
Po of Zy given by (5.4.7). Therefore, Py has a local stable invariant manifold W§ at the
origin tangent to & and either one of the following statements hold.

1. If |a|< 1, then Py has a fized point of nodal type at the origin and it has a local
stable invariant manifold W7 at the origin tangent to &, (see Figure (1) and

(iv).).
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W (= = s)
»s Sz4 ne | I
—
S
Po_ Ws Y =
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|
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|
[
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Figure 5.12: Configurations of the local invariant manifolds of Py at py for b < 0, (i)
a>1, (i) 0<a<l, (iti) a < —1and (iv) =1 < a < 0. If b > 0, then (i) is switched
by (i7i) such as (i) and (iv).

2. If |a|> 1, then Py has a fized point of saddle type at the origin and it has a local
unstable invariant manifold W at the origin tangent to &, (see Figure[5.19 (i) and

Finally, we characterize the classes AY and A} of A; and the hypotheses (N) and

(S) introduced in Section , which generate four possible types of quasi-generic loop I’y
passing through a fold-regular singularity py of Zy € A;.

Proposition 5.4.10. Let Zy € Ay, and consider the full fold line map Vq of Zy given by
(5.4.3). The following statements hold:

i) Zy € NS and satisfies (S) if, and only if, a > 1;

ii) Zy € AY and satisfies (N) if, and only if, 0 < o < 1;
iii) Zo € A and satisfies (S) if, and only if, a < —1;
i) Zy € AM and satisfies (N) if, and only if, —1 < a < 0.

Proof. From Lemma the full fold line map W, of Z, writes as Wo(z,0) = (ax +
O(z?%),0). In this case, the map ¥, preserves the connected components (—¢, 0) x {0} and
(0,e) x {0} of Sz, if, and only if, a > 0. The result follows from Proposition [5.4.9, O

Remark 5.4.11. Notice that, the geometry of this problem allows us to see that the
first return map Py preserves the orientation of the y-azxis, nevertheless the orientation
of the x-azis is reversed if a < 0, and it is preserved if o > 0. Therefore, Py preserves
orientation if, and only if, Zy € AS.

Since the transition map T, does not provide any changes in the orientation of ¢, it
follows that Py = Dy o Ty preserves orientation if, and only if, Dy preserves orientation.

Hence, if Zy € AS, it follows from (5.4.5), (5.4.7), and Proposition that ¢ > 0.

As mentioned in Section if Zy € A{, then the fold line map )y defines a dynamics
in o (which is an interval of the z-axis) induced by the orbits of Z.

Now, let Z, € AM, and without loss of generality, assume that b < 0 in . From
the proof of Lemma , we have that the map ¥ : Vo — v = Sz, N V4 induced by the
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flow of Fy, is given by ¢g(x,y) = (z + Oa(7,y),0), and notice that, in this coordinate
system, ¥* = Vi N {y < 0} and Sz, = {y = 0}. From Proposition , we have that
a < 0 and thus Py(z,0) = (ax,bz) + O(z?) € ¢ if, and only if z > 0.
Given z > 0 small, we have that Wy(z,0) = 9§ o Py(z,0) and (z,0) are connected by
orbits of Z;. Now,
Po(Vo(,0)) = (’z, bazx) + O(z?)

does not belong to ¢ since bax > 0, therefore the points W3(z,0) and (z,0) are not
connected by orbits of Z, and thus the iterations of ¥ do not describe the dynamics of
Zy. In other words, the fold line map vy (which is the restriction of Wy to > 0) does
not induce any dynamics in the interval V3 N {z > 0,y = 0}.

Nevertheless, given x < 0, we have that

Ps((2,0)) = (o*z,baz) + O(a?) € ¥,

and hence 1 o P3(x,0) and (z,0) are connected by orbits of Z, (with a unique segment
of sliding orbit). Therefore, we define the full Mébius fold line map W) : vy — ~q of
7 as

Ty’ (2,0) = ¥5 0 Pg(x,0) = (o’z + O(2%),0),

and the domain
o =Py (Po(SoN Vi) NE%) = {z < 0} x {0} N V.

Accordingly, we define the Mébius fold line map of Z; as 3! = ¥} |a¥. We conclude
0

that ! (0’%) C 0‘% and thus, this map defines a dynamical system in 0% induced by the
(real) orbits of Zy, whether Z, € AM.

Figure 5.13: Action of the Mébius fold line map ¢! of Zy € A},

Remark 5.4.12. Notice that, if Zy € A, we can still define the Mébius fold line map
VY for every Z sufficiently near Zy, combining the ideas above with Section . Also,
the origin is a hyperbolic fized point of 3! if, and only if, it is a hyperbolic fived point of
the fold line map vy of Zy.

5.5 An illustration of Theorem

In this section, we provide an example of Filippov system presenting a quasi-generic
loop at a fold-regular singularity. In addition, we present two unfoldings of this connection,
which illustrate the results stated in Theorem [M]
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Proposition 5.5.1. Given b # 0 and a € R such that |a|# 1 and —a /(1 — «) ¢ [0,1],
consider the Filippov system Zy = (Xo,Yo) with switching manifold ¥ = {(z,y,2) €
R3; z = 0}, where X is given by

0

Xo(z,y,2) = ( 1 ) : (5.5.1)

y(2 = 3y)

and Yy is given by
B(1 — a)?
—(1 —a)x+—a+(1 ~ Ay

Bx

Yb(l‘, Yy, Z) = -1+ m (552)
g (et oan )

a+(1—a)y—px
Therefore, Zy € Ay, and the following statements hold.

i) Zy has a quasi-generic loop Ty at the fold-regqular singularity (0,0,0), which is con-
tained in the plane r = 0;

it) Xo, Yo are vector fields of class C* around T'y;

iii) In the plane v = 0, Zy coincides with the Filippov system Zj = (Xo,Yy), where
)/O*(xay)z) = (07 _17 1- 29);

iv) The fold line map of Zy is given by 1z, (z) = ax + O(x?)
Proof. The flow of X is given by

s
Pxo(tm,y, 2) = t+y : (5.5.3)
—(t+y’+(t+y)? -y (1-y) +=

Thus, X, has a visible fold line Sx, at the z-axis and an invisible fold-line at y = 2/3.
Using (5.5.3)), we obtain that ¢x,(1;2,0,0) = (x,1,0) and ¢x,(t;2,0,0) € M™* for each
t € (0,1). Hence, we define Sx, = {y = 1,z =0} and Ily, : Sx, — Sx, by

Iy, (z,0,0) = (z,1,0).
Now, the vector field Y| has flow

x
pyy(t;2,y,2) = —t+y
(—t+y)P+t—y*+=z
A simple computation shows that @y+(1;2,1,0) = (2,0,0) and @y (t;2,1,0) € M,
for each t € (0,1). Hence, we define Ily : Sx, — Sx, by

Iy (z,1,0) = (,0,0).
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Notice that Zf = (Xo,Yy) has a family of homoclinic-like loops passing through
points of Sx,. Therefore, we must perform a slight change in Y7 in order to avoid such
degeneracy.

Consider the map M; : R? — R3

i
M(z,y,2)=| y—br(y—1) |,
zZ

with b # 0. Notice that, |dM;(x,y, z)|= 1 — bx, which means that M; is a diffeomorphism
outside the plane x = 1/b. Since we have a loop contained in the plane x = 0, it is not
an obstruction for our purposes. In fact, the inverse of M; is given by

x
-1 y —bx
1—bx
z
Notice that Mi(z,1,0) = (x,1,0) and M;(x,0,0) = (x,bx,0). Thus, M1|§XV: Id,
0

M,(Sx,) is transverse to Sx, at the origin and we also have that the plane x = 0 is
M;i-invariant.
Consider
Yo=M;Y; =dM,oYy o (M),
and recall that
Mo pyy(tiz,y, 2) = oy (t; Mi(z,y, 2)).

Hence, we have that ¢y-(1;2,1,0) = (z,bz,0). Moreover, py=(t;,1,0) € M~ for
each t € (0,1). Therefore, we conclude that the map Ily; : STXJO — ¥ induced by the flow
of Yj is given by

Myz(z,1,0) = (z,bz,0).

Now, we notice that Z, = (X,Y) has a homoclinic-like loop at the origin and the
image S, := Iy o Ilx(Sx,) of the fold line through the orbits of Z is transverse to Sk,
at (0,0,0). Also, we notice that F;-(0,0,0) = (0,1,0), and thus, F;- is transverse to Sk,
at (0,0,0). However, the fold line map of Zy is given by ¢5-(z) = x 4+ O(«?), and hence
the origin is not a hyperbolic fixed point of 1. Therefore, 7, satisfies conditions (i) and
(i) of Definition but it does not satisfies condition (7i7).

Now, consider the map M, : R® — R3 given by

z(a+ (1 —a)y)
M2(x7y7 Z) = Yy )

with o # 1. Since, |[dMs(z,y, 2z)|= a + (1 — o)y, we have that M, is a diffeomorphism
outside the plane y = —a/(1 — ). Since our loop is contained in the plane x = 0 with
0 <y <1, choosing a such that —a;/(1 —«) ¢ [0, 1], we have that M, is a diffeomorphism
around the loop of Z.
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In this case, the inverse of M, is given by
x
a+(l—a)y
Y

z

(Ma)~ Nz, y,2) = (5.5.5)

Notice that My(x,1,0) = (x,1,0) and My(z,bz,0) = (az + b(1 — a)z?,bx,0). Now, a
simple computation shows us that the vector field Y, given by (5.5.2)) satisfies

Yb = MQ*YO == dMQ O?OO (MQ)_I.

Hence oy, (t;,1,0) € M~, for each ¢ € (0,1), and the map Ily, : Sx, — & induced
by the flow of Y} is given by

Iy, (z,1,0) = ¢y, (1;2,1,0) = (az — b(a — 1)2?, bz, 0).
The proof follows directly from these facts. O

In the next result, we present a one-parameter family Z,, which unfolds Z, given by
Proposition [5.5.1. We notice that this perturbation breaks the quasi-generic loop I'y of
Zy, nevertheless the plane z = 0 is Z,-invariant, for every +.

Proposition 5.5.2. Given b # 0 and a € R such that |a|# 1 and —a/(1 — a) ¢ [0,1],
consider the one-parameter family of Filippov systems Z,, = (Xo,Y,), where X is given
by (p.5.1), Y, =dM oY o M~', Y* is the vector field given by

Yi(z,y,2) = -1 ,

and M : R?® — R3 is the map given by
z(a+ (1—a)(y—bz(y —1)))
M(z,y,z) = y—bx(y—1) ) (5.5.6)
2

Therefore, Z. is an unfolding of the Filippov system Z, given by Proposition at
v = 0, and there exists a solid torus Ay around the quasi-generic loop Ty at the fold-
reqular singularity (0,0,0) of Zy such that the following statements hold.

i) If v < 0, then Z, has a unique sliding cycle Iy in Ay and it is attractive (|a|< 1) or
repelling (|a|> 1) depending on the value of c.

1) If v =0, then Z, has a unique quasi-generic loop Iy passing through a fold-reqular
) If v =0, y que quasi-g p L'o passing g g
singularity in Ag.

iii) If v > 0, then Z., has a unique crossing limit cycle L', in Ag. Moreover, it is hyperbolic
and it is attracting, when |a|< 1, and of saddle type, when |a|> 1.

Furthermore, 1", is contained in the plane v = 0, for every v sufficiently small, and
7, coincides with 73 = (Xo,Y.') in the plane v = 0.
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Proof. In order to prove the proposition, we must compute the full first return map P,
of Z,. Notice that the flow of Y is given by

xz

@Y;(t;x7yaz) = _t_l_y )
(—t4+y)?+ 1+t —y*+ 2

and, 73 0 py: (t; 7, Y, 0) =0 if, and only if, ¢ = 0 or t(y) = 2y — 1 — . In this case,
ev: (ty);iw,y,0) = (z, 1+ —y,0).
Let Y, = dM oY¥ o M, where M is given by (5.5.6). Thus,
v, (t;2,y,2) = M o gy (t; M~ (z,y, 2)).

From, ((5.5.4) and (5.5.5)), we obtain

a+(1—a)y
M_l(gj7y70) = y(a + (1 — a)y) —bx
a+(1—a)y—bx
0

Considering T = 7, 0 M~ (x,9,0) and § = 7 0 M~'(x,4,0), we have that, the map
P induced by the orbits of Y, is given by

P (2,9,0) == @y~ (t(H); 2,9,0) = M(Z,14 v —7,0).

Thus,
z(a(l+y—ay)+br(l—a—y+ay) +(a- DA +7)y—v*)
(@ + (1 - a)y)?
P (r,y,0) = by — 1) ;
SR e sy

for every (x,y) is a neighborhood of (0, 1).
Now, using the flow of X, we compute the map P : ¥ — ¥ induced by orbits of Xj,
which is given by

T
1
Py (2,9,0) = 5(1—y+\/1+2y—3y2)
0

Finally, the full first return map P, : (—¢,¢) x (—¢,e) — ¥ of Z, is given by
Py(x,y,0) =P, o Py (z,y,0),

and it has an explicit form. In this case, the first return map P, of Z, is given by the
restriction of P, to [0,¢) X (—¢,¢).
An easy computation shows that
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rla(l+~y—ay)+bzx(l—a—v+ay)+y(a—1)3%
v7—=0b(y -1z

3. Po(z,y) = (‘; 8) (;j)-i-h.o.t.

4. The sliding dynamics is given by 9., () = g(x)+Os(g(x)) where g(x) = m 0P, (z,0).
In this case, g(0) = 0 and thus 1,(0) = 0, for each v € (—¢,¢).

Hence, from item (3) we have that Py has a unique fixed point for ¢ > 0 sufficiently
small. Since P,(0,y) = (0,1 +~v—1/2(1 —y+ /1 + 2y — 3y?)), the equation P,(0,y) =

(0,y) has two solutions
1
Y= () = 5 (1+'y:|:\/1—3’y—372).

Now, y™(0) = 1 and y~(0) = 0. Since we are looking for solutions bifurcating from
(0,0), we have that P, has a unique hyperbolic fixed point at p, = (0,5 (7)), for ¢ > 0
sufficiently small.

Finally, notice that y~ () > 0 if, and only if v > 0. Also, the point P,(0,0) € ¥° if,
and only if, v < 0. This concludes the proof. O]

The bifurcation diagram of the one-parameter family Z, for « > 1 and b < 0 is
sketched in Figure (the other cases are analogous).

Remark 5.5.3. Notice that the one-parameter family Z given in the Proposition m
restricted to the plane x = 0, describes the critical crossing cycle bifurcation in planar
Filippov systems, which was extensively studied in [£0].

Now, we present another one-parameter family Z, which unfolds Z, € A; given by
Proposition at v =0 (with @« = 2 and b = 1). In this case, the perturbation breaks
the homoclinic-like loop at the origin of Z, in such way that the plane x = 0 is not
Z.-invariant anymore, for v # 0.

Proposition 5.5.4. Consider the one-parameter family of Filippov systems 2, = (Xo, V),
where X is given by (5.5.1), V, = dN o Y o N YV is the vector field given by

v
y;(xazﬁz) = -1 )
1—2y

and N : R® — R? is the map given by
r(2—y+a(y—1))
2

Then Z., is an unfolding of the Filippov system Z, given by Proposition (with o« = 2
and b =1) at v = 0, and there exists a solid torus Ay around the quasi-generic loop Ty
at the fold-regqular singularity (0,0,0) of Zy such that the following statements hold.
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i) If v > 0, then Z, has a unique sliding cycle I, in Ay, which is of repelling type;

it) If v =0, then Z, has a unique quasi-generic loop I'y passing through a fold-reqular
singularity in Ay

ii) If v <0, then 2, has a unique crossing limit cycle Iy, in Ay, which is hyperbolic and
of saddle type.

Proof. Analogously to the proof of Proposition and using that have the flow of JJ
is given by
vt +x
gpyf;(txvywz) = _t+y ’
(—t+y) ?+t—y*+2
we obtain that the explicit full first return map of Z, is given by

P = (T7) (277 0) (1) +oumn

Applying the Implicit Function Theorem to P, — Id, we obtain the existence of a
hyperbolic fixed point p, = (2(7), y(v)) of P,, which is given by

z(7) —2y
= + Os(7).
( y(7) > < — ) (7)
It means that p, € ¥¢if, and only if, v < 0, thus Z, has a unique crossing limit cycle
if, and only if, v < 0.

Now, using that P,(z,0,0) = ((2—~v—2z)(y+x),y+2,0), one can prove that the fold
line map of Z, is given by

Uy(x) = (2= 7)y + (2 = 29)z + O(2?).

Again, applying the Implicit Function Theorem to 1., — Id, we obtain the existence of
a hyperbolic fixed point s(7) of v, which is given by

5(7) = =27 + Oa().

Finally, it is easy to see that P,(—v,0,0) = (0,0,0), which means that S}, intersects
Sx, at the origin for each v € (—¢,¢). Thus, the domain of ¢, is (—¢, 0], and it follows
that s(v) corresponds to a sliding cycle of Z, if, and only if, v > 0. In addition, it is a
repelling sliding cycle. The proof is complete. O]

Remark 5.5.5. Notice that, considering o = 2 and b = 1 in Proposition we have
that the one-parameter families Z., and Z., presented in Propositions and
respectively, are topologically equivalent unfoldings of Zy at v = 0.

It is worth mentioning that, for the particular families considered in this section, we
prove that the first part of Theorem [M]| also holds for the case when Z, satisfies (5),
despite of the stability.

5.6 Proofs of Theorems [, M}, [N| and

In this section, we use the maps constructed in Section [5.4] to prove Theorems [ [M]

[N] and [O1
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5.6.1 Proof of Theorem [[J

From Section [5.4.2] there exist neighborhoods Vy of Zy in Q" and V; of py in X suffi-
ciently small, such that, each Z € V) is associated to a full first return map Py : Vo — X.

Let Ay be a solid torus containing I'g such that Vj = C,, (ApNX) (connected component
of Ag N'Y containing po). In addition, for each Z € V), there exist coordinates (z,y, 2)
(which has a C"-dependence on Z) defined in Vj, such that ¥ is given by the plane z =0
and Sz NV, is given by the z-axis.

Since Pz, has a unique hyperbolic fixed point py in Vj, it follows from the Implicit
Function Theorem that P has a unique hyperbolic fixed point pz in V}, for each Z € V)
(reduce V) if necessary). Denoting the y-coordinate of pz in the coordinate system (z, y, 2)
by p%, it follows that pz € Sz if, and only if p% = 0.

Define ((Z) = p%, for each Z € V. Therefore, it is straightforward to see that
¢((Z) = 0 if, and only if, Z has a homoclinic-like loop at p; contained in 4,. Also, it
is not difficult to see that conditions (G), (T'), (i) and (iii) of Definition hold for
every Z € Vy, which means that ((Z) = 0 if, and only if, Z has a quasi-generic loop at
pz contained in Ay.

Now, let Z* = (X*,Y™*) € V) such that ((Z*) = 0, and let Z, be a curve in Q" such
that Zy = Z*, and Z, = (X*,Y)). In this case,

PZo(xa y) - (Oél’, bI) + OQ(I,y),
for some a #£ 0,+£1, and b # 0. Given v € R, we can take Y, such that
Pz, (z,y) = (0, = v) + (o, bx) + Oa(z,y, A).

Again, applying the Implicit Function Theorem, we can see that ((Z,) = vy + Os(7),
hence
“((2)
—_— A = .
d\ 0
We conclude that 0 is a regular value of (. The result follows by noticing that A{NV, =
a(OF

5.6.2 Proof of Theorem

Let Z : (—¢,6) — " be a one-parameter C! family such that Z(0) = Z,, which is
transverse to A;.

From Section [5.4.2] there exist ¢ > 0 sufficiently small and a neighborhood V; of
po in X sufficiently small, such that, each Z(v) is associated to a full first return map
Pz : Vo — . Let ¢, : Vo — R3 be a change of coordinates (which has a C" dependence
on ) such that

e Y is brought into the plane z = 0;
o The fold line S, of Z(7) in V; is brought into the z-axis;
o If we denote S! = Pz(,)(S,), then the point S, N S] is brought into (0,0,0).

Consider the family Z(v) = d¢, o Z(v) o ¢ and notice that the families Z and Z
are equivalents. Since Z is transverse to A; at 0, it follows that the same holds for Z.
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Thus, the first return map P, = Pz, (see Section [5.4.2) is defined for y > 0, and its
extension P, has a fixed point

py = (0(7), a7 + O(%),0),

with a # 0. For instance, assume that a > 0.

It means that p, € X¢ if, and only if v > 0, and thus Z(v) has a unique hyperbolic
crossing limit cycle in Ay, if, and only if v > 0.

Now, recall that the full fold line map v, = Yz defined in the fold line y = 0
introduced in Section [5.4.3| controls the existence of sliding cycles. More specifically, it
associates sliding cycles with fixed points of 1, belonging to a certain domain ™" = agé |
which is given by .

Since the origin is a hyperbolic fixed point of 1)y (z), it follows that 1. (z) has a unique
hyperbolic fixed point z,. Hence Z(7) has at most a unique sliding cycle in A.

Now, we must see whether x., belongs to ¢/™*. If v > 0, then p, € X and thus their
invariant manifolds W' = W§ and W? = W? (given by Theorem intersect the
z-axis in the points zi and z3, respectively. Also, if v < 0, then p, € X* and W' and
W? intersect the z-axis in the points 27 and x5, respectively. Without loss of generality,
assume that S; is tangent to the line y = kx at the origin, with k£ < 0. It follows that
] < xf and x;7 < z;. Now, assume that Z(0) satisfies (V).

In the case v > 0, the point p, is in X¢ and it is attractive. Using that P, (z;,0,0)
must stay in W* and goes to p., it follows that P,(z;,0,0) € 3¢, ¢ = 1,2, which means
that if x < a3 then P,(z,0,0) belongs to 3¢ and thus all these points do not belong to
the domain 05 L (recall that k < 0). Nevertheless, we know that the x-axis has a unique
attractive fixed point z., of ¢, and m o P, (23 ,0,0) < z3 leads us to ¥, (z3) < x3, which
means that z, < x3, and thus =, ¢ of"*. We conclude that, if v > 0, then Z(v) has no
sliding cycles.

Now, if v < 0, then p, € ¥* and through similar arguments, it follows that P, (z;",0,0) €
¥°, 4 = 1,2, and thus, if z > 25 then P,(z,0,0) belongs to X° and thus all these points
belong to the domain o In this case, m o P,(25,0,0) < x5 and thus ¢, (z5) > x5,
which means that z, > 23 and hence z., € 0", We conclude that, if v < 0, then Z(y)
has a unique sliding cycle (see Figure .

y=kz
w2 S W W2
zy Sy — | oyt
Py (T3) S |Po wt /”/7(732' )
Py \Wl 333_
v<0 v=0 v>0

Figure 5.14: Position of the invariant manifolds W' and W? of P, in the case (N) as v
varies.

5.6.3 Proof of Theorem

From the construction of the full first return map Py of Zy in Section it follows
that, to prove Theorem [N] it is enough to compute the basin of attraction of the origin
of the map Py and to analyze the sliding dynamics of Z.
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If Z, satisfies (IV), then the origin is a hyperbolic fixed point of Py of nodal type and
thus, there exists a neighborhood of the origin which is the basin of attraction of P, at
(0,0). Since all the sliding orbits of Zy near the origin reaches the fold line Sz, of Z; and
the origin is an attractive hyperbolic fixed point of the fold line map vy, it follows that
every orbit of Z; near the origin goes to the origin. Statement (i) of Theorem [N| follows
directly.

Now, if Zj satisfies (), then the origin is a hyperbolic fixed point of P, of saddle type,
and thus the basin of attraction of Py at (0,0) is given by the stable invariant manifold
W¥. Hence all the orbits of Z; passing through W N 3¢ goes to the origin.

Also, there exists a unique sliding orbit 7, of the sliding vector field F, which goes to
the origin. Since the origin is a repelling hyperbolic fixed point of the fold line map )y, it
follows that an orbit I' of Z; goes to the origin if and only I' N ¥ contains a point of the
piecewise-smooth curve § = W N 3°U~,. The proof of Theorem [N] follows directly.

5.6.4 Proof of Theorem

In order to prove Theorem [O] we study the behavior of the iterations of the fold line
Sy of Zy € A{ through its full first return map Py.

Lemma 5.6.1 (Accumulation). Let Zy = (Xo, Yy) € AY having a quasi-generic loop Ty at
po and let Py be the full first return map associated to Zy given by . If Zy satisfies
(), then S, = Pi(Sx,), n € N, is a sequence of smooth curves tangent to the eigenspace
Ea given by Proposition |5.4.9 at py, such that, for each € > 0 sufficiently small, there
exists Ny € N such that S, is e- close to the unstable invariant manifold W2 of Py at po,
for every n > Ny. Furthermore, for each n > 2, S, is a curve having an even contact
with S,_1 at py and the following statements hold

i) In 3¢, S,_1 and S, are given by arcs clockwise ordered, and thus S, N X¢ and WY
are clockwise ordered for every n € N;

it) In X%, S, is flipped back to the region delimited by S,y and S,_s, for every n > 2.
Thus, S, alternates the side of WY (flip property), which means that, if W* and
Sn—1 are counterclockwise ordered, then S, and W} are counterclockwise ordered,
and vice-versa.

Proof. From Proposition [5.4.10] we have that the parameters in (5.4.7)) satisfy o > 0 and
¢ > 0. Recall that the coordinate system (z,y,z) at po used to express Py as (5.4.7)
satisfies the following properties.

1. X is given by the plane z = 0;
2. The fold line Sz, = Sy of Z, is given by the z-axis;

3. Without loss of generality, we assume that b < 0 in (5.4.7)), thus the curve S; =
Po(So) of Sy is tangent to the line y = kx at the origin, where k = b/a < 0.

Thus, we have the configuration in the switching manifold (z = 0) illustrated in Figure

Since Zj satisfies (5), it follows from Proposition that the map Py has a fixed
point of saddle type at the origin which has a stable invariant manifold W; tangent to
the y-axis and a unstable invariant manifold W} tangent to the line y = kx.
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s So S1

<y

Figure 5.15: Configuration of Sy and S in .

In what follows, we describe how the iterations of Sy through Py behave. From the
expression of Py in , we have that S,, = PJ(Sp) is a smooth curve passing through
(0,0) tangent to the line y = kz at (0,0), for each n € N. Clearly, W2 NP (Sy) = 0, for
each n € N, since Sy and S; are transversal.

Now, in order to obtain the positions of the curves .S,, in ¥, we must recall the con-
struction of the map Py. In Section [5.4.2] Py is written as the composition Py = Dy o T,
where 7 is a transition map from X to a transversal section 7 = {z = ¢}, for £ > 0 small,
and Dy is an orientation-preserving diffeomorphism from 7 to X. In addition, notice that

To(x,y) = (z,vV2e + Ky + O(y?)), for some K > 0.

Without loss of generality, consider that S is the line y = kz. Now, we describe how
to obtain S,,, for n > 2.

We consider n = 2, since the other cases follow completely analogous. Notice that
Tolx, kx) = (2,126 + Kyx? + O(2?)), where Ky = Kk? > 0, describes a parabola tangent
to the origin contained in the semi-plane y > v/2¢ of section 7. Since the line y = 1/ is
sent to the line S; in ¥ through the diffeomorphism D, (which preserves the orientation
of the section 7), it follows that Py(S) is a parabola which has a quadratic contact with
Sy at the origin. In addition, Py(S1) N 3¢ is contained in the first quadrant delimited by
So and S7 and Py(S7) N X* is contained in the fourth quadrant generated by Sy and S;
(see Figure [5.16]).

Notice that, in ¢, the iterations Sy, S7 and Sy are clockwise ordered, nevertheless, in
3, Sy, Sa, S are counterclockwise ordered. It allows us to see that, in »°, the second
iteration of Sy have flipped back to the region between Sy and S;. Following the same
scheme, we prove items (), and (7).

Now, using Proposition [5.4.§| and the dominant part of Py, it follows that S, accumu-
lates onto W in the C°-topology. O

Notice that Lemma [5.6.1] gives rise to a region Fy, which works as a fundamental
domain for Py restricted to a certain region. See Figure [5.17

Finally, we are able to prove Theorem @ Let Py and Py be the full first return maps
associated to Zy and Zo, respectively, and assume that h is a weak equivalence between Z
and Z,. Using Proposition , we can see that there exist coordinate systems (z,y, 2)
and (7,7, 2) at pp and py, respectively, such that Py and Py are given by

Po(l',y) = (Oéili' - CayQ + sz + 03(x7y)7 l’),

and -
P0<f’ g) = (&I - 5&@2 + 5§2 + 03(j7 g)u f)?
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. Denote To(S;) = S..

Figure 5.17: Region Fj.

respectively. Also, the fold lines Sz, and SZ~0 are given by the z-axis and the T-axis,
respectively. In this case, W(Zy) = a and W(Z,) = a.

Consider the same notation used in the proof of Lemma [5.6.1 Let § > 0 sufficiently
small, and consider the map Py. There exists a unique point w # (0,0) of W* N {y = 4},
and, for each n € N| take y,, as the unique point contained in S, N {y = ¢}. Therefore,
from the construction, there exists a sequence (x,,0) € Sy such that

1. (,,0) = (0,0) as n — oc;
2. y, = Pi(x,,0), for each n € N;
3. Yp — W as n — oo.

Now, for the map Py, consider @ = h(w), T, = h(z,) and g, = h(y,), for each n € N.
Since h is a weak-equivalence and w # (0, 0), it follows that

L i@ # (0,0):
2. (2,,0) — (0,0) as n — oo;

3. yn="Po (Z), for each n € N;
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4. Yy, — W as n — 00.

Notice that, since o, & # 0, it follows that the dynamics of points near the invariant
manifolds W7 and W2 of Py and Py have the same behavior of the dynamics obtained
from their linear approximations. Therefore, without loss of generality, consider that

Polz,y) = (az,z) and Py(,7) = (a7, T).

Hence, y, = (a"z,,a" 'z,) and y, = (a"x,,a" 'x,), for n sufficiently big. Now,
since h : Sz, — S5 is a diffeomorphism, it follows that 7, = Kx, + Os(x,), for some
K #0. Itfollowsthata z, = m(w) # 0 and &"x, — m(w)/K # 0, as n — 0.

Now, if a # @, then it follows that either oz,, — 0 or @"x,, — 0, which contradicts
the fact that oz, — m(w) and &"z,, — m (w)/K. Therefore, it follows that o = &, and
the proof is complete.

5.7 Conclusion and Further Directions

In this chapter, we have studied Filippov systems Z; = (X, Yp) around a homoclinic-
like loop I'y at a fold-regular singularity under some generic conditions and we have proven
that such loops are generic in one-parameter families.

Also, we have seen that the fold line Sy, of Z, connects to itself through orbits of
Xo, Yy and Fz, as a topological cylinder or a Mobius strip, giving rise to two classes of
loops, AY and AM | respectively. For simplicity, we considered only the class A{ to avoid
technicalities, nevertheless, we believe that similar results hold in the class AM.

In the class A{, we have seen that the first return map of Z; has a hyperbolic fixed
point of either saddle (condition (S)) or nodal type (condition (/N)). We have completely
described the bifurcation diagram of Z; around I'y, provided that Z, satisfies (V). If Z
satisfies (.5), we found all the bifurcating elements of I'y, nevertheless, the description of
the bifurcation diagram remains as an open problem for this case. We conjecture that 7,
has the same bifurcation diagram around I'y for the cases (V) and (5), as can be seen in
the examples provided in Section

A natural extension of this work is to obtain bifurcation diagrams of Filippov sys-
tems around homoclinic-like loops passing through other kinds of ¥-singularities (e.g.
cusp-regular and fold-fold singularities). We highlight that the connection studied herein
appears in the unfolding of loops passing through a cusp-regular singularity. This study
will guide us towards the comprehension of polycycles in 3D Filippov systems (see the
planar version provided in Chapter [2)).

Also, if we relax the generic conditions imposed in the quasi-generic loops, one can
certainly obtain interesting global behavior for Filippov systems Z near Z;,. In fact, such
degeneracy of homoclinic-like loops at a fold-regular singularity might originate other
bifurcating cycles.
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Chapter

T-Chains: A Chaotic 3D Foliation

@I@N this chapter we deal with a class of 3D Filippov systems presenting robust connec-

@ @ tions between certain typical singularities, known as T-singularities. Such systems
are locally structurally stable at these singularities and are mainly characterized by the
existence of 2D invariant cones (named diabolos) with vertices on such points. Our main
goal is to discuss the existence of chaotic dynamics when self connections between the
cones occur. We highlight that the counterpart of these connections in the smooth case
can happen only for highly degenerate systems.

6.1 Setting the Problem and Main Result

In this chapter, we consider Filippov systems Z = (X, Y") defined on an open bounded
connected region M C R? (diffeomorphic to an open ball) with an oriented switching
manifold ¥ = f~1(0), where f : M — R is a smooth function having 0 as a regular
value. We denote the set of C" vector fields by x" and we endow it with the C" topology.
Accordingly, the set of Filippov systems on M is denoted by Q" = x" x x" and it is
endowed with the product topology.

6.1.1 T-chains

As we have seen in Chapter 3], Filippov systems are locally structurally stable at certain
types of fold-fold singularities and they appear in an open set of this class. Moreover, in
Chapter [ we have proven that certain fold-fold singularities still persist on the class of
semi-local structurally stable Filippov systems. In light of this, the knowledge of global
behavior of the dynamics of Filippov systems around connections involving these points
plays a crucial role in the attempt to characterize the structurally stable Filippov systems.
We formalize such connections in the following definition.

Definition 6.1.1. Let Zy = (X, Yy) € " having fold-fold singularities py,qo € X (Po = qo
is also considered) and let —oo < a < b < oo. An oriented piecewise smooth curve
I': (a,b) — M is said to be a fold-fold connection of Z, between py and qo if it
satisfies the following conditions.

i) Im(T) N M™* (resp. Im(I") N M~ ) is a union of orbits of Xy (resp. Yp).
it) Im(T)NY C X°.
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i) lim ['(t) = po and }tl_rg I'(t) = qo.
Now, we introduce the concept of fold-fold chain.

Definition 6.1.2. Consider Zy € Q" having k fold-fold singularities p; € ¥, 1 =1,---, k.
We say that v C M is a fold-fold chain of order k of Z; if

V= {p17 e 7pk} Uf:l Im(FZ>7

where I'; is a fold-fold connection between p; and p;11, t =1,---,k, where ppr1 = p1, and
either one of the following conditions is satisfied.

i) T'; is an oriented piecewise smooth curve from p; to piyq, i =1, k.
it) T; is an oriented piecewise smooth curve from piyq to p;, i =1, k.

Notice that, fold-fold chains generalize ¥-polycycles having only fold-fold singularities
(in the planar case) to 3D Filippov systems. Figure illustrates some fold-fold chains.

D
(0)
EUS
; \
nss :
(c) (d)

Figure 6.1: Planar >-polycycles passing through a visible-visible fold-fold singularity (a)
and a visible-invisible fold-fold singularity (b), and tridimensional fold-fold chains passing
through a visible-visible fold-fold singularity (c) and a visible-invisible fold-fold singularity

(d)-

As far as we know, there is a lack of works in the literature concerning this kind of
object, maybe due to the difficult inherent to the problem. In fact, 3D Filippov systems
exhibit a rich local dynamics at fold-fold singularities which is hard to comprehend, and
thus, the understanding of global phenomena involving such objects becomes even harder.

As seen before, one of the most challenging types of fold-fold singularities is the elliptic
one (see Section , also known as T-singularity. We recall that, in this case, if Zy =
(Xo,Yo) € Q" has a T-singularity at pg, then it is associated to a C" germ of first return map
do : (X, p0) — (3, po), which is given by ¢ = ¢x, © ¢y,, where dx,, oy, : (3, po) = (X, po)
are the involutions induced by the orbits of Xy and Y near py.

For simplicity, we say that py is a stable T-singularity of 7, if, and only if, pg is
a T-singularity for which ¢ has a hyperbolic fixed point of saddle type at p, with both
local invariant manifolds W;‘gs(po) of ¢g at py contained in 3¢. Recall that Theorem
proves that Z, € Q" is locally structurally stable at a T-singularity pg if, and only if, pg
is a stable T-singularity of Z.
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Also, if Z, has a stable T-singularity at po, then there exists a (local) invariant cone
N (po) with vertex at py which is filled up with crossing orbits of Zy. In addition, N (po)
is piecewise smooth and N (po) N Y = W (po) UW; (po). Denote the stable and unstable
branches of NV (pg) by W& and W . respectively. The existence of such cone N (py)

has been exhibited in Section [3.6, and it is also referred as the diabolo associated to Z
at po (see [24]). See Figure

Figure 6.2: Nonsmooth diabolo N (py) at a stable T-singularity py of Zj.

In light of this discussion, we have seen that a Filippov system has local crossing
invariant manifolds (stable and unstable) at a stable T-singularity, which persist under
small perturbation. Therefore, a natural question arises in such scenario: what kind of
dynamics is originated from the global extension of these local invariant manifolds?

Definition 6.1.3. Consider Zy € Q". We say that v C M is a T-chain of Zy if v is a
fold-fold chain of order 1 of Zy having a unique stable T-singularity of Zy.

In this chapter, we study the dynamics of Filippov systems around T-chains through a
semi-local analysis at this global connection. We highlight that T-chains are the simplest
fold-fold chains having stable T-singularities and we restrict our studied to this case
because, even in this situation, a Filippov system displays a very complicated dynamics
in the presence of such object.

6.1.2 Robustness Conditions

Let Zy = (Xo,Yy) € " having a stable T-singularity at py. For x = u, s, let 7" be
a section such that 7 N W . = C* is a piecewise smooth closed curve homotopic to a
circle which is nonsmooth only at (the two) points belonging to C* N'¥. Assume that 7
is transverse to the flow of Zj at the points of C* and that 7%, W[ . and ¥ are in general
position (see Figure . Also, consider that 7* is contained in a neighborhood V3p of pg
in M, for which the local first return map ¢, : V' — X associated to Zj at py is defined in

V=VspnX.

Remark 6.1.4. By saying that 7 is transverse to the flow of Zy at the points of C*,
we mean that Xy (resp. Yy) is transverse to ™ at each point ¢ € Wk .. 0O M+ (resp.
qgeW? NM~).

CTross
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Cross

Cs CW Wgross

Do

Figure 6.3: Sections 7" and 7°.

Assume that Zj satisfies the following set of conditions (TC):

(T'Ch) Zy has a stable T-singularity at py € ¥;

(T'Cy) There exists a germ of diffecomorphism D : 7 — 7° at C*, induced by orbits of X,
and Yj such that, for each ¢ € Dom(D) (domain of D), ¢ and D(q) are connected
by a crossing orbit of Zy and D(C*) = C* is a topological circle contained in 7°;

(T'Cs) There exists a Zp-invariant topological cylinder R (2-dimensional) connecting C*
and C*, which is filled up with crossing orbits of Z;. Assume that R N ¥ is given
by two compact distinct curves R*, R® which contains the points Wj (po) N 7" and
W, (po) N 7%, respectively. Also, consider that each crossing orbit contained in R
does not intersect R* consecutively, for x = u, s.

The set of hypotheses (T'C') allows us to extend the crossing invariant manifold
Weoss(Po) of Zy through a cylinder R in such a way that it intersects the section 7°
at a topological circle C*. Below, we show that such conditions allow us to extend the
local first return map ¢q of Zy at py into a first return map in ¥ around {py} U R" N R?,
in such way that the local invariant manifolds W, and W are extended by R" and R*.

Lemma 6.1.5 (Extension). Let Zy = (Xo, Yy) € " satisfying the set of conditions (T'C)
and let g = ¢x, 0 Py, : V — X be its local first return map at the stable T-singularity po.
There exists a small connected neighborhood W of {po} UR* UR?® in ¥ such that

i) VCW and W\V C X%

it) There ezists an involution ®y, : W — W induced by orbits of Yy, i.e., for eachp € W,
p and Py, (p) are connected through an orbit of Yo contained in M—;

iii) There ezists an involution ®x, : W — X induced by orbits of Xo;

iv) g = Px, o Py, is a reversible mapping which is an extension of ¢o. In addition, P
has a unique hyperbolic fixed point at py which is of saddle type.
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Furthermore, for x = u, s, the global invariant manifold Wg of ®q at py is an extension
of W5 (po) and contains the curve R*.

Proof. We prove only item (i7), since item (7) is proved in an analogous way and item (iv)
is a direct consequence of items (ii) and (iiz). Ttem (i) will follows from the construction.

Since Yj is transverse to 7% and 7° at C* N M~ and C* N M—, respectively, it follows
from condition (T'C3) that, for each point p € RY, there exists either ¢ € R* or ¢ € V
such that p and ¢ are connected by a unique orbit of Y contained in M~. Also, if ¢ € V,
then such orbit intersects C* or C*. See Figure .

Therefore, for each p € R*, we use the Implicit Function Theorem to define a C" map
@0 : W, — % induced by the orbits of Y¥j in such a way that, 2 € W, and ®)0(z) are
connected by a unique orbit of Yj contained in M~. An analogous argument shows that
the same holds for points of R?°.

Clearly, given py,ps € R*UR?, if & € Wy, N W),, then ®)0(z) = &)0(x).

From compactness of R* U'R?, there exist a small neighborhood Wx C ¥¢ of R* UR?
and a C" map Py, : VU Wgr — V U Wy induced by orbits of Y. From construction, we
have that ®y, is an involution and Py, |y = ¢y,. Take W =V U Wx.

Clearly, the local invariant manifolds W;L(;S are extended through R*® to invariant
manifolds of @, respectively. [

Figure 6.4: Neighborhood W for which the extended first return map ®, is defined and
behavior of the orbits of X, at points of R™.

Notice that T-chains of Z; at pg are characterized as intersections between the topo-
logical circles C* and C°.

Proposition 6.1.6. Let Z, € Q)" satisfying (T'C'). The following statements hold.
i) [f(/ﬁ NC* =0, then Zy has no T-chains at py;

i) If C = C%, then Zy has an invariant (piecewise smooth) pinched torus at po foliated
by T-chains at py;

ii1) IfC NC =q, -, qe CMYUM™ andC*hC* atq;, i €1, -, K, then Zy has K
distinct T-chains at pg and K = 2k, for some k € N.

The proof of Proposition [6.1.6]is straightforward and it will be omitted.
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Remark 6.1.7. Notice that the topological circles C* and Cv are smooth at the points
gi, 1 < i <2k, since q; ¢ X. Therefore, the notion of transversality is well-defined in

condition (iii) of Proposition[6.1.6|

We notice that if item (iz) of Proposition is satisfied then the (reversible) first
return map P, obtained in Lemma has a homoclinic connection at pg. Clearly, such
situation is not robust, since a small perturbation breaks the condition C* = C*. It is
worth mentioning that results on bifurcation of reversible maps around homoclinic orbits
can be used to understand what happens with these manifolds under small perturbations,
nevertheless, this situation is highly degenerated and thus, it can give rise to very com-
plicated phenomena. In [30], the authors have studied bifurcations of homoclinic orbits
of some planar reversible maps.

In order to avoid further degeneracies, we consider the following robustness condi-
tion on Z;:

(R) ¢ n Cv = {q1," -, qox}, for some k € N, where ¢; ¢ > and C® Cv at ¢,
iel, -, 2k.

Without loss of generality, we consider that £ = 1 throughout this chapter. Also,
we highlight that the condition ¢; ¢ ¥ in (R) and item (ii7) of Proposition is only
technical and can be dropped by extending the notion of transversality of C* and Cv at
points of X.

Therefore, if Z, satisfies (T'C') and (R), then Z; has two distinct T-chains at py. We
notice that, in this case, each T-chain can be seen as a crossing homoclinic orbit of Z,
since it reaches py only at infinite time (see Figure [6.5)). In addition, conditions (7'C') and
(R) are persistent under small perturbations of Z;, thus we have that such T-chains of
Zy are robust in Q" (i.e. can not be destroyed for Z near Zj).

Figure 6.5: A Filippov system 7, satisfying hypotheses (T'C') and (R) having two T-chains
I'y and I'; passing through ¢; and ¢, respectively.

6.1.3 Main Result

Let Zy € Q" satistfying (T'C') and (R). From [6.1.5] we have that Z; is associated to a
first return map ®y = ¢ x, o ¢y, induced by orbits iXo and Yj. Recall that ®x, and ®y,
describes the foliation generated by X, and Yy in M+ and M, respectively, in the sense
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that x and ¢x,(x) (resp. ¢y, ()) are connected by an orbit of X, (resp. Yp) contained in
M+ (resp. M), for every x € W. It follows that the foliation generated by all the orbits
of Zy is described by ®.

Hence, in order to understand the dynamics of the points in the foliation generated by
Zy around the T-chains v; and v at py, we must study the dynamics of the first return
map Py. Although, notice that the map ®, does not care about how two pieces of orbits
of Xy and Y} are concatenated. In fact, the dynamics of a point through ®, can represent
a piecewise smooth curve having pieces of orbits of Xy and Y, which are concatenated in
opposite directions. In light of this, we introduce the following definition.

Definition 6.1.8. We say that a piecewise smooth curve v is a pseudo-orbit of Zy =
(Xo, Yo) if it satisfies the following conditions

i) y N M+ is tangent to Xo;
it) vy M~ is tangent to Yy;
iii) There exists at least a point p € v such that Xof (p)Yof(p) < 0.

Hence, the orbits of &, are associated to crossing orbits and pseudo-orbits of Z,
and vice-versa. Also, notice that if (®fj(x)), oy corresponds to a crossing orbit of Z,
then the evolution of x through ®; might not coincide with the evolution in time of the
corresponding orbit of Zj.

It is worth saying that pseudo-orbits of Z; do not have dynamical meaning, never-
theless, they have to be preserved by topological equivalences preserving . Thus, the
dynamics of @ plays an important role to determine the structure of Z; around 7T-chains.

Finally, we state the main result of this chapter.

Theorem P. Let Zy € Q" satisfying (TC) and (R) and let v, and o be the two T-
chains at pg. Then, for an arbitrarily small neighborhood of pgy, there exist nq,ny € N
such that ®g' and ®y* admit Smale horseshoes A,, and A.,, respectively. Furthermore,
A, NA, =0 and, fori = 1,2, the hyperbolic invariant set A; in the horseshoe A,
contains a point of v; N 2.

Remark 6.1.9. In [6])], one finds a detailed description of Smale horseshoes for a diffeo-
morphism and some basic properties. Also, in [108], the author provides an elucidative
construction of Smale horseshoes.

Theorem [P|shows us that, if Z, satisfies (I'C) and (R), then the dynamics originated by
its orbits and pseudo-orbits is chaotic (see [I08] for more details). A direct consequence
of Theorem [Pl is stated below.

Proposition 6.1.10. Let Zy € Q" satisfying conditions (TC) and (R) and let Ay and
Ay be the hyperbolic sets given by Theorem [P, For each i = 1,2, the following statements
hold.

1. There ezists an infinity of closed orbits (or pseudo-orbits) I of Zy such that TNY C
Ai;

2. There exists an infinity of non-closed orbits (or pseudo-orbits) I' of Zy, such that

3. There exists an orbit (or pseudo-orbit) T'y of Zy such that T'y N3 is dense in A;.
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The proof of Proposition follows directly from Definition [6.1.8] Theorem [P]and
Theorem 2.1.4 of [108].

Section[6.2)is devoted to prove Theorem [P] In Section [6.3] we present a model realizing
a robust fold-fold connection. Some further directions of this problem are given in Section
0.4

6.2 Proof of Theorem [Pl

First we discuss about the local structure of the stable T-singularity py. Without loss
of generality, we consider the following assumptions:

« The switching manifold is given by ¥ = {z = 0} and py = (0,0, 0);

o The sections 7" and 7° are contained in the planes {y = ¢} and {y = —¢}, for some
e > 0 sufficiently small;

o Sx,NV and Sy, NV are contained in the lines x = K,y and z = K»y, respectively,
for some coefficients K; < 0 and Ky > 0;

o The orbits of Yy in Vip go from {x < Kyy} to {x > Kyy} and the orbits of X in
Vip goes from {x > Ky} to {x < K1y}.

Such assumptions imply that, if p € {z < Kyy}N{z < Kyy}, then the orbit (¢f(p))nen
of the local first return map ¢q : V' — ¥ represents a crossing orbit of Z, and its evolution
through time coincides with the order generated by (¢ (p))nen-

Recall that, since the origin is a stable T-singularity of Z;, ¢ has local invariant
manifolds W(;‘(;S(O,O) at (0,0), which is a hyperbolic fixed point of saddle type of ¢y.
Without loss of generality, we assume that these invariant manifolds are contained in the
union of lines {z = K3y} U {z = Ky}, where K3 < K; and K; > Ks.

It follows from the orientation of the orbits of Xy and Yy and the position of 7** that

W5 (0,0) C{z = Kyy} and W (0,0) C {r = K3y}.
Figure [6.6] illustrates the situation considered above.

Remark 6.2.1. Notice that, if x > 0, then the orientation of the crossing orbits through
a point p of W4:°(0,0) is reverse with respect to the order given by the orbit (¢4 (p))nen of
¢ through p.

Using the Extension Lemma [6.1.5) we obtain the first return map ®q : W — ¥ induced
by orbits of X, and Y{, which extends ¢g : V' — X.

From conditions (7'C'), we have that Xy (resp. Yp) is transverse to 7° at points of
(C*UC*) N MT (resp. (C5UC") N DM-). Also, ms(Xo(p)), m2(Yo(p)) > 0 in such points.

Remark 6.2.2. Notice that Sx, and Sy, must intersect T at points lying in the interior
of the bounded regions of {y = —¢e} delimited by the circles C* and C*.

Now, since (C*UC*)N M7 is a compact set, and ma(Xo(p)) > 0 for every p € (C*UC*)N
M+, it follows from the Implicit Function Theorem that there exist an open neighborhood
N* of (C*UC*)N M+ in the plane {y = —¢} and a C" diffeomorphism ¢, : NFNM*T — %
such that, for each z € N* N M7, 2 and ¢, (x) are connected by a unique piece of orbit
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Figure 6.6: Switching manifold of Zy: Position of the invariant manifolds and tangency
sets.

of Xy contained in M™ which is oriented from z to ¢ (). Analogously, we obtain a C”
diffeomorphism ¢_ : N~ N M~ — ¥ defined in a neighborhood N~ of (C*UC*) N M~
in the plane {y = —&}, such that, for every x € N~ N M~ there exists a unique piece
of orbit of Yy contained in M~ connecting = and ¢_(z) oriented from = to ¢_(x). See

Figure [6.7]

Figure 6.7: Sections 7" and 7°.

Let N=(NtTNMT)YU(N-NM")and ¢ : N — X be the C" diffeomorphism defined
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(p) = { #+) ifpe NTAMT,
AP = o_(p), ifpe N-NM~.

Now, for x = u, s, let pf . be the unique point of C® contained in the local invariant
manifold W (po). Recall that, there exists a crossing orbit of Zy from pf. to ®@o(pi,.) €
W;O(po) and mo(Po(pf.)) > —e. Also we have that —e < m(Px,(plL.)) < ma(Po(pi..))-

See Figure [6.8
From the definition of ®,, it follows that:

o if peC*NM™, then p(p) € W; (po);

o if pe C*NM~, then o(p) € Wi (po).

Figure 6.8: Evolution of the flow of Z, through the points pi’. and pi,..

Recall that, for each p € W (0,0) N {z < 0}, (¢5(p))nen represents a crossing orbit
of Zy which is oriented in the order given by the iterations of p through ¢y. Since R
extends W (0,0) N {z < 0}, the same propertzf\ holds for p € R™.

For x = u, s, let p}, be the unique point of C* contained in the curve R*. There exists

a crossing orbit of Z, from ®;'(p%) € R* and p%, and 7o (®y ' (plk)) < —e. Also we have
that mo(®y ' (plk)) < ma(Py, (%)) < —e. See Figure Therefore,

e if p€C*N M, then ©(p) = Po(p), for some p € W ;
e if peC*N M-, then o(p) = 5 (p), for some p € W3, -

Finally, from hypothesis (R), we have that C* N Cu = {q1,q2}, where ¢; ¢ ¥ and
Cs th Cv at ¢;, 1 = 1,2. Without loss of generality, assume that ¢; € M™. Since ¢ is a
diffeomorphism, o(C* N M™*) C Wg, and o(C°NM™) C W , it follows that the invariant
manifolds W3, and Wg intersect transversally at the point ¢, = ¢(q1). Analogously, we
have that W3 and Wy intersect transversally at the point g2 = ¢(g2). Also, (®F(q1))nen
and (Py(q2))nen define two distinct orbits of ®y.

Therefore, Theorem [P|follows straightly from Theorem 6.5.5 from [61], which is stated
below.
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Figure 6.9: Evolution of the flow of Z, through the points p% and p3.

Theorem 6.2.3 (Theorem 6.5.5 of [61]). Let M be a smooth manifold, U C M open,
f:U— M an embedding, and p € U a hyperbolic fixed point with a transverse homoclinic
point q. Then in an arbitrarily small neighborhood of p there exists a horseshoe for some
iterate of f. Furthermore the hyperbolic invariant set in this horseshoe contains an iterate

of q.

6.3 A Model Presenting a T-connection

In this section we construct a Filippov system having two robust fold-fold connections.
It is worth mentioning that such model can be used to produce examples of T-chains
satisfying conditions (T'C') and (R).

6.3.1 Filippov System 2,
Consider the Filippov system

7 ) Xi(z,y,2) =(1,-1,y), if z>0,
x,Y,2) =
ey Yi(z,y,2) = (-1,2,—x), ifz<0.

Notice that (0,0,0) is a T-singularity and Sy, = {y = 0} and Sy, = {z = 0} are
fold lines which divide the switching manifold ¥ = {z = 0} in four quadrants (see Figure
6.10]). In addition

o X% ={(z,y,0); =,y <0};
o X% ={(z,9,0); z,y >0}
o X¢={(z,y,0); zy < 0};

A straightforward computation shows that the flow of X; and Y; are given by
T+t

: _ y—t

Px t7 x,y, Z)) -
1( ( <y - t>2

“T T

2
4
+ =
2
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Figure 6.10: Switching manifold associated to Z.

and
r—t
. _ + 2t
Py (ta (SL’, Y, Z)) - N (xy_ t)2 ZE2 )
Z —_— —
2 2

respectively. It allows us to see that
ox,(t; (z,9,0)) e <=t =0o0rt =2y,

and
oy, (t; (x,y,0)) € <=t =0ort = 2x.

Thus, we can associate involutions ¢x,, ¢y, : X — X associated to the fold lines Sk,
and Sy, of the vector fields X; and Y; respectively. They are given by

ox,(r,y) = < xi;y ) , and ¢y, (z,y) = ( 4x_—|gi:y )

Now, use the involutions to construct the first return map ¢, : ¥ — ¥ given by:

¢1(2,y) = ¢y, © dx, (7,y) = < ;;:;725 > .

Notice that ¢; is globally defined on . The eigenvalues of ¢; are given by
M =3+2V2,
and their respective eigenvectors are
vf = (—14+v/2/2,1).
Since ¢, is linear, the lines
Df = {a(-1+£+2/2,1); a € R},
are global invariant manifolds of ¢,. Furthermore,
¢x, (Dy) = DY and ¢y, (DY) = Dy

These facts ensure the existence of global crossing invariant manifolds in the form of
a nonsmooth diabolo N which intersects 3 in Di. See Figure [6.11]
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Figure 6.11: Tlustration of Ny N .

6.3.2 Filippov System 2,
Consider the Filippov system

7 ( ) X2<x>yv Z) = (17 —-Ly— 2)’ if z > 0,
T,Y,z) =
ey Yo, y,2) = (=1,3,—(x — 2)), if z <0,
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Notice that (2,2,0) is a T-singularity and Sy, = {y = 2} and Sy, = {z = 2} are
fold lines which divide the switching manifold ¥ = {z = 0} in four quadrants (see Figure

6.12)). In addition

o X ={(z,y,0); z,y > 2}
o X% =A{(z,y,0); z,y <2}

o X¢={(7,y4,0); (x—2)(y—2) <0}

A s,

Zus

Figure 6.12: Switching manifold associated to Z;.
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A straightforward computation shows that the flows of X5 and Y5 are given by

z+1t
—t
PXo (t; (.23, Y, Z)) = (y _Zé)Q y2 3
- + -2t
2 2
and
T —1
+ 3t
PYs (t; (l’, Y, Z)) = (ZL’ _yt)Z 1‘2 )

respectively. It allows us to see that
SOXz(t; (x>y70)) e <e<t=0ort= Q(y _ 2)’

and
Oy, (t (x,y,0)) e E<=t=0o0rt=2(x—2).

As before, we can associate involutions pyx,, @y, : 2 — X associated to the fold lines
Sx, and Sy, of the vector fields X, and Y5, respectively. They are given by

b9 = ( : + 2(2/1/_—22; ) , and ¢y, (2, y) = ( yQJ:(;(ZCx__QQ)) ) .

Now, use the involutions to construct the first return map ¢s : ¥ — X given by

nte) = omoome = (5 )+ (5 ) (573 )

The eigenvalues of 1), at the fixed point (2,2) are given by
AF =5+2V6,
and their respective eigenvectors are
v = (—1+6/3,1).
Since ¢, is linear, the lines
DF ={(2,2) + (-1 +6/3,1); a € R},
are global invariant manifolds of ¢,. Furthermore,
¢x,(Dy) = Dy and ¢y, (D3) = D

These facts ensure the existence of a nonsmooth diabolo N, which intersects ¥ in D3
See Figure [6.13]
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ZUS

Figure 6.13: Ilustration of No N 3.

6.3.3 A Filippov System with a Cross Shaped Switching Mani-
fold

Consider a new switching manifold IT = g~*(0), where

Let W{(0,0,0) be the unstable branch of the nonsmooth diabolo N; of Z; at the
origin. In this case, W*(0,0,0) N {z > 0} is given by the parametrized set

Wi = {(a(~1+V2/2)a+ta—t,—(a—1t)?/2+a?/2); 0 <t <2aand a > 0}.

Similarly, denoting the stable branch of the nonsmooth diabolo N5 of Z, at (2,2,0)
by W5(2,2,0), we obtain that W5 (2,2,0) N {z > 0} is given by

Wi = {(24(—1—1/2/3)a+t, 2+a—t, (2+a)? /2—(24+a—t)?/2—2t); 0 < t < 2a and a > 0}
A straight computation, shows that
Cl =W NI = {y"(a); 25/191(—14 + 17V/2) < o < 25/191(14 + 17V/2)},
where
V(@) = (=5/7(=5 4+ v2a), 1/14(=50 4+ 17v/2a), 1/196(—1250 + 850v/2c — 19102)).
Also
C* = Wi NI = {75 (); 29/431(—21 +17v6) < o < 29/431(21 4+ 17V6)},
where
vi(a) = (5/21(=9 + 2v/60),1/21(129 — 17v60), 1/294(—2523 + 98616 — 431a?)).
In addition

CYNC* = p, = (—5/49(—6T + 8v/51),1/49(—447 + 68v/51), (—330577 + 48248V/51) /4802) ,
(6.3.1)
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Figure 6.14: Sketch of C{ and C?.

and CY h C* at p’. See Figure [6.14]
Also, notice that the vector fields X7, X5,Y; and Y5 are transverse to II at every point
of II. Thus, the piecewise smooth system

Zi(z,y,2), if g(z,y,2) <0,
ZO(xasz) = {

Z2($,y,2), ifg(ac,y,z) > 0.

with a cross-shaped switching manifold has an isolated crossing orbit connecting the T-
singularities (0,0,0) and (2,2,0) of Z; passing through p* given in (6.3.1)). See Figure
0. 10l

Figure 6.15: (a) Switching manifold ¥ associated to Zy. (b) Cross-shaped switching
manifold > U II.

Analogous conclusions can be shown for z < 0. In this case, Z, has another isolated
crossing orbit connecting the T-singularities (0,0,0) and (2,2,0) of Z, passing through a
point p* € II contained in z < 0.
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6.3.4 A Filippov system presenting fold-fold connections

Consider the C!-regularization function

-1, if v < —1,
p(x) = ¢ sin(m/2x), if |z|< 1,
1, if 2> 1.

Thus, regularizing Filippov systems (X3, X5, II) and (Y7, Y5, II) with respect to the
switching manifold II. We obtain

X X - X
-Xg(lf,y,Z) _ ‘<2($ay72) : 1(1‘,y,2’> © (f(l’,gy, Z)) Q(ZL',y, Z) . 1(1’7:% Z)
and
Yo(x,y,2) + Yi(x,y, 2 .Y, 2 Yo(z,y,2) — Yi(z,y, 2
ys(33>3/72) 2< 4 )2 1( 7 )—l-gO(f( €y )> 2< ’ )2 1( y )

Thus, for e > 0, Z. = (X.,Y.) is a Filippov system with switching manifold ¥ = {z =
0} and Z. € Q.

Remark 6.3.1. If we consider a regularizing function ¢ which is of class C", then Z. € Q".

It follows that Z. has two (stable) T-singularities at p; = (0,0,0) and py = (2,2,0).
Now, since the invariant manifolds W} (p;) and W (ps) intersect II transversally in two
topological circles C* and C*, we have that:

1. The unstable crossing invariant manifold W*(p;) of Z. at p; intersects the transver-
sal section IT_. = {g(x,y,2) = —} in a topological circle C¥;

2. The stable crossing invariant manifold W?(py) of Z. at p, intersects the transversal
section II. = {g(z,y, z) = €} in a topological circle C?.

Consider a small annulus D? around C! contained in the plane II_.. Now, &, and Y.
are transverse to I1_., II. and z = 0 and there is no singularities of Z. in the cylindrical
region delimited by D and the regularization zone R. = {(x,y,2); |g(z,y,2)|< e}. Tt
means that the flow of Z, is tubular inside this region (it has only crossing orbits which
goes from DY to II..

Therefore, W*(p;) extend itself in the regularization zone through crossing orbits of
Z., and it intersects I, in a topological circle CAg

Since C* and C° intersect transversally at the points p* and p?, it follows that, for
e > 0 sufficiently small, @ and C? intersect themselves at two points ¢1(¢) € X~ and
g2 (8) exr.

It means that, there exists g > 0 sufficiently small such that, for each ¢ < g, the one-
parameter family Z. € Q! has two robust fold-fold connections between the T-singularities
p1 and p,.
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6.4 Conclusion and Further Directions

In this chapter, we have presented a robust global phenomenon in 3D Filippov systems
Z which generates a chaotic behavior in the foliation associated to Z (composed by orbits
and pseudo-orbits of 7).

In general the notion of chaos in Filippov system is still poorly understood due to the
richness and complexity of the dynamics generated by discontinuities. In fact, there are
works exploring this subject (see, for instance, [20, [77, [78]), nevertheless most of them
uses classical concepts in order to characterize chaotic behavior, which is sufficient for the
specific situations treated in such works. In light of this, a generalization of the concept of
chaos is needed for Filippov systems, taking into account the non-uniqueness of solutions
at Y-singularities and sliding orbits, in order to characterize complicated behavior which
can not be reduced to a classical setting.

It is known that a Filippov system presents non-deterministic chaos at a stable T-
singularity due to the local behavior of the sliding vector field at such point (see [25]).
So, we ask ourselves how the sliding dynamics interacts with the hyperbolic invariant
sets associated to the Smale horseshoe of the first return map found in this chapter. It
is an arduous task which might bring new ways towards the comprehension of chaos for
Filippov systems.
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Chapter

Critical Velocity in Kink-Defect Interaction
Models

@I@N this work we study a model of interaction of kinks of the sine-Gordon equation with

@ @ a weak defect. We obtain rigorous results concerning the so-called critical velocity
derived in [47] by a geometric approach. More specifically, we prove that a heteroclinic
orbit in the energy level 0 of a 2-dof Hamiltonian H. is destroyed giving rise to heteroclinic
connections between certain elements (at infinity) for exponentially small (in €) energy
levels. In this setting Melnikov theory does not apply because there are exponentially
small phenomena.

7.1 Introduction

Given an evolutionary partial differential equation, a traveling wave is a solution which
travels with constant speed and shape. There are several types of traveling waves which
are important in modeling physical phenomena. In particular, we give special attention
to kinks, also referred as solitons. A soliton is a spatially localized traveling wave which
usually appears as a result of a balance between a nonlinearity and dispersion.

In fact, kinks are traveling waves which travel from one asymptotic state to another.
In the last years, solitons have attracted the focus of researchers due to their significant
role in many scientific fields as optical fibers, fluid dynamics, plasma physics and others
(see |51, 64], 106] and references therein).

In this work, we study a model of interaction between kinks (traveling waves) of the
sine-Gordon equation and a weak defect. The defect is modeled as a small perturbation
given by a Dirac delta function. Such interaction has also been studied for the nonlinear
Schrodinger equation in [58, [59].

We consider the finite-dimensional reduction of the equation given by a 2-degrees of
freedom Hamiltonian H proposed in [36], 47]. Following a geometric approach, we give
conditions on the energy of the system to admit kink-like solutions.

7.1.1 The model

The sine-Gordon equation is a nonlinear hyperbolic partial differential equation given
by
O}u — O2u + sin(u) = 0,
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which presents a family of kinks wuy(x,t) given by

— ot —
ug(z,t) = 4arctan (exp (H)) , (7.1.1)

where the parameter v represents the velocity of the kink.
In this work, we perturb this equation by a localized nonlinear defect at the origin

Ofu — 0%u + sin(u) = () sin(u), (7.1.2)

where §(z) is the Dirac delta function. This equation was studied in [36, 47] where the

authors consider finite-dimensional reductions of it to understand the kink-like dynamics.
As a first step, they consider solutions u of small amplitude of (7.1.2]), which can be
approximated by solutions of the linear partial differential equation

Otu — OPu +u = e6(7)u, (7.1.3)
which has a family of wave solutions u;,(z,t) given by

Usn (2, 1) = a(t)e /2, (7.1.4)

where a(t) = agcos(Q2t + 6p), Q@ = /1 —€?/4 and im stands for impurity. The solution
Uiy is not a traveling wave, but it is spatially localized at x = 0.

In order to study the interaction of kinks of the sine-Gordon equation with the defect
considered in , [36L, [47] use variational approximation techniques to obtain the equa-
tions which describe the evolution of the kink position X and the defect mode amplitude
a. To derive such equations, they consider the ansatz

u(x,t) = 4arctan(exp(z — X (1)) + a(t)e =2, (7.1.5)

Notice that ([7.1.5)) combines the traveling property of the family of kinks (7.1.1]) with the
localized shape of ([7.1.4)). If
vt — T
X(t) = ———= and a(t) =0,
(1) = =2 and a

then ([7.1.5) becomes the original family of kinks ((7.1.1]) of (7.1.2)) for £ = 0.

Using the ansatz ((7.1.5) in (7.1.2)) and considering terms up to order 2 in ¢, [36, [47]
obtain the system of Euler-Lagrange equations

{ 8X 4 eU'(X) 4 caF'(X) = 0,
(7.1.6)

i+ QPa+ 32F(X) =0,
where
2
U(X) = —2sech®(X), F(X) = —2tanh(X)sech(X) and Q = /1 — " (7.1.7)
which describes approximately the evolution of the kink position X and the defect mode

amplitude a. More details of this approach and its applications can be found in [36] 47,
72]. It is worth mentioning that the finite dimensional reduction of PDE problems to
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ODE systems via an adequate ansatz and variational methods has been considered in an
extensive range of works (see [35, 42} 48], 49, 50, 107, 109]).

It remains as an open problem to prove that the solutions of the reduced system
rigorously approximate the PDE solutions. Nevertheless there are numerical evidences
ensuring this reasoning (see [88],[89]). In particular, in [I05], the authors analyze numeri-
cally the simulations done in [47] for the perturbed sine-Gordon equation (|7.1.2)).

From (7.1.5), if X(t) and a(t) satisfy X(t) — 4oo, X(t) — C* and a(t) — 0 as
t — 4oo, then u(z,t) can be seen as an approximation for a kink of , since it
transitions from an asymptotic state to another when x — X (¢) — +oc. In this case, we
say that (X (t),a(t)) is a kink-like solution, or simply a kink, of (7.1.6)), and we say
that v; = C~ and vy = C't are the initial velocity and final velocity of the kink.

If X () satisfy X (t) — o0, X(t) — C* and a(t) is asymptotic to a periodic function
with small amplitude when ¢t — 400 of ¢ — —o0, then u(x,t) can be seen as an approxi-
mation for a kink of with asymptotically periodic oscillations. In this case, we say
that (X(t),a(t)) is an oscillating kink-like solution, or simply an oscillating kink, of
, and their initial and final velocities are defined in the same way. In addition, if
(X(t),a(t)) is an oscillating kink such that a(t) — 0 ast — —oo and a(t) is asymptotically
periodic as t — 400, then it is said to be a quasi kink-like solution, or quasi kink.

In this paper we perform a rigorous study of such solutions of the finite-dimensional
reduction ([7.1.6]) of the partial differential equation ([7.1.2]).

7.1.2 The reduced model
Consider the change of variables (X, X,a,a) — (X, Z,b, B), where

X 20) 2
X = X,Z = 87’ b= 7871/401,3 — ig*l/‘lia?
NG £ V 2Q) £

and the time rescaling 7 = y/et. Then, denoting ' = d/dr, the evolution equations of

(7.1.6) are equivalent to:

X' =

)

A
8

3/4

7' = —U'(X) — S —F'(X)b,

2 ho—1-5 71.8
it = — —. 1.
y_ g with € =1 =75 (7.1.8)

\/g
0 g3/4

b= st

Notice that (7.1.8)) is a Hamiltonian system with respect to

B = (X),

H(X,Z b B z UX L B? +b? !
( y 45 Uy 78)_T6+ ( )+27\/E( + )+
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which can be split as H = H, + Hy + R, where

2

A
Hp(Xa Z) = E + U(X)a

Q
Hose (b, B) = Hose(b, B;g) = 2—\/5(32 +b?),

£3/4

V20

Thus the Hamiltonian H is the sum of a pendulum-like Hamiltonian H,, with an oscillator
Hs. coupled by the term R.

R(X,b) = R(X,b;e) = — F(X)b.

Remark 7.1.1. Applying the change of variables Y = 4arctan(e’), the Hamiltonian

system ([7.1.8)) is brought into

Y =2sin(Y/2)Z/8,

) £3/4
Z =2sin(Y/2) | sin(Y) — cos(Y)b |,
in(y 2 (snf) - Sz costv)
. Q
b=—=B
Ve
0 63/4

B= b— ——=sin(Y).

e 20

WhenY =0 and Y = 27, this system has parabolic critical points and periodic orbits
which have invariant manifolds.

The hyperplanes Y =0 and Y = 27 correspond to X = —o0 and X = +00 of
respectively. For this reason, even if they are not solutions of the system, they can be
seen as asymptotic solutions at infinity. Thus, abusing notation, we denote f(+oo) as

lim f(X) when it is well defined.
X—=o0

System inherits many properties of the sine-Gordon equation. In fact, the
functions U and F' have exponential decay when |X|— +oo, therefore, for large values
of X the system becomes decoupled. Nevertheless, when X = O(1), the equations are
coupled and the Hamiltonians H}, and H. may exchange energy, and this will result in
interesting global phenomena.

If F =0 (i.e. R=0), then each energy level H = h > 0 of system contains
a unique kink solution and all the other solutions will be oscillating kinks (with the
same oscillation in both tails). In this paper, we prove that the kink solution in H = h
breaks down for low energies (see Theorem and we obtain a critical energy A,
(with associated critical initial velocity v. = 4v/h.) such that the energy level H = h (h
small) contains a quasi kink (continuation of an unperturbed kink) if and only if h > h,.
In addition we give an asymptotic formula for h. (see Theorem [S)) which happens to be
exponentially small in the parameter e. We also find an energy 0 < hs; < h, such that the
energy level H = h (h small) has oscillating kinks if and only if 4 > h, (see Theorem [R)).

In [47], the authors present numerical and formal arguments for the existence of the
critical velocity v, and they conjecture that the final velocity vy of a quasi kink lying
in an energy level h > h, (h small) is given by v; ~ (v; — v.)'/2, where v; > v, is its
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initial velocity. Our results prove the validity of the asymptotic formula for v, and the
conjecture for vy (see Theorem .

We emphasize that the rigorous approach presented in this work is necessary to validate
the conclusions obtained in [47]. In fact, their results rely on the computation of a
Melnikov integral as a first order for the total loss of energy AFE over the separatrix of
(7.1.8) with § = 0 (or more precisely of the transfer of energy from the separatrix to
the oscillator). Nevertheless, Melnikov theory cannot be applied in this case due the
exponentially smallness in the parameter € of the Melnikov function. In this paper we
prove that it is indeed a first order of AFE. Note that this is not always the case: in
general problems presenting exponentially small phenomena, often the Melnikov integral
is not the dominant part of the total loss of energy over a separatrix of a Hamiltonian
system (see [§]).

In this paper, we relate the loss of energy AFE, and thus the existence of kinks, quasi
kinks and oscillating kinks, with the exponentially small transversal intersection of the
invariant manifolds W"™# of certain objects (critical points and periodic orbits) at infinity.

7.2 Mathematical Formulation and Main Goal

7.2.1 The unperturbed Problem
Consider system (7.1.8)) for F' = 0. Then H = H, + H is just two uncoupled

integrable systems.

In the X Z-plane, the solutions are contained in the level curves H, (X, Z) = k. This
system can be transformed into a degenerate (parabolic) pendulum by a change of coor-
dinates (see Remark . For k < 0, H, = « is diffeomorphic to a circle. For x > 0,
H, = k contains the points ¢& = (£00,4+/k) which behave as “fixed points' and are
connected by a heteroclinic orbit T, given by the graph of

Z.(X) =4k — U(X) :4,/H+COShQZ(X), X eR. (7.2.1)

Notice that 7} is a separatrix. Analogously, (oo, —4y/k) € {H, = K} are fixed points
at infinity connected by the heteroclinic orbit given by the graph of —Z,(X). See Figure
7.1l From now on, we focus on the heteroclinic orbits contained in Z > 0, since all the
results of this paper can be obtained for the orbits in Z < 0 in an analogous way.

In the bB-plane, the solutions of (7.1.8) for ' =0 are
P,={Hy =K} = {(b, B); V¥ + B* = 2/@\/5/9} (see Figure (7.2)). (7.2.2)

Combining ([7.2.1)) and ([7.2.2)) in the energy level H = h, we define

Af L =qi X Py, :{(ioo,él\//i—l,b,B); b2+B2:2/€2/w},

K1,k2
for every k1, ko > 0 such that k1 + ko = h. Notice that
e If Ky =0, then Ay is a degenerate saddle (parabolic) point of (7.1.8);
o If Ky > 0, then AL _ are degenerate saddle (parabolic) periodic orbits of (7.1.8)).

K1,R2
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W

Figure 7.1: Projection of the phase space of the unperturbed system in the X Z-plane.
%

Figure 7.2: Projection of the phase space of the unperturbed system in the bB-plane.

For simplicity, we denote the limit cases k; = 0 and k9 = 0 by
Ay = A§y ={(£00,0,b,B),b* + B* = 2h/w},
Py = Ay = (£00,4vh,0,0),
respectively. We stress that pf are points and Af are periodic orbits, both contained in

the planes X = +o00 and in the energy level H = h.
These invariant objects have invariant manifolds. Denote

W (k1 ko) = Ty, X Py = {(X, 2.6, B); 7 = 4\/r1 — U(X) and b + B2 — 2@\/5/9} ,
(7.2.3)
for each k1, ko > 0 such that ki + ko = h.

(1D-0) W(0,0) = W¥(py) = W§(pg) is a 1-dimensional heteroclinic connection (separatrix)
between the points p, and pg;

(1D-r;) W(h,0) = W&(p;) = W(p) is a 1-dimensional heteroclinic connection between
the points p, and pj ;

(2D-0) If o > 0, then W (0,h) = W¥(A;) = Wi(A)) is a 2-dimensional heteroclinic mani-
fold (separatrix) between A; and Aj;

(2D-k) If K1, Ky > 0, then W (K1, ko) is a 2-dimensional heteroclinic manifold between A

R1,R2
+
and A} .
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—00 X Jr%o

Figure 7.3: Projection of the heteroclinic manifolds W (ky, k2) in the bX B-space. In
the figure, the most external cylinder is the projection of W (0,h) and the straight line
represents the projection of W (h,0).

For h > 0 fixed, the level energy H = h is a 3-dimensional manifold. Eliminating the
variable Z by the Hamiltonian conservation, the manifolds W (ky, k2) project into the the
bX B-space as horizontal cylinders centered along the X-axis.

In this unperturbed case, there is no exchange of energy between the pendulum and

the oscillator through the heteroclinic connections of W k1, ks), i.e. H, and HS, are

first integrals. In the perturbed case (7.1.8) (F' # 0) the coupling term R (see (7.1.9))
goes to 0 as X — +o00, thus, the system is uncoupled at X = +o0o. As a consequence,

A ., are orbits of system (7.1.8) in the sense of Remark [7.1.1] Nevertheless, the system

K1,R2
may exchange energy between the pendulum and the oscillator when X varies, through

the appearance of heteroclinic connections between different A_ .~ and A:/l " such that

K1+ ke = K} + K, = h.
Recall that a quasi-kink (see Section [7.1.1]) is a solution (X (t), Z(t), b(t), B(t)) which

has initial velocity v; > 0 and final velocity vy > 0 and satisfies the asymptotic conditions

tEr—nooX(t) = —00, tEI_nOOZ(t) = v, tEI_nOO b(t) = 1tgr_nooB(t) =0, (7.2.4)
tLiLnooX(t) = 400, tLiEFIlOOZ(t) = vy. (7.2.5)

and (b(t), B(t)) are asymptotic to periodic functions as X — +o00. For such solutions

2
[

he = H(X(1). Z(0),b(t), B()) = =

for every t € R.

Thus, considering h; = v?/16 and r; = UJ% /16, we have that, the quasi-kink solu-
tion (X (t), Z(t),b(t), B(t)) satisfying and is a heteroclinic connection be-
tween the 1-dimensional unstable manifold of p; and the 2-dimensional stable manifold
of AT

){f,hi—ﬂf’

7.2.2 Main results

Our aim is to look for solutions traveling from X = —oo to X = 400. More concretely,
we prove the existence of v, > 0 such that the solutions X of incoming with velocity
v; escape the defect location and continue traveling towards X+ = oo with (asymptotic)
final velocity v¢, provided v; > v..
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Therefore, the critical energy h, is characterized as the lowest energy level h. = v?/16
such that for any h > h,, there exist k1, ko > 0 with k1 + ko = h such that W¥(p, ) C

WES (Al—ﬁi_l KQ)'
Notice that W(p, ) C W2 (A, .,) implies that the final velocity of the corresponding

orbit X (¢) (which has initial velocity 4v/h) is given by vy = 4,/k;.

To analyze the existence of heteroclinic orbits between the invariant objects at X =
400 we consider the section X = 0, which is transversal to the flow. Restricting to the
energy level H = h, eliminating the variable Z and using , this section becomes

the disk
R < (4+2h)\/5}
) —_ Q .

We compute intersections between unstable and stable manifolds in .

In the unperturbed case F' = 0, the one-dimensional heteroclinic connection between
the “infinity points' p; and p,, W(h,0) = W¥(p, ) = W(p;) intersect X, at the point
(0,0). In the following theorem, we show that it breaks down when F' # 0 (see Figure

7).

Theorem Q (Breakdown of kinks). Consider system (7.1.8)). There exists ¢ > 0 and
ho > 0 sufficiently small such that, for every 0 < e < g9 and 0 < h < hy, the invariant
manifolds W**(pj) intersect 3o (given in (7.2.6)) ). Denoting by P,"° the first intersection
points,

Sy = {(o, b, B) (7.2.6)

2

—0/2/e 7/4_—Qn/2/e 0—=4/1— &
e +0 (6 e ) , where I(727)

Qred/4
VQ
|PY — P| = do(e) + O(7/*Vh).

The first statement of this theorem is proven in Section and the second one is a
consequence of Theorem [7.3.12] stated in Section below.

Remark 7.2.1. In the asymptotic formula (7.2.7), we could write 2 = 1. Nevertheless,

we keep Q = /1 — €2 /4 in order to compare our results with [47]. The same remark holds
for Theorems B, C' and D below.

[P = F5| = do(e) =

When F' = 0, the energy level h has a family of heteroclinic manifolds Wk, k2),

with k1 + ko = h, K1,k > 0, connecting the periodic orbits Aflm. Each one intersects

Y, at a circle centered at (0,0) with radius /2k24/¢/2, which generates a disk of radius
\/2h+/2/Q2 when we vary 0 < ky < h (see ((7.2.1]) and (7.2.2))).

We show that, for the perturbed case, W*(A_ . ) and W5(A} , ) also intersect %,

K1,K2 KR1,R2
in closed curves near circles of radius /2k21/¢/) centered in P and Pg. Thus, varying
0 < ky < h, we can see that W»*(AE ) intersect X, in topological disks D} and Dj

K1,R2

near the disks of radius y/2h+/c/$) centered in P and P¢, respectively (see Figure [7.4)).

The existence of heteroclinic connections continuation of the unperturbed ones corre-
sponds to intersections between the disks D} and Dj. Even if in the energy level h = 0,
there is no (first round) heteroclinic connections between the points at X = +00 (p, and
pa ), the heteroclinic connections between the periodic orbits Afm? may certainly exist
when h > 0, since the two disks may intersect for some values of h. The lowest energy
level hy > 0 for which these heteroclinic connections exist is reached when the boundaries
of these disks are tangent (see Figure[7.4). Equivalently, when W¥(A;,) intersects W2(A}))
in the energy level hy = hg(e).
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P Py

— -0
(a) do(e) > b ,_/ X
QPS

Figure 7.4: Splitting of the invariant manifolds contained in the energy level h (in the
section 3J;,) on the left and their projections in the bX B-space on the right, for (a) h =0
and (b) h > 0 small.

Theorem R (Existence of oscillating kinks). Fiz hg > 0. There exists g > 0 sufficiently
small such that, for every 0 < e < ey and 0 < h < hg, the invariant manifolds W*(A,,),
WE(A)) intersect 3y, (given in (7.2.6))). The first intersection is given by closed curves,
which we denote by OD,°. Then, there exists

2 —204/2/e 2
ha(e) = 8”fu +O()), withQ=1/1— %

such that the following statements hold for system (7.1.8)).
1. If 0 < h < hy(e), the closed curves 9D, do not intersect each other.

2. If hs(e) < h < hg, the closed curves 0D, intersect at least once.

Furthermore, given > 1, there exists ¢, > 0 and

871.26—29 2/e

hule) = T (u+ O(0) = o),

such that, for 0 < e < e, and h,(e) < h < hy, the closed curves OD;"* have at least two
intersections.

Thus, we can see that there is a family of heteroclinic connections between elements
of X = 400 which are contained in the energy level h, for h > h;.

Actually, we prove that, in the energy level H = h,, 0D} and ODj_ intersect (tan-
gentially) at least once, and for this reason, 0D} N 0D;_may have more than one point.
Also, our methods show that, for h > hg, 0D} NOD; has at least two points and Dy N D;,
has at least one connected component with positive Lebesgue measure (see Figure .

The Critical Energy Level h,

From our approach and the definitions of Section [7.1.2] the critical energy level occurs
for the smallest h such that W (p, ) C W2(A[ ,,), for some &y, Ky satisfying sy + Ky = h.
Thus, h. occurs when W(p;, ) C WE(AS).

Geometrically speaking, h. is characterized as the energy level such that Py belongs
to the boundary of the (topological) disk Dj_ “centered” in Py (see Figure[7.5). In the
next theorem, we compute h. = h.(¢).
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Theorem S (Existence of quasi-kinks). Consider system (7.1.8)). There exist ¢g > 0,
ho > 0 and a function

2
he(e) = 2m2ee X W2E(1 + O(e)), with0<e<e and Q=/1— %,

such that, for every 0 < e < &g and 0 < h < hyg, the invariant manifolds W*(py, ), WE(A})
intersect 3y, (given in (7.2.6) ). The first intersection of W*(py, ), W2(Ayy) with ), is given
by a point and a closed curve, denoted by Py and ODj,, respectively. Then, Py € 0D; if,
and only if h = h.(g).

See Figure Theorem |S| also holds if we change p; and A} by p; and A;, respec-
tively.
Now, given h > h,, we compute the radius ko = ko(h) of the periodic orbit A}t , such

K1,R2
that p;, connects to A _ through a heteroclinic orbit.

Theorem T. There exist g > 0, hg > 0 sufficiently small such that, for each 0 < e < ¢
and he(e) < h < hg(e) + 2n2ce™2WV2/5hy, where ho(€) is given by Theorem@ and Q =

\/1—¢€2/4, there exists a function
K (hc(s), he(e) + 2m2ee” 2V 2/€h0> — R,

such that:

1. 0 < k(h) <hand lim k(h)=0;
h—he(e)t

2. For system ([T18), W2(py) € WAy nowg):

3. There exists an orbit of (7.1.8) with input velocity v; = 4vh and output velocity
vy = 4y/k(h). Furthermore, define v, = 4\/h., then

vf = V200V — Ve + O((vi — v.)*/?),
where c. =1+ O(e).
The last item of Theorem [T|proves the conjecture vy ~ O ((vZ — )Y 2) raised in [47).

Sy,

h =

Figure 7.5: Relative position of the disks D} and D; in the section ¥, in function of the
energy level h.
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AB
| 7\ ; _/B
. UU A) O
Dy,
Figure 7.6: Heteroclinic orbit (quasi-kink) between a critical point at X = —oo and a

periodic orbit at X = +o0 in the critical energy level h = h,.

7.3 Proofs of Theorems [Q], [R], [S| and [T]

Applying the change of coordinates I' = B 4 ib and © = B — ib to ([7.1.8)) we obtain

o ?
8’ § =3/t
o (I'-0)
7' =-U'"(X) - (X
( ) m ( ) 2% ) wz&
with e’ (7.3.1)

IV = wil — LF(X),

V20 2
0 = —wi® — ——F(X),

V20
This system is Hamiltonian with respect to
Z 2 ) F -0 w
X, Z,I'0)=—+4+U(X —T'e. 7.3.2

1
and the symplectic form dX A dZ + ?df‘ A dO.
i

7.3.1 Decoupled System (F' = 0)

We parameterize the invariant manifolds W (k1, k2) (see (7.2.3)) of the decoupled sys-
tem ([7.3.1)) (with 6 = 0) in the coordinates (X, Z,T",©).

Lemma 7.3.1. The one-dimensional invariant manifold W (h,0) = W¥(p;) = W§(pi)
is parameterized in the coordinate system (X, Z,T',0) by

Npo(v) = (Xn(v), Zn(v),0,0), v € R (7.3.3)
such that:
1. If h =0, then

) = (1)

8
242

(7.3.4)
Zo(v) = 8(Xo)'(v) =
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2. If h >0, then

X (v) = arcsinh (\/% sinh (v\/ﬁ/Z)) :
4 cosh(vv'h/2) (7.3.5)
sinh?(vv/h/2 ‘
\/ﬁh | sinh®(v/A/2)

Zn(v) = 8(Xn)'(v) =

A simple application of the L’Hospital rule shows us that X (v) — Xo(v), point-wisely,
as h — 0. Nevertheless, the decay of X}, at oo is significantly different from X (for A = 0,
the decay is polynomial and for A > 0 is exponential). Notice that Nyo(v) has poles at
the points ++/2i, whereas the poles of N}, o(v) are all contained in the imaginary axis and
the closest to the real line are ++/2i + O(h).

Lemma 7.3.2. The two-dimensional invariant manifold W (k1,k2) = Wg (AL .,) =
WS(A:IM), with k1 > 0, ko > 0 and kK1 + kKo = h is parameterized in the coordinate

system (X, Z,1',0) by
Ny o (0,7) = (Xigy (V)5 Zioy (v), Dy (1), Oy (7)), (7.3.6)

with v € R and 7 € T, such that

2Ky 2 4
I, (1) = \/%e”, and ©,,(T) = U%e—”, (7.3.7)

and Xy, Z., are given in (7.3.4) (k1 =0) and (7.3.5)) (k1 >0).

Remark 7.3.3. Notice that, if ko = 0, then Ny, ., depends on one variable and if ko > 0,
then it depends on two variables.

Roughly speaking, in the case k1 > 0, the parameterization of the invariant manifolds
W (K1, k2) have the dependence on v expressed in terms of e?VF1/2 Thus, if we consider
v in compact domains, these functions can be easily understood by expanding them in a
Taylor series in x1. Nevertheless, we must control them for values of v at infinity and
near of 0, which generates an undetermined situation. For this reason, we have a singular
dependence of Ny, ., at the parameter x; = 0.

Notice that Ny, 4, (v, 7) = Ny, 0(v) as k3 — 0 uniformly, and thus the dependence of
Ny, ko 1s Tegular at ko = 0.

Remark 7.3.4. The Ny, .,(v,T), with v or T fized, do not parameterize the solutions of

(7.3.1). Nevertheless, if 6 =0, and ¢)(-) is the flow of (7.3.1]), we have
¢?<N51,H2 (U, T)) = an,ng (U + t, T+ (A)t),

therefore they are invariant by the flow.

7.3.2 Proof of Theorem |Q| (First statement)

The first step to compute the splitting of the separatrix W (0,0) (parameterized by
Nopo(v) in (7.3.3)) in the energy level h = 0 is to consider parameterizations

Noo(v) = (Xo(v), Z5(v), I5(v), O5(v)), * = u,s (7.3.8)
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1V 2 V2

De o i(V2 — \/E) i(V2Z = kA D;
B

N —i — K —1 —K
—z\/ﬁ(ﬁ Ve) (V2 \_f%

Figure 7.7: Complex domains DY and D;.

of the invariant manifolds W¥(p, ) and W2 (pg) near Ny, in the complex domains

D* = {v € C; |Im(v)|< —tan B Re(v) + v/2 — €},

(7.3.9)
D:={veC; —ve D'},

where 0 < < 7/4 is a fixed angle independent of ¢ (see Figure. The parameterization
Noo(v) in has singularities only at ++/2i, thus Ny is analytic in D™

We state all the results for the unstable case, since it is analogous for the stable one.
Based on a fixed point argument, we prove the following theorem in Section [7.4]

Theorem 7.3.5. Given v > 0. There exists g > 0 such that, for 0 < ¢ < &g, the
one-dimensional manifold W (py ) is parameterized by

Noo(v) = (Xo(v), Zg(v), T5(v), 5 (),

with v € DY, where X is given in (7.3.4)), Zy(v) is obtained from H(Ng,(v)) = 0 (H
given in (7.3.2)) ) and
Fe(v) = Q) +~¢(v),
50 = @+ 50 a0
O5(v) = —Q°v) + 6 (v),

with
)

wvV 202

Furthermore, v{(v),0§(v) are analytic functions such that 03(v) = v (v), for every
ve RN DY, and there exists a constant M > 0 independent of € such that

o 1
L g ()], 105 (v)] < M— oE’ for each v € D, |Re(v)|< vy
w? v

Qv) = —i F(Xo(v)). (7.3.11)

) 1
2. ), 165 (v)] < Mﬁma for each v € DY, [Re(v)|> v;

with 6 = 34, w = Q/\/e and Q = /1 — £2/4.

Remark 7.3.6. Notice the points pg behave as degenerate-saddles at infinity, and thus
the existence of local invariant manifolds for the perturbed system is not standard. Nev-
ertheless, these singularities at infinity behave as parabolic points (see Remark and
Theorem gives the existence of their invariant manifolds.



191

—z'\/i«\ i(V2 +

Figure 7.8: Domain D..

By Theorem [7.3.5] both parameterizations Ny'y (v) are defined in the complex domain
D. = D" N D;, which contains 0 (see Figure [7.8). To compute the difference between the
invariant manifolds in the section ¥y (see (7.2.6))), we analyze A¢(v) given by

Ag(v) = ( S~ ) |

for v € Z. = D. NR. We prove that A¢ satisfies
;f wi 0
AL = ( 0 —wi ) A¢ + B(v)AE,

where the entries of the matrix B are small functions of order O(§?).
Notice that, if B = 0, then A¢ is the analytic function

(- Ag ) )

Ag(v) = ( e Wi AL (vy)

for fixed vg,v; € D.. Thus, choosing vy = —i(v/2 — /&) and v; = i(v/2 — /), we have
that |A&(v)|< Me V2 < 2Me*\/§, for v € 7., and therefore it is exponentially small
with respect to e.

Roughly speaking, we prove in Section that this reasoning will also be true when
B # 0, by using ideas from [9], and we prove the following theorem.

Theorem 7.3.7. Consider system (7.3.1)). Given any compact interval T C R containing
0, there exists g > 0 sufficiently small such that, for every 0 < & < g, the parameteriza-
tions N§o(v), x = u, s, given in (7.3.8), are defined for v € I and satisfy

210 5 o
Ly(0) —T5(0) = —zﬁe v + O(wde V), = Q
Q=1/1-— w=— and § = /*
210 4 €

©4(0) — O3(0) = i

First statement of Theorem [Q)] follows as a corollary of Theorem [7.3.7]
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7.3.3 Parameterization of the Invariant Manifolds W*(A_ . ) and

R1,R2
S(AT
WE (A:‘€171$2>
In this section we find parameterizations of the invariant manifolds W*(A;, ) and
WA ,), for k1, Ky > 0 and k1 4 k2 = h > 0. Even if one theorem could contain all the

results for k1 > 0 and ko > 0, we state three separate theorems, Theorem (k1 =0),
Theorem [7.3.10| (k2 = 0) and Theorem [7.3.11] (k1, k2 > 0), to clarify the exposition (and

the corresponding proofs).

Zero Energy for the Pendulum (Separatrix Case k; =0 and xy = h > 0)

We look for parameterizations of the 2-dimensional invariant manifolds W*(A;) and
W2(A),
Nyp(v, 1) = (Xo(v), Zo(v) + Z5 (0, 7), Tp(7) + 15 (v, 7), On(7) + @ah(vﬂ')) k=, S

as perturbations of W (0, h) (see Lemma [7.3.2)).
For our purpose, it is not necessary to extend Ng, to a domain which is Ve-close to
the singularities of Z,. Thus, it is sufficient to consider the domains

D" = {v € C; |Im(v)|< — tan(8) Re(v) + v2/2},

7.3.12
D*={veC; —ve D"}, ( )

for some 0 < B < /4 fixed. We also consider
T, ={r €C; |Im(7)|< o and Re(r) € T}. (7.3.13)

We prove the following theorem in Section [7.6]

Theorem 7.3.8. Fix 0 > 0 and hg > 0. There exists ey > 0 sufficiently small such that,
for 0 <e<epand 0 < h < hy, WX(A}) is parameterized by

€

N&h(”? 7_) = (XO(U)’ ZO(U) + Z&h(vv 7-)7 Fh(T) + Fg,h(v7 T)’ @h(T) + @g,h(vv 7_))7

with v € D" (see (7.3.12)) and T € T,, where Xg, Zy, T, O are given by (7.3.4) and
(7-3.7),

Zgn (v, 1) = Zon(v, ) + 25, (v, 7),
Len(v,7) = Q°(v) + g4, 7), (7.3.14)
O (v, 7) = —=Q°(v) + 0, (v, 7),

where Q° is given by (7.3.11), and

Ton(0,7) = Cu(r) + @h(T).

2

F'(Xo(v)) (7.3.15)

0
wV2Q
Furthermore, 2y, is a real-analytic function and vy, 05, are analytic functions satis-
fying
Ggyh(v,T) = ’y&h(v,T), (v,7) €ER*N D" x T,,
such that there exists a constant M > 0 independent of € and h such that, for (v,7) €
D" x Ty,

|ZO,h(U7 T)|7 |’70,h(v7 T>|7 ‘eo,h(% T>|§ Mﬁi (7316)

RINGES
with § = &34, w = Q/\/e and Q = /1 — £2/4.
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Remark 7.3.9. We stress that the bounds in (7.3.16)) are only valid for v> +2 > 1/2 and
therefore do not give any information about the behavior of N§, (v, 7) near the singularities

v = Fiv/2. We use this norm to control the functions at X = +o0.

Positive Energy for the Pendulum

This section is devoted to study the invariant manifolds of the periodic orbits A

for k1 > 0. First, we consider the case k; = h and ko = 0. In this case Aio =pfisa
critical point. We apply the same ideas of Section to parameterize W"(p; ) as

N;f,o(v) = (Xn(v), Zﬁ,o(“)a FZ@(U)? @Z,O(U»?

where X,(v) has been introduced in (7.3.5)). The main difference is that we need to take
into account the singular dependence on the parameter h at h = 0.

As in Theorem [7.3.8] for our purposes it is sufficient to parameterize the manifolds in
the domains D™* (see (7.3.12))). We prove the following theorem in Section [7.7]

Theorem 7.3.10. There exist ¢ > 0 and hy > 0 sufficiently small such that, for 0 <
e <egoand 0 < h < hy, W¥(p,) is parameterized by

Ny o(v) = (Xn(v), Zyo(v), Th o(v), O 4(v)), v € D",

where X, s given by (T33), Zio(v) is obtained from H(Njo(v)) = h (H given in (732))

and
viv) = Qv Holv
{ Tio() = Q') +3ov) o
ho(v) = —=Q"(v) + 65 (v),
with 5
Q"(v) = —i F(Xu(v)). (7.3.18)

wvV 202

Furthermore, 4 o(v), 05 o(v) are analytic functions satisfying 0} o(v) = 4 o(v) for v €
R N D" such that there exists a constant M > 0 independent of € such that for v € D"

§ 1
w? [v2 42|

9

Oro(v)] < M (7.3.19)

’7}?,0(“)

with § = %4, w = Q/\/e and Q = /1 — £2/4.

Finally we deal with the case k1, k2 > 0. Next theorem, proven in Section [7.8] gives
the parameterizations of W (A, . ).

K1,R2
Theorem 7.3.11. Fixz o > 0. There exist g > 0 and hg > 0 sufficiently small such that,

for0<e<eg, 0<h < hy, and k1 > 0, kg > 0 with k1 + ko = h, the invariant manifold
WH(AL ) is parameterized by

N:1,K2 (U7 7-) = (Xﬁl (U)7 fol (U) + Zgl,lﬁjg (U7 T)’ 1—‘52 (7—) + 1—":1,52 (,U7 7_)7 @52 (7—) + (—)’:1,&2 (U’ T))7

for (v,7) € D* x T,, where Xy, Ziy,[wy, Or, are given by (7.3.5)) and (7.3.7)),

Z/gl,ﬁg (U7 T) - Z’il,m (U7 T) + Zzl,@ (U’ T)v
Ly (v, 7) = Q™ (v) + 9, (0, 7), (7.3.20)
@zl,ng (U, T) = _QKI (U) + 9%1,/{2 (U’ T)7
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Figure 7.9: Comparison between W (ky, ko) and W(0,0) in the section Sy, (X =0, H = h)
projected in the bZ B-space .

where Q™' is given in (7.3.18]) and
0 [y (T) + B4, (T)
Zm,@ ('Uv T) = .

me/(Xm(U)) = 5

is a real-analytic function and vy, .., 0y ., are analytic functions sat-

u
K1,k2

isfying 0%, ., (v, ) = ., (v,7) for (v,7) € R®ND" x T, such that there exists a constant

K1,R2

M > 0 independent of €, k1 and ko such that, for (v,7) € D* x T, (see (7.3.12)),

) 1
w ]U2 + 2|%

Furthermore, z

:171%2 (U7 T>|’ |7§1,/€2(’U7 T)l? |921,K2 (U7 7-)|S M

with § = &34, w = Q/\/e and Q = /1 — £2/4.

7.3.4 Approximation of W*(A_ . ) by W¥(py) in the section X,

K1,k2

|2 (7.3.21)

Recall that for the unperturbed case, we have that
W k1, ko) NY, = {(Z,b, B); Z =42+ k1 and b* + B? = 2Ky /w}.

Thus, in the section X5, the sets W(kq, x2) and W(0,0) are (k1 + /k2)-close (see
Figure . Since the perturbed invariant manifolds are close to the unperturbed ones
(see Theorems [7.3.8}(7.3.10}, 7.3.11)), in the next theorem we approximate W (A, ,,) by
W(py ) for k1, ke small. Using energy conservation and the fact that I" and © are complex
conjugate for real values of the variables, it is enough to compare the invariant manifolds

only in the variable I'. We define the projection 7 (X, Z,T,0) =T

Theorem 7.3.12. Consider K1,k > 0, k1 + ko = h, and the parameterization of N¢
of WX(AL, .,) obtained in Theorems |7.3.8, |7.5.8, |7.5.10, and |7.5.11. Then, there exist

€ \* K1,k

gg > 0 and hg > 0 sufficiently small such that for 0 < h < hy and 0 < & < &g

0 o
(O,T)—?TFN&O(O):F,Q(T)—FO( g—i_ \//ﬁ_2>’ TET,

u
T‘-FNlil,K/Q w3/2

where Ty, (T) has been introduced in (7.3.7), 0 = 34, w = Q/\/ and Q = /1 — £2/4.

The proof of this theorem is done in Sections|[7.9.1], [7.9.2| and [7.9.3] The result of this
theorem for k1 = h and ke = 0 implies the second statement of Theorem || (note that we

are abusing notation since, in this case, the function N} . does not depend on 7).
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7.3.5 Proof of Theorem R

Theorems [7.3.8| and [7.3.12] provide, for 0 < h < hg, € < &g, the existence of the
invariant manifolds W*(A;, ) and W2(A}}) which are parameterized by

Xo(v)
Zo(v) + Zon(v,7) + 295 (v, T)
Cu(r) +Ty%(v) + F*“*(v, T, h, )
On(1) + O¢”°(v) + Fs(v, 7, h,€)

N&i(U,T) = , (v,7) € (D" NR) x T,

where Xy, Z are given in ([7.3.4)), Zo, and z, are given by (7.3.14), I';, and O}, are given
in (7.3.7), Ty%, 05" are given in (7.3.10)) and F** are analytic functions such that
6\/E>

w3/2

F“*(v,7,h,e) =0 (

Consider the section ¥, (which corresponds to v = 0 € D*N D?). Then, W*(A, ) and
W2(A)) intersect along a heteroclinic orbit if and only if there exist 7%, 7° in [—7,7)
such that Ny, (0,7") = Ng,(0,7°). Moreover, using energy conservation, Ny, (0,7") =
N§x(0,7%) if, and only if,

La(r") + T5(0) + F(0, 7%, h,e) = Tw(r") +T5(0) + F*(0, 7%, h, €)
On(t") +65(0) + F*(0,7% h,e) = On(r") + 64(0) + F(0,7° h, €).

Since 7%, 7° € R, using Theorem the expression of I'y, in ([7.3.7]), the equations above
are equivalent to

2h
—(cos(7") — cos(7%)) + Mi(g) + Fi(m", 7%, h,e) = 0,
w
(7.3.22)
2h 2md
— (sin(7") — sin(7%)) — eV 4 My(e) + Fo(1*, 7% h,e) = 0,

w VQ

where 0 < € < g, 0 < h < hg and My, Ms, F}, Fy are real-analytic functions such that

5\/ﬁ> |

3/2

Ml, MQ == O(w(53e_‘/§“’) and Fl,FQ == O (

We change the parameter h > 0

2,82 2V2w
h = %;ﬁ, for > 0.

Then, since 0 < h < hy, it is sufficient to consider

1 200k
0<M§ﬂ0:507 %6\/2”0,
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where Qo = /1 — /4, wy = Qy/+/0 and &y = 53/ * Considering ey > 0 sufficiently small,
we can assume that pg > 1. Replacing A in (7.3.22) and multiplying the equation by

VQ
—56‘/5“’ > 0, we may rewrite ([7.3.22)) as
T

{ p(cos(t*) — cos(7%)) + My (e) + Fi (7%, 7%, p1,¢) = 0, (7.3.23)

p(sin(r*) — sin(7%)) — 2 + ]\72(5) + ]52(7'“, T, 1, e) =0,

where ]\71, Mg, Fl, Fé, are real-analytic functions such that

Ml,MQ = O(U)(Sz) and ﬁl,ﬁg =0 <fjﬂ> .

Define the function G = (G, Gy) : [—m, 7> x (0, po] % [0,&9] — R? corresponding to
the left-hand side of system (7.3.23)). Recalling that § = %/ and w = Q/\/c, it is clear

that
w s B p(cos(t") — cos(7%)) + O(e)
Gt 7 e) = ( u(sin(r¥) = sin(r*)) = 2 + O(e) ) '

The equation G(7%, 7%, 11,0) = (0,0) has a unique family of solutions
So = {(a, —a, 1/sin(«),0); arcsin(1/ug) < a < 7w —arcsin(1/pg)} .

We find zeroes of GG using the Implicit Function Theorem around every solution of the
family Sy. Denote ag = arcsin(1/pp) and fix 0 < ap < a < 7 — . Then,

1. G(a, —av, 1 /sin(«),0) = (0,0),

A, %)

Thus, it follows from the Implicit Function Theorem that there exist £, > 0 and unique
functions 75 : (a0 — e, @ +64) X [0,64) = [T, 7], fa : (@ — €aya+E4) X [0,64) — (0, 0]
such that

2. det (a(Gl’GQ)> (a, —a, 1/sin(a), 0) = 2sin(a) # 0.

G(t, m2(1" €), pa(T,€),€) = (0,0).
Furthermore

{ T5(t"e) = —a+ O(T" — «, &),

IuCY(Tuas) = 1/Sin(0&)—|—0<7u_a’€) ) T € (Oé—EO”a_i_ga)'

Consider the compact set K = [ag, m—p]. We can find n € N, ay, - - -, v, with respectives
Ears* " Eay, Previously found, such that the intervals (o —e,,, i +¢eq,), i = 1,- -+, n form
a finite cover of K. Using the uniqueness of solutions obtained from the Implicit Function
Theorem, it is possible to conclude that there exist €; > 0 sufficiently small and functions

{ (1% e) = =7+ O(e),
s (7%, €) = 1/sin(7*) + O(e),

defined for every ¢ < g1 and 7" € K, such that

G (1 (1" e), ps (7%, 2) ,€) = (0,0).
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This implies that there exists at least one heteroclinic connection in the energy level

m2wée 2V )
= = * u’ ) “ K.
h= T ) 7 e
Moreover, (p.(7%,0))* > (ps(7/2,0))? = 1, for every 7% € K. Thus (u.(7%,€))* > 1+0O(e)
for 7* € K and € < ;. Therefore, since p.(7/2,e) = 1 + O(e), there must exist a curve
r..(€), such that
(/L*(Tuv 8))2 Z (/L* (Trerlin(g)a 6))27
for 7" € K, e < &1, and p.(7%,(€),e) = 14+ O(e).
Thus, defining

T2wb2e2V2w
Y

T2wb2e2V2w

(1 (Tiain(€),€))* = ——5—— (1 + O(e)),

) %

system has one heteroclinic orbit between the periodic orbits A; and A} in the
energy level 0 < h < hyg if, and only if h > hy(e).

It only remains to prove the last statement of Theorem RlGiven p; > 1, let 7§ =
arcsin(u; ') € [ag,7/2) C K, and consider the function g(7% &) = p. (7% ) — (71, €).
Applying the Implicit Function Theorem to g = 0 at the point (7w — 71*,0), there exist
£, > 0 and a unique curve 73 = 73(7¢, ¢), defined for 0 < ¢ < ¢,,,, such that u. (75, ¢) =
ps(7i' €) and 75 (7, ) = m — 1{* + O(e). Moreover, taking €, small enough 77 # 75 for
£ < grp. Thus, in the energy level

2w2e"2V2 u
b = T (w0

where (71, €) = p1 + O(e), there exist two heteroclinic connections corresponding to 77"
and 7y'.
This completes the proof of Theorem Rl

Remark 7.3.13. Notice that g(7/2,0) = 0;ug(7/2,0) = 0 and d*.g(7/2,0) # 0. Un-
fortunately, the characterization of the bifurcation of zeros for ¢ > 0 becomes impossible,
since there is no information on 0-.g(7/2,0), and its computation requires complicated
second order expansions which are beyond the objectives of this work. Nevertheless, under
some non-degenericity condition, for example 0.g(mw/2,0) # 0, it is posible to detect a
saddle-node bifurcation.

7.3.6 Proof of Theorem

Following the same lines of Section [7.3.5] we use Theorems (for the invariant
manifold W2(A})), [7.3.10] (for the invariant manifold W*(p;)) and [7.3.12| (to compare
them to W2(pg) and W(py)). Then, we can see that W (p, ) C W(A)), if and only if

2h
—HUCOS(T‘S) + My(e) + Fi(1°,h,e) =0,

2h 210
-\ 5 sin(™) - ;ﬁe—ﬁw + Ma(e) + Fy(75, h,e) = 0,

(7.3.24)
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has solutions 7%, 7% € [—m, 7], 0 < € < g9, 0 < h < hg where hg is given in Theorem
7.3.10l. The functions M;, F; are real-analytic and satisfy

M; = O(w536_‘/§“) and F; = O (M + M) ,J=1,2

3/2 2
In order to look for solutions of ([7.3.24]), we consider the change

| 27wdte VR, vV 0ho

h R 0< < =
Q a f=Ho 5071' 20&)06_\/§w0

Considering ¢y > 0 sufficiently small, we can assume that ;o > 1. Replacing h in ([7.3.24))

and multiplying it by > (0, we may rewrite this system as

2wde—V2w

{ —pcos(7*) + M(e) + Fy(7%, p,e) = 0, (7.3.25)

—psin(r®) — 1+ My(e) + Fo(%, p, ) = 0,

where Mj, F ;, are real-analytic functions such that

M; = O(wé?) and F; = O <5u> , J=12
w

Define the function G : [—, 7] x (0, 110] X [0, £0] — R? as as the left-hand side of system
(7.3.25)). Recalling that 6 = £3/* and w = Q/+/€, we can see that

. B —pcos(7%) + O(e)
G(7% p,e) = < —psin(7%) — 14+ O(e) ) .

Since,

1. G(—7/2,1,0) = (0,0),

0(G1, G)
2. det [ =272/
( (73, 1)

we can apply the Implicit Function Theorem to obtain e, > 0 and functions 77 : [0,¢,) —
[—7, 7], s 2 [0,€4) — (0, po] such that G(75(e), ux(g),e) = 0 for 0 < e < ¢,. Furthermore,
1i(e) = —m/2 4+ O(e) and p.(e) =1+ O(e).

Defining

) (—7/2,1,0) =1,

2222V 2222V
he(e) = T(M*(E))Q = T(l +O(¢))

and reducing €y to e,, Theorem [3] follows directly from these facts.
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7.3.7 Proof of Theorem [T

Following the same lines of Section [7.3.5] we use Theorems [7.3.10| (for the invariant
manifold W*(pj,)), [7.3.11| (for the invariant manifold W2 (A , ), and [7.3.12|(to compare

R1,R2

them to W2(pg) and W¥(py)). We can see that W¥(p; ) € WE(AF ), if and only if

K1,R2
252
—y/—=cos(7%) + My(g) + Fi (75, h,e) =0,
w

2Ky . 21 V3
—| ——sin(7%) — —=e V¥ + My(e) + F5 (7%, h,e) =0,
" sinr) - 2(6) + Fo(r o)

has a solution 7% € [—m, 7] for € < g¢, h < hy. The functions M;, F}; are real-analytic and

M; = (’)(wé%’ﬁw) and F; = O <5\/H_2 + OVEL + 5\/E> , J=1,2, K1+ ko = h.

w3/2 w2 w2

(7.3.26)

We consider the change of parameters and variables

2720822V
h= T e

2720822V
Ko = #(#*(5) +pu =€),

= rie) + 7,

where (u.(g), 77 (€)) is the solution of (7.3.25). Since ko < h, p.(e) = 14+ O(e) and we are
looking for solutions with i, &, 7 ~ 0, we have that € > 0 and (p.(e)+u—&)? < (u.(e)+p)2

Q
Replacing h, ks and k; and multiplying it by 25\/_\/5 > 0, system ([7.3.26)) as
moe~ VY

{ —(pa(e) + p = &) cos(72(e) +7) + My(e) + Fi(r, p1, €, €) = 0,
—(pe(e) + = ©)sin(r(e) + 7) — 1 + Ma(e) + Fo(r, p1, €, €) = 0,

where M;, F;, are real-analytic functions such that M; = O(wd?) and

ﬁj:@(i ((u*(€)+u—€)+ \/(u*(a)+u)2:1/(5*(a)+u—£)2 . (m(ﬁ/jm))’

j=1,2

Define the function G : [—xo, xo] X [0, Xo] X [—X0, Xo] X [0, xo] — R? as the left hand side
of system (7.3.25) and fix xo > 0 small enough. Recalling that § = £¥* and w = Q/\/€,
we can see that

() = &) cos(r(e) +7) + O)
Glrp b e) = ( (&) + p— ) sin(r2(E) + 1) — 1+ O(e) ) '

From Section [7.3.6, p.(0) = 1 and 77(0) = —7/2. Thus G(7, i1,&,0) = (0,0) has a solution
7 =0and p = £. Since, we are looking for solutions with u, & & 0, we consider the solution
i =& =0. Then, since

1. G(0,0,0,0) = (0,0),
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9(G1, Gs) B
2. det <5X7,6)> (0,0,0,0) = 1,

we can apply the Implicit Function Theorem to obtain ¢, > 0 and unique functions 7 :
[O? ED) X [07 50) - [_XOa XO]v 5 : [07 50) X [07750) - [_XD7 XO] such that G(?(/% 6)7 22 S(Ma 5)7 5) =
0. Furthermore 7(u,e) = O(u,e) and &(u,e) = O(p,e). For € = 0, we have that £ = p
and 7 = 0 is a solution of G(7, u,§,¢) = (0,0). Thus &(11,0) = p and, for e small enough,
{(p,e) = p+O(e).

Finally, if £ = 0, then ko = h, k1 = 0 and therefore ([7.3.26)) becomes ([7.3.24)). Thus,

considering the different scalings done in the systems and the uniqueness of solutions of

(7.3.24) obtained in Section [7.3.6, we conclude that £(0,¢) = 7(0,¢) = 0.

These facts, allows us to see that
E(uye) = cop+ O(p?),  with ¢. =1+ O(e).
Hence, for p > 0 sufficiently small, in the energy level

2720822V
= 2 )+

there exists a unique heteroclinic connection between p, and A]:H<I€‘L1L , kb ), where

2m2wb2e V2w _
b= T (o) 4~ B 0))”

and k} = h, — kh. Moreover, if —u,(¢) < p < 0 there is no heteroclinic connections in
the energy level h,,.

Setting v; = \/hy, vy = \/K} and v. = V/h., where

Im20b2e 2V

he(e) #(M*(@)Q,

it means that a soliton starting with velocity v; < v, is trapped and will surround the
defect location, otherwise, if v; > v, then it will escape the defect location and propagate
itself with some output velocity vy. In what follows we give an asymptotic formula to the
output velocity vy of orbits with incoming velocity v; ~ v.. We omit the dependence of
v;, v¢ on i in order to simplify the notation.

For p > 0 sufficiently small, we have

v; = Ky

— I
— hM_KQ

Twéle=2V2w y
_ 2i)(@4@+uf—wdd+u—dmdf)

om2whle V2

= (5(u,5)(2(u*(5) + 1) —g(#ﬁ?)))

om2wh2e2V 9 2
= T(cgu +O(p?)) (2p(e) + (2 — co)u + O(p?))

2m2wh2e— V2w

= B G e)eans + O2)).
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Notice that

o222V
v — Ve, = Tu.

Thus
2

v = 2uece(v; = ve) + O((vi = e)?).
Finally, we obtain that

vy = \/QUCCE\/UZ'_UC+O<(Ui_UC)3/2)‘

Theorem [T] follow directly from these facts.

7.4 Proof of Theorem [7.3.5

The strategy to prove the existence of W*(p; ) and W2 (p{) when 6 # 0 (see (7.3.1))),
is to look for a parameterization Ng'o(v) of W(py) as a perturbation of Noo(v).

As in the unperturbed case W(0,0) is parameterized as a graph over X (see (7.3.4)),
we look for N, as

Nio(v) = (Xo(v), Zg(v), I (v), ©5(v)). (7.4.1)
Next lemma, which is straightforward, gives the equation Néfo(v) has to satisfy to be
invariant by the flow of ([7.3.1)).

Lemma 7.4.1. The invariant manifold Wi'(py ), with § # 0, is parameterized by Ng'(v)
if and only if (T'y(v), OF(v)) satisfy

o) = — 0 pexaton + [—2W) N (wire) — —° F(x (0
dwwmw—vﬁmwwﬂmwﬂ 1) (wir) - 5P,
Z()(U)

Vﬁﬁfwmmm>+(ﬁdurn@)—1)(—wﬂXv»—Vﬁﬁfwxxm»),

dv
Jim T v) = Ugmoo@(v) =
(7.4.2)
where
_ 4] Iv)—0((w) w
(v, I, 0) = 4J ~U(Xo(v)) — EF(XO(U))T - 51“(@)@(1)),

with Xo given in (7.3.4), U, F given in (7.1.7)), and Z§(v) = no(v, T (v), Of(v)).
The term \/%F (Xo(v)) decays as 1/v as v — oo. To have integrability, we consider
the change of variables (7.3.10)) to system (7.4.2). Then, (v, 0f) satisfy

3 wiy = winlm(v,7,6) - 1) - (@) (),

9+ wit = —wiblno(v,7,0) ~ 1) + Q) (), (7.4.3)

lim_(v) = lim_0(v) =0

vV——00
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where Q° is given by (7.3.11]) and
~1/2
452 F(Xo(v))>2 0
vy, 0) = |14 2 (A2 g, 7 ) 744
mo(v,7,0) ( Ow ( Zo(v) (Zo(v))? ( )

To prove Theorem [7.3.5, it is sufficient to find a solution of ([7.4.3)).

Proposition 7.4.2. Fizv > 0. There exists g > 0 such that for 0 < e < eq, the equation

(7.4.3) has a solution (7§ (v), 84 (v)) defined in the domain D* C C (see (7.3.9))) such that
05 (v) = 1§ (v), for every v € DY NR. Furthermore, both ~, 0y satisfy bounds (1) and (2)

of Theorem [7.5.5.
We look for a fixed point (¢, 63) of the operator

gw,O = gw o JTOy (745)
where "
/ em(“””)fy(r)dr
Go(v,0) () =] "7 , (7.4.6)
/ e~ Q1) dr

wiy(v)(no(v,y(v),0(v)) = 1) — (QO)I(U) ) : (7.4.7)

Fo(7,0)(v) = . :
—wif(v)(no(v,7(v),0(v)) — 1) + (Q°)'(v)
and Q°,no are given in ((7.3.11]) and (7.4.4)), respectively.

7.4.1 Banach Spaces and Technical Lemmas

In this section, we introduce a Banach space which will be used to find a fixed point
of gw,().

Consider the complex domain D given in . For each analytic function f : DY —
C, v >0, a >0, we consider:

[ flla= sup v f(v)[+ sup — [(v* +2)7f(v)]-
veDEN{Re(v)<—v} veDEN{Re(v)>—v}

For any v > 0, and a > 0 fixed, the function space
Xop ={f: D¢ — C,; fisan analytic function such that, ||f]|,.< oo}

is a Banach space with respect to the norm ||||4...
We also consider the product space

X, = {(f, g) € X X Xow; g(v) = f(v) for every v € DY N R}

endowed with the norm

1CFs oo = 1 Fllov+11 gl

Proposition 7.4.3. Given v >0, a > 0 fized, and (f,g) € X2, we have that G,(f,g) €

XOQW. Furthermore, there exists a constant M > 0 independent of € such that

M
”gw(f: g)“a,y S ; ||(fa g)”a,u )

for every (f,9) € X2,
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The proof of Proposition follows from [53].

Proposition 7.4.4. Let ng be the function given in (7.4.4), and Fo given in (7.4.7)).
Given v >0 and K > 0, there exist eg > 0 and M > 0 such that:

)
For(0 < e <¢ggand (v;,6;) € Bo(R) C Xz%,, where R = KE and j = 1,2, the following
statements hold for v € DZ.

1 Jno(v, 73 (v), 0;(v)) = 1] < M&%;
2. |no(v, (), 01(v)) — no(v, 12(v), B2(v))] < Mow?(|(71,61) — (2, 02) |25
3. ./T"o(’}/j,(%') € X22,w'

4- ([ Foln, 01) — }“0(72,92)”2’,, < M&wl[(71,601) = (72, 02) 2,0
Proof. Replacing the expressions of F'; X, and Z; given in (7.1.7) and (7.3.4]) in (7.4.4)),

we obtain 12
o\ -
— (v + 2)w7> .

2 2

40w v? + 2

770(,07’779) = <1+ ]

Taking 7,0 € By(R), the first statement of the proposition comes from the following
inequalities

52 2 0 52

‘MUUQU_|_ 5~ (v? + 2)w% SMZ’ if Re(v) < —v
52 2 0

|49wvzv+ 5~ (v* + 2)w% <M§?, if Re(v) > —v.

We observe that

7m0 (v, 7, 61) = 10(v,72,62)] < Mwl(v? +2)71(0)|]62(v) — ba(v))]

+Mw|(1)2 + 2)02(11)“’71(1)) N ’}/2(’0)| (748)

Thus, if Re(v) < —v, then

(0 + 2)m(0) (02 (v) — Ba(0)] < R < M;HHl —Oylnn,  (7.4.9)

1)2 + 2 H91 — HQHQW
1)2 |’U‘2

whereas, if Re(v) > —v,
62+ 2 )6,0) = 6a(0)] < M1 = G (7.4.10)

Recalling that w = Q//¢ and joining (7.4.9) and ([7.4.10)), we obtain that estimate ([7.4.10)
holds in D¥. The other term in ([7.4.8]) is bounded in an analogous way. Thus, statement

(2) holds.
If (v;,0;) € X3, then ny(v,7;,6;) € R, for each v € D¥ N R, thus, it is clear that
.Fg(’)/j,gj) S X22’y.



204

Finally, for v € DY,
|1 0 Fo(m1,01)(v) — 1 0 Fo(12,02)(v)] = wlyn(v)(mo(v,11,61) — 1) = 32(v)(mo(v, 72, 62) — 1)
M8 (1) (o) = ()
+MOw?(| (71, 61) = (72, 02)[l2,0 72 (V).

IN

Therefore,

10 Folon,00) = 71 0 Folas )y, < M8 (= +1) wlls =l
+MR6W?|[(71,01) — (72, 62)l|2,0
< M&wl|(n,01) = (32, 02)ll2,0-
We can prove the same bound for the second coordinate of Fy analogously. [

Proposition 7.4.5. Consider the operator G, o = G, o Fo, where G, and Fy are given in
(7.4.6) and (7.4.7). Given v > 0, there exists a constant M > 0 independent of €, such
that 5

G0, 0l < M=

Proof. Recall that F,(0,0) = (—(Q%)(v), (Q°)(v)), where Q° is given by (7.3.11)). Thus
m 0 Fp(0,0)(v) = m 0 Fo(0,0)(v), for each v € DY N R and

1F0(0,0)ll,, =2 (X0)'ll2-

)
—||F
w\/2QH

A straightforward computation shows that

F(Xo(v)) = m

(v +2)2
Then,
[V F(Xo(v))| < M for Re(v) < —v,
|(v* +2)*F(Xo(v))|< Mjv* +2] <M for Re(v) > —v.
The result follows directly from these bounds and Proposition [7.4.3 O

7.4.2 The Fixed Point argument

Finally, we are able to prove the existence of a fixed point of G, o.

Proposition 7.4.6. Given v > 0 fized. There exists g > 0 such that for ¢ < &g, the

operator G, o has a fized point (v, 0y) in Xz%w Furthermore, there exists a constant M > 0

independent of € such that

u u 5
o8 88 o < M.
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Proof. From Proposition there exists a constant by > 0 independent of h and ¢ such
that
by 0

19000, 0)l,,, < 5=

2 w?’

Given (y1,61), (72,02) € Bo(bid/w?) C A3, we can use Propositions |7.4.3] (with
K = by) and the linearity of the operator G, to see that

M
1Gu,0(71,61) — gw,o(%,ez)”g,u < w [Fo(71,61) — ]:OWQ’&Q)H?JJ
< M&[(1,61) = (72, 02) 2,0

Thus, choosing ¢, sufficiently small, we have that Lip(G, ) < 1/2. Also, it follows that

71 0Guo(7,0)(v) = T2 0Guo(v,0)(v), for each v € DY NR and (v, 0) € By(byd/w?).
Therefore G, sends the ball By(b1d/w?) into itself and it is a contraction. Thus, it

has a unique fixed point (7§, 0%) € Bo(b16/w?). O

Proposition [7.4.2] is a consequence of Proposition [7.4.6]

7.5 Proof of Theorem

7.5.1 The Difference Map

In Proposition|7.4.6] we have found complex functions Ty = Q°+~3 and ©F = —Q°+6}
defined in the complex domains D?, respectively, such that,

Nio(v) = (Xo(v), Z5(v), [5(v), O5(v)),
are parameterizations of Wi (pf) of (7.3.1). Both (I'y, ©f) and (I'§, ©F) are defined in the

complex domain
D.=D!ND:.

Note that 0 € Z. := D. N R. To prove that the heteroclinic connection between p, and
pg of (7.3.1)) is broken for ¢ > 0 sufficiently small, it is sufficient to show that

[Neo(0) = Nio(0)] = (T5. 03)(v) — (T3, 03)(v)] > 0,
for some v € Z.. To this end, we study the difference map
A(w) = (P&(v) —T§(v) )_ (vﬁ;(v) =) ) (75.1)
05 (v) — G5(v) 05 (v) = 05(v)
where (75, 65), * = u, s, are given by Proposition [7.4.6]
Proposition 7.5.1. The difference map A& satisfies the differential equation:
AL = AAE + B(v)AE, (7.5.2)

. w1 O . b1,1(U) bl,g(’(])
A= < 0 —wi ) and B(v) = ( b (V) baa(0) ) : (7.5.3)

and there exists a constant M independent of €, such that for v € D,,

where

b (0)|< Mwd®, 5k =1,2. (7.5.4)
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Proof. Recall that both (7%, 0y"°) satisty (7.4.3]) and therefore
v —wiy \
( 0/+w20 ) - f0(770)7
where Fy is given in (7.4.7). Therefore A¢ satisfies
AE = AAE+G(),
where G(v) = g(v,75(v), 05 (v)) = g(v, 75 (v), 05(v)), with

G0, 21, 2) = ( iwz1(no(v, 21, 29) — 1) ) .

—iwza(no(v, 21, 22) — 1)

Notice that G(v) is a known function, since (7%, 6y"°) are given by Proposition [7.4.6]
We apply the Integral Mean Value Theorem to obtain

bii(v) bia(v) Y% — %
v, u’ 0y) — v, 87 05 = : )
g( 70 0) g( 70 0) ( b271(v) le('U) 98 o 08

where b, are analytic functions, j,k = 1,2. Estimate (7.5.4) follows from Propositions

[.4.4] and [.4.6]
O

7.5.2 Exponentially Small Splitting of W¥(p,) and WZ(pJ)

We study the solutions of . Notice that, if B = 0, then any analytic solution
of which is bounded in D, is exponentially small with respect to ¢ for real values
v € Z.. In this section, we follow ideas from [9] to prove that the same holds for solutions
of the full equation using that B (given in ) is small for € small enough.

We are interested in obtaining an asymptotic expression for A¢ given in (7.5.1)). From
Proposition , we have that (7y",6y"") is obtained as a fixed point of G7. Thus, the
difference map can be expressed as

AL =G50(1000) — 92,076, 00)-

Therefore, as vy, 0y" are small, it suggests that the dominant part of A¢ should be
given by M = G1,(0,0) — GZ ((0,0). For this reason, we decompose

AE = M+ A&, (7.5.5)

where M = (M, Mg) is given by the Melnikov integrals

e 20(r? = 2) ;
M v) = Zezwv/ e twr dr = Coezwv7
r(v) —o0 wVQ(r2 + 2)2 !
M _ : —iwv o wr 26(T2 - 2) dr = 0 _—iwv (756)
o(v) = —ie /_Oo e —w\/ﬁ(ﬂ o r=cye

and A& = (A%‘a A(la)
A straightforward computation proves the following lemma.
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Lemma 7.5.2. The constants ¢ and ¢ are given by

i——e V™ and cy = ). 7.5.7
\/ﬁ 2 1 ( )

Theorem [7.3.7) is equivalent to the following theorem. The remainder of Section [7.5.2]
is devoted to prove it.

0 _
Cl—_

Theorem 7.5.3. There exists g > 0 sufficiently small such that forv e Z. CR, 0 < e <
€0,

AE(V) = M(v) + O(wde V),
where M = (Mr, Mg) is the Melnikov vector defined in (7.5.6]).

A Fixed Point Argument for the error A¢;
We write A& in (7.5.5)) as solution of a fixed point equation in the functional space

E= {f : D, — C?; f is analytic and || f]|e< oo} :

where

2
1Flle=>_ sup|(v*® +2)*m; 0 f(v)].

j=1 vED:

We also consider the linear operator H, given by
em”/ e “rr(B(r) - g(r))dr

e~wiv /U e“Tmy(B(r) - g(r))dr 7

Uk

Ho(g)(v) =

where v* = —(v/2 — /2)i and B is the matrix given (7.5.3)).
Using ((7.5.4)), the operator H, is well-defined from &, to itself. To simplify the notation,
we introduce the function

k eika

_ JAv 1 . 1

I(ky, ko)(v) = e ( ks ) = ( P ) : (7.5.8)
where k; € C, j = 1,2, v € D. and A is the matrix given by (7.5.3). Notice that
M(v) = I(c}, &3)(v).

Lemma 7.5.4. The difference map A belongs to E. and ||A||le< Me. Furthermore,
there exist (c1, o) € C* such that:

A&i(v) = I(e1 — ¢}, ¢2 = &)(v) + Ho(A&) (v) + Ho(M)(v), (7.5.9)
and |c; — c?]ﬁ M53e_‘/§w, j=1,2, where M is a constant independent of €.
Proof. Since (v5°*,05°°) € &3, it is clear to see that A¢ € &.. In addition, from Proposi-
tion [7.4.6]

u u S S 5
1AElle= 2(1(7, 66) 2.0+ (75, 05)ll2) < M —5,

where M is a constant independent of ¢.
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Since A¢ is a solution of (7.5.2]), the method of variation of parameters implies that,
given vy, vy € D,, there exist ¢y, cy € C such that

ewivcl + ewiv /’U e—iw’l”ﬂ.l (B(r) . Ag(r))d/r

Aé(v) = , A
e ¥"ey + e“”“’/ e my(B(r) - AE(r))dr

We take v; = v*, vy = v*, with v* = —(v/2 — /2)i. Thus,
Ag(v) = I(c1, ¢2)(v) + Ho(AL)(v).
Using that A = M + A&y, M(v) = I(c), 3)(v) and Hy is linear,
A&i(v) = I(e1 — ¢, ¢2 = &)(v) + Ho(A&) (v) + Ho(M)(v).
Now, we bound |¢; — cg|, j=1,2. By and Proposition m,

1Az = |AS = M2y

17, 05) — (76, 65) — (95,0(0,0) = G5 (0, 0)) 20
1650765 66) = 95,0(0,0) = (G2,0(76: 05) = G2,0(0, )|z,
M1 (06 05 20+ 1(25 05 [l 20)

IN

IN
)

Thus,
3

|7 (A& (0))|< Mw < M8, for each v € D,, j =1,2.
w=|v

In particular, replacing v = v* in the first component of , we obtain that
e (¢; — D)< M&® & |ep — OI< M§PeVee V2 < 20[§3e V2,
Analogously, taking v = v* in the second component of , we obtain that |co—cy|<
2M§3e V2, O
Exponentially Smallness of A&

Consider the functional space
Z ={f:D.— C? fisanalytic and || f||z< +oo},

where )
Ifllz=% sup ‘ew(ﬁ—um(v)nﬁj o f(v)‘ . (7.5.10)

j=1 veED:

In order to prove Theorem [7.5.3] it is enough to check that A&; belongs to Z and that
|AE ]| z< Mwd3. Our strategy to achieve these results is to prove that both I(c; —cf, ¢y —
c9) and Hy(M) belong to Z and that the operator Id — H, is invertible in Z.
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Lemma 7.5.5. There exists ¢y > 0, such that the linear operator 1d — Hy is invertible in
Z fore < ey. Furthermore, there exists M > 0 independent of € such that |[Ho||z< Mwd?
and hence

[(Id — Ho) M z< (1= |[Hollz) ! < 1+ Mwd®. (7.5.11)

Proof. Since H, is a linear operator, to prove this lemma, it is sufficient to show that
| Hollz< Mwd? < 1.

Let h € Z and denote by M any constant independent of . Using ([7.5.4)) and (7.5.10)),
we have that for v € D, and j = 1,2,

75 (B) - h)I< 3 bsa(0)ms (b)) < Muodem= D ]l
Thus
2O (Ho (k) ()] =

) /” e wr—v=ilm@D . (B(r) . h(r))dr

< Mw526—\/§we\/§thHZ/v ‘efiw(rfvfiﬂm(v)\)‘ €w|Im(r)|dr

< Mwé?|h|z / w(m(r)-+[Im(r) |~ Tm(v)~ Tm(0)])

Since Im(v*) < Im(r) < Im(v), we have that Im(r) + |Im(r)|— Im(v) — |Im(v)|< 0,
then

/ e (Im(r)+Im(r)| — T (v)— Im (o)) 7,

< M.

Analogously, we have that
(V2 ImE Dy (Ho(h) (v))] < Mwé?||h] 2,

and thus ||Ho(h)]|z< Mwd?||h| z. Since, |Hollz< 1, for e sufficiently small, the linear
operator Id — H, is invertible and satisfies ([7.5.11)). m

Now recall that M = I(c}, ), where I is given by (7.5.8) and ¢, ¢} are given by
. Moreover, from Lemma [7.5.4] we have that

(Id — Ho) A& = I(cy — &, e0 — ) + Ho(I(c), ).

Since Id — H, is invertible in Z, it only remains to show that I(c; — ¢, ¢ — ¢)) and
I(Y, &9) belong to Z.

Lemma 7.5.6. Given ki, ky € C, then the function I given in (7.5.8) satisfies
Ty, )| 2< MY ([ka|+[ka)),

where M is a constant independent of €.

To prove Lemma it is enough to recall the definitions of ||-||z in (7.5.10) and I
in (7.5.8).
Lemma 7.5.7. The error vector A& given in ((7.5.5)) belongs to Z and it is determined

by
A& = (Id — Ho) 7t (J(q — ey — cg) + (Id — Ho) ™' (Ho(M)) . (7.5.12)

Furthermore, there exists a constant M > 0 independent of € such that

AL ||2< Mws?. (7.5.13)
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Proof. From Lemmas [7.5.4| and [7.5.2] we have that |¢; — c2[< Md%e V2, and |c9|<

M(Se*‘/i‘”, 7 = 1,2. Therefore, it follows from Lemma m that I(c; — &, co — 9) € Z,
and M = I(},cY) € Z. Furthermore

11(c1 — ¢}, c2 — &3)||z< M6* and | M||z< M.

As Id — H, is invertible in Z by Lemma [7.5.5] formula ((7.5.12) is equivalent to ((7.5.9)).
Therefore, A¢; € Z and, using again Lemma

[A&Nlz < 1(1d = Ho) Hlz((cr =}, ca = )| 2+ Ho(M)] )
< M3 4 M|[Hollz| M|z
Mwé3.

IN

]

Proof of Theorem[7.5.3. Finally, we prove that A¢; is exponentially small and we obtain
an asympotic formula for A¢. From ([7.5.13)) and the definition of the norm ([7.5.10)), we

have
|ew(ﬁ_|lm(”)|)7rj o A& (v)|< Mwd?, for v e D,, and j =1,2.

In particular, if v € Z. = D. N R, |A& (v)|< Mwé3e V2 for j =1,2. The result follows
directly from this bound and ([7.5.5)).
]

7.6 Proof of Theorem [7.3.8

In this section we look for parameterizations of the invariant manifolds W*(A, ) of the
periodic orbits A; of the form

No'u(v,7) = (Xo(v), Zo(v) + Zgp, (v, 7), Tn(7) + 15, (v, 7), On(7) + Og 4, (v, 7)),  (7.6.1)

where Zy,I',,©), are given in (7.3.4) and (7.3.7)), as a perturbation of Nyp(v,7) (see
(7.3.6))).

Lemma 7.6.1. The invariant manifold W§(A,), with 6 # 0, can be parameterized by

N(‘)fh(v, 7) in (7.6.1)) if (Z&h(v, T), F}ih(v, T), Gg’h(v, T)) satisfy the following system of par-
tial differential equations

Zy(v Z ) r—-e
OZ + wo.Z + ZOEU;Z = —mavz - ﬁ}7’/()(0(0))272.
— =P Cta() 2,
Ol +wo,I' = —L&,F + wil — LF(X()(?))) (7.6.2)
Zo(v) V20 ’
00 +wh0 = ——Z 0,0 - wid — —F(Xo(v)
 Zo(v) V2Q 7
Aim Z(v,7) = lim I(v,7) = lim ©(v,7) =0, for each 7 € [0, 2],

and Zgy, Iy 1, O, are 2m-periodic in the variable 7.
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In contrast to the 1-dimensional case, for technical reasons, we do not use that
H(WH(A,)) = hto obtain Z = Z(X,T,0). Thus, we deal with the problem in dimension
3.

As in the 1-dimensional case (7.4.2), if we set Z = ' = © = 0, the right-hand side
of (7.6.2) decays as 1/|v|] as v — —oo. To have quadratic decay as |v|— oo to have

integrability, we perform with the change (7.3.14)) to system (7.6.2)). Then, (25, Y55, 055)
satisfy

Zy(v) 2+ Zop(v,7) OpZo.n(v,7)
Dpz + w0z + ZZ(’U)Z = fl(v,7)— T(v)avz S xme
o, v —0
_EF (Xo(v))T
Oy +wiey —wiv = f3(v,7) - <QZO>(;E;})Z _ it 50’(};()”’ T)av : (7.6.3)
0 0
0,0 + wd,0 + wif) = —fh(v, )+ (go)(’(;’) s 2T ?”(hg”’ ™) 0,0,
o\v o\v
i +(07) = lim 5007 =l 0(0,7) =0,
where
[, 7) == 0 Zon(v,7) — ;ﬁEZ;ZO,h(Uﬂ') (7.6.4)
5 Q(v)  Zon(v,7)0Zop(v,T)
- EF (Xo(v)) - Zo(0) ,
7)== (@ () - 2l DT, 769

and Q°, Zy, are given by (7.3.11)), (7.3.15)), respectively.
We consider equation (7.6.3) with (v,7) € D" x T, (see (7.3.12) and ([7.3.13)), and

asymptotic conditions Re(ggliooz(vﬁ) = Re(gglfoﬂ(v’ﬂ = Re(zl)%riliooﬁ(vj) = 0, for

every 7 € T,.

Proposition 7.6.2. Fiz 0 > 0 and hg > 0. There exists g > 0 sufficiently small such
that for 0 < e <eg and 0 < h < hy, equation has a solution (2§, V5, 05) defined
in D* x T, such that 2, is real-analytic, v, 05, are analytic, 05, (v, 7) = 7§, (v, 7) for
each (v,7) € R?, and

Re(gf_{l_oo 2oV, T) = RQ(BT_OO You(v,7) = Re(gr_{l_oo O (v, 7) =0,

for every T € T,. Furthermore, (25, Yon, 01) satisfy the bounds in (7.3.16).

We devote the rest of this section to prove Proposition Equation ([7.6.3)) can be
written as the functional equation

L,(z,7,0) = Pr(z,7,0),
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where L, and P, are the operators

OpZz + w0,z + ?I)Ez; z
0
L,(z,7,0) = Oy + Wy — winy , (7.6.6)
0,0 + w00 + wif
z+ Zon(v,T) OvZo.1, J ~v—0
flh('U?T) - ZQ(U) 81)2 - Zo('U) 2 mF (X0<U)) 2
B Q%) (v) 2+ Zon(v,7)
,Ph(Z/Y? 9) - f2h<vv T) - Zo(U) Z = ZQ(U) 8117
Q%) (v) 2+ Zop(v,T)
_fél(% T) + Z()(U) &= ZQ(’U) 61}0
(7.6.7)

7.6.1 Banach spaces and technical results

For analytic functions f: D* — C and g : D" x T, — C and a > 0, we define
1 flla = sup |(v* +2)*2f(v)],
veDY

lgllao = g™ [lae",
kEeZ

where g(v,7) =Y g®l(v)et.
keZ

Remark 7.6.3. Notice that there exists a constant d > 0 independent of € such that the
distance between each v € D" (given in (7.3.12))) and the poles £iv/2 of Nou(v,T) (given
in (7.3.6)) ) is greater than d. The weight [v? + 2|*/ in the norm ||-||o is chosen to control
the behavior as Rev — —oo and to have it well-defined forv =0 € D". In fact, at infinity
this norm is equivalent to the norm with weight |v|®.

We also define
[[9]]04,0 = maX{HgHmm HaTgHoz,m Havg”oc-i-lﬂ} (7~6~8)
and the Banach spaces

Xoo = {g:D"xT, — Cis an analytic function, such that ||g|/s,< oo},
Voo = {g:D"xT, — Cis an analytic function, such that [g].., < co}.

Consider the product spaces

Xig = {(f,g, h) € Xpo X Xoo X Xop; fis real-analytic, g(v,7) = h(v, 7)
for every v € D*NR, 7 € T},

ygp = {(f,g, h) € Voo X Vao X Vao; [ s real-analytic, g(v,7) = h(v, 1),
for every v € D*NR, 7 € T},
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endowed with the norms
(£, 9, h)Hoz,a = Hf”oz,a"“HgHa,o"i‘HhHa,m

[[(fa g, h)]]a,c = [[f]]a,c + [[g]]a,a + [[h‘]]oc,07
respectively. We present some properties of the norm ||-||o», which are proven in [§].

Lemma 7.6.4. Given real-analytic functions f : C — C, g,h : D* x T, — C, the
following statements hold

1. If a1 > ag > 0, then
17llas,0 < [Allas.o-

2. If a1, >0, and ||9]lay.o || Pllas,e< 00, then
lg9hllar+a2.0 < [|9llar ol ] az.o-
3. If |9)laes |Plla,e< Ro/4, where Ry is the convergence ratio of f' at 0, then
1/(9) = f(W)lao < Mlg = hl|a.o-

7.6.2 The Operators L, and G,
Let f, g, and h be analytic functions defined in D* x T,. We define

) ewik(rf'u) o(r "
P = [ S 2 i,
GH(g)(v) = [ e tD0gM . (7.6.9)

H[k](h)(v):/” (D r=0) K () g

—00

and consider the linear operator G, given by

S FH(f)(v)e™

Go(frg,h) = | 2 G @)@e™ || (7.6.10)

k

Z H[k] (h) (U>€ik-r

k
Lemma 7.6.5. Fix a > 1 and o > 0, the operator

gw : X3+1,0 — ygx,a’
giwen in (7.6.10) is well-defined and the following statements hold:

1. G, is an inverse of the operator L, : V3 , — X3, , given in (7.6.6), i.e. G, 0L, =
ﬁw © gw = Id;

2' [[gw<fvgah)]]a,o S MH(f,g, h)HC¥+1,0';

3. If fO = gl = pl=1 = 0, then [Gu(f, g, M)]a <

The proof of Lemma can be found in [§].
To find a solution of (7.6.3)), it is sufficient to find a fixed point of the operator

Gon=G,0 Py, (7.6.11)
where G, is given by (7.6.10|) and P}, is given by ((7.6.7)).

0.
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7.6.3 The Operator P,
We show some properties of the operator P, defined in ((7.6.7)).

Lemma 7.6.6. Fiz o > 0, hg > 0. For 0 < h < hy, the operator P, defined in ((7.6.7))
satisfies

o
||Ph(07 0, 0)”2,0 < M;

Proof. Notice that P;,(0,0,0) = (fF, f&, —fh), where f}! and f2 are given by (7.6.4)), and
(7.6.5]) respectively, and involve the functions F'(Xo), Zo, 2§, Q° Qb Zon,0wZon. By

(7.1.7), (7.3.4), (7.3.11) and ((7.3.15)), we can see that

, o
Qo (@Y 2= M,

svVh
1Zonlly o 100 Z0pll 2,0 < Mﬁ’

1 Zol1,05 120 ||2,65 [|[ 7 (Xo) [[1,0< M.
It follows from these bounds and Lemma [7.6.4] that

SVh 5% 42 } {5\/5 52}
= M max ,

v o 2 4 ovi o
w327 w W3 w327 w

T Mmax{

w’ wh/? W

2
fh 2. < M max ﬁ d h :Mé.
2 112,

Lemma 7.6.7. Firo >0, hg >0 and K > 0. If 0 < h < hg, the operator
Ph : yig — X;U
is well defined. Moreover, given (z;,7;,0;) € Bo(Kdo/w) C Vi, j=1,2,

)
[Ph(z1, 71, 61) — Pr(z2,72,02) |5, < M (5 + \/5> [(z1,71,61) = (22,72, 02)], , »

w3/2
where M is a constant independent of € and h.

Proof. Tt is straightforward to see that P, is well defined. Denote 77,{ = mjoP,. We
show the bound of the difference for P; and P7, since the bound of P} can be obtained
in exactly the same way as P?.

Notice that

5 ) — (6, — 6

P (21,71, 00) — Pz, 72, 00) = —mmxo(v))(“ )00
OpZon(v,T) 2] — 29

Zolr) 1T ) 0Ty

_21 + Zoﬁ(?), 7')

ZO(’U) (8v21 — 8UZ2).
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Using the bounds contained in the proof of Lemma [7.6.6| and that Z; is lower bounded in
D" by a positive constant independent of €, one can see that

)
HP}L(Zh%,Ql) - Pi(22,72792)“20 < M max {57 W\/E} [(z1,7,61) — (22772792)]]1,0-

Now,
(Q°)(v)
Z()(U)

_21 + Zo’h(U,T>
Zo(v)

21 — 22

Zo(v)

(aﬂl - au%)

73;2,,(21,71,91) - P}%(Z2;72792) = - (21 — 22) Rar

which, proceeding analogously,

)
}]7’5(21,71,91) - P}%(ZLWLQQ)HQU < M max {w’ W\/ﬁ} [(z1,71,61) — (22»72792)]]1,(;-

]

7.6.4 The Fixed Point Theorem

Now, we write Proposition in terms oj Banach spaces and we prove it through a
fixed point argument applied to the operator G, given by (7.6.11]).

Proposition 7.6.8. Fiz o0 > 0 and hg > 0. There exists g > 0 such that for 0 < e < g,

the operator G, in (7.6.11)) has a fived point (2§, Y5y, 08,) € Vi 5. Furthermore, there
exists a constant M > 0 independent of € and h such that

u u u 5
[[(ZO,hv VO,hv eo,h)]]l,o‘ S Ma

Proof. From Lemmas[7.6.5] and [7.6.6], there exists a constant b, > 0 independent of € and
h such that
by 0

[[?w,h(Oa 07 0)]]1,0 S M||7Dh(07 07 O)HQ,O'_ 5;

Consider the operator G, = G, o Py : Bo(bed/w) C V1o — V1. Notice that Lemmas
7.6.5| and [7.6.7 imply that it is well defined in these spaces.
To show that G, 5, sends By(b2d/w) into itself, consider K = by in Lemma and

(25,75,05) € Bo(bed/w), j = 1,2. It follows from Lemmas [7.6.5] and the fact that
G, is a linear operator that

[Gen (21,71, 01) — Gup(22,72,02) )10 < M | Pr(21,71,01) — Pa(22,72,02)ll5,, -
< Mo [(z1,7,601) = (22,72, 02)] , -
Choosing ¢y sufficiently small such that Lip(G,4) < 1/2, G, sends By(b2d/w) into

itself and it is a contraction. Thus, it has a unique fixed point (2, ¢, 05,) € Bo(b20/w).
[
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7.7 Proof of Theorem [7.3.10

The strategy used to prove Theorem [7.3.10] is analogous to the one of Theorem
taking into account that all the expressions appearing become singular as h — 0.
We write

Nio(v) = (Xa(v), Zio(v), I o(v), 65 (v)).
Lemma 7.7.1. Given h > 0, the invariant manifold W§(p; ), with 6 # 0, is parameterized
by N,’j’o(v) if and only if (F}j’o(v), Z’O(v)) satisfy

Ty = 72}1(@) wil'(v) — 0 v
0 = O (wir) - S F).
© v ) [ ey O y (7.7.1)
) = = ) (i) - I FCa ).
UEIEIOOF(U) = UEIPOO@(U) =0,
and
.1, 0) = Q b= U() - eGP - Sre),

with Xy, given in (7.3.4), U, Fgiven in (7.1.7), and Z} 4(v) = 7n(v, T o(v), O} 4(v)).
As in Section , we compute an explicit term of (F}jﬁ, ho). Thus, the solution of
(7.7.1) can be written as (7.3.17) and (v;, 0 o) satisfy

d

-y = wiy = wir(m(v,7,0) = 1) = (@) (v),

CZ@ +wif = —wif(m(v,7,0) = 1) + (Q")'(v), (7.7.2)
Jm () = I 8(0) =0,

where Q" is given in (7.3.18) and

) 2 ~1/2
(v, 7v,0) = (1 + éi} (W) - 8W(Z;7(i))2) : (7.7.3)

We prove Theorem [7.3.10| by finding a solution of ([7.7.2)) in the next proposition.
Proposition 7.7.2. There exists g > 0 and hg > 0 such that for 0 < h < hy and

0 < e < e, equation (7.7.2)) has a solution (vj o(v), 0} o(v)) defined in D" (see (7.3.12)))

such that 0} 4(v) = i o(v) for every v € R. Furthermore, (7}, 05 ) satisfy the bound

([7-3.19).

To prove Proposition |7.7.2] it is sufficient to find a fixed point (v} o, 0} o) of the operator

Guwn = Gu © F, (7.7.4)
where G, is given in and
Folr0)(0) = ( wiy(v) (1 (v, 7(v), 0(v)) — 1) = (Q")'(v) ) |
—wif(v) (1 (v, 7(v),0(v)) — 1) + (Q")'(v)

and Q", n, are given in (7.3.18) and (7.7.3)), respectively.
The rest of this section is devoted to find a fixed point of ([7.7.4]).

(7.7.5)
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7.7.1 Banach spaces and technical lemmas

By [T17). (733) and (73.18)
25i /2L sinh(vvh/2
Qh(v) 01 ( h ( / ) ’ (776)

N wv2Q \ 1+ 2 sinh*(vv/h/2)

which has poles at

; 2 h
Shi = Zﬁ ((5j717r + arcsin ( 2+h) + Qkﬂ) :

where d;; is the delta of Kronecker, j = 0,1 and k € Z. All these singularities are
contained in the imaginary axis and satisfy

Thus, for h sufficiently small ‘sf,ﬁ‘ >3v2/4,7=0,1and k € Z.
Therefore, we can consider the same domain D" in ([7.3.12)). It satisfies the following
property, whose proof is straightforward.

Lemma 7.7.3. If v € D" is such that |Re(v)|> xo, for some xo > 0, then

Xo + 1
X0

[T (v)]< [Re(v)].

For a@ > 0, we consider the Banach space
Xy ={f:D"— C; fisanalytic and || f||.< oo}

endowed with the norm
1flla= seuggl\(v”?)a”f(v)\,

and the product space

x? = {(f,g) € X, x X,; g(v) = f(v) for every v € R}

endowed with the norm ||(f,9)/la= |flla+|lglla- Remark and Lemma also
apply to [[-la-

Lemma 7.7.4. Given 0 < hg < 1, there exists a constant M* > 0 such that, for each
ve D" and 0 < h < hy,

’sinh(v\/ﬁ/2)’ > M*Vhv|, ‘cosh(m/ﬁ/?)’ > M*.
The following Lemma is proved in [7].

Lemma 7.7.5. Let 1/2 < 8 < w/4 be fized. The following statements hold

1. There exists By > 0 sufficiently small such that D" C D"(5y), where

D"(By) = {v € C; |Im(v)|< —tan(B + Bo) Re(v) + 2v/2/3}.
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2. Given a> 0, if f: D“(By) — C is a real-analytic function such that

mo(f) = sup |(v*+2)*2f(v)|< oo,
veD™(Bo)

then, for any n € N
Hf(n)”aJrng Mmq(f).

In the remaining of this paper, all the Landau symbols O(f (v, h,¢)) denote a function
dependent on v, h and € such that there exists a constant M > 0 independent of h and ¢
such that |O(f (v, h,€))|< M|f(v, h, )|, for every (v, h,e) in the domain considered.

Lemma 7.7.6. There ezist hg € (0,1) and a constant M > 0 such that, for v € D" and
0 < h < hy,

M
1. [F(Xu(v)|< m;

M
|v2 42|

where Xy, given in (7.3.5) and F(X) in (7.1.7).
Proof. By ((7.3.18]) and ([7.7.6)), we have that

h 1 !
F(X,(v)) = -2 |
(Xn(v)) \/;sinh(vﬂ/Q) (1+2-}ihmrth(le/ﬁ/2))

Then, Lemma [7.7.4] implies

2. [F(Xn(v))]<

1

1
Vh|v A1
o 1+ 2+h sinh? (vV/h/2)

[F(Xa(w)] < MVh

Notice that

h 1 h 1
1+ > 1-
’ 2+hsinh2(v\/ﬁ/2)‘ - 2+h sinh2(v\/ﬁ/2)‘
and, by Lemma [7.7.4]
h 1 < h 1 < 1
24 h [sinh®(vV/h/2)| = 24 h (M*)2hlv|?> = 2(M*)?|v]*’

Thus, for |v|> (M*)7!,

h 1
2 + hsinh?(vvh/2)

|1+

| > 1/2.

We also know that, if [v|> (M*)7!, |[vv2 + 2|< /1 + 2M*|v|. Hence
Vo2 +2|

(Vo2 +2) F(Xp(v)[< M ™

< M.
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Now, assume that |v|< (M*)~. Hence |vvh/2|< M and expanding sinh(z) at 0 we

obtain
@ (v\/E/Q + O(h3/2v3)>
1+ 22 (hv?/4 4+ O(h*v?))
, V21 h(v/2+ O(h))
1+v2/24+0O(h)
Since v € D", we have that there exists M > 0 such that

F(Xp(v) = -2

11+ 0%/24 O(h)|> |1 +v*/2|-O(h) > M — O(h).

Therefore, for h > 0 sufficiently small, we have that |F'(X}(v))|< M, for [v|< (M*)™!, and
since |[v/v? + 2| is inferiorly and superiorly bounded by nonzero constants in this domain,
we have that

(VEF2)F(Xn@)[< M for Jo]< (M),

This concludes the proof of the first item. One can obtain item 2 using Lemma [7.7.5]
]

Lemma 7.7.7. Given 0 < hg < 1, there exists a constant M > 0 such that, for v € D*
and 0 < h < hy,

<M

1 1
ZE(v) v? + 2
where Zp, in (7.3.5)).

The proof is analogous to the one of Lemma [7.7.6]

7.7.2 The Fixed Point Theorem

Now, we study the operator G, in order to find a fixed point in X7. Recall the
definition of G, , = G, 0 Fy, in (7.7.4), and notice that G, is the same operator of the case
h = 0. Thus, Proposition still holds for functions in the Banach space X3.

Proposition 7.7.8. Given (f,g) € X}, we have that G,(f,g) € Xg. Furthermore, there
exists a constant M > 0 independent of € such that

M

We proceed by studying the operator Fj, in ((7.7.5)).

Proposition 7.7.9. There exists hg > 0, eg > 0 and a constant M > 0 such that for,

0<e<egyand 0 < h < hy,

4]
1G.a(0,0)l, < M.

Proof. Notice that F,(0,0) = (—(Q")'(v), (Q")'(v)) (see (7.3.18)), which implies

175 (0,0)[l; = 2 (Xn)'[l2-

)
—||F
wV2Q H
Thus, it is enough to apply Lemma and Proposition [7.7.8 O
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Proposition 7.7.10. There exist g > 0, hg > 0 and a constant M > 0 such that for
0<e<ey 0<h<hy:
0

Let ny, be given in (7.7.3) and take (7;,6;) € Bo(R) C X3 with j = 1,2 and R = K —,
w
where K is a constant independent of h and e, the following statements hold.

52
1 (v, v5(v), 0;(v)) — 1] < MZ;

2-\nh(v,va(v),Gl(v))-—-nh(v,wa(v),Hz(v))lfé«ﬂf:iH(vl,Hl)—-(vz79z)Ho

8. | Fn(v1,01) — Fulv2,02)[ly < ME?([(71,61) — (72, 02)]]2:

Proof. Lemmas [7.7.6| and [7.7.7| and the fact that (v,0) € By(R) imply

2 2 2
W (PG 0 |
Quw \ Zy(v) (Zp(v))? w
Thus, using ((7.7.3)), it follows that
46% (F(Xp(w)\’ 0 52
_1l < B (e Sl 2 SV I~V AR RO I/
!Mww)u_MQw<%w 8%%@P_MW

and using also Lemma [7.7.7], we have

Y101 — Y202
(Zn(v))?

|61 — 0] 7 = |
= M ('(Zh<U))2<U2 2 T Zw)Pe? + 2)|>

1)
< M;”(%,@l) — (72, 62)|lo

10n (v, 71, 01) = u(v,72,62)] < Mw

Finally, it follows from items (1) and (2) of this proposition and ([7.7.5)) that

|71 0 Fi(y1,6h) —mo ]:h(72>92)“2 < wlnn(v,y,0h) — 1“0 171 — 72ll2
+wl[yell2lln (v, 71, 01) — na (v, v2, 02) ||,

IN

)
Mo ||y — Yella+MwR (v, 61) = (72, 62) o
< M3*||(m,01) — (72, 02)] ]2
Analogously, we obtain the same inequality for the second component of Fj,. O

Finally, we are able to prove Proposition [7.7.2] (and thus Theorem (7.3.10]) by a fixed
point argument.

Proposition 7.7.11. There exist ¢ > 0, hg > 0 and a constant M > 0 such that for
0 <h < hg and € < g, the operator G, (given in (7.7.4)) has a fized point (v o, 0} ) in
X22 which satisfies

w  gu 4]
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Proof. From Proposition there exists a constant b3 > 0 independent of i and ¢ such
that b §

3
1Gun(0,0)], < 2,
Now, given (71, 6;) and (72, 02) in By(b3d/w?), we can use Propositions [7.7.10| (with K =
bs) and and the linearity of the operator G, to see that

M
|G n(71,01) = Gun(r2,02)|l, < o | Fr(v1,01) — Frn(yz2, 02)|5

52
< M;H(%,Ql) — (72, 02)]]2-

Choosing ¢ sufficiently small, we have that Lip(G, ) < 1/2. Therefore G, sends the
ball By(b3d/w?) into itself and it is a contraction. Thus, it has a unique fixed point

(Yho o) € By(bsd /w?).

U
7.8 Proof of Theorem [7.3.11]
In this section we prove the existence of WX(A,, ,,), with 6 # 0. As in the previous
sections, we look for parameterizations N of WX(A; ) as graphs

N e (0,7) = (X (), Ziy (V) + Z50,(0,7), Dy (1) + T, (0, 7), Oy () + 0,7, (0, 7)),

K1,R2 K1,k2 K1,R2 K1,R2
(7.8.1)

where X, Z,, are given in (7.3.4) and T',,, ©,, are given in ((7.3.7)).

Following the same lines of Section [7.7] we have a characterization of Ny, .

Lemma 7.8.1. Write Z}! . (v,7) = Zu, x,(0,7) + 212 o, (0, 7), T L (0,7) = Q2 (v) +

R1,k2

Vom0 T), OF (v, T) = =Q" (v) + 0 ., (v,T), where Q™ is given by (7.3.18)) and

S it oy D7) + Ol
e P (X ()

Y/ (Uv T) =

with T'x,, O, given by (7.3.7). Then, N¥ . (v,7), given in (7.8.1), with k1, ks > 0 and

K1+ kg = h, parameterizes W*(A_ ) provided (22 .., Ve, ps On xy) Satisfy
O0pz + w0,z + %E:;z = fi"(v, 1) — 2t 22"5;51)’ T)avz — W
P ) 5
Oyy + wdry —wiy = f3¥(v,7) — (gz)(;f;}) _ it ?:l’lgzgv’ 7 0y,
0,0 + wd 0 +wif = —f52(v,7) + (%)(U(;’ ), _2F Z"(Ugv ") o.0.
UEI_HOOZ(U, T) = Uli)r_nooy(v, T) = Uli)l_noo O(v,7) =0,
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where

Zy, (v) 5 Q" (v)

e = — 0L,y (U, T) — Zyirn(0,7) — —F' (X, 7.8.3
1 (U’T) 15 2(U T) Z,il(l)) 1, 2(7} T) m ( 1(7})) i ( )
L1 52 (Vs T) 00 Ly 1y (0, T)
Z ey (V) ’
Dy s (0, T)(Q")' (v)

K1,K2 —_ _ (DK1Y _ LR\ . 7.8.4
f2 (Uv T) (Q ) (U) an (U) ( )
We consider the equation ([7.8.2)) with (v, 7) € D* x T, with the asymptotic conditions
lim z(v)= lim ()= lim #(v) =0, for every 7 € T,.

Re(v)——o0 Re(v)——o0 Re(v)——o0

Theorem (|7.3.11)) is a consequence of the following proposition.

Proposition 7.8.2. Fiz 0 > 0. There exist hg > 0 and g > 0 sufficiently small such
that for 0 < e < &g, 0 < h < hy and k1,ky > 0 with k1 + Ky = h, system (7.8.2)) has an
analytic solution (2! ..,V wpr O xy) defined in D* x T, (see (7.3.12)) and (7.3.13))) such

that 2 . is real-analytic, 0% . (v,7) =% ., (v,7) for each (v,7) € D* x T, NR* and

K1,K2 R1,R2

Re(l%glfoo Zm’@ (U7 T) - Re(lljri;lfoo ’ym,nz (U7 T) - Re(})%rilfoo 0 (U7 T) =

u

for every T € Ty. Furthermore, (2, .., Vi, nye Ony 1) Satisfies the bounds in (7.3.21)).

Equation ([7.8.2)) can be written as the functional equation

Ew,nl (Z’ 77 9) = P’ilﬂiz (Za 77 9)7

where L, ., and P, ., are the functional operators given by

7!
Opz +worz + =2 (v) z
Zy (0)
Ew,m(27770) = &ﬁ%—w@w—wm )
00 + w0 + wib
and
K1,K Z+ Zlil K2 (Ua T) 81JZI-”ul K2 0 Y= 0
112 - ’ - K2 F( X, (v)
fl (U7 7_) an (U) aUZ an (U) z m ( K1 (U)) 22
— K1,R2 (QKI)/(U) < + ZK’17R2 (U, T)
Pm,m (Z, Y5 0) - 2 (U7 T) Z,ﬂ (U) < Z,ﬂ (U) 8117
152 (@")'(v) 2+ Zuywu(v,7)
SN0 T 2l
(7.8.5)

We show the existence of an inverse G' of L, in the Banach spaces X7, and V3 ,
introduced in Section [7.6.1
Given analytic functions f, g, and h defined in D" x T,, consider

F¥(r)dr,

v ewik(r—v) r
R = [ S e
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and G (g), H¥(h) given in (7.6.9). Then, we define the linear operator Gt
> EN() e
k
G (f,9.h) = zk: GH(g)w)e™™ || (7.8.6)
Z H[k}(h)(v)eikr

k

Lemma 7.8.3. Fiz a > 1 and o > 0. There exists k) > 0 sufficiently small, such that,
for0<e<egand 0 < kr < /4:(1), the operator

gc’jl : Xo%—l—l,a - ygz,o
is well-defined and satisfies:

1. G5t is an inverse of the operator L, = Vo, — X3, . i G& o Ly = Loy, ©

ghr =1d;
2. 1G5 (f, 9, M)]ae < M(f, 9, P)llat1,07

3. [f f[o] - g[l} = h[fl] =0, then [[g::l (faga h)]]a,a <

219,

where M is a constant independent of k1 and €.
The proof of the following lemma is analogous to that in Lemma below.

Lemma 7.8.4. Let F, X, Z,., be given by (7.1.7) and (7.3.5)). There exist k{ > 0 and
a constant M > 0 such that, for v € D" and 0 < k; < K,

M

1 .
1 |F (X, (v)"[< W;

Z (V)
Zi2 (v)

M
T

Lemma 7.8.5. Fiz o0 > 0 and K > 0. There exist g > 0 and hg > 0 sufficiently small
such that, for 0 < e < g9, 0 < h < hg and Ky, ke > 0 with kK1 + ke = h, the operator
P o - yia — X5, is well defined and there exists a constant M > 0 such that

2,09

)
Hpﬂl,m (07 07 O)HZ,US M;

Moreover, given (z;,7;,0;) € Bo(Kd/w) C Vi, j=1,2,

)
[Prcsra (21,71, 01) = Py (22,72, 02) |, < M (5 + wg/Q\/ﬁ> [(z1,71,01) — (22,72, 02)] -
Proof. Recall that Py, ,(0,0,0) = (f7", f3"", —f3""?), where fi""™, f3""* are given in
(7.8.3)) and ([7.8.4)), respectively, and involve the functions F'(X,,), Z,. /Z., Q", (Q"),
ey kas OvZi, 1y Which can be computed using the expressions in (7.1.7)), (7.3.5), (7.3.11)),
and (7.3.15). By Lemmas [7.7.6 [7.7.7| and [7.8.4] we have
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4]
Q" 1.0 Q™) |20= M —,

0+/Ka
1Zsmally g 100y o |20 < M =575

125,/ Zi 1o [ (X)) o < M.
Therefore, using also Lemma [7.6.4] one has
J 6 & J 52
HfflmHz,USMmaX{ Vhz 00 }:Mmax{ Vh2 },

K2
W27 0 wB W32 7

K1,k2 <M 5 62 —M(S
Hfz Hz,a_ max E’W‘/’TQ — a

Thus, || P, .k, (0,0,0)|l20< M /w.
Following the lines of the proof of Lemma one can complete the proof of Lemma
[C.8.5 O

Now, we write Proposition [7.8.2]in terms of Banach spaces. Then, it can be proved in
the same way as Proposition by considering the operator G, .., x, = Gt 0 Py o

Proposition 7.8.6. Fiz 0 > 0. There exist ho > 0 and g9 > 0 such that, for 0 <e < &,
0 < h < hy and K1, ke > 0 with k1 + ko = h, the operator Gy, 4, ko = G5' © Py 1y, with G2
and Py, x, given in (7.8.6)) and (7.8.5)), respectively, has a fived point (2 .., Ve, «ns On k) €

yia. Furthermore, there exists a constant M > 0 independent of €, k1 and ko such that

o
[[(Zgl,I{Q?W/}:lJ{Q’ K1, ;{2)]]1 g S Mﬁ

This completes the proof of Theorem [7.3.11]

7.9 Proof of Theorem [7.3.12

We compare the parameterizations of W* (A ) obtained in Sections 7.6 . 7.7and 7.8 .

KR1,k2

respectively, with the parameterization (7.4.1]) of W(py ) obtained in Section

7.9.1 Approximation of W*(A,) by W¥(py)
We compare the parameterizations Ng;, and Ng, of WX(A;) and W¥(p, ), obtained
in Theorems [7.3.8 and [7.3.5] respectively.

Proposition 7.9.1. Let I't(v), ©f(v) and 'y, (v,7), ©f,(v,7) be given in (7.3.10) and
(7.3.14])), respectively. Given hg > 0, there exists g > 0 and a constant M > 0, such that
foroe D'NR, 7T, 0<e<¢ggand 0<h < hg,

ovh

32

5v'h

w32

0- (L 5 (v, 7) = T5(v))]

8a(0,7) = T(v)| < M

0- (05 (v, 7) = O5(v))]

Ba(v,7) = O(v)| < M
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Proof. Considering h = 0 in Theorem m, it follows that Ngo(v,7) is also a param-
eterization of W (py). Since W (py ) is parameterized by both Ng,(v) (from Theorem
and Ng(v, 7) (from Theorem |7 -) and both have the same first coordinate, these
parameterizations coincide. Therefore vy, and 6, given in Theorem [7.3.8 with h = 0
depend only on the variable v and we can write

[h(v) = Q°(v) + 150 (v),
05 (v) = —Q°(v) + b(v)-

Based on these arguments, we can use Theorem [7.3.8/and Proposition to see that

( Lgn(v,7) = TG (v) ) B ( V00 (0,7) = 150 (v) )
(v, 7) = O} (v) O (v,7) = Ogo(v) )
where (280, V50, 060) and (28, Yy, 04,) are fixed points of the operators G, o and G,

given in (|7.6.11]), respectively.
Denoting

&= (Zg,h - Z&O’ ’Y(l)L,h - ’Y&Ov g,h - 93,0):
we compute ||€||14-
Notice that

& = (fo,h = 200, V0.0 — V0.0 9 930)
= Gw,h(zg,m Yo.hs eo,h) - gw,h(zo,oy V0,04 93,0)
+§w,h(28‘,07 73,07 98,0) - gw,o(z&w 73,07 0&0)'

For 0 < h < ho, (284,90, 05,) € Bo(Md/w) and G, is Lipschitz in this ball with
Lip(G,n) < M§. Then,

[[gwh(z()ha%ha Oh) gwh(ZOOa’YOOa@go)]]lo < M‘S[[g]]lo

Choosing &g sufficiently small such that Lip(G, ) < 1/2, we obtain
[€]10 < M[@w,h('z&oﬁam ‘93,0) - Gw,o(z(l)t,oﬁg,m 93,0)]]1,0-

Now, denoting Pr (20, Y0, 00) — Po(280: 10, O0) = A, where Py is given in (7.6.7),
and using that [(zf, 780, 06 0)]] < M6 /w, we have that [|AD]l, , < M%;
It follows from the linearity of G., and Lemma [7.6.5 that

5vh

[[Gw,h<zg,0773,07 06.0) — Gw0(25.0, V005 98,0)]] Lo = Mm

)
Thus, we conclude that [€], , < M \3//; O

7.9.2 Approximation of W¥(p; ) by W*(py)

We compare the parameterizations Ng', and Ny, of W(p, ) and W (p;, ), obtained in
Theorems [7.3.5] and [7.3.10] respectively.
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Proposition 7.9.2. LetI'f(v), ©f(v) and I'y, 4(v), O} o(v) be given in (7.3.10) and (7.3.17),
respectively. There exist eg > 0, hg > 0 and a constant M > 0 such that, for 0 < e < g
and 0 < h < hg,

h,

w? '’

5vh
2. |03,(0) — ©(0)| < M=

1. |03 (0) = TE(0)| < M

Technical Lemmas

To prove Proposition [7.9.2] we first state some lemmas.

Lemma 7.9.3. Let Xo, Zy, Xn, Zn, Q°, and Q" be given in (7.3.4), (7.3.5), (7.3.11)
and ((7.3.18) and fir My > 0. There exist hg > 0 and a constant M > 0 such that, for
0<h<hgandv € D" with |h"/*v|< My,

L FG0) ~ FOO()] < oo
2”%@_ZWMSW%4%’

> Zhlw) - Zol<v> |¢v21ﬁ| < Mvh;
p @wmw—@wwngjﬁfa

Proof. Using the formulas ([7.1.7)), (7.3.4)) and ((7.3.5]), we obtain
2 sinh(vv/h/2) v
F(Xn(w)) = F(Xo(0)) = =2 | 55— V2
1 + =" sinh (vv/h/2) ve+ 2
Since |[vh'/4|< My, it follows that |vvh/2|< MhY* < 1.
Expanding sinh(z) at 0, we have

2+h h
2 j; b iah(ovE/2) \/T (U\Q/_ - O(h3/2\v|3)>
2th ginh? N :
1+ 22 sinh (vv/h/2) 14 2+h <Uh +(’)(h2\v|4)>

h 4
V20 + O(Vhv|)
v2 + 24+ O(Vh|v|?)

_ Y (1+0Wh).

02+ 2

Item (1) follows directly from this expression, considering h sufficiently small. Items
(2) and (3) can be computed in an analogous way.
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Formulas and imply
(QY(v) = (Q)(v)| < Mjw'(xh(vnzh(v) — F'(Xo(v))Zo(v)].

Thus, it is enough to apply the bounds in items (1) and (2) to obtain item (4).
[

Lemma 7.9.4. Let ny and ny, be given in (7.4.4) and (7.7.3)), respectively, and consider
the functions (7, 0y) obtained in Proposition [7.4.6 Fiz My > 0. There exist ¢ > 0,
ho > 0 and a constant M > 0 such that for 0 < e < ey, 0 < h < hg and v € D* with

|h1/41}|§ M(),
Mévh
|77h(va’75798) - UO(Ua’VgﬁgH < W :

Proof. Using the expression of n, in (7.7.3)) and that ||(7¥, 04)|, < Md/w? < 1, it follows
from Lemmas [7.7.7 and that

Y e 5 I(F(X)\  [(F(Xo)\ o 1
|77h(U7’70>90)_770(“,’}’0790)‘ < Mw( 7 ) - Zo +MW|’7090| 7%_?3
M&vVh
o
O

Proof of Proposition [7.9.2]

The domain D" defined in (7.3.12)) is contained in the domain D¥ defined in ([7.3.9)).
Therefore, the restriction of the fixed point obtained in Section [7.4] can be seen as an
element of the space X3 with the same bound.

Proposition 7.9.5. Consider (y,05) and (74,05 ,) obtained in Theorems and
7.7.11, respectively, and the operator G, given by (7.7.4)). Then, there exist g > 0,
ho > 0 and a constant M > 0 such that for 0 < h < hy and 0 < ¢ < g,

|G (0, O0) = Guon (5, 03)

Proof. By Proposition [7.7.10] we have

52
o < MU H(%lf,mefzf,o) - (73793)“0‘

(0,30 00) — 36, 09)] < M |3 O10) — (08
Thus, using the expression of Fj, in and Proposition [7.7.10)
| (B, 00) = (o 0D, < w (o, itor B0) — 1| |ico =8

e 8l |1 (v, 9800 030) = 1m0, 7 03)

0

< M§? ”7%70 _,ngO
S0 gl (o Bo) — (3369
< M (52 + f;) H(Vﬁ,o’ Oro) — (70 65) 0’
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The same bound can be obtained for the second coordinate of F;,. Thus

|7t B10) = Fuag, 03) |, < M || (o, Bri) — (38, 65)

0

Now, denote A, = m; (Fu(vi0,019) — Fu(1808)), j = 1,2, and A, = (A}, A2). Then,

71 (G001 0) — G (8,08)) (v)| = ’ /_ooo 615 AL (s + v)ds

Since A, € X2, we can change the path of integration to obtain

0 ) 0 I . )
’/ GWlSA}L(S‘f—/U)dS _ ‘/ ewie 5§A}L(€—Zﬂg+v>ezﬂd§‘

0 . .
< [ e AL e e 4 v)lde

0 .
< HAhHOL e sinB)E e

IN

M
—[[Anllo-
w

The same argument holds for the second coordinate of G, 1(Vi o, 0 o) — Gun(75,05). O

Lemma 7.9.6. Let Fy and F}, be given in and , respectively, and consider
the functions (vy,04) obtained in Theorem [7.4.6 Given My > 0 fized, there exist <o,
ho > 0 and a constant M > 0 such that for 0 < h < hg, 0 < € < gy and v € D" with
|RY 4| < My,

;0 Fr(15,06) (v) — 75 0 Folvg, 05) (v)| < R J=12

Proof. Lemmas [7.9.3] and [7.9.4] imply
| (Fr(76 05) (v) — Fo(rg, 06)) ()] < [(@")'(v) — (Q°)'(v)]
+w g nm(v, 76, 605) — no(v, 15, 06))]

ov'h

M———-.
wlv? + 2|

The same holds for the second coordinate. O

Proposition 7.9.7. Consider the functions (7, 0y) obtained in Proposition[7.4.6 and the
operators G, o and G, , given in (7.4.5)) and (7.7.4), respectively. There exist g >, hg > 0
and a constant M > 0 such that, for 0 < e <eqg and 0 < h < hg

M&vh

1G98 68) = Guo (18- )y < =3

Proof. 1t follows from the proof of Proposition |7.7.11| that the Lipschitz constant of G,
in a ball By(Kd/w?), for some K > 0 fixed, satisfies Lip(G, ) < Md*/w. Moreover,
G (0,0)]l2= M3 /e? and (48, 02)llo< Mo /e?. Thus

u u u u 5
19176 00)l2= 1Gun (70, 05) = Guo, (0, 0) |2+ G (0, 0) |2 M —.
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Morcover, [Guo(nt, )= 134 08) < Mo/
Let v € D* and first assume that |[h'/*v|> 1, hence

G013, 06) 15 190075, 06)

|75(Gu.n (06 06) (v) = Guo (155 06) (v))] - <

|02 + 2 |02 + 2
0
w?||v[?=2]
)
< M———
T w(/Vh—2)
< M2 VR,
w

for h > 0 sufficiently small, j = 1, 2.
Now, assume that |h!/4v|< 1, and denote A} = 7;(Fn(74, 0%) — Fo(hg, 08)), 5 = 1,2.
Consider the path s = e=%¢ (since A, € A7) and let &(v) € R be such that vy(v) =
v + e~ (v) is the unique point of intersecion between the curve y(€) = v + e~%¢ and
the circle S), of radius h~/* centered at the origin.

MG (8. 08) = Guo 0 BN = | [ A (s +v)ds

0 L . A
= | B%i(we‘”f)e‘zﬁdf'

SUC) R , .
< / 0 ewie ﬁsA}L(U + e_lﬁf)e_zﬂdg‘

—0o0

0 L , .
“l b €A e e ’
o(v

Notice that the points in the path v(&) = v +e~*#¢ satisfy that |y(£)h!/4|> 1 for every
€ < &(v) and |y(€)h/4< 1 for every & (v) < € < 0. Also, let v (v) = e®vy(v), and notice
that Im(vj(v)) = Im(v) and |RY4vg(v)]= 1.

Sh

h71/4

Figure 7.10: Definition of the points vy(v) and v§(v).
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Thus the first integral satisfies that
o(v) A . . ) I

—00 — 00

. v(v)
ewz(v—vo(v))/ 0 ewz(%(v)_r)Ai(T)dT

o0

= |m(Gun (10, 06) (v (v)) = Guo (75, 05) (05 (v)))]

Now, since |y(£)h'/4|< 1 for every & (v) < € < 0, we can use Lemma to see that
the second integral satisfies

0 - . . 0 . .
/E W AL (o + el%)elﬁdg‘ = [s ( )6wsm(5)£|Ai(U +e g)|d¢
olv olv

< M(S\/E /0 ev sin(8)¢ 1 df
- w o Jeoo |(v + e78)% 4 2|
_ MoVRo 0 g (IE g
T w42 S
_ Mévh
w4+ 2]
The result follows from these bounds. O

Now, define £(v) = (7} 4(v) — 7§ (v), 0} o(v) — 65 (v)) and notice that

( T4 4(0) — T(0) ) _ ( Q"(0) = Q"(0)
1 (0) — ©4(0) —Q™0) +Q°(0)

Using (7.3.11]) and (7.3.18)), we have Q"(0) = Q°(0) = 0. Hence, to prove Proposition
7.9.2} it is enough to bound ||Elo. Since (v;,, 04 ) and (v, 0f) are fixed points of G,

and G, o, respectively,
& = (’7%,07 9%,0) - (787 68)
gw,h (’Yl*uhO? 9’}770) - gw,h (/YO ) eu) + gw h(% ) eu) gw 0(% ) )

It follows from Propositions [7.9.5] and [7.9.7] that

||5||0 < ||gw7h(7;t,070g0) - gw h(’)/g’98)|’0+||gw,h(78763) - gw,0(78703)||0
Md\/_

) + £(0)",

< M&*|Elo+

]\/[5\/_

Thus, for gy sufficiently small, we have that ||£||p< 2 . This completes the proof.
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7.9.3 Approximation of W*(A_ . ) by W¥(py)

R1,R2

In this section, we obtain an approximation of N . by Ng, by approximating N,
by NZ o and NZ o by Ng.

K k1,0

Proceeding as for Proposition and Lemma [7.8.5] one can obtain the next result.

Proposition 7.9.8. Let '} ((v), ©F (v) and T} . (v,7), O ., (v,T) be given in (7.3.17)

and ([7.3.20)), respectively. There exist eg > 0, hg > 0 and a constant M > 0 such that,
forore D'NR, 7€T,0<e<¢eg, 0<h< hg ki,ke >0 with k1 + ko = h,

(v)| < n2V™

O- (T, sy (0, 7) = T, 0(v)

lem(vﬂ') — I

K1,k2 ) k1,0 wg/g )
u u u u 5 52
0 (O}, (0.7) = O, o(0))] |0, (0.7) = O, o(0)] < M55

Notice that Proposition allows us to approximate N , by Ng'g, for £ sufficiently
small. Thus, we can combine this fact with Proposition to obtain the following
proposition.

Proposition 7.9.9. Let I't(v), ©g(v) and '} (v,7), OF . (v,T) be given in
and , respectively. There exist g > 0, hg > 0 and a constant M > 0 such that,
foroe D'NR, 7T, 0<e<ey, 0<h<hyand Ky, ke > 0 with k1 + k3 = h,

I (0,7) = T)], |0y, ., (v,7) — O5(w)| < MOV OV

K1
K1,k2 K1,k2 w3/2 w2 )

(7.9.1)

(6%, v,7) — O3] < M2

K1,K2 w3/2

O-(I'%, s, (0, 7) = T (v))

K1,R2

Y

7.10 Conclusion and Further Directions

In this chapter we have studied a 2-dof Hamiltonian H arising from an approxima-
tion of the solutions of the partial differential equation . More specifically, we
have found conditions on the energy of H in order to detect certain heteroclinic connec-
tions (corresponding to quasi kink-like and oscillating kink-like solutions). It provides
a rigorous treatment for the computation of the critical velocity done in [47]. Also, we
provided an asymptotic formula for the final velocity of a quasi kink-like solution which
was conjectured in [47].

As we have mentioned in Section there are many works studying the efficacy of
this toy-model to approximate the solutions of , nevertheless a rigorous study of it
remains as an open problem.

Also, in [47], they mention the existence of n-bounce resonant solutions of H, which
correspond to heteroclinic connections passing n times through the transversal section X2,
considered in this work (see (7.2.6])). A rigorous study of the existence of such solutions
is a difficult task which deserves attention.

Finally, a similar approach can be performed to validate the formula of critical velocity
obtained for another models in [48], [49].
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Chapter

On the Breakdown of Breathers for Reversible
Klein-Gordon Equations

=

» Partial Differential Equations (PDE’s). In this chapter, we associate breathers of
certain reversible Klein-Gordon equations with homoclinic orbits of a singularly perturbed
Hamiltonian at the origin (which is a critical point) and we provide an asymptotic formula
for the splitting of the invariant manifolds at the origin, which happens to be exponentially
small with respect to the perturbation parameter.

@ REATHERS are nontrivial time-periodic and spatially localized solutions of evolutionary

8.1 Introduction

As far as the authors know, breathers were introduced by [I] in the context of the
sine-Gordon partial differential equation

Otu — O*u + sin(u) = 0. (8.1.1)

This kind of solutions has shown to be very important in physical applications and
thus the proof of their existence or breakdown is a fundamental problem in the study of
the dynamics of evolutionary PDE’s. Moreover, this problem is strongly related to the
analysis of invariant manifolds of PDE’s.

It is known that admits an explicit family of breathers

in(wt
U (z,7) = 4arctan m_sin(wt) ;o myw >0, m?*+w? =1 (8.1.2)
w cosh(mzx)

Nevertheless, in general, the existence of such solutions for nonlinear wave equations is
rare (see [31],94]).

As far as the authors know, there are few results concerning breathers which have
been rigorously proved. In [31], Denzler has shown that the breathers of the sine-Gordon
equation do not persist under any nontrivial perturbation of the form

8t2u — qu + sin(u) = eA(u) + (’)(52),

where A is an analytic function in a small neighborhood of v = 0. In [71], Lu has shown
that reversible nonlinear Klein-Gordon equations admit small amplitude breathers with
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exponentially small tails. In [31], the author has related breathers to homoclinic orbits at
the origin of an infinite dimensional dynamical system, then the solutions constructed in
[71] correspond to homoclinic orbits which tend to exponentially small solutions in some
center manifold in the phase space of an infinite dimensional dynamical system.

In [93], Kruskal and Segur use formal asymptotic expansions to justify the nonexistence
of small amplitude breathers in a certain Klein-Gordon equation, but no rigorous proof is
given. In the present chapter, we use rigorous analysis to obtain some results concerning
this problem.

There are several physical problems which make use of nonlinear Klein-Gordon equa-
tions in one-dimensional space

Otu — O2u+ h(u) =0,

where h is a real-analytic function such that 2(0) = 0 and A’'(0) > 0. For example, we can
point their use in the study of magnetic chains and quantum field theory as mentioned
n [93]. The existence or not of breathers is a relevant topic in these physical models,
and thus to know whether a Klein-Gordon equation admits breathers is a fundamental
problem which remains open.

In this work, we consider a class of reversible Klein-Gordon equations

Ofu — O2u+u — ;u?’ — f(u) =0, (8.1.3)

where f is a real-analytic odd function which satisfies f(u) = O(u®), and we associate the
existence of breathers of with the existence of homoclinic orbits (with respect to
the variable x) of at the origin (which is a critical point). In fact, a solution u(x,t)
of is a breather if, and only if, u(x,t) is periodic in the variable ¢, and for each t
fixed, u(x) := u(x,t) is a homoclinic solution of (8.1.3). We are interested in reversible
breathers of the form

= up(x) sin(nwt), (8.1.4)
n>1
which are 2* —periodic in the variable ¢ and real-analytic in the variable x with w ~ 1. In

this case, the origin has one-dimensional stable and unstable invariant manifolds W?*(0)
and W (O)

In this work, we provide a rigorous treatment to compute the distance between W#(0)
and W*(0) when they intersect a transversal section for the first time.

Such class of Klein-Gordon equations has also been considered in [62], and the authors
have proved the non-existence of small breathers u(x,7) of which are odd in the
variables x and 7. It is worth saying that the known family of breathers of the sine-Gordon
equation given by is even in the variable x, thus the oddness assumption on the
variable z considered in [62] excludes such solutions. Therefore, our study concerns about
a larger (and more complicated) class of solutions of than the ones considered in
[62].

8.1.1 Model

Considering the ansatz (8.1.4)) and the parameterization of time 7 = wt, with w # 0,
we obtain that
= u(x)sin(nr) (8.1.5)

n>1
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and the Fourier coefficients u,, € R, for every n € N (due to real-analyticity hypothesis).

Denote
1

g(u) = §u3 + f(u), (8.1.6)

and observe that, since g is odd, we have that g(u(x,—7)) = g(—u(z, 7)) = —g(u(z, 7)),
and thus g(u(z, 7)) admits a sine Fourier expansion.
Define the projections

W) == [ S@r)sinn)dr and Tf),7) = X T()sin(ar),  (.17)

n>2

and denote
gn(u) = Iy [g(u(z, 7))].
Thus, replacing (8.1.5)) in (8.1.3) and using (8.1.6)), we obtain

(02 + n*w? — Du, = —gn(u), n €N, (8.1.8)

From the definition of breathers, u(x, 7) given in (8.1.5)) is a breather of (8.1.3)) if and
only if
lim w(z,7) =0, Vr €T,

r—+oo

where T = R/27Z.

Therefore, we have a bijection between reversible breathers of and homoclinic
connections at 0 of seen as a dynamical system taking x as time. A simple
analysis shows us that the eigenvalues of the linearization of at 0 are given by
pE = ++4/1 — n2w?, for each n > 1. Thus, for w > 0 fixed such that w # n=2, for every
n € N, we have that there exists Ny = Ny(w) > 0 such that uf € R, for each 1 <n < N,
and pE are purely imaginary for every n > Np. It means that the singular point 0 has a
hyperbolic eigenspace E"(0) of dimension 2N, (with Ny unstable directions and Ny stable
ones) and a central eigenspace £E°(0) of codimension 2Ny. Notice that Ny(w) = 0 for each
w > 1.

It means that, if w < 1, then 0 has stable and unstable local invariant manifolds
W+#(0) and W*(0), respectively, both of dimension Ny > 0, and a central manifold W¢(0)
with codimension 2N, (it has infinite dimension). Thus, the breathers of are
characterized as intersections of W*(0) and W*(0).

It is known from the study of splitting of separatrices that, the difficulty of the problem
increases when the dimensions of the invariant manifolds increase. In order to attack the
simplest version of the problem (which already presents major difficulties), we consider
that w < 1 and w ~ 1 to have Ny = 1.

Now, we set a singular perturbation problem to compute the distance between the
invariant manifolds W*(0) and W*(0). Define

e=v1-w? forw<1,
and observe that 0 < ¢ < 1. Consider the following scaling of the variables and time
u=c¢cvand y = cx.
Thus u(x, ) = ev(ex, 7) satisfies if, and only if, v(y, 7) satisfies

1 1 1
00 — ~L + §v3 + gf (ev) =0, (8.1.9)

2
w
O =5

€
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which is a Hamiltonian Partial Differential Equation with respect to

H(v, 0,0) = /T <(8y”>2 L Wor v ot F (5”)> dr, (8.1.10)

P 2 22 22 ' 12 el

where F' is an analytic function such that F(z) = O(2%) and F'(z) = f(z).
Also, denoting v, (y) = I1,[v](y) and - = d/dy, we obtain
. (nw? —1) 1
e R 8—3Hn lg(ev)] . (8.1.11)
Now, define

A= /n2(1—e?) — 1,
for each n > 2 and notice that A, € R and y, = i)\, (with w? = 1 — &2). Thus, system
(8.1.11) may be written as

N 1
U =v1 — ng lg(ev)],

v , (8.1.12)
Uy, = —8—;‘1}” - 8—31_[” lg(ev)], n>2,

and notice that e ?g(ev) = O(1), therefore, e *II, [g(ev)] = O(1), for every n > 1. Then,
the one-dimensional stable and unstable invariant manifolds W#(0) and W*(0) of the
singular point 0 are characterized as the solutions v® and v" of satisfying the
asymptotic conditions

lim v*(y,7) = lim v*(y,7) =0, Vr € T. (8.1.13)

Yy——+00 Y——00

Notice that the singular perturbation problem (8.1.12) may be written as

i = v — e’ [g(ev)]
20, = —Av, — e L, [g(ev)], n > 2.

The singular limit of (8.1.14]) (¢ = 0) defines a slow-manifold M, which is a plane
given by

(8.1.14)

M = {o(y,7); TI[v] = 0},
with dynamics
U = v — ;Hl[(vf sin®(7))], v € M. (8.1.15)

Hence, M has dimension 1 and the limit problem has a drastic reduction of dimensions
in comparison to the original one.

Recalling the expression of the projection I1; (see ), we obtain that the dynamics
of the slow variable v; in M is governed by the Duffing equation

i} v?
V1 = U1 — Z (8116)

It is known that (8.1.16) has a unique homoclinic orbit at 0 with v; > 0, which is

given by
2v2
h —
Uy (y) - COSh(y) :

(8.1.17)

See Figure 8.1]
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U1
M (U{Lv ’U?) (%1

central manifold oo — dim space

Figure 8.1: Representation of the homoclinic orbit v? in the slow manifold M.

Remark 8.1.1. The Du[ﬁng equation has another homoclinic orbit at 0 with v; < 0,
which is symmetric to v. In this paper, we treat only v?. Nevertheless all the results hold
for the another homoclinic orbit in an analogous way.

Therefore, we have that in the limit problem (8.1.15)), the invariant manifolds *(0)
and W*(0) of (8.1.12) coincide. This paper is devoted to obtain an asymptotic formula
for the difference between W*(0) and W*(0), for € > 0, at certain section X.

8.2 Main Theorem
Since (8.1.12) is a Hamiltonian system with respect to H given in (8.1.10) and and

(v®,0yv°) and (v*, d,v*) are contained in the zero energy level of H. Thus, we consider
the section

Y ={(v,0yv); H(v,0,v) =0 and II;[0,v] =0},
to measure the distance between W*(0) and W*(0). Since H(v, dyv) = 0 and II; [9,v] = 0

for all points of ¥, we use the coordinates (II [v],II[0,v]) to parameterize X.
Throughout this paper, given an odd function f(y,7) periodic in 7, we consider the

point-wise ¢;-norm
[HAOEDI;

n>1

We state the main result of this paper.

Theorem U (Main Theorem). Consider system (8.1.12)). Then, there exist g > 0 and a
complex constant Cy, independent of € such that, for every e < g, the following statements
hold.

1. The invariant mam'folds W“(O) and W=(0) are pammetem’zed by real-analytic solu—

tions v"(y, 7) and v*(y,7) of (8.1.12) satisfying (8.1.13)) such that I1; [0,v**] (0) =

respectively. Moreover Hgl [v] = 0 for every | € N

2. Let p*(7) = (Il [v*] (0,7), L [,0*(0,7)]) € &, for x = u,s, and consider d(r;e) =
p* (1) — p*(7), therefore

2 T3

1
—e 2 (Re(Cin) sin(37) + Oy, <1>>
dre)=| ° tog(e™") (8.2.1)

TA3

SeE <Im(Cm)Sin(3T) + 0, <10g(1€1)>>




237

Dout,u Zg Zg Dout,s
: (5 9) (5 - ne) — :
/
N i(5oke) (5 R —
~i i

Figure 8.2: Outer domains D"* and D",

forO0<e<eyandT € T.

3. If Ciy # 0, then the invariant manifolds W*(0) and W#(0) do not intersect the first
time that they reach X.

We highlight that Theorem [U] concerns with the breakdown of breathers which crosses

the transversal section ¥ only one time. Nevertheless, (8.1.12)) may admit breathers which
cross 2 at n distinct points, n > 2.

8.3 Description of the Proof

In this section we give an overall description of the steps to prove Theorem [U] First,
notice that the homoclinic orbit (v?(y) sin(7), 9,07 (y) sin(7)) of the singular limit
is transverse to the section X, and v?(y) has poles at y = +i(n/2 + kn), k € Z.

In order to compute the distance between the perturbed W#(0) and W*(0) in X, we
obtain complex parameterizations of them in the outer domains

Df;“t’“:{ € C; |Im < —tan S Re +7T—/15},
y |Im (y)] BRe(y) + 3 8.3.1)

Dgut,s — {y c C, —y c Dgut,u}’

where 0 < < /4 is a fixed parameter independent of ¢ and k > 1 (see Figure .
Also, notice that in the complex domains, the invariant manifolds W*(0) and W?#(0)
are characterized as solutions v* and v* of (8.1.12)) such that

lim  v%(y,7)= lim o%(y,7)=0, Vr €T, (8.3.2)

Re(y)—+o0 Re(y)——o0
respectively.

Theorem 8.3.1 (Outer). Consider the equation (8.1.9)). There exist kg > 1 and g9 > 0,
such that, for each € < eg and k > Ko, the invariant manifold W*(0) of (8.1.9), x = u, s,
s parameterized by

v (y, ) = vi’(y) sin(t) + & (y,7), y € D", 7 €T,

where v is given by and £ : D"* x T — C is a real-analytic function in the
variable y satisfying 0,11;(€*](0) = 0 and the asymptotic condition (8.3.2). Moreover,
y[¢*](y) = 0, for every I € N, and there exists a constant My > 0 independent of € and
K, such that
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M1€2 M1€2
1. * T * 2 ¢x < d * <
||§ ||Z1 (y)v ||8 g ||Z1 (y)v ||8T£ ||€1 (y> — |y2 + 7_‘_2/4|3 an ||ay§ H£1 (y> — |y2 + 7T2/4|47

for every y € D™ N {[Re(y)[< 1}

M, e?
2. 1€, ), 10, . @) 106Ny, W), 102€% |, () < 7, for every y € DI N

~ [cosh(y)]
{IRe(y)|> 1}

Notice that, the parameterization v*(y, 7) of W*(0), x = u, s, given by Theorem [8.3.1]
has the homoclinic orbit v/ (y) sin(7) as a first order, for y € R. Nevertheless, at distance
O(e) of the poles y = +im/2 of v}, we have that v has the same size of the error £*.

In light of this, we need to analyze the first order of the invariant manifolds at distance
O(e) of the poles of the unperturbed homoclinic to compute a correct asymptotic formula,
for the distance between the invariant manifolds W**(0).

We focus on the singularity imw/2. Nevertheless similar results can be proved near the
singularity —im/2 in an analogous way.

Consider the inner variable

z=¢! (y - iﬂ> , (8.3.3)
2
and the scaling
o(z,7) =¢ev (Z;T + 52,7—) . (8.3.4)

Writing equation (8.1.9) for ¢ in the inner variable, we obtain
1
0ip =020 — o+ 30"+ f(9) =0, w = VI -2 (8.3.5)

The first order of (8.3.5)) corresponds to the limit case ¢ = 0, which gives the so-called

inner equation
00— 020 — 4 () + F(¢") =0, (8.3.6)

Now, we present the results concerning the existence of two solutions ¢%* of ,
* = u,s, which will give a good approximation for W*(0) for y near the pole im/2.
Moreover, we provide an asymptotic expression for the difference ¢** — ¢%* which will be
crucial to compute the first order of the difference v* — v*.

Consider the inner domains

DZ}’;H = {z € C;|Im(2)|> tan @ Re(z) + K}, 83.7)
DZ:? ={z€C;—z¢ Dg;:’}, o
where 0 < § < 7/2 and x > 0 (see Figure [8.3).

Theorem 8.3.2 (Inner). Let 6 > 0 be fized. There exists kg > 1 such that, for each
K= Ko,

1. equation (8.3.6) has two solutions ¢°* : D;;;“ X T — Cx6(C), x=u,s, given by

2V/2i
ya

(2, 7) = — sin(7) + ¢¥*(z,7), (8.3.8)
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Figure 8.3: Inner domains Dj" e and Dy’ i

=l

0,k

Figure 8.4: Domain Rm *

which are analytic in the variable z. Moreover, Iy [¢%*] = 0, for every | € N, and
there exists a constant My > 0 independent of k such that, for every z € D* An

M.
19l (2 1056, () < 75

2. the difference Ago(z,7) = ¢*(2,7) — ¢*%(2,7) is given by
Ago(z,7) = 7037 (Cyy sin(37) + x(2,7)), (8.3.9)

for each z € Ry:F = Dy N Dy N {z =z € iR and Im(2) < 0} (see Figure ,
where g3 = 2\/5, and x is an analytic function in the variable z such that

M. M, in,
[Ixllex (2)5 110 xlea (2) < ﬁ and  [|0:xle, (2) < 22 Vz € Ryl -

Notice that, for x = u, s, the outer solution v*(y) given by Theorem [8.3.1] provides
a good approximation for W*(0) when y is O(1)—distant from the poles +in/2, but it
does not give us an accurate approximation near the poles. On the other hand, the inner
solution e~ 1¢%*(e7!(y — iw/2), 7) obtained in Theorem approximates W*(0) near
the pole y = imw/2 with good bounds, but it is not a good approximation for real values
of y.

In light of this, we perform the complex matching near the pole y = im/2 between the
outer solution v*(y,7) and the inner solution e '¢**(¢~!(y — iw/2),7), in order to take
advantage of the good properties of these solutions.

Take 0 < 1 < ff < 2 < /4 constants independents of ¢ and x, and define y; € C,
j = 1,2 as the two points satisfying
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4 §j§7%:

Bar Br.Bi, B

Figure 8.5: Matching domains ch,}f " (on the left) and ch,}f * (on the right).

1. Im(y;) = —tan f; Re(y;) + 7/2 — ke;

2. ly; —i(m/2 — ke)|= ce?, where v € (0,1) and ¢ > 0 are constants independent of €
and k;

3. Re(y1) < 0 and Re(ys2) > 0;
4. Tm(zq) # Im(zy);

5. |lyall# llwell-
Consider the following matching domains for v € (0,1) (see Figure [8.5)),

DY = {y€C; Im(y) < —tan B Re(y) + /2 — ke, Im(y) < — tan By Re(y) + 7/2 — ke,
() > TG — ton (252 ) (R~ et}

Dyt = {yeCi-yge Dy}
(8.3.10)

Notice that there exist constants M;, My > 0 independent of £ and x such that

Mléf'y S |yj — Z7T/2|§ Mgéf’y, ] = 1,2,

mch,u

and for y € D,
Mike < |y —in/2|< Mae".

In terms of the inner variable z (see (8.3.3])), we obtain that
Mk < |2|< Mae" ™1 |2]|< Malz], §=1,2, Vz € foj?’“,

where z; and 2, are the vertices of the inner domain y; and ¥, respectively, expressed in
the inner variable.

Theorem 8.3.3 (Matching). Fiz v € (0,1). Let ¢*(z,7) = ev*(in/2 + €2,7), * = u, s,
where v* is the parameterization obtained in Theorem|8.5.1. Then, there exist ¢ > 0 and
ko > 1 such that, for each ¢ < gg, k > kg, and z € Dg}ghﬁ“*,

¢*(2,7) = " (2,7) + ¢*(2,7),
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Figure 8.6: Domain R,.

where ¢"* is the solution of the inner equation (8.3.6) obtained in Theorem and
there exists a constant M3 > 0 independent of € and k such that

x N Ms(e'™7 4+ P71 x Ms(e'™7 4771
1" ller (2); 10r7[ea (2) < BE and [|0.¢" ||, (2) <

)

K| 22

mch,+,*
K,C :

Jor every z € Dy}

Finally, we study the difference Av(y, ) = v“(y,7) — v*(y, 7), between the solutions
obtained in Theorem [R.3.1]in the domain

R. = D" N DM NiR,

illustrated in Figure [8.6]

From Theorem [8.3.3, we have that, near the poles, the solutions v* and v® are well
approximated by the solutions ¢%* and ¢%* of the inner equation m given by Theorem
8.3.2, respectively. Therefore, the asymptotic formula for the difference A¢q given by
Theorem provides a first order for the total difference Av near the poles. In Section
8.7 we use functional analysis to show that the knowledge of the asymptotic behavior
of the difference near the poles induces a first order for the total difference. This will
conclude the proof of Theorem [U]

8.4 Proof of Theorem [8.3.1]

We prove Theorem [8.3.1] by setting a fixed point argument. In order to do this, we
replace v(y,7) = Y _v,(y)sin(n7) into (8.1.9), and write the equation in sine Fourier
n>1
expansion as

v} vy
hh=v -+ (—31'11 [g(ev)] + 4> ,
(8.4.1)
. A2 1
Uy, = —gvn — an [g(ev)], n > 2,

where 11, is the Fourier projection given by (8.1.7)) and g is given by (8.1.6)).
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We study the invariant manifolds W**(0) of (8.1.9)) as a perturbation of the homoclinic
orbit v!(y) sin(7) given by (8.1.17). Thus, we set

Ey,7) =v(y, ) — Ul ) sin(7 Z &n(y) sin(nr)

n>1
and thus, system (8.4.1)) is brought into

s et 6 (

b=g -2l TS

,Uh3
- imatets + s + EAR),

. A2 1 b
by = 2260 — Smalgle(€ + vl sin(n)))), 0 2 2

Now, define the operators

£() = (51 . 3(’014)251> sin(r) + Z <§n + §§n> sin(nr), (8.4.2)

n>2

and

(8.4.3)

f@»z—;md§+ﬁamﬂ»+(@r2“> g §>am>

and notice that, for x = u, s, to find a solution v* of (8.1.9)) satisfying (8.1.13]) is equivalent
to find a fixed point £* of the functional equation

L(§) = F (&), (8.4.4)
which satisfies
Jim &y, 7) = lim &(y,7) =0, vr e T. (8.4.5)

In the remainder of this section, we find a fixed point of (8.4.4]) in some appropriate
Banach space. We consider only the unstable case, since the stable one is completely
analogous.

8.4.1 Banach Spaces and Linear Operators

First, we set the Banach spaces we will work with to invert the operator £ given in
(18.4.2)).
Given k > 1 and a real-analytic function h : D"* — C, we define

17| s,m,0= sup cosh(y)"h(y)|+ sup (y* +7°/4)h(y)|, (8.4.6)
yeD"" N{Re(y)<—1} yeD""N{Re(y)>—1}

and given a function & : D°"* x T — C which is 2m-periodic in 7 € T and real analytic
in y € D% we define

Hngbfe,m,a ZHH ||mmaa
n>1
where I1,, is given by (8.1.7)).

Consider the Banach spaces

Enma = {&: D" — C; £ is real-analytic in y, and [|€]|xm.a< 00}
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and

Ety o = 1€ DX XT — C; £(y, 1) is real-analytic in y, 2r—periodic in 7, and [|€]|¢, xm.a< 0}

If there is no misunderstanding about the domain D2"** and the norm ||||¢, xm.a, We
will not write the dependence on k, and therefore

-llm.a= ll-ls.macs [1-llet 0= (It wm,s Emar = Exmar and Entma = Ept wm.a-

Proposition 8.4.1. Given an analytic function f : B(Ry) — C, and g,h : D% x T, —
C, where B(Ry) C C is a ball with center at the origin and radius Ry, the following
statements hold.

1. If ag > ay > 0, then

M
||h||€1,m,a2§ M”h”él,m,m and ||h||€17m,a1§ W

g)az—o

||h||€17m7042'

2. If o, a0 >0, and ||gley moans |l 6 im0 < 00, then

lghl

Z17m7a1+a2§ ||g||41,m,a1Hthl,m,aQ'
3. ]ngHfl,m,ou HhH&,m,aS R0/47 then
1£(9) = F(W)leym,a< Mg = hlley ma-

4. Givenn > 1, if f®(0) =0, for every 1 <k <n—1, and ||g|le, «< Ro/4, where Ry
is the convergence ratio of f™ at 0, then

Hf(gmfl,m,nag M(”QHZLm,Q)n-

Consider

Gly) = —Qﬁm and  G(y) = —\(gmmy—élcoth(y) +sinh(2y)), (8.4.7)

and define the operator G(£) acting on the Fourier coefficients of £ as

G = Z Gn(&n) sin(nt),

n>1
where

Gi(&1) = —G(y) /Oy Ga(s)&i(s)ds + Ca(y) /yoo Gi(s)&(s)ds, (8.4.8)

and

) S An Y - An ) i An Y i An
Gn(&) = —%ez%y /_Oo e_z%sfn(s)ds + %6—1%1; /_OO ez%sﬁn(s)ds, n>2. (8.4.9)

Proposition 8.4.2. Consider k > 1. Given o > 5 and m > 1, the operator
g : gfl,m,a — gfl,l,cx—2

s well defined and the following statements hold.
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2. GoL(&)=LoG(&) =¢.
3. There exists a constant M > 0 independent of € and k such that, for every & € &, q,

1GE ey 1,0-2 < MIIE]ley . (8.4.10)
Moreover, given [, 3 > 0 and denoting 541171”3 ={& €&, m(§) =0}, then

. 1 1
G Ehup g

is well defined and, for every & € 551171,,3;

G le, 1,5 < Me*[€ller - (8.4.11)

4. The operators 0, o G and 0? o G are well defined and satisfy (8.4.10)).

5. The operator 0y, 0 G : Ep m.a — E1,0-1 15 well defined and
10y 0 G4y 1,01 < MIIE]le1mia-

Proof. Despite when it is said, M will denote any constant independent of x and ¢.
First, we must construct an inverse for the operator £ given in . Since L acts
on the Fourier coefficients of £, it is sufficient to construct inverses of the operators II,, 0 L,
which will be denoted by L,,, to obtain an inverse for L.
From (8.4.5), we have that £(y, ) satisfies £(y,7) — 0 as Re(y) — —oo for every 7.
Thus, we must look for ((y) such that £,(¢) = h and

lim ((y) =0, (8.4.12)

Re(y)——o0

where h : DO"* — C is a real-analytic function.
First, consider n > 2. Notice that the homogeneous equation £,(¢) = 0 has (1 ,(y) =

e *2¥ and Gnly) = ¢~1"2Y as fundamental solutions. Thus, using the variation of constants
formula, we obtain that the solutions of £, (¢) = h are given by

1€ xn Y _jdng i€ —jan Y o g
C(y) — _Rel%y (/yo e /\5 h(S)dS — Co) -+ Re )\5 Y (/y e AE h(S)dS - Cl) >

1

where Cy, C1, yo, y1 are constants.

Using (8.4.12)), we have that

Co = —/ Ooe_i%nsh(s)ds and C) = —/ €= h(s)ds,
Yo Y1

and notice that both integrals in the definition of Cy and C}) are convergent since h &

Ev moa, With m > 1.

Thus, ¢ = G,(h), where G, is given by , n > 2. Now, we construct an inverse
for £;. In this case, notice that the homogeneous equation £;(¢) = 0 is the variational
equation of the solution v?, thus it follows that ¢; = ©% is a solution of this equation,
which is given in (8.4.7]).
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Now, applying the reduction of order technique, we obtain another solution (, which
is linearly independent from (; and since we are dealing with a second order differential
equation, {(1, (2} is a fundamental set of solutions of the homogeneous problem. In this

- <xw=<mn( 1@+A>,

y
v CE(5)
where A, yo are constants.Choosing A, yo such that {,(0) = 0, we obtain that (; is given
in (8.4.7)).
Notice that these solutions satisfy the asymptotic conditions

lim  G(y)=0and lim ((y) = —oo,

Re(y)——o0 Re(y)——o0

and their Wronskian is given by W ({1, (3) = 1. Again, using the variation of constants
formula, we obtain that the solutions of £;({) = h are given by

<) = ~60) ([ @on(sds = Co) + ) ([ Glon(sas - 1),

where Cy, C, 40,y are constants.

Now, using (8.4.12), it follows that
O =— / Cu(s)h(s)ds.
Y

1
Also, we choose

Co=- [ GlsIh(s)ds,

0

in order to have ¢(0) = 0.

Thus ¢ = Gi(h), where G is given by and notice that Gy is an inverse of £
such that 9,G;(h)(0) = 0 and G;(h)(y) decays at infinity. This proves items (1) and (2)
of this proposition.

Now, to prove item (3), let h € &,,., and consider the twisted path w = e¥%#y. Thus,
if y € D" then

Yy An 0 An
/ ei’%(s’y)h(s)ds = / ei’%wh(w—i-y)dw

—00 —00

0 ‘ ‘
_ / eﬁ:z%eqE ﬂ”h(ezeﬁn-f-y)e:HBd??.

If Re(y) < —1, then

Y

cosh(y)
cosh(e¥8n +y)

An

0 .
< ||h||m,a/ o2 sin(B)n
— 0

eii%(s_y)h(s)ds

cosh™ (y) /

—00

K

0 .
< Mllhllm,a/ &2 5B gy

— 00

5
< M—||hf[m,a-
il

If Re(y) > —1, then let p*(y) < 0 be such that

Re(e™p*(y) +y) = —1.
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In this case, we have that

*

p*(y)

‘(yQ s [0 D) ds

—00

< ‘(yQ + 7r2/4)°‘/

— 00

eﬂ%"eyﬁ”h(ewn + y)ewdn’

0 . .
+ ’(y2 + 72 /4) / T g (oFiby y)e:“ﬂdn‘
p*(y)

(y* +7°/4)°
cosh™ (eFn 4 y)
y'+ /4
(eThn +y)2 + w2 /4

P (y) An g
< ||h||ma/ o 2 sin(B)n

o

«

0 An gin
Pl [ i
p*(y)

0
< Ml [ ey
9
< M—|hlma-
< My hln

Notice that M > 0 is a constant independent of ¢, x and n, and thus it follows that

M2

IR} =5

||h||m ay N> 2 (8413)

As we have seen before, the operator G; has to be considered separately since it
demands a special attention. Roughly speaking, we have no exponentials in the integrals
of , and thus the technique used to show the estimates above can not be applied
to this case.

First, we bound G;(h)(y) for Values of y in D2 N {Re(y) < —1}. Notice that the

functions (i (y), (2(y) given in 7)) satisfy

M

G (y)|< Tosh(y)] and [(2(y)|< M|cosh(y)], (8.4.14)

for every y € D™ N {y € C; |Im(y)|< —K Re(y)}, where

K = (tan(ﬁ) + g — f%) :

The second integral in the following expression

Gi(h)(y) = =Gy / Ga(s)h(s)ds + Ca(y )/y C1(s)h(s)ds.

satisfies

[ aonsas| < e e ——d

oo 2ISAs| = ey ]coshmﬂ(s—i—y)\ °
o e L
- |cosh™ (y)| J-oo |cosh(s + y)|

||h||ma / +

< e’ Yd
- |coshm )| °
v bl

[cosh™ " (y)|”
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for every y € D" N {Re(y) < —1}.

From (8.4.14]), we conclude that

(8.4.15)

y M|l
Gl) [ Glo(s)ds| < g

for every y € D2"* N {Re(y) < —1}.
Now, let y* be the unique point in the segment of line between 0 and y such that
Re(y*) = —1. Hence, it follows from (8.4.14)) that

1. if s is in the line between 0 and y*, then

M [ feosh(s)
2+ w4

[Ga(s)h(s)] <

|cosh(s)]
< Mlhflmasup —5——71=
< Mikllmosup o
< M{hllm,a
where U = {y € C; |Im(y)|< —K Re(y) and Re(y) > —1};

2. if s is in the line between y* and y, then

M| A|m,a
Ga(s)h(s)|< Tcosh™ (5]

Notice that Re(y*) = —1 and |[Im(y*)|<
that

tan(f) + g — Ke

, thus since m > 1, we have

‘ /0 Y Cols)h(s)ds| < +

/y " Ga(s)h(s)ds

/y Y eo(s)h(s)ds

Y~ 1

<Mhma *+Mhmo¢/ —7d

< Mihlmoly*+Mhlmo | cosh™ 1(s)]
y* 1

< Mt Ml | s

< Mlh]m.a-
Hence, it follows from (8.4.14)) that

v M[Rlm.o
h(s)ds| < ———— 8.4.16
Q) || Go)h(s)ds| < (b, (8.4.16)
for every y € D" N {Re(y) < —1}.
Now, from (8.4.8)), (8.4.15) and (8.4.16|), we obtain that
sup |cosh(y)G1 (h)(y)| < M|[|ma- (8.4.17)

yeD" " N{Re(y)<—1}

The set of fundamental solutions {(i, (s} given in (8.4.7) of the equation £;(¢) = 0
provides the operator G; defined in (8.4.8)) which is quite useful to bound G;(h)(y) for

values of y in D" N {Re(y) < —1}, as we have seen in (8.4.17).
Nevertheless, both solutions (;(y), (2(y) have poles of order 2 at +im/2, and this might

prevent us to see cancellations of poles in the domain D°"* N {Re(y) > —1}. In order
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to avoid this kind of problem, we consider a new set of fundamental solutions {(;,(_} of
L1(¢) = 0 which has good properties at +in/2.

The main idea is to rewrite the solutions (;(y) and (2(y) as linear combinations of
(1 (y) and ¢_(y) and use them to obtain a new expression of the operator G;, which will
be useful to bound G;(h)(y) for values of y in D"* N {Re(y) > —1}. We emphasize that
the operator G, is already defined. We will only express it in a different manner.

Since (1(y) is a solution of £,(¢) = 0, it follows from the method of reduction of order

that , .
Ce(y) = Gi(y) iz QT(s)dS’ (8.4.18)

are also solutions of the homogeneous equation. Notice that

_\/§ sinh(y) /y cosh®(s)

ye ds. 8.4.19
4 cosh®(y) J+iz sinh?(s) ° ( )

C+(y) =

(
Claim: The solutions (4 : D" — C of £1(¢) = 0 given in (8.4.18) are well defined and
they are given by

V2 o1 <3y sinh(y)

C+(y) =— — cosh(y) + isinh(y) sinh(2y) F 131 sinh(y)) :

Tcoshz(y) 2 4
(8.4.20)
for each y € D?"". Furthermore,
e (4 are linearly independent and
. . 37
W(Cs:¢-) = — (G = _2176‘ (8.4.21)

o There exist uniformly bounded (with respect to € and k) analytic functions &1 :
Dotv N {Re(y) > —1} — C such that

_ (yTin/2)?
C+(y) = mﬁi(y)a (8.4.22)

for each y € Do"* N {Re(y) > —1}.

Proof: The integrand of (8.4.19)) is analytic in D°“*\ {0}, and thus, (+(y) is well defined
for each y € Do\ {0}.
3s 1. . . cosh?(s)
Now, F(s) = — — coth(s) + —sinh(2s) is a primitive of f(s) = ——=—, for every
2 4 sinh”(s)
se€ C\ ({2km; ke Z} U {ir + 2km; k € Z}).
Thus, for each y € D2*\ {0}, we have that

h4
/y CF)S 2(S)ds _ 3y
+i2 sinh”(s) 2

It follows from (8.4.19)) that (8.4.20)) holds for each y € D%\ {0}. From the expres-

2
sion in (8.4.20)), both (4 (y) can be analytically extended to D?“** by defining (. (0) = \fl—

A straightforward computation shows (8.4.21)) and thus (4 are linearly independent.
A simple analysis of (8.4.20)) allows us to conclude (8.4.22)). |

1 3
coth(y) + 1 sinh(2y) F z%
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Since {(4,(_} is a fundamental set of solutions of £;(¢) = 0, we are able to rewrite

the operator G; given in (8.4.8) in terms of ¢, and (_.
Claim: Given k > 1, consider the operator G; given by (8.4.8). Let h: D"*" — C be a

real-analytic function, then

Gi(h) = i (~C) [ CoIs)ds + (o) [ Cohis)ds) + ) [ Gls)nts)ds
(8.4.23)

where (1, (» and (4 are given in and m, respectlvely
Proof: In fact, using the expressions of (1,( and (4 in and (8.4.20]), we can see

. Glw) = @E(m )~ ) and Goly) = —“” ; W (sam)
From definition of Gy in and (8.4.24), we have
Gi(h) = ~iz-Cily /c+ (s)ds — Gy ) [ ¢ m
timeC () [ o) i) [ (o)
+¢;<+<y> [ comts)ds —in-ciw) [ ¢ s)h(s)ds
+z';;<_<y> [ comts)ds —i-c o) [ ¢ s)h(s)ds
= i) ([ Coneis+ [1 @)
+z— ( [ c@nisyas+ [ <+(s)h(s)ds)
i Gol) [ G >ds—z‘;<_<y> [ cs)his)as
= i) (2 [ Comsds + [ ¢ (s)n(s)s)
+z— ( | Gen(s)ds + / @(s)h(s)ds)
i Go) [ G) <>ds—z;<_<y> | cents)as
= 2 (<) [T s+ () [ (nls)ds)
+<”;<“ / . 37r<<+< ) = ¢ (s))h(s)ds
— i (<6l [ @R+ ) [ ons)ds) + 6 [ alshis)ds
[

Now, let y € D""¥ satisfying Re(y) > —p, and use (8.4.23) to write G;(h) as

G:(1)(w) = i (~Co(o) [ CCoIsds + ¢ ) [ Cehls)ds) +Gatw) [ Glpnls)as
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First, notice that we can use (8.4.14]) to see that

’ i Ooo G (3)h(s)ds

From the expression of (5(y) given in (8.4.7), we have that (5(y) has poles only at
+im/2 4 i2k7, k € Z, and they have order 2. Since o > 5, it follows that

1 1 0 1
< M|h||lma / TS vl / a
< Moo i+ [ i )
< M||R|m,a-

W + 700 [ Gls)h(s)ds

sup
yeD" " N{Re(y)>—1}

< MlBllna (3:4.25)

Now, we use that a > 5 and equation (8.4.22) to see that

y ly —im /213 (v |s +in /23
_(s)h(s)ds| < h(s)|ds
Colo) [ Colyds| < M G
—am /213 v 1
< Mh L2 . —
Ny +im /212 Jo s +im/2|073|s — im /2|t
—am /213 [ v 1 v 1
< M|hfpa =20 | s + | s
Ty +am /212 \Jo |s +im/2|03 0 |s—im/2|ot?
—am /23 1 Y 1
< M TP L s
Sy 4im /22 \ |y +im /2|00 Jo s 4w /2]
1 1
d
* |y—i7r/2|0‘/0 s —in /2P 8)
< M| ly —im/2)? 1
B "y +im /212 |y + imj2let |y — im/2)e
~ Ml
SR

We conclude that

(y? + 72/4)2¢ / C_(s)h(s)ds

sup < M||h|m.a- (8.4.26)

yeDR " N{Re(y)>—1}

In a similar way, we can prove that

(4 + 72412 (y) [ Cu()h(s)ds

sup < M||h||m.a- (8.4.27)

yeD" " N{Re(y)>—1}

It follows from ([8.4.23)), (8.4.25)), (8.4.26) and (8.4.27) that

sup (v + 7*/4)°72G1 (h)(y)| < M|Bl|m0- (8.4.28)

yeD N {Re(y)>~1}
Hence, using (8.4.6)), (8.4.17)) and (8.4.28)) we obtain
161 (M) [l1,0-2< M{[Allm,a-

Thus, item (3) is proved. To prove item (4) it is sufficient to use (8.4.13) and remark
that

I1,[0; 0 G(R)] = nIL,[G(h)] and T1,[0% o G(h)] = n*I1,[G(R)].
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Finally, notice that
1 Yy A 1 " Y A
0y 0 Gn(h) = iez%y/ e~ *h(s)ds + 26 ATy/ e’%sh(s)ds, n>2,

and thus, following the same ideas previously used in this proof, we obtain

Me
Hayogn( )”ma_ \ ||h||ma7 n=>2.

n

0,06:(h) = i (~¢,0) [ ¢ @his)ds + ¢ ) [ Chls)ds)+6h0) [ Gls)h(s)as

(y Fim/2)* ~
7@ T Z-7r/2)3£:|:(y)7

where a are analytic functions. Hence, since & has a pole of order 1 at +im/2+i2k7, k €
Z, we follow the same ideas above to obtain

18y 0 Gi(M)l[1 .01 < M| Allm.a-

This proves item (5). O

Cly) =

8.4.2 Fixed Point Argument
Now, we use Proposition to rewrite as
£E=GoF(§),
and in the following proposition we study some properties of the operator
F=GolF. (8.4.29)
Proposition 8.4.3. Consider kK > 1. The following statements hold.

1. There exists a constant My, > 0 independent of € and k such that, for € sufficiently
small, B
[ F(0) || 15< My

2. Given R > 0, there exists g > 0 such that, for every 0 < e < g, the operator
F:By(Re?) CEnys— Epas

is well defined, and there exists a constant My > 0 independent of € and k such that,
for every &, & € By(Re*) C En 13 and 0 < e < &,

||-7?(§) - ﬁ(£/>||ﬁl,1,3§ M,

7N

1 N N
(2 25 ) 6 = €7 ITlE] — FE M)
Furthermore,

ITF )] — TFE N as< J,\ijé —&llevs-
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Proof. First, we need to rewrite the operator F given in , in order to make explicit
some cancellations between its terms. Recall that g is given by -

FE) = = polele + afsin) + (S50 2 €

~

= —_1II {g(s(f + o sin(T)))} + <—H1 {((51 + o7 sin(7) + ﬁ(f))g]

23
h)3 3
_;3H1 {f(e(f + ol sin(T)))} + (& —zvl) 304151 - i‘) sin(7)

~

= ST [gCee + ol sin())] + (—5T1

&3

36+ o) sin(r) ([E)? + (FIED] — 5T [(o(6 + v sin(r)]

L [(€0 + 0b)Psind(7) + B(&1 + v})? sin?(7)TI[¢]

(& +0})? 3“1 & 51
+ 1 1 )sm( ).
Therefore,
F(€) = —5Tilgle(€ + v sin(r)))] + (T [~ (€1 + o) sin2()e] — (& + o} sin(r)(MI[E)?
~5 (TP = S0 [f(e(e + of sim(ry)] - 2280 i) sin(r).
(8.4.30)
Now,

1 1 . .
F(0) = —fn[ (e} sin(r)))] - 5L £ (vl sin(7)))] sin(7).
Since g, and therefore, f are analytic functions such that g(z) = O(z%) and f(z) =
O(2°) and v}'sin(t) € &, 1.1, and using Proposition (with m =a =5,1=1 for f,
and § =3, [ =1 for g) it follows that

- 1~ , 1 .
IFO)lens < Me? |5 [g(e(v) sin(r)))] ST (v} sin(r)))]
€ 0,13 € £1,5,5
3 5
< Me? Hvl sin(7) 51,11+M€ Hvl sin(7) i
< Me2

Now, let &, & € By(Re?), thus we have that
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F© - F&) = S [g(e(€ + ol sin(r))) - glele + v} sinr)]
—I0y (& + )2 sin?(r) (TT[¢] — TI[¢"])] sin(7)
+ (=10 [T sin?(7) (& + of)? = (€] + v])?)]
L (& + o) sin() (TH[€))2 — (TT[1)2)] ) sin()
+ (=11 (Tl sin(r) (6 — )] — 3T [(Fl))? — (Fig)?] ) singr)

(=0 [Fle(e + obsin(r) - F(e(€/ + ot sin(r)]
G- @D 8 —-<51>3) sin(r)

4 4

Now, using the Mean Value Theorem, we obtain that

g(e(&+vy' sin(7)))—g(e(§'+vy sin(r))) = e(§=¢) /01 g'(e(s(&+vy sin(r))+(1—-s5) (' +vy sin(7))))ds,

thus, since ¢’(z) = O(2?) and & + v'sin(7) € &, 1.1, it follows that

lg(e(€ + vy sin(7))) = g(e(€' + vy sin(7))) |l 5.5 < %HS llerns.

Analogously, we obtain

~

o | [(& + o2 sin?(r)(TI[E] — DT[] sin(r) |, < M || TT[¢] — T[]

04,137

o [ sin2(r) (6 + o8 — (€ + o) sin()]. < ol — €l

3,5 7 K2

~

. m}&+ﬂﬁmvmﬁMV—@wwﬂmmw%s”ﬂmm—ﬁm

0,13

o [ [T sin(rye — €] sin(). < e — s

356 = g4

o | [([©)F — ([(E))] sin(r) |, . < = |[TT¢] — TI[¢'

0,13’

1,33

o | [F(e(€+ vl sin(r))) = f(e(€ + vf sin(r))] sin(7)|, | <

3,5

o ot - @nmmﬂh_—ﬂ& &lh,s:

M
o« (& = €)F)sin()lls5 < 1€ — &ills.
K
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Therefore, applying (8.4.10)) to bound G, we have the second statement of this propo-
sition. Finally, using (8.4.11]), notice that

|T[F©)] - T [F(&)] = |G(TTo F(&) — Lo F(E) |15

= [lo (= S otete + of sin(e) — oe(er + ot sinr))

/1,1,3

£,1,3

M = : .
< [ olete + ot sin(r))) - gl=(€ + ok sin(r))]|,
M
< SlE=Elles.
The proof is complete.
O

We want to find a small fixed point of the operator F : En1s— Ep s givenin (8.4.29).
Now, in order to use a Gauss-Seidel type argument, we set the operator

~ [ ~

Fos(8) =Ty |[F(&sin(r) + 11 | F()]] sin(r) + T [F(§)] (8.4.31)
If TI[¢*] = T[F(£*)], then

I [F(&9)] = Ty [ F(& sin(r) + TI(F(S)))] (8.4.32)

which implies that F and ﬁGS have the same fixed points.
Proposition 8.4.4. Consider k > 1. The following statements hold.

1. There exists a constant My > 0 independent of € and k such that, for e sufficiently
small,

| Fas(0)||on1.5< Mg,

2. Given R > 0, there exists ¢y > 0 such that, for every 0 < e < ¢, the operator
-/%GS : Bo(REQ) C 85171’3 — 5@1’173

1s well defined, and there exists a constant My > 0 independent of € and k such that,
for every £, & € By(Re*) C En 3 and 0 < & < &,

K

1 a5(6) = Fos(@)llenss Ma (< + 5 ) 16 = €lnns

Proof. Notice that

~ o~ o~ ~ o~

Fas(0) = 0 [F(I(F(0)))] sin(r) + TI(F(0)).

Therefore, using Proposition [8.4.3, we obtain

~ o~

1FasO)leas < IFAFO)) 2+ IF0)er 1.5
< FAF0))) = FO)ler1.5+2 F(0)]]e.1.3
Me?,

IA
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Finally, item (2) follows from follows and the following estimate

FED] = 0 [F(& sin(r) + TFE))] |

< || P sin(r) + AF©)]) — &g sin(r) + AFE))))

=
N
™
wn
=
S
_I_
=

1,3

/1,1,3

< M (224 5 ) (6 - &) sin(r) + TIF(E)] - TF(E)

/1,1,3

01,1,3

)1 = €l

K
[l

Recall that W*(0) is parameterized by v*(y, 7) = v?(y) sin(7) +£%(y, 7), where £%(y, T)
is a fixed point of N
§ = Fas(§).
In what follows, we prove Theorem by showing that Feas has a fixed point in
E01,3-
Proposition 8.4.5. There exist g > 0 and ko > 1 such that the operator Fes : R

En 13 has a fized point £ € Ep 3, for every € < eg. Furthermore, there exists M > 0
independent of € such that

1€ e 18, 107€" lex1,35 076" lex1,8< ME?. (8.4.33)
Proof. From Proposition [8.4.4] it follows that there exists a constant b; > 0, such that

~ b
1 Fas(0)][¢1,3< 5152.

Also, given &,&' € By(bie?), it follows that
- ~ 1
| Zas(6) = Fas@llaaa< M (£ 4+ ) € = € lass.
Thus, choosing eq > 0 sufficiently small and ko > 1 sufficiently big such that Lip(JEGS) <
1/2, it follows that Fgg sends By(bi€?) into itself and it is a contraction. Thus, it follows

from Banach’s Fixed Point Theorem that Fgg admits a unique fixed point £“ in By(b;£?).
Now, since £* = G o F(&*), then it follows from Proposition that

10: 18 < [[0- 0G0 F(E") = 8- 0G o F(0)]ley1,3+[10r 0 G 0 F(0)]le 1.8
< Me2
Analogously, we prove that ||026%||,, 13< Me?* and [|0,€" || 14< Me? O

Since g given in (8.1.6)) is an odd function, and the product s = sy -« - Sop41 of 2k + 1
terms of type s; = sin(2k; + 1), with k; > 0, 1 <[ < 2k + 1, is written as
s= Y apsin((2m+1)7),
m>0
where a,, € R, it follows that the operator F given in ({8.4.3)) leaves invariant the subspace
of functions £ : D2* x T —— C such that IIy[¢] = 0, VI > 0. The same remark holds

for the operator ﬁgs. N
Now, since £* is a fixed point of Fgg, we have that I1y[¢] = 0, VI > 0. Thus the proof

of Theorem (8.3.1)) is complete.
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8.5 Proof of Theorem 8.3.2

In this section we use a fixed point argument to prove the existence of certain solutions
of the inner equation (8.3.6)). Since, we look solutions odd in 7 of ({8.3.6)), we write

¢" = oy sin(n7). (8.5.1)

n>1

Replacing (8.5.1)) in (8.3.6)), we obtain that

(@2 -+ (02 = 1))6 + 1L [5(6° + ()] = 0n 2 1. (852)

Since we are interested in matching the solutions of (8.3.6) with the outer solutions

v"™* given in Theorem [8.3.1} we must look for solutions ¢**“* of (8.3.6) which have the
same expansion of

z

—2v/2i
ev™? (z (;T + 52) ,7') = V2 sin(7) + h.o.t.,
and satisfy the asymptotic conditions

Z——00

lim ¢*“(z,7) = ZEIEOO ¢ (2,7) =0, V7 €T, and Im(z) <D0. (8.5.3)

Near the pole y = im/2, we have

—2/2i

T = T

sin(7) + O(y — i/2) + O <(y_i/2)3> ,

which corresponds to

gbu’s(z?T) - _2;/§i

in the inner variables (8.3.3)) and ({8.3.4)).
In the limit case ¢ = 0, we have that

_2;/§i sin(r) + O (2_3> )

sin(7) + O(e%2) + O (z_3> ,

6" (z,7) =
It means that we must look solutions of the inner equation (8.3.6) of the form

(2, 7) = —2V% sin(7) + (2, 7),

z

where ¢ = O(273).
Since ¢° has to satisfy (8.5.2)), it follows that ¢(y, 7) = 3,51 ¥n(y) sin(n7) must satisfy

= S =t =St - 22 e+ g (i + o),
. 3 .
R H e e R = O R | R

(8.5.4)
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where ' = d/dz, and \g,, = vVn? — 1.
Now, define the operators

I@)—( ;’—Zizpl) sin(r +Z(¢"+A otn) sin(n7), (8.5.5)
and
W) = -, [—fzsmmﬁm SN >w2+§w3] sin(r)

(8.5.6)

- (‘in snr) + w)

and notice that, for x = u, s, to find a solution ¢®* of (8.3.6)) satisfying (8 is equivalent
to find a fixed point ¢* of the functional equation

Z(y) =W(1), (8.5.7)

which satisfies

lim ¢“(z,7) = lim ¢°(z,7) =0, VT €T.=0, V7 €T and Im(z) <0. (8.5.8)

Z——00 zZ—+00

In the remainder of this section, we find a fixed point of (8.5.7)) and (8.5.8) in some
appropriate Banach space. As before, we consider only the unstable case, since the stable
one is completely analogous.

8.5.1 Banach Spaces and Linear Operators

Given @ > 0 and an analytic function f : Dy; My C, where Dy, M s given in (8.3.7)),
consider the norm

[flle="sup [z*f(2)],

u,in
zED@_’N

and the Banach space

Xo ={f: Dy ™, C; fis an analytic function and || f||a< oo}

Also, if f: Dy, " T — C is an analytic function in the variable z, we define

1£llera= D1l folla

n>1

and the Banach space

Xy o = {f Dy, " % T — C; f is an analytic function in the variable z and || f||¢ o< oo} .

Proposition 8.5.1. Given an analytic function f : B(Ry) — C, and g, h : Dg:;n xT — C,
where B(Ry) C C is a ball with center at the origin and radius Ry, the following statements
hold

1. Ifa> (>0, then
M
1hllera—p= —5lIRller o
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2. If a, 8 >0, and ||g|e,.a, ||Plle, < 00, then
ghlles,a+s< 1gller allPlle 5-
8 1A |9ller,as 1Rlley,a< Ro/4, then

1/ (9) = f(Wles.a< Mllg = hlleya

4. Givenn > 1, if f®(0) =0, for every 1 <k <n —1, and ||glle, «< Ro/4, where Ry
is the convergence ratio of f™ at 0, then

1 (ler,na< M([|gllera)™

5. If h € Xy o (with respect to the inner domain Dg”;n), then 0,h € Xy ap1 (with
respect to the inner domain Dy, ), and

HazhHﬁha—f—lS M“h”fl,a'

The proposition above is proved in [7, [53].
Now, define the linear operator acting on the Fourier coefficients of

j(@/}) = Z jn(wn) Sin<n7_)7

n>1
where ;
Ao =5 [ s 2 [ Sus
and
Tulin)(2) = gy [P (s)ds — o [ eonte A (s)ds, > 2

Proposition 8.5.2. Consider k > 1. Given o > 3, the operator
T Xeare = Xy
is well defined and the following statements hold.
1 ToT(W) =ToJ (W) =.
2. There exists a constant M > 0 independent of k such that, for every ¥ € Xy, at2,
1T @)y 0 < MYllerare: (8.5.9)
Moreover, given > 0 and denoting X}, 5 = {1 € Xy, g; m (1) = 0}, then
J Xgllﬂ — Xfllﬁ
is well defined and, for every i € Xélhﬁ,

1T W)l 5 < M|l -



259

3. The operators 0, o J and 0% o J are well defined and satisfy (8.5.9).

Proof. Consider the equation Z(v)(2,7) = h(z,7) = X1 hn(2) sin(n7) and denote Z,, =
II,07.

First, we consider n = 1. Using that 5} (z) = 2% and n3(z) = —(52?)~! are fundamental
solutions of the homogeneous equation Z; (¢;) = 0, we obtain from the method of variation
of constants that

3 z z
Di(z) = % (/ h;(28>ds + q}) - 512 (/ $hy (s)ds + c;) ,

0 1

where 2}, 21, C} and C] are constants.

Now, for n > 2, the fundamental solutions of the homogeneous equation Z,(¢,) = 0
are given by n7(z) = e0n% and ni(z) = e~*on*  Again, it follows from the method of
variation of constants that the equation Z,(1,) = h,, implies that

ei)\o,nz 2 \ o e—i)\oynz z \ o
_ —1A0,nS mn _ 1A0,nS n
Ynlz) = 2i\on (/ ¢ fin(5)ds 0) 2i\om (/ ¢ hn(s)ds 1) ’

0

where 27, 27", Cf and C7' are constants, for each n > 2.

Since we are looking for solutions of ({8.5.4)) satisfying (8.5.3) and such that |[¢]|¢, (2) ~

273, we choose

o h —o0
Cy = _/zl 1<S)ds and C} = —/Z1 s%hi(s)ds,

2
0 s 1

and . o
Cy = —/ e~ onsh, (s)ds and C} = —/ e?onsh, (s)ds, n > 2,
2y 2
which proves item (1). Notice that,the integrals in the definition of the constants above
converge for every h € Xy, o2
Now, let hy; € X,,2 and assume that o« > 3. Thus,

203z hy(s) 2072 2
el o BNOTE

z |Ol+3
< Ml ( |+ [ )

< M| |hi||ar2s

2 Ti(h) ()] =

for each z € Dg;;“.
Also, if 8 > 0 and h, € X3, we have that, for each n > 2, changing the path of
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integration,
1 z —1 s—z 1 z ) S—z
|28 T (hn)(2)] = i /_ eI (s)ds — 5ot /_ ol (s)ds
= ! /0 e_i’\ovnewrzﬁhn(z+ewr)ewdr
2iNom /oo

1 U —i0 . A
—— ePone™ B (2 4+ e ) e P dr
2@)\0,71 ~/—oo n( )

M 0 , ’z|6 0 _ |z|5
< h / Ao,n sin(0)r . d / Ao,n sin(0)r : d
< ol ””5< o e z+ e o

M
7hn )
Sl

<

u,in

for each z € Dy". Ttem (2) follows directly, and the proof of item (3) of this proposition
is analogous to the proof of item (4) of Proposition [8.4.2] O

8.5.2 Fixed Point Argument
Now, we use Proposition to rewrite (8.5.7)) as
v =T oW(),

where W is given by (8.5.6), and in the following proposition we study some properties
of the operator

W=ToW.
Proposition 8.5.3. Consider kK > 1. The following statements hold.

1. There exists a constant My > 0 independent of k such that,

IW(0)]| 1 5< M.

2. Given R > 0, the operator
W . BO(R) C Xglﬂg — Xg173

is well defined, and there exists a constant My > 0 independent of k such that, for

every ¥, ¢ € By(R) C X 3,

| _ _
< My <,<;2||¢ — Y|l 3+ 1] — H[T/J]Hél,z’)) '

1,3 =

W) -ww)

Furthermore,
M,
L < Y= ¥l s

01,3 — 52

o~ o~

[TV ()] - TV ()]
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Proof. In fact,

Mwnz—nl(2“7$m>)}—f<2“7$m>)

and thus, since f(z) = O(z°), it follows from Proposition [8.5.1 m that

—24/2i

< M,

T AV (0)]l; < MH o1

s (H —2V2i )

Hence, from Proposition [8.5.2] we have that

sin(r )

and

~

[TIpv(0)]

—24/2i
zZ

sin(7)

K2

5
< M.
0,1

£1,1

HW(O) 01,3 = Hj(Hl[W(O)] Sln( HE 3+ Hj (ﬁ )]) 01,3
< v (o)l + [mwol, )
< M.

Now, to prove item (2), assume that ||¢||¢, 3, [|¢']|s, 3< R, and notice that

2\/_1

W) - W) = - [—;sm%) (T[] - T []) — == sin(7) (* = (¢)?)

Thus,
8 ~ ~
ITL V() = W]ll; < ﬁwﬂﬂkumw—mwaﬁ
24/ 21
R LT T
/1,1

197+ 90+ ()2l 5 1 = ¥ llgy 5
H/ < 2\/_Zsm +Sw+(1—s)¢>ds

o (|l - i),

1 =4y, 5

06,2

IN

1
S+ 0 =Wl s)
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and, recalling that g(z) = 2 + f(2) is an analytic function such that g(z) = O(z?), we
have that

1 / v _2\/% : / !
[apwe) -wen, , < /0 o (= sin(r) s+ (=) ds| Y=,
’ 01,0
M
< =l
Item (2) follows from the estimates above and Proposition [8.5.2] ]

Asin Section[8.4.2] we also have to use a Gauss-Seidel argument to obtain a contractive
operator. Therefore, consider the operator

~ [~

Wes() = Tl [W(ihr sin(r) + IV ()] | sin(7) + T W ()],

which has the same fixed points of W.
Analogously to Proposition [8.4.4] we obtain the following result.

Proposition 8.5.4. Consider k > 1. The following statements hold.

1. There exists a constant My > 0 independent of k such that,

[Wes(0)]|er < M.

2. Given R > 0, the operator
WGS : Bo(R) - Xgl}3 — X4173

is well defined, and there exists a constant My > 0 independent of k such that, for
every ¥, € By(R) C Xp 3

- - M
IWeas(¥) = Was(¥')|le, 3< ,?5“”’ — || 3.

Therefore, item (1) of Theorem is proved by the next proposition which shows
that W has a fixed point in A&, 3.

Proposition 8.5.5. There exist kg > 1 such that the operator WGS :€na3— Enqs has
a fived point V" € Xp 3, for every k > ko. Furthermore, there exists M > 0 independent
of k such that

19" e, 11074 e 3, 107" |y 3< M.

We omit the proof of Proposition due to its similarity with the proof of Propo-
sition [8.4.50 Finally, we remark that using the same arguments presented in the end of
Section [8.4.2 we conclude Ily[¢)] = 0, VI > 0.
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8.5.3 The Difference between the Solutions of the Inner Equa-
tion

This section is devoted to prove the second statement of Theorem|(8.3.2] In Proposition
| we have proven the existence of two solutions ¢;* of the inner equation (8.3.6)) which
are given by ({8.3.8} - Now, we study the difference

AY(z,7) = ¢y(z,7) — do(2,7) = (2, 7) — V°(2, 1), (8.5.10)
for z € Ry'" = Dyt N Dy N {z; z € iR and Im(z) < 0} and 7 € T.

Remark 8.5.6. We are interested in the behavior of the difference in the connected com-
ponent Rm + of Dy, i Dy iR because the change z = e~ (y — im/2) brings the origin
y =0 into z = —ie 'n/2 € Rm+.

Proposition 8.5.7. The function A(z,T) given in (8.5.10)) satisfies the following dif-

ferential equation

Z(AY) = B(Ay), (8.5.11)
where L is given in and
B:Xyo— Xoo (8.5.12)
is a linear operator. Moreover, there exists a constant M > 0 independent of k such that
IBAY) [l 2 < M AP, -

Proof. Since 1** satisfy (8.5.7]), subtracting the solution and using the Mean Value The-
orem, we obtain

2\/_2

Z@w) = T | Saanra0]+ 2 () + v

—é«WP+wWF+@ﬂ5Aﬂ$Mﬂ

I

. 2
/01 3 <—2\§§Z sin(7) +ry* + (1 — r)q/ﬁ) dr A

_ /01 I ( 2% sin(7) + e + (1 — r)w) dr Ay,

The proof follows by taking B as the righthand side of the equation above and recalling
that 1", 1® are known functions such that ||¢**||,, 3< M and f(z) = O(2°).
O

1n+

Now, given an analytic function f : Ry ;" — C, we define the norm

[fllam=sup |z"e™*f(2)],

Z€RYHT
and if f : Rm % T — C is an analytic function in the variable z, then we define the norm

Hf”fha,in ZHH ||O<1n>

k>0
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and the Banach space

Ziaim = {f:RyT xT—C fis analytic in the variable z, Tly[f] = 0,¥1 > 0,
and ||f||€1,oz,in< OO} .
In particular, we denote
I-llz= IIle0in  and  Z = Z4, gn-

Remark 8.5.8. One can see that, for f € 2y, o and g € Z, the norm ||-||¢,.0.im Satisfies
the property || fglle.aim< | flle.allgllz, Hence, we can adapt the proof of Proposition[8.5.7
to see that the linear operatorB satisfies

IBIAY)|, 25 < M [|AY] 5 -

- We write equation (8.5.11]) as an integral equation. To this end, for a function h :
jo;j x T — C, we define the following linear operator

A(h) =3 Agpya(h), (8.5.13)
£>0
where . I, (4] (s) .
Z zZ S zZ
A =% [ T o [ ST s
and
z 6*i>\0,2k+1(8*2)1‘[2k+1 [h] (S) z ei)\o,2k+1(3*2)H2k 1 [h] (S)
A h:/ , ds—/ okt ds, k> 1.
2k+1( ) —100 22/\0’2]€+1 —iK 21)\072/€+1

(8.5.14)

Lemma 8.5.9. The operator B: Z — Z given by
B=AoB (8.5.15)

1s well defined, where B and A are given by (8.5.12) and (8.5.13), respectively. Moreover,

there exists a constant M > 0 independent of k such that, for each k > 1,

1. the operators B,8, o B : Z — Z satisfies

5 = M

1Bllz: 10 o Bllz< — (8.5.16)
2. for each h € Z,
|B(h) = K (s, h)e= 0% sin(37)|| < M]|h|,
where K (k,h) € C is given by
—ico EiM0,38T]

K(rk,h) = — / e LIBRI) 5 (8.5.17)

—iK 2Z>\073
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Proof. First, we prove that the operator A : Z;, 25, — Z is well defined and satisfies

M
M)z 1107 0 A(R) 2= == [Alle 2,0 (8.5.18)

Let h(z,7) = YXjs0 hor+1(2) sin((2k +1)7) € 24, 25, We have that, for each z € Rigr’l,’j,

A (B) ()| < 1<\z|3 |h<)

5 52 | 2|2

1 z
e~ Moatm) gg 4 —/ ’s3h1(s)’e_“’31m(2)ds>

IN

3 [° ehostmts—2) Lo Ao,3 Im(s—2)
M{hy [0 (1 mwdsntw/m\s]e (s g

Considering the integration path s = i Im(z)l, [ € (—o0, 1], and integrating by parts,
we obtain

o e IR )
1 0, >~ 11/2.in > JLE S s
|A (h)(z)ez/\ 5z| < MHh H 7 <| |/ erg,Im(s Z)d5+ / le)\ogIm(z)(l l)dl
Z| J—ioco

2* Joe

1 M|Im(z)|>
S Mi|\h in +
Iialen 5 + s
M
< —|h
= )\073|Z||| 1||Z,€17
and
Aa(y et < [ [emmots-a I g e g
s B —100 2Z./\073 —iK 22./\073
M ||hsll2m (1 / 2205 Tm(s—2) ° 1
D L e L ot Sl . s m(s—=z d 7d
- )\073 K2 —ioo6 st —m|8|2 s
M ||h3])2,m
- )\0’35 '
Now, for each k£ > 2, we have that A\g3 < Ag2x4+1 and thus,
[ Agg 1 () (2)e022
z iX0,35 z 1X0,38
< ‘e_i(A0,2k+1+>\0,3)(8—2)th"il(S)e o ds + 6¢(>\0,2k+1—)\0,3)(5—z)h%fl(s)e o ds
~ J—ioco 2102641 —iK 2iM0,2k+1
Mk . z (Mo,26+1+X0,3) Im(s—2) 2z »—(Xo0,26+1—N0,3) Im(s—2)
< Mot foin (/ : D ds+ [ © : ds
)\072k+1 —100 |S’ —iK ‘S|

< Ml ll2n (1 / Qoo Im(s—2) g

z 6_()\0721“‘1_)‘0»3) Im(s—z)
A dS
A ‘ |2
0,2k+1

—100 —iK ’3’2

In the expression above, we compute the first integral and bound the second one by the
maximum of the function and the length of the interval of integration. Thus, we get

M || hopt1]|2,in

<
>\0,2k+1 |Z|

)

‘A2k+1(h)(2)6m’32
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for every k > 2. Consequently,

M

| A2k+1(R) ][0 < X | hok+1|2,m,
0,2k+1K

for every k > 1, and (§8.5.18)) follows directly.
From Proposition m (see Remark [8.5.8)), it follows that B : Z — 2, 25, is well

defined and
1B(AY)[|ey 20 < M| Az (8.5.19)
Hence, from the definition of B given in (8.5.15)), we have that B,d, o B : Z — Z are

well defined and ({8.5.16|) follows from (8.5.18)) and (8.5.19)). This proves item (1).

To prove item (2), let h € Z, and notice that, using similar arguments, we obtain

z —iMo,3(s—2)
|As(B(h))e*os* — K (k, h)sin(37)] = |ePtos? / ¢ L[B(R)](s) ,

—100 22‘)\073

[ B,

—100 2’i)\0’3
< M5(B(R))]|2,m
- )\073|Z|
It proves item (2). O

Corollary 8.5.10. There exists kg > 1 such that the linear operator 1d — B:Z— Zis
invertible, where B is given by (8.5.15)).
Proof. From item (1) of Lemma [8.5.9) there exists o > 1 sufficiently big such that,

|1B||z< 1/2. Therefore, Id — B : Z — Z is invertible and ||(Id — B)~'||z< 2. O
Given a sequence a = (agg+1)k>1, we define the function
Cin(a)(2,7) =Y agprre” Mo+ %sin((2k + 1)7). (8.5.20)
k>1

Proposition 8.5.11. Let AY(z,7) be the function given in (8.5.10) and ko given in
Corollary [8.5.10. There ezists a unique sequence of constants b = (bogi1)k>1 such that
Cin(b) € Z and Ay satisfies

AY(z,7) = Ciu (D) (2, 7) + B(AY)(2,7), (8.5.21)

for every z € R};n;g and 7 € T, where B and Cy, are given by ([8.5.15) (with k = ko) and
(18.5.20)), respectively. Furthermore, Ay € Z.

Proof. Recall that Ilyx[Ay] = 0, V& > 0 and denote Iloy1[AY] = Athgryq. Since Ag)
satisfies (8.5.11)), we use the Method of Variation of Constants as before to obtain

e th

]_ z
5 ; ds + O&) 52 ( / S IL[B(AY)] (s)ds + C%) ,

0 1

and

Aoy = eh0.2k+12 (/Z eii)\oyzkﬂsn%"'l [B(A¢)] (3)
* ng-kl 2i)\0’2k+1

2 iAo, s
_p—iRo2k412 / €02k Hgk+1 [B(A)] (s) ds + 012k+1 ’
z§k+1 22)\0,2k+1

ds + C’ng)
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where 22K 22FH1 C2M and O are constants, for each k > 0.

Recalling that HA@DH 0,.3< M (see Proposition [8.5.5)), and taking z — —ico, we obtain
that the equations above are satisfied, if and only if

cy=— [ " IEENO o m [T o, 8] (s)ds

0 S 1

and

et — - [ e e [BAVG)

23k 21 M0 2k+1

Hence, choosing 22! = —iky, for every k > 1, we have that (8.5.21) is satisfied with
constants bog 1 = C’%Jrl k > 1. Using the expression of Ag,1 given in (8.5.14]) (with
K = Kg), we have that, for each k > 1,

—iko e—i)\o,2k+1(8 iKQ) k41
A (BAV) i) = | | "y [B(AY)] (o)

M
ds| < Ty [A
—100 22)\0,2k’+1 S = Ko || 2k+1 [ 77/}] ||51,07

and thus, it follows from (8.5.15)) that
1A% = B(AY) e, (—iro) < M.
Hence, [|Cin(b)|l¢, (—iro) < M and

ICa(D)llz = D [barsallle0%+1% ]|

E>1
_ Zlb%—f—l|€_(/\0’2k+1_>\0’3)m
k>0
= 3Cin(D) e, (—irio)
< MGAO,SHO’

which proves that C;,(b) € Z. Finally, it follows from Corollary [8.5.10, that

A = (Id — B) ™! (Cun(b)) € 2.

Finally, we prove the second statement of Theorem [8.3.2] Let
K() = K(lim A¢), (8522)

where K, ko and At are given by (8.5.17)), Corollary [8.5.10| and (8.5.10)), respectively.
Take

Cin = b3 + Ko,
where b3 is the first term of the sequence b given in [8.5.11 and K is given by (§8.5.22]).

Also, notice that Cp,(b) = Cin(b) — bze™032sin(37) € Zy, 1 in.
Thus, using the second item of Lemma (with kK = kg and h = Av) and Proposi-
tion 3 | we have that
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—~—

| A — CyeiP0s? sin(37)||e; 1 = [|AY — Cin(b) — Koe~ 03z 4 Cin(0)] 1 1.,in

|B(AY) — Koe 03| g, 1 inF]|Cin (0) |y 1,im
< M1+ [[AY]lg,1,m)
M.

IN

IN

Taking 4 4
x(z,7) = ehos? (Aw — Cye~ 032 sin(ST)) ,
it follows that
Ixlen s 107 xler 1< M,

and formula (8.3.9) holds for every & > kg, since Ry C R},n;g provided that x > k.
Finally, it follows from item (5) of Proposition that 0,x € Xy, a41 (With respect
to the domain Ry, ) and
10:-xler.2< M.
The proof of Theorem follows by reducing the initial domain R;n,:g to Rgg;o. In

order to simplify the notation, we make no distinction between Ry and Ry, -

8.6 Proof of Theorem 8.3.3

As usual, we consider only the unstable case, and in order to simplify the notation,
we omit the superscript u of the solutions. Also, throughout this section, we change the

domain Dg:;n by ch,? " (see (8.3.7) and (8.3.10)))in the definition of the norms and Banach
spaces introduced in Section [8.5.1) but we keep the same notation.
We begin by studying the equation satisfied by the difference

o(z,7) = ¢(z,7) — (2, 7). (8.6.1)

Proposition 8.6.1. The function ¢ : DTC,?“ x T — C given by (8.6.1) satisfies the
following differential equation

~

Z()(2,7) = Coen(2:7) + (L) (2) + L(TI[])(2)) sin(r) + K (9)(z, 7),

where T is the operator given by (8.5.5), L : Xy 0 — Xata, L : Xoya = Xayo, and
K : X0 — Xoyarz are linear operators and Cupen foc,?“ x T — C is an analytic
function in the variable z given by

2/2ie? |
2

Conen(2,7) = — sin(7) + dy (z) sin(7) + da(z, 7). (8.6.2)

Moreover, 111 o K = 0, and there exists a constant M > 0 independent of € and k such
that

LIL(o)[aras Mloller,0;

2N L) lar2S M ller o
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3. K@) levare< Mleller.a;

4. |ldalle, 3< Me? and |di(2)|< Me?|z|, for every z € DmCh“.

Proof. Since ¢ and ¢° satisfy (8.3.5]) and (8.3.6)), respectively, we have that ¢(z, 7) satisfies

0o — o — o= —0% — (6" — ()~ SO) + /(&) (863)

Now, recall that ¢(z,7) = ev(in/2 + ez, 7), where v(y, ) = v} (y) sin(7) + &(y, 7), vf
is given by (8.1.17)) and ¢ is given by Theorem [8.3.1} An easy computation shows that

2V/2i
zZ

eV (im)2 +ez) = —

+ ll (Z? 5)7
where [; is an analytic function such that |I;(z,€)|< Me?|z|, for each z € Dilc,?u For the

sake of simplicity, we omit the dependence of t; on . Thus,

24/2i
z

o(z,7)=— sin(7) + Iy (2) sin(7) + la(2, 7), (8.6.4)

where ly(z,7) = €£(im/2 + €z, 7).
Notice that, since y = im/2 + £z, we have

’( —in/2)%L, [82 Y, T ”:5 ‘ 11, [82 (im/2 + ez, 7)}

Vo> 1,

and thus, from Proposition [8.4.5]
. 1
2]l 5= [l€02€(im /2 + €2, 7) ey 3< 5—2||83§(y,7)||51,173§ M,

where [|-[|¢, 1,3 is the norm introduced in Section [8.4.1]
Differentiating ¢ with respect to 7 twice, we obtain

2v/2i

O2p(z,7) = sin(7) — I1(2) sin(7) + 9ly(z, 7). (8.6.5)

Since Mk < |z|< Me ™1, for every z € DmCh“ and

’qsO(z,T) + 22 ) C=m (8.6.6)
we obtain that
3@ () = —5 (@ o+ ()
= DTlsin(r) — STh{e]sin3r) + (T ) + La(e) + (=, 7),
(8.6.7)

where I3 1 Xy, o = Xy .at2, la 0 Xoy .o — Xy 044, are linear operators such that

s lley ar2< ML) [le.0 - and  [lla(@) ]l ara< Ml o
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and [ : DTC,? " x T — C is an analytic function in the variable z such that
125l 5< Me®.

Also, using that ||¢||e 1, |8°|le,1< M, f(z) = O(z°), and the Mean Value Theorem,
we have that

1

—f(8)+ (") = =p [ F(s0+ (1= 5)6")ds = ls(). (8.6.8)
where lg : Xp, o = Xp, a+4, is @ linear operator such that
16 (D) ller,a+a< Mloller a-

Taking,

~

o L(Ti[g)) = Iy [l5(TT )],

o L(p) =111 [ls(@) + ()],

+ K(p) = T [15(Ti [¢]) — SThle]sin(3r) + L) +1o(s)]

o di(2) =¢e%l1(2), and dy(2,7) = —€20%(2, 7) + I5(2, 7),

the proof follows from (8.6.3)), (8.6.5)), (8.6.7) and (8.6.8)).

]

Let z; = e Y(y; —in/2), j = 1,2, where y; and ys are the vertices of the matching
domain Df“,f " given by (8.3.10). Consider the following linear operator acting on the
Fourier coefficients of h = Y750 hopt1(2) sin((2k + 1)7).

T (@) =D Tons1(howsr) sin((2k + 1)7), (8.6.9)

k>0

where 75541 is given by

5 72

5 5
z\ [* 3 35 (2122) 2 hy(s)
_75(23 — 7 <<23 _ 22> /22 hi(s)s°ds + <z 25 — 2 >/z1 2 ds |,

(8.6.10)

22 17 hy(s 1 =
Ti(hy) = /z1 13(2 )ds— @/ hi(s)s*ds
1

and

ds,

z h2k+1 (S>e—i/\0,2k+1(8—2’) z h2k+1 (5>€i)\0,2k+1(8—2)
ds —
z

1 2iM0,2k+1

75k+1(h2k+1) = /

22 210 2k+1
Sin(Aoans1 (22 — 2)) [t hopyr (s)e~P02rri(s=21)

sin(Ao,26+1(21 — 22)) /

sin(Aogrr1(21 — 2))  [22 hopy (s)ePozmrls==2)

Sin(A0,2k+1 (21 - 22)) /Z

ds

72 20 2541

ds, for every k > 1.
(8.6.11)

1 2000 2641
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Also, consider the following function Q : DTC,? " x T — C, which is analytic in the
variable z, given by

Az, ;) = Z Qorr1(21, 22; Pars1)(2) sin((2k 4+ 1)7), (8.6.12)
k>0
where
1 1
Q1 (21, 22, 1)(2) = B 5 (23(222%(22) —2ip1(21) — 2 (Zir)zg%(zz) - 2%23%(21))) )
2 — 21
(8.6.13)
for k =0,

Sin()\o,gk_i_l(z — Zl))
sin(Ao2k41(21 — 22))

. Sil’l(/\ggk_i_l (Z — 22))
Q2k+1(217 22, <P2k+1)(2) = Sin(>\0,2k+1(21 — 22))802k+1(21>

for k > 1, and ¢ is given by ({8.6.1]).

Remark 8.6.2. Notice that the functions Qsriq, k > 0, are chosen in such way that
o1 [Q + T(h)] (2) = wans1(2), 7 =1,2 and k > 0.

Proposition 8.6.3. Consider the operator T given by (8.5.5)). Let h, @ : D_rfc,?“ xC—C
be functions which are analytic in the variable z and assume that

902k+1(22),

(8.6.14)

Z(p) = h,

and @(zj) = p(zj), j = 1,2, where ¢ is given in (8.6.1)), and z1, 2o are the vertices of
the matching domain D_T‘;h“ giwen by (8.3.10). Therefore, there exist angles By and By of

, such that
P(z,7) = Q(z,750) + T (h)(2,7),

where T and Q are given by (8.6.9) and (8.6.12)), respectively.

Proof. Denote I1,[h] = h,, II, o Z = 7, I1;]p] and 11,,[¢] = @,. First, we consider the
operator Z; (see (8.5.5))) and we solve the equation Z;($1) = hy. Considering the solutions
(1(2) = 2% and (y(2) = —22/5 of the homogeneous equation Z; (@) = 0, and applying the
method of variation of constants, we obtain

23 z hy(s 1 z
=5 ([ et) - g ([ mowas s ct),

where z; and z are the vertices of the matching domain D).

Recall that the function ; is already known, therefore the points ;(2z1) and ¢;(29)
are already given, and using the initial conditions @1(2z1) = ¢1(z1) and @1(z2) = ¢1(22),
we determine the constants C] and Cj. In fact,

o~

901(2

1 = ,
( 57123 —(52%)7! ) ( cl ) B 901(,21)—1—52%/22 hi(s)s°ds
1.3 (r.2\-1 1 3 m ),
v R AG pile) = 2 [,

21 S

and since ||z1||# ||z2|| (see (8.3.10))), we have that the matrix on the right side of the last
equation is invertible, and thus, we obtain the values of C] and C3. Therefore,
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P1(2) = Q1(21, 22, 1)(2) + Ti(h1)(2),

where 77 is the linear operator given in , and Q7 is the independent term given in
(18.6.13).

Proceeding in the same way for the higher modes, we obtain that the homogeneous
equation Zogy1(Poks1) = 0 has independent solutions (., = ezt where \gopr1 =

\/(2k +1)2 — 1, and thus applying the method of variation of constants to the equation

Tog+1(Poks1) = hogs1, we obtain

—iA z
e 0,2k+1

z
~ i\ 2%k+1
Par+1(2) -0 (/ hoky1(s)e" 02 +%ds + Cf >
2iMo2k+1 \Jz
e120,2k+1%2 o _—
</ h2k+1 TUA0,2k+15 ] g + C2 + ) )
2Z/\o 2k+1

Again, using that the function ¢ory1(2) is already known and imposing the initial
conditions @ory1(21) = @ors1(21) and Gogy1(22) = @arr1(22), we determine the constants
C%+1 and C2*! through the following system

—eth02kt121 iAo 2kt121 ka’-i-l
e th02k+122 iAo 2k+122 022k+1 o

21
' A —iA s
2iMo 2k1P2k41(21) — €' O’QHM/ Rkt (s)e 02415 s

z2
. —iX i
2000, 2k4+1P2k+1(22) + €7 0*2’““22/ hojy1(s)e" 02k +1%ds
Z1

Since Im(z;) # Im(2,) (see (8.3.10)), we have that e*to2e+1(z1722) _ g=iRoakia(z1=22) £ ()
for every k£ > 1. Thus, the matrix on the right of the equation above is invertible and
consequently, we obtain the values of C2**! and C2**!. Hence,

Pokt1(2) = Qopy1(21, 22, Por+1)(2) + Tans1(horsr)(2),

where Tax.1 is the linear operator given in (8.6.11)), and Qo is the independent term
given in (8.6.14)), for £ > 1. The proof is complete. n

Now, we study the operator 7T given in in some appropriate Banach spaces.
Proposition 8.6.4. The following statements hold.

1. Given o > 4, the linear operator T : X, — X,_o is well defined and there exists a
constant M independent of € and k such that

[Ty a2 < M BNl 0 and 00 T(A)lgy 0o < M [All, o

2. Given o > 0, the linear operator T : X! — X! is well defined, where X, is the
Banach space

={h € X,; II;|h] = 0},

and there exists a constant M independent of € and k such that

I7(h) My, o and |8, 0T (h) MRy, -

||€1,a — ”4141 —
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3. Given 2 < a < 3, there exists a constant M > 0 independent of € and k such that
1Q(21, 22, 9) gy 0 < M (07D 4 2H+DO=D),

where ¢ is given in (8.6.1)).

Proof. Notice that, for every z € Di’;"*, we have |z|> M|z, i = 1,2, for some constant

M > 0 independent of € and k. Also, |z|°—|21[°> M|z|>> M|z|*, for every z € D
Now, using these properties, we show the following bounds for o > 4.

3 z h z
i/ 1(S)ds‘ < M||h1|]a|z]3/ ds

5 Jz, 82

1
|8|2+o¢

1 1
< Mh]|alz]?
= || 1|| |Z| <|Z|1+a+ |21|1+a>

< Mllhaflal 2>~

Loy Mlhalla 7 5=
— | h 3ds| < 7/ 3mog
‘5z2 /22 1(s)s%ds| < BE 22|s| s
Mihilla,_ 5
< W'Zﬂ |z — 2|
M|[ha Callam ol jos
< ’Z‘Q_QQ (> R E s 2

< Ml flal 2>,

1 5 z Ml||h z
e 23_272 / 1h1(8)83d8 < || ||Oc/ 1|8|3_ad8
5(23 — 21) 22 ) S =

|22
Mhilla; 5
< B 22’21 — 2|
Mihilla | jas), 4
< W_Q‘J"z‘a 4|Z2‘4 a

< M[hallalz*~,

ERWEER!
< M\|h1||a(|z13+|zl2 [ s
Z1

5 1
< Mlh s, 2l
< Ml (JsP+ 20 ) s
Mllh
< Milhalla | sa) 10 ety ey

B

< Ml

Hence, we can see that
T (h)|la2< M| lay o > 4. (8.6.15)

Now, to deal with the higher modes, we will see that

Sin()\072k+1(2j — Z))
Sin(/\072k+1(21 — 2’2))

<M, j=1,2,Vze DM, Vik>1, (8.6.16)
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where M > 0 is independent of € and k.
In fact, recalling that |sin®(z)|= 3 (cosh(2Im(z)) — cos(2 Re(z))), we have

sin(Xo2k+1(25 — 2)) |2 _ cosh (2 2k+1 Im(z; — 2)) — cos(2Xg 2k+1 Re(z; — 2))
sin(Ag ok+1(21 — 22)) cosh (2o 241 Im(z1 — 22)) — cos(2A0 2611 Re(z1 — 22))

cosh(2Xg 2k4+1 Im(z; — 2)) +1
cosh(2Xgok+1 Im(z; — 29)) — 17

and since Im(z; — 29) = K&7~! and [Im(z; — 2)|< [Im(21 — 22)|, we obtain that

. 2
Slrl()\()’gk_,_l(Zj — Z)) ‘ < MCOSh(2/\O,Qk+1 IIH(ZJ - Z)) +1 < OM.

sin(/\072k+1 (Zl — 22)) COSh(Q)\O’Q]H_l Im(21 — 22))

Now, assume that o« > 0. For each z € D?C,? " there exist (7,5 (depending on
z) between 3y and By and t,¢; > 0 (depending on z) such that z, = z + e~%2¢; and
z1 = z + €1t Thus, we have that

/ hojei (s)e” P02 (s=2) g
22

0 .k . —iB3 - ox
- |/t hok 1 (z + e t) e Ho2kiate 2 =i gy
2

< /t; ho41 (Z + efwgt)‘ e~ Mo+ gy
0

t5 e~ Ao,2k+18in(B3)t
= ” 2k+1”a 0 |Z+e_152t|°‘
< lh2riila [ eroamsntiingy
B F-1 LV

| P2kt ]|a

T Aokt sin(Bs)]z|*
T Xogk+1]z]®

Analogously, we prove that

M|lhakt1a

< )
Ao2k41]2|*

/ h2k+1(s)ei)‘°’2’“+l(s_z)ds <
Z1

and in particular,

< M| hogs1la < M||hogs1]|a

zZ1 .
/ h2k+1(5)€MO’QkH(szl)dS’
z2

T Xo2k+1]21]® T Aoaksalz]®]
and
/z2 h2k+1(S)eiko,zkﬂ(s_zg)d‘s‘ < M”h?k-H”a < M”h2k+1Ha.
21 A0,2k+1| 22| Ao.2k+1]2]|%
Hence,

M
[ Tatr1(hars) o< 5
0,2

Hh2k+1“a7 k Z 1, (0% Z 0. (8617)

k+1

Items (1) and (2) follows from ({8.6.15)) and (8.6.17)).



Now, using (8.6.4)) and (8.6.6]), we obtain that
o(z,7) = l1(2) sin(7) + b(z, 7),

where

||b||€1,3S M
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and |I;(z)|< Me?|z|, for each z € DY Notice that b(z,7) = la(2,7) — (do(z,7) +
2v/2i/zsin(7)), where Iy is the function given in (8.6.4)).
Thus, we can see that

Q1 (21, 22, 01)(2)] =

1

29 — 21

B 5 (»23(2%901(22) — 2fp1(=21)) —

G0 - st ()

<\901(Zl)\ +lor(en)] + I |22| o) + 2 2,2‘ mw)

1 €2|22|3>
M + €2| 20|+ .
<|Zz||2|2 2] 2|2

Now, recalling that |zo|= Me"™! and Mk < |z2|< M1, for every z € D1n+u we

obtain that, for a > 2,

||Q1(Zl7 22, gpl)Ha

< M (5(0‘73)(7*1) + 52“0‘“)(7*1)) '

Finally, from (8.6.16)) and (8.6.12]), we can see that, for 0 < a <3 and k > 1,

2% Qott1 (21, 22, Por1) (2)| =

and thus

| Qart1 (21,5 22, Par41) || < MHH%H[b]Hi%g(a

Sil’l(>\072k+1 (Z — ZQ))

sin(Ao2k+1(21 — 22))

_ sin(/\072k+1 (Z — 21>>

2%Qort1(21)

sin(Xo 2k+1(21 — 22))

< M| Hopqa [b] |37

< M|[Tlopq1[B]]]3

Now, for 2 < a < 3, we have that

|| Q(Zly 22, (10) ||Z170l

IN

IN

which proves item (3).

ZHQ%—H(ZM 22, <P2k+1)||a

k>0

2%Qokt1(22)

i
PAE

1

|3fa

|29

< M|[Hgpqr [b]][sl@= 20,

0D 4 <3 k> 1.

v (6((173)(%1) n E2+(a+1)(%1)> + MDD N oy 4[] ||

k>1

M (901 4 2D 4 Me=30-D|jp]l,, 5

M (=901 4 2H@+n-D)

?
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Finally, for z € D_TC;” . from Propositions |8.6.1| and |8.6.3L we have that ¢ given in
(8.6.1)) is written as

P(2,7) = Q(21, 22, 0) (2, T)FT (Cmen(2,7) + (L(9)(2) + L(T[])(2)) sin(r) + K (¢)(2, 7)) ,
(8.6.18)

and thus, we prove Theorem (8.3.3]) through the following proposition

Proposition 8.6.5. Consider the function ¢(z,7) given in (8.6.1). There exist kg > 0
and a constant M > 0 independent of €, such that, for every k > ko and v € (1/3,1) (in

the definition of ch,?“ given in (8.3.10) ), we have
leller 2, 107 @l 2 100l s < M (77 + 7).
Proof. From (B.6.18)), and Propositions [8.6.1] and [8.6.4] we have that
lerll: = [ Qi1 22, 01) + T (T [Conet] + L) + L(TLe)) ),
< 191z 22000l + M (I Cona s + L), + [Z(TLD) )

< M 2070 M (31 ST gl o+ [Tl )

N

IN

_ 1 o~
M (51 T g3l e 1@l o + HH[QO]H&Q) :
Also, since II; o K = 0, we have that

[l | = [Fo QG ze) + T (K Cual + K(9))

£1,2 01,2

I, 2)

~

< o Q12 9), , + M ([T Cual

glv

2
< M(gl_v + 62+3(7—1)) M (8 4+ H‘PHel 0)
,{'] K

1
< M (e” e+ — ”90”51,2)
It follows that .
lolle o < M (1777 + el o).
Now, choosing kg sufficiently big, we have that, for every x > kg
lolles2< M(e ™7 +77).
Also, it follows from Proposition that
10-plle, < M(e ™Y + 771,

Finally, from Lemma 8.1 of [§], reducing the domain ch,? " (see (8.3.10)), with vertices

y1 and yp such that |y; — i(7/2 — ke)|=ce?, j = 1,2, to ngh,;“ C D_rfc,f“ having vertices

y1 and yp such that |y; —i(7/2 — 2ke)|=ce7, j = 1,2, and 0 < ¢ < ¢, we obtain that

M, _
10:le2% —(17 4+ 5771,

It completes the proof of this proposition. In order to simplify the notation, we make

e h h
no distinction between DY and DTSR

]
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Remark 8.6.6. Notice that v = 1/2 minimizes the size of ||¢||e, 2 in Theorem[8.6.5 In
this case,
lille 2 < Me'/2.

8.7 Proof of Theorem [U

In Theorem [8.3.1) we have obtained the existence of the solutions v* : D®"** x T — C
of (8.1.9), x = u, s which parameterize the invariant manifolds W*(0) and W*(0). Notice
that both solutions are defined in the domain

R. = D" N DM NiR,

where D°"* is given in ({8.3.1]).
Our aim is to obtain an asymptotic formula for the function

d(t;e) =v"(0,7) —v*(0, 7). (8.7.1)
In order to do this, we write the equations satisfied by the difference
Av(y, 1) =v'(y,7) —v°(y,7), (8.7.2)
and recall that Ty [Av] = 0, for every [ > 0.

From and Theorem [8.3.1 we have that Av(y, ) = £"(y,7) — £ (y, 7) and
L(Av) = f(f“) - F(&),
where £ and F are the operators given in and -, respectively.
Proposition 8.7.1. The function Av(y,T) given by - satisfies the equation
L(Av) =TI [nl(y, I [Av] sin(T) + n2(y, T)ﬁ[AUH sin(7) 4 I[ns(y, 7)Av],

where L is the operator given in andn; : R, xT — C, j =1,2,3 are real analytic
functions in the variable y. Moreover, there exists a constant M > 0 independent of k
and € such that

Il a< Me?, and ||n2le,.o, [175]]ey 2< M.

Proof. Using the expression of F given in (8.4.3)) (see also ), we obtain that
FIE) = F(E) =~ [gle(€" + vhsin(r))) - g(e(€" + v sin(r)]
Ty [(€F + vb)? sin?(1)II(E") — (&5 + vf)2sin®(r)TI(") | sin(7)
—T0y [ (&1 + of) sin()(TI[£])? — (& + v}) sin(7) (TT[¢°])*
o (Tl — (fg))?) | sintr)
+ (= S0 [(eler + ol sin(r))) — F(e(€" + o sin(r)))]
O3 ((E)P - (6D (E)° - <5f>3> sin(r)
- .

4

The proof follows from the Mean Value Theorem, the estimates o], < M, [|€%%], 3<
Me? obtained in Theorem and the fact that g( )=0(z%) and f(z) = 0(z%). O
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As an abuse of notation, we consider the spaces
Eo={f: R, — C,; fisreal-analytic and || f||,< oo}
and
.o ={f:Riyx — C; f isreal-analytic in the variable y and || f|s o< 00},
where

Iflloa= sup|(y* +7*/4)*f ()] and [Ifllera= 3 ITLa(flle-

YER K n>1

Recall that equation (|8 is a Hamiltonian Partial Differential Equation. In fact, if
we write it as the system

Oyv = w,
(8.7.3)
Dyw = —82'0+l'0— ;;v3— if(esv)

we obtain that (8.7.3]) is a Hamiltonian system with respect to

H(v,w) = 1/T <w2 i (wdrv)® v . vt N F(ev)) ar.

T 2 2e2 2¢2 12 gt

where F' is an analytic function such that F( ) =0(z%) and F'(z) = f(2).
Notice that the solutions v*(y, ) of ( , * = u, s, obtained in Theorem are

contained in the same energy level of H. VVAe use the Hamiltonian H to obtain the Varlable
IT;[Av] in terms of the variables II;[Aw], II[Aw] and I1[Av], where Aw = J,Aw.

Proposition 8.7.2. There exist two linear operators A : £, 0 — &1 and B : &, 9 — &,
such that

I (Aul() = Al + ABw) ) + BARDG), (614

where

M 2
1. [A(Aw)(y) ‘HAUJH&( y), for every y € Ry;

= e
2. [B[A)w)|< MDAy (), for every y & R

Proof. First, recall that the projections II; and I given in are orthogonal. There-
fore, we obtain that H is given by

o,y = lDZ LR L <<ﬁ[w1>2 L (@Ol (AR | o' | Flev) ) .

2e2 2e2 12 el

Using that H(v*,w*) = 0, x = u, s, integrability by parts of the J, terms and the
Mean Value Theorem, we have that
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0 = H" w*)—H(" w")

_ I [w “]+H1[ S]Hl[Aw]—

5 I, [Av]
= [ ; ]H[Aw]—;aTH[UU];aTH[US]ﬁ[Av]—H[UU]z;H[US]ﬁ[M] o
S (v)2(v°) + (V) (v°)? + (v°)?
42 / [ - Av

(5 [ ety ) + (1= a)ov(y, 7)o Ao dr

Finally, we use that v* = v sin(7) + &*(y, 7), 9 = v — (v1)3/4 and
1€ 03 110267 ey 104 ey a< M, % = u, s
we conclude that
0= — (3" + a(y)IL [Av] + "I [Aw] + A(Aw) + B(II[Av]),
where

o |lalls< Me?;

- Me?
« [A(Aw)(y)|< m”Aszl(y% for every y € R;
. M ~
« |B(I[Av])(y)|< mHH[Av]Ha (y), for every y € Ry;

Now, observe that i (y) = v/2(cosh(2y) — 3)sech®(y) is strictly negative, for every
y = iy with § € (—n/2,m/2). Also, since ©(y) has a third order pole at the points
y = +im /2, we obtain that H&/vl H2 < Me?, which means that

6<M
L

for every y € R,.
Hence, taking x sufficiently big, we have that the function

D(y) = or(y) <1 + Z}&) :

is non-zero for every y € R,.. Moreover, the function D(y)~! has a third order zero at the
points y = +ir/2, and

D(y)™ = (o1(y) " (1 +a(y)),

where a : R, — C is a real-analytic function such that ||a|,< Me?.
Hence, it follows that



280

oML [Aw] + A(Aw) + B(II[Av])

Hl[A’U] = D
i (b?Hl[Aw] + fl(ﬁw) + B(ﬁ[m})) 1+ a)
= :{;HﬂAw] + A(Aw) + B(IT[Av)),
where A and B are the linear operators
A =5 i) ) + T a1 Al
and ) e oy) - -
B([I[Av]) = e B(Ii[Av]).

The proof of the proposition follows directly from the estimates of A(Aw), B(II[Av]),

a and the fact that © and 0" have a third and second order pole at the points y = i /2,
respectively.

O

Remark 8.7.3. Notice that Aw = II;[Aw]sin(r) + I[Aw], and thus the operator A in
(8.7.4) also acts in the first harmonic.

Now, denote Avgrr1 = Top1[Av] and Awegyy = Topi1[Aw], for every k > 0, and
consider the following change of variables

{ Dogi1 = Aak+1Avo 41 + i€AWop1, (8.7.5)

Ogk+1 = Aop+1AVap11 — 1€AWop41,

for every k > 1.
Consider

D=> Tow(y)sin((2k+1)7) and © = Oyt (y)sin((2k + 1)7),

k>1 k>1

and define the operator

. ---h
N(Aw,T',0) = (AUM—ZhlAwlaZ

1 k>1

. A
(rml +i 2§+1r2k+1> sin((2k + 1)7),

: A
Z <@2k+1 —1 Qz+1 @2k+1> sm((2/€ + 1)7’))

k>1
(8.7.6)
Notice that, from Theorem Avwv satisfies

> Npri | Avaia e 3< Me?,
k>1
and thus
> Aokt |Tanglls< Me® and Y Aot [|O2a [[5< Me?.

k>1 k>1
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It follows that operator AN is well defined.
Consider the Banach space given by

Tpo = {f:RwxT—C; fisan analytic function in the variable y such that

Hl[f] = HQl[f] = O7VZ Z 0 and ||f||ﬁ1,oz< OO} .
(8.7.7)

Proposition 8.7.4. Let Av(y,7) be the function given in (8.7.2), and consider Aw =
O0yAv. Therefore, Avi(y) is given by (8.7.4), and (Aw:(y),['(y,7),0(y,T)) (see (8.7.5))

satisfies the following equation
N(Ath, @) = M(Awl,F,@), (878)
where N is given in (8.7.6) and Y is a linear operator which can be written as

mw (y)Aw; + My (T, ©)

M(Awy, T',0) = Mose (Y, T) AW + Moo (L', ©) , (8.7.9)
_mosc<y7 T)Awl - Mosc(ra ®>

where, my : R — C, Mege : R X T — C are real-analytic functions in the variable vy,
and My = Yo 0 X Yoo = To, Mose : Yo0 X Yo 0 = Yo, 2 are linear operators, where
Yy, o is given by (8.7.7)). Moreover, there exists a constant M > 0 independent of € and
k such that

L mw|s< Me? and ||mosclle, 1< Me;

M
2. |MW(F, @)(y)l < m (||F||E1(?/) + ||9||€1(?J)), for every y € Ry,
Me
J. ||MOSC(F7@)||21 (y) < m (ITl[er (y) + 1©ler (), for every y € R

Proof. In fact, from (8.7.5)) and Proposition we have that, for each k > 1,

F2k+1 = dapp1Awop iy + icAvgy iy
. A3
= Dopp1Awggiq + ic <—2:2+1Av2k+1 + Tawr [ms(y, T)Av]> (8.7.10)
A2kt1

= — F2k+1 + i€H2k+1 {773(?% T>AU] )

Analogously, for each £ > 1,

A

®2k+1 —1 htl @n = —i€H2k+1 [Ug(y, T)AU] . (8711)

3

Also, for the variable Aw;, we have that

3(v1)’
1

Aw, = <1 — ) Avy + I {nl(y, 7)Avy sin(7) + n2(y, T)ﬁ[A’UH . (8.7.12)
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Therefore, by the definition of A in (8.7.6)), equations (8.7.10), (8.7.11)) and (8.7.12))
are equivalent to

vh 3(vf)? : =
—Z_}—A 1+ 11— 1 Avy + 11y [nl(y, 7)Avy sin(1) + n2(y, T)H[AUH

N(Aw,T,0) = iell [ns(y, 7)Av]

—iell (n3(y, 7) Av]

(8.7.13)
where 7;, 7 = 1,2, 3 are given by Proposition Using formula (8.7.4) for Avy, we get

3 h\2

we have

Awy — ?Awl = (1 - 3@?)2) (A(Aw) + B(IT[Av]))

4
oh _
+11; [nl(y, T) (&Awl + A(Aw) + B(II [Av])) sin(7) + na(y, 7)I[Av]
B 3(vt)” .
= (1 -~ ) A(Aw sin(T))

—3

+11y [771(%7) (Z
N (1 - 3(?2) (A(Ti[Aw]) + B(TI[A)))

+I0y [ (y, 7) (A(TI[Aw]) + B(TT[A])) sin(7) + na(y, 7)T[Av]]

Using (8.7.5)), we have

Aw, + A(Aw, sin(r ))) Sin(T)]

'—‘2"

h
1

Awl—?Awl _ ( 3(vr )> (Awy sin(7))

A
+11, lm Y, T ( %Awl + A(Aw sin(T ))) sin(T)l

3(vh 1 r,+oe, .
< 1 (2 0) + B(%:Q N sm(n7)>)

s [nl(y, - (21 AT — @)) sin(r)
+m(y,7)B (Z Doki1 + O sin((2k + 1)7’)) sin(7)

k>1 2>\2k+1

+n2(y, 7) (Z Doks1 + O sin((2k + 1)7))}

n>2 2/\2k+1
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and,

iell [ns(y, 7)Av] = iell [n3(y,7) —Aw; + A(Aw) + ])> sin(7) + ﬁ[Av])]

Av]) 1n( )—I—ﬁ[Av]))}

( B(II[A
T h
= eIl |ns3(y, 7) <Z}LAw1 + A(Aw; sin(T > sin(7
i 1
)
h
(}LAwl + A(Aw; sin(T ) sin(7
vy
,7)

r +06 . _
+n3(y, T)B | > ~ 2kl T ekl sin((2k + 1)7) | sin(7)
E>1 2)\2k+1

r +06 )
+n3(y, 7) Z W sin((2k + 1)7)
E>1 2k+1

Now, the proof is concluded by taking

301 )2> A(Aw, sin(T))

e () Ay = (1 -

o
+1I1, [m(y,r) ( }lAwl + A(Aw; sin(T ) sin(7 1 :
U]

My (T',0) = (1— 41 )( A(l' - 0) +B(ZF2)\@ Sln(nT)))

n>2

ity |22 - 6)sin(r)

+m(y,7)B (Z F%L@%H sin((2k + 1)7)) sin(7)

k>1 2)\2k+1
Lopp1 + 0O .
+112(y,7) (Z e sin((2k + w)] ;
k>1 2k+1

h

Mese(y, T)Aw, = el [ng(ym) (Z%Awl + A(Aw, sin(7))> sm(ﬂl :

Moso(T,0) = icll |:773(y,7') (2@1'5A(F — 0)sin(7)

B (Z Lot + O ook 1 1)7)) sin(r)

E>1 2>\2k+1

E>1 2)\2k+1

" Z Lokt + Oopis sin((2k + 1)7))] 7
(8.7.14)
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and using the bounds for the functions 7;, j = 1, 2, 3 and the operators A and B provided
in Propositions and 8.7.2] [

8.7.1 Banach Space and Operators

In this section, we rewrite (8.7.8)) as a fixed point of certain functional operator in
some appropriate Banach space.
Given an analytic function f : R, — C, we define the norm

1f llaep= sup |(4? + 72 /4)%e (F1mO) p(yy) (8.7.15)

YERK

and the Banach space
Xyexp = {f : R = C; f is an analytic function such that || f||a,exp< 00}.  (8.7.16)

Also, given an analytic odd function f : R, x T — C, we define the norm

||f||€1,oz,exr>: Z”H%-&-l[ﬂna,exm (8-7-17)
k>1
and the Banach space
Xiyaexp = {f:RuwxT—C; fis an analytic function in the variable y such that
IL[f] = Ux[f] = 0,¥1 > 0 and || fl|ey a.exp< 00} -
(8.7.18)
Finally, we consider the product Banach space
yél,fl,exp == Xfl,exp X Xél,O,exp X X&,O,exp; (8719)
endowed with the weight norm
1
[(f,9:P)]es-1ex0 = ZIfll-vexpt 9 les exprtlIPlles exp- (8.7.20)
Now, given a sequence a = (agg+1)k>1, we define the functions
A2kl
Ir(a)(y,7) =Y asksre "~ = Ysin((2k + 1)7) (8.7.21)
k>1
and
Aokl
Zo(a)(y,7) = > asks1€'™ = Ysin((2k + 1)7). (8.7.22)
k>1
Also, considering
T
yi:j:z<2—/{5>,
we define the diagonal linear operator
P(f,9.h) = (Pw(f), P (g), PO(h). (8.7.23)

where

Pw(f)(y) = /Oy @{L(S)d& (8.7.24)
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=3 Pyi(9)sin((2k+1)7) and PO (h) = P51 (h)sin((2k+1)7), (8.7.25)

k>1 k>1

Wlth r Y Z->‘2k+1(
Phialg)y) = [ ¢

Y+

S_y)HZk-H [9](s)ds

and o Yy —i>\2k+1 (5—1)
Parr1(R)(y) = / e - Ylopq1[h](s)ds, k > 1.
Yy

Lemma 8.7.5. For a = 2,3, the operators P*,P® : Xoy aexp = Xey 0.exp given by (8.7.25)
are well-defined. Moreover, there exists a constant M > 0 independent of ¢ and K such
that, for every h € Xy, .exps

M
(ke)ot

Proof. We prove the lemma only for the operator P, since the result for P® follows
analogously. Let h(y,7) = Y y>1 hor1(y) sin((2k + 1)7). First, we prove that

1P (W) les oexps PO (W) s 0.exp < 1Py excp- (8.7.26)

M
[P509)], o, = Gomgmiisllaces
In fact,
—22 (5 —Itm(s)])
23 (2 _|Im Y1 23(z_jim € « 23 (s—
PE(r)e EmO0 | < g [ lext <y>l>|82ﬂ2 e e ds
+
y o 2 (|tm(s)|— Im(s)—(|m(y) |~ Im(y)))
S HhBHa,exp/yJr |S2 T 72/4’0‘ ds

Im(y) o2 (|o|—o—(/m(y)|- Im(y)))
< hallaes | T

e |

Now, if Im(y) > 0, and recalling that o = 2,3, we obtain

N Im(y) 1
PI(hy)e 2 (50 ()I)‘ < thHa,exp/E_% mdg

M
|y2 + 7T2/4|0‘_1 ||h3||047exp

M
< WHhSHa,exp;

and, if Im(y) < 0, then

P (hy)e s (5 m)l)

IN

(|23 sexcp [g—na|02—ﬂ'2/4|a U+/ T/gﬂa
M

S WHhBHa,exp-
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For k > 2, we have that

M
“P§k+l(h2k+l)’ Oexp — thmﬁ—l”mexp-
In fact,
r 2 (5~ m(v))) | 22 (5o e GO (2 (s
P2k+1(h2k+1)e e \2 v ‘ S Hh2k+1Ha,exp/y ec=\2 m € 5Ty dS
+
h y ez AsIm(s)|=Azgr1 Im(s)—(As[Im(y)|—Azk+1 Im(y))) y
< aex/ S
= || 2k+1|| ,€Xp - |32_{_7r2/4’a
If Im(y) > 0, then
A2k4+1-23
A3 (7 |1 y e~ = (Im(s)—Im(y))
ngJrl(thJrl)e E ( T (y)|) < Hh2k+1Ha,exp/y ’82 T 7T2/4|O‘ ds
+
5 A2k41—23
SMh oox (1+6(2H51m())>
|| 2k+1|| € P()\2k+1 _ /\3)(K€)a
M
S /{aeafl ||h2k+1||oc,expa

and, if Im(y) < 0, then

A
P (hars1)e ¢ (5-Mm)l)

0 e_w(lm (s)—Im(y )‘2k+1+ 2 (Im(s)~Tm(y))
< h aL,ex / d / d
< [[h2k+1laexp - |52 + 2 /4] s+ |2 + 72 /4|~ i

- ||h2k+1||a,exp<1 <6W1m(y) te — 220 (2 e Tm(y )))

raga—l Aokl — A3

1 Aopr1t+A3
b <eelm<y> + 1))
Aoki1 + A3

M

< ——]
R*e®
This shows (|8.7.26|) and concludes the proof. O

Proposition 8.7.6. Let Av(y,T) be the function given in , and consider Aw =
0,Av. Therefore, Avy(y) is given by -, and there exist two unique sequences of con-

stants ¢ = (Cyps1 )z1 and d = (dgpi1 ) g1 such that Awy = v Aw; and (Awy (y),T(y,7), O(y, 7))
(see (8.7.5) ) satisfies the following equation

(Awy,T,0) = (0,Zr(c), Zo(d)) + M (Aw,, T, ©) (8.7.27)

|h'2k+1 ||oz,exp'

where

M (Aw;,T,0) =P oM (i} Aw,,T,0),

P is given by (8.7.23) and M is given by (8.7.9)). In addition, the following statements
hold.
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1. (O,Ip(C),I@(d)) € yfl,—l,exp and

MeHsr

eRS

[[(0, IF(C), I@(d))]]fh—l,exp <

2. The operator M : Vi —1exp = Yir,—1,exp 15 well-defined and there exists a constant
independent of € and k such that

[[/\7 (A’El,r,@)]] <M [[(&El,r,@)]]

)
l1,—1,exp £1,—1,exp

and, denoting M = (M, My, M3), we have that

[0 (8,0, 0) L, < Al vt Me (Il + 1€, 0y) (8728
and
H'//\/TJ (Af&;h F’ @> £1,0,exp S ]/\j |I<Afa}/17 F7 @>:|]€1,1,exp, j - 2’ 5 (8729)

Proof. From (8.7.8]), we have that

. .--h
Awq — %Awl = mw(y)Aw; + My (T, 0),

1

A
Dokr + 24 Lorr1 = Mgy [Mosc(y, T)Awr + Mose (T, O)], k> 1,
A
@2k+1 — 7 Oor1 = oy [Mose(y, T)Awr + Mese(T', ©)], k > 1.
>\
Using that ©f, e~ = and e Z2 are solutions of the homogeneous equations Aw; —
ol A A
Y1 —5 Aw; = 0, ngﬂ 4 L2k IF%H =0 and @2k+1 _ 2kt Ogrr1 = 0. It follows from the
o

method of variation of constants, using that Aw,(0) = 0, that there exists constants cop 1
and doy 11, k > 1, such that

Awl = U{VPW (mW(y)Awl + MW(F’ @)) )

A2k+1

1—‘2k+1 = CQkJrle_i < Y + 7)2Fk+1 <H2k+1 [mosc(ya T)Awl + MOSC<F7 @)]) ) k Z 17

2k+1

@2k+1 = d2k-{-16 e - P2(?g+1 (H2k+1 [mosc(y7 T>Aw1 + Mosc(ra @)]) ) k> 1.

Hence, writing Aw; = U?A/El and the definitions of P, M and Zr, Zg given in (8.7.23)),
(8.7.9), (8.7.21) and (8.7.22)), we obtain (8.7.27)).

Now, notice that Zr(c)(y4) = I'(y+), and since ||T||¢, 3< Me?, we obtain that

>

k>1

A2k41 (7 M
canae + )| = Tl () < 5,
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which implies that

>

k>1

A2k4+1-A3 [«

cae” ¢ G = Dl (g ) <

Now, notice that

Z C2k+1€7ix2’%1y = Z Czkﬂemfw(g‘“&)e% )
k>1 0,exp k>1
and thus s
ensh
HIF(C)HZ1,O,eXp§ PREI
A3k

Analogously, we prove that [|Ze(d)|le, 0.exp< —5—
ek

Assume that (AAujl, I, @) € Vi, —1.exp- Notice that, for each y € R,

and hence, item (1) is proved.

(yz + W2/4)—1e%3(%—|1m(y)l)/\71 (A/El, I, @)’ < ; (/oy ‘mW(S)Awl(S)‘ ds

Now, from item (1) of Proposition [8.7.4] we have that

B (3-m)) N 2 (5-1m@)I) oy 2,22 (5-Im(s)])
’y—|—7‘r2/4|/0 ‘mW(S)A’U)l(S)‘dS S MHAUMH 1,exp ‘ 2_'_71_2/4‘ / ’32 —|—7T2/4‘2 dS
MHAwl H 1 exp ,/\73 Tm )‘3 [Im(s)|

< < |Im(y) |/ ds

< M||Awy |- ~Loxp 22 jm(y)| £ <€>‘E3|Im(y)| _ 1)

= K3e A3

_ MAw ey

g ,{/3 *

Using that y € R and

3

A
IPlle, (m)e

we obtain that, using item (2) of Proposition and that ©% has a a pole of order 3,

T A s
(G < Ty 0o and 0], (w)e = GO <1014, 0.0x0,
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for Im(y) > 0,

(3-limty )(s) ds
Iy +

67(2 |Tm(y
_wa+#%u/Ws+ﬁMMWM<Hw@M(D

A3
e?(%—“m(y

M (Il o1l 0cx0) 15 w2 jagem 2 Grmgg

>+ /4
B (z-m(y) .
ee\2 m(y) _N(r_,
M (Tl ot 1Ol sese) g [ o = /2l #(E-)do
() e
M(||F||€1,07exp+||@||é1,0,exp)m 7, ere” " edr
2e

2 (5-Im(y)) 21
e Ml g, 7T m
< M2 (I Ol 00 o (e % (5 tm(y) (1 N /<y>>

IS
71')\3 T
< 1 —
e ( +2€>)

< Me (Dl Olson) (o T 1) 4 20 (4 T))
ly—in/2 2

Me (IT o 1 T\ e = m®)
< ex ex o 1 1o — i /O]
< M (IOl 0cse) | 5+ 14+ (4 5) T—573

< Me (”F”&,O,exrfi‘H@”&,O,eXp) .

Analogously, we obtain the same estimate for Im(y) < 0. The proof of follows
directly from these bounds.

Using the expressions of m,s. and M. given in (8.7.14) (such as the bounds of the
operators A and B obtained in the proof of Proposition , and the property

||h1h2”51,041+042,exp§ ||h1 ||€17011 HhQH&,ag,exp

we can see that

Hmosci}?@lH&,S,eXpS MgHAAU/Jlel,eXp (8.7.30)
and -
[Mosc (Awi,T8)||, , < Me (D]l 0exp 11 0.000) (8.7.31)
Also, notice that
My (Awy, T,0) = P' (moeif Awn ) + PT (Moo (Awy, T, 0)). (8.7.32)

From Lemma 8.7.5, the operators P, P : Xy, 4 .exp — Xey.0.exp are well-defined for o =
2,3 and satisfy (8.7.26). Now, (8.7.29) (with j = 2) follows directly from (8.7.30)),(8.7.31)

and (8.7.32). Analogously, we prove (8.7.29) for j = 3.

The proof of item (2) follows directly from these estimates.
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In order to obtain good estimates fgr the linear operator in (8.7.27)), we use a Gauss-
Seidel argument. Since I' = Zp(c) + My(Awy, I',0), © = To(d) + M3(Aw,, T, 0), and
M is a linear operator, it follows that

Aft(El = MI(A,EDIF(C) + M?(@h Fa @)7I@(d) + M/?)(Af\z;l) F7 6))
= Mi(0,Zr(c), Zo(d)) + My (Awr, Msy(Awy, T, ©), Ms(Awy, T, 0)).

Thus, we rewrite (8.7.27) as

(Awy,T,0) = (T, Ir(c), Zo(d)) + Mas (Awy, T, ©) , (8.7.33)

where

T = M1(0,Zr(c), Zo(d) = Puw o M (Zr(c), Zo(d)), (8.7.34)

and

Mas (Awy,T,0) = (M (Awy, My(Awy, T, 0), Ms(Aw,, T, 0))
Ma(Awy, T, 0), Ms(Aw;, T,0)) .

Proposition 8.7.7. The linear operator /\705 D Xy —texp = Xy —1exp 15 well-defined,
and there exist kg > 1 and a constant M > 0 independent of € and k such that, for every

K 2 Kg
[[/\71(;5]] <M

l,—lexp K

Proof. In fact, from (8.7.28)) and (8.7.29)), it follows that

| Mas (8w, T.0)]

£1,—1,exp

= i Hﬂl (@1,/{22(@17{‘7 @Mﬁiﬂ(@lvr’@))"

—1,exp

+ [ Ma(Awy, T, 0)

+||Ms(Aw,, T, ©)

£1,0,exp £1,0,exp

< M (| Aw ]|y exp

+||Ms(Aw,, T, ©)

LM <H/\72(&Zbr,@)

el 70’exp>

- K3 £ £1,0,exp
M [|Awy|| M [ [|Awy]|-,
< ? c =P + ; c - + Hruél,o,exp + H@Hél,o,exp

which proves the result.

8.7.2 Asymptotic Formula

Denote -
Ay, 7) = (Awi(y), T'(y, 1), O(y, 7)), (8.7.35)
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and define
2 ,LS( —q /2) N 2 >‘73 ; 2 .
Pw o My (Cine 12 W=im/D gin(37), =Ciet = Wi/ )Sln(3T))
€ €
2)\03 _./\73 —in/2 .
Aoy, 7) = 2 O e i/ )sm(ST) (8.7.36)
2)\073

Chel S wtin/2) sin(37)

€

where Cj, is given by Theorem [8.3.2 In order to prove Theorem [U] we consider the
following decomposition
A=Ag+ Ay (8.7.37)

1
Lemma 8.7.8. Consider k = Klog(g_l) and Lioy = (Zw,Zr(c), Zo(d)) (see (8.7.27)
3

and (8.7.34) ). There exist £ > 0 and a constant M > 0 independent of € such that, for

each € < gy,
M

A — T, <
[[ 0 It t]]él,—l,exp = 610g(€_1)

Proof. First, notice that, from Theorems [8.3.2| and [8.3.3] we have that the function Av

given in (8.7.2)) is written as

1 — /2 1 —am/2
Av(va) - 7¢u <y MT/ 77—> - 7¢S (y MT/ 7T>
£ £ £ £
1 —m/2 1 —m/2 1 — /2
— quﬁO (y /”T/ 77_> + 790u (y Zﬂ-/ ’7_> o 7903 (y Z’ﬂ'/ 77_)
£ £ £ £ £ £
1 . Yy—iT —1 2
= Zemhost A (Cm sin(37) + x (y i/ ,T>>
£ £
1 —am/2 1 —am/2
o) ()
£ € € £
1 . —iT
— (e Post = sin(37) + Ef (y,7) + ES (y, 1),
£
for every y € R, = DY 0 DY 0GR (with v = 1/2) and & > kg (ko is given by

Theorems [8.3.2 and [8.3.3), where Ef, Ef : Ryens X T — C are analytic functions in the
variable y. It follows from Theorem that

i /2

Mle—iA0,3w | M|€—i>\0,3% ’

ly —im/2]

I Nlex (), 10 B4 1y (y) < and |0, [l (y) <

ely —im/2|
(8.7.38)
and from Theorem [8.3.3, we obtain
Me?/? Mel/?
Ey o0, Ef < — d ||0,Ef < —. 8.7.39
B I 10:E5 1) < 2 and 10,5 () < 2. (8739

Analogously, performing the same study for the pole y = —in/2, we obtain that

y+im/2

1—— .
Av(y,7) = ~Ciue™ 5 sin(37) + By (y,7) + By (7))
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for every y € Ry, = Dpsh=v 0 DR =5 N4R (with v = 1/2) and & > kg (ko is given
by Theorems 8.3.2| and [8.3.3)), where Ey, Ey : Ry . X T — C are analytic functions in
the variable y satisfying

mch,x

M’ 7)\ +z7‘r/2’ M‘ 7)\ +7.7r/2|
Er 0. =8 b and ||0,Er il
127 ). 10.B7 I (0) < 7ot and 0,5 ) <
Me3/? Mel/?
By 0. By _— d ||0,E5 <
125 10 )-10.B5 0 < e and 10,55 1) < 2o

Now, using that A3 = \g3 + O(£?), we obtain that

L(y,7) = Z()\ngAvng(y) + ie0,Avgy1(y)) sin((2k + 1)7)

k>1

= > dowr1 Qv (y) sin((2k + 1)) + il [9,A0] (y, 7)
k>1
2/\0 3 y=— Z7r/2

— ) Cine—l)\o 3
9

(14 O(e?)) sin(37)

+ 3" Awalloggr [Bf + S| sin((2k + 1)7) + iell [0,Ef + 0,E5 ] (y,7),

k>1

for every y € R/, . and 7 € T. Also, we have that

mch,x

12
M | 71/\03w| 63/2
y—in/2l g —inj2R)’

> Aapsillopgn [ B + B | sin((2k + 1)7)

k>1

IN

and it follows from (8.7.38) and (8.7.39) that

Wﬁﬂ@Ef+@Eﬂ

| —iMo, 3y m/2| 53/2
< M
e ey e

which means that, near the pole y = imw /2, ' satisfies

2)\0 3

T(y,7) = 230035 sin(37) + Eff (y, 7),

for every y € Rmch,i and 7 € T, where Eff : Rt , . x T — C is an analytic function in

the variable 7 such that

mch,x

‘e 7)\03 53/2
< M
W < M\ = mr Ty =in2p

Analogously, near the pole y = —in/2, we can see that

. y+im/2
61)\0’3T | <,_:3/2 )
Y

y— zﬁ/2’

E+
H Tllg,

: + .
ly +im/2]  Jy +am/2[?

Il () < M ('
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for every y € Ry -
Proceeding in the same way for the function

O(y,7) = Z(}\Qk+1AU2k+1<y> — 160y Avoy41(y)) sin((2k 4 1)7),

k>0

we conclude that there exists a function Fg : R4 . X T — C analytic in the variable y

such that, near the pole y = —in/2, © writes as

mch,x

ytin/2

G(ya ) C Z/\073

and

sin(37) + Eg (y, 7),

for every y € R

mch,x >’

‘61)\0 3 y+z7r/2 | 63/2
) (y) S M + . fOI‘ Yy S Rmch K
1

|Es

ly +im/2] |y +im/2)?

and, near the pole y = im/2,

7ZA0 y— z7r/2 ‘

Ol () < o o
u\Y S + . )
1 ly —im /2] |y —im/2?
for every y € Ry, .-
Now that we have good estimates for the function I' and © near the poles y = +in/2,
we are able to bound the function Z;.
In fact, recall that Zr(c)(y+) = I'(y+). Therefore

2)\0,3 2)\073

TIr(c) — Cie~ 12 W=in/2) sin(37) Cipe~ i W=in/2) sin(37)( (y4)

0y

) - =

= | B, )
i Yy —in/2
< M |€ 0,3 - | N 63/2
B Y4 — im/2] Y4 — im/2[?

—X0.3K 3/2
€ ) g
< M< +— 2),
KRE R°E

and notice that, from (8.7.21)), we have that
| 2)\073

1
and thus, taking k = e log(¢™1), we have that
3

. . 2 ) .
Ir(c) — C’ine_l%g(y_”/z) sin(37) = M3 08 Cine_l%g(y_”m sin(37)

IF(C) —

(Y1),

£1,0,exp

2)\073

Ir(c) — Cipe i3 w=im/2) sin(37)

£ K22

y 1 £3/2.-1/2
<
- <510g(5—1) * 10g(5—1)262>

M
elog(e~1)

S u (e()\g)\oyg)n N 53/26)\3n>
K

£1,0,exp

(8.7.40)
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Analogously, we prove that

B M
~ elog(e™l)’

2/\073

To(d) — 22030 2 w+im/2) i (37)

(8.7.41)

£1,0,exp

Finally, recall that

[Pw o M (T, ©) [ -1,exp< Me ([Tl 0,50+ [Ol 1 0.0x0) »

and thus
1 2 —i2 (y—in)2) o 2 23 (ytin/2) o
B Pw o Mw (Ir(c) — nge e sin(37),Ze(d) — nge =W sin(37)
—1,exp
< M
~ elog(e~1)
(8.7.42)
The proof follows from (8.7.20)), (8.7.34)), (8.7.40)), (8.7.41) and (8.7.42)). O
Finally, the proof of Theorem [U] follows directly from the following result.
Proposition 8.7.9. The function Ay is completely determined by equation
Ay =Ty — N + Mgs(Ao) + Mgs(Al), (8743)

and there exist €9 > 0 and a constant M > 0 independent of € such that, for each ¢ < &g

1
and taking k = W log(e™1),

M
elog(e~1)

Proof. In fact, (8.7.43)) follows directly from ({8.7.33), (8.7.35)), (8.7.37), and the linearity
of M¢as. Now, taking ¢, sufficiently small, we have from Proposition [8.7.7| that

__ M 1
< < —
HMGSH t,—lexp ~ log(e™1) = 2

[[Al]]ﬁl,—l,exp S

for every € < g9. Thus the operator Id — /\7@5 Vo —1exp — Vi, —1,exp 15 invertible and
[[(Id — Mgs)_l]] < M.

Now, - N
Ay = (Id = Mas) ™ (Tuor — Do + Mas(Ao))
and it is easy to check that

M
[[AO]]Zl,fl,exp S ?
Therefore
1
[[Al]]ﬁh—l,exp < M ([[Itot - A0]]51,—1,6:Xp + log(gl)[[AO]]h,—l,exp)
M
elog(e=1)’
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Finally, from (8.7.5)), we have that d(7;¢) given by (8.7.1) writes as

I [Av] (0, 7)
11 [Aw] (0,7)

3 [21,41(0) + O2;.41(0)
k>1 2)\2k+1

F(07 T) — @(07 T)
2ie

and thus, formula (8.2.1) in the second statement of Theorem [U| follows from (8.7.35)),
(8-7.36), (8.7.37) and Proposition [8.7.9] The proof of Theorem [U]is concluded by noticing

that its third statement follows directly from the second one.

d(t;e) =

sin((2k + 1)7)

8.8 Conclusion and Further Directions

In this chapter we have associated breather solutions with period near 27 of reversible
Klein-Gordon equations (8.1.3) with homoclinic solutions at the origin of a singularly
perturbed Hamiltonian H. (where ¢ is the perturbation parameter). We have seen that, in
the limit case e = 0, Hy has a homoclinic orbit and we have computed the distance between
the invariant manifolds W*(0) and W#(0) of H. at the origin (in certain transversal
section), for € > 0, which happens to be exponentially small with respect to .

As a future work, one can prove that the constant Ci, in Theorem [U]is generically non-
vanishing. Moreover, based on numerical simulations and formal expansions, considering
f=0in , we believe that C}, # 0, and thus the breather solution of the limit
problem £ = 0 breaks down for ¢ > 0.
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