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“ There’s only so much you can learn in one place,
The more that I wait, the more time that I waste

I haven’t got much time to waste, it’s time to make my way
I’m not afraid what I’ll face, but I’m afraid to stay

I’m going down my own road and I can make it alone
I’ll work and I’ll fight till I find a place of my own

Are you ready to jump?
Get ready to jump

Don’t ever look back, oh baby,
Yes, I’m ready to jump

Just take my hands
Get ready to jump

We learned our lesson from the start, my sisters and me
The only thing you can depend on is your family

And life’s gonna drop you down like the limbs of a tree
It sways and it swings and it bends until it makes you see ...”

(Madonna, Jump)



Resumo

Neste trabalho, abordamos aspectos qualitativos de vários fenômenos em sistemas de
Filippov e em sistemas Hamiltonianos. No contexto de sistemas dinâmicos suaves por
partes, concentramos nossa atenção em problemas em dimensões 2 e 3. No caso planar,
desenvolvemos um mecanismo para analisar o desdobramento de policiclos que passam
por certas singularidades de sistemas de Filippov (conhecidas como Σ-singularidades) em
uma configuração típica, e o utilizamos para descrever completamente o diagrama de
bifurcação de sistemas de Filippov em torno de alguns policiclos elementares. No caso
tridimensional, obtivemos uma caracterização completa dos sistemas que são localmente
estruturalmente estáveis em um ponto 𝑝 da variedade de descontinuidade. Mais ainda,
caracterizamos completamente os sistemas de Filippov robustos em uma vizinhança da
variedade de descontinuidade, os quais são chamados de sistemas semi-localmente estru-
turalmente estáveis. Além disso, estudamos alguns fenômenos globais em sistemas de
Filippov 3𝐷. Primeiramente, descrevemos o diagrama de bifurcação de um sistema em
torno de um laço (“loop”) do tipo homoclínico de codimensão um em uma singularidade
genérica denominada dobra-regular, o qual não possui contrapartida no contexto suave.
Em seguida, analisamos uma classe de sistemas que apresenta conexões robustas entre
certas singularidades típicas, conhecidas como 𝑇 -singularidades, as quais garantiram a
existência de um comportamento caótico nas folheações associadas a tais sistemas de
Filippov.

Em relação aos sistemas Hamiltonianos, estudamos alguns problemas que apresentam
fenômenos exponencialmente pequenos. Mais especificamente, consideramos um modelo
de interação kink-defect dado por um Hamiltoniano singularmente perturbado 𝐻𝜀 (𝜀 ≥
0 representa o parâmetro perturbativo) com dois graus de liberdade, e determinamos
condições sobre a energia do sistema para a existência de certas conexões heteroclínicas
que surgem da quebra (𝜀 > 0) de uma órbita heteroclínica contida no nível de energia
zero do sistema limite 𝐻0. Finalmente, investigamos a existência de soluções breather de
equações diferenciais parciais reversíveis do tipo Klein-Gordon, as quais podem ser vistas
como órbitas homoclínicas de um sistema Hamiltoniano de dimensão infinita.

Palavras-chave:
Sistemas de Filippov, Teoria da Bifurcação, Estabilidade Estrutural, Policiclos, Fenô-

menos Exponencialmente Pequenos



Abstract

In this work, we discussed qualitative aspects of several phenomena in Filippov and
Hamiltonian systems. In the context of piecewise smooth dynamical systems, we have
focused on problems in dimensions 2 and 3. In the planar case, we have provided a
mechanism to analyze the unfolding of polycycles passing through certain singularities of
Filippov systems (known as Σ-singularities) in a typical scenario and we have used it to
completely describe the bifurcation diagram of Filippov systems around some elementary
polycycles. In the three-dimensional case, we have obtained a complete characterization
of the systems which are locally structurally stable at a point 𝑝 in the switching manifold
Σ. Moreover, we have completely characterized the Filippov systems which are robust in
a neighborhood of the whole switching manifold, named semi-local structurally stable sys-
tems. In addition, we have studied some global phenomena in 3𝐷 Filippov systems. First
we described the bifurcation diagram of a system around a codimension one homoclinic-
like loop at a generic singularity named fold-regular singularity, which has no counterpart
in the smooth context. Second, we analyzed a class of systems presenting robust connec-
tions between certain typical singularities, known as 𝑇 -singularities, which have lead us to
the existence of a chaotic behavior in the foliations associated to such Filippov systems.

Concerning to Hamiltonian Systems, we have studied some problems exhibiting ex-
ponentially small phenomena. More specifically, we considered a model of kink-defect
interaction given by a singularly perturbed 2-dof Hamiltonian 𝐻𝜀 (𝜀 ≥ 0 stands for the
perturbation parameter) and we have provided conditions on the energy of the system
for the existence of certain heteroclinic connections arising from the breakdown (𝜀 > 0)
of a heteroclinic orbit lying in the zero energy level of the limit system 𝐻0. Finally, we
have investigated the existence of breathers of reversible Klein-Gordon partial differential
equations, which can be seen as homoclinic orbits of an infinite-dimensional Hamiltonian
system.

Keywords: Filippov Systems, Bifurcation Theory, Structural Stability, Polycycles,
Exponentially Small Phenomena
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Introduction

This work is devoted to the study of phenomena in Bifurcation Theory of Dynamical
Systems. It is mainly divided into two parts. The first one is concerned about

structural stability and generic bifurcation of Filippov systems in dimensions 2 and 3.
The second one is dedicated to the study of problems of exponentially small splitting of
separatrices in analytic Hamiltonian systems.

Piecewise Smooth Dynamical Systems
Discontinuities appear commonly in an extensive range of natural phenomena, as body

collisions and systems having on/off switches (see [18, 32, 60] for more examples). In light
of this, Mathematicians and Physicists have pursued ways to understand such intriguing
aspects.

In the attempt to provide a mathematical description of the nonsmoothness inherent
to the real world, the Piecewise Smooth Vector Fields (PSVF for short) have arisen. In
fact, the Theory of Dynamical Systems have been essentially used to explain phenomena
through differential equations, and thus, it seems reasonable to consider piecewise smooth
differential equations to deal with such discontinuities.

Generally speaking, a PSVF is a system defined by smooth relations with different
nature in some regions of the phase space. The separation set between these regions is
referred as the switching set associated to the PSVF. In this case, a PSVF is multi-valued
on the switching set, since we have two (or more) different rules governing the dynamics
at these points. Typically, the switching set is a codimension one manifold, and for such
a reason, it is also referred as switching manifold.

The Theory of Piecewise Smooth Dynamical Systems started to gain strength with the
works of A. F. Filippov, which have provided the existence of solutions of PSVF through
the method of differential inclusions (see [39]). Nevertheless, such an approach allows a
PSVF to present several different solutions in the switching set. Therefore, a question
was raised in the community:

What solution should be considered in the switching set?

Such a non-determinism of solutions has been extensively discussed over the years
and it still remains without a final conclusion. Although, certain conventions of solutions
have been highlighted due to their applicability to model real phenomena. Among all of
them, we mention Utkin’s convention and Filippov’s convention (see [15, 55] an references
therein).
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Throughout the last decades, PSVF governed by Filippov’s convention (known as Fil-
ippov systems) have been the most considered systems to model discontinuous phenomena
and [39] seems to be unanimously accepted as an important contribution to the Theory
of Dynamical Systems. Based on that, we were encouraged to develop a well established
mathematical framework to deal with this kind of system.

In light of this discussion, we have contributed to the Theory of Piecewise Smooth
Vector Fields by studying local and global aspects of structural stability and bifurcations
of Filippov systems (in dimensions 2 and 3) having a codimension one switching mani-
fold. We highlight that Structural Stability and Bifurcations of Smooth Vector Fields are
matured topics which play a crucial role in the knowledge of the dynamics of a smooth sys-
tem, and their counterparts in the nonsmooth context bring several complications which
give rise to appealing problems.

Analytic Hamiltonian Systems
Since 1833, Hamiltonian systems are used to describe equations of motion of con-

servative mechanical systems, and thus they are frequently employed to study physical
phenomena (see [76]). Special attention must be given to their applications in Celestial
Mechanics which have been very fruitful over the years. The versatility of this class is
one of the reasons which allows us to classify Hamiltonian systems as one of the most
important research topics in Dynamical Systems. In addition, they exhibit a rich dynam-
ics which may involve global instabilities, deterministic chaos and Arnold diffusion orbits
(see [29] and references therein).

As a result of years of work, nowadays, the mathematical community has an extensive
knowledge on Hamiltonian structures, nevertheless there are still many questions which
remain open. Among the massive range of topics investigated on Hamiltonian system,
the study of homoclinic and heteroclinic connections in this class is a classical problem
which has been treated by many researchers. More specifically, one is interested to know
what happens with a homoclinic/heteroclinic connection in nearly-integrable Hamiltonian
systems.

In the study of the splitting of separatrices for regularly perturbed systems, Poincaré
and later Melnikov (see [56, 75]) developed a general method which measures the distance
between the invariant manifolds of hyperbolic critical points or periodic orbits. This
method has been extended for general normally hyperbolic manifolds in [29].

However, in the case of rapidly forced systems and in singularly perturbed systems
which are degenerate when the parameter vanishes, a difficult problem arises due to
the fact that the Melnikov function depends on the perturbed parameter and, in fact,
it turns out to be exponentially small with respect to this parameter. In [90], Henri
Poincaré has considered the problem of exponentially small splitting of separatrices as
the Fundamental Problem of Mechanics, nevertheless, there was a lack of rigorousness in
most works regarding this topic until the end of the 80’s and the beginning of the 90’s.

Later on, rigorous approaches came out revealing the necessity of sophisticated tech-
niques to obtain correct asymptotic formulas for the exponentially small splitting of sepa-
ratrices as the complex parameterization of invariant manifolds, matching in the complex
plane, Singular Perturbation Theory and Resurgence Theory(see [41, 52, 54, 80, 92] and
references therein). Such phenomena are also known as beyond all orders problems. In
fact, the breakdown of separatrices in the presence of exponentially small phenomena
can not be seen for any truncated expansion of the system. In [8], one finds a detailed
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historical description of the mechanisms which were employed to succeed on asymptotics
beyond all orders.

We emphasize that Melnikov Theory does not apply to problems of exponentially small
splitting of separatrices. Nevertheless, in some specific cases, Melnikov function still is a
first order for the distance between the invariant manifolds. On the other hand, there are
also cases where Melnikov function is “too small” and does not give a first order for the
formula of splitting, and in such cases, the first order can be obtained by the study of the
so-called inner equation associated with the problem. See [8] for more details.

In this work, we analyze two singularly perturbed problems exhibiting exponentially
small phenomena. More specifically, the first one concerns about a 2-degrees of freedom
analytic Hamiltonian system for which we study the existence of certain heteroclinic
connections, and the second one consists on the computation of an asymptotic formula
for the splitting of separatrices of a infinite dimensional Hamiltonian system. It is worth
mentioning that Melnikov function is a first order approximation for the splitting of
separatrices in the first problem, nevertheless it does not work as a first order for the
second one.

An Overall Description of the Main Results
In what follows, we roughly describe the problems treated in each chapter of this work,

as well as the main results achieved.
First, we notice that Chapter 1 is devoted to establish some basic concepts which

are required to the reading of Chapters 2, 3, 4, 5, and 6. Apart of that, each chapter of
this thesis is self-contained and can be read independently from the others. Also, except
when explicitly mentioned, the notation assigned in each chapter does not apply to the
remaining ones. It is worth saying that, even with our efforts to take into account the
terminology previously used in the literature, we had to introduce several new concepts
and notations in order to provide a rigorous treatment for this work.

Chapter 2: Polycycles of Planar Filippov Systems
Local bifurcations of planar Filippov systems at singularities contained in the switching

manifold (Σ-singularities) have been extensively studied in the last years (see [55, 65] and
references therein). In fact, local bifurcations of codimensions 0 and 1 are completely
understood, and thus the interest on cycles (loops) passing through such singularities
(which will be referred as Σ-polycycles) has recently grown (see [4, 40, 79]).

In light of the current works, we have observed the lack of a mechanism to deal with
such global phenomena. In order to fill the absence of an approach to this problem, we
developed a scheme to study the crossing orbits of Filippov systems 𝑍 = (𝑋, 𝑌 ) around
Σ-polycycles, which we called Method of Displacement Functions.

In Theorems A and B, we have provided some tools which can be used to characterize
aspects of the mentioned methodology. It is worth mentioning that such results were
heavily based on the analysis of the contact of the smooth components 𝑋 and 𝑌 of a
Filippov system 𝑍 = (𝑋, 𝑌 ) with the switching manifold Σ.

The effectiveness of this approach has been shown in its application to obtain the com-
plete description of bifurcation diagrams of Filippov systems around certain Σ-polycycles,
which are elementary in some sense. In fact, Theorems C, D and E are devoted to de-
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scribe the bifurcation diagrams of Filippov systems around three distinct codimension-two
Σ-polycycles displayed in Figure 1.

(𝑎) (𝑏) (𝑐)

Σ

Figure 1: Σ-polycycles passing through: (𝑎) a cusp-regular singularity, (𝑏) two fold-regular
singularities and (𝑐) a visible-invisible fold-fold singularity.

It is worthwhile to mention that this chapter is based on [3].

Chapter 3: Generic Singularities of 3𝐷 Filippov Systems
On the contrary of the planar case, the understanding of the local structure of generic

Σ-singularities of 3𝐷 Filippov systems has shown to be a challenging problem which has
been considered by many researchers throughout the years. In particular, there are many
works regarding the local structural stability (or instability) of a Filippov systems at a
T-singularity, nevertheless the problem was still open (see [24, 25, 26, 38]).

In light of this, we offered a rigorous mathematical treatment of this problem. In
Theorem F, we provide intrinsic conditions in Filippov systems which completely char-
acterize the local structurally stability at a T-singularity.

It is worth mentioning that, the proof of Theorem F relied on the existence of the so-
called nonsmooth diabolo at certain types of 𝑇 -singularity. Such an object has already been
studied for semi-linear Filippov systems (see [60] and references therein), nevertheless its
existence was still not clear for general systems (without neglecting higher order terms).
See Figure 2.

𝑝

Σ

Figure 2: A nonsmooth diabolo at a 𝑇 -singularity 𝑝.

In Theorem G we review the local structural stability of Filippov systems at the
remaining flavors of fold-fold singularities (hyperbolic and parabolic). We emphasize that
such a result was already known as a consequence of works [24, 25], notwithstanding we
provided a new proof in this setting for completeness.
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Finally, Theorems H and I have completely characterized the locally structurally
stable systems and have shown that local structural stability is an open non-generic
property of Filippov systems.

It is worthwhile to mention that this chapter is based on [44].

Chapter 4: Semi-Local Structural Stability
Taking into account the results on the local structural stability of Filippov systems

at generic Σ-singularities, the next step towards the characterization of 3𝐷 structurally
stable Filippov systems (from a global point of view) is to conceive a good description
of the Filippov systems which are robust around the entire switching manifold (not only
point-wisely).

In light of this, we have introduced two notions of topological equivalence on the space
of all Filippov systems having a compact, connected and simply-connected switching
manifold Σ (e.g. Σ = S2), denoted by Ω𝑟: the sliding topological equivalence and the
semi-local equivalence. The concepts of sliding structural stability and semi-local structural
stability were defined in the natural way.

Roughly speaking, the sliding topological equivalence identifies all elements of Ω𝑟 with
the same sliding dynamics (in the unstable and stable sliding regions) and the semi-local
equivalence (at Σ) identifies Filippov systems having the same behavior in a small 3𝐷
neighborhood of the entire switching manifold Σ. The semi-local equivalence regards all
orbits lying in an open set of R3 containing Σ, whereas the sliding equivalence concerns
only with the features lying in Σ (2-dimensional).

In Theorem J, we provide a sliding version of the classical Peixoto’s Theorem which
has completely characterized the sliding structurally stable Filippov systems, and in The-
orem K, a complete characterization of the semi-local structural stability in Ω𝑟 is estab-
lished. As a consequence, we have obtained that sliding structural stability is a generic
property in Ω𝑟, nevertheless, the semi-local structural stability is an open non-generic
property in Ω𝑟.

Also, in order to study structural stability from the semi-local point of view, we have
provided an approach, called Σ-blocks mechanism, based on the definition of the isolating
blocks introduced by Conley (see [27]), which can be used to analyze analogous problems
in higher dimensions.

It is worthwhile to mention that this chapter is based on [45].

Chapter 5: Quasi-Generic Loops in 3𝐷 Filippov Systems
Aiming to contribute to the development of Global Theory in three-dimensional Fil-

ippov systems, we devoted a chapter of this thesis to the study of an elementary 3𝐷
homoclinic-like connection. More specifically, we have considered 3𝐷 Filippov systems
𝑍 = (𝑋, 𝑌 ) having a loop Γ passing through a fold-regular singularity 𝑝 (𝑋 has a quadratic
contact with Σ at 𝑝 and 𝑌 is transverse to Σ at 𝑝, or vice-versa). See Figure 3.

In Theorem L, we show that, under some generic conditions, homoclinic-like loops
passing through a fold-regular singularity are generic in one-parameter families, and in
Theorem M, we describe the versal unfolding of some classes of such a global connection
(see Figure 4).

In Theorem N, we provide a characterization of the basin of attraction of the con-
sidered loop, based on the study of the sliding dynamics and the first return map of 𝑍.
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Γ0

𝑝0

Figure 3: A homoclinic-like loop Γ0 of 𝑍0 at a fold-regular singularity 𝑝0.

𝛾 = 0

Γ0

𝛾 < 0

Γ𝛾

𝛾 > 0

Γ𝛾

Figure 4: Versal unfolding of a homoclinic-like loop at a fold-regular singularity.

Aspects of modulus of stability inside this class were also discussed in Theorem O (for
certain equivalence relation).

It is worthwhile to mention that this chapter is based on [46].

Chapter 6: T-Chains - A Chaotic 3𝐷 Foliation
Still with the purpose of a global understanding of nonsmooth phenomena in dimension

3, we have presented a robust global connection arising in 3𝐷 Filippov systems 𝑍 =
(𝑋, 𝑌 ), which brings a chaotic behavior in the foliation generated by the orbits of 𝑋 and
𝑌 .

More specifically, we have considered that 𝑍 has a diabolo at a 𝑇 -singularity 𝑝 filled
by crossing orbits, and we imposed some generic global assumptions in order to establish
a communication between the two branches of such a diabolo (stable and unstable). In
this scenario, 𝑍 has a robust homoclinic-like connection at 𝑝 (see Figure 5).

In Theorem P, we have proved that the first return map associated with the foliation
generated by 𝑍 has a Smale horseshoe, which induces chaos on the crossing orbits and
pseudo-orbits (concatenation of orbits of 𝑋 and 𝑌 ) of 𝑍.

Chapter 7: Critical Velocity in Kink-Defect Interaction Models
In [47], the authors have studied a toy-model which describes the interaction of kinks

(solitons) of the sine-Gordon equation with a weak defect. More specifically, they consid-
ered a finite-dimensional reduction of the partial differential equation, which is given by
a 2-degrees of freedom Hamiltonian 𝐻𝜀, and they derived the so-called critical velocity
𝑣𝑐 (or critical energy ℎ𝑐), for which each solution with velocity greater than 𝑣𝑐 is a kink.
However, the computations given in [47] are not rigorous.
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𝑝Γ1

Γ2

Σ

Figure 5: A Filippov system 𝑍0 satisfying hypotheses (𝑇𝐶) and (𝑅) having two T-chains
Γ1 and Γ2 passing through 𝑞1 and 𝑞2, respectively.

In light of this, we have presented a rigorous study on the Hamiltonian 𝐻𝜀. The exis-
tence of kinks with small amplitude has been associated with the existence of heteroclinic
connections of certain objects (critical points and periodic orbits) at infinity. We have
provided a geometric approach to give conditions on the energy of the system to admit
kinks. Generally speaking, the employed methods relied on computing the exponentially
small transversality of invariant manifolds 𝑊 𝑢,𝑠 of critical points and periodic orbits at
infinity.

Theorems Q, R, and S are devoted to show that the heteroclinic orbit in the energy
level 0 of 𝐻𝜀 (with 𝜀 = 0) is destroyed giving rise to heteroclinic connections between
certain elements (at infinity) for exponentially small (in 𝜀) energy levels.

Finally, in Theorem T, we have obtained an asymptotic expression for the critical
energy ℎ𝑐 such that the system admits kinks with small amplitude only for ℎ ≥ ℎ𝑐.

It is worthwhile to mention that this chapter is based on [43].

Chapter 8: Breakdown of Breathers for Reversible Klein-Gordon
Equations

Breathers are nontrivial time-periodic and spatially localized solutions of a wave equa-
tion which were introduced by [1] in the context of the sine-Gordon partial differential
equation. Since then, the problem of existence of small breathers for classical partial
differential equations has shown to be a hard subject to deal with.

The existence of small amplitude breathers for the Klein-Gordon equations have been
considered in several works (see [31, 62, 71, 93, 94] and references therein), nevertheless it
still remains as an open problem. In light of this, we considered reversible Klein-Gordon
equations

𝜕2
𝑡 𝑢− 𝜕2

𝑥𝑢+ 𝑢− 1
3𝑢

3 − 𝑓(𝑢) = 0,

where 𝑓 is a real-analytic odd function which satisfies 𝑓(𝑢) = 𝒪(𝑢5), and we have asso-
ciated the existence of time-reversible breathers 𝑢(𝑥, 𝑡), with the existence of homoclinic
orbits (with respect to the variable 𝑥) of the equation at the origin (which is a singular
point).

From this problem, we derived a singular perturbed Hamiltonian ℋ𝜀, with infinite
degrees of freedom, having a homoclinic orbit for 𝜀 = 0. In Theorem U, we have
computed an asymptotic formula for the distance between the invariant manifolds 𝑊 𝑢,𝑠
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of ℋ𝜀 in a transversal section, which turns out to be exponentially small with respect to
the parameter 𝜀.
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Chapter 1
A Prelude on Filippov Systems

This chapter is devoted to shortly introduce Piecewise Smooth Vector Fields. More
specifically, we present the concept of solution provided by Filippov’s convention

which will be adopted throughout this thesis. The definitions presented here are required
to read Chapters 2, 3, 4, 5, and 6.

1.1 Basic Concepts
Let 𝑀 be an open bounded connected set of R𝑛 and let 𝑓 : 𝑀 → R be a smooth

function having 0 as a regular value. Therefore, Σ = 𝑓−1(0) is an embedded codimension
one submanifold of 𝑀 which splits it in the sets 𝑀± = {𝑝 ∈ 𝑀 ; ±𝑓(𝑝) > 0}.

A germ of vector field of class 𝒞𝑟 at a compact set Λ ⊂ 𝑀 is an equivalence class ̃︁𝑋
of 𝒞𝑟 vector fields defined in a neighborhood of Λ. More specifically, two 𝒞𝑟 vector fields
𝑋1 and 𝑋2 are in the same equivalence class if:

• 𝑋1 and 𝑋2 are defined in neighborhoods 𝑈1 and 𝑈2 of Λ in 𝑀 , respectively;

• There exists a neighborhood 𝑈3 of Λ in 𝑀 such that 𝑈3 ⊂ 𝑈1 ∩ 𝑈2;

• 𝑋1|𝑈3= 𝑋2|𝑈3 .

In this case, if 𝑋 is an element of the equivalence class ̃︁𝑋, then 𝑋 is said to be a
representative of ̃︁𝑋. The set of germs of vector fields of class 𝒞𝑟 at Λ will be denoted by
𝜒𝑟(Λ), or simply 𝜒𝑟. For the sake of simplicity, a germ of vector field ̃︁𝑋 will be referred
simply by its representative 𝑋.

Analogously, a germ of piecewise smooth vector field of class 𝒞𝑟 at a compact set
Λ ⊂ 𝑀 is an equivalence class ̃︀𝑍 = (̃︁𝑋, ̃︀𝑌 ) of pairwise 𝒞𝑟 vector fields defined as follows:
𝑍1 = (𝑋1, 𝑌1) and 𝑍2 = (𝑋2, 𝑌2) are in the same equivalence class if, and only if,

• 𝑋𝑖 and 𝑌𝑖 are defined in neighborhoods 𝑈𝑖 and 𝑉𝑖 of Λ in 𝑀 , respectively, 𝑖 = 1, 2.

• There exist neighborhoods 𝑈3 and 𝑉3 of Λ in 𝑀 such that 𝑈3 ⊂ 𝑈1 ∩ 𝑈2 and
𝑉3 ⊂ 𝑉1 ∩ 𝑉2.

• 𝑋1|𝑈3∩𝑀+= 𝑋2|𝑈3∩𝑀+ and 𝑌1|𝑉3∩𝑀−= 𝑌2|𝑉3∩𝑀− .
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In this case, if 𝑍 = (𝑋, 𝑌 ) is an element of the equivalence class ̃︀𝑍, then 𝑍 is said to be
a representative of ̃︀𝑍. The set of germs of piecewise smooth vector fields of class 𝒞𝑟 at Λ
will be denoted by Ω𝑟(Λ), or simply Ω𝑟.

We emphasize that the germ language is used due to its effectiveness to describe local
and semi-local phenomena.

If 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 then a piecewise smooth vector field is defined in some
neighborhood 𝑉 of Λ in 𝑀 as

𝑍(𝑝) = 𝐹1(𝑝) + sgn(𝑓(𝑝))𝐹2(𝑝),

where 𝐹1(𝑝) = 𝑋(𝑝)+𝑌 (𝑝)
2 and 𝐹2(𝑝) = 𝑋(𝑝)−𝑌 (𝑝)

2 .
The Lie derivative 𝑋𝑓(𝑝) of 𝑓 in the direction of the vector field 𝑋 ∈ 𝜒𝑟 at 𝑝 ∈ Σ

is defined as 𝑋𝑓(𝑝) = ⟨𝑋(𝑝),∇𝑓(𝑝)⟩. Accordingly, the tangency set between 𝑋 and Σ
is given by 𝑆𝑋 = {𝑝 ∈ Σ; 𝑋𝑓(𝑝) = 0}.
Remark 1.1.1. Notice that the Lie derivative is well-defined for a germ ̃︁𝑋 ∈ 𝜒𝑟 since all
the elements in this class coincide in Σ.

For 𝑋1, · · · , 𝑋𝑘 ∈ 𝜒𝑟, the higher order Lie derivatives of 𝑓 are defined recurrently as

𝑋𝑘 · · ·𝑋1𝑓(𝑝) = 𝑋𝑘(𝑋𝑘−1 · · ·𝑋1𝑓)(𝑝),

i.e. 𝑋𝑘 · · ·𝑋1𝑓(𝑝) is the Lie derivative of the smooth function 𝑋𝑘−1 · · ·𝑋1𝑓 in the direction
of the vector field 𝑋𝑘 at 𝑝. In particular, 𝑋𝑘𝑓(𝑝) denotes 𝑋𝑘 · · ·𝑋1𝑓(𝑝), where 𝑋𝑖 = 𝑋,
for 𝑖 = 1, · · · , 𝑘.

For a piecewise smooth vector field 𝑍 = (𝑋, 𝑌 ) the switching manifold Σ is generically
the closure of the union of the following three distinct open regions:

• Crossing Region: Σ𝑐(𝑍) = {𝑝 ∈ Σ; 𝑋𝑓(𝑝)𝑌 𝑓(𝑝) > 0}.

• Stable Sliding Region: Σ𝑠𝑠(𝑍) = {𝑝 ∈ Σ; 𝑋𝑓(𝑝) < 0, 𝑌 𝑓(𝑝) > 0}.

• Unstable Sliding Region: Σ𝑢𝑠(𝑍) = {𝑝 ∈ Σ; 𝑋𝑓(𝑝) > 0, 𝑌 𝑓(𝑝) < 0}.

Remark 1.1.2. If there is no misunderstanding, the dependence of these regions on 𝑍
will be omitted. In addition, Σ can be denoted by Σ(𝑍), in order to distinguish the regions
of Σ corresponding to 𝑍, when necessary.

The tangency set of 𝑍 will be referred as 𝑆𝑍 = 𝑆𝑋 ∪ 𝑆𝑌 . Notice that Σ is the disjoint
union Σ𝑐 ∪ Σ𝑠𝑠 ∪ Σ𝑢𝑠 ∪ 𝑆𝑍 . Herein, Σ𝑠 = Σ𝑠𝑠 ∪ Σ𝑢𝑠 is called sliding region of 𝑍. See
Figure 1.1.

(𝑎) (𝑏) (𝑐)

Σ

𝑋

𝑌

Figure 1.1: Regions in Σ: Σ𝑐 in (𝑎), Σ𝑠𝑠 in (𝑏) and Σ𝑢𝑠 in (𝑐).

The concept of solution of 𝑍 follows the Filippov’s convention (see, for instance, [39,
55, 103]). The local solution of 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 at 𝑝 ∈ Σ𝑠 is given by the sliding vector
field

𝐹𝑍(𝑝) = 1
𝑌 𝑓(𝑝) −𝑋𝑓(𝑝) (𝑌 𝑓(𝑝)𝑋(𝑝) −𝑋𝑓(𝑝)𝑌 (𝑝)) .
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Notice that 𝐹𝑍 is a 𝒞𝑟 vector field tangent to Σ𝑠. The critical points of 𝐹𝑍 in Σ𝑠 are called
pseudo-equilibria of 𝑍.

Definition 1.1.3. We defined the normalized sliding vector field 𝐹𝑁
𝑍 of 𝑍 by

𝐹𝑁
𝑍 (𝑝) = 𝑌 𝑓(𝑝)𝑋(𝑝) −𝑋𝑓(𝑝)𝑌 (𝑝),

for every 𝑝 ∈ Σ𝑠.

Notice that 𝐹𝑁
𝑍 is also a 𝒞𝑟 vector field tangent to Σ𝑠.

Remark 1.1.4. The normalized sliding vector field can be 𝒞𝑟 extended beyond the bound-
ary of Σ𝑠. In addition, if 𝑅 is a connected component of Σ𝑠𝑠, then 𝐹𝑁

𝑍 is a re-parameterization
of 𝐹𝑍 in 𝑅, and so the phase portraits of both coincide. If 𝑅 is a connected component
of Σ𝑢𝑠, then 𝐹𝑁

𝑍 is a (negative) re-parameterization of 𝐹𝑍 in 𝑅, then they have the same
phase portrait, but the orbits are oriented in opposite direction.

If 𝑝 ∈ Σ𝑐, then the orbit of 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 at 𝑝 is defined as the concatenation of the
orbits of 𝑋 and 𝑌 at 𝑝. Nevertheless, if 𝑝 ∈ Σ∖Σ𝑐, then it may occur a lack of uniqueness
of solutions. In this case, the flow of 𝑍 is multivalued and any possible trajectory passing
through 𝑝 originated by the orbits of 𝑋, 𝑌 and 𝐹𝑍 is considered as a solution of 𝑍. More
details can be found in [39, 55].

In the following definition, we introduce the so-called Σ-singularities of a Filippov
system.

Definition 1.1.5. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟, a point 𝑝 ∈ Σ is said to be:

i) a tangential singularity of 𝑍 provided that 𝑋𝑓(𝑝)𝑌 𝑓(𝑝) = 0 and 𝑋(𝑝), 𝑌 (𝑝) ̸= 0;

ii) a Σ-singularity of 𝑍 provided that 𝑝 is either a tangential singularity, an equilibrium
of 𝑋 or 𝑌 , or a pseudo-equilibrium of 𝑍.

Remark 1.1.6. A point 𝑝 ∈ Σ which is not a Σ-singularity of 𝑍 is also referred as a
regular-regular point of 𝑍.

We say that 𝛾 is a regular orbit of 𝑍 = (𝑋, 𝑌 ) if it is a piecewise smooth curve
such that 𝛾 ∩𝑀+ and 𝛾 ∩𝑀− are unions of regular orbits of 𝑋 and 𝑌 , respectively, and
𝛾 ∩ Σ ⊂ Σ𝑐.
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Chapter 2
Polycycles of Planar Filippov Systems

In 1882, the concept of limit cycle was introduced by Henri Poincaré and since then, the
detection of such an object has become one of the most interesting (and complicated)

problems in Dynamical Systems. Over the years, other global structures were investigated,
and the concept of polycycle have been established. Roughly speaking, a polycycle is a
collection of certain singularities and some connections between them, having a first return
map. This class of minimal sets has been extensively studied throughout the years, as in
the so-called Dulac’s Problem.

In Filippov systems, certain Σ-singularities present local invariant manifolds, and thus
it leads us to study their global connections, which have no counterpart in the smooth
context. Considering these new singularities appearing in the piecewise smooth context,
the concept of polycycle is easily carried to Filippov systems.

In this chapter, we provide results on generic bifurcation of planar Filippov systems
around polycycles. More specifically, we develop a mechanism to detect crossing phe-
nomena bifurcating from a polycycle and we apply it to obtain the complete bifurcation
diagram of vector fields around certain elementary polycycles.

2.1 Introduction
In the last years, the homoclinic-like connections through Σ-singularities of planar

Filippov system have received attention of the mathematical community. In fact, since
the local structure of many Σ-singularities is well established, it is reasonable to study
such phenomena in order to contribute to the development of the Theory of Filippov
Systems. Besides that, these objects frequently appear in applications (see [4, 11] and
references therein), and thus the knowledge of bifurcations around global connections is
also of interest to describe natural phenomena.

In [65], Kuznetsov et al. provided a catalog of bifurcations occurring in one-parameter
families of Filippov systems. Among them, they presented the critical crossing cycle
bifurcation (𝐶𝐶-bifurcation), which consists in a one-parameter family 𝑍𝛼 of Filippov
systems, for which 𝑍0 has a homoclinic-like connection at a fold-regular singularity. See
Figure 2.1. Nevertheless, the authors have provided only one example of family presenting
such a phenomenon and no study on generic bifurcation of this connection was done. We
highlight that a fold-regular singularity is one of the simplest Σ-singularities in the planar
case, and thus homoclinic-like connections through such a singularity are one of the most
elementary global connections in this scenario.
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𝛼 < 0 𝛼 = 0 𝛼 > 0

Figure 2.1: A one-parameter family 𝑍𝛼 presenting a crossing critical cycle bifurcation at
𝛼 = 0. For 𝛼 < 0, 𝑍𝛼 has a sliding cycle, and for 𝛼 > 0, 𝑍𝛼 has a crossing limit cycle.

In [55], Guardia et al. have approached the 𝐶𝐶-bifurcation phenomena presented
in [65] by means of Bifurcation Theory in a general setting. Finally, in [40], Freire et
al. provided non-degeneracy conditions for which a Filippov system presents a 𝐶𝐶-
bifurcation. They have also shown, through a Poincaré map analysis, that the unfolding
of a 𝐶𝐶-bifurcation provided by [65] holds for this generic scenario. In [2], Andrade has
provided a different proof for the results presented in [40]. It is worth mentioning that
such a global phenomenon has already appeared in the local unfolding of Σ-singularities
with higher degeneracies, as the fold-cusp singularity studied in [21, 22].

Recently, more complicated homoclinic-like connections through Σ-singularities were
considered. In [79], Novaes et al. studied a codimension-two homoclinic-like connection
at a visible-visible fold-fold singularity (see Figure 2.2-(a)) and its complete bifurcation
diagram was provided. In [4], Andrade et al. have studied a class of systems presenting a
homoclinic-like connection at a saddle-regular singularity (also know as boundary-saddle
singularity), some bifurcations were described and a physical model realizing such a con-
nection was given (see Figure 2.2-(b)). Other examples of global connections between
Σ-singularities appear in [11, 67, 68, 70].

(𝑎) (𝑏)

Σ Σ

Figure 2.2: A homoclinic-like connection at a visible-visible fold-fold singularity (𝑎) and
at a saddle-regular singularity (𝑏).

2.1.1 Description of the Results
Now we provide a briefly description of the results contained in this chapter. First,

we establish a variation of the classical concept of polycycle for Filippov systems. In
particular, we focus on Σ-polycycles, which are polycycles having all their singularities
contained in the switching manifold Σ. It means that a Σ-polycycle is given by an oriented
simple closed curve composed by a collection of Σ-singularities connected by regular orbits.
The objects mentioned in [4, 11, 40, 55, 65, 67, 68, 70, 79] are examples of Σ-polycycles.

Following the techniques used in [4, 79], we develop a mechanism, named Method of
Displacement Functions (see Section 2.3), to study the unfolding of Σ-polycycles in a



28

typical scenario. It is worth mentioning that such a methodology presents certain novelty
in comparison to the classical Melnikov theory and Lin’s method (see [69]) commonly used
to study global connections of smooth dynamical systems. Generally speaking, given a
Filippov system 𝑍0 having a Σ-polycycle Γ0, our method associates each 𝑍 near 𝑍0 to
a system of nonlinear equations (depending smoothly on 𝑍), which provides information
on the crossing orbits of 𝑍 in a neighborhood of Γ0.

In Theorems A and B, we provide some tools which can be used to characterize the
system given by the method of displacement functions. Finally, in Theorems C, D, and
E, we use such a mechanism to obtain a complete description of the bifurcation diagrams
of certain Σ-polycycles.

In what follows, we discuss Theorems C, D, and E, in order to provide a smooth
reading of the chapter.

Theorem C: Σ-Polycycles at a Regular-Cusp Singularity

Recall that 𝑍0 = (𝑋0, 𝑌0) has a regular-cusp singularity at 𝑝0 ∈ Σ if 𝑋0 has a contact
of order 3 with Σ at 𝑝0 and 𝑌0 is transverse to Σ at 𝑝0, or vice-versa. Denoting the space
of planar Filippov systems by Ω𝑟, we consider the class Ω𝑅𝐶 ⊂ Ω𝑟 of systems such that,
𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑅𝐶 if, and only if, 𝑍0 has a Σ-polycycle Γ0 with a unique Σ-singularity
𝑝0 ∈ Σ contained in Γ0, which is a regular-cusp singularity of 𝑍0.

Theorem C, which will be formally presented in Section 2.5.3, can be roughly stated
as follows

Let 𝑍0 ∈ Ω𝑅𝐶. There exist neighborhoods 𝒱 of 𝑍0 in Ω𝑟, 𝑉 of the origin in R2, and
a surjective function (𝛽, 𝜆1) : 𝒱 → 𝑉 with (𝛽, 𝜆1)(𝑍0) = (0, 0), such that the parameters
𝛽, 𝜆1 completely describe the bifurcation diagram of 𝑍0 around its Σ-polycycle Γ0, which
is illustrated in Figure 2.3.
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Figure 2.3: Bifurcation diagram of 𝑍0 ∈ Ω𝑅𝐶 around Γ0. 𝑉 , 𝐼, 𝐴 and the 𝛽-axis are
codimension-one bifurcation curves.
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A formal and complete description of the bifurcation diagram in the Figure 2.3 is done
in Theorem C.

Theorem D: Σ-Polycycles having Two Regular-Fold Singularities

In light of the extensively studied critical crossing cycle bifurcation, we consider a
generalization of such Σ-polycycle. More specifically, we allow the Σ-polycycle to have
two Σ-singularities of fold-regular type, instead of only one.

We consider the class Ω𝐷𝑅𝐹 ⊂ Ω𝑟 of systems such that, 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝐷𝑅𝐹 if, and
only if, 𝑍0 has a Σ-polycycle Γ0 with exactly two Σ-singularities, 𝑝1 ∈ Σ and 𝑝2 ∈ Σ,
contained in Γ0 such that

i) 𝑝1 and 𝑝2 are regular-fold singularities of 𝑍0;

ii) there exist two curves 𝛾1 and 𝛾2 connecting 𝑝1 and 𝑝2, oriented from 𝑝1 to 𝑝2 and from
𝑝2 to 𝑝1, respectively, such that Γ0 = 𝛾1 ∪ 𝛾2, 𝛾1 is tangent to Σ at 𝑝1 and transverse
to Σ at 𝑝2, and 𝛾2 is tangent to Σ at 𝑝2 and transverse to Σ at 𝑝1.

Theorem D, which will be formally presented in Section 2.5.5, can be roughly stated
as follows

Let 𝑍0 ∈ Ω𝐷𝑅𝐹 . There exist neighborhoods 𝒱 of 𝑍0 in Ω𝑟, 𝑉 of the origin in R2, and
a surjective function (𝛽1, 𝛽2) : 𝒱 → 𝑉 with (𝛽1, 𝛽2)(𝑍0) = (0, 0), such that the parameters
𝛽1, 𝛽2 completely describe the bifurcation diagram of 𝑍0 around its Σ-polycycle Γ0, which
is illustrated in Figure 2.4.
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Figure 2.4: Bifurcation diagram of 𝑍0 ∈ Ω𝐷𝑅𝐹 around Γ0. In this case, 𝛾1, 𝛾2, the 𝛽1-axis
and the 𝛽2-axis are codimension-one bifurcation curves.
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A formal description of the bifurcation diagram in the Figure 2.4 is done in Theorem
D.

Theorem E: Σ-polycycles at a Visible-Invisible Fold-Fold Singularity

In order to complete the description of Σ-polycycles having a unique fold-fold singu-
larity, we consider the visible-invisible case (the visible-visible case was treated in [79] and
the invisible-invisible case does not appear in Σ-polycycles).

Consider the class Ω𝐹 𝐹 ⊂ Ω𝑟 of systems such that, 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝐹 𝐹 if, and only
if, 𝑍0 has a Σ-polycycle Γ0 with a unique Σ-singularity, 𝑝0 ∈ Σ, contained in Γ0, such that

i) 𝑝0 is a fold-fold singularity of visible-invisible type;

ii) Γ0 is a hyperbolic limit cycle of 𝑋0.

Theorem E (combined with Propositions 2.6.5, 2.6.6 and 2.6.7), which will be formally
presented in Section 2.6.2, can be roughly stated as follows

Let 𝑍0 ∈ Ω𝐹 𝐹 . There exist neighborhoods 𝒱 of 𝑍0 in Ω𝑟, 𝑉 of the origin in R2, and
a surjective function (𝛼, 𝛽) : 𝒱 → 𝑉 with (𝛼, 𝛽)(𝑍0) = (0, 0), such that the parameters
𝛼, 𝛽 completely describe the bifurcation diagram of 𝑍0 around its Σ-polycycle Γ0, which is
illustrated in Figure 2.5.

A formal description of the bifurcation diagram in the Figure 2.5 is done in Theorem
D, and Propositions 2.6.5, 2.6.6 and 2.6.7.

We emphasize that a first return map (relative to 𝑍0) is defined in both sides of Γ0 (see
Figure 1-(c)). In this case, the stability of Γ0 as a Σ-polycycle of 𝑍0 is totally determined
by the stability of Γ0 as a hyperbolic limit cycle of the smooth vector field 𝑋0. In light
of this, some situations presented in [33, 37] are not feasible, since the vector field 𝑌0 can
not modify the stability of (the external side of) Γ0.

2.1.2 Organization of the Chapter
The results of this chapter are organized as follows. Preliminary concepts are provided

in Section 2.2.
In Section 2.3, we develop the method of displacement functions which makes use of

transition maps, mirror maps and displacement functions introduced in Sections 2.3.1,
2.3.2 and 2.3.3, respectively.

Section 2.4 is devoted to the characterization of the transition maps and to state and
prove Theorems A and B.

The Σ-polycycles containing only Σ-singularities of regular-tangential type are an-
alyzed in Section 2.5. More specifically, in Section 2.5.1 we characterize the system
of equations, given by the mechanism of displacement functions, for such class of Σ-
polycycles. In Section 2.5.2, we prove general properties of Σ-polycycles containing a
unique Σ-singularity of regular-tangential type and in Section 2.5.3, we state and prove
Theorem C. Finally, Section 2.5.4 is devoted to extend the properties described in Section
2.5.2 to a wider class of systems and Theorem D is stated and proved in Section 2.5.5.

Finally, Σ-polycycles having a unique fold-fold singularity are considered in Section
2.6. In particular, Theorem E is stated and proved in Section 2.6.2.
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Figure 2.5: Bifurcation diagram of 𝑍0 ∈ Ω𝐹 𝐹 around Γ0. In this case, 𝛽𝑖, 1 ≤ 𝑖 ≤ 5, the
𝛼-axis and the 𝛽-axis are codimension-one bifurcation curves.

2.2 Preliminaries
In this section we introduce an overall description of basic concepts. Furthermore, we

establish some definitions which will be used to study global closed connections of planar
Filippov systems in a systematic way. Throughout this chapter, we consider piecewise
smooth vector fields defined on an open bounded connected set 𝑀 ⊂ R2 with switching
manifold Σ = ℎ−1(0) where ℎ : 𝑀 → R is a smooth function having 0 as a regular value.

Remark 2.2.1. Notice that, in this chapter, Ω𝑟 and 𝜒𝑟 stand for the sets of planar
piecewise smooth vector fields and planar smooth vector fields, respectively.

Definition 2.2.2. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟, a point 𝑝 ∈ Σ is said to be:

i) a tangential singularity of 𝑍 provided that 𝑋ℎ(𝑝)𝑌 ℎ(𝑝) = 0 and 𝑋(𝑝), 𝑌 (𝑝) ̸= 0;

ii) a Σ-singularity of 𝑍 provided that 𝑝 is either a tangential singularity, an equilibrium
of 𝑋 or 𝑌 , or a pseudo-equilibrium of 𝑍.

Definition 2.2.3. 𝑋 ∈ 𝜒𝑟 has an 𝑛-order contact with Σ at 𝑝 if 𝑋 𝑖ℎ(𝑝) = 0, for
𝑖 = 1, · · · , 𝑛− 1, and 𝑋𝑛ℎ(𝑝) ̸= 0. In particular, for 𝑛 = 2, 3, 𝑝 is said to be a fold point
and cusp point of 𝑋, respectively.
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Definition 2.2.4. Let 𝑝 ∈ Σ be a tangential singularity of 𝑍 = (𝑋, 𝑌 ), we say that 𝑝 is:

i) a regular-tangential singularity of order 𝑛 of 𝑍 provided that 𝑋 (resp. 𝑌 ) has
a 𝑛-order contact with Σ at 𝑝 and 𝑌 ℎ(𝑝) ̸= 0 (resp. 𝑋ℎ(𝑝) ̸= 0);

ii) a tangential-tangential singularity of 𝑍 provided that 𝑋ℎ(𝑝) = 𝑌 ℎ(𝑝) = 0.

Remark 2.2.5. We remark that, in the literature, it is common to distinguish regular-
tangential singularities (when 𝑌 ℎ(𝑝) ̸= 0) from tangential-regular singularities (when
𝑋ℎ(𝑝) ̸= 0), nevertheless, we make no difference between them throughout this chapter.

In Definition 2.2.4 𝑖, for 𝑛 = 2 and 𝑛 = 3, 𝑝 is said to be a regular-fold singularity
and regular-cusp singularity of 𝑍, respectively. In Definition 2.2.4 𝑖𝑖, if 𝑝 is a fold
point of both 𝑋 and 𝑌, then 𝑝 is said to be a fold-fold singularity of 𝑍. In this case 𝑝
is called

i) visible-visible if 𝑋2ℎ(𝑝) > 0 and 𝑌 2ℎ(𝑝) < 0.

ii) visible-invisible if 𝑋2ℎ(𝑝) > 0 and 𝑌 2ℎ(𝑝) > 0.

iii) invisible-visible if 𝑋2ℎ(𝑝) < 0 and 𝑌 2ℎ(𝑝) > 0.

iv) invisible-invisible if 𝑋2ℎ(𝑝) < 0 and 𝑌 2ℎ(𝑝) > 0.

Now, motivated by [55], we define the concept of local separatrix at a point 𝑝 ∈ Σ,
which will play an important role in this paper.

Definition 2.2.6. If 𝑝 ∈ Σ, the stable (unstable) separatrix 𝑊 𝑠
±(𝑝) (𝑊 𝑢

±(𝑝)) of
𝑍 = (𝑋+, 𝑋−) at a tangential singularity 𝑝 in Σ± is defined as

𝑊 𝑠,𝑢
± (𝑝) = {𝑞 = 𝜙𝑋±(𝑡(𝑞), 𝑝); 𝜙𝑋±(𝐼(𝑞), 𝑝) ⊂ 𝑀± and 𝛿𝑠,𝑢𝑡(𝑞) > 0},

where, 𝛿𝑢 = 1, 𝛿𝑠 = −1, and 𝐼(𝑞) is the open interval with extrema 0 and 𝑡(𝑞).

If 𝛾 is a regular orbit of 𝑍 = (𝑋, 𝑌 ), then 𝜕𝛾 is referred as the ending points of 𝛾.
Accordingly, a cycle is a closed regular orbit Γ of 𝑍. If Γ ∩ Σ ̸= ∅, then Γ is called a
crossing cycle of 𝑍. Now, we define the concept of cycle for planar Filippov systems.

Definition 2.2.7. A closed curve Γ is said to be a polycycle of 𝑍 = (𝑋, 𝑌 ) if it is
composed by a finite number of points, 𝑝1, 𝑝2, . . . , 𝑝𝑛 and a finite number of regular orbits
of 𝑍, 𝛾1, 𝛾2, . . . , 𝛾𝑛, such that for each 1 ≤ 𝑖 ≤ 𝑛, 𝛾𝑖 has ending points 𝑝𝑖 and 𝑝𝑖+1.
Moreover:

i) Γ is a 𝑆1-immersion and it is oriented by increasing time along the regular orbits;

ii) if 𝑝𝑖 ∈ Σ then it is a Σ-singularity;

iii) if 𝑝𝑖 ∈ 𝑀± then it is an equilibrium of either 𝑋|𝑀+ or 𝑌 |𝑀−;

iv) there exists a non-constant first return map defined, at least, in one side of Γ.

In particular, if 𝑝𝑖 ∈ Σ, for all 1 ≤ 𝑖 ≤ 𝑛, then Γ is said to be a Σ-polycycle.

Remark 2.2.8. Condition (i) in Definition 2.2.7 provides the minimality of polycycles
of 𝑍 ∈ Ω𝑟 (i.e. a polycycle Γ can not be written as union of two or more polycycles),
avoiding connections as illustrated in Figure 2.6. This condition also establish the notion
of sides of Γ, ext(Γ) and int(Γ), which is invoked in Condition (𝑖𝑣).
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Figure 2.6: Example of a closed connection Γ0 which is not an 𝑆1−immersion.

The next example illustrates the importance of condition (iv) in Definition 2.2.7.

Example 2.2.9. Let 𝑍0 = (𝑋0, 𝑌0) be a nonsmooth vector field with ℎ(𝑥, 𝑦) = 𝑦 satisfying
the following conditions:

i) (0, 0) is a visible regular-fold singularity of 𝑋0 and 𝜋1 ∘𝑋0(0, 0) > 0;

ii) (𝑎, 0), 𝑎 > 0, is a visible regular-fold singularity of 𝑌0 and 𝜋1 ∘ 𝑌0(𝑎, 0) > 0;

iii) 𝑊 𝑢
+(0, 0) reaches Σ transversally at (𝑎, 0);

iv) 𝑊 𝑢
−(𝑎, 0) reaches Σ transversally at (0, 0).

Therefore, 𝑍0 presents a closed connection Γ0 (see Figure 2.7). Nevertheless, there exists
𝜀 > 0 such that for each (𝑥, 0) ∈ Σ, with 0 < 𝑥 < 𝜀, the orbit of 𝑋0 through (𝑥, 0) reaches
the sliding region of Σ and slides to the regular-fold singularity (𝑎, 0), then it returns to
(0, 0) through the flow of 𝑌0. Hence, it is defined a first return map 𝒫 : [0, 𝜀) × {0} →
[0, 𝜀) × {0} given by 𝒫(𝑥, 0) = (0, 0). Consequently, Γ0 is not a Σ-polycycle.

We remark that there exist nonsmooth vector fields 𝑍 sufficiently close to 𝑍0 which
present Σ-polycycles and crossing limit cycles near Γ0 (see Figure 2.7). However, the
methods described in this paper cannot be applied to this kind of connection.

(𝑎) (𝑏) (𝑐)

Figure 2.7: Example of (𝑎) a closed connection Γ0, which has a constant first-return map
defined in the interior side of Γ0, (𝑏) a Σ-polycycle, and (𝑐) a crossing limit cycle of 𝑍
close to 𝑍0.

Definition 2.2.10. A Σ-polycycle Γ of 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 is said to be a regular-
tangential Σ-polycycle or a tangential-tangential Σ-polycycle provided that all
the Σ-singularities of 𝑍 contained in Γ are regular-tangential singularities or tangential-
tangential singularities, respectively.
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One of our main goals in this paper is to characterize qualitatively the systems in a
neighborhood of a polycycle. To do this we introduce the following notions of equivalence
and modulus of stability.

Definition 2.2.11. Let 𝒦 be a compact set of 𝑀 . We say that 𝑍 and 𝑍0 are (topologically)
equivalent at 𝒦 if there exist neighborhoods 𝑈 and 𝑉 of 𝒦 and an orientation preserving
homeomorphism ℎ : 𝑈 → 𝑉 which carries orbits of 𝑍 onto orbits of 𝑍0.

Definition 2.2.12. A compact invariant set 𝒦 of 𝑍 is said to be 𝑘-stable if for any
small neighborhood of 𝑍 in Ω𝑟 there exists a 𝑘-parameter family of topologically distinct
systems such that every system in this neighborhood of 𝑍 is equivalent at 𝒦 to a system in
this 𝑘-parameter family. If 𝑘 is the smallest integer with this property, then we say that
𝒦 has modulus of stability 𝑘. Define 𝒮(𝒦) := 𝑘.

2.3 Method of Displacement Functions
The aim of this section is to provide a systematic methodology for studying aspects

of structural stability of Σ-polycycles in 2𝐷 nonsmooth vector fields via displacement
functions as well as to describe the bifurcations of these objects.

In what follows, given a Σ-polycycle Γ0 of 𝑍0 ∈ Ω𝑟, we outline the method developed
in this work for detecting all the crossing limit cycles with the same topological type of
Γ0 bifurcating from Γ0. By “the same topological type” we understand the cycles which
can be continuously deformed into Γ0 inside a small annulus 𝒜 around Γ0. In general,
our method consists in reducing the problem of finding crossing limit cycles to the study
a system of nonlinear equations.

If Γ0 contains 𝑘 Σ-singularities 𝑝𝑖, 𝑖 = 1, · · · , 𝑘+1 (𝑝1 = 𝑝𝑘+1), then for each nonsmooth
vector field 𝑍 ∈ Ω𝑟 near 𝑍0, we associate the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1(𝑍)(𝑥1, 𝑥2) = 0;
Δ2(𝑍)(𝑥2, 𝑥3) = 0;

...
Δ𝑘−1(𝑍)(𝑥𝑘−1, 𝑥𝑘) = 0;
Δ𝑘(𝑍)(𝑥𝑘, 𝑥1) = 0;
𝑥𝑖 ∈ 𝜎𝑖(𝑍), 𝑖 = 1, · · · , 𝑘,

(2.3.1)

where 𝜎𝑖(𝑍) is a finite union of real intervals such that 𝒜 ∩ Σ𝑐 ⊂ ∪𝑘
𝑖=1𝜎𝑖(𝑍0), and Δ𝑖 is a

displacement function which measures the splitting of the connection between 𝑝𝑖 and 𝑝𝑖+1
thorugh Γ0, for 𝑖 = 1, · · · , 𝑘. In this case, (2.3.1) is referred as crossing system.

The remainder of this section is devoted to construct the displacement functions Δ𝑖

in (2.3.1), which will be given via transition maps and mirror maps. We shall see that
each solution 𝑥(𝑍) = (𝑥1(𝑍), · · · , 𝑥𝑘(𝑍)) of (2.3.1) will correspond to a closed orbit Γ(𝑍)
of 𝑍 contained in 𝒜 satisfying 𝑥𝑖(𝑍) = Γ(𝑍) ∩ 𝜎𝑖(𝑍), 𝑖 = 1, · · · , 𝑘. In addition, if 𝑥(𝑍) is
an isolated solution of (2.3.1) such that 𝑥𝑖(𝑍) ∈ int(𝜎𝑖(𝑍)) for each 𝑖 = 1, · · · , 𝑘, then it
corresponds to a crossing limit cycle of 𝑍. On the other hand, if there exists 𝑖 ∈ {1, · · · , 𝑘}
such that 𝑥𝑖(𝑍) ∈ 𝜕𝜎𝑖(𝑍) then this solution corresponds to a Σ-polycycle. Reciprocally,
if Γ is a closed orbit of 𝑍 in 𝒜 and 𝑥𝑖 = Γ ∩ 𝜎𝑖(𝑍) for 𝑖 = 1, · · · , 𝑘, then (𝑥1, . . . , 𝑥𝑘) is a
solution of (2.3.1). Therefore, system (2.3.1) describes the whole crossing dynamics of 𝑍
in 𝒜.
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2.3.1 Transition Maps
In order to understand the behavior of the nonsmooth vector fields near 𝑍0 in 𝒜 we

shall study how the crossing trajectories of 𝑍0 behave near the Σ-singularities in Γ0. With
this purpose, we establish a precise definition for transition maps at points 𝑝 ∈ Σ.

We shall see that a transition map is defined for each component, 𝑋 and 𝑌 , of a
nonsmooth vector field 𝑍 = (𝑋, 𝑌 ). In light of this, we consider a smooth vector field 𝑋0 ∈
𝜒𝑟 on 𝑀 and we study the behavior of its trajectories passing through the codimension
one manifold Σ ⊂ 𝑀 given in Section 2.2.

Assume that 𝑋0 satisfies the following set of hypotheses (T) at a point 𝑝0 ∈ Σ:

(𝑇1) 𝑋0(𝑝0) ̸= (0, 0);

(𝑇2) there exists 𝑡0 ∈ R such that 𝑞0 = 𝜙𝑋0(𝑡0; 𝑝0) ∈ 𝑀±,

where 𝜙𝑋0 denotes the flow of 𝑋0.
Let 𝜏 ⊂ 𝑀± be a local transversal section of 𝑋0 at 𝑞0. From the Implicit Function

Theorem for Banach Spaces there exist neighborhoods 𝒰0 ⊂ 𝜒𝑟 of 𝑋0 and 𝑉0 ⊂ 𝑀 of 𝑝0,
𝜀 > 0, and a unique smooth function 𝑠 : 𝒰0 ×𝑉0 → (𝑡0 − 𝜀, 𝑡0 + 𝜀) such that 𝑠(𝑋0, 𝑝0) = 𝑡0
and 𝜙𝑋(𝑠(𝑋, 𝑝); 𝑝) ∈ 𝜏 for every (𝑋, 𝑝) ∈ 𝒰0 × 𝑉0. Then, we define the full transition
map of 𝑋 ∈ 𝒰0 at 𝑝0 as the map

𝑇𝑋
𝑝0 : (Σ ∩ 𝑉0)𝑝0 −→ 𝜏

𝑝 ↦ −→ 𝜙𝑋(𝑠(𝑋, 𝑝); 𝑝),

where (Σ ∩ 𝑉0)𝑝0 is the connected component of Σ ∩ 𝑉0 containing 𝑝0.
Throughout this paper, when 𝑝0 and 𝑝1 belong to the same orbit of 𝑋, >𝑝0𝑝1|𝑋 will

denote the oriented arc-orbit of 𝑋 with extrema 𝑝0 and 𝑝1, i. e. >𝑝0𝑝1|𝑋= 𝜙𝑋(𝐼; 𝑝0)
where 𝐼 = [0, 𝑡1], 𝑝0 = 𝜙𝑋(0, 𝑝0), and 𝑝1 = 𝜙𝑋(𝑡1, 𝑝0). We shall omit the index 𝑋 if there
is no ambiguity. Since we are constructing transition maps for nonsmooth vector fields, it
is only considered orbits of 𝑋 which are contained in either 𝑀+ or 𝑀−. So, the domain
of the full transition map has to be restricted to the following set

𝜎𝑋 =
{︂
𝑝 ∈ (Σ ∩ 𝑉0)𝑝0 ;

>
𝑝𝑇𝑋

𝑝0 (𝑝) is contained in 𝑀±
}︂
.

Accordingly, the transition map of 𝑋 at 𝑝0 is defined as 𝑇𝑋
𝑝0 := 𝑇𝑋

𝑝0 |𝜎𝑋
.

It is worth to notice that 𝑝0 may not be contained in the domain 𝜎𝑋 of the transition
map 𝑇𝑋

𝑝0 (see Figure 2.8). However, if 𝑋 is defined in 𝑀± and 𝑞0 ∈ 𝑀± (recall that 𝑞0
defines the local transversal section 𝜏), then 𝑝0 ∈ 𝜎𝑋 provided that the arc-orbit >𝑝0𝑞0 of
𝑋 is contained in 𝑀±.

In Section 2.4, we characterize the full transition map 𝑇𝑋0
𝑝0 for vector fields 𝑋0 ∈ 𝜒𝑟

having a 𝑛-order contact with Σ at 𝑝0. Moreover, we describe how 𝑇𝑋
𝑝0 behaves for 𝑋 in

a small neighborhood of 𝑋0 in 𝜒𝑟.

2.3.2 Mirror Maps
Assume that 𝑋0 has a 2𝑛-order contact with Σ at 𝑝0 for some 𝑛 ∈ N. We shall see

that, for each 𝑝 ∈ Σ near 𝑝0, with 𝑝 ̸= 𝑝0, there exists a time 𝑡(𝑝) such that 𝑡(𝑝0) = 0 and
𝜙𝑋0(𝑡(𝑝); 𝑝) ∈ Σ. Moreover, the flow of 𝑋0 will define a germ of diffeomorphism at 𝑝0,

𝜌 : (Σ, 𝑝0) −→ (Σ, 𝑝0)
𝑝 ↦ −→ 𝜙𝑋0(𝑡(𝑝); 𝑝).
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𝜏 𝜏

Σ Σ𝑝0 𝑝0

𝑞0

𝑞0

Figure 2.8: Unfolding of a transition map at a cusp point. Left: 𝑝0 /∈ 𝜎𝑋 . Right: 𝑝0 ∈ 𝜎𝑋 .

In this case, 𝜌(𝑝0) = 𝑝0 and we say that 𝜌 is the involution associated with 𝑋0 at 𝑝0.
Through a local change of coordinates and a rescaling of time, we can assume that

𝑝0 = (0, 0), ℎ(𝑥, 𝑦) = 𝑦, and

𝑋0(𝑥, 𝑦) =
(︃

1
ℓ0𝑥

2𝑛−1 + 𝒪(𝑥2𝑛, 𝑦)

)︃
, (2.3.2)

where ℓ0 > 0. In this case, for each 𝑝 ∈ Σ the orbit connecting 𝑝 and 𝜌(𝑝) will be contained
in 𝑀− (see Figure 2.9).

Σ𝑝0𝑝 𝜌(𝑝)

Figure 2.9: Involution 𝜌 of 𝑋0 at 𝑝0.

Notice that 𝜙𝑋0(𝑡(𝑥); (𝑥, 0)) ∈ Σ if, and only if, 𝜋2 ∘𝜙𝑋0(𝑡(𝑥); (𝑥, 0)) = 0. In this case,
𝜌(𝑥) = 𝑥+ 𝑡(𝑥). Expanding 𝜙𝑋0 around 𝑡 = 0 we get

𝜋2 ∘ 𝜙𝑋0(𝑡; (𝑥, 𝑦)) = 𝑦 +
2𝑛∑︁
𝑖=1

𝑋 𝑖
0ℎ(𝑥, 𝑦)
𝑖! 𝑡𝑖 + 𝒪(𝑡2𝑛+1). (2.3.3)

From (2.3.2), we see that

𝑋 𝑖
0ℎ(𝑥, 𝑦) = ℓ0

(2𝑛− 1)!
(2𝑛− 𝑖)! 𝑥

2𝑛−𝑖 + 𝒪(𝑥2𝑛−𝑖+1, 𝑦). (2.3.4)

Now, define the map

𝑆(𝑠, 𝑥) = 2𝑛
ℓ0𝑥2𝑛

𝜋2 ∘ 𝜙𝑋0(𝑠𝑥; (𝑥, 0)).

Notice that, if 𝑆(𝑠, 𝑥) = 0, 𝑥 ̸= 0, and 𝑠 ̸= 0, then 𝜋2 ∘ 𝜙𝑋0(𝑠𝑥, (𝑥, 0)) = 0. From (2.3.3)
and (2.3.4) we obtain that

𝑆(𝑠, 𝑥) = (1 + 𝑠)2𝑛 − 1
𝑠

+ 𝒪(𝑥).
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Since 𝑆(−2, 0) = 0 and 𝜕𝑠𝑆(−2, 0) = 𝑛 > 0, it follows from the Implicit Function
Theorem that there exists 𝑠(𝑥) = −2+𝒪(𝑥) such that 𝑆(𝑠(𝑥), 𝑥) = 0. From the definition
of 𝑆, for 𝑡(𝑥) = 𝑥𝑠(𝑥), we have that 𝜙𝑋0(𝑡(𝑥); (𝑥, 0)) ∈ Σ, and then the involution 𝜌 is
straightly defined.

From the construction above, it follows that there exists a compact neighborhood
𝑉0 ⊂ 𝑀 of 𝑝0 such that the involution 𝜌 : (Σ ∩ 𝑉0)𝑝0 → (Σ ∩ 𝑉0)𝑝0 is well defined and
characterized as

𝜌(𝑥) = 𝑥+ 𝑡(𝑥) = −𝑥+ 𝒪(𝑥2). (2.3.5)
Now, we show that the a vector field 𝑋 ∈ 𝜒𝑟 sufficiently near 𝑋0 still induces an

involution in (Σ ∩ 𝑉0)𝑝0 but a finite set of points. In what follows we also characterize it.
For simplicity, identify (Σ ∩ 𝑉0)𝑝0 with the interval [−𝜀0, 𝜀0] and 𝑝0 with 0.

From definition of 𝜌, there exists 𝜀*
0 > 0 such that the intervals 𝐼 = [−𝜀0,−𝜀0/2] and

𝜌(𝐼) = [𝜀*
0, 𝜀0] are connected by orbits of 𝑋0 contained in 𝑀−, and 𝑋0 is transverse to Σ at

every point of 𝐼 ∪𝜌(𝐼). Since 𝐼 is compact, given 𝜀 > 0, there exists a small neighborhood
𝒰1 ⊂ 𝜒𝑟 of 𝑋0 such that, for each 𝑋 ∈ 𝒰1, there exist 𝜀*

𝑋 , 𝜀𝑋 > 0 satisfying

i) |𝜀*
𝑋 − 𝜀*

0|, |𝜀𝑋 − 𝜀0|< 𝜀;

ii) each point of 𝐼 is connected to a unique point of [𝜀*
𝑋 , 𝜀𝑋 ] through an orbit of 𝑋

contained in 𝑀−;

iii) 𝑋 is transverse to Σ at each point of 𝐼 ∪ [𝜀*
𝑋 , 𝜀𝑋 ].

Notice that [−𝜀0/2, 𝜀*
𝑋 ] and the orbit connecting −𝜀0/2 and 𝜀*

𝑋 give rise to a compact
region 𝐾− of 𝑀− such that 𝑋 is regular at every point of 𝐾− (see Figure 2.10). Thus,
each orbit of 𝑋 entering in 𝐾− must leave it through another point. It allows us to see
that 𝑋ℎ has at least one zero in (−𝜀0/2, 𝜀*

𝑋) and it has to be an even order contact of 𝑋
with Σ having the same concavity of 𝑝0. Throughout this section, an even order contact of
a vector field 𝑋 with Σ having the same concavity of 𝑝0 will be called invisible, otherwise
it will be called visible.

Σ
0− 𝜀0

2−𝜀0 𝜀𝑋𝜀*
𝑋

𝐾−

Figure 2.10: Compact region 𝐾− for 𝑋 ∈ 𝒰1.

Since 𝑋0ℎ(𝑥) = ℓ0𝑥
2𝑛−1 + 𝒪(𝑥2𝑛), there exist a neighborhood 𝒰0 ⊂ 𝒰1 of 𝑋0, 𝒞𝑟

functions 𝑎𝑖 : 𝒰0 → (−𝜀, 𝜀) such that 𝑎𝑖(𝑋0) = 0, 𝑖 = 0, · · · , 2𝑛 − 2, and a positive
function ℓ : 𝒰0 → (ℓ0 − 𝜀, ℓ0 + 𝜀) with ℓ(𝑋0) = ℓ0 satisfying

𝑋ℎ(𝑥) = 𝑃𝑋(𝑥) + 𝒪(𝑥2𝑛),

where 𝑃𝑋(𝑥) = ∑︀2𝑛−2
𝑖=0 𝑎𝑖(𝑋)𝑥𝑖 + ℓ(𝑋)𝑥2𝑛−1. Furthermore, we can take the initial neigh-

borhood 𝑉0 sufficiently small such that the zeroes of 𝑋ℎ in [−𝜀0, 𝜀0] are controlled by the
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polynomial 𝑃𝑋 . Hence, it follows that there exist exactly 𝑁𝑋 points 𝑟𝑖 ∈ (−𝜀0/2, 𝜀*
𝑋),

with 1 ≤ 𝑁𝑋 ≤ 2𝑛 − 1, such that 𝑋 has a 𝑛𝑖-order contact with Σ at 𝑟𝑖 for some
𝑛𝑖 ≥ 2, 𝑖 = 1, · · · , 𝑁𝑋 . In this case, 𝑛𝑖 ≤ 2𝑛. Accordingly, let ℰ𝑋 be the finite subset of
(−𝜀0/2, 𝜀*

𝑋) containing

i) 𝑟𝑖, 𝑖 = 1, · · · , 𝑁𝑋 , such that either 𝑛𝑖 is odd or 𝑛𝑖 is even and 𝑋 has a visible contact
with Σ at 𝑟𝑖;

ii) 𝑝 ∈ (−𝜀0/2, 𝜀*
𝑋), such that 𝑝 and 𝑟𝑖 belong to the same orbit of 𝑋, for some 𝑖 =

1, · · · , 𝑁𝑋 , and the arc-orbit of 𝑋 with extrema 𝑝 and 𝑟𝑖 is contained in 𝑀− (see
Figure 2.11).

Σ
𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

Figure 2.11: Example of some points in ℰ𝑋 , 𝑝1, 𝑝3, 𝑝5 satisfy condition (𝑖𝑖) and 𝑝2, 𝑝4
satisfy condition (𝑖).

If 𝑟𝑖 ∈ (−𝜀0, 𝜀𝑋) ∖ ℰ𝑋 , for some 𝑖 = 1, · · · , 𝑁𝑋 , then 𝑋 has an invisible even order
contact with Σ at 𝑟𝑖. So, applying the same process above we find 𝜀−

𝑖 , 𝜀
+
𝑖 > 0 sufficiently

small and an involution 𝜌𝑖
𝑋 : (𝑟𝑖 − 𝜀−

𝑖 , 𝑟𝑖 + 𝜀+
𝑖 ) → (𝑟𝑖 − 𝜀−

𝑖 , 𝑟𝑖 + 𝜀+
𝑖 ) induced by the flow of

𝑋 at 𝑟𝑖. In this case, 𝜌𝑖
𝑋 is a diffeomorphism with a unique fixed point at 𝑟𝑖, and

𝜌𝑖
𝑋(𝑥) = 𝑟𝑖 − (𝑥− 𝑟𝑖) + 𝒪((𝑥− 𝑟𝑖)2). (2.3.6)

Now, if 𝑝 ∈ [−𝜀0, 𝜀𝑋 ] ∖ (ℰ𝑋 ∪ {𝑟1, · · · , 𝑟𝑁𝑋
}), then 𝑋 is transverse to Σ at 𝑝 and there

exists a unique point 𝑝* ∈ (−𝜀0/2, 𝜀*
𝑋) ∖ (ℰ𝑋 ∪ {𝑟1, · · · , 𝑟𝑁𝑋

}) such that 𝑋 is transverse to
Σ at 𝑝*, 𝑝 and 𝑝* belong to the same orbit of 𝑋, and the arc-orbit of 𝑋 with extrema 𝑝
and 𝑝* is contained in 𝑀−. It allows us to extend the involutions 𝜌𝑖

𝑋 to an involution

𝜌𝑋 : [−𝜀0, 𝜀𝑋 ] ∖ ℰ𝑋 → [−𝜀0, 𝜀𝑋 ] ∖ ℰ𝑋 ,

induced by the flow of 𝑋. We refer 𝜌𝑋 as the involution of 𝑋 at 𝑝0.
Notice that 𝜌𝑋 is a diffeomorphism for which 𝑟𝑖, 𝑖 = 1, · · · , 𝑁𝑋 , are its only fixed

points. Moreover, these points are invisible ever order contact of 𝑋 with Σ and the
expansion of 𝜌𝑋 at these points is given by (2.3.6). Thus 𝜌𝑋 is completely characterized
and 𝜌𝑋0 = 𝜌, where 𝜌 is given by (2.3.5).

Remark 2.3.1. Consider the points 𝑟𝑖 for which 𝑋 has a visible even contact with Σ and
the points 𝑝 such that 𝑝 and 𝑟𝑖 belong to the same orbit of 𝑋 and the arc-orbit of 𝑋 with
extrema 𝑝 and 𝑟𝑖 is contained in 𝑀−. Notice that they are connected with two or more
distinct points of Σ through a unique orbit of 𝑋 contained in 𝑀−. Thus, 𝜌𝑋 cannot be
uniquely extended to such points. Consequently, they had to be included in the set ℰ𝑋 .
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On the other hand, the involution 𝜌𝑋 could be extended to points 𝑟 for which 𝑋 has
an odd order contact with Σ. Indeed, the orbit of 𝑋 through 𝑟 enters in 𝐾− and leaves it
through a unique point of Σ. Nevertheless, in this case, 𝜌𝑋 would not be differentiable at
𝜌𝑋(𝑟) as we can see in the following example: Assume that 𝑋 has a cusp point at 𝑟, so
the orbit of 𝑋 through 𝑟 reaches Σ at ̃︀𝑟 transversally, and the arc-orbit of 𝑋 with extrema
𝑟 and ̃︀𝑟 is contained in 𝑀−. Then, we define a germ of involution 𝜌𝑋 : (Σ, 𝑟) → (Σ, ̃︀𝑟)
induced by 𝑋 (see Figure 2.11 with 𝑝3 = ̃︀𝑟 and 𝑝4 = 𝑟). Combining the results of Section
2.4 with transversality arguments, we shall see that 𝜌𝑋 is differentiable at 𝑟 and, moreover,
𝜌𝑋(𝑥) = ̃︀𝑟 + 𝐴(𝑥 − 𝑟)3 + 𝒪((𝑥 − 𝑟)4), with 𝐴 ̸= 0. Consequently, 𝜌𝑋 has the following
expansion at ̃︀𝑟

𝜌𝑋(𝑥) = 𝑟 +
(︂
𝑥− ̃︀𝑟
𝐴

)︂1/3
+ 𝒪((𝑥− ̃︀𝑟)2/3),

which implies that 𝜌𝑋 is not differentiable at ̃︀𝑟.
We aim to use these involutions for detecting closed connections of nonsmooth vector

fields. Thus, in order to avoid pseudo-connections (see [55] for more details), we restrict
𝜌𝑋 to the set

𝜎𝑖𝑛𝑣
𝑋 = {𝑝 ∈ [−𝜀0, 𝜀𝑋 ] ∖ ℰ𝑋 ; 𝑋ℎ(𝑝) ≤ 0} .

Accordingly, the restriction 𝜌𝑋 := 𝜌𝑋 |𝜎𝑖𝑛𝑣
𝑋

is referred as mirror map of 𝑋 at 𝑝0. The
condition 𝑋ℎ(𝑝) ≤ 0 on the domain 𝜎𝑖𝑛𝑣

𝑋 comes from the initial assumptions which imply
that the orbit connecting 𝑝 and 𝜌𝑋(𝑝) is contained in 𝑀− for every 𝑝 ∈ 𝜎𝑖𝑛𝑣

𝑋 . When
considering nonsmooth systems these orbits could be contained in 𝑀+. In this case, the
condition on 𝜎𝑖𝑛𝑣

𝑋 is changed to 𝑋ℎ(𝑝) ≥ 0.

Example 2.3.2. Consider the family of vector fields 𝑋𝜆(𝑥, 𝑦) = (1, 𝑥3 − 𝜆𝑥), for 𝜆 ≥ 0,
and Σ = {𝑦 = 0}. Notice that the orbits of 𝑋𝜆 are given by the level curves of 𝐻𝜆(𝑥, 𝑦) =
𝑦 − 𝑥4/4 + 𝜆𝑥2/2. If 𝜆 = 0, then 𝜌𝑋0(𝑥, 0) = (−𝑥, 0) is the involution associated with
𝑋0 at the origin. Now, for 𝜆 > 0, the orbit passing through the origin, which is a visible
fold point, splits Σ into three sets: 𝐷1 = (−∞,−

√
2𝜆) ∪ (

√
2𝜆,+∞), 𝐷2 = (−

√
2𝜆, 0),

and 𝐷3 = (0,
√

2𝜆) (see Figure 2.12). Hence, 𝑋𝜆 defines the following involution on
𝐷𝜆 = 𝐷1 ∪𝐷2 ∪𝐷3:

𝜌𝑋𝜆
(𝑥) =

⎧⎪⎨⎪⎩
−𝑥, for 𝑥 ∈ 𝐷1,

−
√

2𝜆− 𝑥2, for 𝑥 ∈ 𝐷2,√
2𝜆− 𝑥2, for 𝑥 ∈ 𝐷3.

In this case, the mirror map 𝜌𝑋𝜆
of 𝑋𝜆 is the restriction of 𝜌𝑋𝜆

to 𝜎𝑖𝑛𝑣
𝑋𝜆

= (−∞,−
√

2𝜆) ∪
(−

√
2𝜆,−

√
𝜆] ∪ (0,

√
𝜆].

2.3.3 Displacement Functions
Now, we are able to define the displacement functions associated with a Σ-polycycle

Γ0 of 𝑍0 = (𝑋0, 𝑌0). Assume that Γ0 has 𝑘 tangential singularities 𝑝𝑖 of order 𝑛𝑖 ∈ N,
1 ≤ 𝑖 ≤ 𝑘. Let 𝛾𝑖 be the regular orbit of 𝑍0 connecting 𝑝𝑖 to 𝑝𝑖+1, 𝑖 = 1, . . . , 𝑘 − 1, 𝛾𝑘 be
the regular orbit of 𝑍0 connecting 𝑝𝑘 and 𝑝1, and consider sufficiently small neighborhoods
𝑈𝑖 of 𝑝𝑖, 1 ≤ 𝑖 ≤ 𝑘. Notice that for each 𝑝𝑖, 𝑖 ∈ {1, . . . , 𝑘}, one of the following statements
hold:

(E) Γ0 ∩ 𝑈𝑖 ∖ {𝑝𝑖} is contained in either 𝑀+ or 𝑀−;
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Σ Σ
0

0
𝑥 −𝑥 −

√
𝜆

√
𝜆

(𝑎) (𝑏)

Figure 2.12: Involution of 𝑋𝜆 in Example 2.3.2 for: (𝑎) 𝜆 = 0 and (𝑏) 𝜆 > 0.

(O) Γ0 ∩ 𝑈𝑖 ∖ {𝑝𝑖} has one connected component in 𝑀+ and the other one in 𝑀−.

Suppose that (O) holds for 𝑝𝑖 and assume, without loss of generality, that 𝑊 𝑢(𝑝𝑖) ∩
Γ0 ∩𝑈𝑖 ⊂ 𝑀+ and 𝑊 𝑠(𝑝𝑖)∩Γ0 ∩𝑈𝑖 ⊂ 𝑀−. Let 𝜏𝑢

𝑖 and 𝜏 𝑠
𝑖 be transversal sections of 𝑋0 and

𝑌0 at the points 𝑞𝑢
𝑖 ∈ 𝑊 𝑢

+(𝑝𝑖) and 𝑞𝑠
𝑖 ∈ 𝑊 𝑠

−(𝑝𝑖), which are contained in 𝑈𝑖, respectively.
From the construction performed in Section 2.3.1 there exist transition maps of 𝑋0 and
𝑌0 at 𝑝0, 𝑇

𝑢
𝑖 : 𝜎𝑖(𝑋0) → 𝜏𝑢

𝑖 and 𝑇 𝑠
𝑖 : 𝜎𝑖(𝑌0) → 𝜏 𝑠

𝑖 , respectively.
Now, suppose that (E) holds for 𝑝𝑖 and assume, without loss of generality, that Γ0 ∩

𝑈𝑖 ⊂ 𝑀+. Let 𝜏 𝑠
𝑖 and 𝜏𝑢

𝑖 be transversal sections of 𝑋0 at the points 𝑞𝑠
𝑖 ∈ 𝑊 𝑠

+(𝑝𝑖)
and 𝑞𝑢

𝑖 ∈ 𝑊 𝑢
+(𝑝𝑖), which are contained in 𝑈𝑖, respectively. In this case, we have two

distinguished situations:
(I) If Σ ∩ 𝑈𝑖 ∖ {𝑝𝑖} has one connected component in the sliding region of 𝑍0, then let

𝜎t𝑖 (𝑋0) be the restriction to 𝑀+ of a local transversal section of 𝑋0 at 𝑝𝑖. Clearly, the
flow of 𝑋0 induces maps 𝑇 𝑢

𝑖 : 𝜎t𝑖 (𝑋0) → 𝜏𝑢
𝑖 and 𝑇 𝑠

𝑖 : 𝜎t𝑖 (𝑋0) → 𝜏 𝑠
𝑖 , which are restrictions

of diffeomorphisms.
(II) If Σ∩𝑈𝑖 ∖{𝑝𝑖} ⊂ Σ𝑐, then besides the maps 𝑇 𝑢

𝑖 : 𝜎t𝑖 (𝑋0) → 𝜏𝑢
𝑖 and 𝑇 𝑠

𝑖 : 𝜎t𝑖 (𝑋0) →
𝜏 𝑠

𝑖 , induced by the flow of 𝑋0, we can also define other maps in the following way: first,
notice that this situation is only possible when 𝑌0 has an invisible even order contact with
Σ at 𝑝𝑖, and thus, we consider the mirror map 𝜌𝑖 : 𝜎𝑖𝑛𝑣

𝑖 (𝑌0) → Σ ∩ 𝑈𝑖 of 𝑌0 at 𝑝𝑖 (see
Section 2.3.2). Now, let 𝑇𝑋0

− : 𝜎−
𝑖 (𝑋0) → 𝜏 𝑠

𝑖 and 𝑇𝑋0
+ : 𝜎+

𝑖 (𝑋0) → 𝜏𝑢
𝑖 be the transition

maps of 𝑋0 at 𝑝0 with respect to the transversal sections 𝜏 𝑠
𝑖 and 𝜏𝑢

𝑖 , respectively. Now,
define the section

𝜎𝑡
𝑖(𝑍0) = 𝜌−1

𝑖 (𝜎+
𝑖 (𝑋0) ∩ 𝜌𝑖(𝜎𝑖𝑛𝑣

𝑖 (𝑌0))),
and the maps

𝑇 𝑠
𝑖 : 𝜎−

𝑖 (𝑋0) → 𝜏 𝑠
𝑖 , 𝑇 𝑠

𝑖 = 𝑇𝑋0
− ,

𝑇 𝑢
𝑖 : 𝜎𝑡

𝑖(𝑍0) → 𝜏𝑢
𝑖 , 𝑇 𝑢

𝑖 = 𝑇𝑋0
+ ∘ 𝜌𝑖.

(2.3.7)

Thus, in this case, we have maps 𝑇 𝑢,𝑠
𝑖 induced by crossing orbits of 𝑍0.

Summarizing, if 𝑝𝑖 has type (O), (E-I) or (E-II), then we define 𝜎𝑖(𝑍0) as 𝜎𝑖(𝑋0) ∩
𝜎𝑖(𝑌0), 𝜎t𝑖 (𝑋0) or 𝜎t𝑖 (𝑋0) ∪ (𝜎𝑡

𝑖(𝑍0) ∩ 𝜎−
𝑖 (𝑋0)), respectively. So, in any case, we construct

maps 𝑇 𝑢,𝑠
𝑖 : 𝜎𝑖(𝑍0) → 𝜏𝑢,𝑠

𝑖 induced by crossing orbits of 𝑍0. We refer the maps 𝑇 𝑢,𝑠
𝑖 as

transfer functions (see Figure 2.13).
Now, the regular orbit 𝛾𝑖 connecting 𝑝𝑖 to 𝑝𝑖+1, 𝑖 = 1, · · · , 𝑘, induces a diffeomorphism

𝐷𝑖 : 𝜏𝑢
𝑖 → 𝜏 𝑠

𝑖+1 such that 𝐷𝑖(𝑝𝑖) = 𝑝𝑖+1.
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Σ 𝑝𝑖

𝑇𝑢
𝑖

𝑇 𝑠
𝑖

𝜏𝑢
𝑖

𝜏𝑠
𝑖

(𝑎) (𝑏) (𝑐)

𝑇 𝑠
𝑖 𝑇𝑢

𝑖

𝜏𝑢
𝑖𝜏𝑠

𝑖

𝑝𝑖 𝑝𝑖

𝜏𝑢
𝑖𝜏𝑠

𝑖

𝑇 𝑠
𝑖 𝑇𝑢

𝑖

Figure 2.13: Transfer functions of types (a)-(O), (b)-(E-I) and (c)-(E-II).

For a sufficiently small neighborhood 𝒱 ⊂ Ω𝑟 of 𝑍0 in Ω𝑟, we see that all the maps used
to construct the transfer functions 𝑇 𝑢,𝑠

𝑖 above are also defined for each 𝑍 ∈ 𝒱 (see Sections
2.3.1 and 2.3.2 ). Thus, for each 𝑍 ∈ 𝒱 , the transfer functions 𝑇 𝑢,𝑠

𝑖 (𝑍) : 𝜎𝑖(𝑍) → 𝜏𝑢,𝑠
𝑖 and

the diffeomorphisms 𝐷𝑖(𝑍) : 𝜏𝑢
𝑖 → 𝜏 𝑠

𝑖+1 can be constructed in the same way as described
above. In particular, the domain 𝜎t𝑖 (𝑋0) is perturbed into

𝜎t𝑖 (𝑋) = {𝑝 ∈ 𝜎t𝑖 (𝑋0);
>
𝑝𝑇 𝑢

𝑖 (𝑍)(𝑝)|𝑋 and
>
𝑇 𝑠

𝑖 (𝑍)(𝑝)𝑝|𝑋 are contained in 𝑀+}.

We now relate all these informations through displacement functions.

Definition 2.3.3. The 𝑖-th displacement function of 𝑍 is defined as

Δ𝑖(𝑍) : 𝜎𝑖(𝑍) × 𝜎𝑖+1(𝑍) −→ R
(𝑥𝑖, 𝑥𝑖+1) ↦ −→ 𝜑 ∘ 𝑇 𝑢

𝑖 (𝑍)(𝑥𝑖) − 𝜑 ∘𝐷−1
𝑖 ∘ 𝑇 𝑠

𝑖+1(𝑍)(𝑥𝑖+1),

where 𝜑 : 𝜏𝑢
𝑖 → R is a parameterization of 𝜏𝑢

𝑖 .

Clearly, the zeroes of the 𝑖−th displacement function of 𝑍 does not depend on the
parameterization of 𝜏𝑖. It is straightforward to see that two points, 𝑥𝑖 ∈ 𝜎𝑖(𝑍) and
𝑥𝑖+1 ∈ 𝜎𝑖+1(𝑍), are connected through an orbit of 𝑍 if, and only if, Δ𝑖(𝑍)(𝑥𝑖, 𝑥𝑖+1) = 0.

𝑝𝑖 𝑝𝑖+1

𝑇𝑢
𝑖 (𝑍) 𝐷−1

𝑖 ∘ 𝑇 𝑠
𝑖 (𝑍)

𝜏𝑢
𝑖

𝜏𝑠
𝑖

Figure 2.14: Construction of the 𝑖−th displacement function of 𝑍 ∈ 𝒱 .

Remark 2.3.4. We emphasize that the construction of displacement functions as in Def-
inition (2.3.3) allows us to describe the complete bifurcation diagrams of a vector field in
Ω𝑟 around many different types of Σ-polycycles, in particular the ones analyzed later on
in this paper. We highlight that in all the cases all the bifurcating crossing limit cycles
with the same topological type of Γ0 are detected by this method. However, there exist tan-
gential singularities which admit bifurcation of global connections in their local unfoldings,
for instance the cusp-cusp singularity. In these cases, such global connections would not
be detected by our method for Σ-polycyles through these singularities.
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Σ

(𝑎) (𝑏)

Figure 2.15: In (𝑎) we a have a Σ-polycycle Γ0 of 𝑍0 through a tangential-tangential
singularity 𝑝0 which is a visible fold for 𝑋0 and an invisible 2𝑛-order contact of 𝑌0 with
Σ, 𝑛 ≥ 1. In (𝑏) we have a Σ-polycycle Γ in a neighborhood Γ0 occurring for 𝑍 ∈ Ω𝑟 near
𝑍0 which is not detected by the proposed method.

2.4 Characterization of Transition Maps
In this section we characterize the transition maps of 𝑍0 = (𝑋0, 𝑌0) at 𝑝 ∈ Σ and we

also study how they typically change for unfoldings of 𝑍0.
Firstly, notice that if 𝑋 ∈ 𝜒𝑟 is transversal to Σ = ℎ−1(0) at 𝑝, then the transition

map 𝑇𝑋
𝑝 |𝜎 is a diffeomorphism at 𝑝 and 𝜎 is an open set of Σ containing 𝑝.

Now, assume that 𝑋 ∈ 𝜒𝑟 has a 𝑛−order contact with Σ at 𝑝. Consider coordinates
(𝑥, 𝑦) at 𝑝 (i.e. 𝑥(𝑝) = 𝑦(𝑝) = 0) such that ℎ(𝑥, 𝑦) = 𝑦 and write 𝑋 = (𝑋1, 𝑋2) in this
coordinate system. In this case 𝑋1(0, 0) ̸= 0, and thus 𝑋1(𝑥, 𝑦) ̸= 0, for every (𝑥, 𝑦)
in some neighborhood 𝑈 of the origin. By performing a time rescaling, we obtain that
𝑋(𝑥, 𝑦) and ̃︁𝑋(𝑥, 𝑦) = (sgn(𝑋1(0, 0)), 𝑓(𝑥, 𝑦)), with 𝑓(𝑥, 𝑦) = 𝑋2(𝑥, 𝑦)/|𝑋1(𝑥, 𝑦)|, have
the same integral curves in 𝑈 . It is easy to see that 𝑋ℎ(𝑥, 𝑦) = |𝑋1(𝑥, 𝑦)|̃︁𝑋ℎ(𝑥, 𝑦). In
general, 𝑋 𝑖ℎ(0, 0) = 0 if, and only if, ̃︁𝑋 𝑖ℎ(0, 0) = 0. Moreover, one can prove that
𝑋 𝑖ℎ(0, 0) and ̃︁𝑋 𝑖ℎ(0, 0) have the same sign. In what follows, without loss of generality,
we take 𝑋(𝑥, 𝑦) = (𝛿, 𝑓(𝑥, 𝑦)), with 𝛿 = ±1.

Lemma 2.4.1. Assume that 𝑋 = (𝛿, 𝑓(𝑥, 𝑦)), with 𝛿 = ±1, has a 𝑛-order contact with Σ
at (0, 0), i.e. 𝑋 𝑖ℎ(𝑝) = 0, 𝑖 = 0, 1, . . . , 𝑛− 1, and 𝑋𝑛ℎ(𝑝) ̸= 0. Then:

(a) 𝜕𝑖−1𝑓

𝜕𝑥𝑖−1 (0, 0) = 0, for 𝑖 = 1, 2, . . . , 𝑛− 1, and 𝜕𝑛−1𝑓

𝜕𝑥𝑛−1 (0, 0) ̸= 0.

(b) 𝑋ℎ(𝑥, 0) = 𝛼𝑥𝑛−1 + 𝒪(𝑥𝑛), where sgn(𝛼) = 𝛿𝑛−1sgn(𝑋𝑛ℎ(0, 0)).

Proof. Firstly, the statement (a) follows by noticing that 0 = 𝑋ℎ(0, 0) = 𝑓(0, 0) and

𝑋 𝑖ℎ(0, 0) = 𝛿𝑖−1𝜕
𝑖−1𝑓

𝜕𝑥𝑖−1 (0, 0).

Now, since 𝑋ℎ(𝑥, 0) = ⟨𝑋(𝑥, 0), (0, 1)⟩ = 𝑓(𝑥, 0), expanding 𝑋ℎ(𝑥, 0) in Taylor series
around 𝑥 = 0, we obtain that

𝑋ℎ(𝑥, 0) = 𝜕𝑛−1𝑓

𝜕𝑥𝑛−1 (0, 0)𝑥𝑛−1 + 𝒪(𝑥𝑛).

Hence, the statement (b) follows by taking 𝛼 = 𝛿𝑛−1𝑋𝑛ℎ(0, 0).
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From Lemma 2.4.1 it follows that𝑋 is transversal to Σ for every (𝑥, 0) ∈ 𝑉 ∩Σ∖{(0, 0)},
where 𝑉 is a small neighborhood of the origin 𝑂. Let 𝑋 be defined in 𝑀± and assume
that

(A) either the oriented arc-orbit >𝑂𝑞0|𝑋 or >𝑞0𝑂|𝑋 is contained in 𝑀±.

In the first case 𝑞0 = 𝜙𝑋(𝑇0; 0, 0) ̸= (0, 0), and in the second one 𝑞0 = 𝜙𝑋(−𝑇0; 0, 0) ̸=
(0, 0), for some 𝑇0 > 0.

Let 𝑞0 = (𝑥0, 𝑦0). Since 𝜋1(𝑋(𝑞0)) = 𝛿 ̸= 0, it follows that

𝜏 = {(𝑥0, 𝑦); 𝑦 ∈ (𝑦0 − 𝜀, 𝑦0 + 𝜀)} (2.4.1)

is a transversal section of 𝑋 at 𝑞0, for 𝜀 sufficiently small. Take 𝜀 > 0 such that 𝜏 ⊂
𝑉 ∩𝑀±. Therefore, the full transition map of 𝑋 at (0, 0) is 𝑇𝑋 : (𝑉 ∩ Σ)0 → 𝜏 given by

𝑇𝑋(𝑥, 0) = (𝑥0, 𝜋2(𝜙𝑋(𝛿𝑥0 − 𝛿𝑥;𝑥, 0))).

Now, we use Lemma 2.4.1 to determine the domain 𝜎 of the transition map of 𝑋 at (0, 0).

Corollary 2.4.2. Assume that 𝑋 has a 𝑛-order contact with Σ at (0, 0). Then, the
following statements hold:

i) if 𝑛 is odd, then 𝜎 = (−𝜀, 𝜀) × {0}, for 𝜀 > 0 sufficiently small;

ii) if 𝑛 is even, then 𝜎 = 𝐼×{0}, where 𝐼 is either [0, 𝜀) or (−𝜀, 0], for 𝜀 > 0 sufficiently
small.

Proof. If 𝑛 odd, then 𝑋ℎ(𝑥, 0) = 𝛼𝑥𝑘 + 𝒪(𝑥𝑘+1), where 𝑘 = 𝑛 − 1 is even. It means
that sgn(𝛼)𝑋ℎ(𝑥, 0) > 0 for 𝑥 ∈ (−𝜀, 𝜀) ∖ {0} and 𝜀 > 0 sufficiently small. So all
the orbits of 𝑋 passing through (−𝜀, 𝜀) × {0} enter (or leave) 𝑀±. If 𝑛 is even, then
𝑋ℎ(𝑥, 0) = 𝛼𝑥𝑘 + 𝒪(𝑥𝑘+1), where 𝑘 is odd. It means that sgn(𝛼)𝑋ℎ(𝑥, 0) > 0, for
𝑥 ∈ (0, 𝜀), and sgn(𝛼)𝑋ℎ(𝑥, 0) < 0, for 𝑥 ∈ (−𝜀, 0), where 𝜀 > 0 is sufficiently small. We
conclude the proof by observing that the transition map is defined in the unique domain
where 𝑋ℎ(𝑥, 0) has the same sign of 𝑋2(𝑞0).

In what follows we describe the expression of the full transition map 𝑇𝑋 of 𝑋 at (0, 0),
when the origin is a 𝑛-order contact.

Theorem A. Suppose that 𝑋 ∈ 𝜒𝑟 has a 𝑛-order contact with Σ at 𝑝 = (0, 0). In addition,
assume that 𝑋 satisfies condition (A). Then the full transition map 𝑇𝑋 : (𝑉 ∩ Σ)0 → 𝜏
(where 𝜏 is given in 2.4.1) is given by:

𝑇𝑋(𝑥, 0) = (𝑥0, 𝑦0 + 𝜅𝑥𝑛 + 𝒪(𝑥𝑛+1)),

where sgn(𝜅) = −𝛿𝑛sgn(𝑋𝑛ℎ(0, 0)).

Proof. As we have seen before, we can assume that 𝑋 = (𝛿, 𝑓(𝑥, 𝑦)). Consider the change
of coordinates 𝜑(𝑢, 𝑣) = (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣)), where 𝑥(𝑢, 𝑣) = 𝛿𝑢 and 𝑦(𝑢, 𝑣) = 𝜙2

𝑋(𝑢; 0, 𝑣)
(𝜙2

𝑋 denotes 𝜋2 ∘ 𝜙𝑋). Notice that

𝜕𝑥

𝜕𝑢
(0, 0) = 𝛿,

𝜕𝑥

𝜕𝑣
(0, 0) = 0, 𝜕𝑦

𝜕𝑢
(0, 0) = 𝑓(0, 0) = 0, and

𝜕𝑦

𝜕𝑣
(0, 0) = 𝜕𝜙2

𝑋

𝜕𝑦
(0; 0, 0) = 1.

(2.4.2)
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Therefore, 𝜑 is a diffeomorphism around the origin. In addition, it can be proved that 𝜑
is a conjugation between 𝑋 and 𝒮(𝑢, 𝑣) = (1, 0) (see [57]). In this new coordinate system,
(𝑢, 𝑣), Σ and 𝜏 becomes, respectively,

̃︀Σ = 𝜑−1(Σ) = {(𝑢, 𝑣) ∈ R2;𝜙2
𝑋(𝑢; 0, 𝑣) = 0} and ̃︀𝜏 = {(𝛿𝑥0, 𝑣); 𝑣 ∈ (−𝜀, 𝜀)}.

See Figure 2.16.
Since 𝜙2

𝑋(0; 0, 0) = 0 and from (2.4.2), the Implicit Function Theorem implies the
existence of 𝛾 : (−𝜂, 𝜂) → R such that 𝛾(0) = 0 and ̃︀Σ = {(𝑢, 𝛾(𝑢)) ∈ R2; 𝑢 ∈ (−𝜂, 𝜂)}.

Notice that 𝜙𝒮(𝑡;𝑢, 𝑣) = (𝑡+ 𝑢, 𝑣), so the full transition map 𝑇𝒮 : ̃︀Σ → ̃︀𝜏 is given by

𝑇𝒮(𝑢, 𝛾(𝑢)) = 𝜙𝒮(𝛿𝑥0 − 𝑢, 𝑢, 𝛾(𝑢)) = (𝛿𝑥0, 𝛾(𝑢)).

Now, we must characterize the function 𝛾 around 𝑢 = 0. Computing the 𝑘-th
derivative of 𝜙2

𝑋(𝑢; 0, 𝛾(𝑢)) = 0 in the variable 𝑢, and using that 𝜙𝑋(𝑢; 0, 𝛾(𝑢)) =
(𝛿𝑢, 𝜙2

𝑋(𝑢, 0, 𝛾(𝑢))) = (𝛿𝑢, 0), we get

𝛾(𝑘)(𝑢) = −𝛿𝑘−1𝜕
𝑘−1𝑓

𝜕𝑥𝑘−1 (𝛿𝑢, 0)
(︃
𝜕𝜙2

𝑋

𝜕𝑦
(𝑢; 0, 𝛾(𝑢))

)︃−1

+
𝑘−1∑︁
𝑖=1

𝑃 𝑘
𝑖 (𝑢)𝛾(𝑖)(𝑢), (2.4.3)

where 𝑃 𝑗
𝑖 are continuous functions. From Lemma 2.4.1 (a) and equation (2.4.3) we obtain

that 𝛾(𝑘)(0) = 0, for every 1 ≤ 𝑘 ≤ 𝑛− 1 and

𝛾(𝑛)(0) = −𝛿𝑛−1𝜕
𝑛−1𝑓

𝜕𝑥𝑛−1 (0, 0) = −𝑋𝑛ℎ(0, 0).

Consequently, 𝑇𝒮(𝑢, 𝛾(𝑢)) = (𝛿𝑥0, 𝛼𝑢
𝑛 + 𝒪(|𝑢|𝑛+1)), where 𝛼 = −𝑋𝑛ℎ(0, 0).

From the above construction, the following diagram is commutative.

Σ 𝜏

̃︀Σ ̃︀𝜏
𝜑−1

𝑇𝑋

𝑇𝒮

𝜑−1

Since 𝜋1 ∘ 𝜑−1(𝑥, 0) = 𝛿𝑥 and 𝜑−1(𝑥, 0) ∈ ̃︀Σ, it follows that 𝜑−1(𝑥, 0) = (𝛿𝑥, 𝛾(𝛿𝑥)).
Also, observe that (𝑥0, 𝑦0) = 𝜙𝑋(𝑇0, 0, 0) = (𝛿𝑇0, 𝜙

2
𝑋(𝑇0, 0, 0)). So, 𝛿𝑥0 = 𝑇0. Hence,

𝑇𝑋(𝑥, 0) = 𝜑 ∘ 𝑇𝒮 ∘ 𝜑−1(𝑥, 0)
= 𝜑 ∘ 𝑇𝒮(𝛿𝑥, 𝛾(𝑥))
= 𝜑(𝛿𝑥0, 𝛼𝛿

𝑛𝑥𝑛 + 𝒪(𝑥𝑛+1))
= (𝑥0, 𝜙

2
𝑋(𝛿𝑥0; 0, 𝛼𝛿𝑛𝑥𝑛 + 𝒪(𝑥𝑛+1)))

= (𝑥0, 𝜙
2
𝑋(𝑇0; 0, 𝛼𝛿𝑛𝑥𝑛 + 𝒪(𝑥𝑛+1)))

=
(︃
𝑥0, 𝜙

2
𝑋(𝑇0; 0, 0) + 𝜕𝜙2

𝑋

𝜕𝑦
(𝑇0; 0, 0)(𝛼𝛿𝑛𝑥𝑛 + 𝒪(𝑥𝑛+1)) + 𝒪(𝑥2𝑛)

)︃

=
(︃
𝑥0, 𝑦0 + 𝜕𝜙2

𝑋

𝜕𝑦
(𝑇0, 0, 0)𝛼𝛿𝑛𝑥𝑛 + 𝒪(𝑥𝑛+1)

)︃
= (𝑥0, 𝑦0 + 𝜅𝑥𝑛 + 𝒪(𝑥𝑛+1)),
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where
𝜅 = −𝜕𝜙2

𝑋

𝜕𝑦
(𝑇0, 0, 0)𝑋𝑛ℎ(0, 0)𝛿𝑛.

Finally , we can take |𝑇0| small enough such that 𝜕𝜙
2
𝑋

𝜕𝑦
(𝑇0; 0, 0) > 0 since 𝜕𝜙

2
𝑋

𝜕𝑦
(0; 0, 0) =

1 > 0. Therefore, sgn(𝜅) = −𝛿𝑛sgn(𝑋𝑛ℎ(0, 0)).

̃︀Σ ̃︀𝜏 Σ

𝜏

̃︀Σ ̃︀𝜏
Σ

𝜏

Figure 2.16: Illustration of the change of coordinates 𝜑−1(𝑢, 𝑣) at a fold and a cusp point.

Now, let 𝑋0 ∈ 𝜒𝑟 satisfy the assumptions of Theorem A. We know that there exist 𝜀 >
0 and a neighborhood 𝒰 of 𝑋0 such that a full transition map 𝑇𝑋 : (−𝜀, 𝜀) → (𝑦0−𝜀, 𝑦0+𝜀)
is defined for each 𝑋 ∈ 𝒰 (see Section 2.3.1). In what follows we shall characterize this
map.

Theorem B. Suppose that 𝑋0 ∈ 𝜒𝑟 has a 𝑛-order contact with Σ at 𝑝 = (0, 0), with
𝑛 ≥ 2. In addition, assume that 𝑋0 satisfies condition (A). Then, there exist a neigh-
borhood 𝒰0 of 𝑋0 in 𝜒𝑟, 𝑛 − 2 surjective functions 𝜆𝑖 : 𝒰0 → (−𝛿, 𝛿), 𝑖 = 1, · · · , 𝑛 − 2,
depending continuously on 𝑋, such that for each 𝑋 ∈ 𝒰0 there exists a diffeomorphism
ℎ𝑋 : (−𝜀, 𝜀) → (−𝜀, 𝜀) × {0} for which the full transition map 𝑇𝑋 : (−𝜀, 𝜀) × {0} → 𝜏 is
given by:

𝑇𝑋(ℎ𝑋(𝑥)) =
(︁
𝑥0, 𝜆0(𝑋) + 𝜅(𝑋)𝑥𝑛 +

𝑛−2∑︁
𝑖=1

𝜆𝑖(𝑋)𝑥𝑖 + 𝒪(𝑥𝑛+1)
)︁
,

where 𝜆0 = 𝜋2 ∘ 𝑇𝑋(0, 0), sgn(𝜅) = −𝛿𝑛sgn(𝑋𝑛ℎ(0, 0)) and 𝛿 = ±1.

Proof. In what follows, for the sake of simplicity, we shall identify (−𝜀, 𝜀) × {0} and 𝜏
with the intervals (−𝜀, 𝜀) and (𝑦0 − 𝜀, 𝑦0 + 𝜀), respectively.

From the discussion above, define the continuous map

𝑇 : 𝒰 −→ 𝒞∞
0 (R,R)/∼

𝑋 ↦ −→ [𝑇𝑋 − 𝑇𝑋(0)],
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where 𝒞∞
0 (R,R)/∼ is the space of germs of 𝒞∞ functions 𝑓 : R → R such that 𝑓(0) = 0,

with the equivalence relation

𝑓 ∼ 𝑔 if, and only if, 𝑓 − 𝑔 = 𝒪(𝑥𝑛+1).

As usual, [𝑓 ] denotes the equivalence class of 𝒞∞
0 (R,R)/∼ which contains 𝑓 ∈ 𝒞∞

0 (R,R).
Denote 𝑇 (𝑋0) by 𝑇0 and notice that 𝑇 is surjective onto an open neighborhood of 𝑇0 in

𝒞∞
0 (R,R)/∼. In fact, consider the vector field 𝑋0 in the straightened form 𝒮 = (1, 0), then

Σ is the graph {(𝑥, ℎ(𝑥)); 𝑥 ∈ (−𝜀, 𝜀)} in these coordinates, for some 𝜀 > 0 sufficiently
small, and 𝑇0(𝑥) = ℎ(𝑥) (see proof of Theorem A). Therefore, any sufficiently small
perturbation of ℎ in the space of functions corresponds to the transition map of a vector
field 𝑋 in 𝒰 by considering a small change in the coordinate system.

From Theorem A it follows that 𝑇0 = [𝑓0], where 𝑓0(𝑥) = 𝜅𝑥𝑛. Now, since the stable
unfolding of 𝑓0 is given by 𝐹𝜆(𝑥) = 𝜅𝑥𝑛 +∑︀𝑛−2

𝑖=1 𝜆𝑖𝑥
𝑖, there exists a neighborhood 𝒲 of 𝑇0

in 𝒞∞
0 (R,R)/∼ such that, for each 𝑓 ∈ 𝒲 , there exist 𝑛− 2 parameters 𝜆𝑖 = 𝜆𝑖(𝑓) and a

diffeomorphism ℎ𝑓 : R → R, such that

𝑓(ℎ𝑓 (𝑥)) = 𝜅𝑥𝑛 +
𝑛−2∑︁
𝑖=1

𝜆𝑖𝑥
𝑖 + 𝒪(𝑥𝑛+1).

In addition, the parameters 𝜆𝑖 and ℎ𝑓 depend continuously on 𝑓 .
Taking 𝒰0 = 𝑇−1(𝒲), we have that for each 𝑋 ∈ 𝒰0

𝑇𝑋(ℎ𝑋(𝑥)) = 𝜆0 + 𝜅𝑥𝑛 +
𝑛−2∑︁
𝑖=1

𝜆𝑖𝑥
𝑖 + 𝒪(𝑥𝑛+1),

where 𝜆𝑖 : 𝒰0 → (−𝛿, 𝛿), for 𝑖 = 1, · · · , 𝑛 − 2, are surjective functions depending continu-
ously on 𝑋 and 𝜆0 = 𝜋2 ∘ 𝑇𝑋(0).

2.5 Regular-Tangential Σ-Polycycles
This section is devoted to apply the method of displacement functions, described in

Section 2.3, for obtaining bifurcation diagrams of nonsmooth vector fields around some
regular-tangential Σ-polycycles (see Definition 2.2.10). More specifically, in Section 2.5.1,
we describe the displacement functions appearing in the crossing system (2.3.1) for such
Σ-polycycles. In Section 2.5.2, we prove that at most one crossing limit cycle bifurcates
from Σ-polycycles having a unique regular-tangential singularity. Then, in Section 2.5.4
we generalize the previous result for Σ-polycycles having several regular-tangential sin-
gularities. In particular, the bifurcation diagrams of Σ-polycycles having either a unique
Σ-singularity of regular-cusp type or only two singularities of regular-fold type are com-
pletely described in Sections 2.5.3 and 2.5.5, respectively.

2.5.1 Description of the Crossing System

Assume that 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 has a Σ-polycycle Γ0 containing 𝑘 regular-tangential
singularities 𝑝𝑖 of order 𝑛𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑘. Consider a coordinate system (𝑥, 𝑦) satisfying
that, for each 𝑖 ∈ {1, 2, . . . , 𝑘}, 𝑥(𝑝𝑖) = 𝑎𝑖, 𝑦(𝑝𝑖) = 0, and ℎ(𝑥, 𝑦) = 𝑦 near 𝑝𝑖.

Firstly, we shall characterize Γ0 locally around each point 𝑝𝑖, 𝑖 = 1, . . . , 𝑘. Assume
that, for a given 𝑖 ∈ {1, . . . , 𝑘}, 𝑝𝑖 satisfies 𝑌0ℎ(𝑝𝑖) ̸= 0 and consider a small neighborhood
𝑈𝑖 of 𝑝𝑖. Accordingly, 𝑝𝑖 has one of the following types
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(𝑅1) Σ ∩ 𝑈𝑖 ∖ {𝑝𝑖} has a connected component contained in Σ𝑐 and another in Σ𝑠, and
Γ0 ∩𝑊 𝑠,𝑢

+ (𝑝𝑖) ̸= ∅ (see Figure 2.17 (a));

(𝑅2) Σ ∩ 𝑈𝑖 ∖ {𝑝𝑖} has a connected component contained in Σ𝑐 and another in Σ𝑠 and
either Γ0 ∩𝑊 𝑠

+(𝑝𝑖) = ∅ or Γ0 ∩𝑊 𝑢
+(𝑝𝑖) = ∅ (see Figure 2.17 (b,c));

(𝑅3) Σ ∩ 𝑈𝑖 ∖ {𝑝𝑖} ⊂ Σ𝑐 (see Figure 2.17 (d)).

The points 𝑝𝑖 satisfying 𝑋ℎ(𝑝𝑖) ̸= 0 are classified analogously.

(a) (b) (c) (d)

𝑝𝑖 𝑝𝑖 𝑝𝑖 𝑝𝑖

Σ

Figure 2.17: Types of local characterization of Γ0 around the regular-tangential singularity
𝑝𝑖: Figure (a) and its time reversing illustrate type 𝑅1; Figures (b,c) and their time
reversing illustrate type 𝑅2; Figure (d) and its time reversing illustrate type 𝑅3. Bold
lines represent the intersection Γ0 ∩𝑊 𝑠,𝑢

+ (𝑝𝑖). Dashed lines represents Σ𝑐.

If 𝑝𝑖 is of type 𝑅1, then we consider 𝜎𝑖(𝑍0) = {𝑎𝑖}×(−𝜀𝑖,+𝜀𝑖)∩𝑀+. So, we can follow
the case (E-I) from Section 2.3.3 to construct the transfer functions 𝑇 𝑢,𝑠

𝑖 : 𝜎𝑖(𝑋0) → 𝜏𝑢,𝑠
𝑖

defined by the flow of 𝑋0. Recall that 𝑇 𝑠
𝑖 and 𝑇 𝑢

𝑖 are restrictions of germs of diffeomor-
phisms (see Figure 2.18).

𝑝𝑖

𝜏𝑠
𝑖 𝜏𝑢

𝑖

𝑇 𝑠
𝑖 𝑇𝑢

𝑖

Figure 2.18: Construction of the maps 𝑇 𝑢,𝑠
𝑖 : type 𝑅1.

If 𝑝𝑖 is of type 𝑅2 or 𝑅3, we consider the tangential section 𝜎𝑖(𝑍0) = (𝑎𝑖 − 𝜀𝑖, 𝑎𝑖 +
𝜀𝑖) × {0} ∩ Σ𝑐, where 𝜀𝑖 is sufficiently small. So, we can follow the case (O) from Section
2.3.3 to construct the transfer functions 𝑇 𝑢

𝑖 : 𝜎𝑖(𝑍0) → 𝜏𝑢
𝑖 and 𝑇 𝑠

𝑖 : 𝜎𝑖(𝑍0) → 𝜏 𝑠
𝑖 induced

by the flows of 𝑋0 and 𝑌0, respectively. Notice that 𝑇 𝑠
𝑖 is the restriction of a germ of

diffeomorphism and Theorem A is applied to characterize 𝑇 𝑢
𝑖 (see Figure 2.19).

Now, in order to describe the displacement functions associated with Γ0, we charac-
terize the unfolding of each tangential singularity.

If 𝑝𝑖 is of type 𝑅1, then 𝑇 𝑠
𝑖 and 𝑇 𝑢

𝑖 are germs of diffeomorphisms at 𝑝𝑖. So, as described
in Section 2.3.3, for any 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 in a small neighborhood 𝒱𝑖 of 𝑍0, there exist
transfer functions 𝑇 𝑠

𝑖 (𝑍) : 𝜎𝑖(𝑍) → 𝜏 𝑠
𝑖 and 𝑇 𝑢

𝑖 (𝑍) : 𝜎𝑖(𝑍) → 𝜏 𝑠
𝑖 which are also germs of

diffeomorphisms at 𝑝𝑖.
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𝑝𝑖 𝑝𝑖 𝑝𝑖

𝑇 𝑠
𝑖 𝑇 𝑠

𝑖 𝑇 𝑠
𝑖

𝑇𝑢
𝑖 𝑇𝑢

𝑖 𝑇𝑢
𝑖

𝜏𝑢
𝑖 𝜏𝑢

𝑖 𝜏𝑢
𝑖

𝜏𝑠
𝑖 𝜏𝑠

𝑖 𝜏𝑠
𝑖(𝑎) (𝑏) (𝑐)

Figure 2.19: Construction of the maps 𝑇 𝑢,𝑠
𝑖 : types 𝑅2 ((𝑎) and (𝑏)) and 𝑅3 (𝑐).

From Theorem B there exists a neighborhood 𝒱 of 𝑍0 such that for each 𝑍 = (𝑋, 𝑌 ) ∈
𝒱 the transfer function corresponding to 𝑝𝑖, for 𝑖 ∈ {1, 2, . . . , 𝑘}, is given by

𝑇 𝑢
𝑖 (𝑍)(ℎ𝑖

𝑍(𝑥)) = 𝜅𝑖(𝑍)(𝑥− 𝑎𝑖)𝑛 +
𝑛𝑖−2∑︁
𝑗=0

𝜆𝑖
𝑗(𝑍)(𝑥− 𝑎𝑖)𝑗 + 𝒪((𝑥− 𝑎𝑖)𝑛+1), (2.5.1)

where ℎ𝑖
𝑍 : (𝑎𝑖 − 𝜀, 𝑎𝑖 + 𝜀) → (𝑎𝑖 − 𝜀, 𝑎𝑖 + 𝜀) × {0} is a diffeomorphism, with ℎ𝑖

𝑍0(𝑎𝑖) = 𝑎𝑖,
sgn(𝜅𝑖(𝑍)) = sgn(𝜅𝑖(𝑍0)), and 𝜆𝑖

𝑗(𝑍), for 𝑗 ∈ {0, 1, . . . , 𝑛𝑖 − 2}, are parameters.
Notice that 𝑇 𝑠

𝑖 (𝑍) is a germ of diffeomorphism on 𝜎𝑖(𝑍). Thus, for 𝑍 ∈ 𝒱 and for each
𝑖 = 1, · · · , 𝑘 we have obtained two maps 𝑇 𝑠,𝑢

𝑖 (𝑍) defined in a neighborhood of 𝑝𝑖 which
describes the behavior of the orbits contained in 𝑀+ connecting points of 𝜏 𝑠,𝑢

𝑖 and 𝜎𝑖(𝑍).
In addition, each transversal section 𝜏𝑢

𝑖−1 is connected to 𝜏 𝑠
𝑖 via a diffeomorphism 𝐷𝑖(𝑍)

satisfying:

[𝐷𝑖−1(𝑍)]−1 ∘ 𝑇 𝑠
𝑖 (𝑍)(ℎ𝑖

𝑍(𝑥)) = ̃︀𝑐𝑖−1(𝑍) + ̃︀𝑑𝑖−1(𝑍)(𝑥− 𝑎𝑖) + 𝒪2(𝑥− 𝑎𝑖), (2.5.2)

where ̃︀𝑐𝑖−1(𝑍0) = 𝑞𝑢
𝑖−1, and sgn( ̃︀𝑑𝑖−1(𝑍)) = sgn( ̃︀𝑑𝑖−1(𝑍0)) (see Figure 2.14). Recall that,

in the above expression, we are assuming that 𝑌0ℎ(𝑝𝑖) ̸= 0. The case 𝑋0ℎ(𝑝𝑖) ̸= 0 follows
analogously.

Now, let 𝒜 be an open annulus around Γ0 containing the sections 𝜎𝑖(𝑍0). Using the
above characterization of the transfer functions and their unfoldings and Definition 2.3.3
we obtain that:

Δ𝑖(𝑍)(ℎ𝑖
𝑍(𝑥𝑖), ℎ𝑖+1

𝑍 (𝑥𝑖+1)) = Δ𝑖(𝑍)(𝑥𝑢
𝑖 , 𝑥

𝑠
𝑖+1) + 𝒪𝑁𝑖+1(𝑥𝑢

𝑖 ) + 𝒪𝑀𝑖+1(𝑥𝑠
𝑖+1),

where 𝑥𝑢
𝑖 = 𝑥𝑖 − 𝑎𝑖, 𝑥𝑠

𝑖+1 = 𝑥𝑖+1 − 𝑎𝑖+1, and

Δ𝑖(𝑍)(𝑥𝑢
𝑖 , 𝑥

𝑠
𝑖+1) = 𝛽𝑖(𝑍) + 𝑃𝑁𝑖

𝑖 (𝑥𝑢
𝑖 ) +𝑄𝑀𝑖

𝑖 (𝑥𝑠
𝑖+1).

Here, 𝛽𝑖(𝑍) = Δ𝑖(𝑍)(ℎ𝑖
𝑍(𝑎𝑖), ℎ𝑖+1

𝑍 (𝑎𝑖+1)) and satisfies 𝛽𝑖(𝑍0) = 0. In addition, 𝑃𝑁𝑖
𝑖

and 𝑄𝑀𝑖
𝑖 are non-vanishing polynomials of degree 𝑁𝑖 ≤ max{2, 𝑛𝑖 − 2} and 𝑀𝑖 ≤

max{2, 𝑛𝑖+1 − 2} with coefficients depending on 𝑍 and satisfying 𝑃𝑁𝑖
𝑖 (0) = 𝑄𝑀𝑖

𝑖 (0) = 0.
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Finally, the crossing system (2.3.1) is equivalent to the auxiliary crossing system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1(𝑍)(𝑥𝑢
1 , 𝑥

𝑠
2) + 𝒪𝑁1+1(𝑥𝑢

1) + 𝒪𝑀1+1(𝑥𝑠
2) = 0,

Δ2(𝑍)(𝑥𝑢
2 , 𝑥

𝑠
3) + 𝒪𝑁2+1(𝑥𝑢

𝑖 ) + 𝒪𝑀2+1(𝑥𝑠
3) = 0,

...
Δ𝑘−1(𝑍)(𝑥𝑢

𝑘−1, 𝑥
𝑠
𝑘) + 𝒪𝑁𝑘−1+1(𝑥𝑢

𝑘−1) + 𝒪𝑀𝑘−1+1(𝑥𝑠
𝑘) = 0,

Δ𝑘(𝑍)(𝑥𝑢
𝑘 , 𝑥

𝑠
1) + 𝒪𝑁𝑘+1(𝑥𝑢

𝑘) + 𝒪𝑀1+1(𝑥𝑠
1) = 0,

𝑥𝑠,𝑢
𝑖 = 𝑓 𝑠,𝑢

𝑖 (𝑥𝑖) = 𝑥𝑖 − 𝑎𝑖, 𝑖 = 1, · · · , 𝑘,
ℎ𝑖

𝑍(𝑥𝑖) ∈ 𝜎𝑖(𝑍), 𝑖 = 1, · · · , 𝑘.

(2.5.3)

2.5.2 Σ-Polycycles having a unique regular-tangential singular-
ity

Without loss of generality, the following conditions characterize the nonsmooth vec-
tor fields 𝑍0 = (𝑋0, 𝑌0) which admit a Σ-polycycle having a unique regular-tangential
singularity of order 𝑛 (see Figure 2.20):

i) There exists 𝑝 ∈ Σ such that 𝑋0 has a 𝑛-order contact with Σ at 𝑝, 𝑛 ≥ 2 and
𝑌0ℎ(𝑝) ̸= 0.

ii) 𝑊 𝑢
+(𝑝) intersects Σ𝑐 at 𝑞 ̸= 𝑝 and the arc-orbit >𝑝𝑞|𝑋0 is contained in 𝑀+;

iii) 𝑊 𝑠
−(𝑝) intersects Σ𝑐 at 𝑟 ̸= 𝑝 and the arc-orbit >𝑝𝑟|𝑌0 of 𝑌0 is contained in 𝑀−;

iv) If 𝑟 ̸= 𝑞, there exists a regular orbit of 𝑍0 connecting 𝑟 and 𝑞.

Accordingly, consider Γ0 as the union of the arc-orbits >𝑝𝑟|𝑍0 , >𝑟𝑞|𝑍0 , and >𝑞𝑝|𝑍0 .

(𝑎)

𝑝 𝑝𝑞 𝑞

(𝑏)

Figure 2.20: An example of Σ-polycycle Γ0 having a unique regular-tangential singularity
of order 𝑛, when 𝑞 = 𝑟, (𝑎) 𝑛 is even and when (𝑛) 𝑛 is odd.

Following the previous section for 𝑘 = 1, 𝑎1 = 0, and 𝑥1 = 𝑥2 = 𝑥 the displacement
function Δ(𝑍) : 𝜎(𝑍) → R writes

Δ(𝑍)(ℎ𝑍(𝑥)) = 𝑇 𝑢(𝑍)(ℎ𝑍(𝑥)) − [𝐷(𝑍)]−1 ∘ 𝑇 𝑠(𝑍)(ℎ𝑍(𝑥))

= 𝜆0(𝑍) + 𝜅(𝑍)𝑥𝑛 +
𝑛−2∑︁
𝑗=1

𝜆𝑗(𝑍)𝑥𝑗 + 𝒪(𝑥𝑛+1)

−̃︀𝑐(𝑍) − ̃︀𝑑(𝑍)𝑥+ 𝒪2(𝑥),
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where sgn( ̃︀𝑑(𝑍)) = sgn( ̃︀𝑑(𝑍0)). Here, it is easy to see that assumptions (𝑖)-(𝑖𝑣) imply
that ̃︀𝑑(𝑍0) < 0. Taking

𝛽(𝑍) = 𝜆0(𝑍) − ̃︀𝑐(𝑍), 𝜆(𝑍) = 𝜆1(𝑍) − ̃︀𝑑(𝑍), and 𝜂(𝑍) = (𝛽(𝑍), 𝜆(𝑍)), (2.5.4)

the displacement function Δ(𝑍)(ℎ𝑍(𝑥)) writes

Δ(𝑍)(ℎ𝑍(𝑥)) = 𝛽(𝑍) + 𝜆(𝑍)𝑥+ 𝒪2(𝑥). (2.5.5)

Notice that 𝜂 : 𝒱 → 𝑉 is a surjective function onto a small neighborhood 𝑉 of (0,− ̃︀𝑑(𝑍0))
satisfying 𝛽(𝑍0) = 0 and 𝜆(𝑍0) = − ̃︀𝑑(𝑍0) ̸= 0. In this case, the auxiliary crossing system
(2.5.3) is reduced to the equation 𝛽(𝑍) + 𝜆(𝑍)𝑥+ 𝒪2(𝑥) = 0, ℎ𝑍(𝑥) ∈ 𝜎(𝑍).

As a first result on the Σ-polycycle Γ0 we have the following proposition.

Proposition 2.5.1. Let Γ0 be a Σ-polycycle having a unique regular-tangential singularity
of order 𝑛 satisfying (𝑖)-(𝑖𝑣). Then, Γ0 attracts the orbits passing through the section 𝜎(𝑍0)
(domain of 𝑇 𝑢(𝑍0)). In this case, we say that Γ0 is C-attractive.

Proof. Notice that the first return map associated with the Σ-polycycle Γ0 of 𝑍0 is given
by 𝒫0(𝑥) = ([𝐷(𝑍0)]−1 ∘ 𝑇 𝑠(𝑍0))−1 ∘ 𝑇 𝑢(𝑍0)(𝑥), where, from (2.5.1) and (2.5.2) (recall
that ℎ𝑍0 = 𝐼𝑑),

𝑇 𝑢(𝑍0)(𝑥) = 𝜅(𝑍0)𝑥𝑛 + 𝒪𝑛+1(𝑥) and [𝐷(𝑍0)]−1 ∘ 𝑇 𝑠(𝑍0)(𝑥) = ̃︀𝑑(𝑍0)𝑥+ 𝒪2(𝑥).

Hence,
𝒫0(𝑥) = 𝜅(𝑍0)̃︀𝑑(𝑍0)

𝑥𝑛 + 𝒪𝑛+1(𝑥).

Therefore, for 𝑥 small enough, |𝒫0(𝑥)|< |𝑥|, which means that Γ0 attracts the orbits
passing through the section 𝜎(𝑍0) (domain of 𝑇 𝑢(𝑍0)).

In what follows we state the main result of this section.

Proposition 2.5.2. Let 𝑍0 be a nonsmooth vector field having a Σ-polycycle Γ0 containing
a unique regular-tangential singularity of order 𝑛 satisfying (𝑖)-(𝑖𝑣). Then, the following
statements hold.

i) There exist an annulus 𝒜0 at Γ0 and a neighborhood 𝒱 of 𝑍0 such that each 𝑍 ∈ 𝒱
has at most one crossing limit cycle bifurcating from Γ0 in 𝒜0, which is hyperbolic
and attracting.

ii) Let 𝑍𝛽,𝜆 be a continuous 2-parameter family in 𝒱 such that 𝑍0,−̃︀𝑑(𝑍0) = 𝑍0 and satis-
fying 𝑍𝛽,𝜆 ∈ 𝜂−1(𝛽, 𝜆), for every (𝛽, 𝜆) ∈ 𝑉 . Then, for each 𝜆 near − ̃︀𝑑(𝑍0) and for
each connected component 𝐶 of 𝜎(𝑍𝛽,𝜆) ∩ 𝒜0, there exists a non-empty open interval
𝐼𝜆,𝐶, satisfying 𝐼𝜆,𝐶 × {𝜆} ⊂ 𝑉 , such that 𝑍𝛽,𝜆 has a hyperbolic attracting crossing
limit cycle passing through 𝐶, for each 𝛽 ∈ 𝐼𝜆,𝐶.

Proof. Consider the function 𝜂 : 𝒱 → 𝑉 given by (2.5.4). For each 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱 , we
associate the displacement function Δ(𝑍) given in (2.5.5). From Section 2.3.3, we have
that there exists 𝜀 > 0 such that, for each 𝑍 ∈ 𝒱 , there exists a function ̃︀Δ(𝑍) : (−𝜀, 𝜀) →
R which is an extension of Δ(𝑍).

Define the 𝒞𝑟 function ℱ : 𝒱 × 𝑉 × (−𝜀, 𝜀) → R as

ℱ(𝑍, 𝛽, 𝜆, 𝑥) = ̃︀Δ(𝑍)(ℎ𝑍(𝑥)) − 𝛽(𝑍) − 𝜆(𝑍)𝑥+ 𝛽 + 𝜆𝑥,
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and notice that
ℱ(𝑍0, 0,− ̃︀𝑑(𝑍0), 0) = 0, and 𝜕𝑥ℱ(𝑍0, 0,− ̃︀𝑑(𝑍0), 0) = − ̃︀𝑑(𝑍0) ̸= 0.

From the Implicit Function Theorem for Banach Spaces and reducing 𝒱 and 𝑉 if
necessary, there exists a unique 𝒞𝑟 function 𝒳 : 𝒱 ×𝑉 → (−𝜀, 𝜀) such that ℱ(𝑍, 𝛽, 𝜆, 𝑥) =
0 if, and only if, 𝑥 = 𝒳 (𝑍, 𝛽, 𝜆).

Since
ℱ(𝑍, 𝛽, 𝜆, 𝑥) = 𝛽 + 𝜆𝑥+ 𝒪2(𝑥),

it follows that 𝒳 (𝑍, 0, 𝜆) = 0, for every (𝑍, 0, 𝜆) ∈ 𝒱 × 𝑉 . Consequently, we can see that

𝒳 (𝑍, 𝛽, 𝜆) = −𝛽

𝜆
+ 𝒪2(𝛽). (2.5.6)

It follows from the definition of the function ℱ that
𝒳 *(𝑍) = 𝒳 (𝑍, 𝛽(𝑍), 𝜆(𝑍)) (2.5.7)

is the unique zero of ̃︀Δ(𝑍) in (−𝜀, 𝜀). Hence, Δ(𝑍) has at most one zero in 𝜎(𝑍).
Moreover, since

𝜕 ̃︀Δ(𝑍0)
𝜕𝑥

(𝒳 *(𝑍0)) = − ̃︀𝑑(𝑍0) > 0,

it follows from (2.5.5) that

𝜕 ̃︀Δ(𝑍)
𝜕𝑥

(𝒳 *(𝑍)) = 𝜆(𝑍) + 𝒪2(𝒳 *(𝑍)) > 0,

for 𝑍 sufficiently near 𝑍0. Therefore, the crossing limit cycle is hyperbolic and attracting
(from construction). The proof of item (𝑖) follows by taking 𝒜0 = {𝑝 ∈ 𝑀 ; 𝑑(𝑝,Γ0) < 𝜀},
where 𝑑 denotes the Hausdorff distance.

Now, consider the family 𝑍𝛽,𝜆 given in item (𝑖𝑖). The unique zero of ̃︀Δ(𝑍𝛽,𝜆) is given
by

𝑥*(𝛽, 𝜆) = 𝒳 *(𝑍𝛽,𝜆) = −𝛽

𝜆
+ 𝒪2(𝛽). (2.5.8)

Recall that each isolated zero, 𝑥0, of Δ(𝑍𝛽,𝜆) is either a crossing limit cycle (if 𝑥0 ∈
int(𝜎(𝑍𝛽,𝜆))) or a Σ-polycycle (if 𝑥0 ∈ 𝜕𝜎(𝑍𝛽,𝜆)). So, let 𝐶 = (𝑎, 𝑏) be a connected
component of 𝜎(𝑍𝛽,𝜆) ⊂ (−𝜀, 𝜀) for some fixed parameter 𝜆 ∈ 𝜋2(𝑉 ). Hence, from (2.5.8),
there exists a non-empty open interval 𝐼𝜆,𝐶 such that 𝐼𝜆,𝐶 ×{𝜆} ⊂ 𝑉 and 𝑥*(𝛽, 𝜆) ∈ int(𝐶)
whenever 𝛽 ∈ 𝐼𝜆,𝐶 .
Remark 2.5.3. If we change the roles of 𝑠 and 𝑢 in the assumptions (𝑖)-(𝑖𝑣) in order to
reverse the orientation of the cycle, all the results remain the same reversing the stability.

Let 𝑍 be a nonsmooth vector field sufficiently near 𝑍0, and consider 𝒳 *(𝑍) given by
(2.5.7). Propositions 2.5.1 and 2.5.2 provides the following possibilities for the crossing
dynamics in a small annulus 𝒜0 of Γ0:

i) if 𝒳 *(𝑍) /∈ 𝜎(𝑍), then 𝑍 has no crossing limit cycles or Σ-polycycles;

ii) if 𝒳 *(𝑍) ∈ int(𝜎(𝑍)), then 𝑍 has a unique crossing limit cycle with the same stability
of Γ0;

iii) if 𝒳 *(𝑍) ∈ 𝜕𝜎(𝑍), then 𝑍 has a unique Σ-polycyle containing 𝑚 ≤ 𝑛 − 1 regular-
tangential singularities of order 𝑛𝑖, with ∑︀𝑚

𝑖=1 𝑛𝑖 ≤ 𝑛.
In addition, items (i) and (ii) occur in open regions of the parameter space and item (iii)
occurs in a hypersurface of the parameter space.
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2.5.3 Σ-Polycycles having a unique regular-cusp singularity

In the previous section, assuming that 𝑍0 has a Σ-polycycle Γ0 admitting a unique
regular-tangential singularity of order 𝑛, 𝑛 ≥ 2, we have identified all the possible crossing
behavior of nonsmooth vector fields 𝑍 = (𝑋, 𝑌 ) sufficiently near 𝑍0 in a small annulus 𝒜0
of Γ0. Nevertheless, the domain 𝜎(𝑍), of the displacement function (2.5.5), has some par-
ticularities depending on the order 𝑛. In order to illustrate it, we describe the bifurcation
diagram of 𝑍0 around Γ0 assuming that 𝑛 = 3. Furthermore, we shall see that 𝒮(Γ0) = 2
(see Definitions 2.2.12).

As before, the displacement function writes

Δ(𝑍)(𝑥) = 𝛽(𝑍) + 𝜆(𝑍)𝑥+ 𝒪2(𝑥). (2.5.9)

For the sake of simplicity, we are omitting the parametrization ℎ𝑍(𝑥) in the displacement
function (2.5.9).

As we have shown before, Δ(𝑍) has a unique zero 𝑥*(𝜂(𝑍)) in an interval (−𝜀, 𝜀).
Now, we have to study how the domain 𝜎(𝑍) of Δ(𝑍) changes with 𝑍. Now, we use
the parameter 𝜆(𝑍), defined in (2.5.4), to characterize 𝜎(𝑍). Recall that 𝜆(𝑍) = ̃︀𝑑(𝑍) −
𝜆1(𝑍) and 𝜆1(𝑍) is given in the unfolding of 𝑇 𝑢

𝑍0 . Analogously to the proof of Theorem
B, we consider a coordinate system (�̄�, 𝑦) which trivializes the flow of 𝑋 at (0, 0). In
this coordinate system, Σ = {(�̄�, 𝛾𝜆1(𝑍)(�̄�)); �̄� ∈ (−𝜀, 𝜀)} and the transition map 𝑇 𝑢(𝑍)
becomes 𝑇 𝑢

* (𝑍)(�̄�) = 𝛾𝜆1(𝑍)(�̄�), where 𝛾𝜆1(𝑍)(�̄�) = 𝜅(𝑍)�̄�3 + 𝜆1(𝑍)�̄�+ 𝒪4(�̄�) and 𝜅(𝑍0) =
−𝑋3

0ℎ(0, 0).
There is no loss of generality in assuming that 𝜅(𝑍0) < 0, since the case 𝜅(𝑍0) > 0 is

completely analogous. Hence, we have the following situation (see Figure 2.21):

𝜆1(𝑍) > 0 𝜆1(𝑍) = 0 𝜆1(𝑍) < 0
Σ

Σ

𝜏𝑢 𝜏𝑢 𝜏𝑢

𝜏𝑢 𝜏𝑢 𝜏𝑢

𝐴(𝜆1)𝐼(𝜆1) 𝑉 (𝜆1) 0⃗ 0⃗

(𝑏)

(𝑎)

Figure 2.21: Unfolding of the regular-cusp singularity in the coordinate system (𝑎) (𝑥, 𝑦)
and (𝑏) (𝑥, 𝑦).

i) If 𝜆1(𝑍) < 0, all the orbits of 𝑋 are transversal to Σ, Therefore, 𝜎(𝑍) = (−𝜀, 𝜀);

ii) If 𝜆1(𝑍) = 0, 𝜎(𝑍) = (−𝜀, 𝜀) (see Corollary 2.4.2);
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iii) If 𝜆1(𝑍) > 0, then 𝛾𝜆1(𝑍)(�̄�) has a minimum at 𝐼(𝜆1) = −
√︃

−𝜆1

3𝜅 + 𝒪1(𝜆1) and

a maximum at 𝑉 (𝜆1) =
√︃

−𝜆1

3𝜅 + 𝒪1(𝜆1). Therefore, 𝑋 has a visible regular-fold
singularity at 𝑉 (𝜆1) and an invisible regular-fold singularity at 𝐼(𝜆1). In addition,
the orbit passing through the visible regular-fold singularity intersects Σ backward
in time at a point 𝐴(𝜆1) < 𝐼(𝜆1). This means that 𝜎(𝑍) = (−𝜀, 𝐴(𝜆1)] ∪ [𝑉 (𝜆1), 𝜀)
and 𝐴(𝜆1), 𝑉 (𝜆1) → 0 as 𝜆1 → 0+.

From the discussion above we have the following result.
Theorem C. Let 𝑍0 be a nonsmooth vector field having a C-attracting Σ-polycycle Γ0
containing a unique regular-cusp singularity. Therefore, there exists an annulus 𝒜0 around
Γ0 such that for each annulus 𝒜, with Γ0 ⊂ 𝒜 ⊂ 𝒜0, there exist neighborhoods 𝒱 ⊂ Ω𝑟 of
𝑍0 and 𝑉 ⊂ R2 of (0, 0), a surjective function (𝛽, 𝜆1) : 𝒱 → 𝑉, with (𝛽, 𝜆1)(𝑍0) = (0, 0),
and three smooth functions 𝐴, 𝑉 , 𝐼 : 𝒱 → 𝑅 with 𝐴(𝑍0) = 𝑉 (𝑍0) = 𝐼(𝑍0) = 0, for which
the following statements hold inside 𝒜.

1. If 𝜆1(𝑍) < 0, then 𝑍 has a unique crossing limit cycle of 𝑍, which is hyperbolic
attracting.

2. If 𝜆1(𝑍) = 0 and 𝛽(𝑍) ̸= 0, then 𝑍 has a unique crossing limit cycle of 𝑍, which is
hyperbolic attracting.

3. If 𝜆1(𝑍) = 𝛽(𝑍) = 0, then 𝑍 has a unique Σ-polycycle, containing a unique regular-
cusp singularity of 𝑍, which is C-attracting.

4. If 𝜆1(𝑍) > 0 and 𝛽(𝑍) > 𝑉 (𝑍), then 𝑍 has a unique crossing limit cycle of 𝑍,
which is hyperbolic attracting.

5. If 𝜆1(𝑍) > 0 and 𝛽(𝑍) = 𝑉 (𝑍), then 𝑍 has a unique Σ-polycycle, containing a
visible unique regular-fold singularity, which is C-attracting.

6. If 𝜆1(𝑍) > 0 and 𝑉 (𝑍) < 𝛽(𝑍) < 𝐼(𝑍), then 𝑍 has a sliding cycle containing a
visible regular-fold singularity.

7. If 𝜆1(𝑍) > 0 and 𝐼(𝑍) = 𝛽(𝑍), then 𝑍 has a sliding cycle containing a visible
regular-fold singularity and an invisible regular-fold singularity.

8. If 𝜆1(𝑍) > 0 and 𝐴(𝑍) < 𝛽(𝑍) < 𝐼(𝑍), then 𝑍 has a sliding cycle containing a
unique visible regular-fold singularity.

9. If 𝜆1(𝑍) > 0 and 𝛽(𝑍) = 𝐴(𝑍), then 𝑍 has a unique Σ-polycycle, containing a
unique regular-fold singularity, which is C-attracting.

10. If 𝜆1(𝑍) > 0 and 𝐴(𝑍) < 𝛽(𝑍), then 𝑍 has a unique crossing limit cycle of 𝑍,
which is hyperbolic attracting.

In addition,
𝐴(𝑍) = ̃︀𝑑(𝑍)𝐴(𝜆1(𝑍)) + 𝒪2(𝜆1(𝑍), 𝐴(𝜆1(𝑍))),

𝑉 (𝑍) = ̃︀𝑑(𝑍)
√︃

−𝜆1(𝑍)
3𝜅(𝑍) + 𝒪1(𝜆1(𝑍)),

𝐼(𝑍) = − ̃︀𝑑(𝑍)
√︃

−𝜆1(𝑍)
3𝜅(𝑍) + 𝒪1(𝜆1(𝑍)),

(2.5.10)
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where 𝐴(𝜆1(𝑍)) and 𝑉 (𝜆1(𝑍)) are defined as the extrema of 𝜎(𝑍) as follows 𝜎(𝑍) =
(−𝜀, 𝐴(𝜆1(𝑍))] ∪ [𝑉 (𝜆1(𝑍)), 𝜀).

The theorem above provides the bifurcation diagram of 𝑍0 in the (𝛽, 𝜆1)-parameter
space (see Figure 2.3).

Proof. From the construction of the auxiliary crossing system (2.5.3), performed in Section
2.5.1, we get the existence of an annulus 𝒜0 around Γ0 and neighborhoods 𝒱0 ⊂ Ω𝑟 of 𝑍0
and 𝑉0 ⊂ R2 of (0, 0), for which the equation (2.5.9) is well defined.

Now, given an annulus 𝒜, with Γ0 ⊂ 𝒜 ⊂ 𝒜0, let 𝜀 > 0 satisfy (−𝜀, 𝜀) × {0} ⊂ 𝒜.
Consider the function 𝒳 : 𝒱0 × 𝑉0 → (−𝜀, 𝜀) given by (2.5.6), and for a sufficiently small
neighborhood 𝑈 ⊂ R2 of the origin, define ℬ : 𝒱 × 𝑈 × (−𝜀, 𝜀) → R by

ℬ(𝑍, 𝛽, 𝜆1, 𝑣) = 𝒳 (𝑍, 𝛽, 𝜆1 − ̃︀𝑑(𝑍)) − 𝑣 = − 𝛽

𝜆1 − ̃︀𝑑(𝑍)
− 𝑣 + 𝒪2(𝛽).

Notice that
ℬ(𝑍0, 0, 0, 0) = 0, and 𝜕𝛽ℬ(𝑍0, 0, 0, 0) = 1̃︀𝑑(𝑍0)

̸= 0.

From the Implicit Function Theorem for Banach Spaces, there exist 𝛿 > 0, an open
interval 𝐽 containing 0, and a unique 𝒞𝑟 function 𝛽* : 𝒱 ×𝐽 × (−𝜀, 𝜀) → (−𝛿, 𝛿) such that
ℬ(𝑍, 𝛽, 𝜆, 𝑣) = 0 if, and only if 𝛽 = 𝛽*(𝑍, 𝜆1, 𝑣). Also, we can see that

𝛽*(𝑍, 𝜆1, 𝑣) = ̃︀𝑑(𝑍)𝑣 − 𝜆1𝑣 + 𝒪2(𝑣).

Notice that, if 𝐴(𝑍) = 𝛽*(𝑍, 𝜆1(𝑍), 𝐴(𝜆1(𝑍))) and 𝑉 (𝑍) = 𝛽*(𝑍, 𝜆1(𝑍), 𝑉 (𝜆1(𝑍))),
then 𝒳 *(𝑍,𝐴(𝑍), 𝜆1(𝑍)) = 𝐴(𝜆1(𝑍)) and 𝒳 *(𝑍, 𝑉 (𝑍), 𝜆1(𝑍)) = 𝑉 (𝜆1(𝑍)). Since

𝑉 (𝜆1(𝑍)) =

⎯⎸⎸⎷−𝜆1(𝑍)
3𝜅(𝑍) + 𝒪1(𝜆1(𝑍)),

we get 𝑉 (𝑍) from (2.5.10).
From construction of the maps 𝑇 𝑢(𝑍), 𝑇 𝑠(𝑍) and 𝐷(𝑍) given in (2.5.1) and (2.5.2), it

follows that the points 𝐼(𝜆1(𝑍)) and 𝑉 (𝜆1(𝑍)) are connected by an orbit of 𝑍 = (𝑋, 𝑌 )
if, and only if,

𝐺(𝑍) =: 𝑇 𝑢(𝑍)(𝑉 (𝜆1(𝑍))) − [𝐷(𝑍)]−1 ∘ 𝑇 𝑠(𝑍)(𝐼(𝜆1(𝑍))) = 0.

Notice that

𝐺(𝑍) = 𝛽(𝑍) + ̃︀𝑑(𝑍)

⎯⎸⎸⎷−𝜆1(𝑍)
3𝜅(𝑍) + 𝒪1(𝜆1(𝑍)).

Thus, applying the Implicit Function Theorem to the function 𝒢 : 𝒱 × (−𝛿, 𝛿) → R,
given by 𝒢(𝑍, 𝛽) := 𝐺(𝑍) − 𝛽(𝑍) + 𝛽, at the point (𝑍0, 0), we get a unique 𝒞𝑟 function
𝐼 : 𝒱 → (−𝛿, 𝛿) such that 𝒢(𝑍, 𝛽) = 0 if, and only if, 𝛽 = 𝐼(𝑍). Hence, the points
𝑉 (𝜆1(𝑍)) and 𝐴(𝜆1(𝑍)) are connected by an orbit of 𝑍 if, and only if 𝛽(𝑍) = 𝐼(𝑍). In
this case,

𝐼(𝑍) = − ̃︀𝑑(𝑍)

⎯⎸⎸⎷−𝜆1(𝑍)
3𝜅(𝑍) + 𝒪1(𝜆1(𝑍)).

From here, the proof follows directly from the definitions of the curves 𝐴, 𝑉 and 𝐼,
and Propositions 2.5.1 and 2.5.2.
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2.5.4 Σ-Polycycles having several regular-tangential singulari-
ties

Now we perform an analysis of a class of Σ-polycyles having several regular-tangential
singularities and we obtain similar results for those in Section 2.5.2. Consider the class
of nonsmooth vector fields 𝑍0 = (𝑋0, 𝑌0) which admit a Σ-polycycle having 𝑘 regular-
tangential singularities, 𝑝𝑖 ∈ Σ, of order 𝑛𝑖, 𝑖 = 1, . . . , 𝑘 satisfying the following property:

(A) for each 𝑖 = 1, . . . , 𝑘, there exists a curve 𝛾𝑖 connecting 𝑝𝑖 and 𝑝𝑖+1, oriented from 𝑝𝑖

to 𝑝𝑖+1, such that 𝛾𝑖 ∖ {𝑝𝑖, 𝑝𝑖+1} is a regular orbit of 𝑍0, 𝛾𝑖 is tangent to Σ at 𝑝𝑖 and
transversal to Σ at 𝑝𝑖+1, where 𝑝𝑘+1 = 𝑝1 (see Figure 2.22).

In what follows, without loss of generality, we assume that ℎ(𝑥, 𝑦) = 𝑦, 𝑝1 = (0, 0),
and 𝑝𝑖 = (𝑎𝑖, 0), 𝑖 = 2, · · · , 𝑘.

𝑝1
Σ 𝑝2

𝑝2𝑝1 𝑝3 𝑝4

Figure 2.22: Σ-polycycles satisfying hypothesis (𝐴).

Following the constructions presented in Sections 2.5.1 and 2.5.2 the displacement
functions Δ𝑖(𝑍) : 𝜎𝑖(𝑍) → R are given by

Δ𝑖(𝑍)(ℎ𝑖
𝑍(𝑥𝑖), ℎ𝑖+1

𝑍 (𝑥𝑖+1)) = 𝛽𝑖(𝑍) + ̃︀𝜆𝑖(𝑍)𝑥𝑠
𝑖+1 + 𝒪2(𝑥𝑢

𝑖 ) + 𝒪2(𝑥𝑠
𝑖+1),

where 𝑥𝑠,𝑢
𝑖 = 𝑥𝑖 − 𝑎𝑖, 𝛽𝑖(𝑍) = Δ𝑖(𝑍)(ℎ𝑖

𝑍(𝑎𝑖), ℎ𝑖+1
𝑍 (𝑎𝑖+1)) satisfies 𝛽𝑖(𝑍0) = 0, and ̃︀𝜆𝑖(𝑍) =

𝜆𝑖
1(𝑍) − ̃︀𝑑𝑖(𝑍) satisfies ̃︀𝜆𝑖(𝑍0) = − ̃︀𝑑𝑖(𝑍0) ̸= 0. Thus, there exists a neighborhood 𝒱 of 𝑍0

such that for each 𝑍 ∈ 𝒱 and 𝑖 = 1, . . . , 𝑘, ̃︀𝜆𝑖(𝑍) = − ̃︀𝑑𝑖(𝑍) ̸= 0 and the crossing system
(2.5.3) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1(𝑍)(ℎ1
𝑍(𝑥1), ℎ2

𝑍(𝑥2)) = 𝛽1(𝑍) + ̃︀𝜆1(𝑍)𝑥𝑠
2 + 𝒪2(𝑥𝑢

1) + 𝒪2(𝑥𝑠
2) = 0,

Δ2(𝑍)(ℎ2
𝑍(𝑥2), ℎ3

𝑍(𝑥3)) = 𝛽2(𝑍) + ̃︀𝜆2(𝑍)𝑥𝑠
3 + 𝒪2(𝑥𝑢

2) + 𝒪2(𝑥𝑠
3) = 0,

...
Δ𝑘−1(𝑍)(ℎ𝑘−1

𝑍 (𝑥𝑘−1), ℎ𝑘
𝑍(𝑥𝑘)) = 𝛽𝑘−1(𝑍) + ̃︀𝜆𝑘−1(𝑍)𝑥𝑠

𝑘 + 𝒪2(𝑥𝑢
𝑘−1) + 𝒪2(𝑥𝑠

𝑘) = 0,

Δ𝑘(𝑍)(ℎ𝑘
𝑍(𝑥𝑘), ℎ1

𝑍(𝑥1)) = 𝛽𝑘(𝑍) + ̃︀𝜆𝑘(𝑍)𝑥𝑠
1 + 𝒪2(𝑥𝑢

𝑘) + 𝒪2(𝑥𝑠
1) = 0,

𝑥𝑠,𝑢
𝑖 = 𝑥𝑖 − 𝑎𝑖, 𝑖 = 1, · · · , 𝑘,
ℎ𝑖

𝑍(𝑥𝑖) ∈ 𝜎𝑖(𝑍), 𝑖 = 1, · · · , 𝑘.
(2.5.11)

So for the Σ-polycycle Γ0 we have the following proposition.
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Proposition 2.5.4. Let Γ0 be a Σ-polycycle having 𝑘 regular-tangential singularities 𝑝𝑖 ∈
Σ, of order 𝑛𝑖, 𝑖 = 1, . . . , 𝑘, satisfying the property (𝐴). Then, Γ0 attracts the orbits
passing through the section 𝜎1(𝑍0) (domain of 𝑇 𝑢

1 (𝑍0)). In this case, we say that Γ0 is
C-attracting.

Proof. Notice that the first return map associated with the Σ-polycycle Γ0 of 𝑍0 is given
by

𝒫0(𝑥) = ([𝐷𝑘]−1 ∘ 𝑇 𝑠
1 )−1 ∘ 𝑇 𝑢

𝑘 ∘ ([𝐷𝑘−1]−1 ∘ 𝑇 𝑠
𝑘 )−1 ∘ 𝑇 𝑢

−1 ∘ · · · ∘ ([𝐷1]−1 ∘ 𝑇 𝑠
2 )−1 ∘ 𝑇 𝑢

1 (𝑥)

where, from (2.5.1) and (2.5.2) (recall that ℎ1
𝑍0 = 𝐼𝑑),

𝑇 𝑢
𝑖 (𝑥) = 𝜅𝑖(𝑍0)𝑥𝑛𝑖 + 𝒪𝑛𝑖+1(𝑥) and [𝐷𝑖−1]−1 ∘ 𝑇 𝑠

𝑖 (𝑥) = ̃︀𝑑𝑖(𝑍0)𝑥+ 𝒪2(𝑥).

Hence,

𝒫0(𝑥) =
𝑘∏︁

𝑖=1

𝜅𝑖(𝑍0)̃︀𝑑𝑖(𝑍0)
𝑥𝑛𝑖 + 𝒪𝑁(𝑥), 𝑁 = 𝑛1 + 𝑛2 + · · · + 𝑛𝑘 + 1.

Therefore, for |𝑥| small enough, |𝒫0(𝑥)|< |𝑥|, which means that Γ0 attracts the orbits
passing through the section 𝜎1(𝑍0) (domain of 𝑇 𝑢

1 (𝑍0)).

Set 𝜂(𝑍) = (𝛽(𝑍), ̃︀𝜆(𝑍)) with 𝛽(𝑍) = (𝛽1(𝑍), . . . , 𝛽𝑘(𝑍)) and ̃︀𝜆(𝑍) = (̃︀𝜆1(𝑍), . . . , ̃︀𝜆𝑘(𝑍)),
and denote ̃︀𝑑(𝑍) = ( ̃︀𝑑1(𝑍), . . . , ̃︀𝑑𝑘(𝑍)). Notice that 𝜂 : 𝒱 → 𝑉 is surjective onto a neigh-
borhood of (0,− ̃︀𝑑(𝑍0)) ∈ 𝑉 . Now, we present the main result of this section which is an
extension of the Proposition 2.5.2.

Proposition 2.5.5. Let Γ0 be a Σ-polycycle of 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 having 𝑘 regular-
tangential singularities 𝑝𝑖 ∈ Σ, of order 𝑛𝑖, 𝑖 = 1, . . . , 𝑘, satisfying property (𝐴). Then,
the following statements hold.

i) There exists an annulus 𝒜0 at Γ0 and a neighborhood 𝒱 of 𝑍0 such that each 𝑍 ∈ 𝒱
has at most one crossing limit cycle bifurcating from Γ0 in 𝒜0, which is hyperbolic
attracting.

ii) Let 𝑍
𝛽,̃︀𝜆 be a continuous 2𝑘-parameter family in 𝒱 such that 𝑍0,−̃︀𝑑(𝑍0) = 𝑍0 and

satisfying 𝑍
𝛽,̃︀𝜆 ∈ 𝜂−1(𝛽, ̃︀𝜆), for every (𝛽, ̃︀𝜆) ∈ 𝑉 . Then, for each ̃︀𝜆 near − ̃︀𝑑(𝑍0) and

for each connected component 𝐶𝑖 of 𝜎𝑖(𝑍𝛽,̃︀𝜆)∩𝒜0, there exist non-empty open intervals
𝐼̃︀𝜆,𝐶𝑖

, satisfying 𝐼̃︀𝜆,𝐶1
×· · ·×𝐼̃︀𝜆,𝐶𝑘

×{̃︀𝜆} ⊂ 𝑉 , such that 𝑍𝛽,𝜆 has a hyperbolic attracting
crossing limit cycle passing through 𝐶1 × · · · × 𝐶𝑘, for each 𝛽 ∈ 𝐼̃︀𝜆,𝐶1

× · · · × 𝐼̃︀𝜆,𝐶𝑘
.

Proof. As seen before, there exists a neighborhood 𝒱 of 𝑍0 in Ω𝑟 such that, for each
𝑍 = (𝑋, 𝑌 ) ∈ 𝒱 , we associate the displacement functions Δ𝑖(𝑍), 𝑖 = 1, . . . , 𝑘, given in
(2.5.11), which can be extended to ̃︀Δ𝑖(𝑍) : (−𝜀, 𝜀) → R (see Section 2.3.3).

Define the 𝒞𝑟 function ℱ : 𝒱 × 𝑉 × (−𝜀, 𝜀)𝑘 → R𝑘 as

ℱ(𝑍, 𝛽, ̃︀𝜆, 𝑥) = (ℱ1(𝑍, 𝛽, ̃︀𝜆, 𝑥), . . . ,ℱ𝑘(𝑍, 𝛽, ̃︀𝜆, 𝑥)),

where 𝑉 is an open neighborhood of (0,− ̃︀𝑑(𝑍0)) ∈ R𝑘 × R𝑘 and, for 𝑖 = 1, . . . , 𝑘,

ℱ𝑖(𝑍, 𝛽, ̃︀𝜆, 𝑥) = ̃︀Δ𝑖(𝑍)(ℎ𝑖
𝑍(𝑥𝑖), ℎ𝑖+1

𝑍 (𝑥𝑖+1)) − 𝛽𝑖(𝑍) − ̃︀𝜆𝑖(𝑍)𝑥𝑖+1 + 𝛽𝑖 + ̃︀𝜆𝑖𝑥𝑖+1,

with 𝑥𝑘+1 = 𝑥1 and ℎ𝑘+1
𝑍 = ℎ1

𝑍 .
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Notice that ℱ(𝑍0, 0,− ̃︀𝑑(𝑍0), 0) = (0, . . . , 0) and

𝐷𝑥ℱ(𝑍0, 0,− ̃︀𝑑(𝑍0), 0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 − ̃︀𝑑2(𝑍0) 0 · · · 0
0 0 − ̃︀𝑑3(𝑍0) · · · 0
... ... ... . . . ...
0 0 0 · · · − ̃︀𝑑𝑘(𝑍0)

− ̃︀𝑑1(𝑍0) 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

From the Implicit Function Theorem for Banach Spaces and reducing 𝒱 and 𝑉 if
necessary, there exists a unique 𝒞𝑟 function 𝒳 : 𝒱×𝑉 → (−𝜀, 𝜀)𝑘 such that ℱ(𝑍, 𝛽, ̃︀𝜆, 𝑥) =
0 if, and only if, 𝑥 = 𝒳 (𝑍, 𝛽, ̃︀𝜆). Since

ℱ(𝑍, 𝛽, ̃︀𝜆, 𝑥) = (𝛽1 + ̃︀𝜆1𝑥2, . . . , 𝛽𝑘−1 + ̃︀𝜆𝑘−1𝑥𝑘, 𝛽𝑘 + ̃︀𝜆𝑘𝑥1) + 𝒪2(𝑥),

it follows that 𝒳 (𝑍, 0, ̃︀𝜆) = 0, for any (𝑍, 0, ̃︀𝜆) ∈ 𝒱 × 𝑉 . Consequently,

𝒳 (𝑍, 𝛽, ̃︀𝜆) = −
(︃
𝛽𝑘̃︀𝜆𝑘

,
𝛽1̃︀𝜆1
, . . . ,

𝛽𝑘−1̃︀𝜆𝑘−1

)︃
+ 𝒪2(𝛽).

From the definition of the function ℱ , the unique zero of ̃︀Δ(𝑍) = ( ̃︀Δ1(𝑍), . . . , ̃︀Δ𝑘(𝑍))
in (−𝜀, 𝜀)𝑘 is given by

𝒳 *(𝑍) = 𝒳 (𝑍, 𝛽(𝑍), ̃︀𝜆(𝑍)).
Hence, system (2.5.11) has at most one zero in 𝜎1(𝑍) × · · · × 𝜎𝑘(𝑍). Moreover, since

𝜕 ̃︀Δ𝑖(𝑍0)
𝜕𝑥𝑖+1

(𝒳 *(𝑍0)) = − ̃︀𝑑𝑖(𝑍0) > 0,

it follows that

𝜕 ̃︀Δ𝑖(𝑍)
𝜕𝑥𝑖+1

(𝒳 *(𝑍)) = ̃︀𝜆𝑖(𝑍) + 𝒪1(𝒳 *(𝑍)) > 0, 𝑖 = 1, . . . , 𝑘, (2.5.12)

for 𝑍 sufficiently near 𝑍0.
Now, for 𝑍 ∈ 𝒱 suppose that the solution 𝒳 *(𝑍) = (𝑥*

1(𝑍), . . . , 𝑥*
𝑘(𝑍)) ∈ int(𝜎1(𝑍) ×

· · · × 𝜎𝑘(𝑍)) of system (2.5.11) is associated with a crossing limit cycle of 𝑍. From the
Implicit Function Theorem, for each 𝑥1 sufficiently close to 𝑥*

1(𝑍) the orbit of 𝑍, starting at
(𝑥1, 0) ∈ 𝜎1(𝑍)×{0}, intersects each int(𝜎𝑖(𝑍))×{0} at (𝜉𝑖(𝑥1), 0) with 𝜉𝑖(𝑥1) near 𝑥*

𝑖 (𝑍).
Notice that ̃︀Δ𝑖(𝑍)(ℎ𝑖

𝑍(𝜉𝑖(𝑥1)), ℎ𝑖+1
𝑍 (𝜉𝑖+1(𝑥1))) = 0, for 𝑖 = 1, . . . , 𝑘 − 1. Consequently,

𝑥1 ↦→ ̃︀Δ𝑘(𝑍)(ℎ𝑘
𝑍(𝜉𝑘(𝑥1)), ℎ1

𝑍(𝑥1))

is the displacement function associated with the crossing limit cycle defined in neighbor-
hood of 𝑥*

1(𝑍) in int(𝜎1(𝑍)) × {0}. Clearly, the above displacement function vanishes at
𝑥*

1(𝑍). Moreover, from (2.5.12), the derivative of displacement function at 𝑥*
1 is positive.

Therefore, when the crossing limit cycle exists, it is hyperbolic and attracting.
The proof of item (𝑖) follows by taking 𝒜0 = {𝑝 ∈ 𝑀 ; 𝑑(𝑝,Γ0) < 𝜀}, where 𝑑 denotes

the Hausdorff distance.
Now, consider the family 𝑍

𝛽,̃︀𝜆 given in item (𝑖𝑖). The unique zero of ̃︀Δ(𝑍
𝛽,̃︀𝜆) is given

by

𝒳 *(𝑍
𝛽,̃︀𝜆) = −

(︃
𝛽𝑘̃︀𝜆𝑘

,
𝛽1̃︀𝜆1
, . . . ,

𝛽𝑘−1̃︀𝜆𝑘−1

)︃
+ 𝒪2(𝛽). (2.5.13)
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Recall that each isolated solution 𝑥* of system (2.5.11) represents either a crossing limit
cycle (if 𝑥* ∈ int(𝜎1(𝑍𝛽,̃︀𝜆) × · · · × 𝜎𝑘(𝑍

𝛽,̃︀𝜆))) or a Σ-polycycle (if 𝑥* ∈ 𝜕(𝜎1(𝑍𝛽,̃︀𝜆) × · · · ×
𝜎𝑘(𝑍

𝛽,̃︀𝜆))). So, for 𝑖 = 1, . . . , 𝑘, let 𝐶𝑖 be a connected component of 𝜎𝑖(𝑍𝛽,̃︀𝜆) ⊂ (−𝜀, 𝜀)
for some fixed parameter ̃︀𝜆 ∈ 𝜋2(𝑉 ). Hence, from (2.5.13), there exists a non-empty open
interval 𝐼̃︀𝜆,𝐶𝑖

such that 𝐼̃︀𝜆,𝐶1
× . . . × 𝐼̃︀𝜆,𝐶𝑖

× {̃︀𝜆} ⊂ 𝑉 and 𝒳 *(𝑍
𝛽,̃︀𝜆) ∈ int(𝐶1 × . . . × 𝐶𝑘)

whenever 𝛽𝑖 ∈ 𝐼̃︀𝜆,𝐶𝑖
.

Remark 2.5.6. Regarding Propositions 2.5.4 and 2.5.5, if we change the orientation in
property (𝐴) in order to reverse the orientation of the Σ-polycycle, all the results remain
the same reversing the stability the Σ-polycycle and the crossing limit cycle.

These results are illustrated in the next section for the case where the Σ-polycycle has
two fold-regular singularities.

2.5.5 Σ-Polycycles having two regular-fold singularities

Firstly, without loss of generality, we assume some conditions in order to characterize
the nonsmooth vector fields 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 which admit a Σ-polycycle Γ0 satisfying
(A) and having only two regular-fold singularities (see Figure 2.23). So, consider a co-
ordinate system (𝑥, 𝑦) such that 𝑥(𝑝1) = 𝑎1, 𝑦(𝑝1) = 0, 𝑥(𝑝2) = 𝑎2 > 0, 𝑦(𝑝2) = 0 and
ℎ(𝑥, 𝑦) = 𝑦 in neighborhoods of 𝑝1 and 𝑝2. Consider the following sets of hypotheses:

(DRF-A): − 𝑝1 is a visible regular-fold singularity of 𝑋0 and 𝜋1 ∘𝑋0(𝑝1) > 0;
− 𝑝2 is a visible regular-fold singularity of 𝑌0 and 𝜋1 ∘ 𝑌0(𝑝2) < 0;
− 𝑊 𝑢

+(𝑝1) reaches Σ transversally at 𝑝2;
− 𝑊 𝑢

−(𝑝2) reaches Σ transversally at 𝑝1

(DRF-B): − 𝑝1 is a visible regular-fold singularity of 𝑋0 and 𝜋1 ∘𝑋0(𝑝1) < 0;
− 𝑝2 is a visible regular-fold singularity of 𝑌0 and 𝜋1 ∘ 𝑌0(𝑝2) > 0;
− 𝑊 𝑢

+(𝑝1) reaches Σ transversally at 𝑝2;
− 𝑊 𝑢

−(𝑝2) reaches Σ transversally at 𝑝1

(𝑎)

𝑝1 𝑝1𝑝2 𝑝2

(𝑏)

Figure 2.23: Σ-polycycle Γ0 of 𝑍0 under the set of hypotheses (𝑎) (DRF-A) and (𝑏)
(DRF-B), respectively.

Hypotheses (DRF-A) and (DRF-B) fix the orientation and the stability of the Σ-
polycycle Γ0. Indeed, in this case Γ0 is C-attracting. According to Remark 2.5.6, the
stability of Γ0 is reversed if we change the orientation.
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Remark 2.5.7. Notice that there are other closed connections containing two regular-
fold singularities which are not Σ-polycycles since they violate condition (𝑖𝑣) of Definition
2.2.7 (see Example 2.2.9).

Here we shall assume that 𝑍0 satisfies (DRF-A), the case (DRF-B) will follow analo-
gously. In this case, 𝑍0 admits a Σ-polycycle Γ0 given by the union 𝑊 𝑢

+(𝑎1, 0)∪𝑊 𝑢
−(𝑎2, 0)∪

{(𝑎1, 0), (𝑎2, 0)}. We shall see that 𝒮(Γ0) = 2.
Since regular-fold singularities are locally structurally stable, they persist under small

perturbations. Consequently, without loss of generality, we may assume that the dif-
feomorphisms ℎ𝑖

𝑍 , 𝑖 = 1, 2, provenient from Theorem B may be taken as the identity.
Accordingly, the displacement functions write

Δ1(𝑍)(𝑥1, 𝑥2) = 𝑇 𝑢
1 (𝑍)(𝑥1) − [𝐷1(𝑍)]−1 ∘ 𝑇 𝑠

2 (𝑍)(𝑥2)
= 𝜆1

0(𝑍) + 𝜅1(𝑍)(𝑥1 − 𝑎1)2 + 𝒪3(𝑥1 − 𝑎1)
−̃︀𝑐1(𝑍) − ̃︀𝑑1(𝑍)(𝑥2 − 𝑎2) + 𝒪2(𝑥2 − 𝑎2),

Δ2(𝑍)(𝑥2, 𝑥1) = 𝑇 𝑢
2 (𝑍)(𝑥2) − [𝐷2(𝑍)]−1 ∘ 𝑇 𝑠

1 (𝑍)(𝑥1)
= 𝜆2

0(𝑍) + 𝜅2(𝑍)(𝑥2 − 𝑎2)2 + 𝒪3(𝑥2 − 𝑎2)
−̃︀𝑐2(𝑍) − ̃︀𝑑2(𝑍)(𝑥1 − 𝑎1) + 𝒪2(𝑥1 − 𝑎1),

where 𝜅1(𝑍) < 0, 𝜅2(𝑍) > 0, and ̃︀𝑑𝑖(𝑍) > 0, for 𝑖 = 1, 2. Therefore, denoting 𝛽𝑖(𝑍) =
𝜆𝑖

0(𝑍) − ̃︀𝑐𝑖(𝑍), 𝑖 = 1, 2, (see Figure 2.24) the auxiliary crossing system (2.5.3) becomes⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛽1(𝑍) − ̃︀𝑑1(𝑍)𝜉2 + 𝜅1(𝑍)𝜉2
1 + 𝒪2(𝜉2) + 𝒪3(𝜉1) = 0,

𝛽2(𝑍) − ̃︀𝑑2(𝑍)𝜉1 + 𝜅2(𝑍)𝜉2
2 + 𝒪2(𝜉2) + 𝒪3(𝜉1) = 0,

𝜉𝑖 = 𝑥𝑖 − 𝑎𝑖, 𝑖 = 1, 2,
(𝑥1, 𝑥2) ∈ 𝜎1(𝑍) × 𝜎2(𝑍) = [𝑎1, 𝑎1 + 𝜀) × (𝑎2 − 𝜀, 𝑎2].

(2.5.14)

𝑝1 𝑝2

𝜏𝑢
1

𝜏𝑢
2

̃︀𝑐1

𝜆1
0

̃︀𝑐2

𝜆2
0

Figure 2.24: Splitting of the separatrices for a perturbed system 𝑍 ∈ 𝒱 .

In what follows we use the auxiliary crossing system (2.5.14) to describe the bifurcation
diagram of 𝑍0 at Γ0 assuming the set of hypotheses (DRF-A) (see Figure 2.4).

Theorem D. Let 𝑍0 be a nonsmooth vector field having a Σ-polycycle satisfying the set
of hypotheses (DRF-A). Therefore, there exists an annulus 𝒜0 around Γ0 such that for
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each annulus 𝒜, with Γ0 ⊂ 𝒜 ⊂ 𝒜0, there exist neighborhoods 𝒱 ⊂ Ω𝑟 of 𝑍0 and 𝑉 ⊂ R2

of (0, 0), a surjective function (𝛽1, 𝛽2) : 𝒱 → 𝑉 with (𝛽1, 𝛽2)(𝑍0) = (0, 0), and two smooth
functions 𝛾1, 𝛾2 : 𝒱 → R with 𝛾1(𝑍0) = 𝛾2(𝑍0) = 0, for which the following statements
hold inside 𝒜.

1. If 𝛽2(𝑍) > 0 and 𝛽1(𝑍) > 𝛾1(𝑍), then 𝑍 has a sliding cycle containing the regular-
fold singularity 𝑝2 and a unique sliding segment.

2. If 𝛽2(𝑍) > 0 and 𝛽1(𝑍) = 𝛾1(𝑍), then 𝑍 has a C-attracting Σ-polycycle containing
the regular-fold singularity 𝑝2.

3. If 𝛽2(𝑍) > 0 and 0 < 𝛽1(𝑍) < 𝛾1(𝑍), then 𝑍 has a hyperbolic attracting crossing
limit cycle.

4. If 𝛽2(𝑍) > 0 and 𝛽1(𝑍) = 0, then 𝑍 has a hyperbolic attracting crossing limit cycle
and a heteroclinic connection between 𝑝1 and 𝑝2.

5. If 𝛽2(𝑍) > 0 and 𝛽1(𝑍) < 0, then 𝑍 has a hyperbolic attracting crossing limit cycle.

6. If 𝛽2(𝑍) = 0 and 𝛽1(𝑍) < 0, then 𝑍 has a hyperbolic attracting crossing limit cycle
and a heteroclinic connection between 𝑝1 and 𝑝2.

7. If 𝛽2(𝑍) = 𝛽1(𝑍) = 0, then 𝑍 has a C-attracting Σ-polycycle containing two regular-
fold singularities.

8. If 𝛽1(𝑍) < 0 and 𝛾2(𝑍) < 𝛽2(𝑍) < 0, then 𝑍 has a hyperbolic attracting crossing
limit cycle.

9. If 𝛽1(𝑍) < 0 and 𝛽2(𝑍) = 𝛾2(𝑍), then 𝑍 has a C-attracting Σ-polycycle containing
the regular-fold singularity 𝑝1.

10. If 𝛽1(𝑍) < 0 and 𝛽2(𝑍) < 𝛾2(𝑍), then 𝑍 has a sliding cycle containing the regular-
fold singularity 𝑝1 and a unique sliding segment.

11. If 𝛽2(𝑍) < 0 and 𝛽1(𝑍) = 0, then 𝑍 has a sliding cycle containing two regular-fold
singularities and one sliding segment.

12. If 𝛽2(𝑍) < 0 and 𝛽1(𝑍) > 0, then 𝑍 has a sliding cycle containing two regular-fold
singularities and two sliding segments.

13. If 𝛽2(𝑍) = 0 and 𝛽1(𝑍) > 0, then 𝑍 has a sliding cycle containing two regular-fold
singularities and one sliding segment.

Here,

𝛾1(𝑍) = − 𝜅1(𝑍)̃︀𝑑2(𝑍)2
𝛽2(𝑍)2 + 𝒪3(𝛽2(𝑍)) and 𝛾2(𝑍) = − 𝜅2(𝑍)̃︀𝑑1(𝑍)2

𝛽1(𝑍)2 + 𝒪3(𝛽1(𝑍)).

In addition, in the cases (1), and (10) − (13), 𝑍 does not admit limit cycles.

Proof. From the construction of the auxiliary crossing system (2.5.3), performed in Section
2.5.1, we get the existence of an annulus 𝒜0 around Γ0 and neighborhoods 𝒱0 ⊂ Ω𝑟 of 𝑍0
and 𝑉0 ⊂ R2 of (0, 0), for which the auxiliary crossing system (2.5.14) is well defined.
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Now, given an annulus 𝒜, with Γ0 ⊂ 𝒜 ⊂ 𝒜0, let 𝜀 > 0 satisfy [𝑎1, 𝑎1 + 𝜀) × {0} ⊂ 𝒜
and (𝑎2 − 𝜀, 𝑎2] × {0} ⊂ 𝒜. Consider the function 𝐹 : 𝒱0 × (−𝜀, 𝜀)2 × 𝑉0 → R2 given by

𝐹 (𝑍, 𝜉1, 𝜉2, 𝛽1, 𝛽2) = (𝐹1(𝑍, 𝜉1, 𝜉2, 𝛽1), 𝐹2(𝑍, 𝜉1, 𝜉2, 𝛽2)),

where
𝐹1(𝑍, 𝜉1, 𝜉2, 𝛽1) = ̃︁𝐹1(𝑍, 𝜉1, 𝜉2) − 𝛽1(𝑍) + 𝛽1,

𝐹2(𝑍, 𝜉1, 𝜉2, 𝛽2) = ̃︁𝐹2(𝑍, 𝜉1, 𝜉2) − 𝛽2(𝑍) + 𝛽2,

and ̃︁𝐹1 and ̃︁𝐹2 are given by the left-hand side of the first two equations of (2.5.14).
Notice that 𝐹 (𝑍0, 0, 0, 0, 0) = (0, 0) and det[𝐷(𝜉1,𝜉2)𝐹 (𝑍0, 0, 0, 0, 0)] = − ̃︀𝑑1(𝑍0) ̃︀𝑑2(𝑍0) ̸=

0. From the Implicit Function Theorem for Banach Spaces, there exist neighborhoods
𝒱 ⊂ 𝒱 and 𝑉 ⊂ 𝑉0 and unique 𝒞𝑟 functions Ξ1,Ξ2 : 𝒱 × 𝑉 → (−𝜀, 𝜀) such that

𝐹 (𝑍,Ξ1(𝑍, 𝛽1, 𝛽2),Ξ2(𝑍, 𝛽1, 𝛽2), 𝛽1, 𝛽2) = (0, 0).

Consequently, for each 𝑍 ∈ 𝒱 , the auxiliary crossing system (2.5.14) has at most one
solution. In fact, (2.5.14) is satisfied if, and only if,

(𝜉1, 𝜉2) = (Ξ1(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)),Ξ2(𝑍, 𝛽1(𝑍), 𝛽2(𝑍))) ∈ [0, 𝜀) × (−𝜀, 0]. (2.5.15)

Therefore, each 𝑍 ∈ 𝒱 has either a Σ-polycycle having a unique regular-fold singularity
(which occurs when 𝜉1 = 0 or 𝜉2 = 0) or at most one crossing limit cycle.

In what follows, we find parameters (𝛽1(𝑍), 𝛽2(𝑍)) satisfying (2.5.15).
First, Ξ2(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)) = 0 implies the existence of a Σ-polycycle of 𝑍 passing

through the regular-fold singularity 𝑝2. Applying the Implicit Function Theorem to
𝑔(𝑍, 𝜉1, 𝛽2) = 𝐹2(𝑍, 𝜉1, 0, 𝛽2) at (𝑍0, 0, 0), we obtain the existence of a unique 𝒞𝑟 func-
tion ̃︀Ξ1(𝑍, 𝛽2) such that 𝑔(𝑍, ̃︀Ξ1(𝑍, 𝛽2), 𝛽2) = 0. In addition,

̃︀Ξ1(𝑍, 𝛽2) = 𝛽2̃︀𝑑2(𝑍)
+ 𝒪2(𝛽2) = 𝒪1(𝛽2).

Now, applying the Implicit Function Theorem to ℎ(𝑍, 𝛽1, 𝛽2) = 𝐹1(𝑍, ̃︀Ξ1(𝑍, 𝛽2), 0, 𝛽1) at
the point (𝑍0, 0, 0) we obtain a function 𝛽1(𝑍, 𝛽2) such that ℎ(𝑍, 𝛽1(𝑍, 𝛽2), 𝛽2) = 0. It
follows directly from the expression of ℎ that

𝛽1(𝑍, 𝛽2) = − 𝜅1(𝑍)̃︀𝑑2(𝑍)2
𝛽2

2 + 𝒪3(𝛽2).

Hence, it shows that 𝐹 (𝑍, ̃︀Ξ1(𝑍, 𝛽2(𝑍)), 0, 𝛽1(𝑍, 𝛽2(𝑍)), 𝛽2(𝑍)) = (0, 0). From uniqueness
of the solution,

Ξ1(𝑍, 𝛽1(𝑍, 𝛽2(𝑍)), 𝛽2(𝑍)) = ̃︀Ξ1(𝑍, 𝛽2(𝑍)) and Ξ2(𝑍, 𝛽1(𝑍, 𝛽2(𝑍)), 𝛽2(𝑍)) = 0.

Thus, Ξ2(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)) = 0 if, and only if, 𝛽1(𝑍) = 𝛽1(𝑍, 𝛽2(𝑍)). Moreover, sincẽ︀𝑑2(𝑍) > 0, it follows that ̃︀Ξ1(𝑍, 𝛽2(𝑍)) ∈ [0, 𝜀) if, and only if, 𝛽2(𝑍) ≥ 0. Finally, defining
𝛾1(𝑍) = 𝛽1(𝑍, 𝛽2(𝑍)), we have that each 𝑍 ∈ 𝒱 , satisfying 𝛽1(𝑍) = 𝛾1(𝑍) and 𝛽2(𝑍) ≥ 0,
has a Σ-polycycle containing a unique regular-fold singularity, namely 𝑝2 = (𝑎2, 0).

Analogously, Ξ1(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)) = 0 implies the existence of a Σ-polycycle of 𝑍
passing through the regular-fold singularity 𝑝1. Following the same ideas above, we obtain
a unique 𝒞𝑟 function ̃︀Ξ2(𝑍, 𝛽1) such that 𝐹1(𝑍, 0, ̃︀Ξ2(𝑍, 𝛽1), 𝛽1) = 0. Furthermore

̃︀Ξ2(𝑍, 𝛽1) = 𝛽1̃︀𝑑1(𝑍)
+ 𝒪2(𝛽1).
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Also, we obtain a unique 𝒞𝑟 function 𝛽2(𝑍, 𝛽1) such that 𝐹2(𝑍, 0, ̃︀Ξ2(𝑍, 𝛽1), 𝛽2(𝑍, 𝛽1)) = 0
and

𝛽2(𝑍, 𝛽1) = − 𝜅2(𝑍)̃︀𝑑1(𝑍)2
𝛽2

1 + 𝒪3(𝛽1).

Therefore, 𝐹 (𝑍, 0, ̃︀Ξ2(𝑍, 𝛽1(𝑍)), 𝛽1(𝑍), 𝛽2(𝑍, 𝛽1(𝑍))) = (0, 0). Again, from uniqueness of
the solution, it follows that

Ξ1(𝑍, 𝛽1(𝑍), 𝛽2(𝑍, 𝛽1(𝑍))) = 0 and Ξ2(𝑍, 𝛽1(𝑍), 𝛽2(𝑍, 𝛽1(𝑍))) = ̃︀Ξ2(𝑍, 𝛽1(𝑍)).

Hence, Ξ1(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)) = 0 if, and only if, 𝛽2(𝑍) = 𝛽2(𝑍, 𝛽1(𝑍)). Also, since ̃︀𝑑1(𝑍) >
0, it follows that ̃︀Ξ2(𝑍, 𝛽1(𝑍)) ∈ (−𝜀, 0] if, and only if, 𝛽1(𝑍) ≤ 0. Defining 𝛾2(𝑍) =
𝛽2(𝑍, 𝛽1(𝑍)), we have that each 𝑍 ∈ 𝒱 satisfying 𝛽2(𝑍) = 𝛾2(𝑍) and 𝛽1(𝑍) ≤ 0 has a
Σ-polycycle containing a unique regular-fold singularity given by 𝑝1 = (𝑎1, 0).

The C-attractiveness of the Σ-polycycle detected above is given by Proposition 2.5.4.
Hence, items (2), (7) and (9) are proved.

In what follows we shall identify when the solution (Ξ1(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)),Ξ2(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)))
of the auxiliary crossing system (2.5.14) corresponds to a crossing limit cycle.

Note that

Ξ1(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)) = 1̃︀𝑑2(𝑍)
𝛽2(𝑍) + 𝒪2(𝛽1(𝑍), 𝛽2(𝑍)),

Ξ2(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)) = 1̃︀𝑑1(𝑍)
𝛽1(𝑍) + 𝒪2(𝛽1(𝑍), 𝛽2(𝑍)).

(2.5.16)

Recall that Ξ2(𝑍, 𝛾1(𝑍), 𝛽2(𝑍)) = 0. Using (2.5.16), we expand Ξ2(𝑍, 𝛽1(𝑍), 𝛽2(𝑍))
around 𝛽1(𝑍) = 𝛾1(𝑍) as

Ξ2(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)) =
(︃

1̃︀𝑑1(𝑍)
+ 𝒪1(𝛽2(𝑍))

)︃
(𝛽1(𝑍) − 𝛾1(𝑍)) + 𝒪2(𝛽1(𝑍) − 𝛾1(𝑍)).

Since ̃︀𝑑1(𝑍) > 0, it follows that Ξ2(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)) ∈ (−𝜀, 0) if, and only if, 𝛽1(𝑍) <
𝛾1(𝑍). Also, Ξ1(𝑍, 𝛾1(𝑍), 𝛽2(𝑍)) ∈ (0, 𝜀) for 𝛽2(𝑍) > 0 and, thus, Ξ1(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)) ∈
(0, 𝜀) for 𝛽2(𝑍) > 0 and 𝛽1(𝑍) sufficiently close to 𝛾1(𝑍). Finally, we conclude that
(Ξ1(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)), Ξ2(𝑍, 𝛽1(𝑍), 𝛽2(𝑍))) ∈ (0, 𝜀) × (−𝜀, 0) with 𝛽2(𝑍) > 0 if, and only
if, 𝛽1(𝑍) < 𝛾1(𝑍). Hence, we get the existence or not of crossing limit cycles in items
(1), (3), (4), and (5).

Analogously, since Ξ1(𝑍, 𝛽1(𝑍), 𝛾2(𝑍)) = 0, the expansion of Ξ1(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)) around
𝛽2(𝑍) = 𝛾2(𝑍) writes

Ξ1(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)) =
(︃

1̃︀𝑑2(𝑍)
+ 𝒪1(𝛽1(𝑍))

)︃
(𝛽2(𝑍) − 𝛾2(𝑍)) + 𝒪2(𝛽2(𝑍) − 𝛾2(𝑍)).

Recalling that ̃︀𝑑2(𝑍) > 0, we obtain Ξ1(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)) ∈ (0, 𝜀) if, and only if, 𝛽2(𝑍) >
𝛾2(𝑍). Also, Ξ2(𝑍, 𝛽1(𝑍), 𝛾2(𝑍)) ∈ (−𝜀, 0) for 𝛽1(𝑍) < 0. Therefore, Ξ2(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)) ∈
(−𝜀, 0), for 𝛽1(𝑍) < 0 and 𝛽2(𝑍) sufficiently close to 𝛾2(𝑍). Finally, we conclude that
(Ξ1(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)), Ξ2(𝑍, 𝛽1(𝑍), 𝛽2(𝑍))) ∈ (0, 𝜀) × (−𝜀, 0) with 𝛽1(𝑍) < 0 if, and only
if, 𝛽2(𝑍) > 𝛾2(𝑍). Hence, we get the existence or not of crossing limit cycles in items (6),
(8) and (10).
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Now, notice that

Ξ1(𝑍, 0, 𝛽2(𝑍)) = 1̃︀𝑑2(𝑍)
𝛽2(𝑍) + 𝒪2(𝛽2(𝑍)),

Ξ2(𝑍, 𝛽1(𝑍), 0) = 1̃︀𝑑1(𝑍)
𝛽1(𝑍) + 𝒪2(𝛽1(𝑍)).

Therefore, Ξ1(𝑍, 0, 𝛽2(𝑍)) < 0 and Ξ2(𝑍, 0, 𝛽2(𝑍)) > 0, provided that 𝛽2(𝑍) < 0 and
𝛽1(𝑍) > 0. This means that (2.5.14) has no solutions when 𝛽1(𝑍) = 0 and 𝛽2(𝑍) < 0
or 𝛽2(𝑍) = 0 and 𝛽1(𝑍) > 0. From continuity, if follows that Ξ1(𝑍, 𝛽1(𝑍), 𝛽2(𝑍)) ∈
(−𝜀, 0) × (0, 𝜀) for 𝛽1(𝑍) > 0 and 𝛽2(𝑍) < 0. Hence, we conclude the non-existence of
crossing limit cycles in items (11), (12) and (13).

Notice that 𝛽1(𝑍) = 𝑇 𝑢
1 (𝑍)(𝑎1) − [𝐷1(𝑍)]−1 ∘ 𝑇 𝑠

2 (𝑍)(𝑎2) and 𝛽2(𝑍) = 𝑇 𝑢
2 (𝑍)(𝑎2) −

[𝐷2(𝑍)]−1 ∘ 𝑇 𝑠
1 (𝑍)(𝑎1). Heteroclinc connections exist when 𝛽1(𝑍) = 0 or 𝛽1(𝑍) = 0. If

either 𝛽1(𝑍) = 0 and 𝛽2(𝑍) > 0 or 𝛽1(𝑍) < 0 and 𝛽2(𝑍) = 0, the heteroclinic connection
is not contained in a sliding cycle. This correspond to items (4) and (6).

Finally, the sliding region corresponding to 𝑍 is given by Σ𝑠 = (𝑎1 − 𝜀, 𝑎1) × {0} ∪
(𝑎2, 𝑎2−𝜀)×{0}, for every 𝑍 ∈ 𝒱 , the sliding vector field 𝐹𝑍 is regular in Σ𝑠, 𝜋1∘𝐹𝑍(𝑎1, 0) >
0, and 𝜋1 ∘ 𝐹𝑍(𝑎2, 0) < 0. Therefore, the sliding phenomena detected in items (1) and
(10) − (13) follows straightforwardly. Hence, the proof is concluded.

Remark 2.5.8. We notice that the set of displacement functions associated with a non-
smooth vector field 𝑍0 at a Σ-polycycle satisfying the hypotheses (DRF-B) generates the
same system of equations (2.5.14) obtained for the case (DRF-A). Nevertheless, the do-
main 𝜎1 ×𝜎2 will be given by 𝜎1 ×𝜎2 = (𝑎1 − 𝜀, 𝑎1] × [𝑎2, 𝑎2 + 𝜀). The bifurcation diagram
of 𝑍0 can be obtained analogously and has the same structure and objects of the case
(DRF-A). Therefore, we shall omit it here.

2.6 Fold-Fold Σ-Polycycle
This section is devoted to study Σ-polycycles having fold-fold singularities by means of

the displacement functions method described in Section 2.3. More specifically, in Section
2.6.1, we describe the displacement functions appearing in the crossing system (2.3.1) for
such Σ-polycycles. In Section 2.6.2, the bifurcation diagram of a Σ-polycycle having a
unique Σ-singularity of visible-invisible fold-fold type is completely described.

2.6.1 Description of the Crossing System

Assume that 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 has a Σ-polycycle Γ0 containing 𝑘 Σ-singularities 𝑝𝑖,
where 𝑝𝑖 is either a regular-tangential singularity of order 𝑛𝑖, for some 𝑛𝑖 ∈ N, or a fold-fold
singularity. Consider a coordinate system (𝑥, 𝑦) satisfying that, for each 𝑖 ∈ {1, 2, . . . , 𝑘},
𝑥(𝑝𝑖) = 𝑎𝑖, 𝑦(𝑝𝑖) = 0, and ℎ(𝑥, 𝑦) = 𝑦 near 𝑝𝑖.

Assume that, for some 𝑖 ∈ {1, . . . , 𝑘}, 𝑝𝑖 is a fold-fold singularity and consider a small
neighborhood 𝑈𝑖 of 𝑝𝑖. Notice that 𝑝𝑖 is not an invisible-invisible fold-fold point, since
there are no Σ-polycycles containing this type of singularity. Accordingly, one of the
following properties hold for 𝑝𝑖:

(𝐹1) Either Γ0 ∩𝑊 𝑢,𝑠
+ (𝑝𝑖) ̸= ∅ or Γ0 ∩𝑊 𝑢,𝑠

− (𝑝𝑖) ̸= ∅ (see Figure 2.25 (𝑎) and (𝑏));
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(𝐹2) Either Γ0 ∩𝑊 𝑢
+(𝑝𝑖) ̸= ∅ and Γ0 ∩𝑊 𝑠

−(𝑝𝑖) ̸= ∅ or Γ0 ∩𝑊 𝑠
+(𝑝𝑖) ̸= ∅ and Γ0 ∩𝑊 𝑢

−(𝑝𝑖) ̸= ∅
(see Figure 2.25 (𝑐)).

𝑝𝑖 𝑝𝑖 𝑝𝑖

(𝑎) (𝑏) (𝑐)

Figure 2.25: Examples of fold-fold singularity of type 𝐹1 ((𝑎) and (𝑏)) and 𝐹2 (𝑐).

In what follows the description of the crossing system will be distinguished in two
cases, namely visible-visible and visible-invisible.

Visible-Visible Fold-Fold Singularity

Let 𝑝𝑖 be a visible-visible fold-fold singularity. If 𝑝𝑖 satisfies (𝐹1), then the transfer
functions 𝑇 𝑢,𝑠

𝑖 : 𝜎𝑖(𝑍0) → 𝜏𝑢,𝑠
𝑖 can be obtained analogously to the case (𝑅1) in Section

2.5.1. In this case, these functions are restrictions of germs of diffeomorphisms. If 𝑝𝑖

satisfies (𝐹2), then the maps 𝑇 𝑢
𝑖 : 𝜎𝑖(𝑍0) → 𝜏𝑢

𝑖 and 𝑇 𝑠
𝑖 : 𝜎𝑖(𝑍0) → 𝜏 𝑠

𝑖 can be obtained
following the case (O) in Section 2.3.3. Without loss of generality, we assume that
Γ0 ∩ 𝑊 𝑢

+(𝑝𝑖) ̸= ∅, Γ0 ∩ 𝑊 𝑠
−(𝑝𝑖) ̸= ∅, 𝜋1(𝑋0(𝑝𝑖)) > 0 and 𝜋1(𝑌0(𝑝𝑖)) < 0 (see Figure 2.25

(𝑐)). In this case, the tangential section 𝜎𝑖(𝑍0) is given by 𝜎𝑖(𝑍0) = [𝑎𝑖, 𝑎𝑖 + 𝜀𝑖) × {0},
where 𝜀𝑖 > 0 is sufficiently small.

From Theorem B there exists a neighborhood 𝒱 of 𝑍0 such that for each 𝑍 = (𝑋, 𝑌 ) ∈
𝒱 the transfer functions corresponding to 𝑝𝑖 are given by

𝑇 ⋆
𝑖 (𝑍)(ℎ⋆,𝑖

𝑍 (𝑥)) = 𝜆⋆,𝑖
0 (𝑍) + 𝜅⋆,𝑖(𝑋)(𝑥− 𝑎𝑖)2 + 𝒪3(𝑥− 𝑎𝑖), ⋆ ∈ {𝑢, 𝑠},

where ℎ⋆,𝑖
𝑍 : (𝑎𝑖 −𝜀𝑖, 𝑎𝑖 +𝜀𝑖) → (𝑎𝑖 −𝜀𝑖, 𝑎𝑖 +𝜀𝑖)×{0} is a diffeomorphism and sgn(𝜅⋆,𝑖(𝑍)) =

sgn(𝜅⋆,𝑖(𝑍0)).
Without loss of generality, we can assume for each 𝑍 ∈ 𝒱 the fold point of 𝑋 is fixed

at (𝑎𝑖, 0) and also ℎ𝑢,𝑖
𝑍 (𝑥) = (𝑎𝑖 + (𝑥− 𝑎𝑖) + 𝒪2(𝑥− 𝑎𝑖), 0). In this case, the fold point of

𝑌 is given by (𝛼𝑖(𝑍), 0), where 𝛼𝑖(𝑍) = (ℎ𝑢,𝑖
𝑍 )−1 ∘ ℎ𝑠,𝑖

𝑍 (𝑎𝑖). Moreover, the domain 𝜎𝑖(𝑍) of
the transfer functions 𝑇 𝑠,𝑢

𝑖 (𝑍) is given by 𝜎𝑖(𝑍) = [max{𝑎𝑖, 𝛼𝑖(𝑍)}, 𝑎𝑖 + 𝜀𝑖) and

𝑇 𝑠
𝑖 (𝑍)(ℎ𝑢,𝑖

𝑍 (𝑥)) = 𝑇 𝑠
𝑖 (𝑍) ∘ ℎ𝑠,𝑖

𝑍 ((ℎ𝑠,𝑖
𝑍 )−1 ∘ ℎ𝑢,𝑖

𝑍 (𝑥))
= 𝜆𝑠,𝑖

0 (𝑍) + 𝜅𝑠,𝑖(𝑋)(𝑥− 𝛼𝑖(𝑍))2 + 𝒪3(𝑥− 𝛼𝑖(𝑍)),

where sgn(𝜅𝑠,𝑖(𝑍)) = sgn(𝜅𝑠,𝑖(𝑍0)) and 𝛼𝑖(𝑍0) = 𝑎𝑖.
Thus, for each 𝑍 ∈ 𝒱 , we have characterized the maps 𝑇 𝑠,𝑢

𝑖 (𝑍) in the domain 𝜎𝑖(𝑍)
under the parameterization ℎ𝑢,𝑖

𝑍 . Since the transversal section 𝜏𝑢
𝑖−1 is connected to 𝜏 𝑠

𝑖 via
a diffeomorphism 𝐷𝑖(𝑍), we obtain

[𝐷𝑖−1(𝑍)]−1 ∘ 𝑇 𝑠
𝑖 (𝑍)(ℎ𝑢,𝑖

𝑍 (𝑥)) = ̃︀𝑐𝑖−1(𝑍) + ̃︀𝑑𝑖−1(𝑍)(𝑥− 𝛼𝑖(𝑍))2 + 𝒪3(𝑥− 𝛼𝑖(𝑍)),
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where ̃︀𝑐𝑖−1(𝑍0) = 𝑞𝑢
𝑖−1, and sgn( ̃︀𝑑𝑖−1(𝑍)) = sgn( ̃︀𝑑𝑖−1(𝑍0)).

It is worthwhile to say that the parameter 𝛼𝑖(𝑍) locally unfolds the fold-fold singularity
𝑝𝑖 (see [55]).

Σ 𝛼𝑖

𝑎𝑖 𝑇𝑢
𝑖

𝑇 𝑠
𝑖

𝜏𝑢
𝑖

𝜏𝑠
𝑖

𝑎𝑖

𝑇 𝑠
𝑖

𝑇𝑢
𝑖

𝜏𝑢
𝑖

𝜏𝑠
𝑖

𝑎𝑖

𝛼𝑖

𝜏𝑢
𝑖

𝜏𝑠
𝑖

𝑇 𝑠
𝑖

𝑇𝑢
𝑖

𝛼𝑖(𝑍) = 𝑎𝑖 𝛼𝑖(𝑍) > 𝑎𝑖𝛼𝑖(𝑍) < 𝑎𝑖

Figure 2.26: Unfolding of a visible-visible fold-fold singularity.

Visible-Invisible Fold-Fold Singularity

Let 𝑝𝑖 be a visible-invisible fold-fold singularity. In this case, 𝑝𝑖 satisfies (𝐹1). As we
have seen in Section 2.3.3, the transfer functions associated with 𝑝𝑖 are defined in the
domain 𝜎𝑖(𝑍0) which has two components 𝜎t𝑖 (𝑋0) and 𝜎𝑡

𝑖(𝑍0) ∩ 𝜎−
𝑖 (𝑋0). The first one is

a restriction to 𝑀+ of a transversal section of 𝑋0 at 𝑝𝑖 and the second one is contained
in Σ.

For 𝑍 sufficiently near 𝑍0 the transfer functions 𝑇 𝑢,𝑠
𝑖 (𝑍) : 𝜎𝑖(𝑍) → 𝜏𝑢,𝑠

𝑖 restricted to
𝜎t𝑖 (𝑋) can be obtained analogously to the case (𝑅1) in Section 2.5.1. In this case, these
functions are restrictions of germs of diffeomorphisms (see Figure (2.27)).

𝑇 𝑠
𝑖 𝑇𝑢

𝑖

𝜏𝑠
𝑖 𝜏𝑢

𝑖

𝜎t
𝑖

Figure 2.27: Transfer functions 𝑇 𝑢,𝑠
𝑖 restricted to the transversal section 𝜎t𝑖 (𝑋0).

Now, the transfer functions 𝑇 𝑢,𝑠
𝑖 restricted to 𝜎𝑡

𝑖(𝑍0)∪𝜎−
𝑖 (𝑋0) are obtained following the

case (E-II) in Section 2.3.3. Without loss of generality, we assume that Γ0 ∩𝑊 𝑢,𝑠
+ (𝑝𝑖) ̸= ∅,

𝜋1(𝑋0(𝑝𝑖)) > 0 and 𝜋1(𝑌0(𝑝𝑖)) > 0 (Figure 2.25 (𝑎)). In this case, the tangential section
𝜎𝑡

𝑖(𝑍0) ∩ 𝜎−
𝑖 (𝑋0) is given by 𝜎𝑡

𝑖(𝑍0) ∩ 𝜎−
𝑖 (𝑋0) = (𝑎𝑖 − 𝜀𝑖, 𝑎𝑖] × {0}, where 𝜀𝑖 is sufficiently

small.
From Theorem B there exists a neighborhood 𝒱 of 𝑍0 such that for each 𝑍 = (𝑋, 𝑌 ) ∈

𝒱 the trasition maps corresponding to 𝑝𝑖 are given by

𝑇𝑋
± (ℎ𝑋(𝑥)) = 𝜆±

0 (𝑍) + 𝜅±(𝑋)(𝑥− 𝑎𝑖)2 + 𝒪3(𝑥− 𝑎𝑖), (2.6.1)

where ℎ𝑋 : (𝑎𝑖 −𝜀𝑖, 𝑎𝑖 +𝜀𝑖) → (𝑎𝑖 −𝜀𝑖, 𝑎𝑖 +𝜀𝑖)×{0} is a diffeomorphism and sgn(𝜅±(𝑋)) =
sgn(𝜅±(𝑋0)). As before, we can assume that ℎ𝑋(𝑥) = (𝑎𝑖 + (𝑥− 𝑎𝑖) + 𝒪2(𝑥− 𝑎𝑖), 0).
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Since 𝑝𝑖 is an invisible fold point of 𝑌0, we have that 𝑌 has a unique fold point
𝑝𝑌

𝑖 = (𝑎𝑌
𝑖 , 0) in a neighborhood of 𝑝𝑖, for every 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱 . Hence, from (2.3.6) the

involution 𝜌𝑌
𝑖 associated to 𝑌 is given by

ℎ−1
𝑌 (𝜌𝑌

𝑖 (ℎ𝑌 (𝑥))) = 𝑎𝑌
𝑖 − (𝑥− 𝑎𝑌

𝑖 ) + 𝒪2(𝑥− 𝑎𝑌
𝑖 ),

where ℎ𝑌 : (𝑎𝑖 − 𝜀𝑖, 𝑎𝑖 + 𝜀𝑖) → (𝑎𝑖 − 𝜀𝑖, 𝑎𝑖 + 𝜀𝑖) × {0} is a diffeomorphism such that
ℎ𝑌 (𝑥) = (𝑎𝑌

𝑖 + 𝑙(𝑌 )(𝑥− 𝑎𝑌
𝑖 ) + 𝒪2(𝑥− 𝑎𝑌

𝑖 ), 0) and 𝑙(𝑌 ) > 0.
Now, from (2.3.7) the transfer functions 𝑇 𝑢,𝑠

𝑖 : 𝜎𝑖(𝑍) → 𝜏𝑢,𝑠
𝑖 , restricted to 𝜎𝑡

𝑖(𝑍) ∪
𝜎−

𝑖 (𝑋), are given by 𝑇 𝑠
𝑖 = 𝑇𝑋

− and 𝑇 𝑢
𝑖 = 𝑇𝑋

+ ∘ 𝜌𝑌
𝑖 . Therefore, taking 𝛼𝑖(𝑍) = ℎ−1

𝑋 (𝑝𝑌
𝑖 ), we

get

𝑇 𝑠
𝑖 (𝑍)(ℎ𝑋(𝑥)) = 𝜆𝑠,𝑖

0 (𝑍) + 𝜅𝑠,𝑖(𝑋)(𝑥− 𝑎𝑖)2 + 𝒪3(𝑥− 𝑎𝑖),
and

𝑇 𝑢
𝑖 (𝑍)(ℎ𝑋(𝑥)) = 𝜆𝑢,𝑖

0 (𝑍) + 𝜅𝑢,𝑖(𝑋)(𝑥− 2𝛼𝑖(𝑍) + 𝑎𝑖 + 𝒪2(𝑥− 𝛼𝑖(𝑍)))2

+𝒪3(𝑥− 2𝛼𝑖(𝑍) + 𝑎𝑖 + 𝒪2(𝑥− 𝛼𝑖(𝑍))),

where 𝜆𝑢,𝑖
0 (𝑍) = 𝜆+

0 (𝑍), 𝜆𝑠,𝑖
0 (𝑍) = 𝜆−

0 (𝑍), 𝜅𝑢,𝑖(𝑋) = 𝜅+(𝑋), 𝜅𝑠,𝑖(𝑋) = 𝜅−(𝑋), and
𝛼𝑖(𝑍0) = 𝑎𝑖.

Notice that, if 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱 , then 𝑋 has a visible fold point at (𝑎𝑖, 0) and 𝑌 has
an invisible fold point at ℎ𝑋(𝛼𝑖(𝑍)) = 𝑝𝑌

𝑖 . In this case, the domain 𝜎𝑡
𝑖(𝑍) ∩ 𝜎−

𝑖 (𝑋) of the
transfer functions 𝑇 𝑠,𝑢

𝑖 (𝑍) is given by

𝜎𝑡
𝑖(𝑍) ∩ 𝜎−

𝑖 (𝑋) =
⎧⎨⎩ (𝑎𝑖 − 𝜀𝑖, 𝜌

𝑌
𝑖 (𝑎𝑖, 0)], 𝛼𝑖(𝑍) ≤ 𝑎𝑖,

(𝑎𝑖 − 𝜀𝑖, 𝑎𝑖], 𝛼𝑖(𝑍) > 𝑎𝑖,

see Figure 2.28.

𝑇𝑢
𝑖

𝜏𝑢
𝑖𝜏𝑠

𝑖

𝑇 𝑠
𝑖

𝜌𝑌
𝑖

𝑇 𝑋
+𝑎𝑖

𝑎𝑌
𝑖

𝛼(𝑍) = 0 𝛼(𝑍) > 0𝛼(𝑍) < 0

Figure 2.28: Unfolding of a visible-invisible fold-fold singularity.

Thus, for each 𝑍 ∈ 𝒱 , we have characterized the maps 𝑇 𝑠,𝑢
𝑖 (𝑍) in the domain 𝜎𝑖(𝑍)

under the parameterization ℎ𝑋 . Since the transversal section 𝜏𝑢
𝑖−1 is connected to 𝜏 𝑠

𝑖 via
a diffeomorphism 𝐷𝑖(𝑍), we obtain

[𝐷𝑖−1(𝑍)]−1 ∘ 𝑇 𝑠
𝑖 (𝑍)(ℎ𝑋(𝑥)) = ̃︀𝑐𝑖−1(𝑍) + ̃︀𝑑𝑖−1(𝑍)(𝑥− 𝑎𝑖)2 + 𝒪3(𝑥− 𝑎𝑖), (2.6.2)

where ̃︀𝑐𝑖−1(𝑍0) = 𝑞𝑢
𝑖−1, and sgn( ̃︀𝑑𝑖−1(𝑍)) = sgn( ̃︀𝑑𝑖−1(𝑍0)).

As in the visible-visible case, the parameter 𝛼𝑖(𝑍) locally unfolds the fold-fold singu-
larity 𝑝𝑖.
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2.6.2 Σ-Polycycles having a unique fold-fold singularity
We characterize the nonsmooth vector fields 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 which admit a Σ-

polycycle Γ0 having a unique singularity 𝑝1 of fold-fold type. So, consider a coordinate
system (𝑥, 𝑦) such that 𝑥(𝑝1) = 0, 𝑦(𝑝1) = 0, and ℎ(𝑥, 𝑦) = 𝑦 in a neighborhoods of 𝑝1.
Consider the following sets of hypotheses:

(VV-A): − (0, 0) is a visible-visible fold-fold singularity of 𝑍0;
− 𝜋1 ∘𝑋0(0, 0) > 0 and 𝜋1 ∘ 𝑌0(0, 0) < 0;
− 𝑊 𝑢

+(0, 0) reaches Σ transversally at 𝑝;
− 𝑊 𝑢

−(0, 0) reaches Σ transversally at 𝑞;
− 𝑝 and 𝑞 are connected by regular orbit fo 𝑍0;

(VV-B): − (0, 0) is a visible-visible fold-fold singularity of 𝑍0;
− the trajectory of 𝑍0 through (0, 0) crosses Σ transversally 𝑛−times at 𝑞1, · · · , 𝑞𝑛,

satisfying:
− if 𝑛 = 0, then Γ0 is a hyperbolic limit cycle of 𝑋0;
− if 𝑛 ̸= 0, then, for each 𝑖 = 1, . . . , 𝑛, there exists 𝑡𝑖 > 0 such that
𝜙𝑍0(𝑡𝑖; 𝑞𝑖) = 𝑞𝑖+1, where 𝑞𝑛+1 = (0, 0). Moreover, Γ0∩Σ = {𝑞1, . . . , 𝑞𝑛, (0, 0)}.

(VI): − (0, 0) is a visible fold point of 𝑋0 and an invisible fold point of 𝑌0;
– 𝜋1 ∘𝑋0(0, 0) > 0, and 𝜋1 ∘ 𝑌0(0, 0) > 0;
− the trajectory of 𝑍0 through (0, 0) crosses Σ transversally 𝑛−times at 𝑞1, · · · , 𝑞𝑛,

satisfying:
- if 𝑛 = 0, then Γ0 is a hyperbolic limit cycle of 𝑋0;
- if 𝑛 ̸= 0, then, for each 𝑖 = 1, . . . , 𝑛, there exists 𝑡𝑖 > 0 such that
𝜙𝑍0(𝑡𝑖; 𝑞𝑖) = 𝑞𝑖+1, where 𝑞𝑛+1 = (0, 0). Moreover, Γ0∩Σ = {𝑞1, . . . , 𝑞𝑛, (0, 0)}.

Notice that the analysis remains similar if we change the roles of 𝑋0 and 𝑌0 and the
orientation of the orbits. Some examples of this kind of Σ-polycycle are presented in
Figure 2.29.

It is worthwhile to emphasize that the case (VV-A) has been mentioned only for
completeness, since the complete description of the bifurcation diagram in this case has
been provided in [79]. The case (VV-B) will be avoided since it can be easily obtained by
combining grazing bifurcation and visible-visible fold-fold bifurcation [65].

In what follows, we consider Filippov systems satisfying (VI). For simplicity, we assume
that 𝑛 = 0, nevertheless, we stress that similar results can be obtained for Σ-polycycles
satisfying (VI) with 𝑛 > 0.

From (2.3.6), the involution 𝜌 associated with the smooth vector field 𝑌0 at (0, 0) is
given by

𝜌(𝑥) = −𝑥+ 𝒪2(𝑥),
for 𝑥 small enough.

Remark 2.6.1. Observe that, fixing a system of coordinates (𝑥, 𝑦), the first derivative of
𝜌 does not depend on the vector field 𝑌0. It is an intrinsic property of an invisible 2𝑛-order
contact point (see Section 2.3.2).
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(𝑎) (𝑏) (𝑐)

(𝑑) (𝑒) (𝑓)

Figure 2.29: Examples of Σ-polycycles satisfying (𝑉 𝑉 −𝐴) (a), (𝑉 𝑉 −𝐵) (b), and (𝑉 𝐼)
with 𝑛 = 0 (c), 𝑛 = 2 (d,e) and 𝑛 = 4 (f).

Consider two local transversal sections 𝜏 𝑠 and 𝜏𝑢 to 𝑋0 at 𝑞𝑠 ∈ 𝑊 𝑠
+(0, 0) and 𝑞𝑢 ∈

𝑊 𝑢
+(0, 0), which are sufficiently near to (0, 0). Since Γ0 does not have other singularities

and is transversal to Σ up to (0, 0), the first return map 𝒫0 : 𝜏𝑢 → 𝜏𝑢, given by the flow
of 𝑍0, is a piecewise diffeomorphism for which 𝒫0(𝑝0) = 𝑝0. Now, we show that 𝒫0 is, in
fact, a diffeomorphism in a neighborhood of 𝑝0.

Lemma 2.6.2. Let 𝑍0 = (𝑋0, 𝑌0) be a nonsmooth vector field which admits a Σ-polycycle
Γ0 satisfying (𝑉 𝐼) for 𝑛 = 0. Then, the first return map defined around Γ0 is a local
diffeomorphism.

Proof. Let 𝜏 𝑠 and 𝜏𝑢 be the two local transversal sections defined above and let 𝒫0 be the
first return map of 𝑍0, defined in a neighborhood of 𝑞𝑢 in 𝜏𝑢. Since (0, 0) is the unique
Σ-singularity of 𝑍0 in Γ0, 𝒫0 is written as 𝒫0(𝑥) = 𝐸∘𝐷(𝑍0)(𝑥), where 𝐷(𝑍0) : 𝜏𝑢 → 𝜏 𝑠 is
the diffeomorphism induced by the flow of 𝑋0 and 𝐸 is the piecewise 𝒞𝑟 function defined
by

𝐸(𝑞) =

⎧⎪⎨⎪⎩
𝜙𝑋0(𝑡(𝑞); 𝑞), if 𝑞 > 𝑞𝑠,
𝑞𝑢, if 𝑞 = 𝑞𝑠,

𝑇 𝑢(𝑍0) ∘ (𝑇𝑋0
− )−1(𝑞), if 𝑞 < 𝑞𝑠,

where 𝑡(𝑞) > 0 is the flying time from 𝜏 𝑠 to 𝜏𝑢, 𝑇 𝑢(𝑍0) is the transfer function associated
with 𝑍0 corresponding to the unstable invariant manifold of (0, 0) and 𝑇𝑋0

− is the transition
map of 𝑋0 with respect to the stable invariant manifold of (0, 0) (see Figure 2.30). It is
sufficient to prove that 𝐸 is a local diffeomorphism around 𝑞𝑠.

Now, recall that 𝑇 𝑢(𝑍0) = 𝜌𝑌0 ∘ 𝑇𝑋0
+ , where 𝑇𝑋0

+ is the transition map of 𝑋0 with
respect to the unstable invariant manifold of (0, 0) and 𝜌𝑌0 is the involution associated
with 𝑌0 at the invisible fold point (0, 0).

As we have seen, the derivative of 𝜌𝑌0 at (0, 0) does not depend on 𝑌0, it only depends
on the fact that (0, 0) is an invisible fold point. In particular, if 𝑌0 = 𝑋0, we have
that 𝑇 𝑢(𝑍0) ∘ (𝑇𝑋0

− )−1(𝑞) = 𝜙𝑋0(𝑡(𝑞); 𝑞), which is a local diffeomorphism from 𝜏 𝑠 to 𝜏𝑢.
Therefore, it follows that the left lateral derivative of 𝐸 at 𝑞𝑠 is equal to the right lateral
derivative of 𝐸, and they coincide with the derivative 𝜙𝑋0(𝑡(𝑞); 𝑞) at 𝑞𝑠. Hence 𝐸 is



69

derivative at 𝑞𝑠 and 𝐸 ′(𝑞𝑠) = 𝑑

𝑑𝑞
𝜙𝑋0(𝑡(𝑞); 𝑞)|𝑞=𝑞𝑠 . Since 𝜙𝑋0(𝑡(𝑞); 𝑞) is a diffeomorphism

at 𝑞𝑠, we conclude that 𝐸 is a local diffeomorphism around 𝑞𝑠.

𝜌𝑌0

𝜏𝑠 𝜏𝑢

(𝑇𝑋0
− )−1 𝑇𝑋0

+

𝐷(𝑍0)

𝐸

Figure 2.30: First return map 𝒫0.

Remark 2.6.3. Notice that, if Γ0 is a hyperbolic limit cycle of 𝑋0 then a hyperbolic
cycle persists under small perturbations of 𝑍0 that do not break the fold-fold singularity.
The persistent hyperbolic cycle can be either a crossing limit cycle or a limit cycle of 𝑋0
contained in 𝑀+. These cases will be distinguished latter.

Now, following Section 2.6.1, we have that the displacement function associated with
𝑍 = (𝑋, 𝑌 ) ∈ 𝒱 near 𝑍0 in the domain 𝜎𝑡(𝑍) ∩ 𝜎−(𝑋) is written as

Δ(𝑍)(ℎ𝑋(𝑥)) = 𝑇 𝑢(𝑍)(ℎ𝑋(𝑥)) − [𝐷(𝑍)]−1 ∘ 𝑇 𝑠(𝑍)(ℎ𝑋(𝑥))
= 𝜆0(𝑍) + 𝜅(𝑍)𝑦2 − ̃︀𝑐(𝑍) − ̃︀𝑑(𝑍)𝑥2 + 𝒪3(𝑦) + 𝒪3(𝑥),

where ℎ𝑋 : (−𝜀, 𝜀) → (−𝜀, 𝜀) × {0} is a diffeomorphism such that ℎ𝑋(𝑥) = (𝑥+ 𝒪2(𝑥), 0),
with sgn(𝜅(𝑍)) = sgn(𝜅(𝑍0)), sgn( ̃︀𝑑(𝑍)) = sgn( ̃︀𝑑(𝑍0)). The new variable 𝑦 is given by

𝑦(𝑥) = 𝑥− 2𝛼(𝑍) + 𝒪2(𝑥, 𝛼(𝑍)),

and 𝛼(𝑍0) = 0. Also, we notice that 𝑋 has a visible fold point at (0, 0) and 𝑌 has an
invisible fold point at ℎ𝑋(𝛼(𝑍)). From assumption (𝑉 𝐼), 𝜅(𝑍0) > 0 and ̃︀𝑑(𝑍0) > 0.

Taking
𝛽(𝑍) = 𝜆0(𝑍) − ̃︀𝑐(𝑍), and 𝜂(𝑍) = (𝛼(𝑍), 𝛽(𝑍)), (2.6.3)

the displacement function Δ(𝑍)(ℎ𝑋(𝑥)) writes

Δ(𝑍)(ℎ𝑋(𝑥)) = 𝛽(𝑍) + 𝜅(𝑍)𝑦2 − ̃︀𝑑(𝑍)𝑥2 + 𝒪3(𝑦) + 𝒪3(𝑥), (2.6.4)

and
𝑦 = 𝑥− 2𝛼(𝑍) + 𝒪2(𝑥, 𝛼(𝑍)). (2.6.5)

Notice that 𝜂 : 𝒱 → 𝑉 is a surjective function onto a small neighborhood 𝑉 of (0, 0)
satisfying 𝛼(𝑍0) = 𝛽(𝑍0) = 0. In this case, the auxiliary crossing system (2.5.3) is reduced
to the system ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛽(𝑍) + 𝜅(𝑍)𝑦2 − ̃︀𝑑(𝑍)𝑥2 + 𝒪3(𝑦) + 𝒪3(𝑥) = 0,
𝑦 = 𝑥− 2𝛼(𝑍) + 𝒪2(𝑥, 𝛼(𝑍)),
ℎ𝑋(𝑥) ∈ (−𝜀, 𝜉(𝛼(𝑍))],

(2.6.6)
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where 𝜉 satisfies 𝜉(𝛼(𝑍)) = 𝛼(𝑍)−|𝛼(𝑍)|+𝒪2(𝛼(𝑍)) and 𝜉(𝛼(𝑍)) = 0, for every 𝛼(𝑍) > 0.
The parameter 𝛽 controls the existence of connections and Σ-polycycles while 𝛼 unfolds
the fold-fold singularity (see Figure 2.31).

0ℎ𝑋(𝛼)𝜌𝑌 (0)

𝜏𝑠 𝜏𝑢𝜆0 ̃︀𝑐

Figure 2.31: Illustration of the parameters 𝛼 and 𝛽.

From the hyperbolicity of the Σ-polycycle, we deduce the following property:

Lemma 2.6.4. Consider the notation above. If 𝑍0 = (𝑋0, 𝑌0) has a Σ-polycycle Γ0
satisfying (𝑉 𝐼) which is a hyperbolic limit cycle of 𝑋0, then ̃︀𝑑(𝑍0) ̸= 𝜅(𝑍0). In addition:

(𝑖) If Γ0 is attracting, then 𝜅(𝑍0) − ̃︀𝑑(𝑍0) < 0;

(𝑖𝑖) If Γ0 is repelling, then 𝜅(𝑍0) − ̃︀𝑑(𝑍0) > 0.

Proof. Let 𝒫0 : 𝜏𝑢 → 𝜏𝑢 be the first return map of 𝑍0 at Γ0 and notice that, if 𝑥 ∈ 𝜏𝑢
+,

then 𝒫0(𝑥) = 𝑇 𝑢(𝑍0) ∘ ([𝐷(𝑍0)]−1 ∘ 𝑇 𝑠(𝑍0))−1, with 𝜆0(𝑍0) = ̃︀𝑐(𝑍0) and ̃︀𝛼(𝑍0) = 0. From
[79], we have that ([𝐷(𝑍0)]−1 ∘ 𝑇 𝑠(𝑍0))−1 is given by

([𝐷(𝑍0)]−1 ∘ 𝑇 𝑠(𝑍0))−1(𝑥) = −

⎯⎸⎸⎷𝑥− ̃︀𝑐(𝑍0)̃︀𝑑(𝑍0)
+ 𝒪1(𝑥− ̃︀𝑐(𝑍0)),

for each 𝑥 ∈ [̃︀𝑐(𝑍0), ̃︀𝑐(𝑍0) + 𝛿) and some 𝛿 > 0 sufficiently small.
Using the expansions of 𝑇 𝑢(𝑍0), we have that

𝒫0(𝑥) = ̃︀𝑐(𝑍0) + 𝜅(𝑍0)̃︀𝑑(𝑍0)
(𝑥− ̃︀𝑐(𝑍0)) + 𝒪2(𝑥− ̃︀𝑐(𝑍0)),

for each 𝑥 ∈ [̃︀𝑐(𝑍0), ̃︀𝑐(𝑍0) + 𝛿). Hence,

lim
𝑥→̃︀𝑐(𝑍0)+

𝒫0(𝑥) − 𝒫0(̃︀𝑐(𝑍0))
𝑥− ̃︀𝑐(𝑍0)

= 𝜅(𝑍0)̃︀𝑑(𝑍0)
.

The result follows directly from this expression.

Now, we reduce 𝒱 in such a way that, for each 𝑍 ∈ 𝒱 , either 𝜅(𝑍) − ̃︀𝑑(𝑍) < 0 if Γ0 is
attracting or 𝜅(𝑍) − ̃︀𝑑(𝑍) > 0 if Γ0 is repelling.

Using the expansion of ℎ𝑋 , we have that there exists a 𝒞𝑟 function 𝜁 such that ℎ𝑋(𝑥) ∈
(−𝜀, 𝜉(𝛼(𝑍))] if, and only if, 𝑥 ∈ (−𝜀, 𝜁(𝛼(𝑍))], where

𝜁(𝛼(𝑍)) = 𝛼(𝑍) − |𝛼(𝑍)|+𝒪2(𝛼(𝑍)). (2.6.7)

Following similar technicalities used in [79], we obtain the next theorem.
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Theorem E. Let 𝑍0 be a nonsmooth vector field having a Σ-polycycle Γ0 satisfying the hy-
pothesis (𝑉 𝐼) and assume that Γ0 is an attracting hyperbolic limit cycle of 𝑋0. Therefore,
there exists an annulus 𝒜0 such that for each annulus 𝒜, with Γ0 ⊂ 𝒜 ⊂ 𝒜0, there exist
neighborhoods 𝒱 ⊂ Ω𝑟 of 𝑍0 and 𝑉 ⊂ R2 of (0, 0), a surjective function (𝛼, 𝛽) : 𝒱 → 𝑉,
with (𝛼, 𝛽)(𝑍0) = (0, 0), and three smooth functions 𝛽1, 𝛽2, 𝛽3 : 𝒱 → (−𝛿, 𝛿), for which the
following statements hold inside 𝒜.

1. If either 𝛽(𝑍) < 𝛽1(𝑍) and 𝛼(𝑍) > 0 or 𝛽(𝑍) < 𝛽3(𝑍) and 𝛼(𝑍) < 0, then 𝑍
admits no crossing limit cycles.

2. If 𝛽(𝑍) = 𝛽1(𝑍) and 𝛼(𝑍) > 0, then 𝑍 has a semi-stable crossing limit cycle, which
is repelling from inside and attracting from outside;

3. If 𝛽1(𝑍) < 𝛽(𝑍) < 𝛽2(𝑍) and 𝛼(𝑍) > 0, then 𝑍 has two nested hyperbolic crossing
limit cycles such that the outer one is attracting and the inner one is repelling.

4. If 𝛽(𝑍) = 𝛽2(𝑍) and 𝛼(𝑍) > 0, then 𝑍 has a hyperbolic repelling crossing limit
cycle and a Σ-polycycle passing through a unique regular-fold singularity (0, 0) (with
𝑋ℎ(0, 0) = 0).

5. If 𝛽2(𝑍) < 𝛽(𝑍) and 𝛼(𝑍) ≥ 0 or if 𝛽(𝑍) > 𝛽3(𝑍) and 𝛼(𝑍) < 0, then 𝑍 has a
unique crossing limit cycle in 𝒱0, which is hyperbolic attracting.

6. If 𝛽(𝑍) = 𝛽3(𝑍) and 𝛼(𝑍) < 0, then 𝑍 has Σ-polycycle passing through a unique
regular-fold singularity (0, 0) (with 𝑋ℎ(0, 0) = 0) and admits no crossing limit cy-
cles.

In addition,

𝛽1(𝑍) = 4𝜅(𝑍) ̃︀𝑑(𝑍)
𝜅(𝑍) − ̃︀𝑑(𝑍)

𝛼(𝑍)2 + 𝒪3(𝛼(𝑍)), 𝛽2(𝑍) = −4𝜅(𝑍)𝛼(𝑍)2 + 𝒪3(𝛼(𝑍)),

and
𝛽3(𝑍) = 4 ̃︀𝑑(𝑍)𝛼(𝑍)2 + 𝒪3(𝛼(𝑍)).

Proof. From the construction of the auxiliary crossing system (2.5.3), performed in Section
2.5.1, we get the existence of an annulus 𝒜0 around Γ0 and neighborhoods 𝒱0 ⊂ Ω𝑟 of 𝑍0
and 𝑉0 ⊂ R2 of (0, 0), for which the auxiliary crossing system (2.6.6) is well defined.

Now, given an annulus 𝒜, with Γ0 ⊂ 𝒜 ⊂ 𝒜0, let 𝜀 > 0 satisfy (−𝜀, 𝜀) × {0} ⊂ 𝒜.
Considering (2.6.4) and (2.6.5), the displacement function Δ(𝑍) satisfies

Δ(𝑍)(ℎ𝑋(𝑥)) = 𝛽(𝑍) + 𝜅(𝑍)(𝑥− 2𝛼(𝑍))2 − ̃︀𝑑(𝑍)𝑥2 + Δ𝐸(𝑍, 𝛼(𝑍), 𝑥),

for 𝑥 ∈ (−𝜀, 𝜀), where Δ𝐸(𝑍, 𝛼(𝑍), 𝑥) = 𝒪3(𝑥, 𝛼(𝑍)). Define the auxiliary function ℱ :
𝒱0 × (−𝛿, 𝛿)2 × (−𝜀, 𝜀) → R, given by

ℱ(𝑍, 𝛼, 𝛽, 𝑥) = 𝛽 + 𝜅(𝑍)(𝑥− 2𝛼)2 − ̃︀𝑑(𝑍)𝑥2 + Δ𝐸(𝑍, 𝛼, 𝑥),

and notice that ℱ(𝑍, 𝛼(𝑍), 𝛽(𝑍), 𝑥) = Δ(𝑍)(ℎ𝑋(𝑥)).
Throughout this proof, in order to simplify the notation, the parameters 𝛿 > 0 and

𝜀 > 0 will be taken smaller (if necessary) with no distinction.
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Claim: There exist a neighborhood 𝒱 ⊂ 𝒱0 of 𝑍0 and functions 𝑥SN : 𝒱×(−𝛿, 𝛿) → (−𝜀, 𝜀)
and 𝛽SN : 𝒱 × (−𝛿, 𝛿) → (−𝛿, 𝛿) such that 𝜕𝑥ℱ(𝑍, 𝛼, 𝛽, 𝑥) = ℱ(𝑍, 𝛼, 𝛽, 𝑥) = 0 if, and only
if, 𝛽 = 𝛽SN(𝑍, 𝛼) and 𝑥 = 𝑥SN(𝑍, 𝛼). In addition

𝑥SN(𝑍, 𝛼) = 2𝜅(𝑍)
𝜅(𝑍) − ̃︀𝑑(𝑍)

𝛼 + 𝒪2(𝛼),

and
𝛽SN(𝑍, 𝛼) = 4 𝜅(𝑍) ̃︀𝑑(𝑍)

𝜅(𝑍) − ̃︀𝑑(𝑍)
𝛼2 + 𝒪3(𝛼).

In fact, notice that

𝜕𝑥ℱ(𝑍, 𝛼, 𝛽, 𝑥) = 2(𝜅(𝑍) + ̃︀𝑑(𝑍))𝑥− 4𝜅(𝑍)𝛼 + 𝒪2(𝑥, 𝛼).

Therefore, 𝜕𝑥ℱ(𝑍, 0, 𝛽, 0) = 0, for every 𝑍, 𝛽 ∈ 𝒱0 × (−𝛿, 𝛿), and 𝜕2
𝑥ℱ(𝑍0, 0, 0, 0) =

2(𝜅(𝑍0) − ̃︀𝑑(𝑍0)) ̸= 0. It follows from the Implicit Function Theorem for Banach Spaces
that there exist a neighborhood 𝒱 ⊂ 𝒱0 of 𝑍0 and a function ̂︂𝑥SN : 𝒱 × (−𝛿, 𝛿)2 → R such
that 𝜕𝑥ℱ(𝑍, 𝛼, 𝛽, 𝑥) = 0 if , and only if, 𝑥 = ̂︂𝑥SN(𝑍, 𝛼, 𝛽). In addition,

̂︂𝑥SN(𝑍, 𝛼, 𝛽) = 2𝜅(𝑍)
𝜅(𝑍) − ̃︀𝑑(𝑍)

𝛼 + 𝒪2(𝛼).

Now, consider the function ̂︀ℱ(𝑍, 𝛼, 𝛽) = ℱ(𝑍, 𝛼, 𝛽, ̂︂𝑥SN(𝑍, 𝛼, 𝛽)). Notice that

̂︀ℱ(𝑍, 𝛼, 𝛽) = 𝛽 − 4 𝜅(𝑍) ̃︀𝑑(𝑍)
𝜅(𝑍) − ̃︀𝑑(𝑍)

𝛼2 + 𝒪3(𝛼).

Again, reducing 𝒱 if necessary, it follows from the Implicit Function Theorem that there
exists a function 𝛽SN : 𝒱 × (−𝛿, 𝛿) → (−𝛿, 𝛿) such that ̂︀ℱ(𝑍, 𝛼, 𝛽) = 0 if, and only if, 𝛽 =
𝛽SN(𝑍, 𝛼). Hence, the proof of Claim 1 follows by taking 𝑥SN(𝑍, 𝛼) = ̂︂𝑥SN(𝑍, 𝛼, 𝛽SN(𝑍, 𝛼)).

Now, in order to find all the zeroes of ℱ , we use the curve 𝛽SN provided in Claim 1 .
Define

𝑃 = {(𝑍, 𝛼, 𝛽) ∈ 𝒱 × (−𝛿, 𝛿)2; 𝛽 ≥ 𝛽SN(𝑍, 𝛼)}.
Claim: There exist functions 𝑥± : 𝑃 → (−𝜀, 𝜀) such that ℱ(𝑍, 𝛼, 𝛽, 𝑥) = 0 if, and only
if, 𝑥 = 𝑥+(𝑍, 𝛼, 𝛽) or 𝑥 = 𝑥−(𝑍, 𝛼, 𝛽). In addition

𝑥+(𝑍, 𝛼, 𝛽SN(𝑍, 𝛼)) = 𝑥−(𝑍, 𝛼, 𝛽SN(𝑍, 𝛼)) = 𝑥SN(𝑍, 𝛼),

and

𝑥±(𝑍, 𝛼, 𝛽) = 2𝜅(𝑍)
𝜅(𝑍) − ̃︀𝑑(𝑍)

𝛼±

⎯⎸⎸⎷− 𝛽 − 𝛽SN

𝜅(𝑍) − ̃︀𝑑(𝑍)
+ 𝒪2

(︂
𝛼,
√︁
𝛽 − 𝛽SN

)︂
,

where 𝛽SN = 𝛽SN(𝑍, 𝛼).
Recall that the remainder term Δ𝐸 in the function ℱ does not depend on 𝛽. Also, de-

noting 𝛽SN = 𝛽SN(𝑍, 𝛼) and 𝑥SN = 𝑥SN(𝑍, 𝛼), we have ℱ(𝑍, 𝛽SN, 𝛼, 𝑥SN) = 𝜕𝑥ℱ(𝑍, 𝛽SN, 𝛼, 𝑥SN) =
0 and 𝜕2

𝑥ℱ(𝑍, 𝛽SN, 𝛼, 𝑥SN) = 2(𝜅(𝑍) − ̃︀𝑑(𝑍)) + 𝒪(𝛼) ̸= 0. Thus, ℱ writes

ℱ(𝑍, 𝛼, 𝛽, 𝑥) = 𝛽 − 𝛽SN +
(︁
𝜅(𝑍) − ̃︀𝑑(𝑍) + 𝒪(𝛼)

)︁
(𝑥− 𝑥SN)2 + 𝒪3(𝑥− 𝑥SN).
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Now, define

𝒢(𝑍, 𝛼, 𝛽, 𝑢) = 𝛽 − 𝛽SN +
(︁
𝜅(𝑍) − ̃︀𝑑(𝑍) + 𝒪(𝛼)

)︁
𝑢+ 𝒪3/2(𝑢)

in such way that ℱ(𝑍, 𝛼, 𝛽, 𝑥) = 0 if, and only if, 𝒢(𝑍, 𝛼, 𝛽, 𝑢) = 0 and 𝑢 = (𝑥 − 𝑥SN)2.
Since 𝒢(𝑍, 𝛼, 𝛽SN, 0) = 0 and 𝜕𝑢𝒢(𝑍0, 0, 0, 0) = 𝜅(𝑍0) − ̃︀𝑑(𝑍0) ̸= 0, it follows from the
Implicit Function Theorem that there exists a function 𝑢0 : 𝒱 × (−𝛿, 𝛿)2 × (−𝜀, 𝜀) such
that 𝒢(𝑍, 𝛼, 𝛽, 𝑢) = 0 if, and only if, 𝑢 = 𝑢0(𝑍, 𝛼, 𝛽). In addition

𝑢0(𝑍, 𝛼, 𝛽) = − 𝛽 − 𝛽SN

𝜅(𝑍) − ̃︀𝑑(𝑍)
+ 𝒪1(𝛼(𝛽 − 𝛽SN), (𝛽 − 𝛽SN)2).

Since 𝑢0(𝑍, 𝛼, 𝛽) ≥ 0 if, and only if, 𝛽 ≥ 𝛽SN, the proof Claim 2 follows by taking
𝑥±(𝑍, 𝛼, 𝛽) = 𝑥SN(𝑍, 𝛼) ±

√︁
𝑢0(𝑍, 𝛼, 𝛽).

From Claim 2, we have found all the zeroes of ℱ in a neighborhood of (𝑍0, 0, 0, 0).
Now, we must analyze whether 𝑥±(𝑍, 𝛼, 𝛽) ∈ (−𝜀, 𝜁(𝛼)], where 𝜁 is given by (2.6.7).

First, assume that 𝛼 ≥ 0, hence 𝜁(𝛼) = 𝒪2(𝛼). In this case, since 𝜅(𝑍) − ̃︀𝑑(𝑍) > 0,
𝜅(𝑍), ̃︀𝑑(𝑍) > 0, it follows that

𝑥−(𝑍, 𝛼, 𝛽) − 𝜁(𝛼) = 2𝜅(𝑍)
𝜅(𝑍) − ̃︀𝑑(𝑍)

𝛼−

⎯⎸⎸⎷− 𝛽 − 𝛽SN

𝜅(𝑍) − ̃︀𝑑(𝑍)
+ 𝒪2

(︂
𝛼,
√︁
𝛽 − 𝛽SN

)︂
< 0,

for every 𝛽 > 𝛽SN. Thus, 𝑥−(𝑍, 𝛼, 𝛽) ∈ i𝑛𝑡(𝜎(𝑍)) corresponds to a crossing limit cycle.
Also, since 𝜕𝑥ℱ(𝑍, 𝛼, 𝛽, 𝑥−(𝑍, 𝛼, 𝛽)) < 0 for 𝛽 > 𝛽0, it follows that the crossing limit cycle
corresponding to 𝑥− is hyperbolic attracting.

Notice that

𝑥+(𝑍, 𝛼, 𝛽) − 𝜁(𝛼) = 𝜇+ 2𝜅(𝑍)
𝜅(𝑍) − ̃︀𝑑(𝑍)

𝛼 + 𝒪2(𝛼, 𝜇),

where

𝜇 =
⎯⎸⎸⎷− 𝛽 − 𝛽SN

𝜅(𝑍) − ̃︀𝑑(𝑍)
. (2.6.8)

Define ℋ(𝑍, 𝛼, 𝜇) := 𝑥+(𝑍, 𝛼, 𝛽) − 𝜁(𝛼). Applying the Implicit Function Theorem to ℋ,
we obtain the existence of a function 𝜇+

0 : 𝒱 × (−𝛿, 𝛿) → R such that ℋ(𝑍, 𝛼, 𝜇) = 0 if,
and only if, 𝜇 = 𝜇+

0 (𝑍, 𝛼). Also,

𝜇+
0 (𝑍, 𝛼) = − 2𝜅(𝑍)

𝜅(𝑍) − ̃︀𝑑(𝑍)
𝛼 + 𝒪2(𝛼) ≥ 0.

Thus, taking 𝛽+(𝑍, 𝛼) = 𝛽SN(𝑍, 𝛼) = −(𝜅(𝑍) − ̃︀𝑑(𝑍))(𝜇+
0 (𝑍, 𝛼))2, we obtain that

𝛽+(𝑍, 𝛼) = −4𝜅(𝑍)𝛼2 + 𝒪3(𝛼).

Moreover, 𝑥+(𝑍, 𝛼, 𝛽) ∈ 𝜕𝜎(𝑍) if, and only if, 𝛽 = 𝛽+(𝑍, 𝛼). In this case, 𝑥+(𝑍, 𝛼, 𝛽)
corresponds to a Σ-polycycle passing through the visible point (0, 0) of 𝑋. On the other
hand, since ℋ is increasing in the variable 𝜇, 𝑥+(𝑍, 𝛼, 𝛽) ∈ int(𝜎(𝑍)) if, and only if,
𝛽SN(𝑍, 𝛼) < 𝛽 < 𝛽+(𝑍, 𝛼). In this case, 𝑥+(𝑍, 𝛼, 𝛽) corresponds to a crossing limit cycle
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of 𝑍. Also, 𝜕𝑥ℱ(𝑍, 𝛼, 𝛽, 𝑥+(𝑍, 𝛼, 𝛽)) > 0 for 𝛽 > 𝛽SN, then the crossing limit cycle (resp.
Σ-polycycle) corresponding to 𝑥+ is hyperbolic repelling (resp. C-unstable).

If 𝛽 = 𝛽SN(𝑍, 𝛼), then 𝑥SN(𝑍, 𝛼) − 𝜁(𝛼) ≥ 0 (with equality if, and only if, 𝛼 =
0), and thus 𝑥SN(𝑍, 𝛼) corresponds to a crossing limit cycle. Since 𝑥−(𝑍, 𝛼, 𝛽SN) =
𝑥+(𝑍, 𝛼, 𝛽SN) = 𝑥SN(𝑍, 𝛼), and 𝛽 > 𝛽SN 𝑥−(𝑍, 𝛼, 𝛽) < 𝑥+(𝑍, 𝛼, 𝛽) corresponds, respec-
tively, to a repelling and an attracting crossing limit cycle, it follows that 𝑥SN corresponds
to a semi-stable crossing limit cycle which is repelling from inside and attracting from
outside.

Now, assume that 𝛼 < 0. In this case 𝜁(𝛼) = 2𝛼 + 𝒪2(𝛼) and

𝑥+(𝑍, 𝛼, 𝛽) − 𝜁(𝛼) = 2 ̃︀𝑑(𝑍)
𝜅(𝑍) − ̃︀𝑑(𝑍)

𝛼 +
⎯⎸⎸⎷− 𝛽 − 𝛽SN

𝜅(𝑍) − ̃︀𝑑(𝑍)
+ 𝒪2

(︂
𝛼,
√︁
𝛽 − 𝛽SN

)︂
> 0,

for every 𝛽 ≥ 𝛽SN(𝑍, 𝛼). It means that 𝑥+(𝑍, 𝛼, 𝛽) /∈ 𝜎(𝑍) for every 𝛼 < 0 and 𝛽 ≥ 𝛽SN.
For the other zero, we have that

𝑥−(𝑍, 𝛼, 𝛽) − 𝜁(𝛼) = −𝜇+ 2 ̃︀𝑑(𝑍)
𝜅(𝑍) − ̃︀𝑑(𝑍)

𝛼 + 𝒪2 (𝛼, 𝜇) ,

where 𝜇 is given by (2.6.8). Similarly, we obtain that there exists a function 𝛽−(𝑍, 𝛼)
satisfying

𝛽−(𝑍, 𝛼) = 4 ̃︀𝑑(𝑍)𝛼2 + 𝒪3(𝛼).
In this case, 𝑥−(𝑍, 𝛼, 𝛽) ∈ 𝜕𝜎(𝑍) if, and only if, 𝛽 = 𝛽−(𝑍, 𝛼) which corresponds to a
Σ-polycycle of 𝑍 passing through the origin. Also, 𝑥−(𝑍, 𝛼, 𝛽) ∈ int(𝜎(𝑍)) if, and only
if, 𝛽SN(𝑍, 𝛼) < 𝛽 < 𝛽−(𝑍, 𝛼), which corresponds to a hyperbolic attracting crossing limit
cycle of 𝑍.

The proof follows by taking 𝛽1(𝑍) = 𝛽SN(𝑍, 𝛼(𝑍)), 𝛽2(𝑍) = 𝛽+(𝑍, 𝛼(𝑍)) and 𝛽3(𝑍) =
𝛽−(𝑍, 𝛼(𝑍)).

In the remainder of this section, in order to complete the bifurcation diagram of 𝑍0
satisfying the hypotheses of Theorem E, we study the existence of limit cycles of 𝑍 ∈ 𝒱
passing through the section 𝜎t(𝑍) (see Proposition 2.6.5) as well as the sliding phenomena
(see Propositions 2.6.6 and 2.6.7).

Proposition 2.6.5. Let 𝑍0 = (𝑋0, 𝑌0) be a nonsmooth vector field in the setting of
Theorem E. Therefore, for an annulus 𝒜, with Γ0 ⊂ 𝒜 ⊂ 𝒜0, the following statements
hold inside 𝒜.

1. If 𝛽(𝑍) < 0, then 𝑍 admits a unique limit cycle, which is hyperbolic attracting limit
cycle of 𝑋 in 𝑀+.

2. If 𝛽(𝑍) = 0, then 𝑍 admits a unique Σ-polycycle passing through (0, 0), which is a
hyperbolic attracting limit cycle of 𝑋 in 𝑀+.

3. If 𝛽(𝑍) > 0, then 𝑍 has no limit cycles contained in 𝑀+ or 𝑀−.

Proof. From the study on the tangential section already done, we have that 𝑇 𝑢(𝑍)(0, 0) =
𝜆0(𝑍) and [𝐷(𝑍)]−1 ∘ 𝑇 𝑠(𝑍)(0, 0) = ̃︀𝑐(𝑍), which means that

𝛽(𝑍) = 𝑇 𝑢(𝑍)(0, 0) − [𝐷(𝑍)]−1 ∘ 𝑇 𝑠(𝑍)(0, 0).
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Now, since Γ0 is a hyperbolic attracting limit cycle of 𝑋0, we have that its associated
first return map 𝒫𝑋

0 defined in the section {0}× (−𝜀, 𝜀) has a unique attractor hyperbolic
fixed point (0, 𝑝𝑋). So, (0, 𝑝𝑋) corresponds to a hyperbolic attracting limit cycle of 𝑋 in
𝑀+ if, and only if, 𝑝𝑋 > 0. Also, 𝑝𝑋 = 0 if, and only if, 𝑋 has a hyperbolic attracting limit
cycle tangent to Σ at the origin. Finally, the result follows by noticing that 𝑝𝑋𝛽(𝑍) < 0,
and 𝑝𝑋 = 0 if, and only if, 𝛽(𝑍) = 0.

Now we proceed with the analysis of the sliding dynamics. In this present setting,
(0, 0) is a visible-invisible fold-fold singularity of 𝑍0 and for each 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱 we have
that 𝑋 has a visible fold point at (0, 0) and 𝑌 has an invisible fold point at ℎ𝑋(𝛼(𝑍)) of 𝑌 .
Recall that the parameter 𝛼(𝑍) locally unfolds the visible-invisible fold-fold singularity.
For 𝛼 ̸= 0, there exists either a stable sliding region or an unstable sliding region between
the two regular-fold singularities, (0, 0) and ℎ𝑋(𝛼(𝑍)). In both cases, the sliding vector
field 𝐹𝑍 has no pseudo-equilibria. Moreover, 𝜋1 ∘𝐹𝑍(𝑥, 0) > 0 for all (𝑥, 0) between (0, 0)
and ℎ𝑋(𝛼(𝑍)) (see Figure 2.32).

𝛼(𝑍) = 0 𝛼(𝑍) > 0𝛼(𝑍) < 0

Figure 2.32: Bifurcation diagram of the visible-invisible fold-fold singularity.

Proposition 2.6.6. Let 𝑍0 = (𝑋0, 𝑌0) be a nonsmooth vector field in the setting of
Theorem E. Therefore, for an annulus 𝒜, with Γ0 ⊂ 𝒜 ⊂ 𝒜0, there exists a 𝒞𝑟 function
𝛽4 : 𝒱 → R such that, for 𝛼(𝑍) > 0 and 𝛽2(𝑍) < 𝛽(𝑍) < 0, the following statements hold
inside 𝒜.

1. If 𝛽(𝑍) < 𝛽4(𝑍), then 𝑍 has a sliding cycle through (0, 0) for which the trajectory
through (0, 0) crosses Σ𝑐 once before it reaches Σ𝑠 from 𝑀−;

2. If 𝛽(𝑍) = 𝛽4(𝑍), then 𝑍 has a sliding cycle that contains 𝑝0 = (0, 0) and 𝑝𝑌 =
ℎ𝑋(𝛼(𝑍)) for which the arc-orbit >𝑝0𝑝𝑌 |𝑍 is contained in 𝑀+;

3. If 𝛽(𝑍) > 𝛽4(𝑍), then 𝑍 has a sliding cycle through (0, 0) for which the trajectory
through (0, 0) reaches Σ𝑠 from 𝑀+ without crossing Σ𝑐.

In addition,
𝛽4(𝑍) = −𝜅(𝑍)𝛼(𝑍)2 + 𝒪3(𝛼(𝑍)).

Proof. For 𝛼 > 0, a connection of 𝑍 = (𝑋, 𝑌 ) between 𝑝0 and 𝑝𝑌 is characterized as the
zero of the function

𝑆+(𝑍, 𝛼, 𝛽) = 𝑇𝑋
+ (ℎ𝑋(𝛼)) − [𝐷(𝑍)]−1 ∘ 𝑇 𝑠(𝑍)(0, 0),

where 𝑇𝑋
+ is the transition map of 𝑋 given by (2.6.1) (with 𝑎𝑖 = 0) and [𝐷(𝑍)]−1 ∘𝑇 𝑠(𝑍)

is given by (2.6.2). Thus, it follows from (2.6.3) that

𝑆+(𝑍, 𝛼, 𝛽) = 𝜆0(𝑍) + 𝜅(𝑍)𝛼2 + 𝒪2(𝛼) − ̃︀𝑐(𝑍)
= 𝛽 + 𝜅(𝑍)𝛼2 + 𝒪2(𝛼).
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From the Implicit Function Theorem, there exists a function 𝛽+
𝑠 (𝑍, 𝛼) such that 𝑆+(𝑍, 𝛼, 𝛽) =

0 if, and only if, 𝛽 = 𝛽+
𝑠 (𝑍, 𝛼).

Notice that 𝑆+(𝑍, 𝛼, 𝛽) < 0 is equivalent to 𝛽 < 𝛽+
𝑠 (𝑍, 𝛼). In this case, since 𝛽 >

𝛽2(𝛼), the trajectory through (0, 0) crosses Σ𝑐 once and reaches Σ𝑠 from 𝑀−. Then it
slides to (0, 0).

Finally, 𝑆+(𝑍, 𝛼, 𝛽) > 0 is equivalent to 0 > 𝛽 > 𝛽+
𝑠 (𝑍, 𝛼). In this case, the

trajectory through (0, 0) reaches Σ𝑠 directly from 𝑀+. The proof follows by taking
𝛽4(𝑍) = 𝛽+

𝑠 (𝑍, 𝛼(𝑍)).

Proposition 2.6.7. Let 𝑍0 = (𝑋0, 𝑌0) be a nonsmooth vector field in the setting of
Theorem E. Therefore, for an annulus 𝒜, with Γ0 ⊂ 𝒜 ⊂ 𝒜0, there exists a 𝒞𝑟 function
𝛽5 : 𝒱 → R such that, for 𝛼(𝑍) < 0 and 0 < 𝛽(𝑍) < 𝛽3(𝑍), the following statements hold
inside 𝒜.

1. If 0 < 𝛽(𝑍) < 𝛽5(𝑍), then 𝑍 has a sliding cycle through (0, 0) for which the negative
trajectory through (0, 0) reaches Σ𝑠 from 𝑀+ without crossing Σ𝑐;

2. If 𝛽(𝑍) = 𝛽5(𝑍), then 𝑍 has a sliding cycle containing 𝑝0 = (0, 0) and 𝑝𝑌 =
ℎ𝑋(𝛼(𝑍)) for which the arc-orbit >𝑝𝑌 𝑝0|𝑍 is contained in 𝑀+;

3. If 𝛽5(𝑍) < 𝛽(𝑍), then 𝑍 has a sliding cycle through (0, 0) for which the negative
trajectory through (0, 0) reaches Σ𝑠 from 𝑀− after it crosses Σ𝑐 once.

In addition,
𝛽5(𝑍) = ̃︀𝑑(𝑍)𝛼(𝑍)2 + 𝒪3(𝛼(𝑍)).

Proof. For 𝛼 < 0, a connection of 𝑍 = (𝑋, 𝑌 ) between 𝑝𝑌 and 𝑝0 is characterized as the
zero of the function

𝑆−(𝑍, 𝛼, 𝛽) = 𝑇𝑋
+ (0, 0) − [𝐷(𝑍)]−1 ∘ 𝑇 𝑠(𝑍)(ℎ𝑋(𝛼)),

where 𝑇𝑋
+ is the transition map of 𝑋 given by (2.6.1) (with 𝑎𝑖 = 0) and [𝐷(𝑍)]−1 ∘𝑇 𝑠(𝑍)

is given by (2.6.2). Thus, it follows from (2.6.3) that

𝑆−(𝑍, 𝛼, 𝛽) = 𝜆0(𝑍) − ̃︀𝑐(𝑍) − ̃︀𝑑(𝑍)𝛼2 + 𝒪2(𝛼)

= 𝛽 − ̃︀𝑑(𝑍)𝛼2 + 𝒪2(𝛼).

Following the same steps of the proof of Proposition 2.6.6, we obtain the result.

A complete description of the bifurcation diagram of a nonsmooth vector field 𝑍0
satisfying the hypotheses of Theorem E is achieved by combining Theorem E, Propositions
2.6.5, 2.6.6 and 2.6.7, and noticing that 𝑍 has a visible-invisible fold-fold singularity at
the origin if, and only if, 𝛼(𝑍) = 0. This bifurcation diagram is illustrated in Figure 2.5.

Remark 2.6.8. Suppose that 𝑍0 has a Σ-polycycle Γ0 satisfying conditions (𝑉 𝐼) with
𝑛 ≥ 1. If the first return map 𝒫0 defined around Γ0 has a hyperbolic fixed point, then
a similar analysis can be performed in order to describe the bifurcation diagram of the
unfolding of Γ0.
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2.7 Conclusion and Further Directions
In this work, we provided a method to study the unfolding of Σ-polycycles in pla-

nar Filippov systems under certain hypotheses, and we have used such a mechanism to
completely describe the bifurcation diagrams of three different types of Σ-polycycles.

Despite the generality of Σ-polycycles covered by the mentioned methodology, there
are some classes of Σ-polycycles for which the Method of Displacement Functions does
not detect all bifurcating phenomena in their unfoldings. In fact, such Σ-polycycles seems
to exhibit a behavior much more complicated than the ones considered herein. Roughly
speaking, if global connections appear in the local unfolding of a Σ-singularity, which is
contained in a Σ-polycycle Γ, then such a mechanism does not detect all the crossing
dynamics in the unfolding of Γ. Nevertheless, it is worth mentioning that, even in these
cases, our method detects all the bifurcating crossing limit cycles with the same topological
type of the Σ-polycycle.

In light of this, an accurate description of local bifurcations of Σ-singularities of
tangential-tangential type is needed. In particular, a detailed analysis of the unfold-
ing of a cusp-cusp singularity is very welcome, since Σ-polycycles through a visible-visible
fold-fold singularity bifurcate from such a singularity. The knowledge of the local struc-
ture of degenerated Σ-singularities might lead us to the comprehension of Σ-polycycles in
a most general scenario.

In addition, Σ-polycycles passing through Σ-singularities of 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 involving
equilibria of 𝑋 or 𝑌 should be considered. As an example, we mention the homoclinic-like
connection through a boundary-saddle singularity studied in [4]. We emphasize that the
analysis of the problem becomes harder in this case due to the lack of normal forms (via
change of coordinates) for such a type of Σ-singularity.
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Chapter 3
Generic Singularities of 3𝐷 Filippov Systems

The aim of this chapter is to provide a discussion on current directions of research in-
volving typical singularities of 3𝐷 nonsmooth vector fields. A brief survey of known

results is also presented.
We describe the dynamical features of a fold-fold singularity in its most basic form

and we give a complete and detailed proof of its local structural stability (or instability).
In addition, classes of all topological types of a fold-fold singularity are intrinsically char-
acterized. Such proof essentially follows from some lines laid out by Colombo, García,
Jeffrey, Teixeira and others and it offers a rigorous mathematical treatment under clear
and crisp assumptions and solid arguments.

One should to highlight that the geometric-topological methods employed lead us to
the mathematical understanding of the dynamics around a T-singularity. This approach
lends itself to applications in generic bifurcation theory. It is worth saying that such
subject is still poorly understood in higher dimension.

3.1 Introduction
Certain aspects of the theory of nonsmooth vector fields (piecewise smooth vector

fields) has been mainly motivated by the study of vector fields near the boundary of a
manifold. Concerning this topic, many authors provided results and techniques which
have been very useful in piecewise smooth systems. It is worthwhile to cite in the 2-
dimensional case works from Andronov et al., Peixoto, Teixeira (see [5, 83, 97]) and
in higher dimensions the works from Sotomayor and Teixeira, Vishik and Percell (see
[95, 84, 104]). In particular, in [104] (1972), Vishik provided a classification of generic
points lying in the boundary of a manifold, using techniques from Theory of Singularities.

Many papers have contributed to the analysis and generic classification of singularities
of 2D Filippov systems (Kuznetsov et al., Guardia et al., Kozlova among others, see
[55, 63, 65]). Specifically with respect to the fold-fold singularity we point Ekeland (see
[34]) and Teixeira (see [98]). Regarding the 𝑛-dimensional problem, we point out the work
from Colombo and Jeffrey (see [26]) which analyzes an 𝑛-dimensional family having a two-
fold singularity, nevertheless the generic classification for 𝑛 > 2 is much more complicated
and still poorly understood.

As far as we know, the first approach where a generic 3D fold-fold singularity was
studied was offered by Teixeira in [99] (1981) where one finds a discussion on some features
of the first return mapping defined around this singularity. Maybe due to this fact, the
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invisible fold-fold singularity is known as T-singularity.
In [39] (1988), Filippov provided a mathematical formalization of the theory of piece-

wise smooth vector fields. In the last chapter of [39], Filippov studied generic singularities
in 3𝐷 piecewise smooth systems, and a systematic mathematical analysis of the behav-
ior around a fold-fold singularity was officially arisen. However, most of proofs were only
roughly sketched and would require a better explanation and interpretation. In particular,
the proofs of the results concerning the fold-fold singularity were obscure and unfinished.
Many works appeared lately trying to explain it (see [24, 25, 38, 101]).

In [101], Teixeira established necessary conditions for the structural stability of the
fold-fold singularity and he proved that it is not a generic property. Nevertheless, the case
of the invisible fold-fold point having a hyperbolic first return map was not understood.
He also provided results concerning asymptotic stability.

In [24, 25, 38], Jeffrey et al. also studied the problem of the classification of the
structural stability around a fold-fold singularity. More specifically, in [38], the authors
studied the behavior of a 2-parameter semi-linear model 𝑍𝛼,𝛽 having a T-singularity at
𝑍0,0. By studying the first return map explicitly, they have found countably many curves
𝛾𝑘 in a region of the parameter space, where the topological type 𝛽𝑘 of a system in 𝛾𝑘

satisfies 𝛽𝑘 ̸= 𝛽𝑙 provided 𝑘 ̸= 𝑙.
Guided by these results, we show that in the region of the parameter space considered

in [38], a general Filippov system 𝑍 having a T-singularity at 𝑝 always has a first return
map with complex eigenvalues. It brings several consequences to the behavior of 𝑍 around
𝑝, in particular, it produces a foliation of this region in the parameter space depending
on the argument of the eigenvalues of 𝑍 such that, two systems in different leaves are
not topologically equivalent near the T-singularity, which means that there is no class of
stability in this region of parameters.

A 3𝐷 fold-fold singularity is an intriguing phenomenon that has no counterparts in
smooth systems, and the complete characterization of the local structural stability of a
3𝐷 nonsmooth system around an elliptic fold-fold singularity has been an open problem
over the last 30 years. In this work, we believe that all mathematical existing gaps were
filled up and the precise statement of results and proofs were well established.

It is worth mentioning that the methods and techniques used in this chapter provide a
solution from a geometric-topological point of view. In addition, we present a generic and
qualitative characterization of a fold-fold singularity, in order to clarify any fact concerning
the generality of the results.

3.2 Setting the Problem
In what follows we summarize a rough overall description of the basic concepts and

results in order to set the problem.
Let 𝑀 be a connected bounded region of R3, let 𝑓 : 𝑀 → R be a smooth function

having 0 as a regular value and assume that Σ = 𝑓−1(0) is compact. Throughout this
chapter, we consider germs of piecewise smooth vector fields at Σ

Remark 3.2.1. Notice that, in this chapter, Ω𝑟 stands for the set of germs of tridimen-
sional piecewise smooth vector fields at Σ.
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3.2.1 Σ-Equivalence
An orbital equivalence relation is defined in Ω𝑟 as follows.

Definition 3.2.2. Let 𝑍0, 𝑍 ∈ Ω𝑟 be two germs of nonsmooth vector fields. We say that
𝑍0 is topologically equivalent to 𝑍 at 𝑝 if there exist neighborhoods 𝑈 and 𝑉 of 𝑝 in
𝑀 and an order-preserving homeomorphism ℎ : 𝑈 → 𝑉 such that it carries orbits of 𝑍0
onto orbits of 𝑍, and it preserves Σ, i.e. ℎ(Σ ∩ 𝑈) = Σ ∩ 𝑉 .

The concept of local structural stability at a point 𝑝 ∈ Σ is defined in the natural way.

Definition 3.2.3. 𝑍0 ∈ Ω𝑟 is said to be Σ-locally structurally stable if 𝑍0 is locally
structurally stable at 𝑝, for each 𝑝 ∈ Σ.

Denote the space of germs of nonsmooth vector fields 𝑍 ∈ Ω𝑟 which are Σ-locally
structurally stable by Σ0.

3.2.2 Reversible mappings
We introduce concepts which will be useful throughout this chapter. More details can

be found in [73, 100].

Definition 3.2.4. A germ of an involution at 0 is a 𝒞𝑟 germ of a diffeomorphism
𝜙 : R2 → R2 such that 𝜙(0) = 0, 𝜙2(𝑥, 𝑦) = (𝑥, 𝑦) and det[𝜙′(0, 0)] = −1.

The set of all germs of involutions at 0 is denoted by 𝐼𝑟 and it is endowed with the 𝒞𝑟

topology. Consider 𝑊 𝑟 = 𝐼𝑟 × 𝐼𝑟 endowed with the product topology.

Definition 3.2.5. Let 𝜙 = (𝜙0, 𝜙1), 𝜓 = (𝜓0, 𝜓1) ∈ 𝑊 𝑟 be two pairs of involutions at
0. Then 𝜙 and 𝜓 are said to be topologically equivalent at 0 if there exists a germ
of a homeomorphism ℎ : (R2, 0) → (R2, 0) which satisfies ℎ𝜙0 = 𝜓0ℎ and ℎ𝜙1 = 𝜓1ℎ,
simultaneously.

The local structural stability of a pair of involutions in 𝑊 𝑟 is defined in the natural
way. The proof of the next theorem can be found in [99] as well as more details about
involutions.

Theorem 3.2.6. A pair of involutions (𝜙, 𝜓) is locally and simultaneous structurally
stable at 0 if and only if 0 is a hyperbolic fixed point of the composition 𝜙 ∘ 𝜓. Moreover,
the structural stability in the space of pairs of involutions is not a generic property.

3.3 Generic Singularities
Recall that, in a PSVF, if only one component of 𝑍 = (𝑋, 𝑌 ) is considered, say 𝑋,

then it is a germ of 𝒞𝑟 vector field defined on a manifold with boundary 𝑀+. Therefore,
the theory of vector fields on manifolds with boundary (see [83, 95, 97, 104]) is used to
distinguish some points of Σ.

Denote the space of germs of 𝒞𝑟 vector fields defined on the manifold with boundary
𝑁 by 𝜒𝑟(𝑁) (𝑟 > 1). If 𝑁 is not specified, then consider 𝑁 = 𝑀+ or 𝑁 = 𝑀−.

Definition 3.3.1. A point 𝑝 ∈ Σ is said to be a fold point of 𝑋 ∈ 𝜒𝑟(𝑀+) if 𝑋𝑓(𝑝) = 0
and 𝑋2𝑓(𝑝) ̸= 0. If 𝑋2𝑓(𝑝) > 0 (resp. 𝑋2𝑓(𝑝) < 0), then 𝑝 is a visible fold (resp.
invisible fold).
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Remark 3.3.2. If 𝑋 ∈ 𝜒𝑟(𝑀−), the visibility condition is switched.

Definition 3.3.3. A point 𝑝 ∈ Σ is said to be a cusp of 𝑋 ∈ 𝜒𝑟(𝑁) if 𝑋𝑓(𝑝) = 𝑋2𝑓(𝑝) =
0, 𝑋3𝑓(𝑝) ̸= 0 and {𝑑𝑓(𝑝), 𝑑𝑋𝑓(𝑝), 𝑑𝑋2𝑓(𝑝)} is a linearly independent set.

Generically, a fold point of 𝑋 belongs to a local curve of fold points of 𝑋 with the
same visibility, and cusp points occur as isolated points located at the extreme of curves
of fold points.

Definition 3.3.4. 𝑋 ∈ 𝜒𝑟(𝑁) is said to be simple if either 𝑆𝑋 = ∅ or 𝑆𝑋 is just
composed by fold and cusp points of 𝑋. The set of all simple germs of 𝜒𝑟(𝑁) will be
denoted by 𝜒𝑟

𝑆.

In [104], S. M. Vishik used tools from Theory of Singularities to obtain sharpen results
on vector fields near the boundary of an 𝑛-manifold. In particular, when 𝑛 = 3, the
following result is stated.

Theorem 3.3.5 (Vishik’s Normal Form). Let 𝑋 ∈ 𝜒𝑟
𝑆. If 𝑝 ∈ 𝑆𝑋 then there exist a

neighborhood 𝑉 (𝑝) of 𝑝 in 𝑀 , a system of coordinates (𝑥1, 𝑥2, 𝑥3) at 𝑝 defined in 𝑉 (𝑝)
(𝑥𝑖(𝑝) = 0, 𝑖 = 1, 2, 3) and an integer 𝑘 = 𝑘(𝑝), 𝑘 = 1, 2, such that:

1. If 𝑝 is a fold point, then 𝑘 = 1 and 𝑋|𝑉 (𝑝) is a germ at 𝑉 (𝑝) ∩ Σ of the vector field
given by ⎧⎪⎨⎪⎩

𝑥1 = 𝑥2,
𝑥2 = 1,
𝑥3 = 0.

(3.3.1)

2. If 𝑝 is a cusp point, then 𝑘 = 2 and 𝑋|𝑉 (𝑝) is a germ at 𝑉 (𝑝) ∩ Σ of the vector field
given by ⎧⎪⎨⎪⎩

𝑥1 = 𝑥2,
𝑥2 = 𝑥3,
𝑥3 = 1.

(3.3.2)

3. Σ is given by the equation 𝑥1 = 0 in 𝑉 (𝑝).

The set 𝜒𝑟
𝑆 is open and dense in 𝜒𝑟(𝑁).

Remark 3.3.6. If we perform the change of coordinates 𝑦1 = 𝑥3, 𝑦2 = 𝑥2
3 − 2𝑥2, and

𝑦3 = 2𝑥1, then system (3.3.2) is carried to the system 𝑦1 = 1, 𝑦2 = 0, 𝑦3 = 𝑦2
1 − 𝑦2.

Analogously, if we consider the change 𝑦1 = 𝑥2, 𝑦2 = 𝑥3, and 𝑦3 = 𝑥1, then (3.3.1) is
carried to 𝑦1 = 1, 𝑦2 = 0, 𝑦3 = 𝑦1. In both cases, Σ is given by the equation 𝑦3 = 0.

In the piecewise smooth context, we consider the following tangential singularities.

Definition 3.3.7. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟. A tangential singularity 𝑝 ∈ Σ is said to be
elementary if it satisfies one of the following conditions:

(FR) - 𝑋𝑓(𝑝) = 0, 𝑋2𝑓(𝑝) ̸= 0 and 𝑌 𝑓(𝑝) ̸= 0 (resp. 𝑋𝑓(𝑝) ̸= 0, 𝑌 𝑓(𝑝) = 0 and
𝑌 2𝑓(𝑝) ̸= 0). In this case, 𝑝 is said to be a fold-regular (resp. regular-fold) point
of Σ.

(CR) - 𝑋𝑓(𝑝) = 0, 𝑋2𝑓(𝑝) = 0, 𝑋3𝑓(𝑝) ̸= 0 and 𝑌 𝑓(𝑝) ̸= 0 (resp. 𝑋𝑓(𝑝) ̸= 0,
𝑌 𝑓(𝑝) = 0, 𝑌 2𝑓(𝑝) = 0 and 𝑌 3𝑓(𝑝) ̸= 0), and {𝑑𝑓(𝑝), 𝑑𝑋𝑓(𝑝), 𝑑𝑋2𝑓(𝑝)} (resp.
{𝑑𝑓(𝑝), 𝑑𝑌 𝑓(𝑝), 𝑑𝑌 2𝑓(𝑝)}) is a linearly independent set. In this case, 𝑝 is said to be
a cusp-regular (resp. regular-cusp) point of Σ.
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(FF) - If 𝑋𝑓(𝑝) = 0, 𝑋2𝑓(𝑝) ̸= 0, 𝑌 𝑓(𝑝) = 0, 𝑌 2𝑓(𝑝) ̸= 0 and 𝑆𝑋 t 𝑆𝑌 at 𝑝. In this case,
𝑝 is said to be a fold-fold point of Σ.

See Figure 3.1.

(a-i)

(a-ii)

(b-i)

(b-ii)

Σ

𝑋

𝑌

Figure 3.1: (a) Fold-Regular singularities ((i) visible and (ii) invisible) and (b) Cusp-
Regular singularities ((i) 𝑋3𝑓(𝑝) < 0 and (ii) 𝑋3𝑓(𝑝) > 0).

Definition 3.3.8. Define Ξ0 as the set of all 𝑍 ∈ Ω𝑟 such that each 𝑝 ∈ Σ is either a
regular-regular point of 𝑍 or an elementary tangential singularity of 𝑍.

Remark 3.3.9. An element 𝑍 ∈ Ξ0 is referred as an elementary piecewise smooth
vector field.

From Theorem 3.3.5, we derive the following proposition.

Proposition 3.3.10. Ξ0 is an open dense set of Ω𝑟.

The elementary tangential singularities of type (FR) and (CR) determine certain local
behavior of the sliding solutions lying on Σ𝑠, as we can see in the following result proved
in [101].

Lemma 3.3.11. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 and assume that 𝑅 is a connected component of
Σ𝑠. Then:

1. The sliding vector field 𝐹𝑍 is of class 𝒞𝑟 and it can be smoothly extended beyond the
boundary of 𝑅 through the normalized sliding vector field 𝐹𝑁

𝑍 .

2. If 𝑝 ∈ 𝜕𝑅 is a fold point of 𝑋 and a regular point of 𝑌 , then 𝐹𝑍 is transverse to 𝜕𝑅
at 𝑝.

3. If 𝑝 ∈ 𝜕𝑅 is a cusp point of 𝑋 and a regular point of 𝑌 , then 𝐹𝑍 has a quadratic
contact with 𝜕𝑅 at 𝑝.

Theorem 3.3.12. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟, then:
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1. 𝑍 is locally structurally stable at a regular-regular point 𝑝 ∈ Σ if and only if 𝑝 ∈ Σ𝑐 or
𝑝 ∈ Σ𝑠 and, in the second case, p is either a regular point or a hyperbolic singularity
of 𝐹𝑍.

2. 𝑍 is locally structurally stable at any fold-regular singularity 𝑝 ∈ Σ.

3. 𝑍 is locally structurally stable at any cusp-regular singularity 𝑝 ∈ Σ.

The proof of this result can be found in [39, 55].

3.4 Statement of the main results
Define the following subsets of Ω𝑟:

• Σ(𝐺): 𝑍 ∈ Ω𝑟 such that each point 𝑝 ∈ Σ is either a tangential singularity or a
regular-regular point.

• Σ(𝑅): 𝑍 ∈ Ω𝑟 such that for each regular-regular point 𝑝 ∈ Σ of 𝑍 we have either
𝑝 ∈ Σ𝑐 or 𝑝 ∈ Σ𝑠 and, in the second case, 𝑝 is either a regular point or a hyperbolic
singularity of 𝐹𝑍 ;

• Σ(𝐻): 𝑍 ∈ Ω𝑟 such that for each visible fold-fold point 𝑝 ∈ Σ, the normalized
sliding vector field 𝐹𝑁

𝑍 has no center manifold in Σ𝑠.

• Σ(𝑃 ): 𝑍 ∈ Ω𝑟 such that for each invisible-visible point 𝑝 ∈ Σ, the normalized
sliding vector field 𝐹𝑁

𝑍 is either transient in Σ𝑠 or it has a hyperbolic singularity at
𝑝. Moreover, if 𝜑𝑋 is the involution associated to 𝑍 then it satisfies:

1. 𝜑𝑋(𝑆𝑌 ) t 𝑆𝑌 at 𝑝;
2. 𝐹𝑁

𝑍 and 𝜑*
𝑋𝐹

𝑁
𝑍 are transversal at each point of Σ𝑠𝑠 ∩ 𝜑𝑋(Σ𝑢𝑠);

3. 𝜑𝑋(𝑆𝑌 ) t 𝐹𝑁
𝑍 in a neighborhood of 𝑝.

• Σ(𝐸): 𝑍 ∈ Ω𝑟 such that for each T-singularity 𝑝 ∈ Σ, the first return map 𝜑𝑍

associated to 𝑍 has a fixed point at 𝑝 of type saddle with both local invariant
manifolds 𝑊 𝑢,𝑠

𝑙𝑜𝑐 contained in Σ𝑐.

Remark 3.4.1. If 𝑍 has a visible-invisible fold-fold singularity at 𝑝, then the roles of 𝑋
and 𝑌 in the condition Σ(𝑃 ) are interchanged.

The main result of this chapter s the following theorem.

Theorem F. 𝑍 ∈ Ω𝑟 is locally structurally stable at a T-singularity 𝑝 if and only if it
satisfies condition Σ(𝐸) at 𝑝.

The following theorem is proved in [24, 39] and a detailed proof clarifying some obscure
points is presented.

Theorem G. 𝑖) 𝑍 ∈ Ω𝑟 is locally structurally stable at a hyperbolic fold-fold singu-
larity 𝑝 if and only if it satisfies condition Σ(𝐻) at 𝑝.

𝑖𝑖) 𝑍 ∈ Ω𝑟 is locally structurally stable at a parabolic fold-fold singularity 𝑝 if and only
if it satisfies condition Σ(𝑃 ) at 𝑝.
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Theorem H. Σ0 = Σ(𝐺) ∩ Σ(𝑅) ∩ Σ(𝐻) ∩ Σ(𝑃 ) ∩ Σ(𝐸).

Theorem I. Σ0 is not residual in Ω𝑟.

As a corollary of the characterization Theorem H, we obtain:

Corollary 3.4.2. 𝑖) Σ0 is an open dense set in Σ(𝐸). Moreover, Σ(𝐸) is maximal
with respect to this property.

𝑖𝑖) If 𝑍 /∈ Σ(𝐸) then 𝑍 has ∞-moduli of stability.

In addition, if 𝑍 has a T-singularity at 𝑝 and 𝜑𝑍 has complex eigenvalues, then a
neighborhood 𝒱 of 𝑍 in Ω𝑟 is foliated by codimension one submanifolds of Ω𝑟 correspond-
ing to the value of the argument of the eigenvalues of the first return map. Moreover, the
topological type along the corresponding leaf is locally constant.

We conclude that the local behavior around a T-singularity implies in the non-genericity
of Σ0 in Ω𝑟.

3.5 Fold-Fold Singularity

3.5.1 A Normal Form
In this section we derive a normal form to study the fold-fold singularity and we present

some consequences. This section is mainly motivated by the normal form of a fold point
obtained by S. M. Vishik in [104] and some variants such as [24, 38, 39].

Proposition 3.5.1. If 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 is a nonsmooth vector field having a fold-fold
point at 𝑝 such that 𝑆𝑋 t 𝑆𝑌 at 𝑝, then there exist coordinates (𝑥, 𝑦, 𝑧) around 𝑝 such that
𝑓(𝑥, 𝑦, 𝑧) = 𝑧 and 𝑍 is given by:

𝑋(𝑥, 𝑦, 𝑧) =

⎛⎜⎝ 𝛼
1
𝛿𝑦

⎞⎟⎠ and 𝑌 (𝑥, 𝑦, 𝑧) =

⎛⎜⎝ 𝛾 + 𝒪(|(𝑥, 𝑦, 𝑧)|)
𝛽 + 𝒪(|(𝑥, 𝑦, 𝑧)|)
𝑥+ 𝒪(|(𝑥, 𝑦, 𝑧)|2)

⎞⎟⎠ , (3.5.1)

where 𝛿 = sgn(𝑋2𝑓(𝑝)), sgn(𝛾) = sgn(𝑌 2𝑓(𝑝)), 𝛼, 𝛽, 𝛾 ∈ R.

Outline. Use the coordinates (𝑥, 𝑦, 𝑧) of Theorem 2 from [104] to put 𝑋 in the form
𝑋(𝑥, 𝑦, 𝑧) = (0, 1, 𝛿𝑦) and 𝑓(𝑥, 𝑦, 𝑧) = 𝑧. Now, consider the Taylor expansion of 𝑌 in this
coordinate system and perform changes to put 𝑌 𝑓(𝑥, 𝑦, 𝑧) = 𝑥+ 𝒪(|(𝑥, 𝑦, 𝑧)|2).

Definition 3.5.2. If 𝑍 ∈ Ω𝑟 has a fold-fold singularity at 𝑝, then the coordinate system
of Proposition 3.5.1 will be called normal coordinates of 𝑍 at 𝑝 and the parameters of
𝑍 in the normal coordinates will be referred as normal parameters of 𝑍 at 𝑝. Denote
𝑍 = 𝑍(𝛼, 𝛽, 𝛾).

Remark 3.5.3. If 𝛾 = ±1, 𝛼 = 𝑉 + and 𝛽 = 𝑉 −, then this normal form and the model
used in [24, 25, 38], have the same semi-linear part. Geometrically, 𝑉 + (𝑉 −) measures
the cotangent of the angle 𝜃+ (𝜃−) between 𝑋(0) (𝑌 (0)) and the fold line 𝑆𝑋 (𝑆𝑌 ). See
[25] for more details.

Corollary 3.5.4. If 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 is a nonsmooth vector field having a fold-fold point
at 𝑝 such that 𝑆𝑋 t 𝑆𝑌 at 𝑝, then there exist coordinates (𝑥, 𝑦, 𝑧) around 𝑝 defined in a
neighborhood 𝑈 of 𝑝 in 𝑀 , such that:
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1. 𝑓(𝑥, 𝑦, 𝑧) = 𝑧;

2. 𝑆𝑋 ∩ 𝑈 = {(𝑥, 0, 0); 𝑥 ∈ (−𝜀, 𝜀)}, for 𝜀 > 0 sufficiently small;

3. 𝑆𝑌 ∩ 𝑈 = {(𝑔(𝑦), 𝑦, 0); 𝑦 ∈ (−𝜀, 𝜀)}, for 𝜀 > 0 sufficiently small, where 𝑔 is a 𝒞𝑟

function such that 𝑔(𝑦) = 𝒪(𝑦2), i.e., 𝑆𝑌0 is locally a smooth curve tangent to the
𝑦-axis.

Outline. It follows directly from Proposition 3.5.1 and the Implicit Function Theorem.

Proposition 3.5.5. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 be a nonsmooth vector field having a fold-fold
point at 𝑝 such that 𝑆𝑋 t 𝑆𝑌 at 𝑝. Then, the normalized sliding vector field of 𝑍 has a
singularity at 𝑝 and it is given by

𝐹𝑁
𝑍 (𝑥, 𝑦) =

(︃
𝛼 −𝛿𝛾
1 −𝛿𝛽

)︃
·
(︃
𝑥
𝑦

)︃
+ 𝒪(|(𝑥, 𝑦)|2),

in the normal coordinates of 𝑍 at 𝑝, where 𝛿 = sgn(𝑋2𝑓(𝑝)), sgn(𝛾) = sgn(𝑌 2𝑓(𝑝)),
𝛼, 𝛽, 𝛾 ∈ R.

Outline. It follows directly from the expression of 𝑍 in this coordinate system.

Finally, we can classify a fold-fold singularity in four topologically distinct classes:

Definition 3.5.6. A fold-fold point 𝑝 of 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 is said to be:

• a visible fold-fold if 𝑋2𝑓(𝑝) > 0 and 𝑌 2𝑓(𝑝) < 0;

• an invisible-visible fold-fold if 𝑋2𝑓(𝑝) < 0 and 𝑌 2𝑓(𝑝) < 0;

• a visible-invisible fold-fold if 𝑋2𝑓(𝑝) > 0 and 𝑌 2𝑓(𝑝) > 0;

• an invisible fold-fold if 𝑋2𝑓(𝑝) < 0 and 𝑌 2𝑓(𝑝) > 0, in this case, 𝑝 is also called
a T-singularity.

Remark 3.5.7. Notice that the visible-invisible case can be obtained from the invisible-
visible one by performing an orientation reversing change of coordinates. Also, we re-
fer to a visible, invisible-visible/visible-invisible, invisible fold-fold point as a hyperbolic,
parabolic, elliptic fold-fold point, respectively. See Figure 3.2.

(a) (b) (c) (d)

Σ

𝑋

𝑌

Figure 3.2: Fold-Fold Singularity: (a) Hyperbolic, (b,c) Parabolic and (d) Elliptic.
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3.5.2 Sliding Dynamics
In this subsection we discuss the sliding dynamics around a fold-fold singularity. This

is a matured topic which has been well developed in [25, 39, 102].
From Proposition 3.5.1 and Lemma 3.3.11, we already know the behavior of the sliding

vector field near a fold-fold singularity in a generic scenario (not only for the truncated
system).

Let 𝑍 = 𝑍(𝛼, 𝛽, 𝛾) ∈ Ω𝑟 having a fold-fold singularity at 𝑝, and consider its normalized
sliding vector field 𝐹𝑁

𝑍 in normal coordinates.
Consider:

𝑅1
𝐸 = {(𝛼, 𝛽, 𝛾) ∈ R2 × R+; 𝛼𝛽 > 𝛾 and 𝛼 < 0, 𝛽 < 0},

𝑅2
𝐸 = R2 × R+ ∖𝑅1

𝐸,
𝑅1

𝐻 = {(𝛼, 𝛽, 𝛾) ∈ R2 × R−; 𝛼𝛽 < 𝛾 and 𝛼 > 0, 𝛽 < 0},
𝑅2

𝐻 = R2 × R− ∖𝑅1
𝐻 ,

𝑅1
𝑃 = {(𝛼, 𝛽, 𝛾) ∈ R2 × R−; 𝛼𝛽 < 𝛾 and 𝛽 − 𝛼 > −2√

−𝛾},
𝑅2

𝑃 = {(𝛼, 𝛽, 𝛾) ∈ R2 × R−; 𝛼𝛽 < 𝛾 and 𝛼 > 0},
𝑅3

𝑃 = {(𝛼, 𝛽, 𝛾) ∈ R2 × R−; 𝛼𝛽 > 𝛾, 𝛽 + 𝛼 > 0 and 𝛽 − 𝛼 < −2√
𝛾},

𝑅4
𝑃 = {(𝛼, 𝛽, 𝛾) ∈ R2 × R−; 𝛼𝛽 > 𝛾, 𝛽 + 𝛼 < 0 and 𝛽 − 𝛼 < −2√

−𝛾}.

We claim that:
Claim 1: If 𝑝 is an elliptic fold-fold singularity and (𝛼, 𝛽, 𝛾) ∈ 𝑅1

𝐸 then 𝐹𝑍 has an
invariant manifold 𝑊 in Σ𝑠 passing through 𝑝 and each orbit of 𝐹𝑍 is transverse to 𝑆𝑍

and reaches 𝑝 asymptotically to 𝑊 (for a finite positive time in Σ𝑠𝑠 and negative time in
Σ𝑢𝑠).

Claim 2: If 𝑝 is an elliptic fold-fold singularity and (𝛼, 𝛽, 𝛾) ∈ 𝑅2
𝐸 then 𝐹𝑍 has an

invariant manifold 𝑊 in Σ𝑠 passing through 𝑝 and each orbit is transverse to 𝑆𝑍 and does
not reach 𝑝, with exception of 𝑊 .

Claim 3: If 𝑝 is a hyperbolic fold-fold singularity and (𝛼, 𝛽, 𝛾) ∈ 𝑅1
𝐻 (resp. (𝛼, 𝛽, 𝛾) ∈

𝑅2
𝐻 ) then 𝐹𝑍 is of the same type of claim 1 (resp. claim 2) for reverse time.

Claim 4: If 𝑝 is a parabolic fold-fold singularity and (𝛼, 𝛽, 𝛾) ∈ 𝑅1
𝑃 then each orbit

in Σ𝑠𝑠 (resp. Σ𝑢𝑠) is transverse to 𝑆𝑋 (resp. 𝑆𝑌 ) and reaches 𝑆𝑌 (resp. 𝑆𝑋) transversally
for a positive finite time. In this case we say that 𝐹𝑍 has transient behavior in Σ𝑠.

Claim 5: If 𝑝 is a parabolic fold-fold singularity and (𝛼, 𝛽, 𝛾) ∈ 𝑅2
𝑃 then there exist

two invariant manifolds 𝑊1 and 𝑊2 in Σ𝑠 passing through 𝑝 which divide Σ𝑠𝑠 (and Σ𝑢𝑠)
in three sectors. The intermediate sector is of hyperbolic type and in the other sectors
the orbits are transversal to 𝑆𝑍 and go away from 𝑝 (the orientation of the orbits is given
in Figure 3.3).

Claim 6: If 𝑝 is a parabolic fold-fold singularity and (𝛼, 𝛽, 𝛾) ∈ 𝑅3
𝑃 then there

exist two invariant manifolds 𝑊1 and 𝑊2 in Σ𝑠 passing through 𝑝 which divide Σ𝑠𝑠 in
three sectors. In the intermediate sector each orbit reaches 𝑝 for a finite positive time
asymptotically to 𝑊1. In the left one each orbit is transverse to 𝑆𝑌 and reaches 𝑝 for a
finite positive time asymptotically to 𝑊1. In the right one, each orbit is transverse to 𝑆𝑋

and goes away from 𝑝. The behavior in Σ𝑢𝑠 is similar and can be seen in Figure 3.3.
Claim 7: If 𝑝 is a parabolic fold-fold singularity and (𝛼, 𝛽, 𝛾) ∈ 𝑅4

𝑃 then 𝐹𝑍 has the
same behavior as in claim 6 for reverse time and changing the role of 𝑊1 and 𝑊2, 𝑆𝑋 and
𝑆𝑌 , right and left.

Claim 8: If (𝛼, 𝛽, 𝛾) is not in any of these regions then 𝐹𝑍 presents bifurcations in
Σ𝑠.
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All these claims can be straightforward verified by analyzing the linear part of the
normalized sliding vector field 𝐹𝑁

𝑍 . We omitted the proofs due to its simplicity.

(a) (b) (c)

Σ

𝑆𝑋

𝑆𝑌

𝑊

𝑊 𝑊

𝑊
𝑊1

𝑊2

𝑊1
𝑊2

𝑊2
𝑊1

𝑅1
𝐸

𝑅2
𝐸

𝑅1
𝐻

𝑅2
𝐻

𝑅2
𝑃

𝑅4
𝑃

𝑅3
𝑃

𝑅1
𝑃

𝛼 𝛼 𝛼

𝛽 𝛽 𝛽

Figure 3.3: Sliding dynamics near a fold-fold singularity of type elliptic (a), hyperbolic
(b) and parabolic (c). In each case, the regions above are outlined in the (𝛼, 𝛽)-parameter
space for a fixed value of 𝛾.

3.6 Proofs of Theorems F and I
This section is devoted to prove Theorems F and I. In the sequel we develop some

Lemmas and Propositions which will lead us to the proof of the Theorems.
Assume that 𝑍 ∈ Ω𝑟 has a T-singularity at 𝑝. Therefore, we have a first return map

𝜑 of 𝑍 defined around 𝑝. In order to study the local structural stability of 𝑍, it will be
crucial to study the dynamics of 𝜑. Now, we derive the existence and some properties of
𝜑.

Lemma 3.6.1. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 be a nonsmooth vector field having a T-singularity
at 𝑝 such that 𝑆𝑋 t 𝑆𝑌 at 𝑝. There exist two involutions 𝜑𝑋 : (Σ, 𝑝) → (Σ, 𝑝) and
𝜑𝑌 : (Σ, 𝑝) → (Σ, 𝑝) associated to the folds 𝑋 and 𝑌 such that:

• Fix(𝜑𝑋) = 𝑆𝑋 ;

• Fix(𝜑𝑌 ) = 𝑆𝑌 ;

• 𝜑 = 𝜑𝑋 ∘ 𝜑𝑌 is a first return map of 𝑍 such that 𝜑(𝑝) = 𝑝.

The proof of Lemma 3.6.1 can be found in [23] (Lemma 1). A straightforward verifi-
cation shows the following results.
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Lemma 3.6.2. If 𝜑 = 𝜙∘𝜓, where 𝜙 and 𝜓 are involutions of R2 at 0, then 𝜑𝑛∘𝜙 = 𝜙∘𝜑−𝑛

and 𝜓 ∘ 𝜑𝑛 = 𝜑−𝑛 ∘ 𝜓, for each 𝑛 ∈ Z.

Proposition 3.6.3. If 𝜑 = 𝜙 ∘ 𝜓, where 𝜙 and 𝜓 are involutions of Σ at 𝑝, then the
invariant manifolds 𝑊 𝑠 and 𝑊 𝑢 of 𝜑 at 𝑝 are interchanged by 𝜙 and 𝜓 in the following
way:

𝜓(𝑊 𝑠) ⊂ 𝑊 𝑢 and 𝜙(𝑊 𝑢) ⊂ 𝑊 𝑠.

Now, using the normal coordinates of 𝑍 = (𝑋, 𝑌 ) at an elliptic fold-fold singularity,
we obtain the following expressions for the associated involutions.

Lemma 3.6.4. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 be a nonsmooth vector field having a T-singularity
at 𝑝 such that 𝑆𝑋 t 𝑆𝑌 at 𝑝. Consider the normal coordinates (𝑥, 𝑦, 𝑧) of 𝑍 at 𝑝. Then
the involutions 𝜑𝑋 and 𝜑𝑌 are given by

𝜑𝑋(𝑥, 𝑦) = (𝑥− 2𝛼𝑦,−𝑦) and 𝜑𝑌 (𝑥, 𝑦) =
(︃

−𝑥,−2𝛽
𝛾
𝑥+ 𝑦

)︃
+ ℎ.𝑜.𝑡.,

in these coordinates, where 𝛼, 𝛽, 𝛾 are the normal parameters of 𝑍 at 𝑝.

Finally, we associate the local structural stability of 𝑍 at an elliptic fold-fold singularity
with the local structural stability of the pair of involutions associated to 𝑍.

Lemma 3.6.5. Let 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 such that 𝑝 is a T-singularity for 𝑍0. If 𝑍0 is
locally structurally stable at 𝑝 in Ω𝑟 then the pair of involutions (𝜑𝑋0 , 𝜑𝑌0) associated to
𝑍0 is locally and simultaneously structurally stable at 0 in 𝑊 𝑟.

Proof. In fact, since 𝑝 is a T-singularity of 𝑍0, there exist neighborhoods 𝒱 of 𝑍0 in Ω𝑟

and 𝑉 of 𝑝 in 𝑀 such that, each 𝑍 ∈ 𝒱 has a unique Teixeira singularity at 𝑞(𝑍) ∈ 𝑉 ∩Σ.
Consider the map 𝐹 : 𝒱 → 𝑊 𝑟 given by:

𝐹 (𝑋, 𝑌 ) = (𝜑𝑋 , 𝜑𝑌 ),

where 𝜑𝑋 and 𝜑𝑌 are the involutions at (0, 0) of R2 associated to 𝑋 and 𝑌 , respectively.
From the continuous dependence of solutions with respect to initial conditions and

parameters, it follows that 𝐹 is a continuous map.
Moreover, there exists a neighborhood 𝒰 of (𝜑𝑋0 , 𝜑𝑌0) in 𝑊 𝑟, such that, for each

(𝜏, 𝜓) ∈ 𝒰 , there exists a vector field 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱 such that 𝜏 = 𝜑𝑋 and 𝜓 = 𝜑𝑌 , and
it can be done in a continuous fashion.

Then, reducing 𝒱 if necessary, it follows that 𝐹 : 𝒱 → 𝑊 𝑟 is an open continuous map.
Since 𝑍0 is locally structurally stable at 𝑝 in Ω𝑟, 𝒱 can be reduced such that every

𝑍 ∈ 𝒱 is topologically equivalent to 𝑍0.
Thus, if 𝑍 ∈ 𝒱 , there exist a fold-fold singularity 𝑞(𝑍) ∈ Σ of 𝑍 (with the same type

of 𝑝) and a topological equivalence ℎ : (𝑉1, 𝑝) → (𝑉2, 𝑞(𝑍)) between 𝑍0 and 𝑍, where 𝑉1
and 𝑉2 are neighborhoods of 𝑝 in 𝑀 , such that 𝑞(𝑍) ∈ 𝑉2.

In particular, it induces a homeomorphism ℎ : Σ∩𝑉1 → Σ∩𝑉2 such that ℎ(𝑝) = 𝑞(𝑍).
Using coordinates, (𝑥, 𝑦, 𝑧) around 𝑝 and (𝑢, 𝑣, 𝑤) around 𝑞(𝑍) such that 𝑓(𝑥, 𝑦, 𝑧) = 𝑧
and 𝑓(𝑢, 𝑣, 𝑤) = 𝑤, the induced homeomorphism ℎ can be seen as ℎ : 𝑈1 → 𝑈2, where 𝑈1
and 𝑈2 are neighborhoods of (0, 0) in R2 and ℎ(0, 0) = (0, 0).

Now, given (𝑥, 𝑦) ∈ Σ−𝑆𝑋0 (sufficiently near from (0, 0)), it follows from the definition
of the involution 𝜑𝑋0 that, the points (𝑥, 𝑦) and 𝜑𝑋0(𝑥, 𝑦) are connected by an orbit 𝛾0 of
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𝑋0 contained in 𝑀+. Analogously, the points ℎ(𝑥, 𝑦) and 𝜑𝑋(ℎ(𝑥, 𝑦)) are connected by
an orbit 𝛾 of 𝑋 contained in 𝑀+.

Since ℎ is a topological equivalence such that ℎ(Σ) ⊂ Σ, it follows that ℎ(𝛾0) = 𝛾 and

ℎ(𝜑𝑋0(𝑥, 𝑦)) = 𝜑𝑋(ℎ(𝑥, 𝑦)). (3.6.1)
It is trivial to see that 3.6.1 is also true when (𝑥, 𝑦) ∈ 𝑆𝑋0 , by observing that ℎ(𝑆𝑋0) =

𝑆𝑋 . Hence ℎ is an equivalence between the germs of involution 𝜑𝑋0 and 𝜑𝑋 .
Analogously, by changing the roles of 𝑋 and 𝑌 , it can be shown that ℎ is also an

equivalence between the involutions 𝜑𝑌0 and 𝜑𝑌 .
We conclude that ℎ is a (simultaneous) topological equivalence between the pairs of

involutions (𝜑𝑋0 , 𝜑𝑌0) and (𝜑𝑋 , 𝜑𝑌 ).
Since 𝑍 is arbitrary in 𝒱 , it follows that every pair of involutions in 𝒰 is topologically

equivalent to (𝜑𝑋0 , 𝜑𝑌0), and since 𝒰 is open in 𝑊 𝑟, it follows that (𝜑𝑋0 , 𝜑𝑌0) is local and
simultaneous structurally stable in 𝑊 𝑟.

The following result is obtained by combining Theorem 3.2.6 and Lemma 3.6.5.

Proposition 3.6.6. Let 𝑍0 ∈ Ω𝑟 having a T-singularity at 𝑝, and let (𝜑𝑋0 , 𝜑𝑌0) be the
pair of involutions of R2 at (0, 0) associated to 𝑍0. If 0 is not a hyperbolic fixed point of
𝜑𝑌0 ∘ 𝜑𝑋0, then 𝑍0 is locally structurally unstable at 𝑝.

A simple computation of eigenvalues and eigenvectors allows us to study the fixed
point 𝑝 of the first return map 𝜑 (see Figure 3.4):

Lemma 3.6.7. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 be a nonsmooth vector field having a T-singularity
at 𝑝 such that 𝑆𝑋 t 𝑆𝑌 at 𝑝. Let (𝛼, 𝛽, 𝛾) be the normal parameters of 𝑍 at 𝑝.

1. If 𝛼𝛽(𝛼𝛽 − 𝛾) ≤ 0, then 0 is not a hyperbolic fixed point of 𝜑. In addition, if
𝛼𝛽(𝛼𝛽 − 𝛾) < 0, then 𝜑 has complex eigenvalues.

2. If 𝛼𝛽(𝛼𝛽 − 𝛾) > 0, then 0 is a saddle point of 𝜑. In addition, if 𝜆, 𝜇 are the eigen-
values of 𝜑 such that |𝜇|< 1 < |𝜆|, and 𝑣𝜇, 𝑣𝜆 are the correspondent eigenvectors,
then:

(a) If 𝛼 > 0 and 𝛽 > 0, then 𝑣𝜇, 𝑣𝜆 ∈ Σ𝑠.
(b) If 𝛼 > 0 and 𝛽 < 0, then 𝑣𝜇 ∈ Σ𝑐 and 𝑣𝜆 ∈ Σ𝑠.
(c) If 𝛼 < 0 and 𝛽 > 0, then 𝑣𝜇 ∈ Σ𝑠, and 𝑣𝜆 ∈ Σ𝑐.
(d) If 𝛼 < 0 and 𝛽 < 0 then 𝑣𝜇, 𝑣𝜆 ∈ Σ𝑐.

Proposition 3.6.8. Let 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 be a germ of nonsmooth vector field having a
T-singularity at 𝑝. Let (𝛼, 𝛽, 𝛾) be the normal parameters of 𝑍0 at 𝑝. If 𝛼𝛽(𝛼𝛽 − 𝛾) ≤ 0,
then 𝑍0 is locally structurally unstable at 𝑝.

Proof. It follows directly from Proposition 3.6.6 and the fact that 𝑝 is not a hyperbolic
fixed point of the first return map 𝜑0 = 𝜑𝑋0 ∘ 𝜑𝑌0 associated to 𝑍0. In the sequel we
present an explicit argument for the local structural instability of 𝑍0. It is mainly based
on [14] and the Blow-up procedure (see [6]).

Let 𝜑0 : (Σ, 𝑝) → (Σ, 𝑝) be the (germ of) first return map associated to 𝑍0 at 𝑝. From
the conditions assumed in the Theorem, it follows that 𝜑0 has eigenvalues 𝜆± = 𝑎 ± 𝑖𝑏,
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Figure 3.4: Regions of the (𝛼, 𝛽)-parameter space with the corresponding behavior of the
first return map 𝜙, for a fixed value of 𝛾 > 0.

where 𝑎2 + 𝑏2 = 1. Using the normal form of 𝑍0 and basic linear algebra, it is easy to find
coordinates (𝑥, 𝑦) of Σ at 𝑝, such that:

𝜑0(𝑥, 𝑦) = (𝑎𝑥− 𝑏𝑦, 𝑏𝑥+ 𝑎𝑦) + 𝒪(|(𝑥, 𝑦)|2).

Consider the germs of functions ℎ1, ℎ2 : (R2, 0) → (R2, 0), given by:

ℎ1(𝑥, 𝑦) = (𝑥, 𝑦) and ℎ2(𝑥, 𝑦) =
√︁
𝑥2 + 𝑦2(𝑥, 𝑦).

Notice that ℎ1, ℎ2 are germs of homeomorphisms if we exclude the origin in their
domains.

If (𝑥, 𝑦) ̸= (0, 0), a straightforward computation shows that:

𝜓0(𝑥, 𝑦) = ℎ−1
2 ∘ 𝜑0 ∘ ℎ1(𝑥, 𝑦) = 1√

𝑥2 + 𝑦2𝜑0(𝑥, 𝑦).

Therefore, 𝜑0 and 𝜓0 are topologically equivalent. Using the polar change of coordi-
nates 𝜁(𝑟, 𝜃) = (𝑟 cos(𝜃), 𝑟 sin(𝜃)), where 𝑟 > 0 and 𝜃 ∈ R/2𝜋Z, we write 𝜓0 ∘ 𝜁 as

𝜓0 ∘ 𝜁(𝑟, 𝜃) =
(︃

cos(𝜃 + 𝜏)
sin(𝜃 + 𝜏)

)︃
+ 𝒪(𝑟),

where 𝑎+ 𝑖𝑏 = 𝑒𝑖𝜏 .
If 𝑟 → 0, 𝜁 blows up the singularity 𝑟 = 0 into the circle 𝑆1 = R/2𝜋Z, and the map

𝜁−1 ∘ 𝜓0 ∘ 𝜁 induces a dynamics in 𝑆1 (see Figure 3.5) given by

𝜓0([𝜃]) = [𝜃 + 𝜏 ].

Let 𝑍 be a small perturbation of 𝑍0, take it small enough such that the normal
parameters (�̃�, 𝛽, 𝛾) of 𝑍 are close enough to (𝛼, 𝛽, 𝛾).

If 𝜑 is the first return map associated to 𝑍 at the fold-fold point 𝑞(𝑍) ≈ 𝑝, then it has
eigenvalues �̃�± = �̃�± 𝑖�̃�.

Applying the same procedure to 𝜑, we can blow-up its singularity 𝑞(𝑍) into 𝑆1, and
the dynamics in 𝑆1 is induced by 𝜓 : 𝑆1 → 𝑆1, given by 𝜓(𝜃) = 𝜃+ 𝜏 , where �̃�+ 𝑖�̃� = 𝑒𝑖𝜏 .

Now, if ℎ : 𝑉 (𝑝) → 𝑉 (𝑞(𝑍)) is an equivalence between 𝑍0 and 𝑍, then ℎ(𝑆𝑋0) = 𝑆𝑋 .
In adequate coordinates, it means that ℎ(𝑥, 0) = (𝑓(𝑥), 0), where 𝑓 is a homeomorphism
of the real line such that 𝑓(0) = 0.



91

Figure 3.5: Blow-up of 𝑝 into 𝑆1.

Notice that the motion of 𝑆𝑋0 ∩{𝑥 ≥ 0} (resp. 𝑆𝑋 ∩{𝑥 ≥ 0}) around the origin through
𝜑0 (resp. 𝜑) is given by the orbit 𝛾0 = {𝜓0

𝑛(0), 𝑛 ∈ Z} (resp. 𝛾 = {𝜓𝑛(0), 𝑛 ∈ Z}).
Since ℎ is an equivalence, it follows that the orbits 𝛾0 and 𝛾 have the same topology.

Nevertheless, if 𝜏 ∈ Q (resp. 𝜏 /∈ Q) we can take 𝑍 (sufficiently near of 𝑍0) such that
𝜏 /∈ Q (resp. 𝜏 ∈ Q). Therefore, 𝛾0 is a periodic orbit and 𝛾 is dense in 𝑆1 (resp. 𝛾0 is
dense in 𝑆1 and 𝛾 is a periodic orbit).

It means that, when 𝜏 ∈ Q (and 𝛾0 is periodic), the curves 𝜑𝑛(𝑆𝑋) are tangent to a
finite number of directions at 𝑝, i.e., there exist 𝑚 vectors 𝑣1, · · · , 𝑣𝑚 in 𝑇𝑝Σ such that
𝑇𝑝𝜑

𝑛(𝑆𝑋) = span{𝑣𝑖(𝑛)}, for some 𝑖(𝑛) ∈ {1, · · · ,𝑚}, for each 𝑛 ∈ N. Hence, we conclude
that ⋃︀𝜑𝑛(𝑆𝑋) has zero measure in Σ.

On the other hand, if 𝜏 /∈ Q (and 𝛾0 is dense), we have that for each 𝑣 ∈ 𝑇𝑝Σ, there
exist a sequence 𝜑𝑛𝑘(𝑆𝑋), such that 𝑇𝑝𝜑

𝑛𝑘(𝑆𝑋) = span{𝑣𝑘}, and 𝑣𝑘 → 𝑣 when 𝑘 → ∞.
We conclude that ⋃︀𝜑𝑛(𝑆𝑋) has full measure in Σ.

From these facts, we can see that the orbits 𝜑𝑛
0 (𝑆𝑋0) and 𝜑𝑛(𝑆𝑋) do not have the same

topology (Figure 3.6).

𝑆𝑋

𝜑(𝑆𝑋 )𝜑2(𝑆𝑋 )

𝜑𝑛(𝑆𝑋 )

𝑆𝑋

𝑝

𝜃0Blow-up of 𝑝

Figure 3.6: Behavior of 𝑆𝑋 when 𝜃 /∈ Q.

Now, a Σ-equivalence between 𝑍0 and 𝑍 has to satisfy ℎ(𝑆𝑋0) = 𝑆𝑋 and ℎ∘𝜑0 = 𝜑∘ℎ.
Since 𝜑𝑛

0 (𝑆𝑋0) and 𝜑𝑛(𝑆𝑋) have different topological type, it follows that there is no
Σ-equivalence between 𝑍0 and 𝑍.

We conclude that, in any neighborhood of 𝑍0 in Ω𝑟 we can find a nonsmooth vector
field 𝑍 such that 𝑍0 is not topologically equivalent to 𝑍 at 𝑝. Therefore, 𝑍0 is locally
structurally unstable at 𝑝.

Remark 3.6.9. Let 𝜏𝑍 be the argument of the eigenvalues 𝑎± 𝑖𝑏 of the first return map
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𝜑 associated to 𝑍.
If 𝑍0 is a nonsmooth vector field satisfying the hypotheses of Proposition 3.6.8, then

a neighborhood 𝒱0 of 𝑍0 in Ω𝑟 is foliated by codimension one submanifolds of Ω𝑟 corre-
sponding to the value of 𝜏𝑍, i.e., 𝑍1 ∈ 𝒱0 and 𝑍2 ∈ 𝒱0 lies on the same leaf if and only if
𝜏𝑍1 = 𝜏𝑍2.

The topological type of the first return map is locally constant along each leaf. More-
over, if 𝑍1 and 𝑍2 are elements of 𝒱0 lying on different leaves of the foliation then they
are not topologically equivalent.

We conclude that 𝑍0 has ∞-moduli of stability. (See [14, 28, 81] for more details.)

Now we can prove Theorem D.

Theorem 3.6.10. Σ0 is not residual in Ω𝑟.

Proof of Theorem D. It follows directly from Theorem 3.6.8. In fact, let 𝑍0 ∈ Ω𝑟 and let
(𝛼0, 𝛽0, 𝛾0) be the normal parameters of 𝑍0 at 𝑝, they satisfy 𝛼0𝛽0(𝛼0𝛽0 − 𝛾0) < 0.

From continuity (and Implicit Function Theorem), there exist neighborhoods 𝒱 of 𝑍0
in Ω𝑟 and 𝑉 of 𝑝 in 𝑀 such that, each 𝑍 has a T-singularity at 𝑞(𝑍) ∈ 𝑉 .

Moreover, if we apply Proposition 3.5.1 to 𝑍 at 𝑞(𝑍), the normal parameters (𝛼, 𝛽, 𝛾)
of 𝑍 at 𝑞(𝑍) also satisfy 𝛼𝛽(𝛼𝛽 − 𝛾) < 0.

From Theorem 3.6.8, each 𝑍 ∈ 𝒱 is locally structurally unstable at the fold-fold
singularity 𝑞(𝑍) ∈ 𝑉 ∩ Σ. It means that each 𝑍 ∈ 𝒱 is locally structurally unstable at a
point 𝑞(𝑍) ∈ Σ, hence each 𝑍 ∈ 𝒱 is Σ-locally structurally unstable. Thus, 𝒱 ⊂ Ω𝑟 ∖ Σ0
and Σ0 is not residual in Ω𝑟.

Notice that the results obtained until this point are mainly concerned with the foliation
ℱ generated by a nonsmooth vector field near a T-singularity. The sliding dynamics does
not have influence on these results. Nevertheless, the existence of sliding vector fields will
be extremely important in the classification of the structural stability of a T-singularity
having a first return map with hyperbolic fixed point.

Proposition 3.6.11. Let 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 be a germ of nonsmooth vector field having
a T-singularity at 𝑝. Let (𝛼, 𝛽, 𝛾) be the normal parameters of 𝑍0 at 𝑝. If either 𝛼𝛽 ≥ 𝛾
and 𝛼, 𝛽 > 0 or 𝛼𝛽 < 0, then 𝑍0 is locally structurally unstable at 𝑝.

Proof. In the conditions of the theorem, we can use Lemma 3.6.7 to conclude that the
first return map 𝜑0 of 𝑍0 has a local invariant manifold of the saddle contained in Σ𝑠.

Without loss of generality, assume that 𝑊 𝑠 ⊂ Σ𝑠. Notice that the map 𝜑2
0 has the

same invariant manifolds of 𝜑0, but it has both positive eigenvalues 0 < 𝜆 < 1 < 𝜇.
Generically (i.e. 𝑊 𝑠 t 𝑊 at 𝑝, where 𝑊 is the invariant manifold of claim 2 in Section

3.5.2), we have that the sliding vector field 𝐹0 of 𝑍0 is transverse to 𝑊 𝑠 ∩ Σ𝑠𝑠 for a small
neighborhood of 𝑝. Let 𝑉 = 𝑈 ∩ Σ𝑠, where 𝑈 is a neighborhood of 𝑝 such that 𝐹0 is
transverse to 𝑊 𝑠 ∩ 𝑉 . See Figure 3.7.

Since 𝜆 > 0, we have that 𝜑2
0(𝑊 𝑠) ⊂ 𝜑2

0(𝑉 ) ∩ 𝑉. Moreover,

𝜑2𝑛
0 (𝑊 𝑠) ⊂ 𝜑2𝑛

0 (𝑉 ) ∩ 𝜑
2(𝑛−1)
0 (𝑉 ) ∩ · · · ∩ 𝜑2

0(𝑉 ) ∩ 𝑉,

for each 𝑛 ∈ N.
Let 𝑅𝑛 be the open set 𝜑2𝑛

0 (𝑉 ) ∩ 𝜑
2(𝑛−1)
0 (𝑉 ) ∩ · · · ∩ 𝜑2

0(𝑉 ) ∩ 𝑉 . Notice that, in each
region 𝜑2𝑖

0 (𝑉 ), we have a (push-forwarded) vector field

𝐹𝑖 = (𝜑2𝑖
0 )*(𝐹0),
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Figure 3.7: Vector field 𝐹0 near 𝑊 𝑠.

defined on it. Therefore, there are 𝑛 + 1 vector fields defined on 𝑅𝑛. Moreover, we can
reduce 𝑅𝑛 such that 𝐹𝑖 and 𝐹𝑗 are transversal at each point of 𝑅𝑛, for 𝑖 ̸= 𝑗, generically.
In fact, consider the expressions of 𝜑𝑋 , 𝜑𝑌 and 𝐹𝑁

𝑍 in the normal coordinates. Consider
the curves 𝛾±(𝑡) = 𝑡𝑣±, where 𝑣± are the eigenvectors associated to the eigenvalues 𝜆± of
𝑑𝜑2

0. A simple computation shows that:

𝐹±
𝑖𝑗 (𝑡) = det(𝐹𝑖(𝛾±(𝑡)), 𝐹𝑗(𝛾±(𝑡))) = 𝐴±

𝑖𝑗(𝛼, 𝛽, 𝛾)𝑡2 + 𝒪(𝑡3),

where 𝐴±
𝑖𝑗 is a rational function depending on 𝛼, 𝛽 and 𝛾.

Clearly, if 𝐴±
𝑖𝑗 ̸= 0, then 𝐹𝑖 and 𝐹𝑗 are transversal in a neighborhood of 𝛾±. In

particular, they are transversal in a neighborhood of 𝑊 𝑠.
Since 𝐴±

𝑖𝑗 = 0, for each 𝑖, 𝑗 = 0, 1, 2, defines a zero measure set in the parameter space
(𝛼, 𝛽, 𝛾), we achieved our goal.

Notice that, each vector field 𝐹𝑖 in 𝑅𝑛 defines a codimension one foliation ℱ𝑖 of 𝑅𝑛

(𝑅𝑛 is foliated by the integral curves of the vector field 𝐹𝑖). Moreover, (ℱ0, · · · ,ℱ𝑛) is in
general position (by the reduction of 𝑅𝑛). In particular, for 𝑛 = 2, we obtain 3 foliations
(ℱ0,ℱ1,ℱ2) of 𝑅2 (see Figure 3.8). This is called a 3-web in 𝑅2 (see [13] and [85]).

𝑝

𝑆𝑌

𝑆𝑋

𝑊 𝑠

Figure 3.8: Foliations ℱ0,ℱ1, and ℱ2 originated from the vector fields 𝐹0, 𝐹1 and 𝐹2,
respectively, near 𝑊 𝑠.

Since 𝑅2 is a 2-dimensional manifold, it follows that these foliations are structurally
unstable in the following sense. If (̃︁ℱ0, ̃︁ℱ1, ̃︁ℱ2) are the foliations correspondent to a non-
smooth vector field ̃︀𝑍 ≈ 𝑍0, then there exists at least one ̃︀𝑍 such that there is no
homeomorphism ℎ : 𝑅2 → ̃︁𝑅2 satisfying ℎ(ℱ𝑖) = ̃︁ℱ𝑖, for every 𝑖 = 0, 1, 2, preserving the
leaves of each foliation.

Clearly the property above has to be preserved by a Σ-equivalence, hence there exists
a 𝑍 sufficiently near of 𝑍0 which is topologically different from 𝑍0 near 𝑝.

The instability of 𝑍0 at 𝑝 follows directly from these facts.
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Remark 3.6.12. In general, the Theory of Webs used in the last Theorem is developed for
foliations on C𝑛. Nevertheless, we can identify Σ with C at 𝑝 (since Σ is 2-dimensional)
and apply the results of this theory for this case.

Now, let 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 be a germ of nonsmooth vector field having a Teixeira
singularity at 𝑝. Let (𝛼, 𝛽, 𝛾) be the normal parameters of 𝑍0 at 𝑝 and assume that 𝛼𝛽 ≥ 𝛾
and 𝛼, 𝛽 < 0.

Let 𝑍 ∈ Ω𝑟 be any small perturbation of 𝑍0 and denote their first return maps by 𝜑
and 𝜑0, respectively. Our goal is to construct a topological equivalence between 𝑍 and
𝑍0.

Using the Implicit Function Theorem and the continuous dependence between 𝑍0 and
its normal parameters, we can deduce the following result.

Lemma 3.6.13. There exists a neighborhood 𝒱 of 𝑍0 such that, for each 𝑍 ∈ 𝒱, 𝐹𝑁
𝑍 and

𝐹𝑁
𝑍0 have the same topological type and the first return map 𝜑 of 𝑍 has a saddle at the

origin with both local invariant manifolds in Σ𝑐.

Remark 3.6.14. In what follows, 𝒱 will denote the neighborhood of Lemma 3.6.13.

Now we prove the existence of an invariant nonsmooth diabolo in an analytic way, this
result was achieved by M. Jeffrey and A. Colombo for the semi-linear case (see [24]).

Proposition 3.6.15. Let 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 be a nonsmooth vector field having a T-
singularity at 𝑝 such that the normal parameters (𝛼, 𝛽, 𝛾) of 𝑍0 at 𝑝 satisfy 𝛼𝛽 ≥ 𝛾 and
𝛼, 𝛽 < 0. Then 𝑍0 has an invariant nonsmooth diabolo 𝐷0 which prevents connections
between points of Σ𝑢𝑠 and Σ𝑠𝑠 through orbits of 𝑍.

Proof. From Lemma 3.6.13, it follows that the first return map 𝜑0 = 𝜑𝑋0 ∘ 𝜑𝑌0 associated
to 𝑍0 has a hyperbolic saddle at 𝑝 with both eigenvectors in Σ𝑐.

Notice that the local stable manifold of the saddle 𝑊 𝑠 is tangent to the eigenvector
𝑣− correspondent to the eigenvalue 𝜆 and the local unstable manifold of the saddle 𝑊 𝑢 is
tangent to the eigenvector 𝑣− correspondent to the eigenvalue 𝜇, where |𝜆|< 1 < |𝜇|.

Moreover, 𝑊 𝑠 and 𝑊 𝑢 are curves on Σ passing through 𝑝 transverse to 𝑆𝑋 ∪ 𝑆𝑌 at 𝑝
and 𝑊 𝑠 t 𝑊 𝑢 at 𝑝 (𝑝 is hyperbolic). Using coordinates (𝑥, 𝑦) at 𝑝 (which put 𝑍0 in the
normal form 3.5.1), we can see that, 𝑆𝑋0 = Fix(𝜑𝑋0) is the 𝑥-axis, 𝑆𝑌0 = Fix(𝜑𝑌0) is a
curve tangent to the 𝑦-axis at 0, and 𝑊 𝑠 and 𝑊 𝑢 are curves passing through 0 contained
in the second and the fourth quadrants which are transverse to 𝑆𝑋0 ∪ 𝑆𝑌0 at 0.

Therefore we have the following situation:

𝑆𝑌0

𝑆𝑋0

𝑊 𝑠

𝑊 𝑢
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From Proposition 3.6.3, it follows that 𝜑𝑋0(𝑊 𝑢) ⊂ 𝑊 𝑠.Now, the image of a point
in the semi-plane {𝑦 > 0} through 𝜑𝑋0 is a point in the semi-plane {𝑦 < 0} by the
construction of 𝜑𝑋0 . It means that the branch of 𝑊 𝑢 in the second quadrant has to be
taken into the branch of 𝑊 𝑠 in the fourth quadrant.

Also, 𝜑𝑌0(𝑊 𝑠) ⊂ 𝑊 𝑢. Notice that, 𝑆𝑌0 splits R2 in two connected components, 𝐶−
and 𝐶+. From the construction of 𝜑𝑌0 , the image of a point in 𝐶− through 𝜑𝑌0 is a point
in 𝐶+. It means that the branch of 𝑊 𝑠 in the fourth quadrant is taken into the branch
of 𝑊 𝑢 in the second quadrant.

These connections produce an invariant (nonsmooth) cone with vertex at the fold-
fold point which contains Σ𝑢𝑠 in its interior. Analogously, we prove that there exists an
invariant (nonsmooth) cone with vertex at the fold-fold point which contains Σ𝑠𝑠 in its
interior. These two cones produce the required nonsmooth diabolo (see Figure 3.9).

Remark 3.6.16. In other words, there is no communication between Σ𝑢𝑠 and Σ𝑠𝑠 in this
case.

𝑝
Σ𝑢𝑠

Σ𝑠𝑠

𝑊𝑢

𝑊 𝑠

Figure 3.9: A nonsmooth diabolo 𝐷0 of 𝑍0.

Remark 3.6.17. Notice that, the existence of the invariant diabolo 𝐷0 implies that the
𝑇 -singularity 𝑝0 has stable and unstable invariant manifolds of dimension 2, and this is
a phenomena which has no counterpart in smooth vector fields of dimension 3.

Now we proceed by constructing a homeomorphism between 𝑍 ∈ 𝒱 and 𝑍0.

Lemma 3.6.18. If 𝑍 ∈ 𝒱, there exists an order-preserving homeomorphism ℎ : Σ𝑠(𝑍0) →
Σ𝑠(𝑍) which carries orbits of 𝐹𝑍0 onto orbits of 𝐹𝑍.

The proof of this lemma follows straightforward from Lemmas 3.3.11 and 3.6.13.

Definition 3.6.19. If 𝜑 : (R2, 0) → (R2, 0) is a germ of diffeomorphism at 0 having a
saddle at 0, then the deMelo-Palis invariant of 𝜑 is defined as:

𝑃 (𝜑) = log(|𝜆|)
log(|𝜇|) ,

where 𝜆, 𝜇 are the eigenvalues of 𝑑𝜑(0) such that |𝜆|< 1 < |𝜇|.
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Remark 3.6.20. In fact, the deMelo-Palis invariant 𝑃 is a moduli of stability for 𝜑. (See
[28, 81].)

Proposition 3.6.21. If 𝑍 ∈ 𝒱, there exists a homeomorphism ℎ : Σ → Σ which is a
continuous extension of the homeomorphism ℎ : Σ𝑠(𝑍0) → Σ𝑠(𝑍) given by Lemma 3.6.18,
such that 𝜑 ∘ ℎ = ℎ ∘ 𝜑0, i.e. it is a topological equivalence between 𝜑 and 𝜑0.

Proof. The proof of this proposition is divided into steps.
Let ℎ : Σ𝑠(𝑍0) → Σ𝑠(𝑍) be the homeomorphism obtained in Lemma 3.6.18.
Notice that 𝑍 has a T-singularity at 𝑞(𝑍) ≈ 𝑝. Since 𝐹𝑁

𝑍0 and 𝐹𝑁
𝑍 are transversal to

𝑆𝑍0 ∖ {𝑝} and 𝑆𝑍 ∖ {𝑞(𝑍)}, respectively, we can easily continuously extend ℎ on Σ𝑠(𝑍0)
via limit to obtain

ℎ : Σ𝑠(𝑍0) → Σ𝑠(𝑍).
Step 1: The first task is to define a fundamental domain for the first return maps,

𝜑 and 𝜑0.
We will detail it for 𝜑0. The process to construct the fundamental domain of 𝜑 is

completely analogous.
By the Linearization Theorem (see [57]), we may assume that 𝜑0 is linear. Moreover,

we can consider coordinates (𝑥, 𝑦) of Σ at 𝑝 such that:

𝜑0(𝑥, 𝑦) = (𝜆0𝑥, 𝜇0𝑦),

where 𝜆0, 𝜇0 are the eigenvalues of 𝜑0 such that |𝜇0|< 1 < |𝜆0|.
By the position of 𝑆𝑋0 , 𝑆𝑌0 and the invariant manifolds of the saddle, obtained in

Proposition 3.6.15, it follows that:

• 𝑆𝑋0 is a curve passing through 0, with one branch in the first quadrant and another
in the fourth;

• 𝑆𝑌0 is a curve passing through 0, with one branch in the first quadrant and another
in the fourth;

• 𝑆𝑋0 is tangent to the line 𝑦 = 𝑘0𝑥;

• 𝑆𝑌0 is tangent to the line 𝑦 = 𝐾0𝑥;

• 0 < 𝑘0 < 𝐾0.

We have the situation illustrated in Figure 3.10.

𝑊 𝑠

𝑊𝑢

𝑆𝑋0

𝑆𝑌0

Σ𝑠𝑠

Σ𝑢𝑠

𝑊 𝑠

𝑊𝑢

𝑆𝑋0

𝑆𝑌0

Σ𝑠𝑠

Σ𝑢𝑠

Figure 3.10: Change of coordinates.

Without loss of generality, consider that 𝑆𝑋0 = {𝑦 = 𝑘0𝑥} and 𝑆𝑌0 = {𝑦 = 𝐾0𝑥} and
assume that these lines are the fixed points of 𝜑𝑋0 and 𝜑𝑌0 , respectively. It will reduce
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our work, nevertheless it generates no loss of generality, since the same can be done with
the original sets.

From the existence of the invariant diabolo in Proposition 3.6.15, it follows that,
𝜑−1

0 (𝑆𝑋0) is a line in the same quadrants containing 𝑆𝑋0 , moreover, its inclination is
greater than 𝐾0.

Define:
𝜔0 = {(𝑥, 𝑦); 𝑘0𝑥 ≤ 𝑦 ≤ 𝐾0𝑥} and ̃︀𝜔0 = 𝜑𝑌0(𝜔0).

Notice that 𝑅0 = 𝜔0 ∪ ̃︀𝜔0 is the region delimited by the lines 𝑆𝑋0 and 𝜑−1
0 (𝑆𝑋0).

Now it is immediate that 𝜑𝑛
0 (𝑆𝑋0) → 𝑊 𝑢 when 𝑛 → ∞ and 𝜑𝑛

0 (𝑆𝑋0) → 𝑊 𝑠 when
𝑛 → −∞. Therefore, the first and the third quadrants are partitioned by 𝜑𝑛

0 (𝑅0), 𝑛 ∈ Z.
In another words, if 𝑄 = {(𝑥, 𝑦); 𝑥𝑦 > 0}, then

𝑄 =
⋃︁

𝑛∈Z
𝜑𝑛

0 (𝑅0).

Therefore, we say that 𝑅0 is the fundamental domain of 𝜑0. See Figure 3.11

𝑊 𝑠

𝑊𝑢

𝜑−1
0 (𝑅0) 𝜑𝑌0 (𝑆𝑋0 ) ̃︀𝜔0 𝑆𝑌0 𝜔0

𝑆𝑋0

𝜑(𝑅0)

Figure 3.11: Fundamental domain 𝑅0 = 𝜔0 ∪ ̃︀𝜔0 in the first quadrant.

Similarly, we can consider coordinates (𝑥, 𝑦) of Σ at 𝑝 such that:

𝜑(𝑥, 𝑦) = (𝜆𝑥, 𝜇𝑦),

where 𝜆, 𝜇 are the eigenvalues of 𝜑 such that |𝜇|< 1 < |𝜆|. Therefore, there exists
𝑅 = 𝜔 ∪ ̃︀𝜔, where 𝜔 is the region delimited by 𝑆𝑋 and 𝑆𝑌 and ̃︀𝜔 = 𝜑𝑌 (𝜔).

Also 𝑄 = ⋃︀
𝑛∈Z 𝜑

𝑛(𝑅), and 𝑅 is the region delimited by 𝑆𝑋 and 𝜑−1(𝑆𝑋).
In both cases, each orbit of 𝜑0 (and 𝜑) passes a unique time in each sector of the

partition of 𝑄.
Step 2: Extending the domain of ℎ into ℎ : 𝑄 → 𝑄.
Notice that ℎ : 𝜔0 → 𝜔 is already defined (it is the homeomorphism ℎ : Σ𝑠(𝑍0) →

Σ𝑠(𝑍) in these coordinates).
If 𝑞 ∈ ̃︀𝜔0, then 𝑞 = 𝜑𝑌0(𝑞), for some 𝑞 ∈ 𝜔0, therefore, define:

ℎ(𝑞) = 𝜑𝑌 (ℎ(𝑞)).
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Clearly, it is a continuous extension of ℎ from 𝜔0 into 𝑅0. Now, we have defined a
homeomorphism ℎ : 𝑅0 → 𝑅.

The extension to 𝑄 follows in a natural way (since it is defined in a fundamental
domain).

In fact, if 𝑞 ∈ 𝑄, there exists a unique 𝑞 ∈ 𝑅0 and a unique 𝑛 ∈ Z, such that 𝑞 = 𝜑𝑛
0 (𝑞).

Define:
ℎ(𝑞) = 𝜑𝑛(ℎ(𝑞)).

Clearly, ℎ : 𝑄 → 𝑄 is a homeomorphism satisfying:

ℎ(𝜑0(𝑞)) = 𝜑(ℎ(𝑞)),

for each 𝑞 ∈ 𝑄.
Step 3: Extending ℎ on both 𝑊 𝑢 and 𝑊 𝑠 in a continuous fashion.
This is the most delicate part of the proof. Consider an arbitrary continuous extension

of ℎ on 𝑊 𝑠.
Now, the difficult task is to continuously extend it to 𝑊 𝑢, and it will be only possible

because
𝑃 (𝜑0) = −1 = 𝑃 (𝜑),

where 𝑃 is the deMelo-Palis invariant.
Only the extension in the first quadrant will be detailed. The extensions in the other

quadrants are similar.
We extend 𝜑 in the following way.
Fix 𝑤 = (𝑑, 0) ∈ 𝑊 𝑢, then, there exists a sequence 𝑤𝑖 = 𝜑𝑁𝑖

0 (𝑦𝑖) such that 𝑁𝑖 → ∞
when 𝑖 → ∞ and 𝑦𝑖 is a sequence contained in 𝑆𝑋0 ∩ {𝑥, 𝑦 > 0} such that 𝑦𝑖 → 0 when
𝑖 → ∞, which satisfies:

lim
𝑖→∞

𝜑𝑁𝑖
0 (𝑦𝑖) = 𝑤.

Notice that, the homeomorphism ℎ is already defined for the sequence 𝑤𝑖. Since we
want a continuous extension and an equivalence, we must define:

ℎ(𝑤) = lim
𝑖→∞

ℎ(𝜑𝑁𝑖
0 (𝑦𝑖)) = lim

𝑖→∞
𝜑𝑁𝑖(ℎ(𝑦𝑖)).

Our work is to prove that the limit above exists. In this case, ℎ will be extended on
𝑊 𝑢 by doing this process for every 𝑞 ∈ [𝑤, 𝜑0(𝑤)] and then extend it through the images
of this fundamental domain by 𝜑0.

Now, we prove the existence of the limit.
Since ℎ(𝑆𝑋0) = 𝑆𝑋 and 𝜑𝑛(𝑆𝑋) → 𝑊 𝑢 as 𝑛 → ∞, it follows directly that:

lim
𝑖→∞

𝜋2(𝜑𝑁𝑖(ℎ(𝑦𝑖))) = 0.

Therefore, 𝜋2(ℎ(𝑤)) = 0 and it is well-defined. The problem happens for the first
coordinate. Consider:

1. 𝑤 = (𝑑, 0);

2. 𝑦𝑖 → 0, 𝑦𝑖 ∈ 𝑆𝑋0 , for every 𝑖;

3. 𝑁𝑖 → such that 𝜑𝑁𝑖
0 (𝑦𝑖) = 𝑤𝑖 → 𝑤;
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𝑥
𝑥𝑖𝑥𝑖+1

0⃗

𝑦𝑖

𝑦𝑖+1
𝑤𝑖

𝑤𝑖+1

𝑤
𝑊𝑢

𝑊 𝑠

𝑆𝑋0

Figure 3.12: Sequences (𝑥𝑖), (𝑦𝑖) and (𝑤𝑖).

4. 𝑡𝑖 → ∞, 𝑥𝑖 → 𝑥 ∈ 𝑊 𝑠 such that 𝑦𝑖 = 𝜑𝑡𝑖
0 (𝑥𝑖).

See Figure 3.12.
Now, denote ̃︀𝑦𝑖 = ℎ(𝑦𝑖), ̃︁𝑥𝑖 = ℎ(𝑥𝑖), ̃︁𝑤𝑖 = 𝜑𝑁𝑖( ̃︀𝑦𝑖), 𝑑𝑖 = 𝜋1(𝑤𝑖), ̃︀𝑑𝑖 = 𝜋1(̃︁𝑤𝑖), 𝑎𝑖 = 𝜋2(𝑥𝑖)

and ̃︀𝑎𝑖 = 𝜋2(ℎ(𝑥𝑖)). Hence, we must prove that ̃︀𝑑𝑖 converges.
Notice that, since ℎ is continuously extended for 𝑊 𝑠 and the sequence 𝑥𝑖 converges to

𝑥 ∈ 𝑊 𝑠, it follows that ̃︀𝑎𝑖 is a convergent sequence. Denote ̃︀𝑎 = lim ̃︀𝑎𝑖, and notice that
̃︀𝑑𝑖 = 𝜋1(𝜑𝑁𝑖(ℎ(𝑦𝑖))) = 𝜆𝑁𝑖𝜋1( ̃︀𝑦𝑖).

Now, observe that:

̃︀𝑦𝑖 = ℎ(𝑦𝑖) = ℎ(𝜑𝑡𝑖
0 (𝑥𝑖)) = 𝜑𝑡𝑖(̃︁𝑥𝑖) = (𝜆𝑡𝑖𝜋1(̃︁𝑥𝑖), 𝜇𝑡𝑖𝜋2(̃︁𝑥𝑖)).

Since ̃︀𝑦𝑖 ∈ 𝑆𝑋 = {𝑦 = 𝑘𝑥}, it follows that:

𝜋1( ̃︀𝑦𝑖) = 1
𝑘
𝜋2( ̃︀𝑦𝑖) = 1

𝑘
𝜇𝑡𝑖𝜋2(̃︁𝑥𝑖).

Hence: ̃︀𝑑𝑖 = 1
𝑘
𝜆𝑁𝑖𝜇𝑡𝑖𝜋2(̃︁𝑥𝑖) = 1

𝑘
𝜆𝑁𝑖𝜇𝑡𝑖 ̃︀𝑎𝑖,

and applying the logarithm, we obtain:

log( ̃︀𝑑𝑖𝑘) = 𝑁𝑖 log(𝜆) + 𝑡𝑖 log(𝜇) + log( ̃︀𝑎𝑖).

With the same process, we also obtain:

log(𝑑𝑖𝑘0) = 𝑁𝑖 log(𝜆0) + 𝑡𝑖 log(𝜇0) + log(𝑎𝑖).
Since log(𝑑𝑖𝑘0) and log(𝑎𝑖) converge, it follows that 𝑁𝑖 log(𝜆0) + 𝑡𝑖 log(𝜇0) converges.
Now, using that 𝑃 (𝜑0) = 𝑃 (𝜑), it is immediate that 𝑁𝑖 log(𝜆) + 𝑡𝑖 log(𝜇) converges.
Since ̃︀𝑎𝑖 → ̃︀𝑎, it follows that ̃︀𝑑𝑖 converges and the proof is complete.

Remark 3.6.22. Notice that, both 𝜑 and 𝜑0 are composition of elements of 𝑊 𝑟, therefore
a perturbation of the first return map 𝜑0 still is a composition of two involutions. Hence
the diffeomorphism 𝜑0 is perturbed only over the codimension one submanifold 𝑃−1(−1)
of Diff(R2, 0) (space of germs of diffeomorphisms at 0.).

It follows straightforward from the previous results:

Proposition 3.6.23. Let 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 be a germ of nonsmooth vector field having
a Teixeira singularity at 𝑝. Let (𝛼, 𝛽, 𝛾) be the normal parameters of 𝑍0 at 𝑝. If 𝛼𝛽 ≥ 𝛾
and 𝛼, 𝛽 < 0, then 𝑍0 is locally structurally stable at 𝑝.
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Finally, we conclude the proof of Theorem F:

Proof of Theorem F. Notice that 𝑍 satisfies condition Σ(𝐸) at 𝑝 if, and only if, the normal
parameters (𝛼, 𝛽, 𝛾) of 𝑍 at 𝑝 satisfy 𝛼𝛽 ≥ 𝛾 and 𝛼, 𝛽 < 0.

The result follows directly from Propositions 3.6.8, 3.6.11 and 3.6.23,

3.7 Proofs of Theorems G, H and Corollary 3.4.2
In this section we intend to discuss the hyperbolic and the parabolic case of the fold-

fold singularity in order to complete the characterization of Σ0.

3.7.1 Hyperbolic Fold-Fold
Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 be a nonsmooth vector field having a hyperbolic fold-fold point

at 𝑝 such that 𝑆𝑋 t 𝑆𝑌 at 𝑝. Consider the normal coordinates (𝑥, 𝑦, 𝑧) of 𝑍 at 𝑝 and let
(𝛼, 𝛽, 𝛾) be the normal parameters of 𝑍 at 𝑝. In this case we do not have any orbit of
𝑋 or 𝑌 connecting points of Σ, therefore the local structural stability of 𝑍 at 𝑝 depends
only on the sliding dynamics which is generically characterized in section 3.5.2.
Proposition 3.7.1. Let 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 be a nonsmooth vector field having a visible
fold-fold point at 𝑝 such that 𝑆𝑋0 t 𝑆𝑌0 at 𝑝. Let (𝛼0, 𝛽0, 𝛾0) be the normal parameters of
𝑍0 at 𝑝. Then, 𝑍0 is locally structurally stable at 𝑝 if and only if (𝛼0, 𝛽0, 𝛾0) ∈ 𝑅1

𝐻 ∪𝑅2
𝐻 .

Outline. The first implication is obvious since 𝐹𝑍0 presents bifurcations in Σ𝑠. To prove
the converse, let (𝛼0, 𝛽0, 𝛾0) be the normal parameters of 𝑍0 at 𝑝. Using Implicit Function
Theorem we can find a neighborhood 𝒱 of 𝑍0 in Ω𝑟 such that every 𝑍 ∈ 𝒱 has a hyperbolic
fold-fold point 𝑞(𝑍) near 𝑝 and the normal parameters of 𝑍 at 𝑞(𝑍) are close to (𝛼0, 𝛽0, 𝛾0).

Now, it is easy to construct a homeomorphism ℎ : Σ → Σ carrying sliding orbits of 𝐹𝑍0

onto sliding orbits of 𝐹𝑍 . Extend it to a germ of homeomorphism ℎ : (𝑀, 𝑝) → (𝑀, 𝑞(𝑍))
using the flows in the same way of [39] (Lemma 3, page 271).

3.7.2 Parabolic Fold-Fold
Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 be a nonsmooth vector field having an invisible-visible fold-fold

point at 𝑝 such that 𝑆𝑋 t 𝑆𝑌 at 𝑝. Consider the normal coordinates (𝑥, 𝑦, 𝑧) of 𝑍 at 𝑝,
and let (𝛼, 𝛽, 𝛾) be the normal parameters of 𝑍 at 𝑝.

Proceeding as in the elliptic case, 𝑍 has an involution 𝜑𝑋 associated to the invisible
fold of 𝑋, and recall that it is given by

𝜑𝑋(𝑥, 𝑦) = (𝑥− 2𝛼𝑦,−𝑦),

in normal coordinates. Now we use it to study the connections between sliding orbits,
when they exist.
Lemma 3.7.2. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 be a nonsmooth vector field having an invisible-
visible fold-fold point at 𝑝 such that 𝑆𝑋 t 𝑆𝑌 at 𝑝. Let (𝛼, 𝛽, 𝛾) be the normal parameters
of 𝑍 at 𝑝. Then, 𝜑𝑋(𝑆𝑌 ) t 𝑆𝑌 at 𝑝 if and only if 𝛼 ̸= 0.
Proof. From Corollary 3.5.4, we have that 𝑆𝑌 = {(𝑔(𝑦), 𝑦); 𝑦 ∈ (−𝜀, 𝜀)}, for some 𝜀 > 0,
where 𝑔 is a smooth function with 𝑔(𝑦) = 𝒪(𝑦2). Therefore 𝑇0𝑆𝑌 = span{(0, 1)}.

On the other hand, 𝜑𝑋(𝑆𝑌 ) = {(𝑔(𝑦) − 2𝛼𝑦,−𝑦); 𝑦 ∈ (−𝜀, 𝜀)}. Then 𝑇0𝜑𝑋(𝑆𝑌 ) =
span{(−2𝛼,−1)}. The result follows from these expressions.
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Lemma 3.7.3. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 be a nonsmooth vector field having an invisible-
visible fold-fold point at 𝑝 such that 𝑆𝑋 t 𝑆𝑌 at 𝑝. Let (𝛼, 𝛽, 𝛾) be the normal parameters
of 𝑍 at 𝑝. Then, 𝜑𝑋(Σ𝑢𝑠) ∩ Σ𝑠𝑠 = ∅ if and only if 𝛼 > 0.

Proof. In fact, in these coordinates, 𝑆𝑌 = {(𝑔(𝑦), 𝑦); 𝑦 ∈ (−𝜀, 𝜀)}, and 𝜑𝑋(𝑆𝑌 ) = {(𝑔(𝑦)−
2𝛼𝑦,−𝑦); 𝑦 ∈ (−𝜀, 𝜀)}, for some 𝜀 > 0, where 𝑔 is a smooth function with 𝑔(𝑦) = 𝒪(𝑦2).

Therefore, 𝑇0𝜑𝑋(𝑆𝑌 ) = span{(−2𝛼,−1)}. The sliding region Σ𝑠 is the region delimited
by 𝑆𝑋 and 𝑆𝑌 .

Since 𝑇0𝑆𝑌 = span{(0, 1)} and 𝑇0𝑆𝑋 = span{(1, 0)}, it follows that 𝜑𝑋(𝑆𝑌 ) ⊂ Σ𝑠 if
and only if 𝛼 > 0.

We conclude the proof by noticing that, if 𝜑𝑋(𝑆𝑌 ) ⊂ Σ𝑐, then 𝜑𝑋(Σ𝑢𝑠) ⊂ Σ𝑐. Nev-
ertheless, if 𝜑𝑋(𝑆𝑌 ) ⊂ Σ𝑠, then the region delimited by 𝑆𝑌 and 𝜑𝑋(𝑆𝑌 ) in Σ𝑢𝑠 is carried
into the region delimited by 𝑆𝑌 and 𝜑𝑋(𝑆𝑌 ) in Σ𝑠𝑠.

Remark 3.7.4. In another words, there exist orbits of 𝑋 in 𝑀+ connecting distinct points
in the sliding region Σ𝑠 if and only if 𝛼 > 0.

Definition 3.7.5. If 𝜑 : Σ → Σ is a diffeomorphism and 𝐹 is a vector field in Σ, then
define the reflected vector field of 𝐹 by 𝜑 as 𝜑*𝐹 .

Remark 3.7.6. The reflected vector field of 𝐹 by 𝜑 can also be referred as transport of
𝐹 by 𝜑.

Lemma 3.7.7. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 be a nonsmooth vector field having an invisible-
visible fold-fold point at 𝑝 such that 𝑆𝑋 t 𝑆𝑌 at 𝑝. Let (𝛼, 𝛽, 𝛾) be the normal parameters
of 𝑍 at 𝑝.

Assume that there exist a region 𝑆 ⊂ Σ𝑢𝑠 such that ̃︀𝑆 = 𝜑𝑋(𝑆) ⊂ Σ𝑠𝑠, and suppose
that 𝑆 is maximal with respect to this property. If 2(𝛼 + 𝛽)(𝛼𝛽 − 𝛾) ̸= 0, then 𝐹𝑁

𝑍 and
the transport of 𝐹𝑁

𝑍 by 𝜑𝑋 are transversal vector fields defined in 𝑆.

Proof. Consider 𝐹0 = 𝐹𝑁
𝑍 and 𝐹1 = 𝜑*𝐹𝑁

𝑍 , where 𝜑𝑋 is the involution associated to 𝑋.
Clearly, 𝐹0 and 𝐹1 are transversal at 𝑞 ∈ Σ if and only if 𝐹0(𝑞) and 𝐹1(𝑞) are linearly

independent vectors.
Considering the normal coordinates (𝑥, 𝑦, 𝑧) at 𝑝. Define

𝐷(𝑥, 𝑦) = det
(︃
𝐹0(𝑥, 𝑦)
𝐹1(𝑥, 𝑦)

)︃
.

Notice that 𝐷(𝑥, 𝑦) ̸= 0 if and only if 𝐹0 and 𝐹1 are transversal at (𝑥, 𝑦). Now, we use
the expressions of the vector field in these coordinates to derive an approximation for the
function 𝐷.

Since 𝜑𝑋 is a linear involution, it follows that 𝜑−1
𝑋 = 𝜑𝑋 and 𝑑𝜑𝑋 = 𝜑𝑋 , therefore:

𝐹1(𝑥, 𝑦) = 𝑑𝜑𝑋(𝐹𝑁
𝑍 (𝜑−1

𝑋 (𝑥, 𝑦)))
= 𝜑𝑋(𝐹𝑁

𝑍 (𝜑𝑋(𝑥, 𝑦)))
In order to compute 𝐷, we must analyze the influence of the higher order terms in the

computation of 𝐹𝑁
𝑍 . From Proposition 3.5.1, we have that:

𝑋(𝑥, 𝑦, 𝑧) =

⎛⎜⎝ 𝛼
1

−𝑦

⎞⎟⎠ and 𝑌 (𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎝ 𝛾 + ̃︀𝐹 (𝑥, 𝑦, 𝑧)
𝛽 + ̃︀𝐺(𝑥, 𝑦, 𝑧)
𝑥+ ̃︁𝐻(𝑥, 𝑦, 𝑧)

⎞⎟⎟⎠ ,
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where ̃︀𝐹 (𝑥, 𝑦, 𝑧) = 𝒪(|(𝑥, 𝑦, 𝑧)|), ̃︀𝐺(𝑥, 𝑦, 𝑧) = 𝒪(|(𝑥, 𝑦, 𝑧)|) and ̃︁𝐻(𝑥, 𝑦, 𝑧) = 𝒪(|(𝑥, 𝑦, 𝑧)|2).
Hence, the sliding vector field is given by:

𝐹𝑁
𝑍 (𝑥, 𝑦) =

(︃
𝛼 𝛾
1 𝛽

)︃
·
(︃
𝑥
𝑦

)︃
+
(︃
𝛼𝐻(𝑥, 𝑦) + 𝑦𝐹 (𝑥, 𝑦)
𝐻(𝑥, 𝑦) + 𝑦𝐺(𝑥, 𝑦)

)︃
,

where 𝐹 (𝑥, 𝑦) = ̃︀𝐹 (𝑥, 𝑦, 0) = 𝒪(|(𝑥, 𝑦)|), 𝐺(𝑥, 𝑦) = ̃︀𝐺(𝑥, 𝑦, 0) = 𝒪(|(𝑥, 𝑦)|) and 𝐻(𝑥, 𝑦) =̃︁𝐻(𝑥, 𝑦, 0) = 𝒪(|(𝑥, 𝑦)|2).
Using the expressions of 𝐹𝑁

𝑍 and 𝜑𝑋(𝑥, 𝑦) = (𝑥− 2𝛼𝑦,−𝑦), we obtain:

𝐷(𝑥, 𝑦) = 𝑦2[−2(𝛼 + 𝛽)(𝛼𝛽 − 𝛾) + 𝑃1(𝑥, 𝑦)].

where 𝑃1(𝑥, 𝑦) = 𝒪(|(𝑥, 𝑦)|).
Now, if (𝛼+ 𝛽)(𝛼𝛽 − 𝛾) ̸= 0, then the 𝑥-axis is the only solution of 𝐷(𝑥, 𝑦) = 0, near

the origin. Therefore the vector fields 𝐹0 and 𝐹1 are transversal in the region 𝑆 ∪ ̃︀𝑆, since
it does not contain points of the 𝑥-axis.

Remark 3.7.8. Notice that, in the curves 𝛼+ 𝛽 = 0 and 𝛼𝛽 = 𝛾, the higher order terms
may produce curves in 𝑆 ∪ ̃︀𝑆 where the vector fields are not transversal, and they can be
broken by small perturbations (making 𝛼 + 𝛽 ̸= 0 or 𝛼𝛽 ̸= 𝛾). Clearly, this situation
implies the instability of the system.

Lemma 3.7.9. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 be a nonsmooth vector field having an invisible-
visible fold-fold point at 𝑝 such that 𝑆𝑋 t 𝑆𝑌 at 𝑝. Let (𝛼, 𝛽, 𝛾) be the parameters given
by Proposition 3.5.1 associated to 𝑍 at 𝑝. If 2𝛼(𝛼 + 𝛽) − 𝛾 ̸= 0, then 𝐹𝑁

𝑍 is transversal
to 𝜑𝑋(𝑆𝑌 ) in Σ𝑠.

Proof. In the coordinates of Proposition 3.5.1, we have that 𝑆𝑌 = {(𝑔(𝑦), 𝑦, 0); 𝑦 ∈
(−𝜀, 𝜀)}, for 𝜀 > 0 sufficiently small, where 𝑔 is a 𝒞𝑟 function such that 𝑔(𝑦) = 𝒪(𝑦2).

Therefore 𝜑𝑋(𝑆𝑌 ) = {(𝑔(𝑦) − 2𝛼𝑦,−𝑦); 𝑦 ∈ (−𝜀, 𝜀)}. Since 𝜑𝑋(𝑆𝑌 ) is tangent to the
curve 𝛾(𝑦) = (−2𝛼𝑦,−𝑦) at the origin, it is sufficient to prove that 𝐹𝑁

𝑍 is transversal to
𝛾.

Clearly, 𝐹𝑁
𝑍 is transversal to 𝛾 at 𝛾(𝑦) if and only if

𝑇 (𝑦) = 𝐹𝑁
𝑍 (𝛾(𝑦)) · (𝛾′(𝑦))⊥ ̸= 0. (3.7.1)

Now, we use the expression of 𝐹𝑁
𝑍 in these coordinates to obtain an approximation of

𝑇 . In fact,

𝐹𝑁
𝑍 (𝛾(𝑦)) = 𝐹𝑁

𝑍 (−2𝛼𝑦,−𝑦) = (−2𝛼2𝑦 − 𝛾𝑦,−2𝛼𝑦 − 𝛽𝑦) + 𝒪(𝑦2)

and
(𝛾′(𝑦))⊥ = (−2𝛼,−1)⊥ = (1,−2𝛼).

Substituting these expressions in 3.7.1, we obtain:

𝑇 (𝑦) = [2𝛼(𝛼 + 𝛽) − 𝛾]𝑦 + 𝒪(𝑦2)

Therefore, if the condition 2𝛼(𝛼 + 𝛽) − 𝛾 ̸= 0 is assumed and 𝑦 ̸= 0 then 𝐹𝑁
𝑍 is

transversal to 𝜑𝑋(𝑆𝑌 ). Since Σ𝑠 does not contain points where 𝑦 ̸= 0 (because they
belong to 𝑆𝑋), the result follows.
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Remark 3.7.10. In the curve 2𝛼(𝛼 + 𝛽) − 𝛾 = 0, the higher order terms can be used
to produce a curve such that 𝐹𝑁

𝑍 is tangent to 𝜙𝑋(𝑆𝑌 ) in every point. Such structurally
unstable phenomena is avoided.

Proposition 3.7.11. Let 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 be a nonsmooth vector field having an
invisible-visible fold-fold point at 𝑝 such that 𝑆𝑋0 t 𝑆𝑌0 at 𝑝. Let (𝛼0, 𝛽0, 𝛾0) be the
normal parameters of 𝑍0 at 𝑝. Then, 𝑍0 is locally structurally stable at 𝑝 if and only if
the following statements hold

1. (𝛼0, 𝛽0, 𝛾0) ∈ ∪4
𝑖=1𝑅

𝑖
𝑃 ;

2. 𝛼0 ̸= 0;

3. 2𝛼0(𝛼0 + 𝛽0) − 𝛾0 ̸= 0;

4. 𝛼0 + 𝛽0 ̸= 0, if 𝛼0 > 0.

Moreover, there exist only eleven topologically distinct classes of local structural stable
systems at invisible-visible fold-fold points.

Outline. Proceeding as is the proof of Theorem 3.7.1. Consider the neighborhood 𝒱 of
𝑍0 such that the correspondent parameters (𝛼, 𝛽, 𝛾) of any 𝑍 ∈ 𝒱 are in the same region
of (𝛼0, 𝛽0, 𝛾0).

Let 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱 . If there is no orbits of 𝑋 connecting points of Σ𝑠𝑠 and Σ𝑢𝑠, then
the proof can be done in the following way. We omit some details in this case, since it is
very similar to the visible case.

• Construct ℎ : Σ𝑠(𝑍0) → Σ𝑠(𝑍) carrying orbits of 𝐹0 onto orbits of 𝐹𝑍 . In addition
extend it to 𝑆𝑋0 ∪ 𝑆𝑌0 via limit. Hence ℎ(𝑆𝑋0) = 𝑆𝑋 and ℎ(𝑆𝑌0) = 𝑆𝑌 ;

• For each 𝑝 ∈ Σ ∖ 𝑆𝑋0 , there exists 𝑡0(𝑝) ̸= 0 such that 𝜙𝑋0(𝑡0(𝑝), 𝑝) ∈ Σ. Similarly,
there exists an analogous time 𝑡(𝑝) ̸= 0 for the vector field 𝑋;

• If 𝑝 ∈ Σ𝑠, then ℎ(𝑝) is already defined. Assume that 𝑝 ∈ Σ𝑐. If 𝜙𝑋0(𝑡0(𝑝), 𝑝) ∈ Σ𝑠,
then define:

ℎ(𝑝) = 𝜙𝑋(−𝑡(𝜙𝑋0(𝑡0(𝑝), 𝑝)), ℎ(𝜙𝑋0(𝑡0(𝑝), 𝑝))).

• Using Tietze Extension Theorem, we can extend ℎ over Σ𝑐;

• Now, using the same idea of the third item, we can extend it to the whole Σ;

• Extend it to 𝑀+ using the flow of 𝑋0, 𝑋 and ℎ : Σ → Σ;

• Following the same idea of the hyperbolic case, extend it to 𝑀−;

• Hence we construct a germ of homeomorphism ℎ : 𝑀 → 𝑀 at 𝑝, with ℎ(𝑝) = 𝑞(𝑍),
which is an equivalence between 𝑍0 and 𝑍. Then 𝑍0 is locally structurally stable at
𝑝.

Suppose that there exists a connection between Σ𝑠𝑠 and Σ𝑢𝑠 for 𝑍0 and 𝑍. Denote by
𝑆0 and 𝑆, the regions of Σ𝑠 presenting connections.

From the previous Lemmas of this subsection, it is possible to say that 𝐹0 and 𝜑*
𝑋0𝐹0

are transversal in each point of 𝑆0, and the same holds for 𝐹𝑍 and 𝜑*
𝑋𝐹𝑍 in 𝑆.



104

Therefore, the orbits of 𝐹0 and 𝜑*
𝑋0𝐹0 define a coordinate system in 𝑆0, such as the

orbits of 𝐹𝑍 and 𝜑*
𝑋𝐹𝑍 in 𝑆.

Hence, let ℎ be a function carrying 𝑆𝑌0 onto 𝑆𝑌 , and ℎ(0) = 0. Now we can use these
coordinate systems to construct ℎ : 𝑆0 → 𝑆 satisfying

ℎ ∘ 𝜑𝑋0 = 𝜑𝑋 ∘ ℎ.

By the transversality of 𝐹0 to 𝜑𝑋0(𝑆𝑌0) (resp. 𝐹𝑍 to 𝜑𝑋(𝑆𝑌 )), it is possible to extend ℎ
on Σ𝑠(𝑍0) using the sliding orbits. Then we have a homeomorphism ℎ : Σ𝑠(𝑍0) → Σ𝑠(𝑍)
carrying sliding orbits onto sliding orbits.

By construction, if 𝑥 ∈ 𝑆, then 𝜑𝑋(ℎ(𝑥)) = ℎ(𝜑𝑋0(𝑥)). With this, we can use the
same idea from the previous case without connections to extend such map to a germ of
homeomorphism ℎ : 𝑀 → 𝑀 at 𝑝, with ℎ(𝑝) = 𝑞(𝑍), which is a topological equivalence
between 𝑍0 and 𝑍 at 𝑝.

3.7.3 Proof of Theorem G
Notice that 𝑍 satisfies condition Σ(𝐻) at 𝑝 if, and only if, the normal parameters

(𝛼, 𝛽, 𝛾) of 𝑍 at 𝑝 satisfy the hypotheses of Proposition 3.7.1.
Moreover, 𝑍 satisfies condition Σ(𝑃 ) at 𝑝 if, and only if, the normal parameters

(𝛼, 𝛽, 𝛾) of 𝑍 at 𝑝 satisfy the hypotheses of Proposition 3.7.11.
The result follows directly from Propositions 3.7.1, 3.7.11.

3.7.4 Proof of Theorem H
From Proposition 3.3.5 it follows that Σ0 ⊂ Σ(𝐺).
The result follows from Theorem 3.3.12, F and G.

3.7.5 Proof of Corollary 3.4.2
From the characterization of Σ0, we can see that Σ(𝐺), Σ(𝑅), Σ(𝐻), Σ(𝑃 ) are open

dense sets in Ω𝑟.
Nevertheless, we also prove that Σ(𝐸) is not residual in Ω𝑟. Therefore, it follows that

Σ0 ∩ Σ(𝐸) is open dense in Σ(𝐸) and Σ(𝐸) is the biggest set with this property.

3.8 Conclusion and Further Directions
In this chapter we have obtained a complete characterization of the locally structurally

stable 3𝐷 Filippov systems. As a consequence, we have proved that it is not a generic
property in Ω𝑟. Also, it is worthwhile to mention that the geometrical comprehension
of the problem was imperative to the characterization of the local structural stability in
dimension 3.

In light of this, we believe that the characterization of local structural stability in
higher dimensions is a challenging problem which deserves attention. In addition, the
characterization of Σ-singularities generic in 𝑘-parameter families, 𝑘 ≥ 1 for 𝑛-dimensional
Filippov systems 𝑛 ≥ 3 is an arduous task which might reveal interesting behavior.
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Chapter 4
Semi-Local Structural Stability

In this chapter, our main purpose is to provide a non-local approach to study aspects
of structural stability of 3𝐷 Filippov systems. We introduce a notion of semi-local

structural stability which detects when a piecewise smooth vector field is robust around
the entire switching manifold, as well as, provides a complete characterization of such
systems. In particular, we present some methods in the qualitative theory of piecewise
smooth vector fields, which make use of geometrical analysis of the foliations generated
by their orbits. Such approach displays surprisingly rich dynamical behavior which is
studied in detail in this work.

It is worth mentioning that this subject has not been treated in dimensions higher
than two from a non-local point of view, and we hope that the approach adopted herein
contributes to the understanding of structural stability for piecewise smooth vector fields
in its most global sense.

4.1 Introduction
In the classical theory of smooth vector fields, the structural stability concept deter-

mines the robustness of a model with respect to the initial conditions and parameters as
well as its efficiency. From our point of view, it is of the most importance to establish
this concept to PSVF in a systematic way.

In attempt to reach this goal, many papers have emerged with the purpose of the
characterization of the structural stability for PSVF. In dimension 2, the concept of local
structural stability was extensively studied in [55, 63, 65]. In [19], Broucke et al. have
studied the problem in dimension 2 from a global point of view. In dimension 3, the
local approach has been completely characterized from papers [24, 25, 44, 95, 101]. In
higher dimension, some models were treated in [26], but it remains poorly understood,
even locally.

To the best of the authors’ knowledge, in dimension 3, non-local aspects of structural
stability of PSVF have not yet been studied, maybe due to its high complexity. In light
of this, we introduce in this work a concept of semi-local structural stability, in order to
understand what happens around the whole switching manifold (not only point-wise) of a
robust PSVF. We attempt to provide all results in the most rigorous way by considering
the problem from a geometric-topological point of view.

We consider piecewise smooth vector fields 𝑍 defined in R3 having a compact switching
manifold Σ, and we denote this set by Ω𝑟. Roughly speaking, 𝑍0 ∈ Ω𝑟 is semi-local
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structurally stable at Σ if all systems 𝑍 ∈ Ω𝑟 sufficiently near 𝑍0 present the same
behavior as 𝑍0 in a neighborhood 𝑉 ⊂ R3 of Σ. In this work, we completely characterize
all the semi-local structurally stable systems at Σ, and conclude that it is not a generic
property in Ω𝑟. Also, a version of Peixoto’s Theorem for sliding vector fields is obtained.

It is worth mentioning that the characterization of structural stability of 3𝐷 PSVF
from a global point of view is one of the most complex and intriguing topic in the theory
of PSVF. The semi-local approach studied herein, allows us to find constraints in the
characterizing problem, and it is our hope that it can be used to study global connections
between points of Σ (see [66], for example) and serves as a guideline to solve more general
problems.

This chapter is structured as follows. An overview of basic concepts and 3𝐷 generic
tangential singularities is given in Section 4.2. The topological orbital equivalences used
throughout this work are described in Section 4.3. Section 4.4 presents a formal language
to deal with this problem. In Section 4.5 the main results are presented. Sections 4.6,
4.7 and 4.8 are devoted to proving the main results. In Section 4.9, we discuss future
directions this work can take.

4.2 Preliminaries
In what follows we present an overall description of some useful basic concepts and

results.
Throughout this chapter, let 𝑀 = R3 and let 𝑓 : 𝑀 → R be a smooth function

having 0 as a regular value. Suppose that Σ = 𝑓−1(0) is an embedded codimension 1
submanifold of 𝑀 . Assume that Σ is compact, connected and simply connected (i.e. Σ
is homeomorphic to S2). We consider germs of piecewise smooth vector fields at Σ.

Remark 4.2.1. As in Chapter 3, Ω𝑟 stands for the set of tridimensional piecewise smooth
vector fields at Σ.

Also, in this chapter, Σ can be denoted by Σ(𝑍), in order to distinguish the regions
of Σ corresponding to 𝑍, when necessary.

As we are interested in studying structural stability in Ω𝑟 it is imperative to take into
account all the leaves of the foliation in 𝑀 generated by the orbits of 𝑍 = (𝑋, 𝑌 ) (orbits
of 𝑋, 𝑌 and 𝐹𝑍). For more details see Section 4.8.1.

In this chapter, we consider all the notations, definitions and results introduced in
Section 3.3. We also consider the following concept.

Definition 4.2.2. Let 𝑍0 ∈ Ω𝑟, we say that Γ0 ⊂ Σ𝑠 is a Σ-separatrix of a fold-fold
point 𝑝0 of 𝑍0, if it satisfies one of the following conditions:

1. 𝑝0 is a singularity of saddle type of 𝐹𝑁
𝑍0 and Γ0 is a saddle separatrix of 𝐹𝑁

𝑍0 at 𝑝0;

2. 𝑝0 is a singularity of nodal type of 𝐹𝑁
𝑍0 and Γ0 is a strong manifold of 𝐹𝑁

𝑍0 at 𝑝0.

If Γ0 is both a Σ-separatrix of two distinct fold-fold points, we say that Γ0 is a connec-
tion of Σ-separatrices of fold-fold points.
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4.3 Topological Equivalences in Ω𝑟

We are concerned with the persistence of the foliation of the state space generated
by a vector field 𝑍 = (𝑋, 𝑌 ) in Ω𝑟. In light of this, we consider orbital equivalences
throughout this work.

4.3.1 Sliding Topological Equivalence
Firstly, we consider a topological equivalence to relate piecewise smooth vector fields

having similar behavior in the sliding region.

Definition 4.3.1. Let 𝑍0, 𝑍 ∈ Ω𝑟 be two germs of piecewise smooth vector fields at Σ.
We say that 𝑍0 is sliding equivalent to 𝑍 if there exists a homeomorphism ℎ : Σ → Σ,
which carries 𝑆𝑍0 onto 𝑆𝑍 preserving the topological type of the singularity and sliding
orbits of 𝑍0 onto sliding orbits of 𝑍.

The concept of sliding structural stability is defined in a natural way. We stress that
such kind of stability only concerns with the sliding features (contained in Σ) of 𝑍0 ∈ Ω𝑟.

The set of all sliding structurally stable piecewise smooth vector fields is denoted by
Ω𝑟

𝑆𝐿𝑅.

4.3.2 Semi-Local Topological Equivalence
In the literature, the local topological equivalence is commonly used to relate piecewise

smooth vector fields presenting similar behavior around a point. In this work, we shall
consider an extension of this type of equivalence with the purpose of understanding the
behavior of a piecewise smooth vector field around a compact set.

Definition 4.3.2. Let 𝑁 ̸= ∅ be a compact subset of Σ and let 𝑍0, 𝑍 ∈ Ω𝑟. We say that
𝑍0 is semi-locally equivalent to 𝑍 at 𝑁 if there exist a neighborhood 𝑈 of 𝑁 in 𝑀 and
a Σ-invariant homeomorphism ℎ : 𝑈 → 𝑈 which carries orbits of 𝑍0 onto orbits of 𝑍.

The concept of semi-local structural stability at a compact subset 𝑁 of Σ is defined
in a natural way.

We remark that the local term is frequently used with respect to phenomena occurring
around a point, and for this reason we use the semi-local term to refer to a phenomenon
occurring in a neighborhood (in 𝑀) of a compact set.

In particular, if 𝑁 is a point of Σ, say it 𝑝, then Definition 4.3.2 turns out to be
the classical local topological equivalence at a point 𝑝 ∈ Σ, which is extensively studied
in [19, 24, 25, 26, 44, 101, 104]. It follows from [39, 55] that each 𝑍0 ∈ Ω𝑟 is locally
structurally stable at regular-regular, fold-regular and cusp-regular points.

Notice that, if 𝑁 = Σ, then the semi-local equivalence is quite different from the
sliding equivalence. Indeed, the sliding equivalence is concerned only with the elements
lying in Σ (dimension 2), whereas the semi-local equivalence at Σ regards all orbits lying
in an open set of 𝑀 (dimension 3) containing Σ.

4.3.3 A Review on the Fold-Fold Singularity
In Chapter 3, one can find a complete intrinsic characterization of piecewise smooth

vector fields which are locally structurally stable at fold-fold points. For the sake of clarity,
we outline the results of this chapter which will be used throughout this work.
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The local structural stability of 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 at a fold-fold singularity 𝑝0 is
strongly related with the existence of local connections between sliding regions (Σ𝑠𝑠 and
Σ𝑢𝑠) through orbits of 𝑋0 and 𝑌0.

Indeed, if 𝑝0 is a hyperbolic fold-fold singularity, then there is no local connections
between Σ𝑠𝑠 and Σ𝑢𝑠. In this case, the local structural stability of 𝑍0 at 𝑝0 depends only
on the local sliding dynamics at 𝑝0.

If 𝑝0 is a parabolic fold-fold point, say it is of invisible-visible type, then the flow of
𝑋0 induces an involution 𝜑𝑋0 : (Σ, 𝑝0) → (Σ, 𝑝0). A deep analysis of the dynamics of such
mapping allows us to conclude the existence of local connections between the regions
Σ𝑢𝑠 and Σ𝑠𝑠 via the orbits of 𝑋0. In the presence of some transversality hypotheses
on these connections, it can be proven that 𝑍0 is locally structurally stable at 𝑝0. The
visible-invisible case is analogous.

Finally, if 𝑝0 is an elliptic fold-fold singularity, then we have a first return map defined
around 𝑝0, and it was that 𝑍0 is locally structurally stable at 𝑝0 if, and only if, there is
no local connection between the regions Σ𝑢𝑠 and Σ𝑠𝑠 through orbits of 𝑋0 and 𝑌0. In this
case, 𝑍0 presents piecewise smooth invariant cones (with vertices at 𝑝0) isolating such
regions.

All formal conditions to characterize the local structural stability at fold-fold singu-
larities are stated in Section 4.5 of this article.

4.4 Σ-Blocks’ Mechanism
The main purpose of this work is to classify all 𝑍 ∈ Ω𝑟 which are semi-locally struc-

turally stable at Σ. Now, we introduce a formal language to deal with this problem. We
highlight that it is useful to prove the results obtained in the present paper for piece-
wise smooth vector fields having a non-simply connected switching manifold (e.g. 2-dim
torus). Also, the present mechanism can be easily adapted to attack the problem in higher
dimension.

The following definition is motivated by the isolating blocks theory considered in [27].

Definition 4.4.1. A subset 𝑈 ̸= ∅ of Σ is said to be a Σ-block of 𝑍 ∈ Ω𝑟 if 𝑈 is a
compact connected set such that:

1. 𝜇(𝑆𝑍) = 0, where 𝜇 is the volume measure on Σ (with respect to the euclidean metric
defined on Σ);

2. int(𝑈) is a 2-dimensional manifold;

3. int(𝑈) is 𝑍-invariant;

4. int(𝑈) is maximal, i.e., every neighborhood of int(𝑈) in Σ is not 𝑍-invariant.

In addition, if 𝑈 = Σ, then 𝑈 is said to be a trivial Σ-block of 𝑍.

Remark 4.4.2. Notice that, if the condition 1 in Definition 4.4.1 is dropped, then we may
face degenerate situations. As an example, we point out the system 𝑋(𝑥, 𝑦, 𝑧) = (−𝑦, 𝑥, 0),
𝑌 (𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 𝑧) and 𝑓(𝑥, 𝑦, 𝑥) = 𝑥2 + 𝑦2 + 𝑧2 − 1. In this case, 𝑆𝑍 = Σ, and 𝑋
induces a dynamics on Σ which is 𝑍-invariant. It is easy to see that it is a structurally
unstable situation (consider the perturbation 𝑋𝜀(𝑥, 𝑦, 𝑧) = (−𝑦, 𝑥, 𝜀𝑧)). Also, condition 1
of Definition 4.4.1 is satisfied for every 𝑍 ∈ Ξ0.
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Notice that, a Σ-block of 𝑍 ∈ Ξ0 is a connected component of Σ𝑠(𝑍). Also, if 𝑍 has
a trivial Σ-block, then 𝑆𝑍 = ∅. In this case, either Σ = Σ𝑠𝑠 or Σ = Σ𝑢𝑠.

Proposition 4.4.3. If 𝑍0 = (𝑋0, 𝑌0) ∈ Ξ0 has no Σ-blocks, then 𝑆𝑍0 = ∅, Σ = Σ𝑐 and
𝑍0 is semi-locally structurally stable at Σ.

Proof. In fact, if 𝑆𝑍0 ̸= ∅, then from Theorem 3.3.5, it follows that Σ𝑠 has non-empty
interior in Σ, which means that 𝑍0 would have at least one Σ-block. It follows that
𝑆𝑍0 = ∅ and consequently Σ = Σ𝑐.

From continuity of the maps 𝐹,𝐺 : 𝜒𝑟 × Σ → R, given by 𝐹 (𝑋, 𝑝) = 𝑋𝑓(𝑝) and
𝐺(𝑌, 𝑝) = 𝑌 𝑓(𝑝), and compactness of Σ, there exist neighborhoods 𝒰 of 𝑋0 and 𝒱 of 𝑌0,
such that 𝑋ℎ(𝑝)𝑌 ℎ(𝑝) > 0, for each 𝑋 ∈ 𝒰 , 𝑌 ∈ 𝒱 and 𝑝 ∈ Σ.

Therefore, Σ𝑐(𝑍) = Σ, and thus 𝑍0 and 𝑍 are semi-locally equivalents at Σ, for each
𝑍 = (𝑋, 𝑌 ) ∈ 𝒰 × 𝒱 .

Definition 4.4.4. A vector field 𝑍0 ∈ Ω𝑟 is said to be Σ-block structurally stable if
either 𝑍0 has no Σ-blocks or 𝑍0 is semi-locally structurally stable at each Σ-block of 𝑍0.
Denote the set of all 𝑍 ∈ Ω𝑟 which are Σ-block structurally stable by Ω𝑟

Σ.

Proposition 4.4.5. Let 𝑍0 ∈ Ξ0. Then, 𝑍0 is Σ-block structurally stable if and only if
𝑍0 is semi-locally structurally stable at Σ.

Proof. To prove the non-trivial implication, assume that 𝑍0 is Σ-block structurally stable.
If 𝑍0 has no Σ-blocks then, from Proposition 4.4.3, 𝑍0 is semi-locally structurally stable
at Σ.

Let 𝑈1, · · · , 𝑈𝑘 be all the Σ-blocks of 𝑍0. From hypothesis, for each 𝑖 = 1, · · · , 𝑘, there
exists a neighborhood 𝒰𝑖 of 𝑍0 in Ω𝑟 such that 𝑍0 and 𝑍 are semi-locally equivalent at
𝑈𝑖, for each 𝑍 ∈ 𝒰𝑖.

Take 𝒰 = 𝒰1∩· · · 𝒰𝑘, and let 𝑍 ∈ 𝒰 . Hence, there exist disjoint compact neighborhoods
𝑉𝑖 of 𝑈𝑖 in 𝑀 , and homeomorphisms ℎ𝑖 : 𝑉𝑖 → 𝑉𝑖 which carry orbits of 𝑍0 onto orbits
of 𝑍, for each 𝑖 = 1, · · · , 𝑘. Notice that 𝑍0 and 𝑍 are transverse to 𝜕𝑉𝑖 ∩ Σ and we can
construct ℎ𝑖 such that ℎ𝑖|𝜕𝑉𝑖

= 𝑖𝑑.
Now, let 𝑉 = 𝑉1 ∪· · ·∪𝑉𝑘. Since 𝑍0 ∈ Ξ0, Σ∖𝑉 ⊂ Σ𝑐(𝑍0) and Σ∖𝑉 ⊂ Σ𝑐(𝑍). Setting

ℎ|𝑉𝑖
= ℎ𝑖 and ℎ|Σ∖𝑉 = 𝑖𝑑, we can use the flows of 𝑍0 and 𝑍 to construct a homeomorphism

ℎ : 𝑈 → 𝑈 (see [55]), carrying orbits of 𝑍0 onto orbits of 𝑍, where 𝑈 is a neighborhood
of Σ. Hence 𝑍0 is semi-locally structurally stable at Σ.

From Proposition 4.4.5, to classify the vector fields in Ω𝑟 which are robust around
Σ, it is enough to understand the Σ-block structurally stable systems. Notice that all
results in this section remain valid if we drop the simply connectedness condition on the
switching manifold.

4.5 Main Goal and Statement of the Main Results
Our strategy is to use informations of 𝑍 ∈ Ω𝑟 around points of Σ to understand its

behavior around the switching manifold. In order to do this, we use the concepts of sliding
and Σ-block structural stability introduced in Section 4.3 to formalize the problem and
we give a complete characterization of the sets Ω𝑟

𝑆𝐿𝑅 and Ω𝑟
Σ.

Let Σ0(𝑆𝐿𝑅) be the set of 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 such that:
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𝐺) 𝑍 ∈ Ξ0;

𝐹1) If 𝑝 ∈ Σ is either a hyperbolic or an elliptic fold-fold singularity of 𝑍 then 𝐹𝑁
𝑍 has

no center manifold in 𝑉𝑝 ∩ Σ𝑠, where 𝑉𝑝 is a neighborhood of 𝑝 in Σ;

𝐹2) If 𝑝 ∈ Σ is a parabolic fold-fold singularity of 𝑍 then 𝐹𝑁
𝑍 is transient in 𝑉𝑝 ∩ Σ𝑠 or

it has a hyperbolic singularity at 𝑝, where 𝑉𝑝 is a neighborhood of 𝑝 in Σ;

𝐹3) There is no connection between Σ-separatrices of fold-fold points of 𝑍 in Σ𝑠;

𝐹4) There is no connection between a Σ-separatrix of fold-fold of 𝑍 and a saddle sepa-
ratrix of 𝐹𝑁

𝑍 contained in Σ𝑠;

𝐼1) 𝐹𝑁
𝑍 |Σ𝑠 has a finite number of pseudo-equilibria. All of them are hyperbolic and

contained in int(Σ𝑠);

𝐼2) 𝐹𝑁
𝑍 |Σ𝑠 has a finite number of periodic orbits. All of them are hyperbolic and con-

tained in int(Σ𝑠);

𝐼3) 𝐹𝑁
𝑍 does not present any saddle connection in Σ𝑠;

𝐵1) There is no orbit of 𝐹𝑁
𝑍 contained in Σ𝑠 connecting two tangency points of 𝐹𝑁

𝑍 with
𝜕Σ𝑠;

𝐵2) Each saddle separatrix of 𝐹𝑁
𝑍 is transversal to 𝜕Σ𝑠 (except at fold-fold points).

𝑅) 𝐹𝑁
𝑍 has no recurrent orbit.

Theorem J (Peixoto’s Theorem - Sliding Version). The set Ω𝑟
𝑆𝐿𝑅 is residual in Ω𝑟 and

it coincides with Σ0(𝑆𝐿𝑅).

Now, consider the following properties (see Chapter 3 for more details):

Ξ(𝑃 ): If 𝑝 ∈ Σ is an invisible-visible fold-fold point of 𝑍 ∈ Ω𝑟, then the germ of the
involution 𝜑𝑋 at 𝑝 associated to 𝑍 satisfies:

1. 𝜑𝑋(𝑆𝑌 ) t 𝑆𝑌 at 𝑝;
2. 𝐹𝑁

𝑍 and 𝜑*
𝑋𝐹

𝑁
𝑍 are transversal at each point of Σ𝑠𝑠 ∩ 𝜑𝑋(Σ𝑢𝑠);

3. 𝜑𝑋(𝑆𝑌 ) t 𝐹𝑁
𝑍 at 𝑝.

Ξ(𝐸): If 𝑝 ∈ Σ is an elliptic fold-fold point of 𝑍 ∈ Ω𝑟, then the germ of the first return
map 𝜑𝑍 at 𝑝 associated to 𝑍 has a fixed point at 𝑝 of saddle type with both local
invariant manifolds 𝑊 𝑢,𝑠

𝑙𝑜𝑐 contained in Σ𝑐.

Remark 4.5.1. If 𝑍 has a visible-invisible fold-fold point at 𝑝, then the roles of 𝑋 and
𝑌 are interchanged in the property Ξ(𝑃 ).

Let Σ0 be the set of 𝑍 ∈ Ω𝑟 satisfying the following properties:

𝑆) 𝑍 ∈ Ω𝑟
𝑆𝐿𝑅;
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𝐹 ) If 𝑝 ∈ Σ is a fold-fold point of 𝑍 then Ξ(𝑃 ) and Ξ(𝐸) are satisfied at 𝑝.

Theorem K (Classification of Ω𝑟
Σ). The following statements hold:

(𝑖) Ω𝑟
Σ = Σ0;

(𝑖𝑖) Ω𝑟
Σ is not residual in Ω𝑟;

(𝑖𝑖𝑖) Ω𝑟
Σ is residual in Σ(𝐸), where Σ(𝐸) is the set of 𝑍 ∈ Ω𝑟 satisfying Ξ(𝐸). Moreover,

Σ(𝐸) is maximal with respect to this property.

4.6 Robustness of Tangency Sets
In this section we discuss about the structure of the tangency set of 𝑍 ∈ Ξ0. Firstly,

we analyze the local behavior of an elementary tangential singularity and secondly, some
global features of the tangency set of 𝑍 are also discussed.

4.6.1 Local Analysis
Let 𝑋 ∈ 𝜒𝑟 be a 𝒞𝑟 vector field defined around Σ (which is the common boundary of

𝑀+ and 𝑀−). The local behavior of 𝑋 at a point 𝑝 ∈ Σ is a very matured topic and the
results of this section can be found in [104, 95, 97] from a different point of view.

The following propositions provide a geometric interpretation of fold and cusp points
in Σ.

Proposition 4.6.1. Let 𝑋0 ∈ 𝜒𝑟 having a fold point at 𝑝0 ∈ Σ, then there exist neigh-
borhoods 𝒱 of 𝑋0 in 𝜒𝑟 and 𝑉 of 𝑝0 in Σ such that

(a) for each 𝑋 ∈ 𝒱, there exists a unique 𝒞𝑟 curve of fold points 𝛾𝑋 ⊂ 𝑉 of 𝑋 in Σ
which intersects 𝜕𝑉 transversally at only two points;

(b) 𝑝0 ∈ 𝛾𝑋0 and sgn(𝑋2𝑓(𝑝)) = sgn(𝑋2
0𝑓(𝑝0)), for each 𝑝 ∈ 𝛾𝑋 and 𝑋 ∈ 𝒱.

Proof. Consider the map 𝐹 : 𝜒𝑟 × Σ → R given by 𝐹 (𝑋, 𝑝) = 𝑋2𝑓(𝑝). It satisfies
𝐹 (𝑋0, 𝑝0) ̸= 0. From continuity, there exist neighborhoods 𝒱1 of 𝑋0 in 𝜒𝑟 and 𝑉1 of 𝑝0 in
Σ such that 𝑋2𝑓(𝑝) ̸= 0 for each 𝑋 ∈ 𝒱1 and 𝑝 ∈ 𝑉1, and the sign of 𝑋2

0𝑓(𝑝0) is preserved.
Let 𝜑 : (−𝜀1, 𝜀1) × (−𝜀2, 𝜀2) → 𝑉2 be a local chart of Σ around 𝑝0 such that 𝑉2 ⊂ 𝑉1,

and notice that 𝜑 is a 𝒞𝑟 diffeomorphism. Consider 𝐺 : 𝜒𝑟 × (−𝜀1, 𝜀1) × (−𝜀2, 𝜀2) → R
given by 𝐺(𝑋, 𝑥1, 𝑥2) = 𝑋𝑓(𝜑(𝑥1, 𝑥2)), and notice that 𝐺 is a 𝒞𝑟 function such that
𝐺(𝑋0, 0, 0) = 0.

Since 𝑋2
0𝑓(𝑝) ̸= 0, we have that 𝑑𝑋0𝑓(𝑝0) is a nonzero linear transformation, and since

𝜑 is a diffeomorphism, it follows that 𝜕𝐺

𝜕(𝑥1, 𝑥2)
(𝑋0, 0, 0) = 𝑑𝑋0𝑓(𝑝0) ∘ 𝑑𝜑(0, 0) is nonzero.

We conclude that 𝜕𝐺

𝜕𝑥1
(𝑋0, 0, 0) ̸= 0 or 𝜕𝐺

𝜕𝑥2
(𝑋0, 0, 0) ̸= 0.

Without loss of generality, assume that 𝜕𝐺

𝜕𝑥2
(𝑋0, 0, 0) ̸= 0, now we use the Implicit

Function Theorem (for Banach Spaces) to find a neighborhood 𝒱 of 𝑋0 in 𝜒𝑟 contained
in 𝒱1, real numbers 𝑎, 𝑏 such that −𝜀1 < 𝑎 < 0 < 𝑏 < 𝜀1, and a 𝒞𝑟 function 𝛼 :
𝒱 × (𝑎, 𝑏) → (−𝜀2, 𝜀2) such that 𝐺(𝑋, 𝑥1, 𝑥2) = 0 with 𝑋 ∈ 𝒱 and 𝑥1 ∈ (𝑎, 𝑏) if and only
if 𝑥2 = 𝛼(𝑋, 𝑥1).
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Notice that, for each 𝑋 ∈ 𝒱 , the curve 𝑐𝑋 : (𝑎, 𝑏) → (𝑎, 𝑏) × (−𝜀2, 𝜀2) given by
𝑐𝑋(𝑡) = (𝑡, 𝛼(𝑋, 𝑡)), is transverse to each horizontal line 𝑥1 = 𝑥0, with 𝑥0 ∈ (𝑎, 𝑏).

Setting 𝑉 = 𝜑([𝑎0, 𝑏0] × (−𝜀2, 𝜀2)), for some 𝑎 < 𝑎0 < 0 < 𝑏0 < 𝑏, it follows that,
for each 𝑋 ∈ 𝒱 , the curve 𝛾𝑋 = 𝜑 ∘ 𝑐𝑋 intersects 𝜕𝑉 (transversally) only at the points
𝛾𝑋(𝑎0) and 𝛾𝑋(𝑏0), therefore it satisfies part (a) of the statement. In addition, 𝛾𝑋0(0) =
𝜑(0, 0) = 𝑝0, which proves part (b).

Proposition 4.6.2. Let 𝑋0 ∈ 𝜒𝑟 having a cusp point at 𝑝0 ∈ Σ. Then, there exist a
neighborhood 𝒱 of 𝑋0 in 𝜒𝑟, real numbers 𝑎0 < 0 < 𝑏0, and a neighborhood 𝑉 of 𝑝0 in Σ
such that, for each 𝑋 ∈ 𝒱:

(a) there exists a unique 𝒞𝑟 curve 𝛾𝑋 : [𝑎0, 𝑏0] → 𝑉 of tangential singularities of 𝑋 in
𝑉 which intersects 𝜕𝑉 transversally at only two points;

(b) there exists 𝑎0 < 𝑡(𝑋) < 𝑏0 such that 𝑝(𝑋) = 𝛾𝑋(𝑡(𝑋)) is a cusp point of 𝑋. In
addition, sgn(𝑋3𝑓(𝑝(𝑋))) = sgn(𝑋3

0𝑓(𝑝0)).

(c) 𝛾𝑋(𝑡) is a fold point of 𝑋 for every 𝑡 ∈ [𝑎0, 𝑏0] such that 𝑡 ̸= 𝑡(𝑋). In addition,
𝑋2𝑓(𝛾𝑋(𝑡))𝑋2𝑓(𝛾𝑋(𝑠)) < 0, for each 𝑎0 ≤ 𝑡 < 𝑡(𝑋) and 𝑡(𝑋) < 𝑠 ≤ 𝑏0.

Proof. From the linearly independence of {𝑑𝑓(𝑝0), 𝑑𝑋0𝑓(𝑝0), 𝑑𝑋2
0𝑓(𝑝0)}, it follows that

𝑑𝑋0𝑓(𝑝0) ̸= 0. Using the same notation and ideas as in the proof of Proposition 4.6.1, we
can find neighborhoods 𝒱 of 𝑋0 in 𝜒𝑟, 𝑉 of 𝑝0 in Σ, real number 𝑎0 < 0 < 𝑏0 and curves
𝛾𝑋 : [𝑎0, 𝑏0] → 𝑉 , for each 𝑋 ∈ 𝒱 , such that

𝑋𝑓(𝑝) = 0, with 𝑋 ∈ 𝒱 and 𝑝 ∈ 𝑉 ⇔ 𝑝 = 𝛾𝑋(𝑡), for some 𝑡 ∈ [𝑎0, 𝑏0],

and sgn(𝑋3𝑓(𝑝)) = sgn(𝑋3
0𝑓(𝑝0)), for each 𝑋 ∈ 𝒱 and 𝑝 ∈ 𝑉 .

In addition, 𝛾𝑋 intersects 𝜕𝑉 transversally at 𝛾𝑋(𝑎0) and 𝛾𝑋(𝑏0), and 𝛾𝑋(𝑡) ∈ int(𝑉 )
for each 𝑡 ∈ (𝑎0, 𝑏0). Therefore, item (a) is proved.

To prove (b), consider the 𝒞𝑟 function 𝐻 : 𝜒𝑟 × R3 → R3 given by 𝐻(𝑋, 𝑝) =
(𝑓(𝑝), 𝑋𝑓(𝑝), 𝑋2𝑓(𝑝)). Since 𝑝0 is a cusp point of 𝑋0, it follows that 𝐻(𝑋0, 𝑝0) = (0, 0, 0)
and 𝜕𝐻

𝜕𝑝
(𝑋0, 𝑝0) is invertible. Now, we use the Implicit Function Theorem for Banach

spaces to obtain a 𝒞𝑟 function 𝛽 : 𝒱 → 𝑉 (reduce the initial neighborhoods 𝒱 and 𝑉 , if
necessary) such that 𝐻(𝑋, 𝑝) = (0, 0, 0), with 𝑋 ∈ 𝒱 and 𝑝 ∈ 𝑉 , if and only if 𝑝 = 𝛽(𝑋).

Reducing 𝒱 to 𝒱 ∩𝛽−1(int(𝑉 )), we conclude that each 𝑋 ∈ 𝒱 has a unique cusp point
𝑝(𝑋) = 𝛽(𝑋) in 𝑉 which is contained in int(𝑉 ). Since 𝑋𝑓(𝑝(𝑋)) = 0, it follows that,
there exists 𝑡(𝑋) ∈ (𝑎0, 𝑏0) such that 𝛾𝑋(𝑡(𝑋)) = 𝑝(𝑋).

To prove (𝑐), notice that, for 𝑡 ̸= 𝑡(𝑋), 𝐻(𝑋, 𝛾𝑋(𝑡)) ̸= (0, 0, 0), and 𝑓(𝛾𝑋(𝑡)) =
𝑋𝑓(𝛾𝑋(𝑡)) = 0. Thus, 𝑋2𝑓(𝛾𝑋(𝑡)) ̸= 0 and 𝛾𝑋(𝑡) is a fold point.

Let 𝑋 ∈ 𝒱 , then ℎ(𝑡) = 𝑋2𝑓(𝛾𝑋(𝑡)) is a real smooth function such that ℎ(𝑡(𝑋)) = 0
and ℎ(𝑡) ̸= 0 otherwise. Notice that ℎ′(𝑡) = 𝑑𝑋2𝑓(𝛾𝑋(𝑡)) · 𝛾′

𝑋(𝑡).
If ℎ′(𝑡(𝑋)) = 0, then 𝑑𝑋2𝑓(𝑝(𝑋)) is orthogonal to 𝛾′

𝑋(𝑡(𝑋)), and since 𝑋𝑓(𝛾𝑋(𝑡)) =
𝑓(𝛾𝑋(𝑡)) = 0 for every 𝑡 ∈ [𝑎0, 𝑏0], it follows that 𝑑𝑋𝑓(𝑝(𝑋)) and 𝑑𝑓(𝑝(𝑋)) are orthogonal
to 𝛾′

𝑋(𝑡(𝑋)). Since span{𝛾′
𝑋(𝑡(𝑋))}⊥ has dimension 2, we have that {𝑑𝑓(𝑝(𝑋)), 𝑑𝑋𝑓(𝑝(𝑋)),

𝑑𝑋2𝑓(𝑝(𝑋))} is linearly dependent, which is a contradiction because 𝑝(𝑋) is a cusp point
of 𝑋.

Therefore, ℎ′(𝑡(𝑋)) ̸= 0 and ℎ(𝑡(𝑋)) = 0. If follows that ℎ(𝑡)ℎ(𝑠) < 0 for each
−𝜀 < 𝑡 < 𝑡(𝑋) < 𝑠 < 𝜀, for some 𝜀 > 0 sufficiently small.
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4.6.2 Global Analysis
Now, the tangency set 𝑆𝑋 of 𝑋 ∈ 𝜒𝑟 is analyzed. We shall prove that a Σ-block of a

piecewise smooth vector field 𝑍 ∈ Ξ0 is robust under small perturbations in Ω𝑟.

Proposition 4.6.3. If 𝑋 ∈ 𝜒𝑟 is simple and 𝑆𝑋 ̸= ∅, then there exists 𝑛 ∈ N such that
𝑆𝑋 = ⊔𝑛

𝑖=1𝑆
𝑖
𝑋 , where each 𝑆𝑖

𝑋 is diffeomorphic to the unit circle S1. Moreover, 𝑆𝑋 has at
most a finite number of cusp points.

Proof. From continuity of 𝑋𝑓 in Σ, it follows that 𝑆𝑋 = 𝑋𝑓−1(0) is a compact subset of
Σ. In addition, from Propositions 4.6.1 and 4.6.2, it follows that 𝑆𝑋 is locally connected.
Therefore, the connected components of 𝑆𝑋 are open in the induced topology of 𝑆𝑋 and by
compactness, we can conclude that 𝑆𝑋 has only a finite number of connected components.

Let 𝜑 : S2 → Σ be a diffeomorphism and consider the 𝒞𝑟 function 𝐹 : S2 → R given
by 𝐹 (𝑝) = 𝑋𝑓(𝜑(𝑝)).

Notice that, 𝐹−1(0) = 𝜑−1(𝑆𝑋) and 𝑑𝐹 (𝑥) = 𝑑𝑋𝑓(𝜑(𝑥)) ∘ 𝑑𝜑(𝑥), for every 𝑥 ∈ S2.
Since 𝑆𝑋 is composed by fold and cusp points, and 𝜑(𝑝) ∈ 𝑆𝑋 , for each 𝑝 ∈ 𝐹−1(0), it
follows that 𝑑𝑋𝑓(𝜑(𝑝)) ̸= 0. As 𝑑𝜑(𝑝) is an isomorphism, we conclude that 𝑑𝐹 (𝑝) ̸= 0,
and thus 0 is a regular value of 𝐹 .

So, 𝐹−1(0) is a 1-dimensional embedded submanifold of S2. Also, 𝑆𝑋 has a finite
number of connected components, and thus 𝐹−1(0) has a finite number of connected
components.

Since every connected component is a closed set in Σ, it follows that each connected
component of 𝐹−1(0) is a compact connected 1-dimensional embedded submanifold of S2,
and thus, diffeomorphic to S1.

Finally, we use Propositions 4.6.1 and 4.6.2 to construct an open cover of 𝑆𝑋 such
that each element of this cover has only fold points and at most one cusp point. By
compactness, we conclude that 𝑆𝑋 has just a finite number of cusp points.

See Figure 4.1.

Σ

Figure 4.1: Structure of the tangency set 𝑆𝑋 of a simple vector field 𝑋 ∈ 𝜒𝑟.

Remark 4.6.4. Since Σ is a compact manifold, the tangency set 𝑆𝑋 of 𝑋 ∈ 𝜒𝑟
𝑆 with

Σ is diffeomorphic to a union of circles. From Proposition 4.6.2, the cusp points occur
as isolated points in a circle of fold points. In addition, if 𝑝 is a cusp of 𝑋, then, there
exists a smooth curve of fold points of 𝑋 in Σ passing through 𝑝, which has their visibility
changed at 𝑝. Therefore, the number 𝑘 of cusp points in a fold circle is always even and
it has 𝑘/2 arcs of visible fold points and 𝑘/2 arcs of invisible fold points.
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Now, we prove the persistence of the connected components of the tangency set 𝑆𝑋 of
𝑋 ∈ 𝜒𝑟

𝑆.

Proposition 4.6.5. Let 𝑋0 ∈ 𝜒𝑟 be a simple vector field such that 𝑆𝑋0 ̸= ∅, and let 𝐶0 be
a connected component of 𝑆𝑋0 containing 𝑘0 cusp points. Then there exist neighborhoods
𝒱 of 𝑋0 and 𝑉 of 𝐶0 in Σ such that, for each 𝑋 ∈ 𝒱:

(a) 𝑆𝑋 has a unique connected component in 𝑉 containing exactly 𝑘0 cusp points.

(b) The number of connected components of 𝑆𝑋 and 𝑆𝑋0 coincide for any 𝑋 ∈ 𝒱.

Proof. Given 𝑝 ∈ 𝐶0, from Propositions 4.6.1 and 4.6.2, there exist neighborhoods 𝑉𝑝 ⊂ Σ
of 𝑝 and 𝒱𝑝 ⊂ 𝜒𝑟 of 𝑋0 such that, for each 𝑋 ∈ 𝒱𝑝, there exists a smooth curve 𝛾𝑝

𝑋 :
[𝑎𝑝, 𝑏𝑝] → 𝑉𝑝 satisfying the following properties:

(𝑖) 𝛾𝑝
𝑋(𝑡(𝑋)) is a point of same nature of 𝑝, for some 𝑎𝑝 < 𝑡(𝑋) < 𝑏𝑝;

(𝑖𝑖) 𝛾𝑝
𝑋(𝑡) is a fold point of 𝑋 for each 𝑡 ̸= 𝑡(𝑋).

In addition, this curve contains all tangency points of 𝑋 inside 𝑉𝑝, and intersects 𝑉𝑝

transversally at 𝛾𝑝
𝑋(𝑎𝑝) and 𝛾𝑝

𝑋(𝑏𝑝). Notice that 𝛾𝑝
𝑋0 is a local parametrization of 𝐶0 at 𝑝.

Clearly, 𝒰 = {𝑉𝑝; 𝑝 ∈ 𝐶0} covers 𝐶0, and from compactness, we extract a finite
subcover of 𝒰 . Then, 𝐶0 ⊂ 𝑉1 ∪ · · · ∪ 𝑉𝑘, with 𝑉𝑖 ∈ 𝒰 , 𝑖 = 1, · · · , 𝑘.

From connectedness of 𝐶0, and the fact that 𝐶0 is a circle, we can order 𝑉1, · · · , 𝑉𝑘

such that, for each 1 ≤ 𝑖 ≤ 𝑘 − 1, there exists 𝑝𝑖 ∈ 𝐶0 such that 𝑝𝑖 ∈ int(𝑉𝑖 ∩ 𝑉𝑖+1) and
𝑝𝑘 ∈ 𝐶 ∩ 𝑉𝑘 ∩ 𝑉1.

From the construction of the neighborhoods, 𝑝𝑖 is contained in both curves 𝛾𝑖
𝑋0 and

𝛾𝑖+1
𝑋0 , and from continuity of 𝛾 on 𝑋, 𝛾𝑖

𝑋 and 𝛾𝑖+1
𝑋 have at least a point (for each curve)

in 𝑉𝑖 ∩ 𝑉𝑖+1, for each 𝑋 ∈ 𝒱𝑖 ∩ 𝒱𝑖+1 (reduce 𝒱𝑖 and 𝒱𝑖+1 if necessary). From uniqueness,
𝛾𝑖

𝑋 and 𝛾𝑖+1
𝑋 must coincide in 𝑉𝑖 ∩ 𝑉𝑖+1.

Let 𝑉 = 𝑉1 ∪ · · · ∪ 𝑉𝑘 and 𝒱 = 𝒱1 ∩ · · · ∩ 𝒱𝑘. Therefore, for each 𝑋 ∈ 𝒱 , we construct
a 𝒞𝑟 curve 𝛾𝑋 : [𝑎1, 𝑏𝑛] → 𝑉 which is injective in (𝑎1, 𝑏𝑛) such that 𝛾𝑋(𝑎1) = 𝛾𝑋(𝑏𝑛) and
𝛾𝑋([𝑎1, 𝑏𝑛]) ∩ 𝑉𝑖 = Im(𝛾𝑖

𝑋), 𝑖 = 1, · · · , 𝑘.
It follows that, for each 𝑋 ∈ 𝒱 , 𝐶 = Im(𝛾𝑋) is a connected component of 𝑆𝑋 in 𝑉

and 𝑝 ∈ 𝑉 is a tangency point of 𝑋 if and only if 𝑝 ∈ 𝐶. The part (a) of the statement
is proved.

To prove (b), let 𝐶0
1 , · · · , 𝐶0

𝑘 be all connected components of 𝑆𝑋0 . From (a), there exist
disjoint open neighborhoods 𝑊𝑖 of 𝐶0

𝑖 and 𝒲𝑖 of 𝑋0 such that, for every 𝑋 ∈ 𝒲𝑖, 𝑆𝑋 has
a unique connected component contained in 𝑊𝑖.

Define 𝑊 = 𝑊1 ∪ · · · ∪ 𝑊𝑘 and 𝒲 = 𝒲1 ∩ · · · ∩ 𝒲𝑘, and notice that 𝑋0𝑓(𝑝) ̸= 0 for
each 𝑝 ∈ Σ ∖𝑊 . From continuity, for each 𝑝 ∈ Σ ∖𝑊 , there exist neighborhoods 𝑉𝑝 of 𝑝
in Σ and 𝒱𝑝 of 𝑋0 in 𝜒𝑟, such that 𝑋𝑓(𝑞) ̸= 0, for each 𝑋 ∈ 𝒱𝑝 and 𝑞 ∈ 𝑉𝑝.

From compactness of Σ∖𝑊 , we find a neighborhood 𝒱 ⊂ 𝒲 of𝑋0 such that𝑋𝑓(𝑝) ̸= 0,
for each 𝑋 ∈ 𝒱 and 𝑝 ∈ Σ ∖𝑊 . Therefore, 𝑆𝑋 ⊂ 𝑊 , for each 𝑋 ∈ 𝒱 , and we are done.

Notice that Proposition 4.6.5 concerns with smooth vector fields defined in manifolds
with boundary. Now, we extend this analysis to elementary piecewise smooth vector
fields.

Let 𝑍 ∈ Ξ0. If 𝐶 is a connected component of 𝑆𝑍 composed only by fold-regular and
cusp-regular points, then the normalized sliding vector field 𝐹𝑁

𝑍 of 𝑍 is transversal to 𝐶,



115

except at cusp points. Indeed, at each cusp-regular point 𝑝, 𝐹𝑁
𝑍 has a quadratic contact

with 𝐶.
At each quadratic contact of 𝐹𝑁

𝑍 with 𝐶, say it 𝑝, the orientation of the orbits of 𝐹𝑁
𝑍

reaching 𝐶 is changed in a neighborhood 𝑉 of 𝑝. More specifically, 𝐹𝑁
𝑍 reaches 𝐶 ∩ 𝑉 in

either negative or positive time, depending on the side of 𝐶 ∖ {𝑝}. Also, if we compute
𝐹𝑁

𝑍 along 𝐶, it gives a complete turn between two cusp-regular points.
Hence, the classical index 𝐼(𝐹𝑁

𝑍 , 𝑆𝑋) of 𝐹𝑁
𝑍 along 𝐶 provides the number of complete

turns that it gives along 𝐶, and from Remark 4.6.4, we conclude that it coincides with
half of the number of cusp-regular points of 𝐶.

Based on the discussion above, we have the following result.

Proposition 4.6.6. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ξ0. On each connected component 𝐶 of 𝑆𝑍,
composed by fold-regular and cusp-regular points, the number of cusp-regular points of 𝑍
in 𝐶 is given by

𝑁𝑐𝑢𝑠𝑝 = 2𝐼(𝐹𝑁
𝑍 , 𝐶),

where I is the index of 𝐹𝑁
𝑍 along 𝐶.

Recalling that the fold-fold points of 𝑍 ∈ Ξ0 are isolated in Σ, we obtain the next
result directly from Proposition 4.6.3 and compactness of Σ.

Proposition 4.6.7. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ξ0 such that 𝑆𝑍 ̸= ∅. Then:

(a) there exists 𝑛 ∈ N such that 𝑆𝑍 = ∪𝑛
𝑖=1𝑆

𝑖
𝑍, where each 𝑆𝑖

𝑍 is diffeomorphic to the
unit circle S1 and is contained in either 𝑆𝑋 or 𝑆𝑌 . In addition, 𝑆𝑍 has at most a
finite number of cusp-regular and fold-fold points.

(b) 𝑝 ∈ 𝑆𝑍 is a fold-fold point of 𝑍 if and only if 𝑝 is contained in the intersection of
two circles 𝑆𝑖

𝑍 and 𝑆𝑗
𝑍, for some 1 ≤ 𝑖, 𝑗 ≤ 𝑛. In this case, 𝑆𝑖

𝑍 ⊂ 𝑆𝑋 and 𝑆𝑗
𝑍 ⊂ 𝑆𝑌 .

See Figure 4.2.

Tangency set 𝑆𝑋 of 𝑋
Tangency set 𝑆𝑌 of 𝑌
Fold-fold point of 𝑍

(𝑖) (𝑖𝑖)

Figure 4.2: Structure of the tangency set 𝑆𝑍 of an elementary piecewise smooth vector
field 𝑍 = (𝑋, 𝑌 ) with (𝑖) and without (𝑖𝑖) fold-fold points.

Combining Proposition 4.6.5 with the transversality of 𝑆𝑋 and 𝑆𝑌 at fold-fold points
of 𝑍 = (𝑋, 𝑌 ), we obtain the following result.

Proposition 4.6.8. Let 𝑍0 = (𝑋0, 𝑌0) ∈ Ξ0 be an elementary piecewise smooth vector
field such that 𝑆𝑍0 ̸= ∅, and let 𝐶0 be a connected component of 𝑆𝑍0 containing 𝑛0 cusp-
regular points and 𝑚0 fold-fold points, then there exist neighborhoods 𝒱 of 𝑍0 and 𝑉 of
𝐶0 in Σ such that:

(a) for each 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱, 𝑆𝑍 has a unique connected component 𝐶 in 𝑉 containing
exactly 𝑛0 cusp-regular points and 𝑚0 fold-fold points.
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(b) For each circle 𝑆0 of 𝑆𝑋0 (resp. 𝑆𝑌0) contained in 𝐶0, there exists a neighborhood
𝑉0 ⊂ 𝑉 of 𝑆0 such that each 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱 has a unique circle 𝑆 of 𝑆𝑋 (resp. 𝑆𝑌 )
contained in 𝑉0, with the same number of cusp-regular and fold-fold points of 𝑆0.

(c) If two circles 𝑆1
0 and 𝑆2

0 of 𝑆𝑋0 contained in 𝐶0 intersect themselves at fold-fold points
𝑝1, 𝑝2, · · · , 𝑝2𝑘, then, for each 𝑍 ∈ 𝒱, the correspondent circles of item (𝑏) intersect
themselves at fold-fold points 𝑝1(𝑍), · · · , 𝑝2𝑘(𝑍). In addition, 𝑝𝑖(𝑍) is sufficiently
close to 𝑝𝑖 and they have the same visibility.

(d) for each 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱, 𝑆𝑍 has the same number of connected components of 𝑆𝑍0,
for each 𝑍 ∈ 𝑉 .

We see that, for a small neighborhood 𝒱 of 𝑍0 ∈ Ξ0, each 𝑍 ∈ 𝒱 has a tangency set
𝑆𝑍 with exactly the same characteristics of 𝑆𝑍0 , i.e., each circle of 𝑆𝑍 is near to a circle
of 𝑆𝑍0 and they present the same configuration of intersections. It allows us to conclude
that, if 𝑍0 has a Σ-block 𝑈0, then there exists a neighborhood 𝑉0 of 𝑈0 in Σ, such that
each 𝑍 ∈ 𝒱 has a unique Σ-block 𝑈 contained in 𝑉0 and it has the same structure as 𝑈0.

We complete the characterization of the tangency sets by exhibiting another property
concerning the number of fold-fold points of 𝑍 ∈ Ξ0.

Proposition 4.6.9. If 𝑍 ∈ Ξ0, then the number of fold-fold points of 𝑍 is even.

Proof. In fact, if 𝑝 is a fold-fold points of 𝑍, then 𝑝 is contained in the transversal inter-
section of two circles of 𝑆𝑍 , say it 𝐶1 and 𝐶2.

From Jordan Curve Theorem, 𝐶1 divides Σ ∖𝐶1 into two connected components, and
since 𝐶2 is a closed curve, it follows that 𝛾 must intersect 𝐶1 again in another point
different from 𝑝, say it 𝑞. Since 𝑍 ∈ Ξ0, 𝑞 is a fold-fold point.

To complete the proof, it is enough to notice that if 𝑝 is another fold-fold point different
from 𝑝 and 𝑞, then by the same argument as above we can find another fold-fold point 𝑞
different from the others, and the result follows by induction and the fact that 𝑍 has a
finite number of fold-fold points (due to compactness of Σ).

Remark 4.6.10. Due to the similarity on the behavior between a fold-fold point and the
vertex defined in [83], it will be referred as a vertex of 𝑆𝑍. In addition, if 𝑆𝑍 has no
vertices, then each Σ-block of 𝑍 ∈ Ξ0 has a smooth boundary.

Finally, we notice that, if 𝑍0 ∈ Ξ0, the transversality of 𝑆𝑋0 and 𝑆𝑌0 at vertices can not
be dropped. Indeed, if 𝑆𝑋0 is tangent to 𝑆𝑌0 at 𝑝 then 𝑇𝑝𝑆𝑋0 = 𝑇𝑝𝑆𝑌0 and the intersection
between 𝑆𝑋 and 𝑆𝑌 can be easily broken by translations. In this case, the structure of
the tangency set is quite different for small perturbations of 𝑍0.

4.7 Sliding Structural Stability
In this section we discuss the concept of sliding structural stability and we prove

Theorem J.
Let 𝑍0 ∈ Ξ0 having a Σ-block 𝑈0. As we can see in [44, 55], the first element to

construct a semi-local equivalence at 𝑈0 between 𝑍0 and some 𝑍 ∈ Ω𝑟 is the existence
of a sliding equivalence between 𝑍0 and 𝑍. Based on this, we propose a sliding version
of Peixoto’s Theorem for typical piecewise smooth vector fields. It is worth mentioning
that in [83], the authors have mentioned that the case where the boundary is piecewise
smooth can be considered with the addition of some conditions on the boundary.
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The most relevant difference between the classical case and the one to be considered in
Theorem J is the existence of persistent singularities of PSVF at vertices in the boundary
(fold-fold points of 𝑍0). Notice that it is a typical object of the nonsmooth universe. Actu-
ally, the boundary changes with the sliding vector field in such a way that the singularity
remains in the vertex.

Recall that 𝐹𝑍0 is defined on int(𝑈0), but it is not defined on 𝜕𝑈0. Since 𝑈0 is con-
nected, Lemma 3.3.11 allows us to extend 𝐹𝑍0 to 𝜕𝑈0 through the normalized sliding
vector field 𝐹𝑁

𝑍0 , and then the stability of 𝐹𝑍0 on 𝑈0 is determined by the stability of 𝐹𝑁
𝑍0

on 𝑈0.
Notice that a vertex is a singularity of 𝐹𝑁

𝑍0 , but it is not a critical point of 𝐹𝑍0 (the
vector field is not even defined on these points). Thus, if a trajectory of 𝐹𝑍0 reaches a
vertex, it does in a finite time, differently from a trajectory of 𝐹𝑁

𝑍0 .

4.7.1 Proof of Theorem J
Let 𝑍0 = (𝑋0, 𝑌0) ∈ Σ0(𝑆𝐿𝑅). If Σ = Σ𝑠(𝑍0), then 𝐹𝑍0 is defined in the entire Σ and

for a small neighborhood 𝒱 of 𝑍0 in Ω𝑟, the sliding vector field 𝐹𝑍 of 𝑍 ∈ 𝒱 is also defined
in Σ = Σ𝑠(𝑍). Therefore, the result follows from Lemma 3.3.11 and the classical version
of Peixoto’s Theorem.

Assume for instance that Σ𝑠(𝑍0) ̸= Σ. Since 𝑍0 has a typical tangency set, it follows
that Σ𝑠(𝑍0) is a compact set which is properly contained in Σ ∖ {𝑝0}, for some 𝑝0 ∈ Σ.
Thus, we perform a change of coordinates in Σ ∖ {𝑝0} (stereographic projection) which
brings Σ𝑠(𝑍0) into a compact subset of R2. Denote this identification by Σ𝑠(𝑍0) ≃𝜌 𝑀0.
See Figure 4.3

Σ

Σ𝑠(𝑍0)

𝑀0
𝜌

𝑝0

Figure 4.3: Interpretation of the identification Σ𝑠(𝑍0) ≃𝜌 𝑀0.

Since 𝑍0 ∈ Ξ0, the boundary 𝜕𝑀0 is composed by fold-regular points, a finite (even)
number 𝑛𝑐 of cusp-regular points, 𝑝𝑖(𝑍0), 𝑖 = 1, · · · , 𝑛𝑐, and a finite (even) number 𝑛𝑓 of
fold-fold points, 𝑞𝑗(𝑍0), 𝑗 = 1, · · · , 𝑛𝑓 .

Notice that each Σ-block 𝑈0 ⊂ 𝑀0 of 𝑍0 is a path-connected region, and the boundary
𝜕𝑈0 of 𝑈0 is composed by a union of circles which are pairwise transversal. Also, the
circles of 𝜕𝑈0 intersect themselves only at a finite number of points. In addition, each
circle is composed by fold-regular, cusp-regular and fold-fold points of 𝑍0, and two circles
intersect themselves at 𝑝 if, and only if, 𝑝 is a fold-fold point of 𝑍0. See Figure 4.4.

Now each Σ-block 𝑈0 of 𝑍0 is path-connected, but ̃︁𝑈0 = 𝑈0 ∖ {𝑞1(𝑍0), · · · , 𝑞𝑛𝑓
(𝑍0)} is

not connected. Call the closure of the connected components of ̃︁𝑈0 of all the Σ-blocks 𝑈0
of 𝑍0 by 𝑅𝑖(𝑍0), 𝑖 = 1, · · · , 𝑙, where 𝑙 is the number of connected components of ̃︁𝑈0.

From the characterization of 𝑈0, it follows that, each 𝑅𝑖(𝑍0) is a simple polygon with
𝑎𝑖 ≤ 𝑛𝑓 vertices and a finite number of holes in its interior. Notice that, if 𝑎𝑖 = 0, then
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Figure 4.4: Example of a Σ-block 𝑀0 of 𝑍0 = (𝑋0, 𝑌0). The stable and unstable sliding
regions are represented by the colors blue and red, respectively.

𝜕𝑅𝑖(𝑍0) is smooth. See Figure 4.5.

(𝑖) (𝑖𝑖) (𝑖𝑖𝑖)

Figure 4.5: Example of regions 𝑅𝑖(𝑍0): (𝑖) 𝑎𝑖 = 0, (𝑖𝑖) 𝑎𝑖 = 2 and (𝑖𝑖𝑖) 𝑎𝑖 = 4.

From Proposition 4.6.8, it follows that, for a small neighborhood 𝒱 of 𝑍0 in Ω𝑟, the
region 𝑀𝑍 = Σ𝑠(𝑍) ⊂ R2 (use the same previous change of coordinates) has exactly the
same configuration as 𝑀0, for each 𝑍 ∈ 𝒱 . Indeed, 𝑀𝑍 = 𝑅1(𝑍) ∪ · · · ∪ 𝑅𝑙(𝑍), where
𝑅𝑖(𝑍) is a region with the same characteristics as 𝑅𝑖(𝑍0), i.e., 𝑅𝑖(𝑍) is a simple polygon
with 𝑎𝑖 vertices and the same number of holes as 𝑅𝑖(𝑍0) in its interior.

Also, for each fold-fold (vertex) 𝑞(𝑍0) of 𝑅𝑖(𝑍0), there exists a unique fold-fold of 𝑞(𝑍)
of 𝑅𝑖(𝑍) with the same visibility of 𝑞(𝑍0), which is sufficiently close to 𝑞(𝑍0).

Lema 4.7.1. There exists a homeomorphism ℎ𝑖
𝑍 : 𝑅𝑖(𝑍0) → 𝑅𝑖(𝑍) which preserves

the type of the singularity of the boundary and carries sliding orbits of 𝑍0 onto sliding
orbits of 𝑍, for 𝑖 = 1, · · · , 𝑙. In addition, ℎ𝑖

𝑍(𝑞𝑗(𝑍0)) = 𝑞𝑗(𝑍) for each 𝑞𝑗(𝑍0) ∈ 𝑅𝑖(𝑍0),
𝑗 = 1, · · · , 𝑛𝑓 , 𝑖 = 1, · · · , 𝑙.

Proof. Let 𝑅 be one of the regions 𝑅𝑖(𝑍0) and let 𝑍 ∈ 𝒱 .
If 𝑅 has no vertices, then 𝜕𝑅 is smooth and so there exists a diffeomorphism Ψ : 𝑅 →̃︀𝑅, where ̃︀𝑅 = 𝑅𝑖(𝑍). Thus, we construct a homeomorphism ̃︀ℎ : 𝑅 → 𝑅 between 𝑍0 and

Ψ*𝑍, via the classical Peixoto’s Theorem, and ℎ = Ψ ∘ ̃︀ℎ satisfies the properties of the
Lemma.

Now, for simplicity, assume that 𝑅 is a simple polygon with only two vertices 𝑞1 and
𝑞2, which has no holes. We stress that there is no loss of generality in this assumption,
since the following construction can be easily extended to any configuration of 𝑅.

Therefore, ̃︀𝑅 has two vertices ̃︀𝑞1 and ̃︀𝑞2 which are sufficiently near to 𝑞1 and 𝑞2,
respectively. See Figure 4.6.

Notice that 𝜕𝑅 = 𝐴1 ∪ 𝐴2, where 𝐴𝑖, 𝑖 = 1, 2, is an open arc with extrema 𝑞1 and 𝑞2
just composed by fold-regular and cusp-regular points of 𝑍0. Recall that, from Lemma
3.3.11, 𝐹𝑁

𝑍0 is transverse to 𝐴𝑖 at fold-regular points and it has a quadratic contact with 𝐴𝑖
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𝑞1

̃︀𝑞1

𝑞2

̃︀𝑞2

𝑅

̃︀𝑅

Figure 4.6: Persistence of the region 𝑅.

at cusp-regular points, 𝑖 = 1, 2. Hence, 𝐹𝑁
𝑍0 satisfies all hypotheses of Peixoto’s Theorem,

with exception of the points 𝑞1 and 𝑞2.
Now, we must clarify what happens around points 𝑞1 and 𝑞2, i.e., fold-fold points of

𝑍0. Let 𝑞 be either 𝑞1 or 𝑞2. From the description of the sliding dynamics around 𝑞 given
in Section 3.5.2, we obtain that under hypotheses 𝐹1 and 𝐹2, there exists a neighborhood
𝑉 of 𝑞 in R2, such that 𝐴𝑖 is transversal to 𝜕𝑉 and 𝐹𝑁

𝑍0 satisfies either one of the following:

I − (𝑖) 𝐹𝑁
𝑍0 is transversal to 𝜕𝑉 ∩𝑅, (𝑖𝑖) there exists a unique orbit Γ0 of 𝐹𝑁

𝑍0 departing
from 𝑞 and reaching 𝜕𝑉 ∩ 𝑅, and (𝑖𝑖𝑖) each orbit passing through another point of
𝑉 ∩𝑅 departs from an arc 𝐴𝑖, 𝑖 = 1, 2, and reaches 𝜕𝑉 ∩𝑅 at finite time.

II − (𝑖) 𝐹𝑁
𝑍0 is transversal to 𝜕𝑉 ∩ 𝑅, (𝑖𝑖) each orbit passing through a point of 𝑉 ∩ 𝑅

departs from (𝜕𝑉 ∩𝑅) ∪ (𝐴1 ∩𝑉 ) ∪ (𝐴2 ∩𝑉 ) and reaches 𝑞 at infinite positive time.

III − (𝑖) 𝐹𝑁
𝑍0 is transversal to 𝜕𝑉 ∩𝑅, with exception of a point 𝑥0 ∈ 𝜕𝑉 ∩ int(𝑅), where

𝐹𝑁
𝑍0 has a quadratic contact with 𝜕𝑉 ∩ 𝑅. (𝑖𝑖) Each orbit of 𝑉 ∩ 𝑅 either departs

from 𝐴1 and reaches 𝐴2 or it departs from 𝜕𝑉 and reaches 𝜕𝑉 .

IV − (𝑖) 𝐹𝑁
𝑍0 is transversal to 𝜕𝑉 ∩ 𝑅, (𝑖𝑖) there exists a Σ-separatrix (nodal type) Γ0 of

𝑞 which reaches 𝜕𝑉 ∩ 𝑅 at 𝑥0, and (𝑖𝑖) the orbit passing through another point of
𝑉 ∩𝑅 ∖ Γ0 either departs from 𝐴𝑖1 and reaches 𝜕𝑉 or it departs from 𝑞 and reaches
𝐴𝑖2 ∩ 𝜕𝑉 , {𝑖1, 𝑖2} = {1, 2}.

V − (𝑖) 𝐹𝑁
𝑍0 is transversal to 𝜕𝑉 ∩𝑅, with exception of a point 𝑥0 ∈ 𝜕𝑉 ∩ int(𝑅), where

𝐹𝑁
𝑍0 has a quadratic contact with 𝜕𝑉 ∩ 𝑅. (𝑖𝑖) There exist two separatrices (type

saddle) of 𝑞 which reaches 𝜕𝑉 at 𝑥1 and 𝑥2, respectively, and 𝑥0 is between 𝑥1 and
𝑥2. (𝑖𝑖𝑖) Each orbit through a point of 𝑉 ∩ 𝑅 either departs from 𝜕𝑉 and reaches
𝐴𝑖1 or it departs from 𝜕𝑉 and reaches 𝜕𝑉 or it departs from 𝐴𝑖2 and reaches 𝜕𝑉 ,
{𝑖1, 𝑖2} = {1, 2}.

See Figure 4.7. We remark that all situations 𝐼−𝑉 can happen also for negative time.
Let ̃︀𝑞 be the point ̃︀𝑞𝑖 which is near to 𝑞. Since 𝑍 is sufficiently near to 𝑍0, it follows

that ̃︀𝑞 ∈ 𝑉 and 𝐹𝑁
𝑍 also satisfies the same property of 𝐹𝑁

𝑍0 (𝐼 − 𝑉 ) in 𝑉 . Hence it is
straightforward to construct a homeomorphism ℎ𝑞 : 𝑉 ∩𝑅 → 𝑉 ∩ ̃︀𝑅, such that ℎ𝑞(𝑞) = ̃︀𝑞,
which carries sliding orbits of 𝑍0 onto sliding orbits of 𝑍, see [24, 44, 97, 102].
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Γ0

𝜕𝑉

(I) (II) (III)

𝑥0

𝐴1

𝐴2

(IV)

Γ0

(V)

𝑥1

𝑥0

𝑥2

Figure 4.7: Description of the sliding dynamics near a fold-fold point: I-V.

Notice that 𝑣 ∈ 𝜕𝑉 ∩ 𝐴𝑖 is a vertex point in the sense of [83] (it is not a fold-fold
point of 𝑍0), and it satisfies that 𝐹𝑁

𝑍0 is transversal to both 𝜕𝑉 and 𝐴𝑖 at 𝑣. Therefore
𝐹𝑁

𝑍0 satisfies condition B5 of [83].
In addition, we reduce the neighborhoods 𝑉 of each fold-fold point of 𝑅 in order that

there is no trajectory of 𝐹𝑁
𝑍0 connecting two vertices. Hence it also satisfies condition B6

of [83].

ℎ𝑞1

𝑞1

𝑉1

ℎ𝑞2

𝑞2

𝑉2

𝑅 ∖𝑊

Figure 4.8: Construction of the homeomorphism ℎ𝑖
𝑍 using distinguished neighborhoods of

hyperbolic equilibrium points, hyperbolic periodic orbits, and quadratic tangency points
of 𝐹𝑁

𝑍0 in 𝑅 ∖𝑊 obtained via Peixoto’s Theorem.

After doing this process for the points 𝑞1 and 𝑞2, we obtain two neighborhoods 𝑉1 and
𝑉2 as above, let 𝑊 = 𝑉1 ∪ 𝑉2. Since 𝑍0 satisfies the hypotheses from Peixoto’s Theorem
inside 𝑅 ∖ 𝑊 , we use the same methods as used in [83] to extend the homeomorphisms
ℎ𝑞1 and ℎ𝑞2 into a homeomorphism ℎ𝑍 : 𝑅 → ̃︀𝑅 satisfying the properties of the claim. See
Figure 4.8.

Thus, we use all the homeomorphisms ℎ𝑖
𝑍 to construct a homeomorphism ℎ𝑠

𝑍 : 𝑀0 →
𝑀𝑍 . Now, returning to the initial coordinates of Σ − {𝑝0}, we obtain a homeomorphism̃︁ℎ𝑠

𝑍 : Σ𝑠(𝑍0) → Σ𝑠(𝑍). Hence, considering any extension ℎ𝑍 : Σ → Σ of ̃︁ℎ𝑠
𝑍 , we conclude

that 𝑍0 ∈ Ω𝑟
𝑆𝐿𝑅.
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Therefore, Σ0(𝑆𝐿𝑅) ⊂ Ω𝑟
𝑆𝐿𝑅. Now, if 𝑍0 does not satisfy some condition of Σ0(𝑆𝐿𝑅),

then we conclude that 𝑍0 /∈ Ω𝑟
𝑆𝐿𝑅 (see [44, 82, 83]). It follows that Ω𝑟

𝑆𝐿𝑅 = Σ0(𝑆𝐿𝑅).
Since Σ0(𝑆𝐿𝑅) is a residual set in Ω𝑟, the proof is complete.

Remark 4.7.1. From the proof of Theorem J, it follows that the construction of the
equivalence ℎ : Σ → Σ around fold-fold points can be made in several ways. In particular,
any local equivalence ℎ𝑞 at a fold-fold 𝑞 can extend itself into a sliding equivalence ℎ : Σ →
Σ of Definition 4.3.1.

4.8 Proof of Theorem K
Let 𝑍0 ∈ Σ0, we shall prove that 𝑍0 is Σ-block structurally stable. If 𝑍0 has no

Σ-blocks, then 𝑍0 ∈ Ω𝑟
Σ (see Proposition 4.4.3). Let 𝑈0 be a Σ-block of 𝑍0.

If 𝑈0 = Σ, then condition S of Σ0 allows us to find a neighborhood 𝒱 of 𝑍0 such that,
for each 𝑍 ∈ 𝒱 , there exists a homeomorphism ℎ𝑠 : Σ → Σ carrying sliding orbits of 𝑍0
onto sliding orbits of 𝑍 preserving the tangential singularities. We follow the same idea as
the proof of Proposition 4.4.3 to construct a neighborhood 𝑈 of Σ and a homeomorphism
ℎ : 𝑈 → 𝑈 satisfying Definition 4.3.2 (𝑁 = Σ), such that ℎ|Σ= ℎ𝑠, and conclude that
𝑍0 ∈ Ω𝑟

Σ.
Finally, assume that 𝑈0 ̸= Σ. It implies that 𝑆𝑍0 ̸= ∅. Hence, 𝜕𝑈0 is a reunion of circles

of 𝑆𝑋0 and 𝑆𝑌0 intersecting themselves transversally at fold-fold points of 𝑍0 (Proposition
4.6.7).

From Proposition 4.6.8, there exist neighborhoods 𝒱0 of 𝑍0 in Ω𝑟 and 𝑉0 (compact) of
𝑈0 in Σ, such that 𝜕𝑉0 ⊂ Σ𝑐(𝑍0), and each 𝑍 ∈ 𝒱0 has a unique Σ-block 𝑈 in 𝑉0 with the
same characteristics of 𝑈0, i.e., 𝑍 ∈ 𝒱 satisfies the following properties:

(i) 𝑈0 and 𝑈 have the same number of cusp-regular and fold-fold points of the same
type;

(ii) There exists 𝜀0 > 0, such that, if 𝑝 ∈ 𝜕𝑈 is either a cusp-regular or a fold-fold
point, then there exists a unique point 𝑝0 ∈ 𝜕𝑈0 of the same type of 𝑝 such that
|𝑝− 𝑝0|< 𝜀0;

(iii) If 𝑝1
0 and 𝑝2

0 are points of 𝜕𝑈0 connected by a curve Γ0 of either visible or invisible
fold-regular points contained in 𝜕𝑈0, then there exist points 𝑝1 and 𝑝2 of 𝜕𝑈 of the
same type of 𝑝1

0 and 𝑝2
0, respectively, and a unique curve Γ ⊂ 𝜕𝑈 of fold-regular

points of the same type of Γ0, such that 𝑑(Γ,Γ0) < 𝜀0 (𝑑 denotes the Hausdorff
distance).

Notice that, it implies that both 𝑈0 and 𝑈 have the same circles configuration, for
each 𝑍 ∈ 𝒱0. Given 𝑍 ∈ 𝒱 , we shall construct a semi-local equivalence between 𝑍0 and
𝑍 at 𝑈0.

4.8.1 Local Description of the Invariant Manifolds of Elemen-
tary Tangential Singularities

Firstly, we use Vishik’s Normal Form Theorem 3.3.5 to distinguish the local invariant
manifolds of elementary tangential singularities.
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Fold-Regular

Let 𝑝0 be a fold-regular point of 𝑍0 in 𝜕𝑈0, and without loss of generality, assume that
𝑝0 ∈ 𝑆𝑋0 .

From Theorem 3.3.5, there exists a diffeomorphism Ψ : 𝑉𝑝0 → 𝑅𝑝0 (denote the coordi-
nate functions of Ψ by (𝑥Ψ, 𝑦Ψ, 𝑧Ψ)) such that Ψ(𝑝0) = 0⃗, 𝑉𝑝0 is a compact neighborhood
of 𝑝0 in 𝑀 , 𝑅𝑝0 = [−𝑙(𝑝0), 𝑙(𝑝0)] × [−𝐻(𝑝0), 𝐻(𝑝0)]2 ⊂ R3, for some 𝐻(𝑝0), 𝑙(𝑝0) > 0,
𝑓(𝑥Ψ, 𝑦Ψ, 𝑧Ψ) = 𝑧Ψ and the orbit through a point 𝑝 ∈ 𝑉𝑝0 of 𝑋0 is carried into the orbit
of ̃︂𝑋0(𝑥, 𝑦, 𝑧) = (0, 1, 𝜉𝑦) passing through Ψ(𝑝), where 𝜉= sgn(𝑋2

0𝑓(𝑝0)).
Notice that 𝑙(𝑝0) can be taken small enough such that 𝑌0𝑓(𝑞) ̸= 0, for each 𝑞 ∈ 𝑉𝑝0 .

The flow of ̃︂𝑋0 is given by

𝜙̃︁𝑋0
(𝑡;𝑥0, 𝑦0, 𝑧0) =

(︃
𝑥0, 𝑡+ 𝑦0, 𝜉

(𝑡+ 𝑦0)2

2 + 𝑧0 − 𝜉
𝑦2

0
2

)︃
,

Firstly, consider 𝜉 > 0 and notice that ̃︂𝑋0 is not transverse to the sides of 𝑅𝑝0 ∩ 𝑀+

only at the fold-regular lines 𝐿(𝛼) = {(𝑥, 𝑦, 𝑧); |𝑥|≤ 𝑙(𝑝0), 𝑦 = 0, 𝑧 = 𝛼}, 𝛼 = 0, 𝐻(𝑝0),
and sgn(̃︂𝑋0

2
𝑓(𝑝)) =sgn(̃︂𝑋0

2
𝑓(𝑝0)), for each 𝑝 ∈ 𝐿(0) ∪ 𝐿(𝐻(𝑝0)).

Now, the trajectory of ̃︂𝑋0 through (𝑥, 0, 0) ∈ 𝐿(0) reaches 𝑧 = 𝐻(𝑝0) at the points
𝑥± =

(︁
𝑥,±

√︁
2𝐻(𝑝0), 𝐻(𝑝0)

)︁
, when 𝑡 = ±

√︁
2𝐻(𝑝0), respectively. Choosing 𝐻(𝑝0) suffi-

ciently small, it follows that 𝑥± ∈ 𝑅𝑝0 , for every 𝑥 ∈ 𝐿(0).
In addition, using the Flow Box Theorem, we reduce 𝐻(𝑝0) and find a diffeomorphism

𝛷 : 𝑅𝑝0 ∩𝑀− → 𝑅𝑝0 ∩𝑀− such that 𝛷|𝑧=0= Id and the orbit of 𝑌0 through 𝑝 ∈ 𝑅𝑝0 ∩𝑀−

is carried onto the orbit of ̃︁𝑌0(𝑥, 𝑦, 𝑧) = (0, 0, 1) passing through 𝛷(𝑝). Considering the
homeomorphism Θ : 𝑉𝑝0 → 𝑅𝑝0 (which is a piecewise diffeomorphism) given by

Θ(𝑝) =
{︃

Ψ(𝑝) if 𝑝 ∈ 𝑀+,
Ψ ∘ 𝛷(𝑝) if 𝑝 ∈ 𝑀−,

we define the local 2-dimensional invariant manifold of 𝑋0 at 𝑝0 as:

𝑊𝑝0 = Θ−1
(︁
𝑊+

𝑝0 ∪𝑊−
𝑝0

)︁
,

where𝑊+
𝑝0 =

{︁
(𝑥, 𝑡, 𝑡2/2); |𝑥|≤ 𝑙(𝑝0), |𝑡|≤

√︁
2𝐻(𝑝0))

}︁
, and𝑊−

𝑝0 = {(𝑥, 0, 𝑡); |𝑥|≤ 𝑙(𝑝0), −𝐻(𝑝0) ≤
𝑡 ≤ 0}.

Remark 4.8.1. Notice that Θ preserves the foliation generated by 𝑍0 and ̃︁𝑍0 = (̃︂𝑋0,̃︁𝑌0),
however it does not preserve the orientation of the orbits.

It is worth mentioning that, since 𝑊𝑝0 depends exclusively on the flow of 𝑋0 and 𝑌0
and on the tangential curve of 𝑋0 with Σ, it follows that the existence of 𝑊𝑝0 does not
depend on Θ. Although, Θ provides a complete characterization of 𝑊𝑝0.

In this case, the foliation ℱ generated by 𝑍0 in int(𝑉𝑝0) is characterized in the following
way. Let 𝑁𝑝 be the normal vector of Σ at 𝑝 and consider the 2-dimensional manifold
Λ = {𝑝+𝜆𝑁𝑝; 𝜆 > 0, 𝑝 ∈ 𝑆𝑍0}∩𝑉𝑝0 . Thus, each leaf of ℱ∖𝑊𝑝0 is either a piecewise smooth
curve which passes transversally through a point of Σ and intersects 𝜕𝑉𝑝0 transversally
in two points (one in 𝑀+ and another in 𝑀−) or it is a smooth curve which passes
transversally through a point in Λ and intersects 𝜕𝑉𝑝0 in two points of 𝑀+. See Figure
4.9.
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𝑅𝑝0

Σ

𝐿(0)

𝐿(𝐻(𝑝0))

Figure 4.9: The local invariant manifold 𝑊𝑝0 for a visible fold-regular point.

Now, if 𝜉 < 0, we define the same objects by changing the roles of 𝐿(0) and 𝐿(𝐻(𝑝0)),
and we consider 𝑊−

𝑝0 = {(𝑥, 𝑦, 𝑡); |𝑥|≤ 𝑙(𝑝0), −𝐻(𝑝0) ≤ 𝑡 ≤ 0, 𝑦 = 0 or 𝑦 = ±
√︁

2𝐻(𝑝0)}.
Also, in this case, the leaves of the foliation passing through Λ are also piecewise smooth,
intersect 𝜕𝑉𝑝0 at two points of 𝑀− and intersect Σ at two points, which are in opposite
sides in relation to 𝑆𝑍0). See Figure 4.10.

𝑅𝑝0

Σ

𝐿(0)

𝐿(𝐻(𝑝0))

Figure 4.10: The local invariant manifold 𝑊𝑝0 for an invisible fold-regular point.

Remark 4.8.2. Notice that, if 𝑋0 ∈ 𝜒𝑟 is a smooth vector field defined in Σ+ having a
fold point at 𝑝0, then we construct the local invariant manifold of 𝑋0 at 𝑝0 in the same
way.

Cusp-Regular

Let 𝑝0 be a cusp-regular point of 𝑍0 in 𝜕𝑈0, and assume that 𝑝0 ∈ 𝑆𝑋0 .
Following the same arguments and notation as used in Section 4.8.1, there exists a

diffeomorphism Ψ(𝑝0) = 0⃗, 𝑉𝑝0 such that 𝑓(𝑥Ψ, 𝑦Ψ, 𝑧Ψ) = 𝑧Ψ and the orbit of 𝑋0 through
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a point 𝑝 ∈ 𝑉𝑝0 is carried into the orbit of ̃︂𝑋0(𝑥, 𝑦, 𝑧) = (1, 0, 𝜉𝑥2 + 𝑦) passing through
Ψ(𝑝), where 𝜉= sgn(𝑋3

0𝑓(𝑝0)) in this case.
We only consider 𝜉 = 1, since the invariant manifolds obtained when 𝜉 = −1 are

completely analogous. The flow of ̃︂𝑋0 is given by

𝜙̃︁𝑋0
(𝑡;𝑥0, 𝑦0, 𝑧0) =

(︃
𝑡+ 𝑥0, 𝑦0,

(𝑡+ 𝑥0)3

3 + 𝑦0𝑡+ 𝑧0 − 𝑥3
0

3

)︃
.

Now, ̃︂𝑋0 is not transverse to the sides of 𝑅𝑝0 ∩ 𝑀+ only at the points of the curves
𝐿(𝛼) = {(𝑥, 𝑦, 𝑧); |𝑥|≤

√︁
𝑙(𝑝0), 𝑦 = −𝑥2, 𝑧 = 𝛼}, 𝛼 = 0, 𝐻(𝑝0). In addition,

sgn(̃︂𝑋0
2
𝑓((𝑥, 𝑦, 𝑧))) = sgn(𝑥),

for each (𝑥, 𝑦, 𝑧) ∈ 𝐿(0) ∪ 𝐿(𝐻(𝑝0)) with 𝑥 ̸= 0, and (0, 0, 𝛼) are cusp points of ̃︂𝑋0 such
that sgn(̃︂𝑋0

3
𝑓((0, 0, 𝛼))) = 1.

Let, 𝑝𝑥 = (𝑥,−𝑥2, 0) be a visible fold-regular point of 𝐿(0) (𝑥 > 0), then the orbit
through 𝑝𝑥 is given by 𝛾𝑥(𝑡) = (𝑡 + 𝑥,−𝑥2, (𝑡 + 𝑥)3/3 − 𝑥2𝑡 − 𝑥3/3). In particular, if
ℎ0 = 3/4𝐻(𝑝0) > 0, then 𝛾ℎ0 intersects 𝑧 = 𝐻(𝑝0) at (−ℎ0,−ℎ2

0, 𝐻(𝑝0)) ∈ 𝐿(𝐻(𝑝0))
(take 𝐻(𝑝0) such that ℎ0 <

√︁
𝑙(𝑝0)). Also, notice that 𝛾ℎ0 is the orbit through the visible

fold-regular point (−ℎ0,−ℎ2
0, 𝐻(𝑝0)).

In addition, 𝛾ℎ is tangent to the planes 𝑧 = 0 and 𝑧 = 4/3ℎ3 = 𝛿ℎ and it is contained
in the plane 𝑦 = −ℎ2. Also, 𝛾ℎ intersects 𝑧 = 0 at the points (ℎ,−ℎ2, 0) and 𝑃ℎ =
(−2ℎ,−ℎ2, 0), and it intersects 𝑧 = 𝛿ℎ at 𝑄ℎ = (−ℎ,−ℎ2, 𝛿ℎ) and (2ℎ,−ℎ2, 𝛿ℎ). Notice
that, 𝑃ℎ, 𝑄ℎ → 0⃗ and 𝛿ℎ → 0 as ℎ → 0. Therefore, it presents the behavior illustrated in
Figure 4.11. Consider 𝑊+

𝑝0(0) = {𝛾𝑥(𝑡); 0 ≤ 𝑥 ≤
√︁
𝑙(𝑝0), 𝑡 ∈ 𝐼𝑥 = [𝑇−(𝑥), 𝑇+(𝑥)]}, where

𝐼𝑥 is the maximal interval such that 𝛾𝑥(𝐼𝑥) ⊂ 𝑅𝑝0 .
Changing the roles of 𝑧 = 0 and 𝑧 = 𝐻(𝑝0), we define an analogous 2-manifold

𝑊+
𝑝0(𝐻(𝑝0)) = {𝜙̃︁𝑋0

(𝑡;𝑥,−𝑥2, 𝐻(𝑝0)); −
√︁
𝑙(𝑝0) ≤ 𝑥 ≤ 0, 𝑡 ∈ 𝐼𝑥 = [𝑇−(𝑥), 𝑇+(𝑥)]}, where

𝐼𝑥 is the maximal interval such that 𝜙̃︁𝑋0
(𝐼𝑥;𝑥,−𝑥2, 𝐻(𝑝0)) ⊂ 𝑅𝑝0 . See Figure 4.12.

Notice that, 𝑊+
𝑝0(0) and 𝑊+

𝑝0(𝐻(𝑝0)) intersect themselves transversally at the curve
𝛾ℎ0 . Let 𝑊+

𝑝0 = 𝑊+
𝑝0(0) ∪𝑊+

𝑝0(𝐻(𝑝0)) and consider 𝑆 = (𝑊𝑝0 ∪ 𝑆̃︁𝑋0
) ∩ {𝑧 = 0}, hence the

invariant manifold 𝑊−
𝑝0 is constructed as in the fold-regular case, but herein we take it as

the image of the flow of ̃︁𝑌0 through 𝑆, for −𝐻(𝑝0) ≤ 𝑡 ≤ 0.
In this case, the local 2-dimensional invariant manifold of 𝑍0 at 𝑝0 is given by 𝑊𝑝0 =

Θ−1
(︁
𝑊+

𝑝0 ∪𝑊−
𝑝0

)︁
.

In Figure 4.13, the foliation of 𝑍0 in 𝑅𝑝0 is described. For simplicity, we characterize
it on each plane 𝑦 = 𝑘, where −𝑙(𝑝0) ≤ 𝑘 ≤ 𝑙(𝑝0). Notice that 𝑅𝑝0 is partitioned in
regions where the behavior is of type either transversal or visible fold-regular or invisible
fold-regular, and the formal description of this regions can be found in Section 4.8.1.

Fold-Fold

If 𝑝0 is a fold-fold point of 𝑍0, then we construct the invariant manifolds of 𝑋0 and 𝑌0
for the fold-lines of 𝑋0 and 𝑌0, respectively, by following Section 4.8.1 (see Remark 4.8.2).
The resultant manifolds can be seen in Figure 3.2 for each type of fold-fold singularity.

In addition, if 𝑝0 satisfies the conditions of local structural stability at 𝑝0, then The-
orems 3 and 4 in [44] allows us to construct a homeomorphism ℎ𝑝0 : 𝑉𝑝0 → 𝑉𝑝0 which
carries orbits of 𝑍0 onto orbits of 𝑍.
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ℎ > ℎ0

𝑃ℎ

𝑄ℎ

𝛾ℎ

𝑃ℎ0

𝑄ℎ0

𝛾ℎ0

𝛾0

𝛾0

𝑃ℎ

𝑄ℎ

𝛾ℎ

ℎ = ℎ0

ℎ0 < ℎ < 0 ℎ = 0

𝑧 = 𝛿ℎ

𝑧 = 𝛿ℎ0

𝑧 = 𝛿ℎ

𝑅𝑝0

𝐿(𝐻(𝑝0))

𝐿(0)

Σ

𝛾ℎ0

𝑥

𝑦
𝑧

Figure 4.11: The local invariant manifold 𝑊+
𝑝0(0) for a cusp point and its description in

the slice 𝑦 = −ℎ2 of 𝑅𝑝0 .

Also, notice that, all trajectories outside the local invariant manifolds intersect 𝜕𝑉𝑝

transversally, and if we consider a neighborhood 𝑉 of Σ in 𝑀 sufficiently small, an orbit
contained in 𝑉 can intersect Σ more than one time only inside neighborhoods 𝑉𝑝 of elliptic
fold-fold points.

Therefore, there exist only local first return maps in 𝑉 , and since ℎ𝑝0 is a local equiva-
lence between 𝑍0 and 𝑍 at 𝑝0, we extend it into a semi-local equivalence between 𝑍0 and
𝑍 at Σ. Hence, local first returns are not an obstruction to have semi-local structural
stability at Σ.

4.8.2 Existence of the Invariant Manifold of a Tangency Set
Now, we must show that the local invariant manifolds of the elementary tangential

singularities give rise to global invariant manifolds of 𝑆𝑍0 defined in a neighborhood Λ of
the entire Σ in 𝑀 . The process mainly consists in the use of the compactness of Σ to
concatenate the local manifolds in a smooth way.

Remark 4.8.3. The term global invariant manifold is used to emphasize that it is defined
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𝑥

𝑦
𝑧

ℎ < −ℎ0
̃︁𝑃ℎ

̃︁𝑄ℎ

̃︁𝛾ℎ

̃︂𝑃ℎ0

̃︂𝑄ℎ0

̃︁𝛾ℎ0

̃︀𝛾0

̃︀𝛾0

̃︁𝑃ℎ

̃︁𝑄ℎ

̃︁𝛾ℎ

ℎ = −ℎ0

−ℎ0 < ℎ < 0 ℎ = 0

𝑧 = ̃︀𝛿ℎ 𝑧 = ̃︁𝛿ℎ0 = 0

𝑧 = ̃︀𝛿ℎ

𝑅𝑝0

𝐿(𝐻(𝑝0))

𝐿(0)

Σ

𝛾ℎ0

Figure 4.12: The local invariant manifold 𝑊+
𝑝0(𝐻(𝑝0)) for a cusp point and its description

in the slice 𝑦 = −ℎ2 of 𝑅𝑝0 . We denote by ̃︁𝑃ℎ, ̃︂𝑄ℎ and ̃︁𝛾ℎ the elements analogous to
𝑃ℎ, 𝑄ℎ and 𝛾ℎ in Figure 4.11, respectively.

in a neighborhood of the entire Σ. In fact, it is a collection of local invariant manifolds.

Let 𝑁𝑝 be the normal vector of Σ at 𝑝 pointing toward Σ. Consider the following
𝜆-lamination of Σ

Σ𝜆 = {𝑝+ 𝜆𝑁𝑝; 𝑝 ∈ Σ},

where 𝜆 ∈ R.
Let 𝑝 ∈ Σ, since 𝑍0 ∈ Ξ0, 𝑝 is either a regular-regular or a fold-regular or a cusp-

regular or a fold-fold point of 𝑍0. Hence, let 𝑉𝑝 be a compact neighborhood of 𝑝 in 𝑀
such that:

(i) If 𝑝 is regular-regular, then each 𝑞 ∈ Σ ∩ 𝑉𝑝 is a regular-regular point of 𝑍0 and
𝑋0, 𝑌0 are transverse to 𝜕𝑉𝑝;

(ii) If 𝑝 is an elementary tangential singularity, consider the neighborhood 𝑉𝑝 given in
Section 4.8.1.
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𝑦 < −ℎ2
0

𝑊 +
𝑝0 (𝐻(𝑝0))

𝑊 +
𝑝0 (0)

𝑦 = −ℎ2
0

𝑊 +
𝑝0 (𝐻(𝑝0)) = 𝑊 +

𝑝0 (0)𝑊 +
𝑝0 (0)

−ℎ2
0 < 𝑦 < 0

𝑊 +
𝑝0 (𝐻(𝑝0))

𝑊 +
𝑝0 (0)

𝑦 = 0

𝑊 +
𝑝0 (𝐻(𝑝0))

𝑊 +
𝑝0 (0)

𝑦 > 0

Regular Sector

Invisible Fold Sector

Visible Fold Sector

Figure 4.13: Foliation generated by 𝑍0 in the slices 𝑦 = 𝑘 (𝑘 is a constant) of the neigh-
borhood 𝑅𝑝0 ∩ {𝑧 ≥ 0}.

From compactness of Σ, we find a finite subcover 𝑉 = 𝑉𝑝1 ∪ · · ·𝑉𝑝𝑛 of Σ. Thus, there
exists 𝜆* > 0 such that Λ = ∪𝜆∈[−𝜆*,𝜆*]Σ𝜆 is contained in 𝑉 .

Notice that, for each 𝑝 ∈ 𝑆𝑍0 , the laminations Σ±𝜆* ∩ 𝑉𝑝 correspond to the planes
𝑧 = ±𝑘 in the neighborhood 𝑅𝑝, for some 𝑘 > 0. For simplicity, we assume 𝐻(𝑝) = 𝑘.

Since Λ is constructed by laminations of Σ in the direction of the normal vectors of
Σ, it follows that the same tangency set 𝑆𝑍0 persists on 𝜕Λ. See Figure 4.14.

Σ−𝜆*

Σ
Σ𝜆*

Figure 4.14: Example of neighborhood Λ, where 𝑆𝑍0 = {(𝑥, 𝑦, 0); 𝑥2 + 𝑦2 = 1}. The
distinguished points represent cusp points of 𝑋0.

Recall that the local invariant manifolds of an elementary tangential singularity 𝑝0
depends only on the tangency set of ̃︁𝑍0 with 𝑧 = 0, 𝑧 = 𝐻(𝑝) and 𝑧 = −𝐻(𝑝). Therefore,
they depend intrinsically on the tangency set of 𝑍0 with Σ and Σ±𝜆* .

It is enough to prove that all the local invariant manifolds characterized in Section
4.8.1 extend themselves to global invariant manifolds of 𝑆𝑍0 .
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In order to clarify these ideas, we explain how the local invariant manifolds originate
a global invariant manifold when 𝑆𝑍0 = 𝑆𝑋0 , and 𝑆𝑋0 is a connected set composed by
fold-regular points and two cusp-regular points.

Let 𝑝, 𝑞 be the cusp-regular points of 𝑍0, therefore 𝑆𝑋0 is composed by two arcs 𝐴1
and 𝐴2 with extrema 𝑝, 𝑞, such that the fold-regular points of 𝐴1 ∖{𝑝, 𝑞} (resp. 𝐴2 ∖{𝑝, 𝑞})
are visible (resp. invisible).

At each point 𝑝 ∈ 𝐴1, consider the neighborhoods 𝑉𝑝 found in Section 4.8.1. From
compactness of 𝐴1, a finite number of them covers 𝐴1, say it 𝑉1, · · ·, 𝑉𝑛. By connectedness,
they intersect each other at least in one point. See Figure 4.15.

𝑉1 𝑉𝑛

𝐴1

𝐴2

𝑝 𝑞

Figure 4.15: Arcs 𝐴1 and 𝐴2 of 𝑆𝑍0 .

Now, in each 𝑉𝑖, the local manifold is given by the image of the flow 𝜙𝑋0(𝑡; 𝑝), with
𝑇 𝑖

−(𝑝) ≤ 𝑡 ≤ 𝑇 𝑖
+(𝑝), where 𝑇 𝑖

−(𝑝) < 0 < 𝑇 𝑖
+(𝑝) and 𝑝 ∈ 𝐴1 ∩ 𝑉𝑖. Let 𝑞 ∈ 𝐴1 ∩ int(𝑉𝑖 ∩ 𝑉𝑗),

and restrict the values of 𝑡 to the interval with extrema 𝑇+(𝑞) = min{𝑇 𝑖,𝑗
+ (𝑞)} and 𝑇−(𝑞) =

min{𝑇 𝑖,𝑗
− (𝑞)}. It is enough to reduce the heights of the neighborhoods 𝑅𝑖 to concatenate

the local manifolds. Repeating this process, we extend the manifolds to the arc 𝐴1
obtaining 𝑊+

1 .
Notice that, in the neighborhoods 𝑉1 and 𝑉𝑛, we have cusp-regular points, therefore,

the invariant manifold in 𝑉2 ∪ · · · ∪ 𝑉𝑛−1 concatenates with the local invariant manifolds
of the cusp-regular points having visible fold-regular points.

The construction of the global manifold of the arc 𝐴2 is done in an analogous way.
Notice that, in this case, the concatenation has to be done in the visible fold-regular
points at the lamination. Following this process, we obtain the global invariant manifold
𝑊+

2 (see Figure 4.16).

4.8.3 Construction of the Homeomorphism
Finally, we construct the semi-local equivalence between 𝑍0 and 𝑍 at 𝑈0. Firstly,

define ℎ : 𝑈0 → 𝑈 by using Theorem J.
Consider the neighborhood Λ of the previous section. From Remark 4.7.1, if 𝑝0 ∈ 𝜕𝑈0

is a fold-fold singularity, then we extend ℎ into a neighborhood 𝑊𝑝0 = 𝑉𝑝0 ∩ Λ, i.e.
ℎ : 𝑊𝑝0 → 𝑊𝑝0 through the remarks in Section 4.8.1.

Since ℎ carries the tangential singularities of 𝑍0 onto the tangential singularities of 𝑍
of the same type, then ℎ carries 𝜕𝑈0 onto 𝜕𝑈 . Therefore, we use the flows of 𝑍0 and 𝑍
to carry the global invariant manifolds of 𝑍0 onto the global invariant manifolds of 𝑍.

Recall that, outside the global manifolds, the flows of 𝑍0 and 𝑍 are transversal to 𝜕Λ.
Consider any extension of ℎ into a small compact neighborhood 𝑊 of 𝑈0 ∪ 𝑈 in Σ.
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(a) (b)

Σ Σ

Figure 4.16: Global manifolds 𝑊+
2 (a) and 𝑊+

1 (b).

Let 𝑉 = {𝑝 + 𝜆𝑁𝑝; 𝑝 ∈ 𝑊, 𝜆 ∈ [−𝜆*, 𝜆*]}, then, we extend ℎ into 𝑉 through the
flow of 𝑍0 and 𝑍. In fact, the behavior of both piecewise smooth vector fields are trivial
outside global manifolds, and we use the local foliations characterized in Section 4.8.1 and
transversality arguments to do this extension (see [39, 44, 95, 97] for more details).

It follows from the construction that ℎ carries orbits of 𝑍0 onto orbits of 𝑍. Hence 𝑍0
is semi-local equivalent to 𝑍 at 𝑈0.

Conclusion of the Proof

We have shown that Σ0 ⊂ Ω𝑟
Σ. From Local Theory, it is easy to see that, if 𝑍0 /∈ Σ0

then 𝑍0 is not semi-locally structurally stable at Σ. Therefore, we have proven item (𝑖).
Items (𝑖𝑖) and (𝑖𝑖𝑖) of Theorem K follows directly from Corollary 4.1 in [44].

4.9 Conclusion and Further Directions
In this chapter, we have found necessary conditions for the structural stability in Ω𝑟.

First of all, remark that all the results stated in Section 4.5 hold for vector fields having a
compact oriented switching manifold Σ (without the simply connectedness assumption).
In fact, the proofs of Theorems J and K for Filippov systems having compact oriented
non-simply connected switching manifold Σ follow in the same way as those ones exhibited
here. For simplicity, we have considered Σ diffeomorphic to S2 just for technical reasons.

We highlight that the problem remains open for non-orientable switching manifolds.
In this case, even the definition of piecewise smooth vector fields is still not established.
It certainly presents lots of mathematical challenges.

The behavior of continuous piecewise smooth vector fields is trivial around the switch-
ing manifold, nevertheless they may present a completely non-trivial dynamics from the
global point of view. In light of this, the characterization of structural stability is a rather
challenging problem.

Finally, the most natural extension of this work is to study global continuations of
the invariant manifolds defined in Section 4.8.2. It originates applications in generic
bifurcation theory.
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Chapter 5
Quasi-Generic Loops in 3𝐷 Filippov Systems

Aiming to contribute to the characterization of structural stability of 3𝐷 Filippov
systems from a global point of view, we analyze a homoclinic-like loop at a fold-

regular singularity. We provide conditions on a piecewise smooth vector field to have a
loop which is robust in one-parameter families. Moreover, the basin of attraction at the
loop is computed as well as its bifurcation diagram.

5.1 Introduction
The study of global connections in smooth systems is a challenging problem which

has been extensively studied throughout the last decades due to its importance in the
understanding of the dynamics of a smooth vector field. In fact, once the singular elements
(singularities, limit cycles, etc.) of the system are detected, the dynamics of the system
inside a region is determined by the existence or not of global connections between them.

In the nonsmooth context, one finds new types of singular elements, such as the so-
called Σ-singularities (see Definition 1.1.5), and thus, it gives rise to an extensive class of
global connections which has no counterparts in the smooth context.

Therefore, in order to follow the Peixoto’s program to characterize the structurally
stable 3𝐷 Filippov systems from a global point of view, it is imperative to understand
non-local connections between generic Σ-singularities.

5.1.1 Historical Facts
In dimension 2, there are plenty of works dealing with global connections to Σ-

singularities of Filippov systems. In fact, homoclinic-like loops at a fold-regular singularity
have been studied in [67, 87], and in [40], the authors have described the bifurcation di-
agram of such connection. In [2], a review on such results is provided. Also, in [17], the
authors regularized the bifurcation diagram of this kind of connection. It is worth men-
tioning that, such loops appear in the unfolding of more degenerate phenomena, such as
the fold-saddle singularity studied in [21] and the homoclinic-like loop at a visible-visible
fold-fold singularity approached in [79].

As we have seen in Chapter 2, we provide a method to deal with Σ-polycycles in
planar system in a general scenario, and we also study the generic bifurcation of some
codimension 2 global connections to Σ-singularities. As far as we know, this topic has not
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been treated for 3𝐷 Filippov systems in the literature. So, with the recent development
of planar phenomena, it is natural to extend these studies to dimension 3.

5.1.2 Description of the Results
Now, we provide a roughly description of the results of this chapter. We consider global

connections involving fold-regular singularities in 3𝐷 Filippov systems. More specifically,
we present a class Λ1 of Filippov systems 𝑍0 having a homoclinic-like loop Γ0 at a fold-
regular singularity.

We prove that 𝑍0 ∈ Λ1 is generic in one-parameter families. It means that, given a 𝒞𝑟

family of Filippov systems 𝒵(𝜆), 𝜆 ∈ [−𝜀0, 𝜀0], such that 𝒵(0) = 𝑍0 ∈ Λ1, then any one-
parameter family ̃︀𝒵 sufficiently near to 𝒵 (in the 𝒞𝑟 topology) has a point 𝜆0 ∈ [−𝜀0, 𝜀0]
such that ̃︀𝒵(𝜆0) ∈ Λ1.

We provide the bifurcation diagram of 𝑍0 ∈ Λ1 around Γ0 under certain generic
conditions. Also, we compute the basin of attraction of Γ0. It is worth mentioning that,
the use of sliding features of 𝑍0 is crucial to obtain these results.

Finally, we introduce a notion of weak equivalence in Λ1 and we obtain a modulus of
stability which allows us to conclude that there are infinitely many different elements in
Λ1 under this equivalence relation.

This chapter is organized as follows. In Section 5.2 we discuss some scenarios where
a 3𝐷 Filippov system admits a global connection involving a fold-regular singularity. In
Section 5.3 we present the Filippov systems approached in this chapter and we state our
main results. Section 5.4 is devoted to present the necessary tools to prove our results. In
Section 5.5 we present some models realizing the bifurcation diagram presented in Section
5.3 in order to illustrate the result. Finally, in Section 5.6 we prove the main results stated
in Section 5.3.

5.2 A discussion on some global connections
Throughout this chapter, we consider Filippov systems defined in R3 with switching

manifold Σ = 𝑓−1(0), where 𝑓 : R3 → R is a 𝒞𝑟 function having 0 as a regular value (see
Chapter 1). Denote the set of such systems by Ω𝑟 = 𝜒𝑟 × 𝜒𝑟, where 𝜒𝑟 is the space of 𝒞𝑟

vector fields. Endow Ω𝑟 with the product topology.
Let 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 be a Filippov system having a visible fold-regular singularity

at 𝑝0 ∈ Σ (see Definition 3.3.7). Denote the flows of 𝑋0 and 𝑌0 by 𝜙𝑋0(𝑡; 𝑝) and 𝜙𝑌0(𝑡; 𝑝),
respectively. Assume that 𝑍0 satisfies the following set of global hypotheses (G):

(𝐺1) There exists 𝑇+ > 0 such that 𝑝+
0 = 𝜙𝑋0(𝑇+; 𝑝0) ∈ Σ;

(𝐺2) Γ+
0 = {𝜙𝑋0(𝑡; 𝑝0); 𝑡 ∈ (0, 𝑇+)} ⊂ 𝑀+ and 𝑋0 is transverse to Σ at 𝑝+

0 ;

(𝐺3) There exist a point 𝑞0 ∈ Σ and a regular orbit Γ𝑅
0 of 𝑍0 connecting 𝑝+

0 and 𝑞0.

Without loss of generality, assume that Γ𝑅
0 in (𝐺3) is a regular orbit of 𝑌0 contained

in 𝑀−. Using properties of a fold-regular singularity (see [104]) and the transversality
condition (𝐺2), we define the germs 𝒫+

0 : (Σ, 𝑝0) → (Σ, 𝑝+
0 ) and 𝒫−

0 : (Σ, 𝑝+
0 ) → (Σ, 𝑞0)

induced by the flows of 𝑋0 and 𝑌0, respectively (see Figure 5.1). Thus, consider

𝒫0 = 𝒫−
0 ∘ 𝒫+

0 , (5.2.1)

and notice that the restriction of 𝒫0 to Σ𝑐 is a first return map of 𝑍0 in Σ.
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𝒫+
0

𝑋0

𝑝0
𝑝1 𝑝2 𝑝+

0

𝑝+
0𝑞0

Σ

Σ

𝒫−
0

𝑌0

Figure 5.1: Action of the maps 𝒫+
0 and 𝒫−

0 .

Remark 5.2.1. Notice that, in Figure 5.1, the points 𝑝1 ̸= 𝑝2 have the same image
through 𝒫+

0 . We will see that 𝒫0 is a non-invertible 𝒞𝑟 map and its restriction to Σ𝑐 is a
𝒞𝑟 homeomorphism.

Since 𝑝0 is a visible fold-regular singularity, it follows that 𝑍0 has a (compact) 𝒞𝑟 curve
𝛾0 ⊂ Σ of visible fold-regular singularities containing 𝑝0 (see [104]). It follows that, 𝛾0 is
brought to a (compact) 𝒞𝑟 curve 𝜁0 ⊂ Σ by 𝒫0 such that 𝑞0 ∈ 𝜁0.

Also, still from Local Theory, the sliding vector field 𝐹𝑍0 of 𝑍0 is transverse to the
curve 𝛾0 anywhere, and there exists a neighborhood 𝑉0 of int(𝛾0) in Σ (with compact
closure) such that:

i) 𝑌0 is transverse to Σ at any point of 𝑉0;

ii) 𝛾0 divides 𝑉0 into two connected components, one contained in Σ𝑠 and the other one
contained in Σ𝑐;

iii) 𝐹𝑍0 is 𝒞𝑟-extended onto 𝑉0 (see Lemma 3.3.11).

See Figure 5.2.

𝛾0

𝑉0

Figure 5.2: Neighborhood 𝑉0 ⊂ Σ.

For our purposes, we assume that 𝜁0 ⊂ 𝑉0. Accordingly, we consider 𝒫0 : 𝑉0 → 𝑉0.
In this case, we distinguish the following situations: (a) 𝜁0 ⊂ Σ𝑠, (b) 𝜁0 ⊂ Σ𝑐, (c) 𝜁0 is
transverse to 𝛾0 at 𝑞0, and (d) 𝜁0 is tangent to 𝛾0 at 𝑞0 (see Figure 5.3).

Notice that configurations (a), (b) and (c) are robust in Ω𝑟. However, configuration
(d) is easily broken by small perturbations. In fact, the degree of degeneracy in case (d)
depends on the degree of contact between 𝛾0 and 𝜁0 at 𝑞0. The most degenerate situation
occurs when 𝛾0 = 𝜁0 (as shown in Figure 5.3).

Now, we discuss the possible dynamics concerning the robust situations (a), (b) and
(c).
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𝒫+
0

𝒫−
0

𝛾0 𝜁0

𝛾0𝜁0

𝛾0

Σ
Σ

𝜁0

𝛾0 = 𝜁0(𝑑)

(𝑐)

(𝑏)

(𝑎)

Figure 5.3: Relative positions between the curves 𝛾0 of fold-regular singularities and its
image 𝜁0 through the flow of 𝑍0: (a) 𝜁0 ⊂ Σ𝑠, (b) 𝜁0 ⊂ Σ𝑐, (c)𝛾0 t 𝜁0 and (d) 𝜁0 = 𝛾0.

5.2.1 Cases (a) 𝜁0 ⊂ Σ𝑠 and (b) 𝜁0 ⊂ Σ𝑐

If 𝜁0 ⊂ Σ𝑐, then the dynamics of 𝑍0 is trivial around the orbit connecting 𝑝0 and 𝑞0.
In fact, consider

i) a section Π+ at 𝑝0 such that Π+ is the restriction to 𝑀+ of a local transversal section
of 𝑋0 at 𝑝0 which intersects Σ at 𝛾0;

ii) a section Π− which consists on a neighborhood of 𝑝0 intersected with Σ𝑐;

iii) Π = Π+ ∪ Π−.

Thus, using the local structure of a fold-regular singularity (see [104]), we obtain that
all orbits of 𝑍0 in a neighborhood of 𝑝0 intersect Π. Also, for a neighborhood 𝑁0 of 𝑞0
contained in Σ𝑐, we construct a tubular flow box between Π and 𝑁0 along the orbits of
𝑋0 and 𝑌0 (see Figure 5.4).

Now, consider that 𝜁0 ⊂ Σ𝑠. As we have seen, each point 𝑝 ∈ 𝛾0 is brought to a point
𝒫0(𝑝) ∈ 𝜁0 through the flow of 𝑍0 (orbits of 𝑋0 and 𝑌0). Since 𝐹𝑍0 is regular in 𝑉0 and
transverse to 𝛾0, each point 𝑞 ∈ 𝜁0 reaches 𝛾0 at a unique point 𝜓*

0(𝑞) through a sliding
trajectory of 𝑍0. It defines the 𝒞𝑟 map

𝜓0 : 𝑝 ∈ 𝛾0 ↦ −→ 𝜓*
0(𝒫0(𝑝)) ∈ 𝛾0, (5.2.2)

which induces a dynamics in the fold curve 𝛾0. We refer to 𝜓0 as the fold line map
associated to 𝑍0.
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Π

𝑁0

Figure 5.4: Tubular flow of 𝑍0 between Π and 𝑁0.

In this case, the orbits of 𝑋0, 𝑌0 and 𝐹𝑍0 connect 𝛾0 to itself and they give rise to a
𝑍0-invariant manifold ℳ which is a piecewise-smooth 2𝐷-cylinder or a piecewise-smooth
Möbius strip, depending on the identification provided by 𝜓0. Also, the dynamics of 𝑍0
in ℳ is completely characterized by the dynamics of 𝜓0 in 𝛾0. Thus,

(𝑆𝑙𝑅) if 𝑝0 ∈ 𝛾0 is a regular point of 𝜓0, then the dynamics of 𝑍0 in ℳ is trivial. It means
that there are no minimal sets contained in ℳ;

(𝑆𝑙𝑆) if 𝑝0 ∈ 𝛾0 is a fixed point of 𝜓0, then 𝑍0 has a sliding connection Γ0 through 𝑝0
contained in ℳ (see Figure 5.5).

𝐴

𝐵

𝐴′

𝐵′

𝐴

𝐵

𝐵′

𝐴′

(𝑎) (𝑏)

ℳ
Γ0

ℳ
Γ0

Figure 5.5: A sliding connection Γ0 of 𝑍0 in ℳ where ℳ is a piecewise-smooth cylinder
(𝑎) or a piecewise-smooth Möbius strip (𝑏).

If (𝑆𝑙𝑆) is satisfied, then the sliding connection Γ0 of 𝑍0 can be persistent, depending
on the properties of 𝜓0 at 𝑝0. In fact, we mention the following cases.

i) If 𝑝0 is a hyperbolic fixed point of 𝜓0, then each 𝑍 ∈ Ω𝑟 nearby 𝑍0 presents a sliding
connection Γ near Γ0, in the Hausdorff distance, with the same stability of Γ0;

ii) If 𝑝0 is a fixed point of 𝜓0 of saddle-node type, i.e. |𝜓′
0(𝑝0)|= 1 and |𝜓′′

0(𝑝0)|≠ 1, then
𝑍0 belongs to a codimension one submanifold of Ω𝑟. A versal unfolding of 𝑍0 in Ω𝑟

around Γ0 is illustrated in Figure 5.6.
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𝛼 < 0 𝛼 = 0

Γ0

𝛼 > 0

Figure 5.6: A versal unfolding 𝑍𝛼 of 𝑍0 around Γ0 when conditions (𝑆𝑙𝑆) and (𝑖𝑖) are
satisfied (saddle-node bifurcation).

Remark 5.2.2. Observe that, if 𝑝0 is a fixed point of 𝜓0 having a higher degree of degen-
eracy, then 𝑍 ∈ Ω𝑟 nearby 𝑍0 presents complicated sliding features contained in ̃︁ℳ (which
is a 𝑍-invariant manifold nearby ℳ having the same topological type of ℳ) bifurcating
from Γ0.

5.2.2 Case (c): 𝜁0 and 𝛾0 are transverse at 𝑞0

Assume that 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 satisfies (G) and the following assumption

(T):𝜁0 ∩ 𝛾0 = {𝑞0} and 𝜁0 t 𝛾0 at 𝑞0.

If 𝑞0 ̸= 𝑝0, then for 𝑍 ≈ 𝑍0 (≈ stands for nearby), hypothesis (T) implies that there
exist curves in Σ, 𝛾 and 𝜁, analogous to 𝛾0 and 𝜁0, satisfying 𝜁 ∩ 𝛾 = {𝑞} for some 𝑞 ≈ 𝑞0
and 𝜁 t 𝛾 at 𝑞. Also, there exists 𝑝 ≈ 𝑝0 which is mapped to 𝑞 through the flow of 𝑍,
and 𝑞 ̸= 𝑝. It follows that the connection between 𝑝0 and 𝑞0 of 𝑍0 is persistent for 𝑍 ∈ Ω𝑟

nearby 𝑍0 (see Figure 5.7).

Γ0

𝑝0
𝑞0

Figure 5.7: A robust connection Γ0 of 𝑍0 between 𝑝0 and 𝑞0.

Now, if hypothesis

(H): 𝑝0 = 𝑞0,

is also satisfied, then 𝑍0 has a homoclinic-like loop Γ0 at 𝑝0 (see Figure 5.8). In contrast
to the previous case, this phenomenon is not persistent in Ω𝑟.
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Γ0

𝑝0

Figure 5.8: A homoclinic-like loop Γ0 of 𝑍0 at a fold-regular singularity 𝑝0.

5.3 Quasi-generic loops
Our aim is to describe the bifurcation diagram of vector fields 𝑍0 ∈ Ω𝑟 satisfying

hypotheses (G), (T), and (H) around its homoclinic-like loop Γ0 at 𝑝0 (see Figure 5.8),
and characterize the dynamical features arising from such connection.

Generally speaking, we prove that, under some constraints, such connection is generic
for one-parameter families in Ω𝑟. In what follows, we consider some classes of vector fields
in Ω𝑟 and we state our main results concerning this topic.

Consider 𝑍0 ∈ Ω𝑟 satisfying (G), (T), and (H), and recall that the sliding vector field
𝐹𝑍0 is defined in the entire neighborhood 𝑉0 (via extension) and it foliates 𝑉0 by curves
transverse to 𝛾0. In light of this, the fold line map 𝜓0 : 𝛾0 → 𝛾0 given in (5.2.2) is still
defined herein in the same way. Nevertheless, in this case, 𝜓0 is defined through orbits of
𝑋0, 𝑌0 and virtual sliding orbits of 𝑍0 for some points of 𝛾0.

In fact, remark that 𝑝0 splits the curve 𝛾0 into two connected components named 𝐶1
𝛾

and 𝐶2
𝛾 . Analogously, 𝑝0 splits 𝜁0 into 𝐶1

𝜁 and 𝐶2
𝜁 . Without loss of generality, assume that

𝐶1
𝛾 and 𝐶2

𝛾 are mapped onto 𝐶1
𝜁 and 𝐶2

𝜁 through the orbits of 𝑋0 and 𝑌0, respectively.
Now, one of the components of 𝜁0, say it 𝐶1

𝜁 , is contained in Σ𝑠 and the other one is
contained in Σ𝑐.

Thus, the points 𝑝 ∈ 𝛾0 and 𝜓0(𝑝) ∈ 𝛾0 are connected by an orbit of 𝑍0 if, and only
if 𝑝 ∈ 𝐶1

𝛾 (which is mapped onto 𝐶1
𝜁 ⊂ Σ𝑠 by orbits of 𝑍0). It follows that only the

restriction of 𝜓0 to 𝐶1
𝛾 describes the dynamics of 𝑍0.

Definition 5.3.1. Define Λ1 as the set of vector fields 𝑍0 ∈ Ω𝑟 such that

i) 𝑍0 satisfies hypotheses (G), (T) and (H);

ii) 𝐹𝑍0 is transverse to 𝜁0 at 𝑝0;

iii) The fold line map 𝜓0 : 𝛾0 → 𝛾0 induced by 𝑍0 has a hyperbolic fixed point at 𝑝0.

If 𝑍0 ∈ Λ1, then we say that 𝑍0 has a quasi-generic loop Γ0 at the fold-regular
singularity 𝑝0.

Remark 5.3.2. Throughout the text, we also refer to a quasi-generic loop at a fold-regular
singularity simply by quasi-generic loop.

In the result below, we show the robustness of quasi-generic loops in one-parameter
families of Filippov systems.
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Theorem L. Given 𝑍0 ∈ Λ1. There exist a solid torus 𝒜0 around Γ0, a neighborhood 𝒱0
of 𝑍0 in Ω𝑟 and a 𝒞𝑟 function 𝜁 : 𝒱0 → R, such that 𝜁(𝑍0) = 0, and 𝜁(𝑍) = 0 if, and only
if, 𝑍 has a unique quasi-generic loop Γ at a fold-regular singularity 𝑝 contained in 𝒜0.
Furthermore, 0 is a regular value of 𝜁, and thus Λ1 is a codimension one 𝒞𝑟-submanifold
of Ω𝑟.

Now, we distinguish the following situations

(Cyl): 𝜓0 preserves the connected components 𝐶1
𝛾 and 𝐶2

𝛾 of 𝛾0;

(Mob): 𝜓0 exchanges the connected components 𝐶1
𝛾 and 𝐶2

𝛾 of 𝛾0.

Define Λ𝐶
1 and Λ𝑀

1 as the subsets of Λ1 containing the Filippov systems 𝑍0 satisfying
(Cyl) and (Mob), respectively, and consider the cases

(N): The hyperbolic fixed point 𝑝0 of 𝜓0 is attractive;

(S): The hyperbolic fixed point 𝑝0 of 𝜓0 is repulsive.

Notice that, if 𝑍0 ∈ Λ𝐶
1 , then 𝛾0 self-connects through orbits of 𝑋0, 𝑌0, 𝐹𝑍0 and virtual

orbits of 𝐹𝑍0 as a topological cylinder. Nevertheless, if 𝑍0 ∈ Λ𝑀
1 , then 𝛾0 self-connects as

a topological Möbius strip. See Figure 5.9.

𝐴

𝐵

𝐴′

𝐵′

𝐴

𝐵

𝐵′

𝐴′

(𝑎) (𝑏)

Figure 5.9: Quasi-generic loop Γ0 of (𝑎) 𝑍0 ∈ Λ𝐶
1 and (𝑏) 𝑍0 ∈ Λ𝑀

1 .

It is worth mentioning that, if 𝑍0 ∈ Λ𝐶
1 , all the iterations of the fold line map 𝜓0

(defined in the fold line 𝛾0) captures the dynamics of 𝑍0, since 𝜓0(𝐶1
𝛾) ⊂ 𝐶1

𝛾 and thus
𝜓0|𝐶1

𝛾
defines a dynamical system in 𝐶1

𝛾 . Although, it does not hold when 𝑍0 ∈ Λ𝑀
1 , since

𝜓0(𝐶1
𝛾) ⊂ 𝐶2

𝛾 , which means that 𝜓0|𝐶1
𝛾

can not be iterated. In Section 5.4.4 below, we
discuss how to adapt the fold line map 𝜓0 to correctly describe the dynamics of 𝑍0 ∈ Λ𝑀

1
in 𝛾0.

In the remaining results of this section, we consider only vector fields 𝑍0 ∈ Λ𝐶
1 , in

order to provide an amenable analysis, nevertheless we believe that the same conclusions
hold for vector fields in Λ𝑀

1 through slight modifications.
The next result is devoted to identify minimal sets bifurcating from a quasi-generic

loop of a Filippov system 𝑍0 ∈ Λ𝐶
1 .

Theorem M. Let 𝑍0 ∈ Λ𝐶
1 having a quasi-generic loop Γ0 at a fold-regular singularity

𝑝0 ∈ Σ and consider the torus 𝒜0 given by Theorem L. If 𝒵 : (−𝜀, 𝜀) → Ω𝑟 is a one-
parameter 𝒞1 family such that 𝒵(0) = 𝑍0 and 𝒵 is transverse to Λ1, then the following
statements hold.
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1. If 𝑍0 satisfies condition (𝑁), then 𝒵(𝛾) has a unique closed connection Γ𝛾 in 𝒜0
which is a sliding cycle when 𝛾 < 0 and an attractive hyperbolic crossing limit cycle
when 𝛾 > 0, or vice-versa (see Figure 5.10).

2. If 𝑍0 satisfies condition (𝑆), then 𝒵(𝛾) has a unique hyperbolic crossing limit cycle
for either 𝛾 < 0 or 𝛾 > 0, and it has at most a unique sliding cycle in 𝒜0.

𝛾 = 0

Γ0

𝛾 < 0

Γ𝛾

𝛾 > 0

Γ𝛾

Figure 5.10: A versal unfolding of 𝑍0 ∈ Λ𝐶
1 satisfying (N) in Ω𝑟.

Now, we combine the informations encoded by the first return map and the sliding
dynamics to analyze the stability of a quasi-generic loop.

Theorem N. Let 𝑍0 ∈ Λ𝐶
1 having a quasi-generic loop Γ0 at a fold-regular singularity

𝑝0 ∈ Σ and consider the torus 𝒜0 given by Theorem L. The following statements hold.

1. If 𝑍0 satisfies condition (𝑁), then Γ0 is an asymptotically stable minimal set;

2. If 𝑍0 satisfies condition (𝑆), then there exists a piecewise-smooth curve 𝛽 passing
through 𝑝0 such that the basin of attraction of Γ0 is given by

ℬ = {𝑝 ∈ 𝒜0; there exist a time 𝑡(𝑝) such that 𝜙𝑍0(𝑡(𝑝); 𝑝) ∈ 𝛽} .

Furthermore, 𝛽 has one of the two connected components of 𝛽 ∖ {𝑝0} contained in
Σ𝑠 and the other one contained in Σ𝑐.

We introduce a notion of equivalence in Λ1 which allows us to obtain a modulus of
stability for 𝑍0.

Definition 5.3.3. Let 𝑍,𝑍0 ∈ Λ1 having quasi-generic loops Γ and Γ0 at fold-regular
singularities 𝑝 ∈ Σ and 𝑝0 ∈ Σ, respectively. We say that 𝑍 and 𝑍0 are weakly topolog-
ically equivalent at (Γ,Γ0) if there exist sufficiently small solid tori 𝒜0 and 𝒜 containing
Γ0 and Γ, respectively, and an order-preserving homeomorphism ℎ : 𝒜 → 𝒜0 such that

i) 𝒜 ∩ Σ and 𝒜0 ∩ Σ have connected curves 𝑆𝑍 and 𝑆𝑍0 of fold-regular singularities of
𝑍 and 𝑍0 intersecting 𝜕𝒜 ∩ Σ and 𝜕𝒜0 ∩ Σ transversally, and there are no more
Σ-singularities of 𝑍 and 𝑍0 contained in 𝒜 ∩ Σ and 𝒜0 ∩ Σ, respectively;

ii) ℎ : 𝑆𝑍 → 𝑆𝑍0 is a diffeomorphism such that ℎ(𝑝) = 𝑝0;

iii) ℎ(Γ) = Γ0 and ℎ(𝒜 ∩ Σ) = 𝒜0 ∩ Σ;

iv) ℎ carries orbits of 𝑍 onto orbits of 𝑍0.

Remark 5.3.4. Notice that, it follows from Section 5.2 that, given 𝑍 ∈ Λ1, we can find
a sufficiently small torus 𝒜, such that item (𝑖) of Definition 5.3.3 is satisfied.
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Finally, given 𝑍0 ∈ Λ1, we define the modulus of weak-stability of 𝑍0 as

𝒲(𝑍0) = 𝜓′
0(𝑝0).

Theorem O. Let 𝑍0, ̃︁𝑍0 ∈ Λ𝐶
1 have quasi-generic loops Γ0 and ̃︁Γ0 at fold-regular singular-

ities 𝑝0,̃︁𝑝0 ∈ Σ of type (𝑆), respectively. If 𝑍0 and ̃︀𝑍0 are weakly topologically equivalent
at (Γ0, ̃︁Γ0), then

𝒲(𝑍0) = 𝒲(̃︁𝑍0).

A direct consequence of Theorem D is given in the next corollary.

Corollary 5.3.5. If 𝑍0 ∈ Λ𝐶
1 satisfies (𝑆), then 𝑍0 has ∞-moduli of weak-stability in Λ𝐶

1 .
It means that there are infinitely many Filippov systems 𝑍𝑛 ∈ Λ𝐶

1 , 𝑛 ∈ N, such that 𝑍𝑛1

and 𝑍𝑛2 are not weakly topologically equivalent, for every 𝑛1, 𝑛2 ≥ 0 and 𝑛1 ̸= 𝑛2.

5.4 Structure of a homoclinic-like loop
In this section, we characterize the first return map 𝒫0 and the fold line map 𝜓0

associated to a homoclinic-like loop Γ0 of a system 𝑍0 ∈ Ω𝑟. Furthermore, given a small
solid torus 𝒜0 around Γ0 and a vector field 𝑍 sufficiently near to 𝑍0, we associate a first
return map 𝒫𝑍 and a fold line map 𝜓𝑍 which describe the dynamics of 𝑍 inside 𝒜0.

Let 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 satisfying (G), (T) and (H). In order to characterize the first
return map 𝒫0 given in (5.2.1), we shall write it as

𝒫0 = 𝒟0 ∘ 𝒯0,

where 𝒟0 is a diffeomorphism and 𝒯0 is a 𝒞𝑟 map describing the trajectories around a
fold-regular singularity. We refer 𝒯0 as the transition map of 𝑍0 at the fold-regular
singularity 𝑝0 (see Section 2.3.1 for a planar version of transition maps).

In Section 5.4.1, we construct and characterize the transition map 𝒯0. In Section 5.4.2,
we describe the complete first return map 𝒫0. Finally, in Section 5.4.3, we characterize
the fold line map 𝜓0.

5.4.1 Transition Map
Without loss of generality, assume that 𝑝0 is a fold point of 𝑋0 and a regular point of

𝑌0. In this case, the transition map will depend only on the smooth vector field 𝑋0.
Since 𝑝0 is a visible fold-regular singularity of 𝑍0, it follows from Proposition 4.6.1

that there exist 𝑎0 < 0 < 𝑏0, and neighborhoods 𝒱0 of 𝑍0 in Ω𝑟 and 𝑉0 of 𝑝0 in Σ such
that:

i) 𝑉0 is compact;

ii) each 𝑍 ∈ 𝒱0 has a curve 𝛾𝑍 : [𝑎0, 𝑏0] → 𝑉0, composed by visible fold-regular singular-
ities of 𝑍;

iii) 𝑉0 ∖ Im(𝛾𝑍) has only regular-regular points of 𝑍;

iv) 𝛾𝑍 intersects 𝑉0 transversally at 𝛾𝑍(𝑎0) and 𝛾𝑍(𝑏0);

v) 𝛾𝑍(𝑡) ∈ int(𝑉0) for each 𝑡 ∈ (𝑎0, 𝑏0);
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vi) 𝛾𝑍0(0) = 𝑝0.

From Vishik’s Normal Form Theorem (see Theorem 3.3.5), there exist neighborhoods
𝑈0 ⊂ R3 of 𝑝0 and 𝑊0 ⊂ R3 of the origin such that 𝑉0 ⊂ 𝑈0, and a local coordinate system
(𝑥, 𝑦, 𝑧) : (𝑈0, 𝑝0) → (𝑊0, 0) such that 𝑓(𝑥, 𝑦, 𝑧) = 𝑧 and 𝑋0 is given by

𝑋0(𝑥, 𝑦, 𝑧) = (0, 1, 𝑦).

We denote the set 𝑉0 in the coordinates (𝑥, 𝑦, 𝑧) by ̃︁𝑉0. Notice that Im(𝛾𝑍0) coincides
with a segment of the 𝑥-axis in the plane 𝑧 = 0 containing the origin, and the flow of 𝑋0
is given by

𝜙𝑋0(𝑡;𝑥, 𝑦, 𝑧) =
(︃
𝑥, 𝑦 + 𝑡, 𝑧 + (𝑦 + 𝑡)2

2 − 𝑦2

2

)︃
.

Given 𝜀 > 0 sufficiently small, let 𝜏 be a local transversal section of 𝑋0 at 𝑝*
𝜀 =

(0,
√

2𝜀, 𝜀) contained in the plane 𝑧 = 𝜀 and notice that the origin is connected to 𝑝*
𝜀

through an orbit of 𝑋0. From the Implicit Function Theorem for Banach Spaces, we
reduce 𝒱0 such that, for each 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱0, a point (𝑥, 𝑦, 0) ∈ ̃︁𝑉0 reaches 𝜏 through
the flow of 𝑋 for a positive time 𝑡(𝑋;𝑥, 𝑦).

Therefore, given 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱0, we define the full transition map 𝒯𝑍 : ̃︁𝑉0 → 𝜏 of
𝑍 by

𝒯𝑍(𝑥, 𝑦, 0) = 𝜙𝑋(𝑡(𝑋;𝑥, 𝑦);𝑥, 𝑦, 0), (5.4.1)
and notice that the dependence of 𝒯𝑍 on 𝑍 is of class 𝒞𝑟. See Figure 5.11.

𝜏

Σ

𝒯𝑍
𝑀+

Σ𝑠𝑠

𝑀− 𝛾𝑍

Figure 5.11: Full transition map 𝒯𝑍 for a vector field 𝑍 near 𝑍0.

Using the expression of the flow of 𝑋0, an easy computation allows us to see that
𝒯0 := 𝒯𝑍0 is given by

𝒯0(𝑥, 𝑦, 0) = (𝑥,
√︁
𝑦2 + 2𝜀, 𝜀).

Finally, for each 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱0, we construct a finite cover of Im(𝛾𝑍) by domains
of Vishik’s coordinate system (due to the compactness of 𝛾𝑍), to see that the orbit of
𝑋 connecting 𝑝 ∈ ̃︁𝑉0 and a point of 𝜏 is contained in 𝑀+ if, and only if, 𝑝 ∈ ̃︁𝑉0 ∩ Σ𝑐.
Therefore, 𝒯𝑍 describes the real behavior of the trajectories of 𝑍 between Σ and 𝜏 only
in the domain

𝜎𝑍 = ̃︁𝑉0 ∩ Σ𝑐.

Accordingly, we define the transition map of 𝑍 as 𝑇𝑍 = 𝒯𝑍 |𝜎𝑍
.

Notice that 𝑇𝑍 is a homeomorphism onto its image and 𝒯𝑍 is a natural 𝒞𝑟 extension
of 𝑇𝑍 to 𝑉0 induced by the setting of the problem. Nevertheless, 𝒯𝑍 is a non-invertible
map.
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5.4.2 First Return Map
Consider the coordinate system and the local transversal section 𝜏 introduced in Sec-

tion 5.4.1, and recall that 𝑌0 is transverse to each point of ̃︁𝑉0 and 𝑋0 is transverse to 𝜏 .
From conditions (G), (T), and (H), it follows from the Implicit Function Theorem that,
for each 𝑍 ∈ 𝒱0 (reduce 𝒱0 if necessary), there exists a diffeomorphism 𝒟𝑍 : 𝜏 → Σ onto
its image induced by regular orbits of 𝑍. In particular, denoting 𝒟0 = 𝒟𝑍0 , we obtain

𝒟0(0,
√
𝜀, 𝜀) = (0, 0, 0).

We define the full first return map 𝒫𝑍 : ̃︁𝑉0 → Σ of 𝑍 ∈ 𝒱0 as
𝒫𝑍(𝑥, 𝑦, 0) = 𝒟𝑍 ∘ 𝒯𝑍(𝑥, 𝑦, 0), (5.4.2)

where 𝒯𝑍 is the full transition map of 𝑍 given in (5.4.1). Accordingly, the first return
map of 𝑍 is defined by 𝑃𝑍 = 𝒟𝑍 ∘ 𝑇𝑍 , where 𝑇𝑍 is the transition map of 𝑍.

If 𝑝 ∈ 𝜎𝑍 , then 𝑝 and 𝒫𝑍(𝑝) are connected by a trajectory of 𝑍, nevertheless, if
𝑝 ∈ ̃︁𝑉0 ∖ 𝜎𝑍 , then 𝑝 and 𝒫𝑍(𝑝) are related by a virtual trajectory of 𝑍. It follows that 𝑃𝑍

is a 𝒞𝑟 homeomorphism (onto its image) which completely describes the crossing dynamics
of 𝑍 inside the torus 𝒜0 generated by Γ0 and ̃︁𝑉0.

Notice that both 𝑃𝑍 and 𝒫𝑍 have a 𝒞𝑟 dependence on 𝑍. Also, 𝒫𝑍 is a non-invertible
map which is a 𝒞𝑟 extension of 𝑃𝑍 to ̃︁𝑉0. In particular, the origin is a fixed point of
𝒫0 = 𝒫𝑍0 , corresponding to the homoclinic-like loop Γ0 of 𝑍0.

5.4.3 Fold Line Map
Finally, we characterize the fold line map 𝜓0 of 𝑍0 induced by the sliding dynamics.

In addition, we construct this map for every 𝑍 ∈ Ω𝑟 sufficiently near 𝑍0. Consider the
same notation used above in Section 5.4.

Denote the fold line 𝛾𝑍 of 𝑍 by 𝑆𝑍 . Since 𝑆𝑍0 ∩ ̃︁𝑉0 is composed by fold-regular
singularities of 𝑍0, it follows from Lemma 3.3.11 that, reducing ̃︁𝑉0 if necessary, the sliding
vector field 𝐹𝑍0 is extended onto ̃︁𝑉0, and it is transverse to 𝑆𝑍0 at 𝑝0. Define the 𝒞𝑟 map
𝒢 : 𝒱0 × ̃︁𝑉0 × R → Σ given by

𝒢(𝑍, (𝑥, 𝑦, 0), 𝑠) = 𝑋𝑓(𝜙𝐹𝑍
(𝑠;𝑥, 𝑦, 0)),

where 𝑍 = (𝑋, 𝑌 ). Since 𝑆𝑍0 = 𝑋0𝑓
−1(0), it follows that

𝒢(𝑍0, (0, 0, 0), 0) = 𝑋0𝑓(0, 0, 0) = 0 and 𝜕𝑠𝒢(𝑍0, (0, 0, 0), 0) = 𝑑𝑋0𝑓(0, 0, 0)·𝐹𝑍0(0, 0, 0) ̸= 0.
From the Implicit Function Theorem, reducing ̃︁𝑉0 and 𝒱0 if necessary, there exists a

unique 𝒞𝑟 function 𝑠* : 𝒱0 × ̃︁𝑉0 → R such that 𝒢(𝑍, (𝑥, 𝑦, 0), 𝑠*(𝑍, (𝑥, 𝑦, 0))) = 0.
Consider the full first return map 𝒫𝑍 : ̃︁𝑉0 → Σ given by (5.4.2). Now, for a sufficiently

small neighborhood ̃︁𝑉1 of (0, 0, 0) contained in ̃︁𝑉0 and reducing 𝒱0 if necessary, we define
the full fold line map Ψ𝑍 : 𝑆𝑍 ∩ ̃︁𝑉1 → 𝑆𝑍 ∩ ̃︁𝑉0 by

Ψ𝑍(𝑝) = 𝜙𝐹𝑍
(𝑠*(𝑍,𝒫𝑍(𝑝)); 𝒫𝑍(𝑝)), (5.4.3)

for each 𝑍 ∈ 𝒱0.
In order to analyze the dynamics encoded by the full fold line map, it is convenient to

restrict it to the following domain
𝜎𝐹 𝐿

𝑍 = 𝒫−1
𝑍 (𝒫𝑍(𝑆𝑍 ∩ ̃︁𝑉1) ∩ Σ𝑠). (5.4.4)

Accordingly, we define the fold line map as 𝜓𝑍 = Ψ𝑍 |𝜎𝐹 𝐿
𝑍

. Notice that, (0, 0, 0) is a
fixed point of 𝜓0 = 𝜓𝑍0 , and Ψ𝑍 is a 𝒞𝑟 extension of 𝜓𝑍 .
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Remark 5.4.1. Consider a map ℋ : 𝒱0 × [𝑎0, 𝑏0] → ̃︁𝑉0 such that, for each 𝑍 ∈ 𝒱0,
ℋ𝑍 := ℋ(𝑍, ·) : [𝑎0, 𝑏0] → 𝑆𝑍 ∩ ̃︁𝑉0 is a diffeormorphism onto its image in such a way
that, for some 𝑎0 < 𝑎1 < 0 < 𝑏1 < 𝑏0, ℋ𝑍 |[𝑎1,𝑏1] parameterizes 𝑆𝑍 ∩ ̃︁𝑉1. Therefore,
ℋ−1

𝑍 ∘ Ψ𝑍 ∘ ℋ𝑍 : [𝑎1, 𝑏1] → [𝑎0, 𝑏0] is a family of real diffeomorphisms (onto their image)
which is of class 𝒞𝑟 on 𝑍. Therefore, if 𝑝0 is a hyperbolic fixed point of 𝜓0, we can use
such parameterizations to see that, reducing 𝒱0 if necessary, the full fold line map Ψ𝑍 has
a unique hyperbolic fixed point (with the same type) in 𝑆𝑍 ∩ ̃︁𝑉0, for each 𝑍 ∈ 𝒱0.

5.4.4 Properties
In what follows, we use the full transition map 𝒫0 and the full fold line map Ψ0 to

characterize 𝑃0 = 𝑃𝑍0 and 𝜓0 = 𝜓𝑍0 . We consider the coordinate system (𝑥, 𝑦, 𝑧) at 𝑝0 as
in Section 5.4.1, and from now on, we identify the points (𝑥, 𝑦, 0) ∈ Σ and (𝑥, 𝑦, 𝜀) ∈ 𝜏
with (𝑥, 𝑦). Also, consider the neighborhoods ̃︁𝑉1 and 𝒱0 of (0, 0, 0) and 𝑍0 given in Section
5.4.3, respectively.

Lemma 5.4.2. Given 𝑍0 ∈ Ω𝑟 satisfying conditions (G), (H), and (T), there exist real
constants 𝛼𝑖,𝑗, 𝛽𝑖,𝑗 ∈ R, 𝑖 = 0, 1, 2 and 𝑗 = 0, 1 such that the Taylor expansion of the full
first return map 𝒫0 of 𝑍0 at the origin is given by

𝒫0(𝑥, 𝑦) =
⎛⎝ 𝛼1,0𝑥+ 𝛼0,1𝑦

2 + 𝛼2,0𝑥
2 + 𝛼1,1𝑥𝑦

2 + 𝒪(𝑥3, 𝑥2𝑦2, 𝑦4)
𝛽1,0𝑥+ 𝛽0,1𝑦

2 + 𝛽2,0𝑥
2 + 𝛽1,1𝑥𝑦

2 + 𝒪(𝑥3, 𝑥2𝑦2, 𝑦4)

⎞⎠ . (5.4.5)

Furthermore, the following statements hold.

i) 𝑑 = 𝛼1,0𝛽0,1 − 𝛼0,1𝛽1,0 ̸= 0;

ii) sgn(𝑑) = sgn(𝐽𝒟0(0,
√

2𝜀)), where 𝒟0 : 𝜏 → Σ is the diffeomorphism induced by the
flow of 𝑍0 and 𝐽𝒟0 denotes the Jacobian of 𝒟0;

iii) If 𝐹𝑍0 is transverse to 𝒫0(𝑆𝑍0 ∩ ̃︁𝑉1) at the origin, then 𝛼1,0 ̸= 0.

Proof. Since 𝒟0 is a diffeomorphism such that 𝒟0(
√

2𝜀, 0) = (0, 0), it follows that,

𝒟0(𝑥, 𝑦) =
⎛⎝ 𝑎1,0𝑥+ 𝑎0,1(𝑦 −

√
2𝜀) + 𝑎2,0𝑥

2 + 𝑎1,1𝑥(𝑦 −
√

2𝜀) + 𝑎0,2(𝑦 −
√

2𝜀)2 + 𝒪3(𝑥, 𝑦 −
√

2𝜀)
𝑏1,0𝑥+ 𝑏0,1(𝑦 −

√
2𝜀) + 𝑏2,0𝑥

2 + 𝑏1,1𝑥(𝑦 −
√

2𝜀) + 𝑏0,2(𝑦 −
√

2𝜀)2 + 𝒪3(𝑥, 𝑦 −
√

2𝜀)

⎞⎠ ,
where 𝑎𝑖,𝑗, 𝑏𝑖,𝑘 ∈ R are constants satisfying 𝑎1,0𝑏0,1−𝑎0,1𝑏1,0 ̸= 0. Also, using the expression
of 𝒯0 given in (5.4.1), it follows that

𝒯0(𝑥, 𝑦) =
⎛⎝ 𝑥

√
2𝜀+𝐾𝑦2 + 𝒪4(𝑦)

⎞⎠ ,
where 𝐾 > 0. Straightforwardly, we obtain (5.4.5) and prove items (𝑖) and (𝑖𝑖).

Finally, assume that 𝐹𝑍0 is transverse to 𝑆𝑍0 at the origin. Denoting 𝑌0(𝑥, 𝑦, 𝑧) =
(𝑓1, 𝑓2, 𝑓3) in this coordinate system, where 𝑓𝑖 = 𝑓𝑖(𝑥, 𝑦, 𝑧), 𝑖 = 1, 2, 3, we obtain

𝑌0𝑓(𝑥, 𝑦, 𝑧) = 𝑓3(𝑥, 𝑦, 𝑧).
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Recalling that 𝑓(𝑥, 𝑦, 𝑧) = 𝑧 and 𝑋0(𝑥, 𝑦, 𝑧) = (0, 1, 𝑦), we have that the correspondent
sliding vector field is expressed as

𝐹𝑍0(𝑥, 𝑦) = 𝑌0𝑓(𝑥, 𝑦, 0)𝑋0(𝑥, 𝑦, 0) −𝑋0𝑓(𝑥, 𝑦, 0)𝑌0(𝑥, 𝑦, 0)
𝑌0𝑓(𝑥, 𝑦, 0) −𝑋0𝑓(𝑥, 𝑦, 0)

= 𝑓3(𝑥, 𝑦, 0)(0, 1, 𝑦) − 𝑦(𝑓1(𝑥, 𝑦, 0), 𝑓2(𝑥, 𝑦, 0), 𝑓3(𝑥, 𝑦, 0))
𝑓3(𝑥, 𝑦, 0) − 𝑦

=
(︃

−𝑦𝑓1(𝑥, 𝑦, 0)
𝑓3(𝑥, 𝑦, 0) − 𝑦

,
𝑓3(𝑥, 𝑦, 0) − 𝑦𝑓2(𝑥, 𝑦, 0)

𝑓3(𝑥, 𝑦, 0) − 𝑦

)︃
.

Since 𝑌0 is transverse to Σ at 𝑝0, it follows that 𝑎0 = 𝑓3(0, 0, 0) ̸= 0, and consequently,
𝐹𝑍0(0, 0) = (0, 1).

Now, notice that 𝑆𝑍0 = {(𝑥, 0); 𝑥 ∈ (−𝜀, 𝜀)} and therefore

𝜁0 = 𝒫0(𝑆𝑍0 ∩ ̃︁𝑉1) = {(𝛼1,0𝑥+ 𝒪2(𝑥), 𝛽1,0𝑥+ 𝒪2(𝑥)); 𝑥 ∈ (−𝜀, 𝜀)} , (5.4.6)

for some 𝜀 > 0. It follows that 𝑇0𝜁0 = span{(𝛼1,0, 𝛽1,0)}, and since 𝐹𝑍0 is transverse to 𝜁0
at the origin, we obtain that 𝛼1,0 ̸= 0.

Remark 5.4.3. Notice that 𝒫0(𝑆𝑍0 ∩̃︁𝑉1) coincides with the curve 𝜁0 given in Section 5.3.

The proof of the following lemma is straightforward and will be omitted.

Lemma 5.4.4. Consider the same hypotheses of Lemma 5.4.2 and assume that 𝛼1,0 ̸= 0.
Then, the local change of coordinates at the origin of the plane Σ given by⎧⎪⎨⎪⎩

𝑢 = 𝑥− 𝛼0,1

𝛼1,0
𝑦2,

𝑣 = 𝑦,

brings the full first return map 𝒫0 into

𝒫0(𝑢, 𝑣) =

⎛⎜⎜⎝
𝛼1,0𝑢

𝛽1,0𝑢+ 𝑑

𝛼1,0
𝑣2

⎞⎟⎟⎠+ 𝑢2𝐴1(𝑢, 𝑣) + 𝑢𝑣2𝐴2(𝑢, 𝑣) + 𝑣4𝐴3(𝑢, 𝑣),

where 𝐴𝑖(𝑢, 𝑣) are bounded vector-valued functions.

Notice that, the change of coordinates exhibited in Lemma 5.4.4 does not modify the
structure of the problem in the coordinate system (𝑥, 𝑦). In fact, the tangency set of 𝑍0
remains fixed through this change of coordinates and it is expressed as 𝑆𝑍0 = {(𝑢, 0); 𝑢 ∈
(−𝜀, 𝜀)}, for some 𝜀 > 0 sufficiently small. For the sake of simplicity, we make no difference
between the coordinates (𝑢, 𝑣) and (𝑥, 𝑦) and so 𝒫0 writes as

𝒫0(𝑥, 𝑦) =
⎛⎝ 𝛼𝑥

𝑏𝑥+ 𝑐𝑦2

⎞⎠+ 𝑥2𝐴1(𝑥, 𝑦) + 𝑥𝑦2𝐴2(𝑥, 𝑦) + 𝑦4𝐴3(𝑥, 𝑦), (5.4.7)

where 𝛼 = 𝛼1,0, 𝑏 = 𝛽1,0, 𝑐 = 𝑑

𝛼1,0
, and 𝐴𝑖 are bounded vector-valued functions, 𝑖 = 1, 2, 3.

Lemma 5.4.5. Let 𝑍0 ∈ Λ1. Consider the full fold line map Ψ0 and the full first return
map 𝒫0 of 𝑍0 given by (5.4.3) and (5.4.7), respectively. The following statements hold:
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i) 𝛼 ̸= 0, |𝛼|≠ 1, 𝑏 ̸= 0 and 𝑐 ̸= 0;

ii) Ψ0(𝑥, 0) = (𝛼𝑥+ 𝒪(𝑥2), 0), for 𝑥 small;

iii) the origin is a hyperbolic fixed point of 𝒫0 with real eigenvalues 0 and 𝛼;

iv) the eigenspaces of 𝒫0 corresponding to the eigenvalues 0 and 𝛼 are given by ℰ0 =
span{(0, 1)} and ℰ𝛼 = span{(𝛼, 𝑏)}, respectively.

Proof. First, notice that items (𝑖𝑖𝑖) and (𝑖𝑣) follows straightly from item (𝑖) and the
expression of 𝒫0 given in (5.4.7). Now, we prove items (𝑖) and (𝑖𝑖). Since 𝑍0 ∈ Λ1, it
follows from Lemma 5.4.2 that 𝛼 ̸= 0 and 𝑐 ̸= 0.

From (5.4.6) (with 𝛼1,0 = 𝛼 and 𝛽1,0 = 𝑏), we deduce that 𝑇0𝛾0 = span{(1, 0)} and
𝑇0𝜁0 = span{(𝛼, 𝑏)}, where 𝛾0 = 𝑆𝑍0 ∩ ̃︁𝑉1 and 𝜁0 = 𝒫0(𝛾0). From hypothesis (T), we
have that 𝛾0 t 𝜁0 at the origin. It implies that the vectors (1, 0) and (𝛼, 𝑏) are linearly
independent. Hence, 𝑏 ̸= 0.

Now, from the computations done in the proof of Lemma 5.4.2, we derive that

𝐹𝑍0(𝑥, 𝑦) = (0, 1) + (𝐹1, 𝐹2),

where 𝐹1, 𝐹2 = 𝒪1(𝑥, 𝑦). Denoting 𝜙𝐹𝑍0
= (𝜙1, 𝜙2), we have that:{︃

𝜙1(𝑡;𝑥, 𝑦) = 𝑥+ 𝐹1(𝑥, 𝑦)𝑡+ 𝒪2(𝑡),
𝜙2(𝑡;𝑥, 𝑦) = 𝑦 + (1 + 𝐹2(𝑥, 𝑦))𝑡+ 𝒪2(𝑡),

for 𝑡, 𝑥, 𝑦 small enough.
Now, 𝜙2(0; 0, 0) = 0 and 𝜕𝑡𝜙2(0; 0, 0) = 1. Thus, we use the Implicit Function Theorem

to obtain a unique 𝒞𝑟 function 𝑡*(𝑥, 𝑦) such that 𝑡*(0, 0) = 0 and 𝜙2(𝑡*(𝑥, 𝑦);𝑥, 𝑦) = 0, for
(𝑥, 𝑦) small enough, with 𝑡*(0, 0) = 0. Also, we have that 𝜕𝑥𝑡

*(0, 0) = 0 and 𝜕𝑦𝑡
*(0, 0) =

−1. Thus,
𝑡*(𝑥, 𝑦) = −𝑦 + 𝒪2(𝑥, 𝑦).

Notice that, 𝛾0 = {(𝑥, 0); 𝑥 ∈ (−𝜀, 𝜀)}, for 𝜀 > 0 sufficiently small. Therefore, the full
fold line map Ψ0 : 𝛾0 → 𝛾0 writes as

Ψ0(𝑥, 0) = (𝜙1(𝑡*(𝒫0(𝑥, 0)); 𝒫0(𝑥, 0)), 0).

Hence, it is straightforward to check that

Ψ0(𝑥, 0) = (𝛼𝑥+ 𝒪2(𝑥), 0).

Since 𝑍0 ∈ Λ1, we conclude that the full fold line map Ψ0 of 𝑍0 has a hyperbolic fixed
point at the origin. Therefore |𝛼|≠ 1.

Remark 5.4.6. Notice that the curve 𝜁0 is tangent to the eigenspace ℰ𝛼 at the origin.
So, it is an intrinsic degeneracy of this problem which can not be avoided.

Using Lemma 5.4.5, we can apply some near-identity transformations to express the
map 𝒫0 given by (5.4.7) in a more accurate normal form.
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Proposition 5.4.7. There exists a change of coordinates 𝜂 : (R2, 0) → (R2, 0) such that

̃︁𝒫0(𝑥, 𝑦) = 𝜂 ∘ 𝒫0 ∘ 𝜂−1(𝑥, 𝑦) =
⎛⎝ 𝛼𝑥− 𝑐𝛼𝑦2 + 𝑐𝑥2 + 𝒪3(𝑥, 𝑦)

𝑥

⎞⎠ . (5.4.8)

In addition, ̃︁𝒫0 is symmetric with respect to an involution ℐ such that

Fix(ℐ) =
{︂

(𝑥, 𝑦); 𝑦 = 𝐵

𝑏
𝑥2 + 𝒪3(𝑥)

}︂
,

where
𝐵 = 𝑏𝜕2

𝑥𝜋1 ∘ 𝒫0(0, 0) + 𝛼(𝛼− 1)𝜕2
𝑥𝜋2 ∘ 𝒫0(0, 0)

𝛼3(𝛼− 1) . (5.4.9)

Proof. First, we consider the change of coordinates

𝜂1(𝑥, 𝑦) =
(︃
𝑥− 𝐴𝑥2 + 𝒪3(𝑥, 𝑦)
𝑦 −𝐵𝑥2 + 𝒪3(𝑥, 𝑦)

)︃
,

such that
𝜂−1

1 (𝑥, 𝑦) =
(︃
𝑥+ 𝐴𝑥2

𝑦 +𝐵𝑥2

)︃
,

with 𝐵 given by (5.4.9) and 𝐴 = 𝜕2
𝑥𝜋1 ∘ 𝒫0(0, 0)(𝛼(𝛼− 1))−1. Thus, using that 𝒫0 is given

by (5.4.7), we obtain

𝜂1 ∘ 𝒫0 ∘ 𝜂−1
1 (𝑥, 𝑦) =

(︃
𝛼𝑥+𝐺1(𝑥, 𝑦)

𝑏𝑥+ 𝑐𝑦2 +𝐺2(𝑥, 𝑦)

)︃
,

where 𝐺1(𝑥, 𝑦) = 𝒪3(𝑥, 𝑦) and 𝐺2(𝑥, 𝑦) = 𝒪3(𝑥, 𝑦), and 𝜂1 ∘ 𝒫0 ∘ 𝜂−1
1 is symmetric with

respect to the symmetry ℐ1(𝑥, 𝑦) = (𝑥,−𝑦 − 2𝐵𝑥2), which has the following set of fixed
points

Fix(ℐ1) =
{︁
(𝑥, 𝑦); 𝑦 = 𝐵𝑥2

}︁
.

Now, considering the change of coordinates

𝜂2(𝑥, 𝑦) =
(︃
𝑏𝑥+𝐺2(𝑥, 𝑦) + 𝑐𝑦2

𝑦

)︃
,

and taking 𝜂 = 𝜂2 ∘ 𝜂1, the proof follows directly.

Remark 5.4.8. Notice that the change of coordinates 𝜂 provided by Proposition 5.4.5
carries the fold line 𝑆𝑍0 of 𝑍0 onto the set Fix(ℐ).

The next result follows straightly from Lemma 5.4.5 and the Stable Manifold Theorem
for 𝒞𝑟 maps (see Theorem 10.1 in [91]).

Proposition 5.4.9. Let 𝑍0 ∈ Λ1, and consider the non-invertible full first return map
𝒫0 of 𝑍0 given by (5.4.7). Therefore, 𝒫0 has a local stable invariant manifold 𝑊 𝑠

0 at the
origin tangent to ℰ0 and either one of the following statements hold.

1. If |𝛼|< 1, then 𝒫0 has a fixed point of nodal type at the origin and it has a local
stable invariant manifold 𝑊 𝑠

𝛼 at the origin tangent to ℰ𝛼 (see Figure 5.12 (𝑖𝑖) and
(𝑖𝑣).).
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Σ𝑠
𝑆𝑍0

𝑊 𝑠
0

𝑥

𝑦

𝑊 *
𝛼(* = 𝑢, 𝑠)

𝑝0

Σ𝑐

(𝑖)

(𝑖𝑖)

(𝑖𝑖𝑖)

(𝑖𝑣)

Figure 5.12: Configurations of the local invariant manifolds of 𝒫0 at 𝑝0 for 𝑏 < 0, (𝑖)
𝛼 > 1, (𝑖𝑖) 0 < 𝛼 < 1, (𝑖𝑖𝑖) 𝛼 < −1 and (𝑖𝑣) −1 < 𝛼 < 0. If 𝑏 > 0, then (𝑖) is switched
by (𝑖𝑖𝑖) such as (𝑖𝑖) and (𝑖𝑣).

2. If |𝛼|> 1, then 𝒫0 has a fixed point of saddle type at the origin and it has a local
unstable invariant manifold 𝑊 𝑢

𝛼 at the origin tangent to ℰ𝛼 (see Figure 5.12 (𝑖) and
(𝑖𝑖𝑖).).

Finally, we characterize the classes Λ𝐶
1 and Λ𝑀

1 of Λ1 and the hypotheses (𝑁) and
(𝑆) introduced in Section 5.3, which generate four possible types of quasi-generic loop Γ0
passing through a fold-regular singularity 𝑝0 of 𝑍0 ∈ Λ1.

Proposition 5.4.10. Let 𝑍0 ∈ Λ1, and consider the full fold line map Ψ0 of 𝑍0 given by
(5.4.3). The following statements hold:

i) 𝑍0 ∈ Λ𝐶
1 and satisfies (𝑆) if, and only if, 𝛼 > 1;

ii) 𝑍0 ∈ Λ𝐶
1 and satisfies (𝑁) if, and only if, 0 < 𝛼 < 1;

iii) 𝑍0 ∈ Λ𝑀
1 and satisfies (𝑆) if, and only if, 𝛼 < −1;

iv) 𝑍0 ∈ Λ𝑀
1 and satisfies (𝑁) if, and only if, −1 < 𝛼 < 0.

Proof. From Lemma 5.4.5, the full fold line map Ψ0 of 𝑍0 writes as Ψ0(𝑥, 0) = (𝛼𝑥 +
𝒪(𝑥2), 0). In this case, the map Ψ0 preserves the connected components (−𝜀, 0)×{0} and
(0, 𝜀) × {0} of 𝑆𝑍0 if, and only if, 𝛼 > 0. The result follows from Proposition 5.4.9.

Remark 5.4.11. Notice that, the geometry of this problem allows us to see that the
first return map 𝑃0 preserves the orientation of the 𝑦-axis, nevertheless the orientation
of the 𝑥-axis is reversed if 𝛼 < 0, and it is preserved if 𝛼 > 0. Therefore, 𝑃0 preserves
orientation if, and only if, 𝑍0 ∈ Λ𝐶

1 .
Since the transition map 𝑇0 does not provide any changes in the orientation of Σ𝑐, it

follows that 𝑃0 = 𝒟0 ∘ 𝑇0 preserves orientation if, and only if, 𝒟0 preserves orientation.
Hence, if 𝑍0 ∈ Λ𝐶

1 , it follows from (5.4.5), (5.4.7), and Proposition 5.4.10 that 𝑐 > 0.

As mentioned in Section 5.3, if 𝑍0 ∈ Λ𝐶
1 , then the fold line map 𝜓0 defines a dynamics

in 𝜎𝐹 𝐿
𝑍0 (which is an interval of the 𝑥-axis) induced by the orbits of 𝑍0.
Now, let 𝑍0 ∈ Λ𝑀

1 , and without loss of generality, assume that 𝑏 < 0 in (5.4.7). From
the proof of Lemma 5.4.5, we have that the map 𝜓*

0 : 𝑉0 → 𝛾0 = 𝑆𝑍0 ∩ ̃︁𝑉1 induced by the
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flow of 𝐹𝑍0 is given by 𝜓*
0(𝑥, 𝑦) = (𝑥 + 𝒪2(𝑥, 𝑦), 0), and notice that, in this coordinate

system, Σ𝑠 = ̃︁𝑉1 ∩ {𝑦 < 0} and 𝑆𝑍0 = {𝑦 = 0}. From Proposition 5.4.10, we have that
𝛼 < 0 and thus 𝒫0(𝑥, 0) = (𝛼𝑥, 𝑏𝑥) + 𝒪(𝑥2) ∈ Σ𝑠 if, and only if 𝑥 ≥ 0.

Given 𝑥 > 0 small, we have that Ψ0(𝑥, 0) = 𝜓*
0 ∘ 𝒫0(𝑥, 0) and (𝑥, 0) are connected by

orbits of 𝑍0. Now,
𝒫0(Ψ0(𝑥, 0)) = (𝛼2𝑥, 𝑏𝛼𝑥) + 𝒪(𝑥2)

does not belong to Σ𝑠 since 𝑏𝛼𝑥 > 0, therefore the points Ψ2
0(𝑥, 0) and (𝑥, 0) are not

connected by orbits of 𝑍0, and thus the iterations of Ψ0 do not describe the dynamics of
𝑍0. In other words, the fold line map 𝜓0 (which is the restriction of Ψ0 to 𝑥 ≥ 0) does
not induce any dynamics in the interval ̃︁𝑉1 ∩ {𝑥 ≥ 0, 𝑦 = 0}.

Nevertheless, given 𝑥 < 0, we have that

𝒫2
0 ((𝑥, 0)) = (𝛼2𝑥, 𝑏𝛼𝑥) + 𝒪(𝑥2) ∈ Σ𝑠,

and hence 𝜓*
0 ∘ 𝒫2

0 (𝑥, 0) and (𝑥, 0) are connected by orbits of 𝑍0 (with a unique segment
of sliding orbit). Therefore, we define the full Möbius fold line map Ψ𝑀

0 : 𝛾0 → 𝛾0 of
𝑍0 as

Ψ𝑀
0 (𝑥, 0) = 𝜓*

0 ∘ 𝒫2
0 (𝑥, 0) = (𝛼2𝑥+ 𝒪(𝑥2), 0),

and the domain

𝜎𝑀
𝑍0 = 𝒫−1

0 (𝒫0(𝑆0 ∩ ̃︁𝑉1) ∩ Σ𝑐) = {𝑥 ≤ 0} × {0} ∩ ̃︁𝑉1.

Accordingly, we define the Möbius fold line map of 𝑍0 as 𝜓𝑀
0 = Ψ𝑀

0 |𝜎𝑀
𝑍0

. We conclude
that 𝜓𝑀

0 (𝜎𝑀
𝑍0) ⊂ 𝜎𝑀

𝑍0 and thus, this map defines a dynamical system in 𝜎𝑀
𝑍0 induced by the

(real) orbits of 𝑍0, whether 𝑍0 ∈ Λ𝑀
1 .

Figure 5.13: Action of the Möbius fold line map 𝜓𝑀
0 of 𝑍0 ∈ Λ𝑀

1 .

Remark 5.4.12. Notice that, if 𝑍0 ∈ Λ𝑀
1 , we can still define the Möbius fold line map

𝜓𝑀
𝑍 for every 𝑍 sufficiently near 𝑍0, combining the ideas above with Section 5.4.1. Also,

the origin is a hyperbolic fixed point of 𝜓𝑀
0 if, and only if, it is a hyperbolic fixed point of

the fold line map 𝜓0 of 𝑍0.

5.5 An illustration of Theorem M
In this section, we provide an example of Filippov system presenting a quasi-generic

loop at a fold-regular singularity. In addition, we present two unfoldings of this connection,
which illustrate the results stated in Theorem M.
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Proposition 5.5.1. Given 𝑏 ̸= 0 and 𝛼 ∈ R such that |𝛼|≠ 1 and −𝛼/(1 − 𝛼) /∈ [0, 1],
consider the Filippov system 𝑍0 = (𝑋0, 𝑌0) with switching manifold Σ = {(𝑥, 𝑦, 𝑧) ∈
R3; 𝑧 = 0}, where 𝑋0 is given by

𝑋0(𝑥, 𝑦, 𝑧) =

⎛⎜⎝ 0
1

𝑦(2 − 3𝑦)

⎞⎟⎠ , (5.5.1)

and 𝑌0 is given by

𝑌0(𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(1 − 𝛼)𝑥+ 𝛽(1 − 𝛼)𝑥2

𝛼 + (1 − 𝛽)𝑦

−1 + 𝛽𝑥

𝛼 + (1 − 𝛼)𝑦

1 − 2
(︃
𝑦(𝛼 + (1 − 𝛼)𝑦) − 𝛽𝑥

𝛼 + (1 − 𝛼)𝑦 − 𝛽𝑥

)︃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.5.2)

Therefore, 𝑍0 ∈ Λ1, and the following statements hold.

i) 𝑍0 has a quasi-generic loop Γ0 at the fold-regular singularity (0, 0, 0), which is con-
tained in the plane 𝑥 = 0;

ii) 𝑋0, 𝑌0 are vector fields of class 𝒞∞ around Γ0;

iii) In the plane 𝑥 = 0, 𝑍0 coincides with the Filippov system 𝑍*
0 = (𝑋0, 𝑌

*
0 ), where

𝑌 *
0 (𝑥, 𝑦, 𝑧) = (0,−1, 1 − 2𝑦);

iv) The fold line map of 𝑍0 is given by 𝜓𝑍0(𝑥) = 𝛼𝑥+ 𝒪(𝑥2)

Proof. The flow of 𝑋0 is given by

𝜙𝑋0(𝑡;𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎝
𝑥

𝑡+ 𝑦

−(𝑡+ 𝑦)3 + (𝑡+ 𝑦)2 − 𝑦2(1 − 𝑦) + 𝑧

⎞⎟⎟⎟⎠ . (5.5.3)

Thus, 𝑋0 has a visible fold line 𝑆𝑋0 at the 𝑥-axis and an invisible fold-line at 𝑦 = 2/3.
Using (5.5.3), we obtain that 𝜙𝑋0(1;𝑥, 0, 0) = (𝑥, 1, 0) and 𝜙𝑋0(𝑡;𝑥, 0, 0) ∈ 𝑀+ for each
𝑡 ∈ (0, 1). Hence, we define ̃︂𝑆𝑋0 = {𝑦 = 1, 𝑧 = 0} and Π𝑋0 : 𝑆𝑋0 → ̃︂𝑆𝑋0 by

Π𝑋0(𝑥, 0, 0) = (𝑥, 1, 0).

Now, the vector field 𝑌 *
0 has flow

𝜙𝑌 *
0

(𝑡;𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎝
𝑥

−𝑡+ 𝑦

(−𝑡+ 𝑦)2 + 𝑡− 𝑦2 + 𝑧

⎞⎟⎟⎟⎠ .
A simple computation shows that 𝜙𝑌 *

0
(1;𝑥, 1, 0) = (𝑥, 0, 0) and 𝜙𝑌 *

0
(𝑡;𝑥, 1, 0) ∈ 𝑀−,

for each 𝑡 ∈ (0, 1). Hence, we define Π𝑌 *
0

: ̃︂𝑆𝑋0 → 𝑆𝑋0 by

Π𝑌 *
0

(𝑥, 1, 0) = (𝑥, 0, 0).



149

Notice that 𝑍*
0 = (𝑋0, 𝑌

*
0 ) has a family of homoclinic-like loops passing through

points of 𝑆𝑋0 . Therefore, we must perform a slight change in 𝑌 *
0 in order to avoid such

degeneracy.
Consider the map 𝑀1 : R3 → R3

𝑀1(𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎝
𝑥

𝑦 − 𝑏𝑥(𝑦 − 1)
𝑧

⎞⎟⎟⎟⎠ ,
with 𝑏 ̸= 0. Notice that, |𝑑𝑀1(𝑥, 𝑦, 𝑧)|= 1− 𝑏𝑥, which means that 𝑀1 is a diffeomorphism
outside the plane 𝑥 = 1/𝑏. Since we have a loop contained in the plane 𝑥 = 0, it is not
an obstruction for our purposes. In fact, the inverse of 𝑀1 is given by

(𝑀1)−1(𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎜⎜⎝
𝑥

𝑦 − 𝑏𝑥

1 − 𝑏𝑥

𝑧

⎞⎟⎟⎟⎟⎟⎠ . (5.5.4)

Notice that 𝑀1(𝑥, 1, 0) = (𝑥, 1, 0) and 𝑀1(𝑥, 0, 0) = (𝑥, 𝑏𝑥, 0). Thus, 𝑀1|̃︂𝑆𝑋0
= Id,

𝑀1(𝑆𝑋0) is transverse to 𝑆𝑋0 at the origin and we also have that the plane 𝑥 = 0 is
𝑀1-invariant.

Consider
𝑌0 = 𝑀*

1𝑌
*

0 = 𝑑𝑀1 ∘ 𝑌 *
0 ∘ (𝑀1)−1,

and recall that
𝑀1 ∘ 𝜙𝑌 *

0
(𝑡;𝑥, 𝑦, 𝑧) = 𝜙𝑌0

(𝑡;𝑀1(𝑥, 𝑦, 𝑧)).
Hence, we have that 𝜙𝑌0

(1;𝑥, 1, 0) = (𝑥, 𝑏𝑥, 0). Moreover, 𝜙𝑌0
(𝑡;𝑥, 1, 0) ∈ 𝑀−, for

each 𝑡 ∈ (0, 1). Therefore, we conclude that the map Π𝑌0
: ̃︂𝑆𝑋0 → Σ induced by the flow

of 𝑌0 is given by
Π𝑌0

(𝑥, 1, 0) = (𝑥, 𝑏𝑥, 0).

Now, we notice that 𝑍0 = (𝑋, 𝑌0) has a homoclinic-like loop at the origin and the
image 𝑆1

𝑋0 := Π𝑌0
∘ Π𝑋(𝑆𝑋0) of the fold line through the orbits of 𝑍0 is transverse to 𝑆𝑋0

at (0, 0, 0). Also, we notice that 𝐹𝑍0
(0, 0, 0) = (0, 1, 0), and thus, 𝐹𝑍0

is transverse to 𝑆1
𝑋0

at (0, 0, 0). However, the fold line map of 𝑍0 is given by 𝜓𝑍0
(𝑥) = 𝑥 + 𝒪(𝑥2), and hence

the origin is not a hyperbolic fixed point of 𝜓𝑍0
. Therefore, 𝑍0 satisfies conditions (𝑖) and

(𝑖𝑖) of Definition 5.3.1 but it does not satisfies condition (𝑖𝑖𝑖).
Now, consider the map 𝑀2 : R3 → R3 given by

𝑀2(𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎝
𝑥(𝛼 + (1 − 𝛼)𝑦)

𝑦

𝑧

⎞⎟⎟⎟⎠ ,
with 𝛼 ̸= 1. Since, |𝑑𝑀2(𝑥, 𝑦, 𝑧)|= 𝛼 + (1 − 𝛼)𝑦, we have that 𝑀2 is a diffeomorphism
outside the plane 𝑦 = −𝛼/(1 − 𝛼). Since our loop is contained in the plane 𝑥 = 0 with
0 ≤ 𝑦 ≤ 1, choosing 𝛼 such that −𝛼/(1−𝛼) /∈ [0, 1], we have that 𝑀2 is a diffeomorphism
around the loop of 𝑍0.
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In this case, the inverse of 𝑀2 is given by

(𝑀2)−1(𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎜⎝
𝑥

𝛼 + (1 − 𝛼)𝑦
𝑦

𝑧

⎞⎟⎟⎟⎟⎠ . (5.5.5)

Notice that 𝑀2(𝑥, 1, 0) = (𝑥, 1, 0) and 𝑀2(𝑥, 𝑏𝑥, 0) = (𝛼𝑥 + 𝑏(1 − 𝛼)𝑥2, 𝑏𝑥, 0). Now, a
simple computation shows us that the vector field 𝑌0 given by (5.5.2) satisfies

𝑌0 = 𝑀*
2𝑌0 = 𝑑𝑀2 ∘ 𝑌0 ∘ (𝑀2)−1.

Hence 𝜙𝑌0(𝑡;𝑥, 1, 0) ∈ 𝑀−, for each 𝑡 ∈ (0, 1), and the map Π𝑌0 : ̃︂𝑆𝑋0 → Σ induced
by the flow of 𝑌0 is given by

Π𝑌0(𝑥, 1, 0) = 𝜙𝑌0(1;𝑥, 1, 0) = (𝛼𝑥− 𝑏(𝛼− 1)𝑥2, 𝑏𝑥, 0).

The proof follows directly from these facts.

In the next result, we present a one-parameter family 𝑍𝛾, which unfolds 𝑍0 given by
Proposition 5.5.1. We notice that this perturbation breaks the quasi-generic loop Γ0 of
𝑍0, nevertheless the plane 𝑥 = 0 is 𝑍𝛾-invariant, for every 𝛾.

Proposition 5.5.2. Given 𝑏 ̸= 0 and 𝛼 ∈ R such that |𝛼|≠ 1 and −𝛼/(1 − 𝛼) /∈ [0, 1],
consider the one-parameter family of Filippov systems 𝑍𝛾 = (𝑋0, 𝑌𝛾), where 𝑋0 is given
by (5.5.1), 𝑌𝛾 = 𝑑𝑀 ∘ 𝑌 *

𝛾 ∘𝑀−1, 𝑌 *
𝛾 is the vector field given by

𝑌 *
𝛾 (𝑥, 𝑦, 𝑧) =

⎛⎜⎝ 0
−1

𝛾 + 1 − 2𝑦

⎞⎟⎠ ,
and 𝑀 : R3 → R3 is the map given by

𝑀(𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎝
𝑥 (𝛼 + (1 − 𝛼)(𝑦 − 𝑏𝑥(𝑦 − 1)))

𝑦 − 𝑏𝑥(𝑦 − 1)
𝑧

⎞⎟⎟⎟⎠ . (5.5.6)

Therefore, 𝑍𝛾 is an unfolding of the Filippov system 𝑍0 given by Proposition 5.5.1 at
𝛾 = 0, and there exists a solid torus 𝒜0 around the quasi-generic loop Γ0 at the fold-
regular singularity (0, 0, 0) of 𝑍0 such that the following statements hold.

i) If 𝛾 < 0, then 𝑍𝛾 has a unique sliding cycle Γ𝛾 in 𝒜0 and it is attractive (|𝛼|< 1) or
repelling (|𝛼|> 1) depending on the value of 𝛼.

ii) If 𝛾 = 0, then 𝑍𝛾 has a unique quasi-generic loop Γ0 passing through a fold-regular
singularity in 𝒜0.

iii) If 𝛾 > 0, then 𝑍𝛾 has a unique crossing limit cycle Γ𝛾 in 𝒜0. Moreover, it is hyperbolic
and it is attracting, when |𝛼|< 1, and of saddle type, when |𝛼|> 1.

Furthermore, Γ𝛾 is contained in the plane 𝑥 = 0, for every 𝛾 sufficiently small, and
𝑍𝛾 coincides with 𝑍*

𝛾 = (𝑋0, 𝑌
*

𝛾 ) in the plane 𝑥 = 0.
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Proof. In order to prove the proposition, we must compute the full first return map 𝒫𝛾

of 𝑍𝛾. Notice that the flow of 𝑌 *
𝛾 is given by

𝜙𝑌 *
𝛾

(𝑡;𝑥, 𝑦, 𝑧) =

⎛⎜⎝ 𝑥
−𝑡+ 𝑦

(−𝑡+ 𝑦)2 + (1 + 𝛾)𝑡− 𝑦2 + 𝑧

⎞⎟⎠ ,
and, 𝜋3 ∘ 𝜙𝑌 *

𝛾
(𝑡;𝑥, 𝑦, 0) = 0 if, and only if, 𝑡 = 0 or 𝑡(𝑦) = 2𝑦 − 1 − 𝛾. In this case,

𝜙𝑌 *
𝛾

(𝑡(𝑦);𝑥, 𝑦, 0) = (𝑥, 1 + 𝛾 − 𝑦, 0).

Let 𝑌𝛾 = 𝑑𝑀 ∘ 𝑌 *
𝛾 ∘𝑀−1, where 𝑀 is given by (5.5.6). Thus,

𝜙𝑌𝛾 (𝑡;𝑥, 𝑦, 𝑧) = 𝑀 ∘ 𝜙𝑌 *
𝛾

(𝑡;𝑀−1(𝑥, 𝑦, 𝑧)).

From, (5.5.4) and (5.5.5), we obtain

𝑀−1(𝑥, 𝑦, 0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑥

𝛼 + (1 − 𝛼)𝑦
𝑦(𝛼 + (1 − 𝛼)𝑦) − 𝑏𝑥

𝛼 + (1 − 𝛼)𝑦 − 𝑏𝑥

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Considering 𝑥 = 𝜋1 ∘ 𝑀−1(𝑥, 𝑦, 0) and 𝑦 = 𝜋2 ∘ 𝑀−1(𝑥, 𝑦, 0), we have that, the map
𝒫−

𝛾 induced by the orbits of 𝑌𝛾 is given by

𝒫−
𝛾 (𝑥, 𝑦, 0) := 𝜙𝑌 𝛾 (𝑡(𝑦);𝑥, 𝑦, 0) = 𝑀(𝑥, 1 + 𝛾 − 𝑦, 0).

Thus,

𝒫−
𝛾 (𝑥, 𝑦, 0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥(𝛼(1 + 𝛾 − 𝛼𝛾) + 𝑏𝑥(1 − 𝛼− 𝛾 + 𝛼𝛾) + (𝛼− 1)2((1 + 𝛾)𝑦 − 𝑦2))
(𝛼 + (1 − 𝛼)𝑦)2

1 + 𝛾 − 𝑦 − 𝑏(𝛾 − 1)
𝛼 + (1 − 𝛼)𝑦𝑥

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

for every (𝑥, 𝑦) is a neighborhood of (0, 1).
Now, using the flow of 𝑋0 we compute the map 𝒫+

0 : Σ → Σ induced by orbits of 𝑋0,
which is given by

𝒫+
0 (𝑥, 𝑦, 0) =

⎛⎜⎜⎜⎜⎝
𝑥

1
2
(︁
1 − 𝑦 +

√
1 + 2𝑦 − 3𝑦2

)︁
0

⎞⎟⎟⎟⎟⎠
Finally, the full first return map 𝒫𝛾 : (−𝜀, 𝜀) × (−𝜀, 𝜀) → Σ of 𝑍𝛾 is given by

𝒫𝛾(𝑥, 𝑦, 0) = 𝒫−
𝛾 ∘ 𝒫+

0 (𝑥, 𝑦, 0),

and it has an explicit form. In this case, the first return map 𝑃𝛾 of 𝑍𝛾 is given by the
restriction of 𝒫𝛾 to [0, 𝜀) × (−𝜀, 𝜀).

An easy computation shows that
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1. 𝒫𝛾(0, 0) = (0, 𝛾);

2. 𝒫𝛾(𝑥, 0) =

⎛⎜⎝ 𝑥(𝛼(1 + 𝛾 − 𝛼𝛾) + 𝑏𝑥(1 − 𝛼− 𝛾 + 𝛼𝛾) + 𝛾(𝛼− 1)2)
𝛾 − 𝑏(𝛾 − 1)𝑥

⎞⎟⎠;

3. 𝒫0(𝑥, 𝑦) =
(︃
𝛼 0
𝑏 0

)︃(︃
𝑥
𝑦

)︃
+ ℎ.𝑜.𝑡.

4. The sliding dynamics is given by 𝜓𝛾(𝑥) = 𝑔(𝑥)+𝒪2(𝑔(𝑥)) where 𝑔(𝑥) = 𝜋1∘𝒫𝛾(𝑥, 0).
In this case, 𝑔(0) = 0 and thus 𝜓𝛾(0) = 0, for each 𝛾 ∈ (−𝜀, 𝜀).

Hence, from item (3) we have that 𝒫0 has a unique fixed point for 𝜀 > 0 sufficiently
small. Since 𝒫𝛾(0, 𝑦) = (0, 1 + 𝛾 − 1/2(1 − 𝑦 +

√
1 + 2𝑦 − 3𝑦2)), the equation 𝒫𝛾(0, 𝑦) =

(0, 𝑦) has two solutions

𝑦±(𝛾) = 1
2

(︂
1 + 𝛾 ±

√︁
1 − 3𝛾 − 3𝛾2

)︂
.

Now, 𝑦+(0) = 1 and 𝑦−(0) = 0. Since we are looking for solutions bifurcating from
(0, 0), we have that 𝒫𝛾 has a unique hyperbolic fixed point at 𝑝𝛾 = (0, 𝑦−(𝛾)), for 𝜀 > 0
sufficiently small.

Finally, notice that 𝑦−(𝛾) > 0 if, and only if 𝛾 > 0. Also, the point 𝒫𝛾(0, 0) ∈ Σ𝑠 if,
and only if, 𝛾 < 0. This concludes the proof.

The bifurcation diagram of the one-parameter family 𝑍𝛾 for 𝛼 > 1 and 𝑏 < 0 is
sketched in Figure 5.10 (the other cases are analogous).

Remark 5.5.3. Notice that the one-parameter family 𝑍*
𝛾 given in the Proposition 5.5.1

restricted to the plane 𝑥 = 0, describes the critical crossing cycle bifurcation in planar
Filippov systems, which was extensively studied in [40].

Now, we present another one-parameter family 𝒵𝛾 which unfolds 𝑍0 ∈ Λ1 given by
Proposition 5.5.1 at 𝛾 = 0 (with 𝛼 = 2 and 𝑏 = 1). In this case, the perturbation breaks
the homoclinic-like loop at the origin of 𝑍0 in such way that the plane 𝑥 = 0 is not
𝒵𝛾-invariant anymore, for 𝛾 ̸= 0.

Proposition 5.5.4. Consider the one-parameter family of Filippov systems 𝒵𝛾 = (𝑋0,𝒴𝛾),
where 𝑋0 is given by (5.5.1), 𝒴𝛾 = 𝑑𝑁 ∘ 𝒴*

𝛾 ∘𝑁−1, 𝒴*
𝛾 is the vector field given by

𝒴*
𝛾(𝑥, 𝑦, 𝑧) =

⎛⎜⎝ 𝛾
−1

1 − 2𝑦

⎞⎟⎠ ,
and 𝑁 : R3 → R3 is the map given by

𝑁(𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎝
𝑥 (2 − 𝑦 + 𝑥(𝑦 − 1))

𝑦 − 𝑥(𝑦 − 1)
𝑧

⎞⎟⎟⎟⎠ .
Then 𝒵𝛾 is an unfolding of the Filippov system 𝑍0 given by Proposition 5.5.1 (with 𝛼 = 2
and 𝑏 = 1) at 𝛾 = 0, and there exists a solid torus 𝒜0 around the quasi-generic loop Γ0
at the fold-regular singularity (0, 0, 0) of 𝑍0 such that the following statements hold.
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i) If 𝛾 > 0, then 𝒵𝛾 has a unique sliding cycle Γ𝛾 in 𝒜0, which is of repelling type;

ii) If 𝛾 = 0, then 𝒵𝛾 has a unique quasi-generic loop Γ0 passing through a fold-regular
singularity in 𝒜0;

iii) If 𝛾 < 0, then 𝒵𝛾 has a unique crossing limit cycle Γ𝛾 in 𝒜0, which is hyperbolic and
of saddle type.

Proof. Analogously to the proof of Proposition 5.5.2, and using that have the flow of 𝒴*
𝛾

is given by

𝜙𝒴*
𝛾
(𝑡;𝑥, 𝑦, 𝑧) =

⎛⎜⎝ 𝛾𝑡+ 𝑥
−𝑡+ 𝑦

(−𝑡+ 𝑦)2 + 𝑡− 𝑦2 + 𝑧

⎞⎟⎠ ,
we obtain that the explicit full first return map of 𝒵𝛾 is given by

𝒫𝛾(𝑥, 𝑦) =
(︃
𝛾(2 − 𝛾)

𝛾

)︃
+
(︃

2 − 2𝛾 0
1 0

)︃(︃
𝑥
𝑦

)︃
+ 𝒪2(𝑥, 𝑦).

Applying the Implicit Function Theorem to 𝒫𝛾 − Id, we obtain the existence of a
hyperbolic fixed point 𝑝𝛾 = (𝑥(𝛾), 𝑦(𝛾)) of 𝒫𝛾, which is given by(︃

𝑥(𝛾)
𝑦(𝛾)

)︃
=

(︃
−2𝛾
−𝛾

)︃
+ 𝒪2(𝛾).

It means that 𝑝𝛾 ∈ Σ𝑐 if, and only if, 𝛾 < 0, thus 𝒵𝛾 has a unique crossing limit cycle
if, and only if, 𝛾 < 0.

Now, using that 𝒫𝛾(𝑥, 0, 0) = ((2 −𝛾−𝑥)(𝛾+𝑥), 𝛾+𝑥, 0), one can prove that the fold
line map of 𝒵𝛾 is given by

𝜓𝛾(𝑥) = (2 − 𝛾)𝛾 + (2 − 2𝛾)𝑥+ 𝒪(𝑥2).

Again, applying the Implicit Function Theorem to 𝜓𝛾 − Id, we obtain the existence of
a hyperbolic fixed point 𝑠(𝛾) of 𝜓𝛾 which is given by

𝑠(𝛾) = −2𝛾 + 𝒪2(𝛾).

Finally, it is easy to see that 𝒫𝛾(−𝛾, 0, 0) = (0, 0, 0), which means that 𝑆1
𝑋0 intersects

𝑆𝑋0 at the origin for each 𝛾 ∈ (−𝜀, 𝜀). Thus, the domain of 𝜓𝛾 is (−𝜀, 0], and it follows
that 𝑠(𝛾) corresponds to a sliding cycle of 𝒵𝛾 if, and only if, 𝛾 > 0. In addition, it is a
repelling sliding cycle. The proof is complete.

Remark 5.5.5. Notice that, considering 𝛼 = 2 and 𝑏 = 1 in Proposition 5.5.2, we have
that the one-parameter families 𝑍𝛾 and 𝒵𝛾 presented in Propositions 5.5.2 and 5.5.4,
respectively, are topologically equivalent unfoldings of 𝑍0 at 𝛾 = 0.

It is worth mentioning that, for the particular families considered in this section, we
prove that the first part of Theorem M also holds for the case when 𝑍0 satisfies (𝑆),
despite of the stability.

5.6 Proofs of Theorems L, M, N and O
In this section, we use the maps constructed in Section 5.4 to prove Theorems L, M,

N and O.
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5.6.1 Proof of Theorem L
From Section 5.4.2, there exist neighborhoods 𝒱0 of 𝑍0 in Ω𝑟 and 𝑉0 of 𝑝0 in Σ suffi-

ciently small, such that, each 𝑍 ∈ 𝒱0 is associated to a full first return map 𝒫𝑍 : 𝑉0 → Σ.
Let 𝒜0 be a solid torus containing Γ0 such that 𝑉0 = 𝒞𝑝0(𝒜0∩Σ) (connected component

of 𝒜0 ∩ Σ containing 𝑝0). In addition, for each 𝑍 ∈ 𝒱0, there exist coordinates (𝑥, 𝑦, 𝑧)
(which has a 𝒞𝑟-dependence on 𝑍) defined in 𝑉0, such that Σ is given by the plane 𝑧 = 0
and 𝑆𝑍 ∩ 𝑉0 is given by the 𝑥-axis.

Since 𝒫𝑍0 has a unique hyperbolic fixed point 𝑝0 in 𝑉0, it follows from the Implicit
Function Theorem that 𝒫𝑍 has a unique hyperbolic fixed point 𝑝𝑍 in 𝑉0, for each 𝑍 ∈ 𝒱0
(reduce 𝒱0 if necessary). Denoting the 𝑦-coordinate of 𝑝𝑍 in the coordinate system (𝑥, 𝑦, 𝑧)
by 𝑝𝑦

𝑍 , it follows that 𝑝𝑍 ∈ 𝑆𝑍 if, and only if 𝑝𝑦
𝑍 = 0.

Define 𝜁(𝑍) = 𝑝𝑦
𝑍 , for each 𝑍 ∈ 𝒱0. Therefore, it is straightforward to see that

𝜁(𝑍) = 0 if, and only if, 𝑍 has a homoclinic-like loop at 𝑝𝑍 contained in 𝒜0. Also, it
is not difficult to see that conditions (𝐺), (𝑇 ), (𝑖𝑖) and (𝑖𝑖𝑖) of Definition 5.3.1 hold for
every 𝑍 ∈ 𝒱0, which means that 𝜁(𝑍) = 0 if, and only if, 𝑍 has a quasi-generic loop at
𝑝𝑍 contained in 𝒜0.

Now, let 𝑍* = (𝑋*, 𝑌 *) ∈ 𝒱0 such that 𝜁(𝑍*) = 0, and let 𝒵𝜆 be a curve in Ω𝑟 such
that 𝒵0 = 𝑍*, and 𝒵𝜆 = (𝑋*, 𝑌𝜆). In this case,

𝒫𝒵0(𝑥, 𝑦) = (𝛼𝑥, 𝑏𝑥) + 𝒪2(𝑥, 𝑦),

for some 𝛼 ̸= 0,±1, and 𝑏 ̸= 0. Given 𝑣 ∈ R, we can take 𝑌𝜆 such that

𝒫𝒵𝜆
(𝑥, 𝑦) = (0,−𝜆𝑣) + (𝛼𝑥, 𝑏𝑥) + 𝒪2(𝑥, 𝑦, 𝜆).

Again, applying the Implicit Function Theorem, we can see that 𝜁(𝒵𝛾) = 𝑣𝛾 + 𝒪2(𝛾),
hence

𝑑

𝑑𝜆
𝜁(𝒵𝜆)

⃒⃒⃒⃒
⃒
𝜆=0

= 𝑣.

We conclude that 0 is a regular value of 𝜁. The result follows by noticing that Λ1∩𝒱0 =
𝜁−1(0).

5.6.2 Proof of Theorem M
Let 𝒵 : (−𝜀, 𝜀) → Ω𝑟 be a one-parameter 𝒞1 family such that 𝒵(0) = 𝑍0, which is

transverse to Λ1.
From Section 5.4.2, there exist 𝜀 > 0 sufficiently small and a neighborhood 𝑉0 of

𝑝0 in Σ sufficiently small, such that, each 𝒵(𝛾) is associated to a full first return map
𝒫𝒵(𝛾) : 𝑉0 → Σ. Let 𝜑𝛾 : 𝑉0 → R3 be a change of coordinates (which has a 𝒞𝑟 dependence
on 𝛾) such that

• Σ is brought into the plane 𝑧 = 0;

• The fold line 𝑆𝛾 of 𝒵(𝛾) in 𝑉0 is brought into the 𝑥-axis;

• If we denote 𝑆1
𝛾 = 𝒫𝒵(𝛾)(𝑆𝛾), then the point 𝑆𝛾 ∩ 𝑆1

𝛾 is brought into (0, 0, 0).

Consider the family 𝒵(𝛾) = 𝑑𝜑𝛾 ∘ 𝒵(𝛾) ∘ 𝜑−1
𝛾 and notice that the families 𝒵 and 𝒵

are equivalents. Since 𝒵 is transverse to Λ1 at 0, it follows that the same holds for 𝒵.
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Thus, the first return map 𝑃𝛾 = 𝑃𝒵(𝛾) (see Section 5.4.2) is defined for 𝑦 ≥ 0, and its
extension 𝒫𝛾 has a fixed point

𝑝𝛾 = (𝒪(𝛾), 𝑎𝛾 + 𝒪(𝛾2), 0),

with 𝑎 ̸= 0. For instance, assume that 𝑎 > 0.
It means that 𝑝𝛾 ∈ Σ𝑐 if, and only if 𝛾 > 0, and thus 𝒵(𝛾) has a unique hyperbolic

crossing limit cycle in 𝒜0, if, and only if 𝛾 > 0.
Now, recall that the full fold line map 𝜓𝛾 = 𝜓𝒵(𝛾) defined in the fold line 𝑦 = 0

introduced in Section 5.4.3 controls the existence of sliding cycles. More specifically, it
associates sliding cycles with fixed points of 𝜓𝛾 belonging to a certain domain 𝜎𝐹 𝐿

𝛾 = 𝜎𝐹 𝐿
𝒵(𝛾)

which is given by (5.4.4).
Since the origin is a hyperbolic fixed point of 𝜓0(𝑥), it follows that 𝜓𝛾(𝑥) has a unique

hyperbolic fixed point 𝑥𝛾. Hence 𝒵(𝛾) has at most a unique sliding cycle in 𝒜0.
Now, we must see whether 𝑥𝛾 belongs to 𝜎𝐹 𝐿

𝛾 . If 𝛾 > 0, then 𝑝𝛾 ∈ Σ𝑐 and thus their
invariant manifolds 𝑊 1 = 𝑊 𝑠

0 and 𝑊 2 = 𝑊 𝑠
𝛼 (given by Theorem 5.4.9) intersect the

𝑥-axis in the points 𝑥+
1 and 𝑥+

2 , respectively. Also, if 𝛾 < 0, then 𝑝𝛾 ∈ Σ𝑠 and 𝑊 1 and
𝑊 2 intersect the 𝑥-axis in the points 𝑥−

1 and 𝑥−
2 , respectively. Without loss of generality,

assume that 𝑆1
𝛾 is tangent to the line 𝑦 = 𝑘𝑥 at the origin, with 𝑘 < 0. It follows that

𝑥+
1 < 𝑥+

2 and 𝑥−
1 < 𝑥−

2 . Now, assume that 𝒵(0) satisfies (𝑁).
In the case 𝛾 > 0, the point 𝑝𝛾 is in Σ𝑐 and it is attractive. Using that 𝒫𝛾(𝑥+

𝑖 , 0, 0)
must stay in 𝑊 𝑖 and goes to 𝑝𝛾, it follows that 𝒫𝛾(𝑥+

𝑖 , 0, 0) ∈ Σ𝑐, 𝑖 = 1, 2, which means
that if 𝑥 ≤ 𝑥+

2 then 𝒫𝛾(𝑥, 0, 0) belongs to Σ𝑐 and thus all these points do not belong to
the domain 𝜎𝐹 𝐿

𝛾 (recall that 𝑘 < 0). Nevertheless, we know that the 𝑥-axis has a unique
attractive fixed point 𝑥𝛾 of 𝜓𝛾 and 𝜋1 ∘ 𝒫𝛾(𝑥+

2 , 0, 0) < 𝑥+
2 leads us to 𝜓𝛾(𝑥+

2 ) < 𝑥+
2 , which

means that 𝑥𝛾 < 𝑥+
2 , and thus 𝑥𝛾 /∈ 𝜎𝐹 𝐿

𝛾 . We conclude that, if 𝛾 > 0, then 𝒵(𝛾) has no
sliding cycles.

Now, if 𝛾 < 0, then 𝑝𝛾 ∈ Σ𝑠 and through similar arguments, it follows that 𝒫𝛾(𝑥−
𝑖 , 0, 0) ∈

Σ𝑠, 𝑖 = 1, 2, and thus, if 𝑥 ≥ 𝑥−
2 then 𝒫𝛾(𝑥, 0, 0) belongs to Σ𝑠 and thus all these points

belong to the domain 𝜎𝐹 𝐿
𝛾 . In this case, 𝜋1 ∘ 𝒫𝛾(𝑥−

2 , 0, 0) < 𝑥−
2 and thus 𝜓𝛾(𝑥−

2 ) > 𝑥−
2 ,

which means that 𝑥𝛾 > 𝑥−
2 and hence 𝑥𝛾 ∈ 𝜎𝐹 𝐿

𝛾 . We conclude that, if 𝛾 < 0, then 𝒵(𝛾)
has a unique sliding cycle (see Figure 5.14).

𝑝𝛾

𝑝0

𝑝𝛾

𝛾 = 0𝛾 < 0 𝛾 > 0

𝑊 2 𝑊 2 𝑊 2

𝑊 1
𝑊 1

𝑊 1

𝜓𝛾(𝑥+
2 )

𝑥+
2

𝜓𝛾(𝑥−
2 )

𝑥−
2 𝑦

𝑥

𝑦 = 𝑘𝑥

Figure 5.14: Position of the invariant manifolds 𝑊 1 and 𝑊 2 of 𝒫𝛾 in the case (𝑁) as 𝛾
varies.

5.6.3 Proof of Theorem N
From the construction of the full first return map 𝒫0 of 𝑍0 in Section 5.4.2, it follows

that, to prove Theorem N, it is enough to compute the basin of attraction of the origin
of the map 𝒫0 and to analyze the sliding dynamics of 𝑍0.
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If 𝑍0 satisfies (𝑁), then the origin is a hyperbolic fixed point of 𝒫0 of nodal type and
thus, there exists a neighborhood of the origin which is the basin of attraction of 𝒫0 at
(0, 0). Since all the sliding orbits of 𝑍0 near the origin reaches the fold line 𝑆𝑍0 of 𝑍0 and
the origin is an attractive hyperbolic fixed point of the fold line map 𝜓0, it follows that
every orbit of 𝑍0 near the origin goes to the origin. Statement (𝑖) of Theorem N follows
directly.

Now, if 𝑍0 satisfies (𝑆), then the origin is a hyperbolic fixed point of 𝒫0 of saddle type,
and thus the basin of attraction of 𝒫0 at (0, 0) is given by the stable invariant manifold
𝑊 𝑢

𝛼 . Hence all the orbits of 𝑍0 passing through 𝑊 𝑢
𝛼 ∩ Σ𝑐 goes to the origin.

Also, there exists a unique sliding orbit 𝛾𝑠 of the sliding vector field 𝐹𝑍0 which goes to
the origin. Since the origin is a repelling hyperbolic fixed point of the fold line map 𝜓0, it
follows that an orbit Γ of 𝑍0 goes to the origin if and only Γ ∩ Σ contains a point of the
piecewise-smooth curve 𝛽 = 𝑊 𝑢

𝛼 ∩ Σ𝑐 ∪ 𝛾𝑠. The proof of Theorem N follows directly.

5.6.4 Proof of Theorem O
In order to prove Theorem O, we study the behavior of the iterations of the fold line

𝑆0 of 𝑍0 ∈ Λ𝐶
1 through its full first return map 𝒫0.

Lemma 5.6.1 (Accumulation). Let 𝑍0 = (𝑋0, 𝑌0) ∈ Λ𝐶
1 having a quasi-generic loop Γ0 at

𝑝0 and let 𝒫0 be the full first return map associated to 𝑍0 given by (5.4.7). If 𝑍0 satisfies
(𝑆), then 𝑆𝑛 = 𝒫𝑛

0 (𝑆𝑋0), 𝑛 ∈ N, is a sequence of smooth curves tangent to the eigenspace
ℰ𝛼 given by Proposition 5.4.9 at 𝑝0, such that, for each 𝜀 > 0 sufficiently small, there
exists 𝑁0 ∈ N such that 𝑆𝑛 is 𝜀- close to the unstable invariant manifold 𝑊 𝑢

𝛼 of 𝒫0 at 𝑝0,
for every 𝑛 ≥ 𝑁0. Furthermore, for each 𝑛 ≥ 2, 𝑆𝑛 is a curve having an even contact
with 𝑆𝑛−1 at 𝑝0 and the following statements hold

i) In Σ𝑐, 𝑆𝑛−1 and 𝑆𝑛 are given by arcs clockwise ordered, and thus 𝑆𝑛 ∩ Σ𝑐 and 𝑊 𝑢
𝛼

are clockwise ordered for every 𝑛 ∈ N;

ii) In Σ𝑠, 𝑆𝑛 is flipped back to the region delimited by 𝑆𝑛−1 and 𝑆𝑛−2, for every 𝑛 ≥ 2.
Thus, 𝑆𝑛 alternates the side of 𝑊 𝑢

𝛼 (flip property), which means that, if 𝑊 𝑢
𝛼 and

𝑆𝑛−1 are counterclockwise ordered, then 𝑆𝑛 and 𝑊 𝑢
𝛼 are counterclockwise ordered,

and vice-versa.

Proof. From Proposition 5.4.10, we have that the parameters in (5.4.7) satisfy 𝛼 > 0 and
𝑐 > 0. Recall that the coordinate system (𝑥, 𝑦, 𝑧) at 𝑝0 used to express 𝒫0 as (5.4.7)
satisfies the following properties.

1. Σ is given by the plane 𝑧 = 0;

2. The fold line 𝑆𝑍0 = 𝑆0 of 𝑍0 is given by the 𝑥-axis;

3. Without loss of generality, we assume that 𝑏 < 0 in (5.4.7), thus the curve 𝑆1 =
𝒫0(𝑆0) of 𝑆0 is tangent to the line 𝑦 = 𝑘𝑥 at the origin, where 𝑘 = 𝑏/𝛼 < 0.

Thus, we have the configuration in the switching manifold (𝑧 = 0) illustrated in Figure
5.15.

Since 𝑍0 satisfies (𝑆), it follows from Proposition 5.4.9 that the map 𝒫0 has a fixed
point of saddle type at the origin which has a stable invariant manifold 𝑊 𝑠

𝛼 tangent to
the 𝑦-axis and a unstable invariant manifold 𝑊 𝑢

𝛼 tangent to the line 𝑦 = 𝑘𝑥.
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𝑆0 𝑆1Σ𝑠

𝑥

𝑦

Figure 5.15: Configuration of 𝑆0 and 𝑆1 in Σ.

In what follows, we describe how the iterations of 𝑆0 through 𝒫0 behave. From the
expression of 𝒫0 in (5.4.7), we have that 𝑆𝑛 = 𝒫𝑛

0 (𝑆0) is a smooth curve passing through
(0, 0) tangent to the line 𝑦 = 𝑘𝑥 at (0, 0), for each 𝑛 ∈ N. Clearly, 𝑊 𝑠

𝛼 ∩ 𝒫𝑛
0 (𝑆0) = ∅, for

each 𝑛 ∈ N, since 𝑆0 and 𝑆1 are transversal.
Now, in order to obtain the positions of the curves 𝑆𝑛 in Σ, we must recall the con-

struction of the map 𝒫0. In Section 5.4.2, 𝒫0 is written as the composition 𝒫0 = 𝒟0 ∘ 𝒯0,
where 𝒯0 is a transition map from Σ to a transversal section 𝜏 = {𝑧 = 𝜀}, for 𝜀 > 0 small,
and 𝒟0 is an orientation-preserving diffeomorphism from 𝜏 to Σ. In addition, notice that

𝒯0(𝑥, 𝑦) = (𝑥,
√

2𝜀+𝐾𝑦2 + 𝒪(𝑦3)), for some 𝐾 > 0.

Without loss of generality, consider that 𝑆1 is the line 𝑦 = 𝑘𝑥. Now, we describe how
to obtain 𝑆𝑛, for 𝑛 ≥ 2.

We consider 𝑛 = 2, since the other cases follow completely analogous. Notice that
𝒯0(𝑥, 𝑘𝑥) = (𝑥,

√
2𝜀+𝐾2𝑥

2 + 𝒪(𝑥3)), where 𝐾2 = 𝐾𝑘2 > 0, describes a parabola tangent
to the origin contained in the semi-plane 𝑦 ≥

√
2𝜀 of section 𝜏 . Since the line 𝑦 =

√
𝜀 is

sent to the line 𝑆1 in Σ through the diffeomorphism 𝒟0 (which preserves the orientation
of the section 𝜏), it follows that 𝒫0(𝑆1) is a parabola which has a quadratic contact with
𝑆1 at the origin. In addition, 𝒫0(𝑆1) ∩ Σ𝑐 is contained in the first quadrant delimited by
𝑆0 and 𝑆1 and 𝒫0(𝑆1) ∩ Σ𝑠 is contained in the fourth quadrant generated by 𝑆0 and 𝑆1
(see Figure 5.16).

Notice that, in Σ𝑐, the iterations 𝑆0, 𝑆1 and 𝑆2 are clockwise ordered, nevertheless, in
Σ𝑠, 𝑆0, 𝑆2, 𝑆1 are counterclockwise ordered. It allows us to see that, in Σ𝑠, the second
iteration of 𝑆0 have flipped back to the region between 𝑆0 and 𝑆1. Following the same
scheme, we prove items (𝑖), and (𝑖𝑖).

Now, using Proposition 5.4.8 and the dominant part of 𝒫0, it follows that 𝑆𝑛 accumu-
lates onto 𝑊 𝑢

𝛼 in the 𝒞0-topology.

Notice that Lemma 5.6.1 gives rise to a region 𝐹0, which works as a fundamental
domain for 𝒫0 restricted to a certain region. See Figure 5.17.

Finally, we are able to prove Theorem O. Let 𝒫0 and ̃︁𝒫0 be the full first return maps
associated to 𝑍0 and ̃︀𝑍0, respectively, and assume that ℎ is a weak equivalence between 𝑍0
and ̃︀𝑍0. Using Proposition 5.4.8, we can see that there exist coordinate systems (𝑥, 𝑦, 𝑧)
and (̃︀𝑥, ̃︀𝑦, ̃︀𝑧) at 𝑝0 and ̃︁𝑝0, respectively, such that 𝒫0 and ̃︁𝒫0 are given by

𝒫0(𝑥, 𝑦) = (𝛼𝑥− 𝑐𝛼𝑦2 + 𝑐𝑥2 + 𝒪3(𝑥, 𝑦), 𝑥),

and ̃︁𝒫0(̃︀𝑥, ̃︀𝑦) = (̃︀𝛼𝑥− ̃︀𝑐̃︀𝛼̃︀𝑦2 + ̃︀𝑐̃︀𝑥2 + 𝒪3(̃︀𝑥, ̃︀𝑦), ̃︀𝑥),
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Figure 5.16: Iteration scheme of the fold line 𝑆0 through 𝒫0. Denote 𝒯0(𝑆𝑖) = 𝑆 ′
𝑖.

𝑆0 𝑆1
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𝑆3

𝑊 𝑢
𝛼

𝑊 𝑠
𝛼

𝑆0𝑆1 𝑆3 𝑆2𝑊 𝑢
𝛼

𝑊 𝑠
𝛼

𝐹0

Figure 5.17: Region 𝐹0.

respectively. Also, the fold lines 𝑆𝑍0 and 𝑆 ̃︀𝑍0
are given by the 𝑥-axis and the ̃︀𝑥-axis,

respectively. In this case, 𝒲(𝑍0) = 𝛼 and 𝒲(̃︁𝑍0) = ̃︀𝛼.
Consider the same notation used in the proof of Lemma 5.6.1. Let 𝛿 > 0 sufficiently

small, and consider the map 𝒫0. There exists a unique point 𝑤 ̸= (0, 0) of 𝑊 𝑢
𝛼 ∩ {𝑦 = 𝛿},

and, for each 𝑛 ∈ N, take 𝑦𝑛 as the unique point contained in 𝑆𝑛 ∩ {𝑦 = 𝛿}. Therefore,
from the construction, there exists a sequence (𝑥𝑛, 0) ∈ 𝑆0 such that

1. (𝑥𝑛, 0) → (0, 0) as 𝑛 → ∞;

2. 𝑦𝑛 = 𝒫𝑛
0 (𝑥𝑛, 0), for each 𝑛 ∈ N;

3. 𝑦𝑛 → 𝑤 as 𝑛 → ∞.

Now, for the map ̃︁𝒫0, consider ̃︀𝑤 = ℎ(𝑤), ̃︁𝑥𝑛 = ℎ(𝑥𝑛) and ̃︁𝑦𝑛 = ℎ(𝑦𝑛), for each 𝑛 ∈ N.
Since ℎ is a weak-equivalence and 𝑤 ̸= (0, 0), it follows that

1. ̃︀𝑤 ̸= (0, 0);

2. (̃︁𝑥𝑛, 0) → (0, 0) as 𝑛 → ∞;

3. ̃︁𝑦𝑛 = ̃︁𝒫0
𝑛(̃︁𝑥𝑛), for each 𝑛 ∈ N;
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4. ̃︁𝑦𝑛 → ̃︀𝑤 as 𝑛 → ∞.

Notice that, since 𝛼, ̃︀𝛼 ̸= 0, it follows that the dynamics of points near the invariant
manifolds 𝑊 𝑢

𝛼 and 𝑊 𝑢̃︀𝛼 of 𝒫0 and ̃︁𝒫0 have the same behavior of the dynamics obtained
from their linear approximations. Therefore, without loss of generality, consider that

𝒫0(𝑥, 𝑦) = (𝛼𝑥, 𝑥) 𝑎𝑛𝑑 ̃︁𝒫0(̃︀𝑥, ̃︀𝑦) = (̃︀𝛼̃︀𝑥, ̃︀𝑥).

Hence, 𝑦𝑛 = (𝛼𝑛𝑥𝑛, 𝛼
𝑛−1𝑥𝑛) and ̃︁𝑦𝑛 = (̃︀𝛼𝑛̃︁𝑥𝑛, ̃︀𝛼𝑛−1̃︁𝑥𝑛), for 𝑛 sufficiently big. Now,

since ℎ : 𝑆𝑍0 → 𝑆 ̃︀𝑍0
is a diffeomorphism, it follows that ̃︁𝑥𝑛 = 𝐾𝑥𝑛 + 𝒪2(𝑥𝑛), for some

𝐾 ̸= 0. It follows that 𝛼𝑛𝑥𝑛 → 𝜋1(𝑤) ̸= 0 and ̃︀𝛼𝑛𝑥𝑛 → 𝜋1( ̃︀𝑤)/𝐾 ̸= 0, as 𝑛 → 0.
Now, if 𝛼 ̸= ̃︀𝛼, then it follows that either 𝛼𝑛𝑥𝑛 → 0 or ̃︀𝛼𝑛𝑥𝑛 → 0, which contradicts

the fact that 𝛼𝑛𝑥𝑛 → 𝜋1(𝑤) and ̃︀𝛼𝑛𝑥𝑛 → 𝜋1( ̃︀𝑤)/𝐾. Therefore, it follows that 𝛼 = ̃︀𝛼, and
the proof is complete.

5.7 Conclusion and Further Directions
In this chapter, we have studied Filippov systems 𝑍0 = (𝑋0, 𝑌0) around a homoclinic-

like loop Γ0 at a fold-regular singularity under some generic conditions and we have proven
that such loops are generic in one-parameter families.

Also, we have seen that the fold line 𝑆𝑍0 of 𝑍0 connects to itself through orbits of
𝑋0, 𝑌0 and 𝐹𝑍0 as a topological cylinder or a Möbius strip, giving rise to two classes of
loops, Λ𝐶

1 and Λ𝑀
1 , respectively. For simplicity, we considered only the class Λ𝐶

1 to avoid
technicalities, nevertheless, we believe that similar results hold in the class Λ𝑀

1 .
In the class Λ𝐶

1 , we have seen that the first return map of 𝑍0 has a hyperbolic fixed
point of either saddle (condition (𝑆)) or nodal type (condition (𝑁)). We have completely
described the bifurcation diagram of 𝑍0 around Γ0, provided that 𝑍0 satisfies (𝑁). If 𝑍0
satisfies (𝑆), we found all the bifurcating elements of Γ0, nevertheless, the description of
the bifurcation diagram remains as an open problem for this case. We conjecture that 𝑍0
has the same bifurcation diagram around Γ0 for the cases (𝑁) and (𝑆), as can be seen in
the examples provided in Section 5.5.

A natural extension of this work is to obtain bifurcation diagrams of Filippov sys-
tems around homoclinic-like loops passing through other kinds of Σ-singularities (e.g.
cusp-regular and fold-fold singularities). We highlight that the connection studied herein
appears in the unfolding of loops passing through a cusp-regular singularity. This study
will guide us towards the comprehension of polycycles in 3𝐷 Filippov systems (see the
planar version provided in Chapter 2).

Also, if we relax the generic conditions imposed in the quasi-generic loops, one can
certainly obtain interesting global behavior for Filippov systems 𝑍 near 𝑍0. In fact, such
degeneracy of homoclinic-like loops at a fold-regular singularity might originate other
bifurcating cycles.
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Chapter 6
T-Chains: A Chaotic 3𝐷 Foliation

In this chapter we deal with a class of 3𝐷 Filippov systems presenting robust connec-
tions between certain typical singularities, known as 𝑇 -singularities. Such systems

are locally structurally stable at these singularities and are mainly characterized by the
existence of 2𝐷 invariant cones (named diabolos) with vertices on such points. Our main
goal is to discuss the existence of chaotic dynamics when self connections between the
cones occur. We highlight that the counterpart of these connections in the smooth case
can happen only for highly degenerate systems.

6.1 Setting the Problem and Main Result
In this chapter, we consider Filippov systems 𝑍 = (𝑋, 𝑌 ) defined on an open bounded

connected region 𝑀 ⊂ R3 (diffeomorphic to an open ball) with an oriented switching
manifold Σ = 𝑓−1(0), where 𝑓 : 𝑀 → R is a smooth function having 0 as a regular
value. We denote the set of 𝒞𝑟 vector fields by 𝜒𝑟 and we endow it with the 𝒞𝑟 topology.
Accordingly, the set of Filippov systems on 𝑀 is denoted by Ω𝑟 = 𝜒𝑟 × 𝜒𝑟 and it is
endowed with the product topology.

6.1.1 T-chains
As we have seen in Chapter 3, Filippov systems are locally structurally stable at certain

types of fold-fold singularities and they appear in an open set of this class. Moreover, in
Chapter 4, we have proven that certain fold-fold singularities still persist on the class of
semi-local structurally stable Filippov systems. In light of this, the knowledge of global
behavior of the dynamics of Filippov systems around connections involving these points
plays a crucial role in the attempt to characterize the structurally stable Filippov systems.
We formalize such connections in the following definition.

Definition 6.1.1. Let 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 having fold-fold singularities 𝑝0, 𝑞0 ∈ Σ (𝑝0 = 𝑞0
is also considered) and let −∞ ≤ 𝑎 < 𝑏 ≤ ∞. An oriented piecewise smooth curve
Γ : (𝑎, 𝑏) → 𝑀 is said to be a fold-fold connection of 𝑍0 between 𝑝0 and 𝑞0 if it
satisfies the following conditions.

i) Im(Γ) ∩𝑀+ (resp. Im(Γ) ∩𝑀−) is a union of orbits of 𝑋0 (resp. 𝑌0).

ii) Im(Γ) ∩ Σ ⊂ Σ𝑐.
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iii) lim
𝑡→𝑎

Γ(𝑡) = 𝑝0 and lim
𝑡→𝑏

Γ(𝑡) = 𝑞0.

Now, we introduce the concept of fold-fold chain.

Definition 6.1.2. Consider 𝑍0 ∈ Ω𝑟 having 𝑘 fold-fold singularities 𝑝𝑖 ∈ Σ, 𝑖 = 1, · · · , 𝑘.
We say that 𝛾 ⊂ 𝑀 is a fold-fold chain of order 𝑘 of 𝑍0 if

𝛾 = {𝑝1, · · · , 𝑝𝑘} ∪𝑘
𝑖=1 Im(Γ𝑖),

where Γ𝑖 is a fold-fold connection between 𝑝𝑖 and 𝑝𝑖+1, 𝑖 = 1, · · · , 𝑘, where 𝑝𝑘+1 = 𝑝1, and
either one of the following conditions is satisfied.

i) Γ𝑖 is an oriented piecewise smooth curve from 𝑝𝑖 to 𝑝𝑖+1, 𝑖 = 1, · · · , 𝑘.

ii) Γ𝑖 is an oriented piecewise smooth curve from 𝑝𝑖+1 to 𝑝𝑖, 𝑖 = 1, · · · , 𝑘.

Notice that, fold-fold chains generalize Σ-polycycles having only fold-fold singularities
(in the planar case) to 3𝐷 Filippov systems. Figure 6.1 illustrates some fold-fold chains.

Σ

Σ𝑠𝑠

Σ𝑢𝑠

Σ

(𝑎) (𝑏)

(𝑐) (𝑑)

Figure 6.1: Planar Σ-polycycles passing through a visible-visible fold-fold singularity (𝑎)
and a visible-invisible fold-fold singularity (𝑏), and tridimensional fold-fold chains passing
through a visible-visible fold-fold singularity (𝑐) and a visible-invisible fold-fold singularity
(𝑑).

As far as we know, there is a lack of works in the literature concerning this kind of
object, maybe due to the difficult inherent to the problem. In fact, 3𝐷 Filippov systems
exhibit a rich local dynamics at fold-fold singularities which is hard to comprehend, and
thus, the understanding of global phenomena involving such objects becomes even harder.

As seen before, one of the most challenging types of fold-fold singularities is the elliptic
one (see Section 3.5.1), also known as T-singularity. We recall that, in this case, if 𝑍0 =
(𝑋0, 𝑌0) ∈ Ω𝑟 has a T-singularity at 𝑝0, then it is associated to a 𝒞𝑟 germ of first return map
𝜑0 : (Σ, 𝑝0) → (Σ, 𝑝0), which is given by 𝜑0 = 𝜑𝑋0 ∘ 𝜑𝑌0 , where 𝜑𝑋0 , 𝜑𝑌0 : (Σ, 𝑝0) → (Σ, 𝑝0)
are the involutions induced by the orbits of 𝑋0 and 𝑌0 near 𝑝0.

For simplicity, we say that 𝑝0 is a stable T-singularity of 𝑍0 if, and only if, 𝑝0 is
a T-singularity for which 𝜑0 has a hyperbolic fixed point of saddle type at 𝑝0 with both
local invariant manifolds 𝑊 𝑢,𝑠

𝜑0 (𝑝0) of 𝜑0 at 𝑝0 contained in Σ𝑐. Recall that Theorem F
proves that 𝑍0 ∈ Ω𝑟 is locally structurally stable at a T-singularity 𝑝0 if, and only if, 𝑝0
is a stable T-singularity of 𝑍0.
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Also, if 𝑍0 has a stable T-singularity at 𝑝0, then there exists a (local) invariant cone
𝒩 (𝑝0) with vertex at 𝑝0 which is filled up with crossing orbits of 𝑍0. In addition, 𝒩 (𝑝0)
is piecewise smooth and 𝒩 (𝑝0) ∩ Σ = 𝑊 𝑢

𝜑0(𝑝0) ∪𝑊 𝑠
𝜑0(𝑝0). Denote the stable and unstable

branches of 𝒩 (𝑝0) by 𝑊 𝑠
cross and 𝑊 𝑢

cross, respectively. The existence of such cone 𝒩 (𝑝0)
has been exhibited in Section 3.6, and it is also referred as the diabolo associated to 𝑍0
at 𝑝0 (see [24]). See Figure 6.2.

𝑝0
Σ𝑢𝑠

Σ𝑠𝑠

Σ

𝑊𝑢
𝜑0

(𝑝0)

𝑊 𝑠
𝜑0

(𝑝0)

𝑊𝑢
cross 𝑊 𝑠

cross

Figure 6.2: Nonsmooth diabolo 𝒩 (𝑝0) at a stable 𝑇 -singularity 𝑝0 of 𝑍0.

In light of this discussion, we have seen that a Filippov system has local crossing
invariant manifolds (stable and unstable) at a stable T-singularity, which persist under
small perturbation. Therefore, a natural question arises in such scenario: what kind of
dynamics is originated from the global extension of these local invariant manifolds?

Definition 6.1.3. Consider 𝑍0 ∈ Ω𝑟. We say that 𝛾 ⊂ 𝑀 is a T-chain of 𝑍0 if 𝛾 is a
fold-fold chain of order 1 of 𝑍0 having a unique stable T-singularity of 𝑍0.

In this chapter, we study the dynamics of Filippov systems around T-chains through a
semi-local analysis at this global connection. We highlight that T-chains are the simplest
fold-fold chains having stable T-singularities and we restrict our studied to this case
because, even in this situation, a Filippov system displays a very complicated dynamics
in the presence of such object.

6.1.2 Robustness Conditions
Let 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 having a stable T-singularity at 𝑝0. For ⋆ = 𝑢, 𝑠, let 𝜏 ⋆ be

a section such that 𝜏 ⋆ ∩ 𝑊 ⋆
cross = 𝒞⋆ is a piecewise smooth closed curve homotopic to a

circle which is nonsmooth only at (the two) points belonging to 𝒞⋆ ∩ Σ. Assume that 𝜏 ⋆

is transverse to the flow of 𝑍0 at the points of 𝒞⋆ and that 𝜏 ⋆, 𝑊 ⋆
cross and Σ are in general

position (see Figure 6.3). Also, consider that 𝜏 ⋆ is contained in a neighborhood 𝑉3𝐷 of 𝑝0
in 𝑀 , for which the local first return map 𝜑0 : 𝑉 → Σ associated to 𝑍0 at 𝑝0 is defined in
𝑉 = 𝑉3𝐷 ∩ Σ.

Remark 6.1.4. By saying that 𝜏 ⋆ is transverse to the flow of 𝑍0 at the points of 𝒞⋆,
we mean that 𝑋0 (resp. 𝑌0) is transverse to 𝜏 ⋆ at each point 𝑞 ∈ 𝑊 ⋆

cross ∩ 𝑀+ (resp.
𝑞 ∈ 𝑊 ⋆

cross ∩𝑀−).
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𝑝0

𝑊𝑢
cross

𝑊 𝑠
cross

𝒞𝑠 𝒞𝑢

𝜏𝑠 𝜏𝑢

Σ

Figure 6.3: Sections 𝜏𝑢 and 𝜏 𝑠.

Assume that 𝑍0 satisfies the following set of conditions (TC):

(𝑇𝐶1) 𝑍0 has a stable T-singularity at 𝑝0 ∈ Σ;

(𝑇𝐶2) There exists a germ of diffeomorphism 𝒟 : 𝜏𝑢 → 𝜏 𝑠 at 𝒞𝑢, induced by orbits of 𝑋0
and 𝑌0 such that, for each 𝑞 ∈ Dom(𝒟) (domain of 𝒟), 𝑞 and 𝒟(𝑞) are connected
by a crossing orbit of 𝑍0 and 𝒟(𝒞𝑢) = ̂︁𝒞𝑢 is a topological circle contained in 𝜏 𝑠;

(𝑇𝐶3) There exists a 𝑍0-invariant topological cylinder ℛ (2-dimensional) connecting 𝒞𝑢

and ̂︁𝒞𝑢, which is filled up with crossing orbits of 𝑍0. Assume that ℛ ∩ Σ is given
by two compact distinct curves ℛ𝑢, ℛ𝑠 which contains the points 𝑊 𝑢

𝜑0(𝑝0) ∩ 𝜏𝑢 and
𝑊 𝑠

𝜑0(𝑝0) ∩ 𝜏𝑢, respectively. Also, consider that each crossing orbit contained in ℛ
does not intersect ℛ⋆ consecutively, for ⋆ = 𝑢, 𝑠.

The set of hypotheses (𝑇𝐶) allows us to extend the crossing invariant manifold
𝑊 𝑢

cross(𝑝0) of 𝑍0 through a cylinder ℛ in such a way that it intersects the section 𝜏 𝑠

at a topological circle ̂︂𝐶𝑢. Below, we show that such conditions allow us to extend the
local first return map 𝜑0 of 𝑍0 at 𝑝0 into a first return map in Σ around {𝑝0} ∪ ℛ𝑢 ∩ ℛ𝑠,
in such way that the local invariant manifolds 𝑊 𝑢

𝜑0 and 𝑊 𝑠
𝜑0 are extended by ℛ𝑢 and ℛ𝑠.

Lemma 6.1.5 (Extension). Let 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 satisfying the set of conditions (𝑇𝐶)
and let 𝜑0 = 𝜑𝑋0 ∘ 𝜑𝑌0 : 𝑉 → Σ be its local first return map at the stable 𝑇 -singularity 𝑝0.
There exists a small connected neighborhood 𝑊 of {𝑝0} ∪ ℛ𝑢 ∪ ℛ𝑠 in Σ such that

i) 𝑉 ⊂ 𝑊 and 𝑊 ∖ 𝑉 ⊂ Σ𝑐;

ii) There exists an involution Φ𝑌0 : 𝑊 → 𝑊 induced by orbits of 𝑌0, i.e., for each 𝑝 ∈ 𝑊 ,
𝑝 and Φ𝑌0(𝑝) are connected through an orbit of 𝑌0 contained in 𝑀−;

iii) There exists an involution Φ𝑋0 : 𝑊 → Σ induced by orbits of 𝑋0;

iv) Φ0 = Φ𝑋0 ∘ Φ𝑌0 is a reversible mapping which is an extension of 𝜑0. In addition, Φ0
has a unique hyperbolic fixed point at 𝑝0 which is of saddle type.
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Furthermore, for ⋆ = 𝑢, 𝑠, the global invariant manifold 𝑊 ⋆
Φ0of Φ0 at 𝑝0 is an extension

of 𝑊 ⋆
𝜑0(𝑝0) and contains the curve ℛ⋆.

Proof. We prove only item (𝑖𝑖), since item (𝑖𝑖𝑖) is proved in an analogous way and item (𝑖𝑣)
is a direct consequence of items (𝑖𝑖) and (𝑖𝑖𝑖). Item (𝑖) will follows from the construction.

Since 𝑌0 is transverse to 𝜏𝑢 and 𝜏 𝑠 at 𝒞𝑢 ∩ 𝑀− and ̂︁𝒞𝑢 ∩ 𝑀−, respectively, it follows
from condition (𝑇𝐶3) that, for each point 𝑝 ∈ ℛ𝑢, there exists either 𝑞 ∈ ℛ𝑠 or 𝑞 ∈ 𝑉
such that 𝑝 and 𝑞 are connected by a unique orbit of 𝑌0 contained in 𝑀−. Also, if 𝑞 ∈ 𝑉 ,
then such orbit intersects 𝒞𝑢 or ̂︁𝒞𝑢. See Figure 6.4.

Therefore, for each 𝑝 ∈ ℛ𝑢, we use the Implicit Function Theorem to define a 𝒞𝑟 map
Φ𝑌0

𝑝 : 𝑊𝑝 → Σ induced by the orbits of 𝑌0 in such a way that, 𝑥 ∈ 𝑊𝑝 and Φ𝑌0
𝑝 (𝑥) are

connected by a unique orbit of 𝑌0 contained in 𝑀−. An analogous argument shows that
the same holds for points of ℛ𝑠.

Clearly, given 𝑝1, 𝑝2 ∈ ℛ𝑠 ∪ ℛ𝑠, if 𝑥 ∈ 𝑊𝑝1 ∩𝑊𝑝2 , then Φ𝑌0
𝑝1 (𝑥) = Φ𝑌0

𝑝2 (𝑥).
From compactness of ℛ𝑢 ∪ ℛ𝑠, there exist a small neighborhood 𝑊ℛ ⊂ Σ𝑐 of ℛ𝑢 ∪ ℛ𝑠

and a 𝒞𝑟 map Φ𝑌0 : 𝑉 ∪ 𝑊ℛ → 𝑉 ∪ 𝑊ℛ induced by orbits of 𝑌0. From construction, we
have that Φ𝑌0 is an involution and Φ𝑌0|𝑉 = 𝜑𝑌0 . Take 𝑊 = 𝑉 ∪𝑊ℛ.

Clearly, the local invariant manifolds 𝑊 𝑢,𝑠
𝜑0 are extended through ℛ𝑢,𝑠 to invariant

manifolds of Φ0, respectively.

𝑉

𝑊ℛ

𝑊𝑢
𝜑0

𝑊 𝑠
𝜑0

𝑝0

𝜏𝑠 𝜏𝑢

ℛ𝑢

ℛ𝑠

𝜏𝑢

𝒞𝑢

Σ

Σ

Figure 6.4: Neighborhood 𝑊 for which the extended first return map Φ0 is defined and
behavior of the orbits of 𝑋0 at points of ℛ𝑢.

Notice that 𝑇 -chains of 𝑍0 at 𝑝0 are characterized as intersections between the topo-
logical circles ̂︂𝐶𝑢 and 𝒞𝑠.

Proposition 6.1.6. Let 𝑍0 ∈ Ω𝑟 satisfying (𝑇𝐶). The following statements hold.

i) If ̂︂𝐶𝑢 ∩ 𝒞𝑠 = ∅, then 𝑍0 has no 𝑇 -chains at 𝑝0;

ii) If ̂︂𝐶𝑢 = 𝒞𝑠, then 𝑍0 has an invariant (piecewise smooth) pinched torus at 𝑝0 foliated
by 𝑇 -chains at 𝑝0;

iii) If ̂︂𝐶𝑢 ∩ 𝒞𝑠 = 𝑞1, · · · , 𝑞𝐾 ⊂ 𝑀+ ∪𝑀− and ̂︁𝒞𝑢 t 𝒞𝑠 at 𝑞𝑖, 𝑖 ∈ 1, · · · , 𝐾, then 𝑍0 has 𝐾
distinct 𝑇 -chains at 𝑝0 and 𝐾 = 2𝑘, for some 𝑘 ∈ N.

The proof of Proposition 6.1.6 is straightforward and it will be omitted.
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Remark 6.1.7. Notice that the topological circles 𝒞𝑠 and ̂︁𝒞𝑢 are smooth at the points
𝑞𝑖, 1 ≤ 𝑖 ≤ 2𝑘, since 𝑞𝑖 /∈ Σ. Therefore, the notion of transversality is well-defined in
condition (𝑖𝑖𝑖) of Proposition 6.1.6.

We notice that if item (𝑖𝑖) of Proposition 6.1.6 is satisfied then the (reversible) first
return map Φ0 obtained in Lemma 6.1.5 has a homoclinic connection at 𝑝0. Clearly, such
situation is not robust, since a small perturbation breaks the condition ̂︁𝒞𝑢 = 𝒞𝑠. It is
worth mentioning that results on bifurcation of reversible maps around homoclinic orbits
can be used to understand what happens with these manifolds under small perturbations,
nevertheless, this situation is highly degenerated and thus, it can give rise to very com-
plicated phenomena. In [30], the authors have studied bifurcations of homoclinic orbits
of some planar reversible maps.

In order to avoid further degeneracies, we consider the following robustness condi-
tion on 𝑍0:

(R) 𝒞𝑠 ∩ ̂︁𝒞𝑢 = {𝑞1, · · · , 𝑞2𝑘}, for some 𝑘 ∈ N, where 𝑞𝑖 /∈ Σ and 𝒞𝑠 t ̂︁𝒞𝑢 at 𝑞𝑖,
𝑖 ∈ 1, · · · , 2𝑘.

Without loss of generality, we consider that 𝑘 = 1 throughout this chapter. Also,
we highlight that the condition 𝑞𝑖 /∈ Σ in (𝑅) and item (𝑖𝑖𝑖) of Proposition 6.1.6 is only
technical and can be dropped by extending the notion of transversality of 𝒞𝑠 and ̂︁𝒞𝑢 at
points of Σ.

Therefore, if 𝑍0 satisfies (𝑇𝐶) and (𝑅), then 𝑍0 has two distinct 𝑇 -chains at 𝑝0. We
notice that, in this case, each 𝑇 -chain can be seen as a crossing homoclinic orbit of 𝑍0,
since it reaches 𝑝0 only at infinite time (see Figure 6.5). In addition, conditions (𝑇𝐶) and
(𝑅) are persistent under small perturbations of 𝑍0, thus we have that such 𝑇 -chains of
𝑍0 are robust in Ω𝑟 (i.e. can not be destroyed for 𝑍 near 𝑍0).

𝜏𝑠 𝜏𝑢

𝑝0

𝑞1

𝑞2 𝑊 𝑠
cross 𝑊𝑢

cross

𝒞𝑠

𝒞𝑢̂︁𝒞𝑢

Γ1

Γ2

Σ

Figure 6.5: A Filippov system 𝑍0 satisfying hypotheses (𝑇𝐶) and (𝑅) having two T-chains
Γ1 and Γ2 passing through 𝑞1 and 𝑞2, respectively.

6.1.3 Main Result
Let 𝑍0 ∈ Ω𝑟 satisfying (𝑇𝐶) and (𝑅). From 6.1.5, we have that 𝑍0 is associated to a

first return map Φ0 = Φ𝑋0 ∘ Φ𝑌0 induced by orbits of 𝑋0 and 𝑌0. Recall that Φ𝑋0 and Φ𝑌0

describes the foliation generated by 𝑋0 and 𝑌0 in 𝑀+ and 𝑀−, respectively, in the sense
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that 𝑥 and 𝜑𝑋0(𝑥) (resp. 𝜑𝑌0(𝑥)) are connected by an orbit of 𝑋0 (resp. 𝑌0) contained in
𝑀+ (resp. 𝑀−), for every 𝑥 ∈ 𝑊 . It follows that the foliation generated by all the orbits
of 𝑍0 is described by Φ0.

Hence, in order to understand the dynamics of the points in the foliation generated by
𝑍0 around the 𝑇 -chains 𝛾1 and 𝛾2 at 𝑝0, we must study the dynamics of the first return
map Φ0. Although, notice that the map Φ0 does not care about how two pieces of orbits
of 𝑋0 and 𝑌0 are concatenated. In fact, the dynamics of a point through Φ0 can represent
a piecewise smooth curve having pieces of orbits of 𝑋0 and 𝑌0 which are concatenated in
opposite directions. In light of this, we introduce the following definition.

Definition 6.1.8. We say that a piecewise smooth curve 𝛾 is a pseudo-orbit of 𝑍0 =
(𝑋0, 𝑌0) if it satisfies the following conditions

i) 𝛾 ∩𝑀+ is tangent to 𝑋0;

ii) 𝛾 ∩𝑀− is tangent to 𝑌0;

iii) There exists at least a point 𝑝 ∈ 𝛾 such that 𝑋0𝑓(𝑝)𝑌0𝑓(𝑝) < 0.

Hence, the orbits of Φ0 are associated to crossing orbits and pseudo-orbits of 𝑍0,
and vice-versa. Also, notice that if (Φ𝑛

0 (𝑥))𝑛∈N corresponds to a crossing orbit of 𝑍0,
then the evolution of 𝑥 through Φ0 might not coincide with the evolution in time of the
corresponding orbit of 𝑍0.

It is worth saying that pseudo-orbits of 𝑍0 do not have dynamical meaning, never-
theless, they have to be preserved by topological equivalences preserving Σ. Thus, the
dynamics of Φ0 plays an important role to determine the structure of 𝑍0 around 𝑇 -chains.

Finally, we state the main result of this chapter.

Theorem P. Let 𝑍0 ∈ Ω𝑟 satisfying (𝑇𝐶) and (𝑅) and let 𝛾1 and 𝛾2 be the two 𝑇 -
chains at 𝑝0. Then, for an arbitrarily small neighborhood of 𝑝0, there exist 𝑛1, 𝑛2 ∈ N
such that Φ𝑛1

0 and Φ𝑛2
0 admit Smale horseshoes Δ𝛾1 and Δ𝛾2, respectively. Furthermore,

Δ𝛾1 ∩ Δ𝛾2 = ∅ and, for 𝑖 = 1, 2, the hyperbolic invariant set Λ𝑖 in the horseshoe Δ𝛾𝑖

contains a point of 𝛾𝑖 ∩ Σ.

Remark 6.1.9. In [61], one finds a detailed description of Smale horseshoes for a diffeo-
morphism and some basic properties. Also, in [108], the author provides an elucidative
construction of Smale horseshoes.

Theorem P shows us that, if 𝑍0 satisfies (𝑇𝐶) and (𝑅), then the dynamics originated by
its orbits and pseudo-orbits is chaotic (see [108] for more details). A direct consequence
of Theorem P is stated below.

Proposition 6.1.10. Let 𝑍0 ∈ Ω𝑟 satisfying conditions (𝑇𝐶) and (𝑅) and let Λ1 and
Λ2 be the hyperbolic sets given by Theorem P. For each 𝑖 = 1, 2, the following statements
hold.

1. There exists an infinity of closed orbits (or pseudo-orbits) Γ of 𝑍0 such that Γ∩Σ ⊂
Λ𝑖;

2. There exists an infinity of non-closed orbits (or pseudo-orbits) Γ of 𝑍0, such that
Γ ∩ Σ ⊂ Λ𝑖;

3. There exists an orbit (or pseudo-orbit) Γ𝑑 of 𝑍0 such that Γ𝑑 ∩ Σ is dense in Λ𝑖.
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The proof of Proposition 6.1.10 follows directly from Definition 6.1.8, Theorem P and
Theorem 2.1.4 of [108].

Section 6.2 is devoted to prove Theorem P. In Section 6.3 we present a model realizing
a robust fold-fold connection. Some further directions of this problem are given in Section
6.4.

6.2 Proof of Theorem P
First we discuss about the local structure of the stable 𝑇 -singularity 𝑝0. Without loss

of generality, we consider the following assumptions:

• The switching manifold is given by Σ = {𝑧 = 0} and 𝑝0 = (0, 0, 0);

• The sections 𝜏𝑢 and 𝜏 𝑠 are contained in the planes {𝑦 = 𝜀} and {𝑦 = −𝜀}, for some
𝜀 > 0 sufficiently small;

• 𝑆𝑋0 ∩ 𝑉 and 𝑆𝑌0 ∩ 𝑉 are contained in the lines 𝑥 = 𝐾1𝑦 and 𝑥 = 𝐾2𝑦, respectively,
for some coefficients 𝐾1 < 0 and 𝐾2 > 0;

• The orbits of 𝑌0 in 𝑉3𝐷 go from {𝑥 < 𝐾2𝑦} to {𝑥 > 𝐾2𝑦} and the orbits of 𝑋0 in
𝑉3𝐷 goes from {𝑥 > 𝐾1𝑦} to {𝑥 < 𝐾1𝑦}.

Such assumptions imply that, if 𝑝 ∈ {𝑥 < 𝐾2𝑦}∩{𝑥 < 𝐾1𝑦}, then the orbit (𝜑𝑛
0 (𝑝))𝑛∈N

of the local first return map 𝜑0 : 𝑉 → Σ represents a crossing orbit of 𝑍0 and its evolution
through time coincides with the order generated by (𝜑𝑛

0 (𝑝))𝑛∈N.
Recall that, since the origin is a stable 𝑇 -singularity of 𝑍0, 𝜑0 has local invariant

manifolds 𝑊 𝑢,𝑠
𝜑0 (0, 0) at (0, 0), which is a hyperbolic fixed point of saddle type of 𝜑0.

Without loss of generality, we assume that these invariant manifolds are contained in the
union of lines {𝑥 = 𝐾3𝑦} ∪ {𝑥 = 𝐾4𝑦}, where 𝐾3 < 𝐾1 and 𝐾4 > 𝐾2.

It follows from the orientation of the orbits of 𝑋0 and 𝑌0 and the position of 𝜏𝑢,𝑠 that

𝑊 𝑠
𝜑0(0, 0) ⊂ {𝑥 = 𝐾4𝑦} 𝑎𝑛𝑑 𝑊 𝑢

𝜑0(0, 0) ⊂ {𝑥 = 𝐾3𝑦}.

Figure 6.6 illustrates the situation considered above.

Remark 6.2.1. Notice that, if 𝑥 > 0, then the orientation of the crossing orbits through
a point 𝑝 of 𝑊 𝑢,𝑠

𝜑0 (0, 0) is reverse with respect to the order given by the orbit (𝜑𝑛
0 (𝑝))𝑛∈N of

𝜑0 through 𝑝.

Using the Extension Lemma 6.1.5, we obtain the first return map Φ0 : 𝑊 → Σ induced
by orbits of 𝑋0 and 𝑌0, which extends 𝜑0 : 𝑉 → Σ.

From conditions (𝑇𝐶), we have that 𝑋0 (resp. 𝑌0) is transverse to 𝜏 𝑠 at points of
(𝒞𝑠 ∪ ̂︁𝒞𝑢) ∩𝑀+ (resp. (𝒞𝑠 ∪ ̂︁𝒞𝑢) ∩𝑀−). Also, 𝜋2(𝑋0(𝑝)), 𝜋2(𝑌0(𝑝)) > 0 in such points.

Remark 6.2.2. Notice that 𝑆𝑋0 and 𝑆𝑌0 must intersect 𝜏 𝑠 at points lying in the interior
of the bounded regions of {𝑦 = −𝜀} delimited by the circles 𝒞𝑠 and ̂︁𝒞𝑢.

Now, since (𝒞𝑠 ∪̂︁𝒞𝑢)∩𝑀+ is a compact set, and 𝜋2(𝑋0(𝑝)) > 0 for every 𝑝 ∈ (𝒞𝑠 ∪̂︁𝒞𝑢)∩
𝑀+, it follows from the Implicit Function Theorem that there exist an open neighborhood
𝑁+ of (𝒞𝑠 ∪̂︁𝒞𝑢)∩𝑀+ in the plane {𝑦 = −𝜀} and a 𝒞𝑟 diffeomorphism 𝜙+ : 𝑁+ ∩𝑀+ → Σ
such that, for each 𝑥 ∈ 𝑁+ ∩𝑀+, 𝑥 and 𝜙+(𝑥) are connected by a unique piece of orbit
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𝑦

𝑥

𝑊𝑢
𝜑0

𝑊 𝑠
𝜑0

𝑆𝑋0

𝑆𝑌0

−𝜀 𝜀

𝜏𝑠 𝜏𝑢

ℛ𝑠

ℛ𝑢

Σ𝑠𝑠 Σ𝑢𝑠

Σ

Figure 6.6: Switching manifold of 𝑍0: Position of the invariant manifolds and tangency
sets.

of 𝑋0 contained in 𝑀+ which is oriented from 𝑥 to 𝜙+(𝑥). Analogously, we obtain a 𝒞𝑟

diffeomorphism 𝜙− : 𝑁− ∩ 𝑀− → Σ defined in a neighborhood 𝑁− of (𝒞𝑠 ∪ ̂︁𝒞𝑢) ∩ 𝑀−

in the plane {𝑦 = −𝜀}, such that, for every 𝑥 ∈ 𝑁− ∩ 𝑀−, there exists a unique piece
of orbit of 𝑌0 contained in 𝑀− connecting 𝑥 and 𝜙−(𝑥) oriented from 𝑥 to 𝜙−(𝑥). See
Figure 6.7.

𝑥

𝑥

𝜙+(𝑥)

𝜙+

𝜙−(𝑥)

𝜙−

𝜏𝑠

Σ

Figure 6.7: Sections 𝜏𝑢 and 𝜏 𝑠.

Let 𝑁 = (𝑁+ ∩𝑀+) ∪ (𝑁− ∩𝑀−) and 𝜙 : 𝑁 → Σ be the 𝒞𝑟 diffeomorphism defined
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by

𝜙(𝑝) =
{︃
𝜙+(𝑝), if 𝑝 ∈ 𝑁+ ∩𝑀+,
𝜙−(𝑝), if 𝑝 ∈ 𝑁− ∩𝑀−.

Now, for ⋆ = 𝑢, 𝑠, let 𝑝⋆
loc be the unique point of 𝒞𝑠 contained in the local invariant

manifold 𝑊 ⋆
𝜑0(𝑝0). Recall that, there exists a crossing orbit of 𝑍0 from 𝑝𝑠

loc to Φ0(𝑝𝑠
loc) ∈

𝑊 𝑠
𝜑0(𝑝0) and 𝜋2(Φ0(𝑝𝑠

loc)) > −𝜀. Also we have that −𝜀 < 𝜋2(Φ𝑋0(𝑝𝑢
loc)) < 𝜋2(Φ0(𝑝𝑠

loc)).
See Figure 6.8.

From the definition of Φ0, it follows that:

• if 𝑝 ∈ 𝒞𝑠 ∩𝑀+, then 𝜙(𝑝) ∈ 𝑊 𝑠
𝜑0(𝑝0);

• if 𝑝 ∈ 𝒞𝑠 ∩𝑀−, then 𝜙(𝑝) ∈ 𝑊 𝑢
𝜑0(𝑝0).

𝑝0

𝑝𝑠
loc

𝑝𝑢
loc

𝒞𝑠

𝜏𝑠

𝑥

𝑦

Σ

𝑦 = −𝜀
𝑦 = 0

Φ𝑋0 (𝑝𝑢
loc) Φ0(𝑝𝑠

loc)

Figure 6.8: Evolution of the flow of 𝑍0 through the points 𝑝𝑢
loc and 𝑝𝑠

loc.

Recall that, for each 𝑝 ∈ 𝑊 𝑢
𝜑0(0, 0) ∩ {𝑥 < 0}, (𝜑𝑛

0 (𝑝))𝑛∈N represents a crossing orbit
of 𝑍0 which is oriented in the order given by the iterations of 𝑝 through 𝜑0. Since ℛ𝑢

extends 𝑊 𝑢
𝜑0(0, 0) ∩ {𝑥 < 0}, the same property holds for 𝑝 ∈ ℛ𝑢.

For ⋆ = 𝑢, 𝑠, let 𝑝⋆
ℛ be the unique point of ̂︁𝒞𝑢 contained in the curve ℛ⋆. There exists

a crossing orbit of 𝑍0 from Φ−1
0 (𝑝𝑢

ℛ) ∈ ℛ𝑢 and 𝑝𝑢
ℛ, and 𝜋2(Φ−1

0 (𝑝𝑢
ℛ)) < −𝜀. Also we have

that 𝜋2(Φ−1
0 (𝑝𝑢

ℛ)) < 𝜋2(Φ𝑌0(𝑝𝑠
ℛ)) < −𝜀. See Figure 6.9. Therefore,

• if 𝑝 ∈ ̂︁𝒞𝑢 ∩𝑀+, then 𝜙(𝑝) = Φ0(̃︀𝑝), for some ̃︀𝑝 ∈ 𝑊 𝑢
Φ0 ;

• if 𝑝 ∈ ̂︁𝒞𝑢 ∩𝑀−, then 𝜙(𝑝) = Φ−1
0 (̃︀𝑝), for some ̃︀𝑝 ∈ 𝑊 𝑠

Φ0 .

Finally, from hypothesis (𝑅), we have that 𝒞𝑠 ∩ ̂︁𝒞𝑢 = {𝑞1, 𝑞2}, where 𝑞𝑖 /∈ Σ and
𝒞𝑠 t ̂︁𝒞𝑢 at 𝑞𝑖, 𝑖 = 1, 2. Without loss of generality, assume that 𝑞1 ∈ 𝑀+. Since 𝜙 is a
diffeomorphism, 𝜙(̂︁𝒞𝑢 ∩𝑀+) ⊂ 𝑊 𝑢

Φ0 and 𝜙(𝒞𝑠 ∩𝑀+) ⊂ 𝑊 𝑠
Φ0 , it follows that the invariant

manifolds 𝑊 𝑠
Φ0 and 𝑊 𝑢

Φ0 intersect transversally at the point ̂︀𝑞1 = 𝜙(𝑞1). Analogously, we
have that 𝑊 𝑠

Φ0 and 𝑊 𝑢
Φ0 intersect transversally at the point ̂︀𝑞2 = 𝜙(𝑞2). Also, (Φ𝑛

0 ( ̂︀𝑞1))𝑛∈N
and (Φ𝑛

0 ( ̂︀𝑞2))𝑛∈N define two distinct orbits of Φ0.
Therefore, Theorem P follows straightly from Theorem 6.5.5 from [61], which is stated

below.
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𝑝0
𝑊 𝑠

𝜑0

𝑊𝑢
𝜑0

𝑝𝑠
ℛ

𝑝𝑢
ℛ

̂︁𝒞𝑢

𝜏𝑠

ℛ𝑠

ℛ𝑢

Σ

Φ𝑌0 (𝑝𝑠
ℛ)

Φ−1
0 (𝑝𝑠

ℛ)

Figure 6.9: Evolution of the flow of 𝑍0 through the points 𝑝𝑢
ℛ and 𝑝𝑠

ℛ.

Theorem 6.2.3 (Theorem 6.5.5 of [61]). Let 𝑀 be a smooth manifold, 𝑈 ⊂ 𝑀 open,
𝑓 : 𝑈 → 𝑀 an embedding, and 𝑝 ∈ 𝑈 a hyperbolic fixed point with a transverse homoclinic
point 𝑞. Then in an arbitrarily small neighborhood of 𝑝 there exists a horseshoe for some
iterate of 𝑓 . Furthermore the hyperbolic invariant set in this horseshoe contains an iterate
of 𝑞.

6.3 A Model Presenting a 𝑇 -connection
In this section we construct a Filippov system having two robust fold-fold connections.

It is worth mentioning that such model can be used to produce examples of 𝑇 -chains
satisfying conditions (𝑇𝐶) and (𝑅).

6.3.1 Filippov System 𝑍1

Consider the Filippov system

𝑍1(𝑥, 𝑦, 𝑧) =
⎧⎨⎩ 𝑋1(𝑥, 𝑦, 𝑧) = (1,−1, 𝑦), if 𝑧 > 0,
𝑌1(𝑥, 𝑦, 𝑧) = (−1, 2,−𝑥), if 𝑧 < 0.

Notice that (0, 0, 0) is a 𝑇 -singularity and 𝑆𝑋1 = {𝑦 = 0} and 𝑆𝑌1 = {𝑥 = 0} are
fold lines which divide the switching manifold Σ = {𝑧 = 0} in four quadrants (see Figure
6.10). In addition

• Σ𝑠𝑠 = {(𝑥, 𝑦, 0); 𝑥, 𝑦 < 0};

• Σ𝑢𝑠 = {(𝑥, 𝑦, 0); 𝑥, 𝑦 > 0};

• Σ𝑐 = {(𝑥, 𝑦, 0); 𝑥𝑦 < 0};

A straightforward computation shows that the flow of 𝑋1 and 𝑌1 are given by

𝜙𝑋1(𝑡; (𝑥, 𝑦, 𝑧)) =

⎛⎜⎜⎜⎝
𝑥+ 𝑡
𝑦 − 𝑡

𝑧 − (𝑦 − 𝑡)2

2 + 𝑦2

2

⎞⎟⎟⎟⎠ ,
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𝑥

𝑦

𝑆𝑋1

𝑆𝑌1

Σ𝑢𝑠

Σ𝑠𝑠

Figure 6.10: Switching manifold associated to 𝑍1.

and

𝜙𝑌1(𝑡; (𝑥, 𝑦, 𝑧)) =

⎛⎜⎜⎜⎝
𝑥− 𝑡
𝑦 + 2𝑡

𝑧 + (𝑥− 𝑡)2

2 − 𝑥2

2

⎞⎟⎟⎟⎠ ,
respectively. It allows us to see that

𝜙𝑋1(𝑡; (𝑥, 𝑦, 0)) ∈ Σ ⇐⇒ 𝑡 = 0 or 𝑡 = 2𝑦,
and

𝜙𝑌1(𝑡; (𝑥, 𝑦, 0)) ∈ Σ ⇐⇒ 𝑡 = 0 or 𝑡 = 2𝑥.
Thus, we can associate involutions 𝜑𝑋1 , 𝜑𝑌1 : Σ → Σ associated to the fold lines 𝑆𝑋1

and 𝑆𝑌1 of the vector fields 𝑋1 and 𝑌1 respectively. They are given by

𝜑𝑋1(𝑥, 𝑦) =
(︃
𝑥+ 2𝑦

−𝑦

)︃
, and 𝜑𝑌1(𝑥, 𝑦) =

(︃
−𝑥

4𝑥+ 𝑦

)︃
.

Now, use the involutions to construct the first return map 𝜑1 : Σ → Σ given by:

𝜑1(𝑥, 𝑦) = 𝜑𝑌1 ∘ 𝜑𝑋1(𝑥, 𝑦) =
(︃

−𝑥− 2𝑦
4𝑥+ 7𝑦

)︃
.

Notice that 𝜑1 is globally defined on Σ. The eigenvalues of 𝜑1 are given by
𝜆±

1 = 3 ± 2
√

2,
and their respective eigenvectors are

𝑣±
1 = (−1 ±

√
2/2, 1).

Since 𝜑1 is linear, the lines
𝐷±

1 = {𝛼(−1 ±
√

2/2, 1); 𝛼 ∈ R},

are global invariant manifolds of 𝜑1. Furthermore,
𝜑𝑋1(𝐷−

1 ) = 𝐷+
1 and 𝜑𝑌1(𝐷+

1 ) = 𝐷−
1 .

These facts ensure the existence of global crossing invariant manifolds in the form of
a nonsmooth diabolo 𝒩1 which intersects Σ in 𝐷±

1 . See Figure 6.11.
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𝑥

𝑦

𝐷−
1

𝐷+
1

Σ𝑠𝑠

Σ𝑢𝑠

Figure 6.11: Illustration of 𝒩1 ∩ Σ.

6.3.2 Filippov System 𝑍2

Consider the Filippov system

𝑍2(𝑥, 𝑦, 𝑧) =
⎧⎨⎩ 𝑋2(𝑥, 𝑦, 𝑧) = (1,−1, 𝑦 − 2), if 𝑧 > 0,
𝑌2(𝑥, 𝑦, 𝑧) = (−1, 3,−(𝑥− 2)), if 𝑧 < 0.

Notice that (2, 2, 0) is a 𝑇 -singularity and 𝑆𝑋2 = {𝑦 = 2} and 𝑆𝑌2 = {𝑥 = 2} are
fold lines which divide the switching manifold Σ = {𝑧 = 0} in four quadrants (see Figure
6.12). In addition

• Σ𝑢𝑠 = {(𝑥, 𝑦, 0); 𝑥, 𝑦 > 2};

• Σ𝑠𝑠 = {(𝑥, 𝑦, 0); 𝑥, 𝑦 < 2};

• Σ𝑐 = {(𝑥, 𝑦, 0); (𝑥− 2)(𝑦 − 2) < 0};

𝑥

𝑦

𝑆𝑋2

𝑆𝑌2

Σ𝑢𝑠

Σ𝑠𝑠

Figure 6.12: Switching manifold associated to 𝑍2.



173

A straightforward computation shows that the flows of 𝑋2 and 𝑌2 are given by

𝜙𝑋2(𝑡; (𝑥, 𝑦, 𝑧)) =

⎛⎜⎜⎜⎝
𝑥+ 𝑡
𝑦 − 𝑡

𝑧 − (𝑦 − 𝑡)2

2 + 𝑦2

2 − 2𝑡

⎞⎟⎟⎟⎠ ,
and

𝜙𝑌2(𝑡; (𝑥, 𝑦, 𝑧)) =

⎛⎜⎜⎜⎝
𝑥− 𝑡
𝑦 + 3𝑡

𝑧 + (𝑥− 𝑡)2

2 − 𝑥2

2 + 2𝑡

⎞⎟⎟⎟⎠ ,
respectively. It allows us to see that

𝜙𝑋2(𝑡; (𝑥, 𝑦, 0)) ∈ Σ ⇐⇒ 𝑡 = 0 or 𝑡 = 2(𝑦 − 2),

and
𝜙𝑌2(𝑡; (𝑥, 𝑦, 0)) ∈ Σ ⇐⇒ 𝑡 = 0 or 𝑡 = 2(𝑥− 2).

As before, we can associate involutions 𝜙𝑋2 , 𝜙𝑌2 : Σ → Σ associated to the fold lines
𝑆𝑋2 and 𝑆𝑌2 of the vector fields 𝑋2 and 𝑌2, respectively. They are given by

𝜑𝑋2(𝑥, 𝑦) =
(︃
𝑥+ 2(𝑦 − 2)
2 − (𝑦 − 2)

)︃
, and 𝜑𝑌2(𝑥, 𝑦) =

(︃
2 − (𝑥− 2)
𝑦 + 6(𝑥− 2)

)︃
.

Now, use the involutions to construct the first return map 𝜑2 : Σ → Σ given by

𝜑2(𝑥, 𝑦) = 𝜑𝑌2 ∘ 𝜑𝑋2(𝑥, 𝑦) =
(︃

2
2

)︃
+
(︃

−1 −2
6 11

)︃(︃
𝑥− 2
𝑦 − 2

)︃
.

The eigenvalues of 𝜓2 at the fixed point (2, 2) are given by

𝜆±
2 = 5 ± 2

√
6,

and their respective eigenvectors are

𝑣±
2 = (−1 ±

√
6/3, 1).

Since 𝜑2 is linear, the lines

𝐷±
2 = {(2, 2) + 𝛼(−1 ±

√
6/3, 1); 𝛼 ∈ R},

are global invariant manifolds of 𝜑2. Furthermore,

𝜑𝑋2(𝐷−
2 ) = 𝐷+

2 and 𝜑𝑌2(𝐷+
2 ) = 𝐷−

2 .

These facts ensure the existence of a nonsmooth diabolo 𝒩2 which intersects Σ in 𝐷±
2 .

See Figure 6.13.
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𝑥

𝑦

𝐷+
2

𝐷−
2 Σ𝑢𝑠

Σ𝑠𝑠

Figure 6.13: Illustration of 𝒩2 ∩ Σ.

6.3.3 A Filippov System with a Cross Shaped Switching Mani-
fold

Consider a new switching manifold Π = 𝑔−1(0), where

𝑔(𝑥, 𝑦, 𝑧) = −(𝑦 + 17/10𝑥− 5/2).

Let 𝑊 𝑢
1 (0, 0, 0) be the unstable branch of the nonsmooth diabolo 𝒩1 of 𝑍1 at the

origin. In this case, 𝑊 𝑢
1 (0, 0, 0) ∩ {𝑧 > 0} is given by the parametrized set

𝒲𝑢,+
1 = {(𝛼(−1 +

√
2/2)𝛼 + 𝑡, 𝛼− 𝑡,−(𝛼− 𝑡)2/2 + 𝛼2/2); 0 ≤ 𝑡 ≤ 2𝛼 and 𝛼 ≥ 0}.

Similarly, denoting the stable branch of the nonsmooth diabolo 𝒩2 of 𝑍2 at (2, 2, 0)
by 𝑊 𝑠

2 (2, 2, 0), we obtain that 𝑊 𝑠
2 (2, 2, 0) ∩ {𝑧 > 0} is given by

𝒲𝑠,+
2 = {(2+(−1−

√︁
2/3)𝛼+𝑡, 2+𝛼−𝑡, (2+𝛼)2/2−(2+𝛼−𝑡)2/2−2𝑡); 0 ≤ 𝑡 ≤ 2𝛼 and 𝛼 ≥ 0}

A straight computation, shows that

𝒞𝑢
+ = 𝒲𝑢,+

1 ∩ Π = {𝛾𝑢
+(𝛼); 25/191(−14 + 17

√
2) ≤ 𝛼 ≤ 25/191(14 + 17

√
2)},

where

𝛾𝑢
+(𝛼) = (−5/7(−5 +

√
2𝛼), 1/14(−50 + 17

√
2𝛼), 1/196(−1250 + 850

√
2𝛼− 191𝛼2)).

Also

𝒞𝑠
− = 𝒲𝑠,+

2 ∩ Π = {𝛾𝑠
+(𝛼); 29/431(−21 + 17

√
6) ≤ 𝛼 ≤ 29/431(21 + 17

√
6)},

where

𝛾𝑠
+(𝛼) = (5/21(−9 + 2

√
6𝛼), 1/21(129 − 17

√
6𝛼), 1/294(−2523 + 986

√
6𝛼− 431𝛼2)).

In addition

𝒞𝑢
+∩𝒞𝑠

− = 𝑝*
+ =

(︁
−5/49(−67 + 8

√
51), 1/49(−447 + 68

√
51), (−330577 + 48248

√
51)/4802

)︁
,

(6.3.1)
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Π 𝒞𝑠
+

𝒞𝑢
+𝑝*

+

Figure 6.14: Sketch of 𝒞𝑢
+ and 𝒞𝑠

−.

and 𝒞𝑢
+ t 𝒞𝑠

− at 𝑝*
+. See Figure 6.14.

Also, notice that the vector fields 𝑋1, 𝑋2, 𝑌1 and 𝑌2 are transverse to Π at every point
of Π. Thus, the piecewise smooth system

𝑍0(𝑥, 𝑦, 𝑧) =
⎧⎨⎩ 𝑍1(𝑥, 𝑦, 𝑧), if 𝑔(𝑥, 𝑦, 𝑧) < 0,
𝑍2(𝑥, 𝑦, 𝑧), if 𝑔(𝑥, 𝑦, 𝑧) > 0.

with a cross-shaped switching manifold has an isolated crossing orbit connecting the 𝑇 -
singularities (0, 0, 0) and (2, 2, 0) of 𝑍0 passing through 𝑝*

+ given in (6.3.1). See Figure
6.15.

𝑥

𝑦Π ∩ Σ

𝐷−
2

𝐷+
2

𝐷+
1

𝐷−
1

Π

Σ

Figure 6.15: (𝑎) Switching manifold Σ associated to 𝑍0. (𝑏) Cross-shaped switching
manifold Σ ∪ Π.

Analogous conclusions can be shown for 𝑧 < 0. In this case, 𝑍0 has another isolated
crossing orbit connecting the 𝑇 -singularities (0, 0, 0) and (2, 2, 0) of 𝑍0 passing through a
point 𝑝*

− ∈ Π contained in 𝑧 < 0.
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6.3.4 A Filippov system presenting fold-fold connections
Consider the 𝒞1-regularization function

𝜙(𝑥) =

⎧⎪⎨⎪⎩
−1, if 𝑥 < −1,

sin(𝜋/2𝑥), if |𝑥|≤ 1,
1, if 𝑥 > 1.

Thus, regularizing Filippov systems (𝑋1, 𝑋2,Π) and (𝑌1, 𝑌2,Π) with respect to the
switching manifold Π. We obtain

𝒳𝜀(𝑥, 𝑦, 𝑧) = 𝑋2(𝑥, 𝑦, 𝑧) +𝑋1(𝑥, 𝑦, 𝑧)
2 + 𝜙

(︃
𝑓(𝑥, 𝑦, 𝑧)

𝜀

)︃
𝑋2(𝑥, 𝑦, 𝑧) −𝑋1(𝑥, 𝑦, 𝑧)

2

and

𝒴𝜀(𝑥, 𝑦, 𝑧) = 𝑌2(𝑥, 𝑦, 𝑧) + 𝑌1(𝑥, 𝑦, 𝑧)
2 + 𝜙

(︃
𝑓(𝑥, 𝑦, 𝑧)

𝜀

)︃
𝑌2(𝑥, 𝑦, 𝑧) − 𝑌1(𝑥, 𝑦, 𝑧)

2 .

Thus, for 𝜀 > 0, 𝒵𝜀 = (𝒳𝜀,𝒴𝜀) is a Filippov system with switching manifold Σ = {𝑧 =
0} and 𝒵𝜀 ∈ Ω1.

Remark 6.3.1. If we consider a regularizing function 𝜙 which is of class 𝒞𝑟, then 𝒵𝜀 ∈ Ω𝑟.

It follows that 𝒵𝜀 has two (stable) 𝑇 -singularities at 𝑝1 = (0, 0, 0) and 𝑝2 = (2, 2, 0).
Now, since the invariant manifolds 𝑊 𝑢

1 (𝑝1) and 𝑊 𝑠
2 (𝑝2) intersect Π transversally in two

topological circles 𝒞𝑢 and 𝒞𝑠, we have that:

1. The unstable crossing invariant manifold 𝑊 𝑢
𝜀 (𝑝1) of 𝒵𝜀 at 𝑝1 intersects the transver-

sal section Π−𝜀 = {𝑔(𝑥, 𝑦, 𝑧) = −𝜀} in a topological circle 𝒞𝑢
𝜀 ;

2. The stable crossing invariant manifold 𝑊 𝑠
𝜀 (𝑝2) of 𝒵𝜀 at 𝑝2 intersects the transversal

section Π𝜀 = {𝑔(𝑥, 𝑦, 𝑧) = 𝜀} in a topological circle 𝒞𝑠
𝜀 .

Consider a small annulus 𝐷𝑢
𝜀 around 𝒞𝑢

𝜀 contained in the plane Π−𝜀. Now, 𝒳𝜀 and 𝒴𝜀

are transverse to Π−𝜀, Π𝜀 and 𝑧 = 0 and there is no singularities of 𝒵𝜀 in the cylindrical
region delimited by 𝐷𝑢

𝜀 and the regularization zone 𝑅𝜀 = {(𝑥, 𝑦, 𝑧); |𝑔(𝑥, 𝑦, 𝑧)|< 𝜀}. It
means that the flow of 𝒵𝜀 is tubular inside this region (it has only crossing orbits which
goes from 𝐷𝑢

𝜀 to Π𝜀.
Therefore, 𝑊 𝑢

𝜀 (𝑝1) extend itself in the regularization zone through crossing orbits of
𝒵𝜀, and it intersects Π𝜀 in a topological circle ̂︁𝒞𝑢

𝜀 .
Since 𝒞𝑢 and 𝒞𝑠 intersect transversally at the points 𝑝*

− and 𝑝*
+, it follows that, for

𝜀 > 0 sufficiently small, ̂︁𝒞𝑢
𝜀 and 𝒞𝑠

𝜀 intersect themselves at two points 𝑞1(𝜀) ∈ Σ− and
𝑞2(𝜀) ∈ Σ+.

It means that, there exists 𝜀0 > 0 sufficiently small such that, for each 𝜀 ≤ 𝜀0, the one-
parameter family 𝒵𝜀 ∈ Ω1 has two robust fold-fold connections between the 𝑇 -singularities
𝑝1 and 𝑝2.
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6.4 Conclusion and Further Directions
In this chapter, we have presented a robust global phenomenon in 3𝐷 Filippov systems

𝑍 which generates a chaotic behavior in the foliation associated to 𝑍 (composed by orbits
and pseudo-orbits of 𝑍).

In general the notion of chaos in Filippov system is still poorly understood due to the
richness and complexity of the dynamics generated by discontinuities. In fact, there are
works exploring this subject (see, for instance, [20, 77, 78]), nevertheless most of them
uses classical concepts in order to characterize chaotic behavior, which is sufficient for the
specific situations treated in such works. In light of this, a generalization of the concept of
chaos is needed for Filippov systems, taking into account the non-uniqueness of solutions
at Σ-singularities and sliding orbits, in order to characterize complicated behavior which
can not be reduced to a classical setting.

It is known that a Filippov system presents non-deterministic chaos at a stable T-
singularity due to the local behavior of the sliding vector field at such point (see [25]).
So, we ask ourselves how the sliding dynamics interacts with the hyperbolic invariant
sets associated to the Smale horseshoe of the first return map found in this chapter. It
is an arduous task which might bring new ways towards the comprehension of chaos for
Filippov systems.
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Chapter 7
Critical Velocity in Kink-Defect Interaction
Models

In this work we study a model of interaction of kinks of the sine-Gordon equation with
a weak defect. We obtain rigorous results concerning the so-called critical velocity

derived in [47] by a geometric approach. More specifically, we prove that a heteroclinic
orbit in the energy level 0 of a 2-dof Hamiltonian 𝐻𝜀 is destroyed giving rise to heteroclinic
connections between certain elements (at infinity) for exponentially small (in 𝜀) energy
levels. In this setting Melnikov theory does not apply because there are exponentially
small phenomena.

7.1 Introduction
Given an evolutionary partial differential equation, a traveling wave is a solution which

travels with constant speed and shape. There are several types of traveling waves which
are important in modeling physical phenomena. In particular, we give special attention
to kinks, also referred as solitons. A soliton is a spatially localized traveling wave which
usually appears as a result of a balance between a nonlinearity and dispersion.

In fact, kinks are traveling waves which travel from one asymptotic state to another.
In the last years, solitons have attracted the focus of researchers due to their significant
role in many scientific fields as optical fibers, fluid dynamics, plasma physics and others
(see [51, 64, 106] and references therein).

In this work, we study a model of interaction between kinks (traveling waves) of the
sine-Gordon equation and a weak defect. The defect is modeled as a small perturbation
given by a Dirac delta function. Such interaction has also been studied for the nonlinear
Schrödinger equation in [58, 59].

We consider the finite-dimensional reduction of the equation given by a 2-degrees of
freedom Hamiltonian 𝐻 proposed in [36, 47]. Following a geometric approach, we give
conditions on the energy of the system to admit kink-like solutions.

7.1.1 The model
The sine-Gordon equation is a nonlinear hyperbolic partial differential equation given

by
𝜕2

𝑡 𝑢− 𝜕2
𝑥𝑢+ sin(𝑢) = 0,
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which presents a family of kinks 𝑢k(𝑥, 𝑡) given by

𝑢k(𝑥, 𝑡) = 4 arctan
(︃

exp
(︃
𝑥− 𝑣𝑡− 𝑥0√

1 − 𝑣2

)︃)︃
, (7.1.1)

where the parameter 𝑣 represents the velocity of the kink.
In this work, we perturb this equation by a localized nonlinear defect at the origin

𝜕2
𝑡 𝑢− 𝜕2

𝑥𝑢+ sin(𝑢) = 𝜀𝛿(𝑥) sin(𝑢), (7.1.2)

where 𝛿(𝑥) is the Dirac delta function. This equation was studied in [36, 47] where the
authors consider finite-dimensional reductions of it to understand the kink-like dynamics.
As a first step, they consider solutions 𝑢 of small amplitude of (7.1.2), which can be
approximated by solutions of the linear partial differential equation

𝜕2
𝑡 𝑢− 𝜕2

𝑥𝑢+ 𝑢 = 𝜀𝛿(𝑥)𝑢, (7.1.3)

which has a family of wave solutions 𝑢im(𝑥, 𝑡) given by

𝑢im(𝑥, 𝑡) = 𝑎(𝑡)𝑒−𝜀|𝑥|/2, (7.1.4)

where 𝑎(𝑡) = 𝑎0 cos(Ω𝑡 + 𝜃0), Ω =
√︁

1 − 𝜀2/4 and im stands for impurity. The solution
𝑢im is not a traveling wave, but it is spatially localized at 𝑥 = 0.

In order to study the interaction of kinks of the sine-Gordon equation with the defect
considered in (7.1.2), [36, 47] use variational approximation techniques to obtain the equa-
tions which describe the evolution of the kink position 𝑋 and the defect mode amplitude
𝑎. To derive such equations, they consider the ansatz

𝑢(𝑥, 𝑡) = 4 arctan(exp(𝑥−𝑋(𝑡))) + 𝑎(𝑡)𝑒−𝜀|𝑥|/2. (7.1.5)

Notice that (7.1.5) combines the traveling property of the family of kinks (7.1.1) with the
localized shape of (7.1.4). If

𝑋(𝑡) = 𝑣𝑡− 𝑥0√
1 − 𝑣2

and 𝑎(𝑡) ≡ 0,

then (7.1.5) becomes the original family of kinks (7.1.1) of (7.1.2) for 𝜀 = 0.
Using the ansatz (7.1.5) in (7.1.2) and considering terms up to order 2 in 𝜀, [36, 47]

obtain the system of Euler-Lagrange equations⎧⎨⎩ 8�̈� + 𝜀𝑈 ′(𝑋) + 𝜀𝑎𝐹 ′(𝑋) = 0,

�̈�+ Ω2𝑎+ 1
2𝜀

2𝐹 (𝑋) = 0,
(7.1.6)

where

𝑈(𝑋) = −2 sech2(𝑋), 𝐹 (𝑋) = −2 tanh(𝑋) sech(𝑋) and Ω =
√︃

1 − 𝜀2

4 , (7.1.7)

which describes approximately the evolution of the kink position 𝑋 and the defect mode
amplitude 𝑎. More details of this approach and its applications can be found in [36, 47,
72]. It is worth mentioning that the finite dimensional reduction of PDE problems to
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ODE systems via an adequate ansatz and variational methods has been considered in an
extensive range of works (see [35, 42, 48, 49, 50, 107, 109]).

It remains as an open problem to prove that the solutions of the reduced system
rigorously approximate the PDE solutions. Nevertheless there are numerical evidences
ensuring this reasoning (see [88, 89]). In particular, in [105], the authors analyze numeri-
cally the simulations done in [47] for the perturbed sine-Gordon equation (7.1.2).

From (7.1.5), if 𝑋(𝑡) and 𝑎(𝑡) satisfy 𝑋(𝑡) → ±∞, �̇�(𝑡) → 𝐶± and 𝑎(𝑡) → 0 as
𝑡 → ±∞, then 𝑢(𝑥, 𝑡) can be seen as an approximation for a kink of (7.1.2), since it
transitions from an asymptotic state to another when 𝑥 − 𝑋(𝑡) → ±∞. In this case, we
say that (𝑋(𝑡), 𝑎(𝑡)) is a kink-like solution, or simply a kink, of (7.1.6), and we say
that 𝑣𝑖 = 𝐶− and 𝑣𝑓 = 𝐶+ are the initial velocity and final velocity of the kink.

If 𝑋(𝑡) satisfy 𝑋(𝑡) → ±∞, �̇�(𝑡) → 𝐶± and 𝑎(𝑡) is asymptotic to a periodic function
with small amplitude when 𝑡 → +∞ of 𝑡 → −∞, then 𝑢(𝑥, 𝑡) can be seen as an approxi-
mation for a kink of (7.1.2) with asymptotically periodic oscillations. In this case, we say
that (𝑋(𝑡), 𝑎(𝑡)) is an oscillating kink-like solution, or simply an oscillating kink, of
(7.1.6), and their initial and final velocities are defined in the same way. In addition, if
(𝑋(𝑡), 𝑎(𝑡)) is an oscillating kink such that 𝑎(𝑡) → 0 as 𝑡 → −∞ and 𝑎(𝑡) is asymptotically
periodic as 𝑡 → +∞, then it is said to be a quasi kink-like solution, or quasi kink.

In this paper we perform a rigorous study of such solutions of the finite-dimensional
reduction (7.1.6) of the partial differential equation (7.1.2).

7.1.2 The reduced model
Consider the change of variables (𝑋, �̇�, 𝑎, �̇�) → (𝑋,𝑍, 𝑏, 𝐵), where

𝑋 = 𝑋,𝑍 = 8�̇�√
𝜀
, 𝑏 =

√︃
2Ω
𝜀
𝜀−1/4𝑎,𝐵 =

√︂
𝜀

2Ω𝜀
−1/4 2

𝜀
�̇�,

and the time rescaling 𝜏 =
√
𝜀𝑡. Then, denoting ′ = 𝑑/𝑑𝜏 , the evolution equations of

(7.1.6) are equivalent to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑋 ′ = 𝑍

8 ,

𝑍 ′ = −𝑈 ′(𝑋) − 𝜀3/4
√

2Ω
𝐹 ′(𝑋)𝑏,

𝑏′ = Ω√
𝜀
𝐵,

𝐵′ = − Ω√
𝜀
𝑏− 𝜀3/4

√
2Ω

𝐹 (𝑋),

with Ω =
√︃

1 − 𝜀2

4 . (7.1.8)

Notice that (7.1.8) is a Hamiltonian system with respect to

𝐻(𝑋,𝑍, 𝑏, 𝐵; 𝜀) = 𝑍2

16 + 𝑈(𝑋) + Ω
2
√
𝜀
(𝐵2 + 𝑏2) + 𝜀3/4

√
2Ω

𝐹 (𝑋)𝑏, (7.1.9)
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which can be split as 𝐻 = 𝐻p +𝐻osc +𝑅, where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐻p(𝑋,𝑍) = 𝑍2

16 + 𝑈(𝑋),

𝐻osc(𝑏, 𝐵) = 𝐻osc(𝑏, 𝐵; 𝜀) = Ω
2
√
𝜀
(𝐵2 + 𝑏2),

𝑅(𝑋, 𝑏) = 𝑅(𝑋, 𝑏; 𝜀) = 𝜀3/4
√

2Ω
𝐹 (𝑋)𝑏.

Thus the Hamiltonian 𝐻 is the sum of a pendulum-like Hamiltonian 𝐻p with an oscillator
𝐻osc coupled by the term 𝑅.

Remark 7.1.1. Applying the change of variables 𝑌 = 4 arctan(𝑒𝑋), the Hamiltonian
system (7.1.8) is brought into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇� = 2 sin(𝑌/2)𝑍/8,

�̇� = 2 sin(𝑌/2)
(︃

sin(𝑌 ) − 𝜀3/4
√

2Ω
cos(𝑌 )𝑏

)︃
,

�̇� = Ω√
𝜀
𝐵,

�̇� = − Ω√
𝜀
𝑏− 𝜀3/4

√
2Ω

sin(𝑌 ).

When 𝑌 = 0 and 𝑌 = 2𝜋, this system has parabolic critical points and periodic orbits
which have invariant manifolds.

The hyperplanes 𝑌 = 0 and 𝑌 = 2𝜋 correspond to 𝑋 = −∞ and 𝑋 = +∞ of (7.1.8)
respectively. For this reason, even if they are not solutions of the system, they can be
seen as asymptotic solutions at infinity. Thus, abusing notation, we denote 𝑓(±∞) as

lim
𝑋→±∞

𝑓(𝑋) when it is well defined.

System (7.1.8) inherits many properties of the sine-Gordon equation. In fact, the
functions 𝑈 and 𝐹 have exponential decay when |𝑋|→ +∞, therefore, for large values
of 𝑋 the system becomes decoupled. Nevertheless, when 𝑋 = 𝒪(1), the equations are
coupled and the Hamiltonians 𝐻p and 𝐻osc may exchange energy, and this will result in
interesting global phenomena.

If 𝐹 = 0 (i.e. 𝑅 = 0), then each energy level 𝐻 = ℎ ≥ 0 of system (7.1.6) contains
a unique kink solution and all the other solutions will be oscillating kinks (with the
same oscillation in both tails). In this paper, we prove that the kink solution in 𝐻 = ℎ
breaks down for low energies (see Theorem Q) and we obtain a critical energy ℎ𝑐

(with associated critical initial velocity 𝑣𝑐 = 4
√
ℎ𝑐) such that the energy level 𝐻 = ℎ (ℎ

small) contains a quasi kink (continuation of an unperturbed kink) if and only if ℎ ≥ ℎ𝑐.
In addition we give an asymptotic formula for ℎ𝑐 (see Theorem S) which happens to be
exponentially small in the parameter 𝜀. We also find an energy 0 < ℎ𝑠 < ℎ𝑐 such that the
energy level 𝐻 = ℎ (ℎ small) has oscillating kinks if and only if ℎ ≥ ℎ𝑠 (see Theorem R).

In [47], the authors present numerical and formal arguments for the existence of the
critical velocity 𝑣𝑐 and they conjecture that the final velocity 𝑣𝑓 of a quasi kink lying
in an energy level ℎ ≥ ℎ𝑐 (ℎ small) is given by 𝑣𝑓 ≈ (𝑣𝑖 − 𝑣𝑐)1/2, where 𝑣𝑖 ≥ 𝑣𝑐 is its
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initial velocity. Our results prove the validity of the asymptotic formula for 𝑣𝑐 and the
conjecture for 𝑣𝑓 (see Theorem T).

We emphasize that the rigorous approach presented in this work is necessary to validate
the conclusions obtained in [47]. In fact, their results rely on the computation of a
Melnikov integral as a first order for the total loss of energy Δ𝐸 over the separatrix of
(7.1.8) with 𝛿 = 0 (or more precisely of the transfer of energy from the separatrix to
the oscillator). Nevertheless, Melnikov theory cannot be applied in this case due the
exponentially smallness in the parameter 𝜀 of the Melnikov function. In this paper we
prove that it is indeed a first order of Δ𝐸. Note that this is not always the case: in
general problems presenting exponentially small phenomena, often the Melnikov integral
is not the dominant part of the total loss of energy over a separatrix of a Hamiltonian
system (see [8]).

In this paper, we relate the loss of energy Δ𝐸, and thus the existence of kinks, quasi
kinks and oscillating kinks, with the exponentially small transversal intersection of the
invariant manifolds 𝑊 𝑢,𝑠 of certain objects (critical points and periodic orbits) at infinity.

7.2 Mathematical Formulation and Main Goal

7.2.1 The unperturbed Problem
Consider system (7.1.8) for 𝐹 = 0. Then 𝐻 = 𝐻p + 𝐻osc is just two uncoupled

integrable systems.
In the 𝑋𝑍-plane, the solutions are contained in the level curves 𝐻p(𝑋,𝑍) = 𝜅. This

system can be transformed into a degenerate (parabolic) pendulum by a change of coor-
dinates (see Remark 7.1.1). For 𝜅 < 0, 𝐻p = 𝜅 is diffeomorphic to a circle. For 𝜅 ≥ 0,
𝐻p = 𝜅 contains the points 𝑞±

𝜅 = (±∞, 4
√
𝜅) which behave as “fixed points" and are

connected by a heteroclinic orbit ϒ𝜅 given by the graph of

𝑍𝜅(𝑋) = 4
√︁
𝜅− 𝑈(𝑋) = 4

√︃
𝜅+ 2

cosh2(𝑋)
, 𝑋 ∈ R. (7.2.1)

Notice that 𝛶0 is a separatrix. Analogously, (±∞,−4
√
𝜅) ∈ {𝐻p = 𝜅} are fixed points

at infinity connected by the heteroclinic orbit given by the graph of −𝑍𝜅(𝑋). See Figure
7.1. From now on, we focus on the heteroclinic orbits contained in 𝑍 > 0, since all the
results of this paper can be obtained for the orbits in 𝑍 < 0 in an analogous way.

In the 𝑏𝐵-plane, the solutions of (7.1.8) for 𝐹 = 0 are

𝑃𝜅 = {𝐻osc = 𝜅} =
{︁
(𝑏, 𝐵); 𝑏2 +𝐵2 = 2𝜅

√
𝜀/Ω

}︁
(see Figure 7.2). (7.2.2)

Combining (7.2.1) and (7.2.2) in the energy level 𝐻 = ℎ, we define

Λ±
𝜅1,𝜅2 = 𝑞±

𝜅1 × 𝑃𝜅2 =
{︁
(±∞, 4√

𝜅1, 𝑏, 𝐵); 𝑏2 +𝐵2 = 2𝜅2/𝜔
}︁
,

for every 𝜅1, 𝜅2 ≥ 0 such that 𝜅1 + 𝜅2 = ℎ. Notice that

• If 𝜅2 = 0, then Λ±
ℎ,0 is a degenerate saddle (parabolic) point of (7.1.8);

• If 𝜅2 > 0, then Λ±
𝜅1,𝜅2 are degenerate saddle (parabolic) periodic orbits of (7.1.8).
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𝑍

𝑋

Figure 7.1: Projection of the phase space of the unperturbed system in the 𝑋𝑍-plane.

𝐵

𝑏

Figure 7.2: Projection of the phase space of the unperturbed system in the 𝑏𝐵-plane.

For simplicity, we denote the limit cases 𝜅1 = 0 and 𝜅2 = 0 by

Λ±
ℎ = Λ±

0,ℎ = {(±∞, 0, 𝑏, 𝐵), 𝑏2 +𝐵2 = 2ℎ/𝜔} ,

𝑝±
ℎ = Λ±

ℎ,0 = (±∞, 4
√
ℎ, 0, 0),

respectively. We stress that 𝑝±
ℎ are points and Λ±

ℎ are periodic orbits, both contained in
the planes 𝑋 = ±∞ and in the energy level 𝐻 = ℎ.

These invariant objects have invariant manifolds. Denote

𝑊 (𝜅1, 𝜅2) = 𝛶𝜅1 × 𝑃𝜅2 =
{︂

(𝑋,𝑍, 𝑏, 𝐵); 𝑍 = 4
√︁
𝜅1 − 𝑈(𝑋) and 𝑏2 +𝐵2 = 2𝜅2

√
𝜀/Ω

}︂
,

(7.2.3)
for each 𝜅1, 𝜅2 ≥ 0 such that 𝜅1 + 𝜅2 = ℎ.

(1D-0) 𝑊 (0, 0) = 𝑊 𝑢
0 (𝑝−

0 ) = 𝑊 𝑠
0 (𝑝+

0 ) is a 1-dimensional heteroclinic connection (separatrix)
between the points 𝑝−

0 and 𝑝+
0 ;

(1D-𝜅1) 𝑊 (ℎ, 0) = 𝑊 𝑢
0 (𝑝−

ℎ ) = 𝑊 𝑠
0 (𝑝+

ℎ ) is a 1-dimensional heteroclinic connection between
the points 𝑝−

ℎ and 𝑝+
ℎ ;

(2D-0) If ℎ > 0, then 𝑊 (0, ℎ) = 𝑊 𝑢
0 (Λ−

ℎ ) = 𝑊 𝑠
0 (Λ+

ℎ ) is a 2-dimensional heteroclinic mani-
fold (separatrix) between Λ−

ℎ and Λ+
ℎ ;

(2D-𝜅1) If 𝜅1, 𝜅2 > 0, then 𝑊 (𝜅1, 𝜅2) is a 2-dimensional heteroclinic manifold between Λ−
𝜅1,𝜅2

and Λ+
𝜅1,𝜅2 .
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𝑊 (𝜅1, 𝜅2)

Λ+
𝜅1,𝜅2

−∞ +∞𝑋

𝑋

𝑏

𝐵

Figure 7.3: Projection of the heteroclinic manifolds 𝑊 (𝜅1, 𝜅2) in the 𝑏𝑋𝐵-space. In
the figure, the most external cylinder is the projection of 𝑊 (0, ℎ) and the straight line
represents the projection of 𝑊 (ℎ, 0).

For ℎ > 0 fixed, the level energy 𝐻 = ℎ is a 3-dimensional manifold. Eliminating the
variable 𝑍 by the Hamiltonian conservation, the manifolds 𝑊 (𝜅1, 𝜅2) project into the the
𝑏𝑋𝐵-space as horizontal cylinders centered along the 𝑋-axis.

In this unperturbed case, there is no exchange of energy between the pendulum and
the oscillator through the heteroclinic connections of 𝑊 (𝜅1, 𝜅2), i.e. 𝐻p and 𝐻𝜀

osc are
first integrals. In the perturbed case (7.1.8) (𝐹 ̸= 0) the coupling term 𝑅 (see (7.1.9))
goes to 0 as 𝑋 → ±∞, thus, the system is uncoupled at 𝑋 = ±∞. As a consequence,
Λ±

𝜅1,𝜅2 are orbits of system (7.1.8) in the sense of Remark 7.1.1. Nevertheless, the system
may exchange energy between the pendulum and the oscillator when 𝑋 varies, through
the appearance of heteroclinic connections between different Λ−

𝜅1,𝜅2 and Λ+
𝜅′

1,𝜅′
2

such that
𝜅1 + 𝜅2 = 𝜅′

1 + 𝜅′
2 = ℎ.

Recall that a quasi-kink (see Section 7.1.1) is a solution (𝑋(𝑡), 𝑍(𝑡), 𝑏(𝑡), 𝐵(𝑡)) which
has initial velocity 𝑣𝑖 > 0 and final velocity 𝑣𝑓 > 0 and satisfies the asymptotic conditions

lim
𝑡→−∞

𝑋(𝑡) = −∞, lim
𝑡→−∞

𝑍(𝑡) = 𝑣𝑖, lim
𝑡→−∞

𝑏(𝑡) = lim
𝑡→−∞

𝐵(𝑡) = 0, (7.2.4)

lim
𝑡→+∞

𝑋(𝑡) = +∞, lim
𝑡→+∞

𝑍(𝑡) = 𝑣𝑓 . (7.2.5)

and (𝑏(𝑡), 𝐵(𝑡)) are asymptotic to periodic functions as 𝑋 → +∞. For such solutions

ℎ𝑖 = 𝐻(𝑋(𝑡), 𝑍(𝑡), 𝑏(𝑡), 𝐵(𝑡)) = 𝑣2
𝑖

16 ,

for every 𝑡 ∈ R.
Thus, considering ℎ𝑖 = 𝑣2

𝑖 /16 and 𝜅𝑓 = 𝑣2
𝑓/16, we have that, the quasi-kink solu-

tion (𝑋(𝑡), 𝑍(𝑡), 𝑏(𝑡), 𝐵(𝑡)) satisfying (7.2.4) and (7.2.5) is a heteroclinic connection be-
tween the 1-dimensional unstable manifold of 𝑝−

ℎ𝑖
and the 2-dimensional stable manifold

of Λ+
𝜅𝑓 ,ℎ𝑖−𝜅𝑓

.

7.2.2 Main results
Our aim is to look for solutions traveling from 𝑋 = −∞ to 𝑋 = +∞. More concretely,

we prove the existence of 𝑣𝑐 > 0 such that the solutions 𝑋 of (7.1.6) incoming with velocity
𝑣𝑖 escape the defect location and continue traveling towards 𝑋+ = ∞ with (asymptotic)
final velocity 𝑣𝑓 , provided 𝑣𝑖 ≥ 𝑣𝑐.
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Therefore, the critical energy ℎ𝑐 is characterized as the lowest energy level ℎ𝑐 = 𝑣2
𝑐/16

such that for any ℎ ≥ ℎ𝑐, there exist 𝜅1, 𝜅2 > 0 with 𝜅1 + 𝜅2 = ℎ such that 𝑊 𝑢
𝜀 (𝑝−

ℎ ) ⊂
𝑊 𝑠

𝜀 (Λ+
𝜅1,𝜅2).

Notice that 𝑊 𝑢
𝜀 (𝑝−

ℎ ) ⊂ 𝑊 𝑠
𝜀 (Λ+

𝜅1,𝜅2) implies that the final velocity of the corresponding
orbit 𝑋(𝑡) (which has initial velocity 4

√
ℎ) is given by 𝑣𝑓 = 4√

𝜅1.
To analyze the existence of heteroclinic orbits between the invariant objects at 𝑋 =

±∞ we consider the section 𝑋 = 0, which is transversal to the flow. Restricting to the
energy level 𝐻 = ℎ, eliminating the variable 𝑍 and using (7.1.7), this section becomes
the disk

Σℎ =
{︃

(0, 𝑏, 𝐵); 𝑏2 +𝐵2 ≤ (4 + 2ℎ)
√
𝜀

Ω

}︃
. (7.2.6)

We compute intersections between unstable and stable manifolds in Σℎ.
In the unperturbed case 𝐹 = 0, the one-dimensional heteroclinic connection between

the “infinity points" 𝑝+
ℎ and 𝑝−

ℎ , 𝑊 (ℎ, 0) = 𝑊 𝑢
0 (𝑝−

ℎ ) = 𝑊 𝑠
0 (𝑝+

ℎ ) intersect Σℎ at the point
(0, 0). In the following theorem, we show that it breaks down when 𝐹 ̸= 0 (see Figure
7.4).

Theorem Q (Breakdown of kinks). Consider system (7.1.8). There exists 𝜀0 > 0 and
ℎ0 > 0 sufficiently small such that, for every 0 < 𝜀 < 𝜀0 and 0 ≤ ℎ ≤ ℎ0, the invariant
manifolds 𝑊 𝑢,𝑠

𝜀 (𝑝∓
ℎ ) intersect Σ0 (given in (7.2.6)). Denoting by 𝑃 𝑢,𝑠

ℎ the first intersection
points,

|𝑃 𝑢
0 − 𝑃 𝑠

0 | = 𝑑0(𝜀) = 2𝜋𝜀3/4
√

Ω
𝑒−Ω

√
2/𝜀 + 𝒪

(︂
𝜀7/4𝑒−Ω

√
2/𝜀
)︂
, where Ω =

√︃
1 − 𝜀2

4
|𝑃 𝑢

ℎ − 𝑃 𝑠
ℎ | = 𝑑0(𝜀) + 𝒪(𝜀7/4

√
ℎ).

(7.2.7)

The first statement of this theorem is proven in Section 7.3.2 and the second one is a
consequence of Theorem 7.3.12 stated in Section 7.3.3 below.

Remark 7.2.1. In the asymptotic formula (7.2.7), we could write Ω = 1. Nevertheless,
we keep Ω =

√︁
1 − 𝜀2/4 in order to compare our results with [47]. The same remark holds

for Theorems 𝐵, 𝐶 and 𝐷 below.
When 𝐹 = 0, the energy level ℎ has a family of heteroclinic manifolds 𝑊 (𝜅1, 𝜅2),

with 𝜅1 + 𝜅2 = ℎ, 𝜅1, 𝜅2 > 0, connecting the periodic orbits Λ±
𝜅1,𝜅2 . Each one intersects

Σℎ at a circle centered at (0, 0) with radius
√︁

2𝜅2
√
𝜀/Ω, which generates a disk of radius√︁

2ℎ
√
𝜀/Ω when we vary 0 < 𝜅2 ≤ ℎ (see (7.2.1) and (7.2.2)).

We show that, for the perturbed case, 𝑊 𝑢
𝜀 (Λ−

𝜅1,𝜅2) and 𝑊 𝑠
𝜀 (Λ+

𝜅1,𝜅2) also intersect Σℎ

in closed curves near circles of radius
√︁

2𝜅2
√
𝜀/Ω centered in 𝑃 𝑢

ℎ and 𝑃 𝑠
ℎ . Thus, varying

0 ≤ 𝜅2 ≤ ℎ, we can see that 𝑊 𝑢,𝑠
𝜀 (Λ±

𝜅1,𝜅2) intersect Σℎ in topological disks 𝒟𝑢
ℎ and 𝒟𝑠

ℎ

near the disks of radius
√︁

2ℎ
√
𝜀/Ω centered in 𝑃 𝑢

ℎ and 𝑃 𝑠
ℎ , respectively (see Figure 7.4).

The existence of heteroclinic connections continuation of the unperturbed ones corre-
sponds to intersections between the disks 𝒟𝑢

ℎ and 𝒟𝑠
ℎ. Even if in the energy level ℎ = 0,

there is no (first round) heteroclinic connections between the points at 𝑋 = ±∞ (𝑝−
0 and

𝑝+
0 ), the heteroclinic connections between the periodic orbits Λ±

𝜅1,𝜅2 may certainly exist
when ℎ > 0, since the two disks may intersect for some values of ℎ. The lowest energy
level ℎ𝑠 > 0 for which these heteroclinic connections exist is reached when the boundaries
of these disks are tangent (see Figure 7.4). Equivalently, when 𝑊 𝑢

𝜀 (Λ−
ℎ ) intersects 𝑊 𝑠

𝜀 (Λ+
ℎ )

in the energy level ℎ𝑠 = ℎ𝑠(𝜀).
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𝑃𝑢
0

𝑃 𝑠
0

𝑑0(𝜀) 𝑏

𝐵

(𝑎)
𝑝−

0 𝑝+
0

𝑏

𝐵

𝑃𝑢
0

𝑃 𝑠
0

𝑋

𝒟𝑢
ℎ

𝒟𝑠
ℎ

𝑏

𝐵

(𝑏)

𝑏

𝐵 𝒟𝑢
ℎ

𝒟𝑠
ℎ

𝑋

Figure 7.4: Splitting of the invariant manifolds contained in the energy level ℎ (in the
section Σℎ) on the left and their projections in the 𝑏𝑋𝐵-space on the right, for (𝑎) ℎ = 0
and (𝑏) ℎ > 0 small.

Theorem R (Existence of oscillating kinks). Fix ℎ0 > 0. There exists 𝜀0 > 0 sufficiently
small such that, for every 0 < 𝜀 < 𝜀0 and 0 ≤ ℎ ≤ ℎ0, the invariant manifolds 𝑊 𝑢

𝜀 (Λ−
ℎ ),

𝑊 𝑠
𝜀 (Λ+

ℎ ) intersect Σℎ (given in (7.2.6)). The first intersection is given by closed curves,
which we denote by 𝜕𝒟𝑢,𝑠

ℎ . Then, there exists

ℎ𝑠(𝜀) = 𝜀𝜋2𝑒−2Ω
√

2/𝜀

2 (1 + 𝒪(𝜀)), with Ω =
√︃

1 − 𝜀2

4 ,

such that the following statements hold for system (7.1.8).
1. If 0 ≤ ℎ < ℎ𝑠(𝜀), the closed curves 𝜕𝒟𝑢,𝑠

ℎ do not intersect each other.

2. If ℎ𝑠(𝜀) ≤ ℎ ≤ ℎ0, the closed curves 𝜕𝒟𝑢,𝑠
ℎ intersect at least once.

Furthermore, given 𝜇 > 1, there exists 𝜀𝜇 > 0 and

ℎ𝜇(𝜀) = 𝜀𝜋2𝑒−2Ω
√

2/𝜀

2 (𝜇+ 𝒪(𝜀))2 ≥ ℎ𝑠(𝜀),

such that, for 0 < 𝜀 < 𝜀𝜇 and ℎ𝜇(𝜀) ≤ ℎ ≤ ℎ0, the closed curves 𝜕𝒟𝑢,𝑠
ℎ have at least two

intersections.
Thus, we can see that there is a family of heteroclinic connections between elements

of 𝑋 = ±∞ which are contained in the energy level ℎ, for ℎ > ℎ𝑠.
Actually, we prove that, in the energy level 𝐻 = ℎ𝑠, 𝜕𝒟𝑢

ℎ𝑠
and 𝜕𝒟𝑠

ℎ𝑠
intersect (tan-

gentially) at least once, and for this reason, 𝜕𝒟𝑢
ℎ𝑠

∩ 𝜕𝒟𝑠
ℎ𝑠

may have more than one point.
Also, our methods show that, for ℎ > ℎ𝑠, 𝜕𝒟𝑢

ℎ ∩ 𝜕𝒟𝑠
ℎ has at least two points and 𝒟𝑢

ℎ ∩ 𝒟𝑠
ℎ

has at least one connected component with positive Lebesgue measure (see Figure 7.5).

The Critical Energy Level ℎ𝑐

From our approach and the definitions of Section 7.1.2, the critical energy level occurs
for the smallest ℎ such that 𝑊 𝑢

𝜀 (𝑝−
ℎ ) ⊂ 𝑊 𝑠

𝜀 (Λ+
𝜅1,𝜅2), for some 𝜅1, 𝜅2 satisfying 𝜅1 +𝜅2 = ℎ.

Thus, ℎ𝑐 occurs when 𝑊 𝑢
𝜀 (𝑝−

ℎ𝑐
) ⊂ 𝑊 𝑠

𝜀 (Λ+
ℎ𝑐

).
Geometrically speaking, ℎ𝑐 is characterized as the energy level such that 𝑃 𝑢

ℎ𝑐
belongs

to the boundary of the (topological) disk 𝒟𝑠
ℎ𝑐

“centered” in 𝑃 𝑠
ℎ𝑐

(see Figure 7.5). In the
next theorem, we compute ℎ𝑐 = ℎ𝑐(𝜀).
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Theorem S (Existence of quasi-kinks). Consider system (7.1.8). There exist 𝜀0 > 0,
ℎ0 > 0 and a function

ℎ𝑐(𝜀) = 2𝜋2𝜀𝑒−2Ω
√

2/𝜀(1 + 𝒪(𝜀)), with 0 < 𝜀 < 𝜀0 and Ω =
√︃

1 − 𝜀2

4 ,

such that, for every 0 < 𝜀 < 𝜀0 and 0 < ℎ < ℎ0, the invariant manifolds 𝑊 𝑢
𝜀 (𝑝−

ℎ ), 𝑊 𝑠
𝜀 (Λ+

ℎ )
intersect Σℎ (given in (7.2.6)). The first intersection of 𝑊 𝑢

𝜀 (𝑝−
ℎ ), 𝑊 𝑠

𝜀 (Λ+
ℎ ) with Σℎ is given

by a point and a closed curve, denoted by 𝑃 𝑢
ℎ and 𝜕𝒟𝑠

ℎ, respectively. Then, 𝑃 𝑢
ℎ ∈ 𝜕𝒟𝑠

ℎ if,
and only if ℎ = ℎ𝑐(𝜀).

See Figure 7.6. Theorem S also holds if we change 𝑝−
ℎ and Λ+

ℎ by 𝑝+
ℎ and Λ−

ℎ , respec-
tively.

Now, given ℎ ≥ ℎ𝑐, we compute the radius 𝜅2 = 𝜅2(ℎ) of the periodic orbit Λ+
𝜅1,𝜅2 such

that 𝑝−
ℎ connects to Λ+

𝜅1,𝜅2 through a heteroclinic orbit.
Theorem T. There exist 𝜀0 > 0, ℎ0 > 0 sufficiently small such that, for each 0 < 𝜀 < 𝜀0

and ℎ𝑐(𝜀) ≤ ℎ < ℎ𝑐(𝜀) + 2𝜋2𝜀𝑒−2Ω
√

2/𝜀ℎ0, where ℎ𝑐(𝜀) is given by Theorem S and Ω =√︁
1 − 𝜀2/4, there exists a function

𝜅 :
(︂
ℎ𝑐(𝜀), ℎ𝑐(𝜀) + 2𝜋2𝜀𝑒−2Ω

√
2/𝜀ℎ0

)︂
→ R,

such that:
1. 0 < 𝜅(ℎ) < ℎ and lim

ℎ→ℎ𝑐(𝜀)+
𝜅(ℎ) = 0;

2. For system (7.1.8), 𝑊 𝑢
𝜀 (𝑝−

ℎ ) ⊂ 𝑊 𝑠
𝜀 (Λ+

𝜅(ℎ),ℎ−𝜅(ℎ));

3. There exists an orbit of (7.1.8) with input velocity 𝑣𝑖 = 4
√
ℎ and output velocity

𝑣𝑓 = 4
√︁
𝜅(ℎ). Furthermore, define 𝑣𝑐 = 4

√
ℎ𝑐, then

𝑣𝑓 =
√

2𝑣𝑐𝑐𝜀

√
𝑣𝑖 − 𝑣𝑐 + 𝒪((𝑣𝑖 − 𝑣𝑐)3/2),

where 𝑐𝜀 = 1 + 𝒪(𝜀).

The last item of Theorem T proves the conjecture 𝑣𝑓 ≈ 𝒪
(︁
(𝑣𝑖 − 𝑣𝑐)1/2

)︁
raised in [47].

0 ≤ ℎ < ℎ𝑠(𝜀) ℎ = ℎ𝑠(𝜀) ℎ𝑠(𝜀) < ℎ < ℎ𝑐(𝜀)

ℎ = ℎ𝑐(𝜀) ℎ > ℎ𝑐(𝜀)

𝒟𝑢
ℎ

𝒟𝑠
ℎ

Figure 7.5: Relative position of the disks 𝒟𝑢
ℎ and 𝒟𝑠

ℎ in the section Σℎ in function of the
energy level ℎ.
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𝑏

𝐵

𝑋

𝑏

𝐵𝒟𝑢
ℎ 𝒟𝑢

ℎ

𝒟𝑠
ℎ

𝒟𝑠
ℎ

Figure 7.6: Heteroclinic orbit (quasi-kink) between a critical point at 𝑋 = −∞ and a
periodic orbit at 𝑋 = +∞ in the critical energy level ℎ = ℎ𝑐.

7.3 Proofs of Theorems Q, R, S and T
Applying the change of coordinates Γ = 𝐵 + 𝑖𝑏 and Θ = 𝐵 − 𝑖𝑏 to (7.1.8) we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑋 ′ = 𝑍

8 ,

𝑍 ′ = −𝑈 ′(𝑋) − 𝛿√
2Ω

𝐹 ′(𝑋)(Γ − Θ)
2𝑖 ,

Γ′ = 𝜔𝑖Γ − 𝛿√
2Ω

𝐹 (𝑋),

Θ′ = −𝜔𝑖Θ − 𝛿√
2Ω

𝐹 (𝑋),

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛿 = 𝜀3/4,

𝜔 = Ω√
𝜀
,

Ω =
√︃

1 − 𝜀2

4 .

(7.3.1)

This system is Hamiltonian with respect to

ℋ(𝑋,𝑍,Γ,Θ) = 𝑍2

16 + 𝑈(𝑋) + 𝛿√
2Ω

𝐹 (𝑋)Γ − Θ
2𝑖 + 𝜔

2 ΓΘ. (7.3.2)

and the symplectic form 𝑑𝑋 ∧ 𝑑𝑍 + 1
2𝑖𝑑Γ ∧ 𝑑Θ.

7.3.1 Decoupled System (𝐹 = 0)
We parameterize the invariant manifolds 𝑊 (𝜅1, 𝜅2) (see (7.2.3)) of the decoupled sys-

tem (7.3.1) (with 𝛿 = 0) in the coordinates (𝑋,𝑍,Γ,Θ).
Lemma 7.3.1. The one-dimensional invariant manifold 𝑊 (ℎ, 0) = 𝑊 𝑢

0 (𝑝−
ℎ ) = 𝑊 𝑠

0 (𝑝+
ℎ )

is parameterized in the coordinate system (𝑋,𝑍,Γ,Θ) by
𝑁ℎ,0(𝑣) = (𝑋ℎ(𝑣), 𝑍ℎ(𝑣), 0, 0), 𝑣 ∈ R (7.3.3)

such that:
1. If ℎ = 0, then

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑋0(𝑣) = arcsinh

(︃√
2

2 𝑣

)︃
,

𝑍0(𝑣) = 8(𝑋0)′(𝑣) = 8√
𝑣2 + 2

.
(7.3.4)
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2. If ℎ > 0, then ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑋ℎ(𝑣) = arcsinh
(︁√︁

2+ℎ
ℎ

sinh
(︁
𝑣
√
ℎ/2

)︁)︁
,

𝑍ℎ(𝑣) = 8(𝑋ℎ)′(𝑣) = 4 cosh(𝑣
√
ℎ/2)√︂

1
2+ℎ

+ sinh2(𝑣
√

ℎ/2)
ℎ

. (7.3.5)

A simple application of the L’Hospital rule shows us that 𝑋ℎ(𝑣) → 𝑋0(𝑣), point-wisely,
as ℎ → 0. Nevertheless, the decay of 𝑋ℎ at ∞ is significantly different from 𝑋0 (for ℎ = 0,
the decay is polynomial and for ℎ > 0 is exponential). Notice that 𝑁0,0(𝑣) has poles at
the points ±

√
2𝑖, whereas the poles of 𝑁ℎ,0(𝑣) are all contained in the imaginary axis and

the closest to the real line are ±
√

2𝑖+ 𝒪(ℎ).

Lemma 7.3.2. The two-dimensional invariant manifold 𝑊 (𝜅1, 𝜅2) = 𝑊 𝑢
0 (Λ−

𝜅1,𝜅2) =
𝑊 𝑠

0 (Λ+
𝜅1,𝜅2), with 𝜅1 ≥ 0, 𝜅2 > 0 and 𝜅1 + 𝜅2 = ℎ is parameterized in the coordinate

system (𝑋,𝑍,Γ,Θ) by

𝑁𝜅1,𝜅2(𝑣, 𝜏) = (𝑋𝜅1(𝑣), 𝑍𝜅1(𝑣),Γ𝜅2(𝜏),Θ𝜅2(𝜏)), (7.3.6)

with 𝑣 ∈ R and 𝜏 ∈ T, such that

Γ𝜅2(𝜏) =
√︃

2𝜅2

𝜔
𝑒𝑖𝜏 , and Θ𝜅2(𝜏) =

√︃
2𝜅2

𝜔
𝑒−𝑖𝜏 , (7.3.7)

and 𝑋𝜅1, 𝑍𝜅1 are given in (7.3.4) (𝜅1 = 0) and (7.3.5) (𝜅1 > 0).

Remark 7.3.3. Notice that, if 𝜅2 = 0, then 𝑁𝜅1,𝜅2 depends on one variable and if 𝜅2 > 0,
then it depends on two variables.

Roughly speaking, in the case 𝜅1 > 0, the parameterization of the invariant manifolds
𝑊 (𝜅1, 𝜅2) have the dependence on 𝑣 expressed in terms of 𝑒𝑣

√
𝜅1/2. Thus, if we consider

𝑣 in compact domains, these functions can be easily understood by expanding them in a
Taylor series in 𝜅1. Nevertheless, we must control them for values of 𝑣 at infinity and 𝜅1
near of 0, which generates an undetermined situation. For this reason, we have a singular
dependence of 𝑁𝜅1,𝜅2 at the parameter 𝜅1 = 0.

Notice that 𝑁𝜅1,𝜅2(𝑣, 𝜏) → 𝑁𝜅1,0(𝑣) as 𝜅2 → 0 uniformly, and thus the dependence of
𝑁𝜅1,𝜅2 is regular at 𝜅2 = 0.

Remark 7.3.4. The 𝑁𝜅1,𝜅2(𝑣, 𝜏), with 𝑣 or 𝜏 fixed, do not parameterize the solutions of
(7.3.1). Nevertheless, if 𝛿 = 0, and 𝜑0

𝑡 (·) is the flow of (7.3.1), we have

𝜑0
𝑡 (𝑁𝜅1,𝜅2(𝑣, 𝜏)) = 𝑁𝜅1,𝜅2(𝑣 + 𝑡, 𝜏 + 𝜔𝑡),

therefore they are invariant by the flow.

7.3.2 Proof of Theorem Q (First statement)
The first step to compute the splitting of the separatrix 𝑊 (0, 0) (parameterized by

𝑁0,0(𝑣) in (7.3.3)) in the energy level ℎ = 0 is to consider parameterizations

𝑁⋆
0,0(𝑣) = (𝑋0(𝑣), 𝑍⋆

0(𝑣),Γ⋆
0(𝑣),Θ⋆

0(𝑣)), ⋆ = 𝑢, 𝑠 (7.3.8)
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𝑖
√

2 𝑖
√

2

−𝑖
√

2 −𝑖
√

2

𝑖(
√

2 − 𝜅
√
𝜀)

−𝑖(
√

2 − 𝜅
√
𝜀)

𝑖(
√

2 − 𝜅
√
𝜀)

−𝑖(
√

2 − 𝜅
√
𝜀)

𝛽 𝛽

𝐷𝑢
𝜀 𝐷𝑠

𝜀

Figure 7.7: Complex domains 𝐷𝑢
𝜀 and 𝐷𝑠

𝜀.

of the invariant manifolds 𝑊 𝑢
𝜀 (𝑝−

0 ) and 𝑊 𝑠
𝜀 (𝑝+

0 ) near 𝑁0,0, in the complex domains

𝐷𝑢
𝜀 = {𝑣 ∈ C; |Im(𝑣)|< − tan 𝛽 Re(𝑣) +

√
2 −

√
𝜀},

𝐷𝑠
𝜀 = {𝑣 ∈ C; −𝑣 ∈ 𝐷𝑢

𝜀 },
(7.3.9)

where 0 < 𝛽 < 𝜋/4 is a fixed angle independent of 𝜀 (see Figure 7.7). The parameterization
𝑁0,0(𝑣) in (7.3.4) has singularities only at ±

√
2𝑖, thus 𝑁0,0 is analytic in 𝐷𝑢,𝑠

𝜀 .
We state all the results for the unstable case, since it is analogous for the stable one.

Based on a fixed point argument, we prove the following theorem in Section 7.4.

Theorem 7.3.5. Given 𝜈 > 0. There exists 𝜀0 > 0 such that, for 0 < 𝜀 ≤ 𝜀0, the
one-dimensional manifold 𝑊 𝑢

𝜀 (𝑝−
0 ) is parameterized by

𝑁𝑢
0,0(𝑣) = (𝑋0(𝑣), 𝑍𝑢

0 (𝑣),Γ𝑢
0(𝑣),Θ𝑢

0(𝑣)),

with 𝑣 ∈ 𝐷𝑢
𝜀 , where 𝑋0 is given in (7.3.4), 𝑍𝑢

0 (𝑣) is obtained from ℋ(𝑁𝑢
0,0(𝑣)) = 0 (ℋ

given in (7.3.2)) and ⎧⎨⎩ Γ𝑢
0(𝑣) = 𝑄0(𝑣) + 𝛾𝑢

0 (𝑣),
Θ𝑢

0(𝑣) = −𝑄0(𝑣) + 𝜃𝑢
0 (𝑣),

(7.3.10)

with
𝑄0(𝑣) = −𝑖 𝛿

𝜔
√

2Ω
𝐹 (𝑋0(𝑣)). (7.3.11)

Furthermore, 𝛾𝑢
0 (𝑣), 𝜃𝑢

0 (𝑣) are analytic functions such that 𝜃𝑢
0 (𝑣) = 𝛾𝑢

0 (𝑣), for every
𝑣 ∈ R ∩𝐷𝑢

𝜀 , and there exists a constant 𝑀 > 0 independent of 𝜀 such that

1. |𝛾𝑢
0 (𝑣)| , |𝜃𝑢

0 (𝑣)| ≤ 𝑀
𝛿

𝜔2
1

|𝑣|2
, for each 𝑣 ∈ 𝐷𝑢

𝜀 , |Re(𝑣)|≤ 𝜈;

2. |𝛾𝑢
0 (𝑣)| , |𝜃𝑢

0 (𝑣)| ≤ 𝑀
𝛿

𝜔2
1

|𝑣2 + 2|2
, for each 𝑣 ∈ 𝐷𝑢

𝜀 , |Re(𝑣)|≥ 𝜈;

with 𝛿 = 𝜀3/4, 𝜔 = Ω/
√
𝜀 and Ω =

√︁
1 − 𝜀2/4.

Remark 7.3.6. Notice the points 𝑝±
0 behave as degenerate-saddles at infinity, and thus

the existence of local invariant manifolds for the perturbed system is not standard. Nev-
ertheless, these singularities at infinity behave as parabolic points (see Remark 7.1.1) and
Theorem 7.3.5 gives the existence of their invariant manifolds.
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𝑖
√

2

−𝑖
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√
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√
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√
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√
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𝛽 𝛽

𝐷𝑢
𝜀 𝐷𝑠

𝜀

𝒟𝜀

Figure 7.8: Domain 𝒟𝜀.

By Theorem 7.3.5, both parameterizations 𝑁𝑢,𝑠
0,0 (𝑣) are defined in the complex domain

𝒟𝜀 = 𝐷𝑢
𝜀 ∩𝐷𝑠

𝜀, which contains 0 (see Figure 7.8). To compute the difference between the
invariant manifolds in the section Σ0 (see (7.2.6)), we analyze Δ𝜉(𝑣) given by

Δ𝜉(𝑣) =
(︃

Γ𝑢
0(𝑣) − Γ𝑠

0(𝑣)
Θ𝑢

0(𝑣) − Θ𝑠
0(𝑣)

)︃
,

for 𝑣 ∈ ℐ𝜀 = 𝒟𝜀 ∩ R. We prove that Δ𝜉 satisfies

Δ𝜉′ =
(︃
𝜔𝑖 0
0 −𝜔𝑖

)︃
Δ𝜉 +𝐵(𝑣)Δ𝜉,

where the entries of the matrix 𝐵 are small functions of order 𝒪(𝛿2).
Notice that, if 𝐵 ≡ 0, then Δ𝜉 is the analytic function

Δ𝜉(𝑣) =
⎛⎝ 𝑒𝜔𝑖(𝑣−𝑣0)Δ𝜉(𝑣0)
𝑒−𝜔𝑖(𝑣−𝑣1)Δ𝜉(𝑣1)

⎞⎠ ,
for fixed 𝑣0, 𝑣1 ∈ 𝒟𝜀. Thus, choosing 𝑣0 = −𝑖(

√
2 −

√
𝜀) and 𝑣1 = 𝑖(

√
2 −

√
𝜀), we have

that |Δ𝜉(𝑣)|≤ 𝑀𝑒−
√

2𝜔 ≤ 2𝑀𝑒−
√

2
𝜀 , for 𝑣 ∈ ℐ𝜀, and therefore it is exponentially small

with respect to 𝜀.
Roughly speaking, we prove in Section 7.5.2 that this reasoning will also be true when

𝐵 ̸= 0, by using ideas from [9], and we prove the following theorem.

Theorem 7.3.7. Consider system (7.3.1). Given any compact interval ℐ ⊂ R containing
0, there exists 𝜀0 > 0 sufficiently small such that, for every 0 < 𝜀 < 𝜀0, the parameteriza-
tions 𝑁⋆

0,0(𝑣), ⋆ = 𝑢, 𝑠, given in (7.3.8), are defined for 𝑣 ∈ ℐ and satisfy⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Γ𝑢

0(0) − Γ𝑠
0(0) = −𝑖2𝜋𝛿√

Ω
𝑒−

√
2𝜔 + 𝒪(𝜔𝛿3𝑒−

√
2𝜔),

Θ𝑢
0(0) − Θ𝑠

0(0) = 𝑖
2𝜋𝛿√

Ω
𝑒−

√
2𝜔 + 𝒪(𝜔𝛿3𝑒−

√
2𝜔),

Ω =
√︃

1 − 𝜀2

4 , 𝜔 = Ω√
𝜀

and 𝛿 = 𝜀3/4.

First statement of Theorem Q follows as a corollary of Theorem 7.3.7.
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7.3.3 Parameterization of the Invariant Manifolds 𝑊 𝑢
𝜀 (Λ−

𝜅1,𝜅2
) and

𝑊 𝑠
𝜀 (Λ+

𝜅1,𝜅2
)

In this section we find parameterizations of the invariant manifolds 𝑊 𝑢
𝜀 (Λ−

𝜅1,𝜅2) and
𝑊 𝑠

𝜀 (Λ+
𝜅1,𝜅2), for 𝜅1, 𝜅2 ≥ 0 and 𝜅1 +𝜅2 = ℎ > 0. Even if one theorem could contain all the

results for 𝜅1 ≥ 0 and 𝜅2 ≥ 0, we state three separate theorems, Theorem 7.3.8 (𝜅1 = 0),
Theorem 7.3.10 (𝜅2 = 0) and Theorem 7.3.11 (𝜅1, 𝜅2 > 0), to clarify the exposition (and
the corresponding proofs).

Zero Energy for the Pendulum (Separatrix Case 𝜅1 = 0 and 𝜅2 = ℎ > 0)

We look for parameterizations of the 2-dimensional invariant manifolds 𝑊 𝑢
𝜀 (Λ−

ℎ ) and
𝑊 𝑠

𝜀 (Λ+
ℎ ),

𝑁⋆
0,ℎ(𝑣, 𝜏) =

(︁
𝑋0(𝑣), 𝑍0(𝑣) + 𝑍⋆

0,ℎ(𝑣, 𝜏),Γℎ(𝜏) + Γ⋆
0,ℎ(𝑣, 𝜏),Θℎ(𝜏) + Θ⋆

0,ℎ(𝑣, 𝜏)
)︁
, ⋆ = 𝑢, 𝑠

as perturbations of 𝑊 (0, ℎ) (see Lemma 7.3.2).
For our purpose, it is not necessary to extend 𝑁⋆

0,ℎ to a domain which is
√
𝜀-close to

the singularities of 𝑍0. Thus, it is sufficient to consider the domains

𝐷𝑢 =
{︁
𝑣 ∈ C; |Im(𝑣)|≤ − tan(𝛽) Re(𝑣) +

√
2/2

}︁
,

𝐷𝑠 = {𝑣 ∈ C; −𝑣 ∈ 𝐷𝑢},
(7.3.12)

for some 0 < 𝛽 < 𝜋/4 fixed. We also consider

T𝜎 = {𝜏 ∈ C; |Im(𝜏)|< 𝜎 and Re(𝜏) ∈ T}. (7.3.13)

We prove the following theorem in Section 7.6.
Theorem 7.3.8. Fix 𝜎 > 0 and ℎ0 > 0. There exists 𝜀0 > 0 sufficiently small such that,
for 0 < 𝜀 ≤ 𝜀0 and 0 < ℎ ≤ ℎ0, 𝑊 𝑢

𝜀 (Λ−
ℎ ) is parameterized by

𝑁𝑢
0,ℎ(𝑣, 𝜏) = (𝑋0(𝑣), 𝑍0(𝑣) + 𝑍𝑢

0,ℎ(𝑣, 𝜏),Γℎ(𝜏) + Γ𝑢
0,ℎ(𝑣, 𝜏),Θℎ(𝜏) + Θ𝑢

0,ℎ(𝑣, 𝜏)),

with 𝑣 ∈ 𝐷𝑢 (see (7.3.12)) and 𝜏 ∈ T𝜎, where 𝑋0, 𝑍0,Γℎ,Θℎ are given by (7.3.4) and
(7.3.7), ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑍𝑢
0,ℎ(𝑣, 𝜏) = 𝑍0,ℎ(𝑣, 𝜏) + 𝑧𝑢

0,ℎ(𝑣, 𝜏),
Γ𝑢

0,ℎ(𝑣, 𝜏) = 𝑄0(𝑣) + 𝛾𝑢
0,ℎ(𝑣, 𝜏),

Θ𝑢
0,ℎ(𝑣, 𝜏) = −𝑄0(𝑣) + 𝜃𝑢

0,ℎ(𝑣, 𝜏),
(7.3.14)

where 𝑄0 is given by (7.3.11), and

𝑍0,ℎ(𝑣, 𝜏) = 𝛿

𝜔
√

2Ω
𝐹 ′(𝑋0(𝑣))Γℎ(𝜏) + Θℎ(𝜏)

2 . (7.3.15)

Furthermore, 𝑧𝑢
0,ℎ is a real-analytic function and 𝛾𝑢

0,ℎ, 𝜃
𝑢
0,ℎ are analytic functions satis-

fying
𝜃𝑢

0,ℎ(𝑣, 𝜏) = 𝛾𝑢
0,ℎ(𝑣, 𝜏), (𝑣, 𝜏) ∈ R2 ∩𝐷𝑢 × T𝜎,

such that there exists a constant 𝑀 > 0 independent of 𝜀 and ℎ such that, for (𝑣, 𝜏) ∈
𝐷𝑢 × T𝜎,

|𝑧𝑢
0,ℎ(𝑣, 𝜏)|, |𝛾𝑢

0,ℎ(𝑣, 𝜏)|, |𝜃𝑢
0,ℎ(𝑣, 𝜏)|≤ 𝑀

𝛿

𝜔

1
|
√
𝑣2 + 2|

(7.3.16)

with 𝛿 = 𝜀3/4, 𝜔 = Ω/
√
𝜀 and Ω =

√︁
1 − 𝜀2/4.
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Remark 7.3.9. We stress that the bounds in (7.3.16) are only valid for 𝑣2 + 2 > 1/2 and
therefore do not give any information about the behavior of 𝑁𝑢

0,ℎ(𝑣, 𝜏) near the singularities
𝑣 = ±𝑖

√
2. We use this norm to control the functions at 𝑋 = ±∞.

Positive Energy for the Pendulum

This section is devoted to study the invariant manifolds of the periodic orbits Λ∓
𝜅1,𝜅2

for 𝜅1 > 0. First, we consider the case 𝜅1 = ℎ and 𝜅2 = 0. In this case Λ∓
ℎ,0 = 𝑝∓

ℎ is a
critical point. We apply the same ideas of Section 7.3.2 to parameterize 𝑊 𝑢

𝜀 (𝑝−
ℎ ) as

𝑁𝑢
ℎ,0(𝑣) = (𝑋ℎ(𝑣), 𝑍𝑢

ℎ,0(𝑣),Γ𝑢
ℎ,0(𝑣),Θ𝑢

ℎ,0(𝑣)),

where 𝑋ℎ(𝑣) has been introduced in (7.3.5). The main difference is that we need to take
into account the singular dependence on the parameter ℎ at ℎ = 0.

As in Theorem 7.3.8, for our purposes it is sufficient to parameterize the manifolds in
the domains 𝐷𝑢,𝑠 (see (7.3.12)). We prove the following theorem in Section 7.7.

Theorem 7.3.10. There exist 𝜀0 > 0 and ℎ0 > 0 sufficiently small such that, for 0 <
𝜀 ≤ 𝜀0 and 0 < ℎ ≤ ℎ0, 𝑊 𝑢

𝜀 (𝑝−
ℎ ) is parameterized by

𝑁𝑢
ℎ,0(𝑣) = (𝑋ℎ(𝑣), 𝑍𝑢

ℎ,0(𝑣),Γ𝑢
ℎ,0(𝑣),Θ𝑢

ℎ,0(𝑣)), 𝑣 ∈ 𝐷𝑢,

where 𝑋ℎ is given by (7.3.5), 𝑍𝑢
ℎ,0(𝑣) is obtained from ℋ(𝑁𝑢

ℎ,0(𝑣)) = ℎ (ℋ given in (7.3.2))
and ⎧⎨⎩ Γ𝑢

ℎ,0(𝑣) = 𝑄ℎ(𝑣) + 𝛾𝑢
ℎ,0(𝑣),

Θ𝑢
ℎ,0(𝑣) = −𝑄ℎ(𝑣) + 𝜃𝑢

ℎ,0(𝑣),
(7.3.17)

with
𝑄ℎ(𝑣) = −𝑖 𝛿

𝜔
√

2Ω
𝐹 (𝑋ℎ(𝑣)). (7.3.18)

Furthermore, 𝛾𝑢
ℎ,0(𝑣), 𝜃𝑢

ℎ,0(𝑣) are analytic functions satisfying 𝜃𝑢
ℎ,0(𝑣) = 𝛾𝑢

ℎ,0(𝑣) for 𝑣 ∈
R ∩𝐷𝑢 such that there exists a constant 𝑀 > 0 independent of 𝜀 such that for 𝑣 ∈ 𝐷𝑢

⃒⃒⃒
𝛾𝑢

ℎ,0(𝑣)
⃒⃒⃒
,
⃒⃒⃒
𝜃𝑢

ℎ,0(𝑣)
⃒⃒⃒
≤ 𝑀

𝛿

𝜔2
1

|𝑣2 + 2|
, (7.3.19)

with 𝛿 = 𝜀3/4, 𝜔 = Ω/
√
𝜀 and Ω =

√︁
1 − 𝜀2/4.

Finally we deal with the case 𝜅1, 𝜅2 > 0. Next theorem, proven in Section 7.8, gives
the parameterizations of 𝑊 𝑢

𝛿 (Λ−
𝜅1,𝜅2).

Theorem 7.3.11. Fix 𝜎 > 0. There exist 𝜀0 > 0 and ℎ0 > 0 sufficiently small such that,
for 0 < 𝜀 ≤ 𝜀0, 0 < ℎ ≤ ℎ0, and 𝜅1 > 0, 𝜅2 ≥ 0 with 𝜅1 + 𝜅2 = ℎ, the invariant manifold
𝑊 𝑢

𝜀 (Λ−
𝜅1,𝜅2) is parameterized by

𝑁𝑢
𝜅1,𝜅2(𝑣, 𝜏) = (𝑋𝜅1(𝑣), 𝑍𝜅1(𝑣) + 𝑍𝑢

𝜅1,𝜅2(𝑣, 𝜏),Γ𝜅2(𝜏) + Γ𝑢
𝜅1,𝜅2(𝑣, 𝜏),Θ𝜅2(𝜏) + Θ𝑢

𝜅1,𝜅2(𝑣, 𝜏)),

for (𝑣, 𝜏) ∈ 𝐷𝑢 × T𝜎, where 𝑋𝜅1, 𝑍𝜅1 ,Γ𝜅2 ,Θ𝜅2 are given by (7.3.5) and (7.3.7),⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑍𝑢

𝜅1,𝜅2(𝑣, 𝜏) = 𝑍𝜅1,𝜅2(𝑣, 𝜏) + 𝑧𝑢
𝜅1,𝜅2(𝑣, 𝜏),

Γ𝑢
𝜅1,𝜅2(𝑣, 𝜏) = 𝑄𝜅1(𝑣) + 𝛾𝑢

𝜅1,𝜅2(𝑣, 𝜏),
Θ𝑢

𝜅1,𝜅2(𝑣, 𝜏) = −𝑄𝜅1(𝑣) + 𝜃𝑢
𝜅1,𝜅2(𝑣, 𝜏),

(7.3.20)
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𝑍

𝑏

𝐵

𝑊 (0, 0) ∩ 𝒮0

𝑊 (𝜅1, 𝜅2) ∩ 𝒮ℎ

√︁
2𝜅2

𝜔√
2 + 𝜅1 −

√
2

𝒪(√𝜅2 + √
𝜅1)

Figure 7.9: Comparison between 𝑊 (𝜅1, 𝜅2) and 𝑊 (0, 0) in the section 𝒮ℎ (𝑋 = 0, 𝐻 = ℎ)
projected in the 𝑏𝑍𝐵-space .

where 𝑄𝜅1 is given in (7.3.18) and

𝑍𝜅1,𝜅2(𝑣, 𝜏) = 𝛿

𝜔
√

2Ω
𝐹 ′(𝑋𝜅1(𝑣))Γ𝜅2(𝜏) + Θ𝜅2(𝜏)

2 .

Furthermore, 𝑧𝑢
𝜅1,𝜅2 is a real-analytic function and 𝛾𝑢

𝜅1,𝜅2 , 𝜃
𝑢
𝜅1,𝜅2 are analytic functions sat-

isfying 𝜃𝑢
𝜅1,𝜅2(𝑣, 𝜏) = 𝛾𝑢

𝜅1,𝜅2(𝑣, 𝜏) for (𝑣, 𝜏) ∈ R2 ∩𝐷𝑢 ×T𝜎 such that there exists a constant
𝑀 > 0 independent of 𝜀, 𝜅1 and 𝜅2 such that, for (𝑣, 𝜏) ∈ 𝐷𝑢 × T𝜎 (see (7.3.12)),

|𝑧𝑢
𝜅1,𝜅2(𝑣, 𝜏)|, |𝛾𝑢

𝜅1,𝜅2(𝑣, 𝜏)|, |𝜃𝑢
𝜅1,𝜅2(𝑣, 𝜏)|≤ 𝑀

𝛿

𝜔

1
|𝑣2 + 2| 1

2
(7.3.21)

with 𝛿 = 𝜀3/4, 𝜔 = Ω/
√
𝜀 and Ω =

√︁
1 − 𝜀2/4.

7.3.4 Approximation of 𝑊 𝑢
𝜀 (Λ−

𝜅1,𝜅2
) by 𝑊 𝑢

𝜀 (𝑝−
0 ) in the section Σℎ

Recall that for the unperturbed case, we have that

𝑊 (𝜅1, 𝜅2) ∩ Σℎ = {(𝑍, 𝑏, 𝐵); 𝑍 = 4
√

2 + 𝜅1 and 𝑏2 +𝐵2 = 2𝜅2/𝜔}.

Thus, in the section Σℎ, the sets 𝑊 (𝜅1, 𝜅2) and 𝑊 (0, 0) are (𝜅1 + √
𝜅2)-close (see

Figure 7.9). Since the perturbed invariant manifolds are close to the unperturbed ones
(see Theorems 7.3.8, 7.3.10, 7.3.11), in the next theorem we approximate 𝑊 𝑢

𝜀 (Λ−
𝜅1,𝜅2) by

𝑊 𝑢
𝜀 (𝑝−

0 ) for 𝜅1, 𝜅2 small. Using energy conservation and the fact that Γ and Θ are complex
conjugate for real values of the variables, it is enough to compare the invariant manifolds
only in the variable Γ. We define the projection 𝜋Γ(𝑋,𝑍,Γ,Θ) = Γ.
Theorem 7.3.12. Consider 𝜅1, 𝜅2 ≥ 0, 𝜅1 + 𝜅2 = ℎ, and the parameterization of 𝑁𝑢

𝜅1,𝜅2

of 𝑊 𝑢
𝜀 (Λ−

𝜅1,𝜅2) obtained in Theorems 7.3.5, 7.3.8, 7.3.10, and 7.3.11. Then, there exist
𝜀0 > 0 and ℎ0 > 0 sufficiently small such that for 0 < ℎ ≤ ℎ0 and 0 < 𝜀 ≤ 𝜀0

𝜋Γ𝑁
𝑢
𝜅1,𝜅2(0, 𝜏) − 𝜋Γ𝑁

𝑢
0,0(0) = Γ𝜅2(𝜏) + 𝒪

(︃
𝛿
√
𝜅1

𝜔2 + 𝛿
√
𝜅2

𝜔3/2

)︃
, 𝜏 ∈ T,

where Γ𝜅2(𝜏) has been introduced in (7.3.7), 𝛿 = 𝜀3/4, 𝜔 = Ω/
√
𝜀 and Ω =

√︁
1 − 𝜀2/4.

The proof of this theorem is done in Sections 7.9.1, 7.9.2 and 7.9.3. The result of this
theorem for 𝜅1 = ℎ and 𝜅2 = 0 implies the second statement of Theorem Q (note that we
are abusing notation since, in this case, the function 𝑁𝑢

𝜅1,𝜅2 does not depend on 𝜏).
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7.3.5 Proof of Theorem R
Theorems 7.3.8 and 7.3.12 provide, for 0 ≤ ℎ ≤ ℎ0, 𝜀 ≤ 𝜀0, the existence of the

invariant manifolds 𝑊 𝑢
𝜀 (Λ−

ℎ ) and 𝑊 𝑠
𝜀 (Λ+

ℎ ) which are parameterized by

𝑁𝑢,𝑠
0,ℎ (𝑣, 𝜏) =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑋0(𝑣)

𝑍0(𝑣) + 𝑍0,ℎ(𝑣, 𝜏) + 𝑧𝑢,𝑠
0,ℎ(𝑣, 𝜏)

Γℎ(𝜏) + Γ𝑢,𝑠
0 (𝑣) + 𝐹 𝑢,𝑠(𝑣, 𝜏, ℎ, 𝜀)

Θℎ(𝜏) + Θ𝑢,𝑠
0 (𝑣) + 𝐹 𝑢,𝑠(𝑣, 𝜏, ℎ, 𝜀)

⎞⎟⎟⎟⎟⎟⎟⎠ , (𝑣, 𝜏) ∈ (𝐷𝑢,𝑠 ∩ R) × T,

where 𝑋0, 𝑍0 are given in (7.3.4), 𝑍0,ℎ and 𝑧𝑢,𝑠
0,ℎ are given by (7.3.14), Γℎ and Θℎ are given

in (7.3.7), Γ𝑢,𝑠
0 ,Θ𝑢,𝑠

0 are given in (7.3.10) and 𝐹 𝑢,𝑠 are analytic functions such that

𝐹 𝑢,𝑠(𝑣, 𝜏, ℎ, 𝜀) = 𝒪
(︃
𝛿
√
ℎ

𝜔3/2

)︃
.

Consider the section Σℎ (which corresponds to 𝑣 = 0 ∈ 𝐷𝑢 ∩𝐷𝑠). Then, 𝑊 𝑢
𝜀 (Λ−

ℎ ) and
𝑊 𝑠

𝜀 (Λ+
ℎ ) intersect along a heteroclinic orbit if and only if there exist 𝜏𝑢, 𝜏 𝑠 in [−𝜋, 𝜋)

such that 𝑁𝑢
0,ℎ(0, 𝜏𝑢) = 𝑁 𝑠

0,ℎ(0, 𝜏 𝑠). Moreover, using energy conservation, 𝑁𝑢
0,ℎ(0, 𝜏𝑢) =

𝑁 𝑠
0,ℎ(0, 𝜏 𝑠) if, and only if,⎧⎨⎩ Γℎ(𝜏𝑢) + Γ𝑢

0(0) + 𝐹 𝑢(0, 𝜏𝑢, ℎ, 𝜀) = Γℎ(𝜏 𝑠) + Γ𝑠
0(0) + 𝐹 𝑠(0, 𝜏 𝑠, ℎ, 𝜀)

Θℎ(𝜏𝑢) + Θ𝑢
0(0) + 𝐹 𝑢(0, 𝜏𝑢, ℎ, 𝜀) = Θℎ(𝜏 𝑠) + Θ𝑠

0(0) + 𝐹 𝑢(0, 𝜏 𝑠, ℎ, 𝜀).

Since 𝜏𝑢, 𝜏 𝑠 ∈ R, using Theorem 7.3.7, the expression of Γℎ in (7.3.7), the equations above
are equivalent to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√︃
2ℎ
𝜔

(cos(𝜏𝑢) − cos(𝜏 𝑠)) +𝑀1(𝜀) + 𝐹1(𝜏𝑢, 𝜏 𝑠, ℎ, 𝜀) = 0,√︃
2ℎ
𝜔

(sin(𝜏𝑢) − sin(𝜏 𝑠)) − 2𝜋𝛿√
Ω
𝑒−

√
2𝜔 +𝑀2(𝜀) + 𝐹2(𝜏𝑢, 𝜏 𝑠, ℎ, 𝜀) = 0,

(7.3.22)

where 0 < 𝜀 ≤ 𝜀0, 0 < ℎ ≤ ℎ0 and 𝑀1,𝑀2, 𝐹1, 𝐹2 are real-analytic functions such that

𝑀1,𝑀2 = 𝒪(𝜔𝛿3𝑒−
√

2𝜔) and 𝐹1, 𝐹2 = 𝒪
(︃
𝛿
√
ℎ

𝜔3/2

)︃
.

We change the parameter ℎ ≥ 0

ℎ = 𝜋2𝜔𝛿2𝑒−2
√

2𝜔

2Ω 𝜇2, for 𝜇 ≥ 0.

Then, since 0 < ℎ ≤ ℎ0, it is sufficient to consider

0 < 𝜇 ≤ 𝜇0 = 1
𝛿0𝜋

√︃
2Ω0ℎ0

𝜔0
𝑒

√
2𝜔0 ,
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where Ω0 =
√︁

1 − 𝜀2
0/4, 𝜔0 = Ω0/

√
𝜀0 and 𝛿0 = 𝜀

3/4
0 . Considering 𝜀0 > 0 sufficiently small,

we can assume that 𝜇0 > 1. Replacing ℎ in (7.3.22) and multiplying the equation by√
Ω
𝜋𝛿

𝑒
√

2𝜔 > 0, we may rewrite (7.3.22) as

⎧⎨⎩ 𝜇(cos(𝜏𝑢) − cos(𝜏 𝑠)) + ̃︁𝑀1(𝜀) + ̃︀𝐹1(𝜏𝑢, 𝜏 𝑠, 𝜇, 𝜀) = 0,

𝜇(sin(𝜏𝑢) − sin(𝜏 𝑠)) − 2 + ̃︁𝑀2(𝜀) + ̃︀𝐹2(𝜏𝑢, 𝜏 𝑠, 𝜇, 𝜀) = 0,
(7.3.23)

where ̃︁𝑀1, ̃︁𝑀2, ̃︀𝐹1, ̃︀𝐹2, are real-analytic functions such that

̃︁𝑀1, ̃︁𝑀2 = 𝒪(𝜔𝛿2) and ̃︀𝐹1, ̃︀𝐹2 = 𝒪
(︃
𝛿

𝜔
𝜇

)︃
.

Define the function 𝐺 = (𝐺1, 𝐺2) : [−𝜋, 𝜋]2 × (0, 𝜇0] × [0, 𝜀0] → R2 corresponding to
the left-hand side of system (7.3.23). Recalling that 𝛿 = 𝜀3/4 and 𝜔 = Ω/

√
𝜀, it is clear

that
𝐺(𝜏𝑢, 𝜏 𝑠, 𝜇, 𝜀) =

(︃
𝜇(cos(𝜏𝑢) − cos(𝜏 𝑠)) + 𝒪(𝜀)

𝜇(sin(𝜏𝑢) − sin(𝜏 𝑠)) − 2 + 𝒪(𝜀)

)︃
.

The equation 𝐺(𝜏𝑢, 𝜏 𝑠, 𝜇, 0) = (0, 0) has a unique family of solutions

𝒮0 = {(𝛼,−𝛼, 1/sin(𝛼), 0); arcsin(1/𝜇0) ≤ 𝛼 ≤ 𝜋 − arcsin(1/𝜇0)} .

We find zeroes of 𝐺 using the Implicit Function Theorem around every solution of the
family 𝒮0. Denote 𝛼0 = arcsin(1/𝜇0) and fix 0 < 𝛼0 ≤ 𝛼 ≤ 𝜋 − 𝛼0. Then,

1. 𝐺(𝛼,−𝛼, 1/sin(𝛼), 0) = (0, 0),

2. det
(︃
𝜕(𝐺1, 𝐺2)
𝜕(𝜇, 𝜏 𝑠)

)︃
(𝛼,−𝛼, 1/sin(𝛼), 0) = 2 sin(𝛼) ̸= 0.

Thus, it follows from the Implicit Function Theorem that there exist 𝜀𝛼 > 0 and unique
functions 𝜏 𝑠

𝛼 : (𝛼− 𝜀𝛼, 𝛼+ 𝜀𝛼) × [0, 𝜀𝛼) → [−𝜋, 𝜋], 𝜇𝛼 : (𝛼− 𝜀𝛼, 𝛼+ 𝜀𝛼) × [0, 𝜀𝛼) → (0, 𝜇0]
such that

𝐺(𝜏𝑢, 𝜏 𝑠
𝛼(𝜏𝑢, 𝜀), 𝜇𝛼(𝜏𝑢, 𝜀), 𝜀) = (0, 0).

Furthermore{︃
𝜏 𝑠

𝛼(𝜏𝑢, 𝜀) = −𝛼 + 𝒪(𝜏𝑢 − 𝛼, 𝜀),
𝜇𝛼(𝜏𝑢, 𝜀) = 1/sin(𝛼) + 𝒪(𝜏𝑢 − 𝛼, 𝜀) , 𝜏𝑢 ∈ (𝛼− 𝜀𝛼, 𝛼+ 𝜀𝛼).

Consider the compact set 𝐾 = [𝛼0, 𝜋−𝛼0]. We can find 𝑛 ∈ N, 𝛼1, · · · , 𝛼𝑛 with respectives
𝜀𝛼1 , · · · , 𝜀𝛼𝑛 , previously found, such that the intervals (𝛼𝑖 −𝜀𝛼𝑖

, 𝛼𝑖 +𝜀𝛼𝑖
), 𝑖 = 1, · · · , 𝑛 form

a finite cover of 𝐾. Using the uniqueness of solutions obtained from the Implicit Function
Theorem, it is possible to conclude that there exist 𝜀1 > 0 sufficiently small and functions{︃

𝜏 𝑠
* (𝜏𝑢, 𝜀) = −𝜏𝑢 + 𝒪(𝜀),
𝜇* (𝜏𝑢, 𝜀) = 1/sin(𝜏𝑢) + 𝒪(𝜀),

defined for every 𝜀 < 𝜀1 and 𝜏𝑢 ∈ 𝐾, such that

𝐺 (𝜏𝑢, 𝜏 𝑠
* (𝜏𝑢, 𝜀) , 𝜇* (𝜏𝑢, 𝜀) , 𝜀) = (0, 0).
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This implies that there exists at least one heteroclinic connection in the energy level

ℎ = 𝜋2𝜔𝛿2𝑒−2
√

2𝜔

2Ω (𝜇*(𝜏𝑢, 𝜀))2, 𝜏𝑢 ∈ 𝐾.

Moreover, (𝜇*(𝜏𝑢, 0))2 ≥ (𝜇*(𝜋/2, 0))2 = 1, for every 𝜏𝑢 ∈ 𝐾. Thus (𝜇*(𝜏𝑢, 𝜀))2 ≥ 1+𝒪(𝜀)
for 𝜏𝑢 ∈ 𝐾 and 𝜀 < 𝜀1. Therefore, since 𝜇*(𝜋/2, 𝜀) = 1 + 𝒪(𝜀), there must exist a curve
𝜏𝑢

min(𝜀), such that
(𝜇*(𝜏𝑢, 𝜀))2 ≥ (𝜇*(𝜏𝑢

min(𝜀), 𝜀))2,

for 𝜏𝑢 ∈ 𝐾, 𝜀 < 𝜀1, and 𝜇*(𝜏𝑢
min(𝜀), 𝜀) = 1 + 𝒪(𝜀).

Thus, defining

ℎ𝑠(𝜀) = 𝜋2𝜔𝛿2𝑒−2
√

2𝜔

2Ω (𝜇*(𝜏𝑢
min(𝜀), 𝜀))2 = 𝜋2𝜔𝛿2𝑒−2

√
2𝜔

2Ω (1 + 𝒪(𝜀)),

system (7.3.1) has one heteroclinic orbit between the periodic orbits Λ−
ℎ and Λ+

ℎ in the
energy level 0 < ℎ ≤ ℎ0 if, and only if ℎ ≥ ℎ𝑠(𝜀).

It only remains to prove the last statement of Theorem R.Given 𝜇1 > 1, let 𝜏𝑢
1 =

arcsin(𝜇−1
1 ) ∈ [𝛼0, 𝜋/2) ⊂ 𝐾, and consider the function 𝑔(𝜏𝑢, 𝜀) = 𝜇*(𝜏𝑢, 𝜀) − 𝜇*(𝜏𝑢

1 , 𝜀).
Applying the Implicit Function Theorem to 𝑔 = 0 at the point (𝜋 − 𝜏𝑢

1 , 0), there exist
𝜀𝜇1 > 0 and a unique curve 𝜏𝑢

2 = 𝜏𝑢
2 (𝜏𝑢

1 , 𝜀), defined for 0 ≤ 𝜀 < 𝜀𝜇1 , such that 𝜇*(𝜏𝑢
2 , 𝜀) =

𝜇*(𝜏𝑢
1 , 𝜀) and 𝜏𝑢

2 (𝜏𝑢
1 , 𝜀) = 𝜋 − 𝜏𝑢

1 + 𝒪(𝜀). Moreover, taking 𝜀𝜇1 small enough 𝜏𝑢
1 ̸= 𝜏𝑢

2 for
𝜀 < 𝜀𝜏𝑢

1
. Thus, in the energy level

ℎ𝜇1 = 𝜋2𝜔𝛿2𝑒−2
√

2𝜔

2Ω (𝜇*(𝜏𝑢
1 , 𝜀))2,

where 𝜇*(𝜏𝑢
1 , 𝜀) = 𝜇1 + 𝒪(𝜀), there exist two heteroclinic connections corresponding to 𝜏𝑢

1
and 𝜏𝑢

2 .
This completes the proof of Theorem R.

Remark 7.3.13. Notice that 𝑔(𝜋/2, 0) = 𝜕𝜏𝑢𝑔(𝜋/2, 0) = 0 and 𝜕2
𝜏𝑢𝑔(𝜋/2, 0) ̸= 0. Un-

fortunately, the characterization of the bifurcation of zeros for 𝜀 > 0 becomes impossible,
since there is no information on 𝜕𝜀𝑔(𝜋/2, 0), and its computation requires complicated
second order expansions which are beyond the objectives of this work. Nevertheless, under
some non-degenericity condition, for example 𝜕𝜀𝑔(𝜋/2, 0) ̸= 0, it is posible to detect a
saddle-node bifurcation.

7.3.6 Proof of Theorem S
Following the same lines of Section 7.3.5, we use Theorems 7.3.8 (for the invariant

manifold 𝑊 𝑠
𝜀 (Λ+

ℎ )), 7.3.10 (for the invariant manifold 𝑊 𝑢
𝜀 (𝑝−

ℎ )) and 7.3.12 (to compare
them to 𝑊 𝑠

𝜀 (𝑝+
0 ) and 𝑊 𝑢

𝜀 (𝑝−
0 )). Then, we can see that 𝑊 𝑢

𝛿 (𝑝−
ℎ ) ⊂ 𝑊 𝑠

𝛿 (Λ+
ℎ ), if and only if⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−
√︃

2ℎ
𝜔

cos(𝜏 𝑠) +𝑀1(𝜀) + 𝐹1(𝜏 𝑠, ℎ, 𝜀) = 0,

−
√︃

2ℎ
𝜔

sin(𝜏 𝑠) − 2𝜋𝛿√
Ω
𝑒−

√
2𝜔 +𝑀2(𝜀) + 𝐹2(𝜏 𝑠, ℎ, 𝜀) = 0,

(7.3.24)
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has solutions 𝜏𝑢, 𝜏 𝑠 ∈ [−𝜋, 𝜋], 0 < 𝜀 ≤ 𝜀0, 0 < ℎ ≤ ℎ0 where ℎ0 is given in Theorem
7.3.10.. The functions 𝑀𝑗, 𝐹𝑗 are real-analytic and satisfy

𝑀𝑗 = 𝒪(𝜔𝛿3𝑒−
√

2𝜔) and 𝐹𝑗 = 𝒪
(︃
𝛿
√
ℎ

𝜔3/2 + 𝛿
√
ℎ

𝜔2

)︃
, 𝑗 = 1, 2

In order to look for solutions of (7.3.24), we consider the change

ℎ = 2𝜋2𝜔𝛿2𝑒−2
√

2𝜔

Ω 𝜇2, 0 < 𝜇 ≤ 𝜇0 =
√

Ω0ℎ0

𝛿0𝜋
√

2𝜔0𝑒−
√

2𝜔0

Considering 𝜀0 > 0 sufficiently small, we can assume that 𝜇0 > 1. Replacing ℎ in (7.3.24)

and multiplying it by
√

Ω
2𝜋𝛿𝑒−

√
2𝜔
> 0, we may rewrite this system as

⎧⎨⎩ −𝜇 cos(𝜏 𝑠) + ̃︁𝑀1(𝜀) + ̃︀𝐹1(𝜏 𝑠, 𝜇, 𝜀) = 0,

−𝜇 sin(𝜏 𝑠) − 1 + ̃︁𝑀2(𝜀) + ̃︀𝐹2(𝜏 𝑠, 𝜇, 𝜀) = 0,
(7.3.25)

where ̃︁𝑀𝑗, ̃︀𝐹𝑗, are real-analytic functions such that

̃︁𝑀𝑗 = 𝒪(𝜔𝛿2) and ̃︀𝐹𝑗 = 𝒪
(︃
𝛿

𝜔
𝜇

)︃
, 𝑗 = 1, 2.

Define the function 𝐺 : [−𝜋, 𝜋]×(0, 𝜇0]× [0, 𝜀0] → R2 as as the left-hand side of system
(7.3.25). Recalling that 𝛿 = 𝜀3/4 and 𝜔 = Ω/

√
𝜀, we can see that

𝐺(𝜏 𝑠, 𝜇, 𝜀) =
(︃

−𝜇 cos(𝜏 𝑠) + 𝒪(𝜀)
−𝜇 sin(𝜏 𝑠) − 1 + 𝒪(𝜀)

)︃
.

Since,

1. 𝐺(−𝜋/2, 1, 0) = (0, 0),

2. det
(︃
𝜕(𝐺1, 𝐺2)
𝜕(𝜏 𝑠, 𝜇)

)︃
(−𝜋/2, 1, 0) = 1,

we can apply the Implicit Function Theorem to obtain 𝜀* > 0 and functions 𝜏 𝑠
* : [0, 𝜀*) →

[−𝜋, 𝜋], 𝜇* : [0, 𝜀*) → (0, 𝜇0] such that 𝐺(𝜏 𝑠
* (𝜀), 𝜇*(𝜀), 𝜀) = 0 for 0 ≤ 𝜀 ≤ 𝜀*. Furthermore,

𝜏 𝑠
* (𝜀) = −𝜋/2 + 𝒪(𝜀) and 𝜇*(𝜀) = 1 + 𝒪(𝜀).

Defining

ℎ𝑐(𝜀) = 2𝜋2𝜔𝛿2𝑒−2
√

2𝜔

Ω (𝜇*(𝜀))2 = 2𝜋2𝜔𝛿2𝑒−2
√

2𝜔

Ω (1 + 𝒪(𝜀))

and reducing 𝜀0 to 𝜀*, Theorem S follows directly from these facts.
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7.3.7 Proof of Theorem T
Following the same lines of Section 7.3.5, we use Theorems 7.3.10 (for the invariant

manifold 𝑊 𝑢
𝜀 (𝑝−

ℎ )), 7.3.11 (for the invariant manifold 𝑊 𝑠
𝜀 (Λ+

𝜅1,𝜅2)), and 7.3.12 (to compare
them to 𝑊 𝑠

𝜀 (𝑝+
0 ) and 𝑊 𝑢

𝜀 (𝑝−
0 )). We can see that 𝑊 𝑢

𝛿 (𝑝−
ℎ ) ⊂ 𝑊 𝑠

𝛿 (Λ+
𝜅1,𝜅2), if and only if⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−
√︃

2𝜅2

𝜔
cos(𝜏 𝑠) +𝑀1(𝜀) + 𝐹1(𝜏 𝑠, ℎ, 𝜀) = 0,

−
√︃

2𝜅2

𝜔
sin(𝜏 𝑠) − 2𝜋𝛿√

Ω
𝑒−

√
2𝜔 +𝑀2(𝜀) + 𝐹2(𝜏 𝑠, ℎ, 𝜀) = 0,

(7.3.26)

has a solution 𝜏 𝑠 ∈ [−𝜋, 𝜋] for 𝜀 ≤ 𝜀0, ℎ ≤ ℎ0. The functions 𝑀𝑗, 𝐹𝑗 are real-analytic and

𝑀𝑗 = 𝒪(𝜔𝛿3𝑒−
√

2𝜔) and 𝐹𝑗 = 𝒪
(︃
𝛿
√
𝜅2

𝜔3/2 + 𝛿
√
𝜅1

𝜔2 + 𝛿
√
ℎ

𝜔2

)︃
, 𝑗 = 1, 2, 𝜅1 + 𝜅2 = ℎ.

We consider the change of parameters and variables

ℎ = 2𝜋2𝜔𝛿2𝑒−2
√

2𝜔

Ω (𝜇*(𝜀) + 𝜇)2,

𝜅2 = 2𝜋2𝜔𝛿2𝑒−2
√

2𝜔

Ω (𝜇*(𝜀) + 𝜇− 𝜉)2,

𝜏 𝑠 = 𝜏 𝑠
* (𝜀) + 𝜏,

where (𝜇*(𝜀), 𝜏 𝑠
* (𝜀)) is the solution of (7.3.25). Since 𝜅2 ≤ ℎ, 𝜇*(𝜀) = 1 + 𝒪(𝜀) and we are

looking for solutions with 𝜇, 𝜉, 𝜏 ≈ 0, we have that 𝜉 ≥ 0 and (𝜇*(𝜀)+𝜇−𝜉)2 ≤ (𝜇*(𝜀)+𝜇)2.

Replacing ℎ, 𝜅2 and 𝜅1 and multiplying it by
√

Ω
2𝜋𝛿𝑒−

√
2𝜔
> 0, system (7.3.26) as

⎧⎨⎩ −(𝜇*(𝜀) + 𝜇− 𝜉) cos(𝜏 𝑠
* (𝜀) + 𝜏) + ̃︁𝑀1(𝜀) + ̃︀𝐹1(𝜏, 𝜇, 𝜉, 𝜀) = 0,

−(𝜇*(𝜀) + 𝜇− 𝜉) sin(𝜏 𝑠
* (𝜀) + 𝜏) − 1 + ̃︁𝑀2(𝜀) + ̃︀𝐹2(𝜏, 𝜇, 𝜉, 𝜀) = 0,

where ̃︁𝑀𝑗, ̃︀𝐹𝑗, are real-analytic functions such that ̃︁𝑀𝑗 = 𝒪(𝜔𝛿2) and

̃︀𝐹𝑗 = 𝒪

⎛⎝ 𝛿
𝜔

⎛⎝(𝜇*(𝜀) + 𝜇− 𝜉) +

√︁
(𝜇*(𝜀) + 𝜇)2 + (𝜇*(𝜀) + 𝜇− 𝜉)2

𝜔1/2 + (𝜇*(𝜀) + 𝜇)
𝜔1/2

⎞⎠⎞⎠ , 𝑗 = 1, 2.

Define the function 𝐺 : [−𝜒0, 𝜒0]×[0, 𝜒0]×[−𝜒0, 𝜒0]×[0, 𝜒0] → R2 as the left hand side
of system (7.3.25) and fix 𝜒0 > 0 small enough. Recalling that 𝛿 = 𝜀3/4 and 𝜔 = Ω/

√
𝜀,

we can see that

𝐺(𝜏, 𝜇, 𝜉, 𝜀) =
(︃

−(𝜇*(𝜀) + 𝜇− 𝜉) cos(𝜏 𝑠
* (𝜀) + 𝜏) + 𝒪(𝜀)

−(𝜇*(𝜀) + 𝜇− 𝜉) sin(𝜏 𝑠
* (𝜀) + 𝜏) − 1 + 𝒪(𝜀)

)︃
.

From Section 7.3.6, 𝜇*(0) = 1 and 𝜏 𝑠
* (0) = −𝜋/2. Thus 𝐺(𝜏, 𝜇, 𝜉, 0) = (0, 0) has a solution

𝜏 = 0 and 𝜇 = 𝜉. Since, we are looking for solutions with 𝜇, 𝜉 ≈ 0, we consider the solution
𝜇 = 𝜉 = 0. Then, since

1. 𝐺(0, 0, 0, 0) = (0, 0),
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2. det
(︃
𝜕(𝐺1, 𝐺2)
𝜕(𝜏, 𝜉)

)︃
(0, 0, 0, 0) = 1,

we can apply the Implicit Function Theorem to obtain 𝜀0 > 0 and unique functions 𝜏 :
[0, 𝜀0)×[0, 𝜀0) → [−𝜒0, 𝜒0], 𝜉 : [0, 𝜀0)×[0, 𝜀0) → [−𝜒0, 𝜒0] such that𝐺(𝜏(𝜇, 𝜀), 𝜇, 𝜉(𝜇, 𝜀), 𝜀) =
0. Furthermore 𝜏(𝜇, 𝜀) = 𝒪(𝜇, 𝜀) and 𝜉(𝜇, 𝜀) = 𝒪(𝜇, 𝜀). For 𝜀 = 0, we have that 𝜉 = 𝜇
and 𝜏 = 0 is a solution of 𝐺(𝜏, 𝜇, 𝜉, 𝜀) = (0, 0). Thus 𝜉(𝜇, 0) = 𝜇 and, for 𝜀 small enough,
𝜉(𝜇, 𝜀) = 𝜇+ 𝒪(𝜀).

Finally, if 𝜉 = 0, then 𝜅2 = ℎ, 𝜅1 = 0 and therefore (7.3.26) becomes (7.3.24). Thus,
considering the different scalings done in the systems and the uniqueness of solutions of
(7.3.24) obtained in Section 7.3.6, we conclude that 𝜉(0, 𝜀) = 𝜏(0, 𝜀) ≡ 0.

These facts, allows us to see that

𝜉(𝜇, 𝜀) = 𝑐𝜀𝜇+ 𝒪(𝜇2), with 𝑐𝜀 = 1 + 𝒪(𝜀).

Hence, for 𝜇 ≥ 0 sufficiently small, in the energy level

ℎ𝜇 = 2𝜋2𝜔𝛿2𝑒−2
√

2𝜔

Ω (𝜇*(𝜀) + 𝜇)2,

there exists a unique heteroclinic connection between 𝑝−
ℎ𝜇

and Λ−
ℎ𝜇

(𝜅𝜇
1 , 𝜅

𝜇
2), where

𝜅𝜇
2 = 2𝜋2𝜔𝛿2𝑒−2

√
2𝜔

Ω (𝜇*(𝜀) + 𝜇− 𝜉(𝜇, 𝜀))2,

and 𝜅𝜇
1 = ℎ𝜇 − 𝜅𝜇

2 . Moreover, if −𝜇*(𝜀) < 𝜇 < 0 there is no heteroclinic connections in
the energy level ℎ𝜇.

Setting 𝑣𝑖 =
√︁
ℎ𝜇, 𝑣𝑓 =

√︁
𝜅𝜇

1 and 𝑣𝑐 =
√
ℎ𝑐, where

ℎ𝑐(𝜀) = 2𝜋2𝜔𝛿2𝑒−2
√

2𝜔

Ω (𝜇*(𝜀))2,

it means that a soliton starting with velocity 𝑣𝑖 < 𝑣𝑐 is trapped and will surround the
defect location, otherwise, if 𝑣𝑖 ≥ 𝑣𝑐, then it will escape the defect location and propagate
itself with some output velocity 𝑣𝑓 . In what follows we give an asymptotic formula to the
output velocity 𝑣𝑓 of orbits with incoming velocity 𝑣𝑖 ≈ 𝑣𝑐. We omit the dependence of
𝑣𝑖, 𝑣𝑓 on 𝜇 in order to simplify the notation.

For 𝜇 ≥ 0 sufficiently small, we have

𝑣2
𝑓 = 𝜅𝜇

1

= ℎ𝜇 − 𝜅𝜇
2

= 2𝜋2𝜔𝛿2𝑒−2
√

2𝜔

Ω
(︁
(𝜇*(𝜀) + 𝜇)2 − (𝜇*(𝜀) + 𝜇− 𝜉(𝜇, 𝜀))2

)︁
= 2𝜋2𝜔𝛿2𝑒−2

√
2𝜔

Ω
(︁
𝜉(𝜇, 𝜀)(2(𝜇*(𝜀) + 𝜇) − 𝜉(𝜇, 𝜀))

)︁
= 2𝜋2𝜔𝛿2𝑒−2

√
2𝜔

Ω (𝑐𝜀𝜇+ 𝒪(𝜇2))(2𝜇*(𝜀) + (2 − 𝑐𝜀)𝜇+ 𝒪(𝜇2))

= 2𝜋2𝜔𝛿2𝑒−2
√

2𝜔

Ω (2𝜇*(𝜀)𝑐𝜀𝜇+ 𝒪(𝜇2)).
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Notice that

𝑣𝑖 − 𝑣𝑐 =
√︃

2𝜋2𝜔𝛿2𝑒−2
√

2𝜔

Ω 𝜇.

Thus
𝑣2

𝑓 = 2𝑣𝑐𝑐𝜀(𝑣𝑖 − 𝑣𝑐) + 𝒪((𝑣𝑖 − 𝑣𝑐)2).

Finally, we obtain that

𝑣𝑓 =
√

2𝑣𝑐𝑐𝜀

√
𝑣𝑖 − 𝑣𝑐 + 𝒪((𝑣𝑖 − 𝑣𝑐)3/2).

Theorem T follow directly from these facts.

7.4 Proof of Theorem 7.3.5
The strategy to prove the existence of 𝑊 𝑢

𝜀 (𝑝−
0 ) and 𝑊 𝑠

𝜀 (𝑝+
0 ) when 𝛿 ̸= 0 (see (7.3.1)),

is to look for a parameterization 𝑁𝑢
0,0(𝑣) of 𝑊 𝑢

𝜀 (𝑝±
0 ) as a perturbation of 𝑁0,0(𝑣).

As in the unperturbed case 𝑊 (0, 0) is parameterized as a graph over 𝑋 (see (7.3.4)),
we look for 𝑁𝑢

0,0 as
𝑁𝑢

0,0(𝑣) = (𝑋0(𝑣), 𝑍𝑢
0 (𝑣),Γ𝑢

0(𝑣),Θ𝑢
0(𝑣)). (7.4.1)

Next lemma, which is straightforward, gives the equation 𝑁𝑢
0,0(𝑣) has to satisfy to be

invariant by the flow of (7.3.1).

Lemma 7.4.1. The invariant manifold 𝑊 𝑢
𝛿 (𝑝−

0 ), with 𝛿 ̸= 0, is parameterized by 𝑁𝑢
0,0(𝑣)

if and only if (Γ𝑢
0(𝑣),Θ𝑢

0(𝑣)) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑Γ
𝑑𝑣

(𝑣) − 𝜔𝑖Γ(𝑣) = − 𝛿√
2Ω

𝐹 (𝑋0(𝑣)) +
(︃

𝑍0(𝑣)̃︀𝜂0(𝑣,Γ,Θ) − 1
)︃(︃

𝜔𝑖Γ(𝑣) − 𝛿√
2Ω

𝐹 (𝑋0(𝑣))
)︃
,

𝑑Θ
𝑑𝑣

(𝑣) + 𝜔𝑖Θ(𝑣) = − 𝛿√
2Ω

𝐹 (𝑋0(𝑣)) +
(︃

𝑍0(𝑣)̃︀𝜂0(𝑣,Γ,Θ) − 1
)︃(︃

−𝜔𝑖Θ(𝑣) − 𝛿√
2Ω

𝐹 (𝑋0(𝑣)))
)︃
,

lim
𝑣→−∞

Γ(𝑣) = lim
𝑣→−∞

Θ(𝑣) = 0.
(7.4.2)

where

̃︀𝜂0(𝑣,Γ,Θ) = 4

⎯⎸⎸⎷−𝑈(𝑋0(𝑣)) − 𝛿√
2Ω

𝐹 (𝑋0(𝑣))Γ(𝑣) − Θ(𝑣)
2𝑖 − 𝜔

2 Γ(𝑣)Θ(𝑣),

with 𝑋0 given in (7.3.4), 𝑈, 𝐹 given in (7.1.7), and 𝑍𝑢
0 (𝑣) = ̃︀𝜂0(𝑣,Γ𝑢

0(𝑣),Θ𝑢
0(𝑣)).

The term 𝛿√
2Ω𝐹 (𝑋0(𝑣)) decays as 1/𝑣 as 𝑣 → ∞. To have integrability, we consider

the change of variables (7.3.10) to system (7.4.2). Then, (𝛾𝑢
0 , 𝜃

𝑢
0 ) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑑

𝑑𝑣
𝛾 − 𝜔𝑖𝛾 = 𝜔𝑖𝛾(𝜂0(𝑣, 𝛾, 𝜃) − 1) − (𝑄0)′(𝑣),

𝑑

𝑑𝑣
𝜃 + 𝜔𝑖𝜃 = −𝜔𝑖𝜃(𝜂0(𝑣, 𝛾, 𝜃) − 1) + (𝑄0)′(𝑣),

lim
𝑣→−∞

𝛾(𝑣) = lim
𝑣→−∞

𝜃(𝑣) = 0,

(7.4.3)
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where 𝑄0 is given by (7.3.11) and

𝜂0(𝑣, 𝛾, 𝜃) =
⎛⎝1 + 4𝛿2

Ω𝜔

(︃
𝐹 (𝑋0(𝑣))
𝑍0(𝑣)

)︃2

− 8𝜔 𝛾𝜃

(𝑍0(𝑣))2

⎞⎠−1/2

. (7.4.4)

To prove Theorem 7.3.5, it is sufficient to find a solution of (7.4.3).

Proposition 7.4.2. Fix 𝜈 > 0. There exists 𝜀0 > 0 such that for 0 < 𝜀 ≤ 𝜀0, the equation
(7.4.3) has a solution (𝛾𝑢

0 (𝑣), 𝜃𝑢
0 (𝑣)) defined in the domain 𝐷𝑢

𝜀 ⊂ C (see (7.3.9)) such that
𝜃𝑢

0 (𝑣) = 𝛾𝑢
0 (𝑣), for every 𝑣 ∈ 𝐷𝑢

𝜀 ∩ R. Furthermore, both 𝛾𝑢
0 , 𝜃

𝑢
0 satisfy bounds (1) and (2)

of Theorem 7.3.5.

We look for a fixed point (𝛾𝑢
0 , 𝜃

𝑢
0 ) of the operator

𝒢𝜔,0 = 𝒢𝜔 ∘ ℱ0, (7.4.5)

where

𝒢𝜔(𝛾, 𝜃)(𝑣) =

⎛⎜⎜⎜⎝
∫︁ 𝑣

−∞
𝑒𝜔𝑖(𝑣−𝑟)𝛾(𝑟)𝑑𝑟∫︁ 𝑣

−∞
𝑒−𝜔𝑖(𝑣−𝑟)𝜃(𝑟)𝑑𝑟

⎞⎟⎟⎟⎠ , (7.4.6)

ℱ0(𝛾, 𝜃)(𝑣) =
⎛⎝ 𝜔𝑖𝛾(𝑣)(𝜂0(𝑣, 𝛾(𝑣), 𝜃(𝑣)) − 1) − (𝑄0)′(𝑣)

−𝜔𝑖𝜃(𝑣)(𝜂0(𝑣, 𝛾(𝑣), 𝜃(𝑣)) − 1) + (𝑄0)′(𝑣)

⎞⎠ , (7.4.7)

and 𝑄0, 𝜂0 are given in (7.3.11) and (7.4.4), respectively.

7.4.1 Banach Spaces and Technical Lemmas
In this section, we introduce a Banach space which will be used to find a fixed point

of 𝒢𝜔,0.
Consider the complex domain 𝐷𝑢

𝜀 given in (7.3.9). For each analytic function 𝑓 : 𝐷𝑢
𝜀 →

C, 𝜈 > 0, 𝛼 ≥ 0, we consider:

‖𝑓‖𝛼,𝜈= sup
𝑣∈𝐷𝑢

𝜀 ∩{Re(𝑣)≤−𝜈}
|𝑣2𝑓(𝑣)|+ sup

𝑣∈𝐷𝑢
𝜀 ∩{Re(𝑣)>−𝜈}

|(𝑣2 + 2)𝛼𝑓(𝑣)|.

For any 𝜈 > 0, and 𝛼 > 0 fixed, the function space

𝒳𝛼,𝜈 = {𝑓 : 𝐷𝑢
𝜀 → C; 𝑓 is an analytic function such that, ‖𝑓‖𝛼,𝜈< ∞}

is a Banach space with respect to the norm ‖·‖𝛼,𝜈 .
We also consider the product space

𝒳 2
𝛼,𝜈 =

{︁
(𝑓, 𝑔) ∈ 𝒳𝛼,𝜈 × 𝒳𝛼,𝜈 ; 𝑔(𝑣) = 𝑓(𝑣) for every 𝑣 ∈ 𝐷𝑢

𝜀 ∩ R
}︁

endowed with the norm
‖(𝑓, 𝑔)‖𝛼,𝜈= ‖𝑓‖𝛼,𝜈+‖𝑔‖𝛼,𝜈 .

Proposition 7.4.3. Given 𝜈 > 0, 𝛼 > 0 fixed, and (𝑓, 𝑔) ∈ 𝒳 2
𝛼,𝜈, we have that 𝒢𝜔(𝑓, 𝑔) ∈

𝒳 2
𝛼,𝜈. Furthermore, there exists a constant 𝑀 > 0 independent of 𝜀 such that

‖𝒢𝜔(𝑓, 𝑔)‖𝛼,𝜈 ≤ 𝑀

𝜔
‖(𝑓, 𝑔)‖𝛼,𝜈 ,

for every (𝑓, 𝑔) ∈ 𝒳 2
𝛼,𝜈.
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The proof of Proposition 7.4.3 follows from [53].

Proposition 7.4.4. Let 𝜂0 be the function given in (7.4.4), and ℱ0 given in (7.4.7).
Given 𝜈 > 0 and 𝐾 > 0, there exist 𝜀0 > 0 and 𝑀 > 0 such that:

For 0 < 𝜀 ≤ 𝜀0 and (𝛾𝑗, 𝜃𝑗) ∈ ℬ0(𝑅) ⊂ 𝒳 2
2,𝜈 where 𝑅 = 𝐾

𝛿

𝜔2 and 𝑗 = 1, 2, the following
statements hold for 𝑣 ∈ 𝐷𝑢

𝜀 .

1. |𝜂0(𝑣, 𝛾𝑗(𝑣), 𝜃𝑗(𝑣)) − 1| ≤ 𝑀𝛿2;

2. |𝜂0(𝑣, 𝛾1(𝑣), 𝜃1(𝑣)) − 𝜂0(𝑣, 𝛾2(𝑣), 𝜃2(𝑣))| ≤ 𝑀𝛿𝜔2‖(𝛾1, 𝜃1) − (𝛾2, 𝜃2)‖2,𝜈 ;

3. ℱ0(𝛾𝑗, 𝜃𝑗) ∈ 𝒳 2
2,𝜈;

4. ‖ℱ0(𝛾1, 𝜃1) − ℱ0(𝛾2, 𝜃2)‖2,𝜈 ≤ 𝑀𝛿2𝜔‖(𝛾1, 𝜃1) − (𝛾2, 𝜃2)‖2,𝜈 .

Proof. Replacing the expressions of 𝐹 , 𝑋0 and 𝑍0 given in (7.1.7) and (7.3.4) in (7.4.4),
we obtain

𝜂0(𝑣, 𝛾, 𝜃) =
(︃

1 + 𝛿2

4Ω𝜔
𝑣2

𝑣2 + 2 − (𝑣2 + 2)𝜔𝛾𝜃8

)︃−1/2

.

Taking 𝛾, 𝜃 ∈ ℬ0(𝑅), the first statement of the proposition comes from the following
inequalities ⃒⃒⃒⃒

⃒ 𝛿2

4Ω𝜔
𝑣2

𝑣2 + 2 − (𝑣2 + 2)𝜔𝛾𝜃8

⃒⃒⃒⃒
⃒ ≤𝑀𝛿2

𝜔
, if Re(𝑣) ≤ −𝜈⃒⃒⃒⃒

⃒ 𝛿2

4Ω𝜔
𝑣2

𝑣2 + 2 − (𝑣2 + 2)𝜔𝛾𝜃8

⃒⃒⃒⃒
⃒ ≤𝑀𝛿2, if Re(𝑣) ≥ −𝜈.

We observe that

|𝜂0(𝑣, 𝛾1, 𝜃1) − 𝜂0(𝑣, 𝛾2, 𝜃2)| ≤ 𝑀𝜔|(𝑣2 + 2)𝛾1(𝑣)||𝜃1(𝑣) − 𝜃2(𝑣)|
+𝑀𝜔|(𝑣2 + 2)𝜃2(𝑣)||𝛾1(𝑣) − 𝛾2(𝑣)| (7.4.8)

Thus, if Re(𝑣) ≤ −𝜈, then

⃒⃒⃒
(𝑣2 + 2)𝛾1(𝑣)(𝜃1(𝑣) − 𝜃2(𝑣))

⃒⃒⃒
≤ 𝑅

⃒⃒⃒⃒
⃒𝑣2 + 2
𝑣2

⃒⃒⃒⃒
⃒ ‖𝜃1 − 𝜃2‖2,𝜈

|𝑣|2
≤ 𝑀

𝛿

𝜔2 ‖𝜃1 − 𝜃2‖2,𝜈 , (7.4.9)

whereas, if Re(𝑣) ≥ −𝜈,

|(𝑣2 + 2)𝛾1(𝑣)(𝜃1(𝑣) − 𝜃2(𝑣))| ≤ 𝑀
𝛿√
𝜀
‖𝜃1 − 𝜃2‖2,𝜈 . (7.4.10)

Recalling that 𝜔 = Ω/
√
𝜀 and joining (7.4.9) and (7.4.10), we obtain that estimate (7.4.10)

holds in 𝐷𝑢
𝜀 . The other term in (7.4.8) is bounded in an analogous way. Thus, statement

(2) holds.
If (𝛾𝑗, 𝜃𝑗) ∈ 𝒳 2

2,𝜈 , then 𝜂0(𝑣, 𝛾𝑗, 𝜃𝑗) ∈ R, for each 𝑣 ∈ 𝐷𝑢
𝜀 ∩ R, thus, it is clear that

ℱ0(𝛾𝑗, 𝜃𝑗) ∈ 𝒳 2
2,𝜈 .
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Finally, for 𝑣 ∈ 𝐷𝑢
𝜀 ,

|𝜋1 ∘ ℱ0(𝛾1, 𝜃1)(𝑣) − 𝜋1 ∘ ℱ0(𝛾2, 𝜃2)(𝑣)| = 𝜔 |𝛾1(𝑣)(𝜂0(𝑣, 𝛾1, 𝜃1) − 1) − 𝛾2(𝑣)(𝜂0(𝑣, 𝛾2, 𝜃2) − 1)|

≤ 𝑀𝛿2
(︂ 1
𝜔

+ 1
)︂
𝜔|𝛾1(𝑣) − 𝛾2(𝑣)|

+𝑀𝛿𝜔3‖(𝛾1, 𝜃1) − (𝛾2, 𝜃2)‖2,𝜈 |𝛾2(𝑣)|.

Therefore,

‖𝜋1 ∘ ℱ0(𝛾1, 𝜃1) − 𝜋1 ∘ ℱ0(𝛾2, 𝜃2)‖2,𝜈 ≤ 𝑀𝛿2
(︂ 1
𝜔

+ 1
)︂
𝜔‖𝛾1 − 𝛾2‖2,𝜈

+𝑀𝑅𝛿𝜔3‖(𝛾1, 𝜃1) − (𝛾2, 𝜃2)‖2,𝜈

≤ 𝑀𝛿2𝜔‖(𝛾1, 𝜃1) − (𝛾2, 𝜃2)‖2,𝜈 .

We can prove the same bound for the second coordinate of ℱ0 analogously.

Proposition 7.4.5. Consider the operator 𝒢𝜔,0 = 𝒢𝜔 ∘ ℱ0, where 𝒢𝜔 and ℱ0 are given in
(7.4.6) and (7.4.7). Given 𝜈 > 0, there exists a constant 𝑀 > 0 independent of 𝜀, such
that

‖𝒢𝜔,0(0, 0)‖2,𝜈 ≤ 𝑀
𝛿

𝜔2 .

Proof. Recall that ℱ0(0, 0) = (−(𝑄0)′(𝑣), (𝑄0)′(𝑣)), where 𝑄0 is given by (7.3.11). Thus
𝜋1 ∘ ℱ0(0, 0)(𝑣) = 𝜋2 ∘ ℱ0(0, 0)(𝑣), for each 𝑣 ∈ 𝐷𝑢

𝜀 ∩ R and

‖ℱ0(0, 0)‖2,𝜈 = 2 𝛿

𝜔
√

2Ω
‖𝐹 (𝑋0)′‖2,𝜈 .

A straightforward computation shows that

𝐹 (𝑋0(𝑣))′ = 2
√

2(𝑣2 − 2)
(𝑣2 + 2)2

Then,

|𝑣2𝐹 (𝑋0(𝑣))′| ≤ 𝑀 for Re(𝑣) ≤ −𝜈,
|(𝑣2 + 2)2𝐹 (𝑋0(𝑣))′|≤ 𝑀 |𝑣2 + 2| ≤ 𝑀 for Re(𝑣) ≥ −𝜈.

The result follows directly from these bounds and Proposition 7.4.3.

7.4.2 The Fixed Point argument
Finally, we are able to prove the existence of a fixed point of 𝒢𝜔,0.

Proposition 7.4.6. Given 𝜈 > 0 fixed. There exists 𝜀0 > 0 such that for 𝜀 ≤ 𝜀0, the
operator 𝒢𝜔,0 has a fixed point (𝛾𝑢

0 , 𝜃
𝑢
0 ) in 𝒳 2

2,𝜈. Furthermore, there exists a constant 𝑀 > 0
independent of 𝜀 such that

‖(𝛾𝑢
0 , 𝜃

𝑢
0 )‖2,𝜈≤ 𝑀

𝛿

𝜔2 .
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Proof. From Proposition 7.4.5, there exists a constant 𝑏1 > 0 independent of ℎ and 𝜀 such
that

‖𝒢𝜔,0(0, 0)‖2,𝜈 ≤ 𝑏1

2
𝛿

𝜔2 .

Given (𝛾1, 𝜃1), (𝛾2, 𝜃2) ∈ ℬ0(𝑏1𝛿/𝜔
2) ⊂ 𝒳 2

2,𝜈 , we can use Propositions 7.4.3, 7.4.4 (with
𝐾 = 𝑏1) and the linearity of the operator 𝒢𝜔 to see that

‖𝒢𝜔,0(𝛾1, 𝜃1) − 𝒢𝜔,0(𝛾2, 𝜃2)‖2,𝜈 ≤ 𝑀

𝜔
‖ℱ0(𝛾1, 𝜃1) − ℱ0(𝛾2, 𝜃2)‖2,𝜈

≤ 𝑀𝛿2‖(𝛾1, 𝜃1) − (𝛾2, 𝜃2)‖2,𝜈 .

Thus, choosing 𝜀0 sufficiently small, we have that Lip(𝒢𝜔,0) ≤ 1/2. Also, it follows that
𝜋1 ∘ 𝒢𝜔,0(𝛾, 𝜃)(𝑣) = 𝜋2 ∘ 𝒢𝜔,0(𝛾, 𝜃)(𝑣), for each 𝑣 ∈ 𝐷𝑢

𝜀 ∩ R and (𝛾, 𝜃) ∈ ℬ0(𝑏1𝛿/𝜔
2).

Therefore 𝒢𝜔,0 sends the ball ℬ0(𝑏1𝛿/𝜔
2) into itself and it is a contraction. Thus, it

has a unique fixed point (𝛾𝑢
0 , 𝜃

𝑢
0 ) ∈ ℬ0(𝑏1𝛿/𝜔

2).

Proposition 7.4.2 is a consequence of Proposition 7.4.6.

7.5 Proof of Theorem 7.3.7

7.5.1 The Difference Map
In Proposition 7.4.6, we have found complex functions Γ⋆

0 = 𝑄0+𝛾⋆
0 and Θ⋆

0 = −𝑄0+𝜃⋆
0

defined in the complex domains 𝐷⋆
𝜀 , respectively, such that,

𝑁⋆
0,0(𝑣) = (𝑋0(𝑣), 𝑍⋆

0(𝑣),Γ⋆
0(𝑣),Θ⋆

0(𝑣)),

are parameterizations of 𝑊 ⋆
𝛿 (𝑝∓

0 ) of (7.3.1). Both (Γ𝑢
0 ,Θ𝑢

0) and (Γ𝑠
0,Θ𝑠

0) are defined in the
complex domain

𝒟𝜀 = 𝐷𝑢
𝜀 ∩𝐷𝑠

𝜀.

Note that 0 ∈ ℐ𝜀 := 𝒟𝜀 ∩ R. To prove that the heteroclinic connection between 𝑝−
0 and

𝑝+
0 of (7.3.1) is broken for 𝜀 > 0 sufficiently small, it is sufficient to show that⃒⃒⃒

𝑁𝑢
0,0(𝑣) −𝑁 𝑠

0,0(𝑣)
⃒⃒⃒
≥ |(Γ𝑢

0 ,Θ𝑢
0)(𝑣) − (Γ𝑠

0,Θ𝑠
0)(𝑣)| > 0,

for some 𝑣 ∈ ℐ𝜀. To this end, we study the difference map

Δ𝜉(𝑣) =
⎛⎝ Γ𝑢

0(𝑣) − Γ𝑠
0(𝑣)

Θ𝑢
0(𝑣) − Θ𝑠

0(𝑣)

⎞⎠ =
⎛⎝ 𝛾𝑢

0 (𝑣) − 𝛾𝑠
0(𝑣)

𝜃𝑢
0 (𝑣) − 𝜃𝑠

0(𝑣)

⎞⎠ , (7.5.1)

where (𝛾⋆
0 , 𝜃

⋆
0), ⋆ = 𝑢, 𝑠, are given by Proposition 7.4.6.

Proposition 7.5.1. The difference map Δ𝜉 satisfies the differential equation:

Δ𝜉′ = 𝐴Δ𝜉 +𝐵(𝑣)Δ𝜉, (7.5.2)

where
𝐴 =

(︃
𝜔𝑖 0
0 −𝜔𝑖

)︃
and 𝐵(𝑣) =

(︃
𝑏1,1(𝑣) 𝑏1,2(𝑣)
𝑏2,1(𝑣) 𝑏2,2(𝑣)

)︃
, (7.5.3)

and there exists a constant 𝑀 independent of 𝜀, such that for 𝑣 ∈ 𝒟𝜀,

|𝑏𝑗,𝑘(𝑣)|≤ 𝑀𝜔𝛿2, 𝑗, 𝑘 = 1, 2. (7.5.4)
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Proof. Recall that both (𝛾𝑢,𝑠
0 , 𝜃𝑢,𝑠

0 ) satisfy (7.4.3) and therefore(︃
𝛾′ − 𝜔𝑖𝛾
𝜃′ + 𝜔𝑖𝜃

)︃
= ℱ0(𝛾, 𝜃),

where ℱ0 is given in (7.4.7). Therefore Δ𝜉 satisfies

Δ𝜉′ = 𝐴Δ𝜉 +𝐺(𝑣),

where 𝐺(𝑣) = 𝑔(𝑣, 𝛾𝑢
0 (𝑣), 𝜃𝑢

0 (𝑣)) − 𝑔(𝑣, 𝛾𝑠
0(𝑣), 𝜃𝑠

0(𝑣)), with

𝑔(𝑣, 𝑧1, 𝑧2) =
(︃

𝑖𝜔𝑧1(𝜂0(𝑣, 𝑧1, 𝑧2) − 1)
−𝑖𝜔𝑧2(𝜂0(𝑣, 𝑧1, 𝑧2) − 1)

)︃
.

Notice that 𝐺(𝑣) is a known function, since (𝛾𝑢,𝑠
0 , 𝜃𝑢,𝑠

0 ) are given by Proposition 7.4.6.
We apply the Integral Mean Value Theorem to obtain

𝑔(𝑣, 𝛾𝑢
0 , 𝜃

𝑢
0 ) − 𝑔(𝑣, 𝛾𝑠

0, 𝜃
𝑠
0) =

⎛⎝ 𝑏1,1(𝑣) 𝑏1,2(𝑣)
𝑏2,1(𝑣) 𝑏2,2(𝑣)

⎞⎠ ·

⎛⎝ 𝛾𝑢
0 − 𝛾𝑠

0

𝜃𝑢
0 − 𝜃𝑠

0

⎞⎠ ,
where 𝑏𝑗,𝑘 are analytic functions, 𝑗, 𝑘 = 1, 2. Estimate (7.5.4) follows from Propositions
7.4.4 and 7.4.6.

7.5.2 Exponentially Small Splitting of 𝑊 𝑢
𝜀 (𝑝−

0 ) and 𝑊 𝑠
𝜀 (𝑝+

0 )
We study the solutions of (7.5.2). Notice that, if 𝐵 = 0, then any analytic solution

of (7.5.2) which is bounded in 𝒟𝜀 is exponentially small with respect to 𝜀 for real values
𝑣 ∈ ℐ𝜀. In this section, we follow ideas from [9] to prove that the same holds for solutions
of the full equation (7.5.2) using that 𝐵 (given in (7.5.3)) is small for 𝜀 small enough.

We are interested in obtaining an asymptotic expression for Δ𝜉 given in (7.5.1). From
Proposition 7.4.6, we have that (𝛾𝑢,𝑠

0 , 𝜃𝑢,𝑠
0 ) is obtained as a fixed point of 𝒢𝑢,𝑠

𝜔,0. Thus, the
difference map can be expressed as

Δ𝜉 = 𝒢𝑢
𝜔,0(𝛾𝑢

0 , 𝜃
𝑢
0 ) − 𝒢𝑠

𝜔,0(𝛾𝑠
0, 𝜃

𝑠
0).

Therefore, as 𝛾𝑢,𝑠
0 , 𝜃𝑢,𝑠

0 are small, it suggests that the dominant part of Δ𝜉 should be
given by ℳ = 𝒢𝑢

𝜔,0(0, 0) − 𝒢𝑠
𝜔,0(0, 0). For this reason, we decompose

Δ𝜉 = ℳ + Δ𝜉1, (7.5.5)

where ℳ = (ℳΓ,ℳΘ) is given by the Melnikov integrals

ℳΓ(𝑣) = 𝑖𝑒𝑖𝜔𝑣
∫︁ ∞

−∞
𝑒−𝑖𝜔𝑟 2𝛿(𝑟2 − 2)

𝜔
√

Ω(𝑟2 + 2)2
𝑑𝑟 = 𝑐0

1𝑒
𝑖𝜔𝑣,

ℳΘ(𝑣) = −𝑖𝑒−𝑖𝜔𝑣
∫︁ ∞

−∞
𝑒𝑖𝜔𝑟 2𝛿(𝑟2 − 2)

𝜔
√

Ω(𝑟2 + 2)2
𝑑𝑟 = 𝑐0

2𝑒
−𝑖𝜔𝑣

(7.5.6)

and Δ𝜉1 = (Δ1
Γ,Δ1

Θ).
A straightforward computation proves the following lemma.
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Lemma 7.5.2. The constants 𝑐0
1 and 𝑐0

2 are given by

𝑐0
1 = −𝑖2𝜋𝛿√

Ω
𝑒−

√
2𝜔, and 𝑐0

2 = 𝑐0
1. (7.5.7)

Theorem 7.3.7 is equivalent to the following theorem. The remainder of Section 7.5.2
is devoted to prove it.

Theorem 7.5.3. There exists 𝜀0 > 0 sufficiently small such that for 𝑣 ∈ ℐ𝜀 ⊂ R, 0 < 𝜀 ≤
𝜀0,

Δ𝜉(𝑣) = ℳ(𝑣) + 𝒪(𝜔𝛿3𝑒−
√

2𝜔),
where ℳ = (ℳΓ,ℳΘ) is the Melnikov vector defined in (7.5.6).

A Fixed Point Argument for the error Δ𝜉1

We write Δ𝜉1 in (7.5.5) as solution of a fixed point equation in the functional space

ℰ =
{︁
𝑓 : 𝒟𝜀 → C2; 𝑓 is analytic and ‖𝑓‖ℰ< ∞

}︁
,

where
‖𝑓‖ℰ=

2∑︁
𝑗=1

sup
𝑣∈𝒟𝜀

|(𝑣2 + 2)2𝜋𝑗 ∘ 𝑓(𝑣)|.

We also consider the linear operator ℋ0 given by

ℋ0(𝑔)(𝑣) =

⎛⎜⎜⎝ 𝑒𝜔𝑖𝑣
∫︁ 𝑣

𝑣*
𝑒−𝑖𝜔𝑟𝜋1(𝐵(𝑟) · 𝑔(𝑟))𝑑𝑟

𝑒−𝜔𝑖𝑣
∫︁ 𝑣

𝑣*
𝑒𝑖𝜔𝑟𝜋2(𝐵(𝑟) · 𝑔(𝑟))𝑑𝑟

⎞⎟⎟⎠ ,
where 𝑣* = −(

√
2 −

√
𝜀)𝑖 and 𝐵 is the matrix given (7.5.3).

Using (7.5.4), the operator ℋ0 is well-defined from ℰ𝜀 to itself. To simplify the notation,
we introduce the function

𝐼(𝑘1, 𝑘2)(𝑣) = 𝑒𝐴𝑣

(︃
𝑘1
𝑘2

)︃
=
(︃

𝑒𝑖𝜔𝑣𝑘1
𝑒−𝑖𝜔𝑣𝑘2

)︃
, (7.5.8)

where 𝑘𝑗 ∈ C, 𝑗 = 1, 2, 𝑣 ∈ 𝒟𝜀 and 𝐴 is the matrix given by (7.5.3). Notice that
ℳ(𝑣) = 𝐼(𝑐0

1, 𝑐
0
2)(𝑣).

Lemma 7.5.4. The difference map Δ𝜉 belongs to ℰ𝜀 and ‖Δ𝜉‖ℰ≤ 𝑀𝜀. Furthermore,
there exist (𝑐1, 𝑐2) ∈ C2 such that:

Δ𝜉1(𝑣) = 𝐼(𝑐1 − 𝑐0
1, 𝑐2 − 𝑐0

2)(𝑣) + ℋ0(Δ𝜉1)(𝑣) + ℋ0(ℳ)(𝑣), (7.5.9)

and |𝑐𝑗 − 𝑐0
𝑗 |≤ 𝑀𝛿3𝑒−

√
2𝜔, 𝑗 = 1, 2, where 𝑀 is a constant independent of 𝜀.

Proof. Since (𝛾𝑢,𝑠
0 , 𝜃𝑢,𝑠

0 ) ∈ 𝒳 2
2,𝜈 , it is clear to see that Δ𝜉 ∈ ℰ𝜀. In addition, from Proposi-

tion 7.4.6,
‖Δ𝜉‖ℰ≤ 2(‖(𝛾𝑢

0 , 𝜃
𝑢
0 )‖2,𝜈+‖(𝛾𝑠

0, 𝜃
𝑠
0)‖2,𝜈) ≤ 𝑀

𝛿

𝜔2 ,

where 𝑀 is a constant independent of 𝜀.
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Since Δ𝜉 is a solution of (7.5.2), the method of variation of parameters implies that,
given 𝑣1, 𝑣2 ∈ 𝒟𝜀, there exist 𝑐1, 𝑐2 ∈ C such that

Δ𝜉(𝑣) =

⎛⎜⎜⎜⎝
𝑒𝜔𝑖𝑣𝑐1 + 𝑒𝜔𝑖𝑣

∫︁ 𝑣

𝑣1
𝑒−𝑖𝜔𝑟𝜋1(𝐵(𝑟) · Δ𝜉(𝑟))𝑑𝑟

𝑒−𝜔𝑖𝑣𝑐2 + 𝑒−𝜔𝑖𝑣
∫︁ 𝑣

𝑣2
𝑒𝑖𝜔𝑟𝜋2(𝐵(𝑟) · Δ𝜉(𝑟))𝑑𝑟

⎞⎟⎟⎟⎠ .

We take 𝑣1 = 𝑣*, 𝑣2 = 𝑣*, with 𝑣* = −(
√

2 −
√
𝜀)𝑖. Thus,

Δ𝜉(𝑣) = 𝐼(𝑐1, 𝑐2)(𝑣) + ℋ0(Δ𝜉)(𝑣).

Using that Δ𝜉 = ℳ + Δ𝜉1, ℳ(𝑣) = 𝐼(𝑐0
1, 𝑐

0
2)(𝑣) and ℋ0 is linear,

Δ𝜉1(𝑣) = 𝐼(𝑐1 − 𝑐0
1, 𝑐2 − 𝑐0

2)(𝑣) + ℋ0(Δ𝜉1)(𝑣) + ℋ0(ℳ)(𝑣).

Now, we bound |𝑐𝑗 − 𝑐0
𝑗 |, 𝑗 = 1, 2. By (7.5.5) and Proposition 7.4.6,

‖Δ𝜉1‖2,𝜈 = ‖Δ𝜉 − ℳ‖2,𝜈

= ‖(𝛾𝑢
0 , 𝜃

𝑢
0 ) − (𝛾𝑠

0, 𝜃
𝑠
0) − (𝒢𝑢

𝜔,0(0, 0) − 𝒢𝑠
𝜔,0(0, 0))‖2,𝜈

= ‖𝒢𝑢
𝜔,0(𝛾𝑢

0 , 𝜃
𝑢
0 ) − 𝒢𝑢

𝜔,0(0, 0) − (𝒢𝑠
𝜔,0(𝛾𝑠

0, 𝜃
𝑠
0) − 𝒢𝑠

𝜔,0(0, 0))‖2,𝜈

≤ 𝑀𝛿2(‖(𝛾𝑢
0 , 𝜃

𝑢
0 )‖2,𝜈+‖(𝛾𝑠

0, 𝜃
𝑠
0)‖2,𝜈)

≤ 𝑀
𝛿3

𝜔2 .

Thus,
|𝜋𝑗(Δ𝜉1(𝑣))|≤ 𝑀

𝛿3

𝜔2|𝑣2 + 2|2
≤ 𝑀𝛿3, for each 𝑣 ∈ 𝒟𝜀, 𝑗 = 1, 2.

In particular, replacing 𝑣 = 𝑣* in the first component of (7.5.9), we obtain that

|𝑒𝜔𝑖𝑣*(𝑐1 − 𝑐0
1)|≤ 𝑀𝛿3 ⇔ |𝑐1 − 𝑐0

1|≤ 𝑀𝛿3𝑒𝜔
√

𝜀𝑒−
√

2𝜔 ≤ 2𝑀𝛿3𝑒−
√

2𝜔.

Analogously, taking 𝑣 = 𝑣* in the second component of (7.5.9), we obtain that |𝑐2−𝑐0
2|≤

2𝑀𝛿3𝑒−
√

2𝜔.

Exponentially Smallness of Δ𝜉1

Consider the functional space

𝒵 = {𝑓 : 𝒟𝜀 → C2; 𝑓 is analytic and ‖𝑓‖𝒵< +∞},

where
‖𝑓‖𝒵=

2∑︁
𝑗=1

sup
𝑣∈𝒟𝜀

⃒⃒⃒
𝑒𝜔(

√
2−|Im(𝑣)|)𝜋𝑗 ∘ 𝑓(𝑣)

⃒⃒⃒
. (7.5.10)

In order to prove Theorem 7.5.3, it is enough to check that Δ𝜉1 belongs to 𝒵 and that
‖Δ𝜉1‖𝒵≤ 𝑀𝜔𝛿3. Our strategy to achieve these results is to prove that both 𝐼(𝑐1 −𝑐0

1, 𝑐2 −
𝑐0

2) and ℋ0(ℳ) belong to 𝒵 and that the operator Id − ℋ0 is invertible in 𝒵.
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Lemma 7.5.5. There exists 𝜀0 > 0, such that the linear operator Id − ℋ0 is invertible in
𝒵 for 𝜀 ≤ 𝜀0. Furthermore, there exists 𝑀 > 0 independent of 𝜀 such that ‖ℋ0‖𝒵≤ 𝑀𝜔𝛿2

and hence
‖(Id − ℋ0)−1‖𝒵≤ (1 − ‖ℋ0‖𝒵)−1 ≤ 1 +𝑀𝜔𝛿2. (7.5.11)

Proof. Since ℋ0 is a linear operator, to prove this lemma, it is sufficient to show that
‖ℋ0‖𝒵≤ 𝑀𝜔𝛿2 < 1.

Let ℎ ∈ 𝒵 and denote by 𝑀 any constant independent of 𝜀. Using (7.5.4) and (7.5.10),
we have that for 𝑣 ∈ 𝒟𝜀 and 𝑗 = 1, 2,

|𝜋𝑗(𝐵(𝑣) · ℎ(𝑣))|≤
2∑︁

𝑘=1
|𝑏𝑗,𝑘(𝑣)𝜋𝑘(ℎ(𝑣))|≤ 𝑀𝜔𝛿2𝑒−𝜔(

√
2−|Im(𝑣)|)‖ℎ‖𝒵 .

Thus

|𝑒𝜔(
√

2−|Im(𝑣)|)𝜋1(ℋ0(ℎ)(𝑣))| =
⃒⃒⃒⃒
𝑒

√
2𝜔
∫︁ 𝑣

𝑣*
𝑒−𝑖𝜔(𝑟−𝑣−𝑖|Im(𝑣)|)𝜋1(𝐵(𝑟) · ℎ(𝑟))𝑑𝑟

⃒⃒⃒⃒
≤ 𝑀𝜔𝛿2𝑒−

√
2𝜔𝑒

√
2𝜔‖ℎ‖𝒵

∫︁ 𝑣

𝑣*

⃒⃒⃒
𝑒−𝑖𝜔(𝑟−𝑣−𝑖|Im(𝑣)|)

⃒⃒⃒
𝑒𝜔|Im(𝑟)|𝑑𝑟

≤ 𝑀𝜔𝛿2‖ℎ‖𝒵

∫︁ 𝑣

𝑣*
𝑒𝜔(Im(𝑟)+|Im(𝑟)|− Im(𝑣)−|Im(𝑣)|)𝑑𝑟.

Since Im(𝑣*) ≤ Im(𝑟) ≤ Im(𝑣), we have that Im(𝑟) + |Im(𝑟)|− Im(𝑣) − |Im(𝑣)|≤ 0,
then ⃒⃒⃒⃒∫︁ 𝑣

𝑣*
𝑒𝜔(Im(𝑟)+|Im(𝑟)|− Im(𝑣)−|Im(𝑣)|)𝑑𝑟

⃒⃒⃒⃒
≤ 𝑀.

Analogously, we have that

|𝑒𝜔(
√

2−|Im(𝑣)|)𝜋2(ℋ0(ℎ)(𝑣))| ≤ 𝑀𝜔𝛿2‖ℎ‖𝒵 ,

and thus ‖ℋ0(ℎ)‖𝒵≤ 𝑀𝜔𝛿2‖ℎ‖𝒵 . Since, ‖ℋ0‖𝒵< 1, for 𝜀 sufficiently small, the linear
operator Id − ℋ0 is invertible and satisfies (7.5.11).

Now, recall that ℳ = 𝐼(𝑐0
1, 𝑐

0
2), where 𝐼 is given by (7.5.8) and 𝑐0

1, 𝑐
0
2 are given by

(7.5.7). Moreover, from Lemma 7.5.4, we have that

(Id − ℋ0)Δ𝜉1 = 𝐼(𝑐1 − 𝑐0
1, 𝑐2 − 𝑐0

2) + ℋ0(𝐼(𝑐0
1, 𝑐

0
2)).

Since Id − ℋ0 is invertible in 𝒵, it only remains to show that 𝐼(𝑐1 − 𝑐0
1, 𝑐2 − 𝑐0

2) and
𝐼(𝑐0

1, 𝑐
0
2) belong to 𝒵.

Lemma 7.5.6. Given 𝑘1, 𝑘2 ∈ C, then the function 𝐼 given in (7.5.8) satisfies

‖𝐼(𝑘1, 𝑘2)‖𝒵≤ 𝑀𝑒
√

2𝜔(|𝑘1|+|𝑘2|),

where 𝑀 is a constant independent of 𝜀.
To prove Lemma 7.5.6 it is enough to recall the definitions of ‖·‖𝒵 in (7.5.10) and 𝐼

in (7.5.8).
Lemma 7.5.7. The error vector Δ𝜉1 given in (7.5.5) belongs to 𝒵 and it is determined
by

Δ𝜉1 = (Id − ℋ0)−1
(︁
𝐼(𝑐1 − 𝑐0

1, 𝑐2 − 𝑐0
2

)︁
+ (Id − ℋ0)−1 (ℋ0(ℳ)) . (7.5.12)

Furthermore, there exists a constant 𝑀 > 0 independent of 𝜀 such that

‖Δ𝜉1‖𝒵≤ 𝑀𝜔𝛿3. (7.5.13)
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Proof. From Lemmas 7.5.4 and 7.5.2, we have that |𝑐𝑗 − 𝑐0
𝑗 |≤ 𝑀𝛿3𝑒−

√
2𝜔, and |𝑐0

𝑗 |≤
𝑀𝛿𝑒−

√
2𝜔, 𝑗 = 1, 2. Therefore, it follows from Lemma 7.5.6 that 𝐼(𝑐1 − 𝑐0

1, 𝑐2 − 𝑐0
2) ∈ 𝒵,

and ℳ = 𝐼(𝑐0
1, 𝑐

0
2) ∈ 𝒵. Furthermore

‖𝐼(𝑐1 − 𝑐0
1, 𝑐2 − 𝑐0

2)‖𝒵≤ 𝑀𝛿3 and ‖ℳ‖𝒵≤ 𝑀𝛿.

As Id − ℋ0 is invertible in 𝒵 by Lemma 7.5.5, formula (7.5.12) is equivalent to (7.5.9).
Therefore, Δ𝜉1 ∈ 𝒵 and, using again Lemma 7.5.5,

‖Δ𝜉1‖𝒵 ≤ ‖(Id − ℋ0)−1‖𝒵(‖𝐼(𝑐1 − 𝑐0
1, 𝑐2 − 𝑐0

2)‖𝒵+‖ℋ0(ℳ)‖𝒵)
≤ 𝑀𝛿3 +𝑀‖ℋ0‖𝒵‖ℳ‖𝒵

≤ 𝑀𝜔𝛿3.

Proof of Theorem 7.5.3. Finally, we prove that Δ𝜉1 is exponentially small and we obtain
an asympotic formula for Δ𝜉. From (7.5.13) and the definition of the norm (7.5.10), we
have

|𝑒𝜔(
√

2−|Im(𝑣)|)𝜋𝑗 ∘ Δ𝜉1(𝑣)|≤ 𝑀𝜔𝛿3, for 𝑣 ∈ 𝒟𝜀, and 𝑗 = 1, 2.

In particular, if 𝑣 ∈ ℐ𝜀 = 𝒟𝜀 ∩ R, |Δ𝜉1(𝑣)|≤ 𝑀𝜔𝛿3𝑒−
√

2𝜔, for 𝑗 = 1, 2. The result follows
directly from this bound and (7.5.5).

7.6 Proof of Theorem 7.3.8
In this section we look for parameterizations of the invariant manifolds 𝑊 𝑢

𝜀 (Λ−
ℎ ) of the

periodic orbits Λ−
ℎ of the form

𝑁𝑢
0,ℎ(𝑣, 𝜏) = (𝑋0(𝑣), 𝑍0(𝑣) + 𝑍𝑢

0,ℎ(𝑣, 𝜏),Γℎ(𝜏) + Γ𝑢
0,ℎ(𝑣, 𝜏),Θℎ(𝜏) + Θ𝑢

0,ℎ(𝑣, 𝜏)), (7.6.1)

where 𝑍0,Γℎ,Θℎ are given in (7.3.4) and (7.3.7), as a perturbation of 𝑁0,ℎ(𝑣, 𝜏) (see
(7.3.6)).

Lemma 7.6.1. The invariant manifold 𝑊 𝑢
𝛿 (Λ−

ℎ ), with 𝛿 ̸= 0, can be parameterized by
𝑁𝑢

0,ℎ(𝑣, 𝜏) in (7.6.1) if (𝑍𝑢
0,ℎ(𝑣, 𝜏),Γ𝑢

0,ℎ(𝑣, 𝜏),Θ𝑢
0,ℎ(𝑣, 𝜏)) satisfy the following system of par-

tial differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑣𝑍 + 𝜔𝜕𝜏𝑍 + 𝑍 ′
0(𝑣)

𝑍0(𝑣)𝑍 = − 𝑍

𝑍0(𝑣)𝜕𝑣𝑍 − 𝛿√
2Ω

𝐹 ′(𝑋0(𝑣))Γ − Θ
2𝑖

− 𝛿√
2Ω

𝐹 ′(𝑋0(𝑣))Γℎ(𝜏) − Θℎ(𝜏)
2𝑖 ,

𝜕𝑣Γ + 𝜔𝜕𝜏 Γ = − 𝑍

𝑍0(𝑣)𝜕𝑣Γ + 𝜔𝑖Γ − 𝛿√
2Ω

𝐹 (𝑋0(𝑣)),

𝜕𝑣Θ + 𝜔𝜕𝜏 Θ = − 𝑍

𝑍0(𝑣)𝜕𝑣Θ − 𝜔𝑖Θ − 𝛿√
2Ω

𝐹 (𝑋0(𝑣)),

lim
𝑣→−∞

𝑍(𝑣, 𝜏) = lim
𝑣→−∞

Γ(𝑣, 𝜏) = lim
𝑣→−∞

Θ(𝑣, 𝜏) = 0, for each 𝜏 ∈ [0, 2𝜋],

(7.6.2)

and 𝑍𝑢
0,ℎ,Γ𝑢

0,ℎ,Θ𝑢
0,ℎ are 2𝜋-periodic in the variable 𝜏.
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In contrast to the 1-dimensional case, for technical reasons, we do not use that
ℋ(𝑊 𝑢

𝜀 (Λ−
ℎ )) = ℎ to obtain 𝑍 = 𝑍(𝑋,Γ,Θ). Thus, we deal with the problem in dimension

3.
As in the 1-dimensional case (7.4.2), if we set 𝑍 = Γ = Θ = 0, the right-hand side

of (7.6.2) decays as 1/|𝑣| as 𝑣 → −∞. To have quadratic decay as |𝑣|→ ∞ to have
integrability, we perform with the change (7.3.14) to system (7.6.2). Then, (𝑧𝑢

0,ℎ, 𝛾
𝑢
0,ℎ, 𝜃

𝑢
0,ℎ)

satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑣𝑧 + 𝜔𝜕𝜏𝑧 + 𝑍 ′
0(𝑣)

𝑍0(𝑣)𝑧 = 𝑓ℎ
1 (𝑣, 𝜏) − 𝑧 + 𝑍0,ℎ(𝑣, 𝜏)

𝑍0(𝑣) 𝜕𝑣𝑧 − 𝜕𝑣𝑍0,ℎ(𝑣, 𝜏)
𝑍0(𝑣) 𝑧

− 𝛿√
2Ω

𝐹 ′(𝑋0(𝑣))𝛾 − 𝜃

2𝑖

𝜕𝑣𝛾 + 𝜔𝜕𝜏𝛾 − 𝜔𝑖𝛾 = 𝑓ℎ
2 (𝑣, 𝜏) − (𝑄0)′(𝑣)

𝑍0(𝑣) 𝑧 − 𝑧 + 𝑍0,ℎ(𝑣, 𝜏)
𝑍0(𝑣) 𝜕𝑣𝛾,

𝜕𝑣𝜃 + 𝜔𝜕𝜏𝜃 + 𝜔𝑖𝜃 = −𝑓ℎ
2 (𝑣, 𝜏) + (𝑄0)′(𝑣)

𝑍0(𝑣) 𝑧 − 𝑧 + 𝑍0,ℎ(𝑣, 𝜏)
𝑍0(𝑣) 𝜕𝑣𝜃,

lim
𝑣→−∞

𝑧(𝑣, 𝜏) = lim
𝑣→−∞

𝛾(𝑣, 𝜏) = lim
𝑣→−∞

𝜃(𝑣, 𝜏) = 0,

(7.6.3)

where

𝑓ℎ
1 (𝑣, 𝜏) = − 𝜕𝑣𝑍0,ℎ(𝑣, 𝜏) − 𝑍 ′

0(𝑣)
𝑍0(𝑣)𝑍0,ℎ(𝑣, 𝜏) (7.6.4)

− 𝛿√
2Ω

𝐹 ′(𝑋0(𝑣))𝑄
0(𝑣)
𝑖

− 𝑍0,ℎ(𝑣, 𝜏)𝜕𝑣𝑍0,ℎ(𝑣, 𝜏)
𝑍0(𝑣) ,

𝑓ℎ
2 (𝑣, 𝜏) = − (𝑄0)′(𝑣) − 𝑍0,ℎ(𝑣, 𝜏)(𝑄0)′(𝑣)

𝑍0(𝑣) , (7.6.5)

and 𝑄0, 𝑍0,ℎ are given by (7.3.11), (7.3.15), respectively.
We consider equation (7.6.3) with (𝑣, 𝜏) ∈ 𝐷𝑢 × T𝜎 (see (7.3.12) and (7.3.13)), and

asymptotic conditions lim
Re(𝑣)→−∞

𝑧(𝑣, 𝜏) = lim
Re(𝑣)→−∞

𝛾(𝑣, 𝜏) = lim
Re(𝑣)→−∞

𝜃(𝑣, 𝜏) = 0, for
every 𝜏 ∈ T𝜎.

Proposition 7.6.2. Fix 𝜎 > 0 and ℎ0 > 0. There exists 𝜀0 > 0 sufficiently small such
that for 0 < 𝜀 ≤ 𝜀0 and 0 ≤ ℎ ≤ ℎ0, equation (7.6.3) has a solution (𝑧𝑢

0,ℎ, 𝛾
𝑢
0,ℎ, 𝜃

𝑢
0,ℎ) defined

in 𝐷𝑢 × T𝜎 such that 𝑧𝑢
0,ℎ is real-analytic, 𝛾𝑢

0,ℎ, 𝜃
𝑢
0,ℎ are analytic, 𝜃𝑢

0,ℎ(𝑣, 𝜏) = 𝛾𝑢
0,ℎ(𝑣, 𝜏) for

each (𝑣, 𝜏) ∈ R2, and

lim
Re(𝑣)→−∞

𝑧𝑢
0,ℎ(𝑣, 𝜏) = lim

Re(𝑣)→−∞
𝛾𝑢

0,ℎ(𝑣, 𝜏) = lim
Re(𝑣)→−∞

𝜃𝑢
0,ℎ(𝑣, 𝜏) = 0,

for every 𝜏 ∈ T𝜎. Furthermore, (𝑧𝑢
0,ℎ, 𝛾

𝑢
0,ℎ, 𝜃

𝑢
0,ℎ) satisfy the bounds in (7.3.16).

We devote the rest of this section to prove Proposition 7.6.2. Equation (7.6.3) can be
written as the functional equation

ℒ𝜔(𝑧, 𝛾, 𝜃) = 𝒫ℎ(𝑧, 𝛾, 𝜃),
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where ℒ𝜔 and 𝒫ℎ are the operators

ℒ𝜔(𝑧, 𝛾, 𝜃) =

⎛⎜⎜⎜⎜⎜⎝
𝜕𝑣𝑧 + 𝜔𝜕𝜏𝑧 + 𝑍 ′

0(𝑣)
𝑍0(𝑣)𝑧

𝜕𝑣𝛾 + 𝜔𝜕𝜏𝛾 − 𝜔𝑖𝛾

𝜕𝑣𝜃 + 𝜔𝜕𝜏𝜃 + 𝜔𝑖𝜃

⎞⎟⎟⎟⎟⎟⎠ , (7.6.6)

𝒫ℎ(𝑧, 𝛾, 𝜃) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓ℎ
1 (𝑣, 𝜏) − 𝑧 + 𝑍0,ℎ(𝑣, 𝜏)

𝑍0(𝑣) 𝜕𝑣𝑧 − 𝜕𝑣𝑍0,ℎ

𝑍0(𝑣) 𝑧 − 𝛿√
2Ω

𝐹 ′(𝑋0(𝑣))𝛾 − 𝜃

2𝑖

𝑓ℎ
2 (𝑣, 𝜏) − (𝑄0)′(𝑣)

𝑍0(𝑣) 𝑧 − 𝑧 + 𝑍0,ℎ(𝑣, 𝜏)
𝑍0(𝑣) 𝜕𝑣𝛾

−𝑓ℎ
2 (𝑣, 𝜏) + (𝑄0)′(𝑣)

𝑍0(𝑣) 𝑧 − 𝑧 + 𝑍0,ℎ(𝑣, 𝜏)
𝑍0(𝑣) 𝜕𝑣𝜃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(7.6.7)

7.6.1 Banach spaces and technical results
For analytic functions 𝑓 : 𝐷𝑢 → C and 𝑔 : 𝐷𝑢 × T𝜎 → C and 𝛼 > 0, we define

‖𝑓‖𝛼 = sup
𝑣∈𝐷𝑢

|(𝑣2 + 2)𝛼/2𝑓(𝑣)|,

‖𝑔‖𝛼,𝜎 =
∑︁
𝑘∈Z

‖𝑔[𝑘]‖𝛼𝑒
|𝑘|𝜎,

where 𝑔(𝑣, 𝜏) =
∑︁
𝑘∈Z

𝑔[𝑘](𝑣)𝑒𝑖𝑘𝜏 .

Remark 7.6.3. Notice that there exists a constant 𝑑 > 0 independent of 𝜀 such that the
distance between each 𝑣 ∈ 𝐷𝑢 (given in (7.3.12)) and the poles ±𝑖

√
2 of 𝑁0,ℎ(𝑣, 𝜏) (given

in (7.3.6)) is greater than 𝑑. The weight |𝑣2 + 2|𝛼/2 in the norm ‖·‖𝛼 is chosen to control
the behavior as Re 𝑣 → −∞ and to have it well-defined for 𝑣 = 0 ∈ 𝐷𝑢. In fact, at infinity
this norm is equivalent to the norm with weight |𝑣|𝛼.

We also define

J𝑔K𝛼,𝜎 = max{‖𝑔‖𝛼,𝜎, ‖𝜕𝜏𝑔‖𝛼,𝜎, ‖𝜕𝑣𝑔‖𝛼+1,𝜎} (7.6.8)

and the Banach spaces

𝒳𝛼,𝜎 = {𝑔 : 𝐷𝑢 × T𝜎 → C is an analytic function, such that ‖𝑔‖𝛼,𝜎< ∞},
𝒴𝛼,𝜎 = {𝑔 : 𝐷𝑢 × T𝜎 → C is an analytic function, such that J𝑔K𝛼,𝜎 < ∞}.

Consider the product spaces

𝒳 3
𝛼,𝜎 =

{︁
(𝑓, 𝑔, ℎ) ∈ 𝒳𝛼,𝜎 × 𝒳𝛼,𝜎 × 𝒳𝛼,𝜎; 𝑓 is real-analytic, 𝑔(𝑣, 𝜏) = ℎ(𝑣, 𝜏) ,
for every 𝑣 ∈ 𝐷𝑢 ∩ R, 𝜏 ∈ T} ,

𝒴3
𝛼,𝜎 =

{︁
(𝑓, 𝑔, ℎ) ∈ 𝒴𝛼,𝜎 × 𝒴𝛼,𝜎 × 𝒴𝛼,𝜎; 𝑓 is real-analytic, 𝑔(𝑣, 𝜏) = ℎ(𝑣, 𝜏) ,
for every 𝑣 ∈ 𝐷𝑢 ∩ R, 𝜏 ∈ T} ,
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endowed with the norms
‖(𝑓, 𝑔, ℎ)‖𝛼,𝜎 = ‖𝑓‖𝛼,𝜎+‖𝑔‖𝛼,𝜎+‖ℎ‖𝛼,𝜎,

J(𝑓, 𝑔, ℎ)K𝛼,𝜎 = J𝑓K𝛼,𝜎 + J𝑔K𝛼,𝜎 + JℎK𝛼,𝜎,

respectively. We present some properties of the norm ‖·‖𝛼,𝜎, which are proven in [8].
Lemma 7.6.4. Given real-analytic functions 𝑓 : C → C, 𝑔, ℎ : 𝐷𝑢 × T𝜎 → C, the
following statements hold

1. If 𝛼1 ≥ 𝛼2 ≥ 0, then
‖ℎ‖𝛼2,𝜎≤ ‖ℎ‖𝛼1,𝜎.

2. If 𝛼1, 𝛼2 ≥ 0, and ‖𝑔‖𝛼1,𝜎, ‖ℎ‖𝛼2,𝜎< ∞, then
‖𝑔ℎ‖𝛼1+𝛼2,𝜎≤ ‖𝑔‖𝛼1,𝜎‖ℎ‖𝛼2,𝜎.

3. If ‖𝑔‖𝛼,𝜎, ‖ℎ‖𝛼,𝜎≤ 𝑅0/4, where 𝑅0 is the convergence ratio of 𝑓 ′ at 0, then
‖𝑓(𝑔) − 𝑓(ℎ)‖𝛼,𝜎≤ 𝑀‖𝑔 − ℎ‖𝛼,𝜎.

7.6.2 The Operators ℒ𝜔 and 𝒢𝜔
Let 𝑓 , 𝑔, and ℎ be analytic functions defined in 𝐷𝑢 × T𝜎. We define

𝐹 [𝑘](𝑓)(𝑣) =
∫︁ 𝑣

−∞

𝑒𝜔𝑖𝑘(𝑟−𝑣)𝑍0(𝑟)
𝑍0(𝑣) 𝑓 [𝑘](𝑟)𝑑𝑟,

𝐺[𝑘](𝑔)(𝑣) =
∫︁ 𝑣

−∞
𝑒𝜔𝑖(𝑘−1)(𝑟−𝑣)𝑔[𝑘](𝑟)𝑑𝑟,

𝐻 [𝑘](ℎ)(𝑣) =
∫︁ 𝑣

−∞
𝑒𝜔𝑖(𝑘+1)(𝑟−𝑣)ℎ[𝑘](𝑟)𝑑𝑟,

(7.6.9)

and consider the linear operator 𝒢𝜔 given by

𝒢𝜔(𝑓, 𝑔, ℎ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑︁
𝑘

𝐹 [𝑘](𝑓)(𝑣)𝑒𝑖𝑘𝜏

∑︁
𝑘

𝐺[𝑘](𝑔)(𝑣)𝑒𝑖𝑘𝜏

∑︁
𝑘

𝐻 [𝑘](ℎ)(𝑣)𝑒𝑖𝑘𝜏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7.6.10)

Lemma 7.6.5. Fix 𝛼 ≥ 1 and 𝜎 > 0, the operator
𝒢𝜔 : 𝒳 3

𝛼+1,𝜎 → 𝒴3
𝛼,𝜎

given in (7.6.10) is well-defined and the following statements hold:
1. 𝒢𝜔 is an inverse of the operator ℒ𝜔 : 𝒴3

𝛼,𝜎 → 𝒳 3
𝛼+1,𝜎 given in (7.6.6), i.e. 𝒢𝜔 ∘ ℒ𝜔 =

ℒ𝜔 ∘ 𝒢𝜔 = Id;

2. J𝒢𝜔(𝑓, 𝑔, ℎ)K𝛼,𝜎 ≤ 𝑀‖(𝑓, 𝑔, ℎ)‖𝛼+1,𝜎;

3. If 𝑓 [0] = 𝑔[1] = ℎ[−1] = 0, then J𝒢𝜔(𝑓, 𝑔, ℎ)K𝛼,𝜎 ≤ 𝑀

𝜔
J(𝑓, 𝑔, ℎ)K𝛼,𝜎.

The proof of Lemma 7.6.5 can be found in [8].
To find a solution of (7.6.3), it is sufficient to find a fixed point of the operator

𝒢𝜔,ℎ = 𝒢𝜔 ∘ 𝒫ℎ, (7.6.11)
where 𝒢𝜔 is given by (7.6.10) and 𝒫ℎ is given by (7.6.7).
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7.6.3 The Operator 𝒫ℎ

We show some properties of the operator 𝒫ℎ defined in (7.6.7).

Lemma 7.6.6. Fix 𝜎 > 0, ℎ0 > 0. For 0 ≤ ℎ ≤ ℎ0, the operator 𝒫ℎ defined in (7.6.7)
satisfies

‖𝒫ℎ(0, 0, 0)‖2,𝜎 ≤ 𝑀
𝛿

𝜔
.

Proof. Notice that 𝒫ℎ(0, 0, 0) = (𝑓ℎ
1 , 𝑓

ℎ
2 ,−𝑓ℎ

2 ), where 𝑓ℎ
1 and 𝑓ℎ

2 are given by (7.6.4), and
(7.6.5) respectively, and involve the functions 𝐹 ′(𝑋0), 𝑍0, 𝑍

′
0, 𝑄

0, 𝑄′
0, 𝑍0,ℎ, 𝜕𝑣𝑍0,ℎ. By

(7.1.7), (7.3.4), (7.3.11) and (7.3.15), we can see that

‖𝑄0‖1,𝜎, ‖(𝑄0)′‖2,𝜎≤ 𝑀
𝛿

𝜔
,

‖𝑍0,ℎ‖1,𝜎 , ‖𝜕𝑣𝑍0,ℎ‖2,𝜎≤ 𝑀
𝛿
√
ℎ

𝜔3/2 ,

‖𝑍0‖1,𝜎, ‖𝑍 ′
0‖2,𝜎, ‖𝐹 ′(𝑋0)‖1,𝜎≤ 𝑀.

It follows from these bounds and Lemma 7.6.4 that

‖𝑓ℎ
1 ‖2,𝜎≤ 𝑀 max

{︃
𝛿
√
ℎ

𝜔3/2 ,
𝛿2

𝜔
,
𝛿2

𝜔3ℎ

}︃
= 𝑀 max

{︃
𝛿
√
ℎ

𝜔3/2 ,
𝛿2

𝜔

}︃
,

‖𝑓ℎ
2 ‖2,𝜎≤ 𝑀 max

{︃
𝛿

𝜔
,
𝛿2

𝜔5/2

√
ℎ

}︃
= 𝑀

𝛿

𝜔
.

Lemma 7.6.7. Fix 𝜎 > 0, ℎ0 > 0 and 𝐾 > 0. If 0 ≤ ℎ ≤ ℎ0, the operator

𝒫ℎ : 𝒴3
1,𝜎 → 𝒳 3

2,𝜎

is well defined. Moreover, given (𝑧𝑗, 𝛾𝑗, 𝜃𝑗) ∈ ℬ0(𝐾𝛿/𝜔) ⊂ 𝒴3
1,𝜎, 𝑗 = 1, 2,

‖𝒫ℎ(𝑧1, 𝛾1, 𝜃1) − 𝒫ℎ(𝑧2, 𝛾2, 𝜃2)‖2,𝜎 ≤ 𝑀

(︃
𝛿 + 𝛿

𝜔3/2

√
ℎ

)︃
J(𝑧1, 𝛾1, 𝜃1) − (𝑧2, 𝛾2, 𝜃2)K1,𝜎 ,

where 𝑀 is a constant independent of 𝜀 and ℎ.

Proof. It is straightforward to see that 𝒫ℎ is well defined. Denote 𝒫𝑗
ℎ = 𝜋𝑗 ∘ 𝒫ℎ. We

show the bound of the difference for 𝒫1
ℎ and 𝒫2

ℎ, since the bound of 𝒫3
ℎ can be obtained

in exactly the same way as 𝒫2
ℎ.

Notice that

𝒫1
ℎ(𝑧1, 𝛾1, 𝜃1) − 𝒫1

ℎ(𝑧2, 𝛾2, 𝜃2) = − 𝛿√
2Ω

𝐹 ′(𝑋0(𝑣))(𝛾1 − 𝛾2) − (𝜃1 − 𝜃2)
2𝑖

−𝜕𝑣𝑍0,ℎ(𝑣, 𝜏)
𝑍0(𝑣) (𝑧1 − 𝑧2) − 𝜕𝑣𝑧2

𝑧1 − 𝑧2

𝑍0(𝑣)

−𝑧1 + 𝑍0,ℎ(𝑣, 𝜏)
𝑍0(𝑣) (𝜕𝑣𝑧1 − 𝜕𝑣𝑧2).
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Using the bounds contained in the proof of Lemma 7.6.6 and that 𝑍0 is lower bounded in
𝐷𝑢 by a positive constant independent of 𝜀, one can see that

⃦⃦⃦
𝒫1

ℎ(𝑧1, 𝛾1, 𝜃1) − 𝒫1
ℎ(𝑧2, 𝛾2, 𝜃2)

⃦⃦⃦
2,𝜎

≤ 𝑀 max
{︃
𝛿,

𝛿

𝜔3/2

√
ℎ

}︃
J(𝑧1, 𝛾1, 𝜃1) − (𝑧2, 𝛾2, 𝜃2)K1,𝜎 .

Now,

𝒫2
ℎ(𝑧1, 𝛾1, 𝜃1) − 𝒫2

ℎ(𝑧2, 𝛾2, 𝜃2) = −(𝑄0)′(𝑣)
𝑍0(𝑣) (𝑧1 − 𝑧2) − 𝜕𝑣𝛾2

𝑧1 − 𝑧2

𝑍0(𝑣)

−𝑧1 + 𝑍0,ℎ(𝑣, 𝜏)
𝑍0(𝑣) (𝜕𝑣𝛾1 − 𝜕𝑣𝛾2)

which, proceeding analogously,

⃦⃦⃦
𝒫2

ℎ(𝑧1, 𝛾1, 𝜃1) − 𝒫2
ℎ(𝑧2, 𝛾2, 𝜃2)

⃦⃦⃦
2,𝜎

≤ 𝑀 max
{︃
𝛿

𝜔
,
𝛿

𝜔3/2

√
ℎ

}︃
J(𝑧1, 𝛾1, 𝜃1) − (𝑧2, 𝛾2, 𝜃2)K1,𝜎 .

7.6.4 The Fixed Point Theorem
Now, we write Proposition 7.6.2 in terms of Banach spaces and we prove it through a

fixed point argument applied to the operator 𝒢𝜔,ℎ given by (7.6.11).

Proposition 7.6.8. Fix 𝜎 > 0 and ℎ0 > 0. There exists 𝜀0 > 0 such that for 0 < 𝜀 ≤ 𝜀0,
the operator 𝒢𝜔,ℎ in (7.6.11) has a fixed point (𝑧𝑢

0,ℎ, 𝛾
𝑢
0,ℎ, 𝜃

𝑢
0,ℎ) ∈ 𝒴3

1,𝜎. Furthermore, there
exists a constant 𝑀 > 0 independent of 𝜀 and ℎ such that

J(𝑧𝑢
0,ℎ, 𝛾

𝑢
0,ℎ, 𝜃

𝑢
0,ℎ)K1,𝜎 ≤ 𝑀

𝛿

𝜔
.

Proof. From Lemmas 7.6.5 and 7.6.6, there exists a constant 𝑏2 > 0 independent of 𝜀 and
ℎ such that

J𝒢𝜔,ℎ(0, 0, 0)K1,𝜎 ≤ 𝑀‖𝒫ℎ(0, 0, 0)‖2,𝜎≤ 𝑏2

2
𝛿

𝜔
.

Consider the operator 𝒢𝜔,ℎ = 𝒢𝜔 ∘ 𝒫ℎ : ℬ0(𝑏2𝛿/𝜔) ⊂ 𝒴1,𝜎 → 𝒴1,𝜎. Notice that Lemmas
7.6.5 and 7.6.7 imply that it is well defined in these spaces.

To show that 𝒢𝜔,ℎ sends ℬ0(𝑏2𝛿/𝜔) into itself, consider 𝐾 = 𝑏2 in Lemma 7.6.7 and
(𝑧𝑗, 𝛾𝑗, 𝜃𝑗) ∈ ℬ0(𝑏2𝛿/𝜔), 𝑗 = 1, 2. It follows from Lemmas 7.6.5, 7.6.7 and the fact that
𝒢𝜔 is a linear operator that

J𝒢𝜔,ℎ(𝑧1, 𝛾1, 𝜃1) − 𝒢𝜔,ℎ(𝑧2, 𝛾2, 𝜃2)K1,𝜎 ≤ 𝑀 ‖𝒫ℎ(𝑧1, 𝛾1, 𝜃1) − 𝒫ℎ(𝑧2, 𝛾2, 𝜃2)‖2,𝜎 ,

≤ 𝑀𝛿 J(𝑧1, 𝛾1, 𝜃1) − (𝑧2, 𝛾2, 𝜃2)K1,𝜎 .

Choosing 𝜀0 sufficiently small such that Lip(𝒢𝜔,ℎ) < 1/2, 𝒢𝜔,ℎ sends ℬ0(𝑏2𝛿/𝜔) into
itself and it is a contraction. Thus, it has a unique fixed point (𝑧𝑢

0,ℎ, 𝛾
𝑢
0,ℎ, 𝜃

𝑢
0,ℎ) ∈ ℬ0(𝑏2𝛿/𝜔).
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7.7 Proof of Theorem 7.3.10
The strategy used to prove Theorem 7.3.10 is analogous to the one of Theorem 7.3.5

taking into account that all the expressions appearing become singular as ℎ → 0.
We write

𝑁𝑢
ℎ,0(𝑣) = (𝑋ℎ(𝑣), 𝑍𝑢

ℎ,0(𝑣),Γ𝑢
ℎ,0(𝑣),Θ𝑢

ℎ,0(𝑣)).
Lemma 7.7.1. Given ℎ > 0, the invariant manifold 𝑊 𝑢

𝛿 (𝑝−
ℎ ), with 𝛿 ̸= 0, is parameterized

by 𝑁𝑢
ℎ,0(𝑣) if and only if (Γ𝑢

ℎ,0(𝑣),Θ𝑢
ℎ,0(𝑣)) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑Γ
𝑑𝑣

(𝑣) = 𝑍ℎ(𝑣)̃︀𝜂ℎ(𝑣,Γ,Θ)

(︃
𝜔𝑖Γ(𝑣) − 𝛿√

2Ω
𝐹 (𝑋ℎ(𝑣))

)︃
,

𝑑Θ
𝑑𝑣

(𝑣) = 𝑍ℎ(𝑣)̃︀𝜂ℎ(𝑣,Γ,Θ)

(︃
−𝜔𝑖Θ(𝑣) − 𝛿√

2Ω
𝐹 (𝑋ℎ(𝑣)))

)︃
.

lim
𝑣→−∞

Γ(𝑣) = lim
𝑣→−∞

Θ(𝑣) = 0,

(7.7.1)

and

̃︀𝜂ℎ(𝑣,Γ,Θ) = 4

⎯⎸⎸⎷ℎ− 𝑈(𝑋ℎ(𝑣)) − 𝛿√
2Ω

𝐹 (𝑋ℎ(𝑣))Γ(𝑣) − Θ(𝑣)
2𝑖 − 𝜔

2 Γ(𝑣)Θ(𝑣),

with 𝑋ℎ given in (7.3.4), 𝑈, 𝐹 given in (7.1.7), and 𝑍𝑢
ℎ,0(𝑣) = ̃︀𝜂ℎ(𝑣,Γ𝑢

ℎ,0(𝑣),Θ𝑢
ℎ,0(𝑣)).

As in Section 7.4, we compute an explicit term of (Γ𝑢
ℎ,0,Θ𝑢

ℎ,0). Thus, the solution of
(7.7.1) can be written as (7.3.17) and (𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑑

𝑑𝑣
𝛾 − 𝜔𝑖𝛾 = 𝜔𝑖𝛾(𝜂ℎ(𝑣, 𝛾, 𝜃) − 1) − (𝑄ℎ)′(𝑣),

𝑑

𝑑𝑣
𝜃 + 𝜔𝑖𝜃 = −𝜔𝑖𝜃(𝜂ℎ(𝑣, 𝛾, 𝜃) − 1) + (𝑄ℎ)′(𝑣),

lim
𝑣→−∞

𝛾(𝑣) = lim
𝑣→−∞

𝜃(𝑣) = 0,

(7.7.2)

where 𝑄ℎ is given in (7.3.18) and

𝜂ℎ(𝑣, 𝛾, 𝜃) =
⎛⎝1 + 4𝛿2

Ω𝜔

(︃
𝐹 (𝑋ℎ(𝑣))
𝑍ℎ(𝑣)

)︃2

− 8𝜔 𝛾𝜃

(𝑍ℎ(𝑣))2

⎞⎠−1/2

. (7.7.3)

We prove Theorem 7.3.10 by finding a solution of (7.7.2) in the next proposition.
Proposition 7.7.2. There exists 𝜀0 > 0 and ℎ0 > 0 such that for 0 < ℎ ≤ ℎ0 and
0 < 𝜀 ≤ 𝜀0, equation (7.7.2) has a solution (𝛾𝑢

ℎ,0(𝑣), 𝜃𝑢
ℎ,0(𝑣)) defined in 𝐷𝑢 (see (7.3.12))

such that 𝜃𝑢
ℎ,0(𝑣) = 𝛾𝑢

ℎ,0(𝑣) for every 𝑣 ∈ R. Furthermore, (𝛾𝑢
ℎ,0, 𝜃

𝑢
ℎ,0) satisfy the bound

(7.3.19).
To prove Proposition 7.7.2, it is sufficient to find a fixed point (𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) of the operator

𝒢𝜔,ℎ = 𝒢𝜔 ∘ ℱℎ, (7.7.4)
where 𝒢𝜔 is given in (7.4.6) and

ℱℎ(𝛾, 𝜃)(𝑣) =
⎛⎝ 𝜔𝑖𝛾(𝑣)(𝜂ℎ(𝑣, 𝛾(𝑣), 𝜃(𝑣)) − 1) − (𝑄ℎ)′(𝑣)

−𝜔𝑖𝜃(𝑣)(𝜂ℎ(𝑣, 𝛾(𝑣), 𝜃(𝑣)) − 1) + (𝑄ℎ)′(𝑣)

⎞⎠ , (7.7.5)

and 𝑄ℎ, 𝜂ℎ are given in (7.3.18) and (7.7.3), respectively.
The rest of this section is devoted to find a fixed point of (7.7.4).
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7.7.1 Banach spaces and technical lemmas
By (7.1.7), (7.3.5) and (7.3.18)

𝑄ℎ(𝑣) = 2𝛿𝑖
𝜔

√
2Ω

⎛⎝
√︁

2+ℎ
ℎ

sinh(𝑣
√
ℎ/2)

1 + 2+ℎ
ℎ

sinh2(𝑣
√
ℎ/2)

⎞⎠ , (7.7.6)

which has poles at

𝑠±,𝑗
ℎ,𝑘 = 𝑖

2√
ℎ

⎛⎝𝛿𝑗,1𝜋 ± arcsin
⎛⎝√︃ ℎ

2 + ℎ

⎞⎠+ 2𝑘𝜋
⎞⎠ ,

where 𝛿𝑗,1 is the delta of Kronecker, 𝑗 = 0, 1 and 𝑘 ∈ Z. All these singularities are
contained in the imaginary axis and satisfy

𝑠±,𝑗
ℎ,𝑘 = 𝑖

(︃
±

√
2 + 𝒪(ℎ) + 2√

ℎ
(𝛿𝑗,1𝜋 + 2𝑘𝜋)

)︃
.

Thus, for ℎ sufficiently small
⃒⃒⃒
𝑠±,𝑗

ℎ,𝑘

⃒⃒⃒
≥ 3

√
2/4, 𝑗 = 0, 1 and 𝑘 ∈ Z.

Therefore, we can consider the same domain 𝐷𝑢 in (7.3.12). It satisfies the following
property, whose proof is straightforward.

Lemma 7.7.3. If 𝑣 ∈ 𝐷𝑢 is such that |Re(𝑣)|≥ 𝜒0, for some 𝜒0 > 0, then

|Im(𝑣)|≤ 𝜒0 + 1
𝜒0

|Re(𝑣)|.

For 𝛼 ≥ 0, we consider the Banach space

𝒳𝛼 = {𝑓 : 𝐷𝑢 → 𝐶; 𝑓 is analytic and ‖𝑓‖𝛼< ∞}

endowed with the norm
‖𝑓‖𝛼= sup

𝑣∈𝐷𝑢
|(𝑣2 + 2)𝛼/2𝑓(𝑣)|,

and the product space

𝒳 2
𝛼 =

{︁
(𝑓, 𝑔) ∈ 𝒳𝛼 × 𝒳𝛼; 𝑔(𝑣) = 𝑓(𝑣) for every 𝑣 ∈ R

}︁
endowed with the norm ‖(𝑓, 𝑔)‖𝛼= ‖𝑓‖𝛼+‖𝑔‖𝛼. Remark 7.6.3 and Lemma 7.6.4 also
apply to ‖·‖𝛼.

Lemma 7.7.4. Given 0 < ℎ0 ≤ 1, there exists a constant 𝑀* > 0 such that, for each
𝑣 ∈ 𝐷𝑢 and 0 < ℎ ≤ ℎ0,⃒⃒⃒

sinh(𝑣
√
ℎ/2)

⃒⃒⃒
≥ 𝑀*

√
ℎ|𝑣|,

⃒⃒⃒
cosh(𝑣

√
ℎ/2)

⃒⃒⃒
≥ 𝑀*.

The following Lemma is proved in [7].

Lemma 7.7.5. Let 1/2 < 𝛽 < 𝜋/4 be fixed. The following statements hold

1. There exists 𝛽0 > 0 sufficiently small such that 𝐷𝑢 ⊂ 𝐷𝑢(𝛽0), where

𝐷𝑢(𝛽0) =
{︁
𝑣 ∈ C; |Im(𝑣)|≤ − tan(𝛽 + 𝛽0) Re(𝑣) + 2

√
2/3

}︁
.
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2. Given 𝛼 > 0, if 𝑓 : 𝐷𝑢(𝛽0) → C is a real-analytic function such that

𝑚𝛼(𝑓) = sup
𝑣∈𝐷𝑢(𝛽0)

|(𝑣2 + 2)𝛼/2𝑓(𝑣)|< ∞,

then, for any 𝑛 ∈ N
‖𝑓 (𝑛)‖𝛼+𝑛≤ 𝑀𝑚𝛼(𝑓).

In the remaining of this paper, all the Landau symbols 𝒪(𝑓(𝑣, ℎ, 𝜀)) denote a function
dependent on 𝑣, ℎ and 𝜀 such that there exists a constant 𝑀 > 0 independent of ℎ and 𝜀
such that |𝒪(𝑓(𝑣, ℎ, 𝜀))|≤ 𝑀 |𝑓(𝑣, ℎ, 𝜀)|, for every (𝑣, ℎ, 𝜀) in the domain considered.

Lemma 7.7.6. There exist ℎ0 ∈ (0, 1) and a constant 𝑀 > 0 such that, for 𝑣 ∈ 𝐷𝑢 and
0 < ℎ ≤ ℎ0,

1. |𝐹 (𝑋ℎ(𝑣))|≤ 𝑀

|
√
𝑣2 + 2|

;

2. |𝐹 (𝑋ℎ(𝑣))′|≤ 𝑀

|𝑣2 + 2|
.

where 𝑋ℎ given in (7.3.5) and 𝐹 (𝑋) in (7.1.7).

Proof. By (7.3.18) and (7.7.6), we have that

𝐹 (𝑋ℎ(𝑣)) = −2
√︃

ℎ

2 + ℎ

1
sinh(𝑣

√
ℎ/2)

⎛⎝ 1
1 + ℎ

2+ℎ
1

sinh2(𝑣
√

ℎ/2)

⎞⎠ .
Then, Lemma 7.7.4 implies

|𝐹 (𝑋ℎ(𝑣))| ≤ 𝑀
√
ℎ

1√
ℎ|𝑣|

⎛⎜⎜⎝ 1⃒⃒⃒⃒
1 + ℎ

2+ℎ
1

sinh2(𝑣
√

ℎ/2)

⃒⃒⃒⃒
⎞⎟⎟⎠ .

Notice that ⃒⃒⃒⃒
⃒1 + ℎ

2 + ℎ

1
sinh2(𝑣

√
ℎ/2)

⃒⃒⃒⃒
⃒ ≥ 1 − ℎ

2 + ℎ

⃒⃒⃒⃒
⃒ 1
sinh2(𝑣

√
ℎ/2)

⃒⃒⃒⃒
⃒

and, by Lemma 7.7.4,

ℎ

2 + ℎ

⃒⃒⃒⃒
⃒ 1
sinh2(𝑣

√
ℎ/2)

⃒⃒⃒⃒
⃒ ≤ ℎ

2 + ℎ

1
(𝑀*)2ℎ|𝑣|2

≤ 1
2(𝑀*)2|𝑣|2

.

Thus, for |𝑣|≥ (𝑀*)−1, ⃒⃒⃒⃒
⃒1 + ℎ

2 + ℎ

1
sinh2(𝑣

√
ℎ/2)

⃒⃒⃒⃒
⃒ ≥ 1/2.

We also know that, if |𝑣|≥ (𝑀*)−1, |
√
𝑣2 + 2|≤

√
1 + 2𝑀*|𝑣|. Hence

|(
√
𝑣2 + 2)𝐹 (𝑋ℎ(𝑣))|≤ 𝑀

|
√
𝑣2 + 2|
|𝑣|

≤ 𝑀.
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Now, assume that |𝑣|≤ (𝑀*)−1. Hence |𝑣
√
ℎ/2|≤ 𝑀 and expanding sinh(𝑧) at 0 we

obtain

𝐹 (𝑋ℎ(𝑣)) = −2

√︁
2+ℎ

ℎ

(︁
𝑣
√
ℎ/2 + 𝒪(ℎ3/2𝑣3)

)︁
1 + 2+ℎ

ℎ
(ℎ𝑣2/4 + 𝒪(ℎ2𝑣4))

= −2
√

2 + ℎ(𝑣/2 + 𝒪(ℎ))
1 + 𝑣2/2 + 𝒪(ℎ) .

Since 𝑣 ∈ 𝐷𝑢, we have that there exists 𝑀 > 0 such that

|1 + 𝑣2/2 + 𝒪(ℎ)|≥ |1 + 𝑣2/2|−𝒪(ℎ) ≥ 𝑀 − 𝒪(ℎ).

Therefore, for ℎ > 0 sufficiently small, we have that |𝐹 (𝑋ℎ(𝑣))|≤ 𝑀 , for |𝑣|≤ (𝑀*)−1, and
since |

√
𝑣2 + 2| is inferiorly and superiorly bounded by nonzero constants in this domain,

we have that
|(

√
𝑣2 + 2)𝐹 (𝑋ℎ(𝑣))|≤ 𝑀 for |𝑣|≤ (𝑀*)−1.

This concludes the proof of the first item. One can obtain item 2 using Lemma 7.7.5.

Lemma 7.7.7. Given 0 < ℎ0 ≤ 1, there exists a constant 𝑀 > 0 such that, for 𝑣 ∈ 𝐷𝑢

and 0 < ℎ ≤ ℎ0, ⃒⃒⃒⃒
⃒ 1
𝑍2

ℎ(𝑣)
1

𝑣2 + 2

⃒⃒⃒⃒
⃒ ≤ 𝑀

where 𝑍ℎ in (7.3.5).

The proof is analogous to the one of Lemma 7.7.6.

7.7.2 The Fixed Point Theorem
Now, we study the operator 𝒢𝜔,ℎ in order to find a fixed point in 𝒳 2

2 . Recall the
definition of 𝒢𝜔,ℎ = 𝒢𝜔 ∘ ℱℎ in (7.7.4), and notice that 𝒢𝜔 is the same operator of the case
ℎ = 0. Thus, Proposition 7.4.3 still holds for functions in the Banach space 𝒳 2

2 .

Proposition 7.7.8. Given (𝑓, 𝑔) ∈ 𝒳 2
2 , we have that 𝒢𝜔(𝑓, 𝑔) ∈ 𝒳 2

2 . Furthermore, there
exists a constant 𝑀 > 0 independent of 𝜀 such that

‖𝒢𝜔(𝑓, 𝑔)‖2 ≤ 𝑀

𝜔
‖(𝑓, 𝑔)‖2 .

We proceed by studying the operator ℱℎ in (7.7.5).

Proposition 7.7.9. There exists ℎ0 > 0, 𝜀0 > 0 and a constant 𝑀 > 0 such that for,
0 < 𝜀 ≤ 𝜀0 and 0 < ℎ ≤ ℎ0,

‖𝒢𝜔,ℎ(0, 0)‖2 ≤ 𝑀
𝛿

𝜔2 .

Proof. Notice that ℱℎ(0, 0) = (−(𝑄ℎ)′(𝑣), (𝑄ℎ)′(𝑣)) (see (7.3.18)), which implies

‖ℱℎ(0, 0)‖2 = 2 𝛿

𝜔
√

2Ω
‖𝐹 (𝑋ℎ)′‖2.

Thus, it is enough to apply Lemma 7.7.6 and Proposition 7.7.8.
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Proposition 7.7.10. There exist 𝜀0 > 0, ℎ0 > 0 and a constant 𝑀 > 0 such that for
0 < 𝜀 ≤ 𝜀0, 0 < ℎ ≤ ℎ0:

Let 𝜂ℎ be given in (7.7.3) and take (𝛾𝑗, 𝜃𝑗) ∈ ℬ0(𝑅) ⊂ 𝒳 2
2 with 𝑗 = 1, 2 and 𝑅 = 𝐾

𝛿

𝜔2 ,
where 𝐾 is a constant independent of ℎ and 𝜀, the following statements hold.

1. |𝜂ℎ(𝑣, 𝛾𝑗(𝑣), 𝜃𝑗(𝑣)) − 1| ≤ 𝑀
𝛿2

𝜔
;

2. |𝜂ℎ(𝑣, 𝛾1(𝑣), 𝜃1(𝑣)) − 𝜂ℎ(𝑣, 𝛾2(𝑣), 𝜃2(𝑣))| ≤ 𝑀
𝛿

𝜔
‖(𝛾1, 𝜃1) − (𝛾2, 𝜃2)‖0;

3. ‖ℱℎ(𝛾1, 𝜃1) − ℱℎ(𝛾2, 𝜃2)‖2 ≤ 𝑀𝛿2‖(𝛾1, 𝜃1) − (𝛾2, 𝜃2)‖2;

Proof. Lemmas 7.7.6 and 7.7.7 and the fact that (𝛾, 𝜃) ∈ ℬ0(𝑅) imply⃒⃒⃒⃒
⃒⃒4𝛿2

Ω𝜔

(︃
𝐹 (𝑋ℎ(𝑣))
𝑍ℎ(𝑣)

)︃2

− 8𝜔 𝛾𝜃

(𝑍ℎ(𝑣))2

⃒⃒⃒⃒
⃒⃒ ≤ 𝑀

𝛿2

𝜔
.

Thus, using (7.7.3), it follows that

|𝜂ℎ(𝑣, 𝛾, 𝜃) − 1| ≤ 𝑀

⃒⃒⃒⃒
⃒⃒4𝛿2

Ω𝜔

(︃
𝐹 (𝑋ℎ(𝑣))
𝑍ℎ(𝑣)

)︃2

− 8𝜔 𝛾𝜃

(𝑍ℎ(𝑣))2

⃒⃒⃒⃒
⃒⃒ ≤ 𝑀

𝛿2

𝜔

and using also Lemma 7.7.7, we have

|𝜂ℎ(𝑣, 𝛾1, 𝜃1) − 𝜂ℎ(𝑣, 𝛾2, 𝜃2)| ≤ 𝑀𝜔

⃒⃒⃒⃒
⃒𝛾1𝜃1 − 𝛾2𝜃2

(𝑍ℎ(𝑣))2

⃒⃒⃒⃒
⃒

≤ 𝑀𝑅𝜔

(︃
|𝜃1 − 𝜃2|

|(𝑍ℎ(𝑣))2(𝑣2 + 2)| + |𝛾1 − 𝛾2|
|(𝑍ℎ(𝑣))2(𝑣2 + 2)|

)︃

≤ 𝑀
𝛿

𝜔
‖(𝛾1, 𝜃1) − (𝛾2, 𝜃2)‖0

Finally, it follows from items (1) and (2) of this proposition and (7.7.5) that

‖𝜋1 ∘ ℱℎ(𝛾1, 𝜃1) − 𝜋1 ∘ ℱℎ(𝛾2, 𝜃2)‖2 ≤ 𝜔 ‖𝜂ℎ(𝑣, 𝛾1, 𝜃1) − 1‖0 ‖𝛾1 − 𝛾2‖2

+𝜔‖𝛾2‖2‖𝜂ℎ(𝑣, 𝛾1, 𝜃1) − 𝜂ℎ(𝑣, 𝛾2, 𝜃2)‖0

≤ 𝑀𝛿2‖𝛾1 − 𝛾2‖2+𝑀𝜔𝑅
𝛿

𝜔
‖(𝛾1, 𝜃1) − (𝛾2, 𝜃2)‖0

≤ 𝑀𝛿2‖(𝛾1, 𝜃1) − (𝛾2, 𝜃2)‖2.

Analogously, we obtain the same inequality for the second component of ℱℎ.

Finally, we are able to prove Proposition 7.7.2 (and thus Theorem (7.3.10)) by a fixed
point argument.

Proposition 7.7.11. There exist 𝜀0 > 0, ℎ0 > 0 and a constant 𝑀 > 0 such that for
0 < ℎ ≤ ℎ0 and 𝜀 ≤ 𝜀0, the operator 𝒢𝜔,ℎ (given in (7.7.4)) has a fixed point (𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) in

𝒳 2
2 which satisfies

‖(𝛾𝑢
ℎ,0, 𝜃

𝑢
ℎ,0)‖2≤ 𝑀

𝛿

𝜔2 .
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Proof. From Proposition 7.7.9, there exists a constant 𝑏3 > 0 independent of ℎ and 𝜀 such
that

‖𝒢𝜔,ℎ(0, 0)‖2 ≤ 𝑏3

2
𝛿

𝜔2 ,

Now, given (𝛾1, 𝜃1) and (𝛾2, 𝜃2) in ℬ0(𝑏3𝛿/𝜔
2), we can use Propositions 7.7.10 (with 𝐾 =

𝑏3) and 7.7.8 and the linearity of the operator 𝒢𝜔 to see that

‖𝒢𝜔,ℎ(𝛾1, 𝜃1) − 𝒢𝜔,ℎ(𝛾2, 𝜃2)‖2 ≤ 𝑀

𝜔
‖ℱℎ(𝛾1, 𝜃1) − ℱℎ(𝛾2, 𝜃2)‖2

≤ 𝑀
𝛿2

𝜔
‖(𝛾1, 𝜃1) − (𝛾2, 𝜃2)‖2.

Choosing 𝜀0 sufficiently small, we have that Lip(𝒢𝜔,ℎ) ≤ 1/2. Therefore 𝒢𝜔,ℎ sends the
ball ℬ0(𝑏3𝛿/𝜔

2) into itself and it is a contraction. Thus, it has a unique fixed point
(𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) ∈ ℬ0(𝑏3𝛿/𝜔

2).

7.8 Proof of Theorem 7.3.11
In this section we prove the existence of 𝑊 𝑢

𝜀 (Λ−
𝜅1,𝜅2), with 𝛿 ̸= 0. As in the previous

sections, we look for parameterizations 𝑁𝑢
𝜅1,𝜅2 of 𝑊 𝑢

𝜀 (Λ−
𝜅1,𝜅2) as graphs

𝑁𝑢,𝑠
𝜅1,𝜅2(𝑣, 𝜏) = (𝑋𝜅1(𝑣), 𝑍𝜅1(𝑣) + 𝑍𝑢,𝑠

𝜅1,𝜅2(𝑣, 𝜏),Γ𝜅2(𝜏) + Γ𝑢,𝑠
𝜅1,𝜅2(𝑣, 𝜏),Θ𝜅2(𝜏) + Θ𝑢,𝑠

𝜅1,𝜅2(𝑣, 𝜏)),
(7.8.1)

where 𝑋𝜅1 , 𝑍𝜅1 are given in (7.3.4) and Γ𝜅2 ,Θ𝜅2 are given in (7.3.7).
Following the same lines of Section 7.7 we have a characterization of 𝑁𝑢

𝜅1,𝜅2 .

Lemma 7.8.1. Write 𝑍𝑢
𝜅1,𝜅2(𝑣, 𝜏) = 𝑍𝜅1,𝜅2(𝑣, 𝜏) + 𝑧𝑢

𝜅1,𝜅2(𝑣, 𝜏), Γ𝑢
𝜅1,𝜅2(𝑣, 𝜏) = 𝑄𝜅2(𝑣) +

𝛾𝑢
𝜅1,𝜅2(𝑣, 𝜏), Θ𝑢

𝜅1,𝜅2(𝑣, 𝜏) = −𝑄𝜅1(𝑣) + 𝜃𝑢
𝜅1,𝜅2(𝑣, 𝜏), where 𝑄𝜅1 is given by (7.3.18) and

𝑍𝜅1,𝜅2(𝑣, 𝜏) = 𝛿

𝜔
√

2Ω
𝐹 ′(𝑋𝜅1(𝑣))Γ𝜅2(𝜏) + Θ𝜅2(𝜏)

2 ,

with Γ𝜅1 ,Θ𝜅1 given by (7.3.7). Then, 𝑁𝑢
𝜅1,𝜅2(𝑣, 𝜏), given in (7.8.1), with 𝜅1, 𝜅2 ≥ 0 and

𝜅1 + 𝜅2 = ℎ, parameterizes 𝑊 𝑢(Λ−
𝜅1,𝜅2) provided (𝑧𝑢

𝜅1,𝜅2 , 𝛾
𝑢
𝜅1,𝜅2 , 𝜃

𝑢
𝜅1,𝜅2) satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑣𝑧 + 𝜔𝜕𝜏𝑧 +
𝑍 ′

𝜅1(𝑣)
𝑍𝜅1(𝑣)𝑧 = 𝑓𝜅1,𝜅2

1 (𝑣, 𝜏) − 𝑧 + 𝑍𝜅1,𝜅2(𝑣, 𝜏)
𝑍𝜅1(𝑣) 𝜕𝑣𝑧 − 𝜕𝑣𝑍𝜅1,𝜅2(𝑣, 𝜏)

𝑍𝜅1(𝑣) 𝑧

− 𝛿√
2Ω

𝐹 ′(𝑋𝜅1(𝑣))𝛾 − 𝜃

2𝑖 ,

𝜕𝑣𝛾 + 𝜔𝜕𝜏𝛾 − 𝜔𝑖𝛾 = 𝑓𝜅1,𝜅2
2 (𝑣, 𝜏) − (𝑄𝜅1)′(𝑣)

𝑍𝜅1(𝑣) 𝑧 − 𝑧 + 𝑍𝜅1,𝜅2(𝑣, 𝜏)
𝑍𝜅1(𝑣) 𝜕𝑣𝛾,

𝜕𝑣𝜃 + 𝜔𝜕𝜏𝜃 + 𝜔𝑖𝜃 = −𝑓𝜅1,𝜅2
2 (𝑣, 𝜏) + (𝑄𝜅1)′(𝑣)

𝑍𝜅1(𝑣) 𝑧 − 𝑧 + 𝑍𝜅1,𝜅2(𝑣, 𝜏)
𝑍𝜅1(𝑣) 𝜕𝑣𝜃,

lim
𝑣→−∞

𝑧(𝑣, 𝜏) = lim
𝑣→−∞

𝛾(𝑣, 𝜏) = lim
𝑣→−∞

𝜃(𝑣, 𝜏) = 0,
(7.8.2)
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where

𝑓𝜅1,𝜅2
1 (𝑣, 𝜏) = − 𝜕𝑣𝑍𝜅1,𝜅2(𝑣, 𝜏) −

𝑍 ′
𝜅1(𝑣)

𝑍𝜅1(𝑣)𝑍𝜅1,𝜅2(𝑣, 𝜏) − 𝛿√
2Ω

𝐹 ′(𝑋𝜅1(𝑣))𝑄
𝜅1(𝑣)
𝑖

(7.8.3)

− 𝑍𝜅1,𝜅2(𝑣, 𝜏)𝜕𝑣𝑍𝜅1,𝜅2(𝑣, 𝜏)
𝑍𝜅1(𝑣) ,

𝑓𝜅1,𝜅2
2 (𝑣, 𝜏) = − (𝑄𝜅1)′(𝑣) − 𝑍𝜅1,𝜅2(𝑣, 𝜏)(𝑄𝜅1)′(𝑣)

𝑍𝜅1(𝑣) . (7.8.4)

We consider the equation (7.8.2) with (𝑣, 𝜏) ∈ 𝐷𝑢 ×T𝜎 with the asymptotic conditions
lim

Re(𝑣)→−∞
𝑧(𝑣) = lim

Re(𝑣)→−∞
𝛾(𝑣) = lim

Re(𝑣)→−∞
𝜃(𝑣) = 0, for every 𝜏 ∈ T𝜎.

Theorem (7.3.11) is a consequence of the following proposition.

Proposition 7.8.2. Fix 𝜎 > 0. There exist ℎ0 > 0 and 𝜀0 > 0 sufficiently small such
that for 0 < 𝜀 ≤ 𝜀0, 0 < ℎ ≤ ℎ0 and 𝜅1, 𝜅2 ≥ 0 with 𝜅1 + 𝜅2 = ℎ, system (7.8.2) has an
analytic solution (𝑧𝑢

𝜅1,𝜅2 , 𝛾
𝑢
𝜅1,𝜅2 , 𝜃

𝑢
𝜅1,𝜅2) defined in 𝐷𝑢 × T𝜎 (see (7.3.12) and (7.3.13)) such

that 𝑧𝑢
𝜅1,𝜅2 is real-analytic, 𝜃𝑢

𝜅1,𝜅2(𝑣, 𝜏) = 𝛾𝑢
𝜅1,𝜅2(𝑣, 𝜏) for each (𝑣, 𝜏) ∈ 𝐷𝑢 × T𝜎 ∩ R2 and

lim
Re(𝑣)→−∞

𝑧𝑢
𝜅1,𝜅2(𝑣, 𝜏) = lim

Re(𝑣)→−∞
𝛾𝑢

𝜅1,𝜅2(𝑣, 𝜏) = lim
Re(𝑣)→−∞

𝜃𝑢
𝜅1,𝜅2(𝑣, 𝜏) = 0,

for every 𝜏 ∈ T𝜎. Furthermore, (𝑧𝑢
𝜅1,𝜅2 , 𝛾

𝑢
𝜅1,𝜅2 , 𝜃

𝑢
𝜅1,𝜅2) satisfies the bounds in (7.3.21).

Equation (7.8.2) can be written as the functional equation

ℒ𝜔,𝜅1(𝑧, 𝛾, 𝜃) = 𝒫𝜅1,𝜅2(𝑧, 𝛾, 𝜃),

where ℒ𝜔,𝜅1 and 𝒫𝜅1,𝜅2 are the functional operators given by

ℒ𝜔,𝜅1(𝑧, 𝛾, 𝜃) =

⎛⎜⎜⎜⎜⎜⎝
𝜕𝑣𝑧 + 𝜔𝜕𝜏𝑧 +

𝑍 ′
𝜅1(𝑣)

𝑍𝜅1(𝑣)𝑧

𝜕𝑣𝛾 + 𝜔𝜕𝜏𝛾 − 𝜔𝑖𝛾

𝜕𝑣𝜃 + 𝜔𝜕𝜏𝜃 + 𝜔𝑖𝜃

⎞⎟⎟⎟⎟⎟⎠ ,

and

𝒫𝜅1,𝜅2(𝑧, 𝛾, 𝜃) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓𝜅1,𝜅2
1 (𝑣, 𝜏) − 𝑧 + 𝑍𝜅1,𝜅2(𝑣, 𝜏)

𝑍𝜅1(𝑣) 𝜕𝑣𝑧 − 𝜕𝑣𝑍𝜅1,𝜅2

𝑍𝜅1(𝑣) 𝑧 − 𝛿√
2Ω

𝐹 ′(𝑋𝜅1(𝑣))𝛾 − 𝜃

2𝑖

𝑓𝜅1,𝜅2
2 (𝑣, 𝜏) − (𝑄𝜅1)′(𝑣)

𝑍𝜅1(𝑣) 𝑧 − 𝑧 + 𝑍𝜅1,𝜅2(𝑣, 𝜏)
𝑍𝜅1(𝑣) 𝜕𝑣𝛾

−𝑓𝜅1,𝜅2
2 (𝑣, 𝜏) + (𝑄𝜅1)′(𝑣)

𝑍𝜅1(𝑣) 𝑧 − 𝑧 + 𝑍𝜅1,𝜅2(𝑣, 𝜏)
𝑍𝜅1(𝑣) 𝜕𝑣𝜃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(7.8.5)
We show the existence of an inverse 𝒢𝜅1

𝜔 of ℒ𝜔,𝜅1 in the Banach spaces 𝒳 3
𝛼,𝜎 and 𝒴3

𝛼,𝜎

introduced in Section 7.6.1.
Given analytic functions 𝑓 , 𝑔, and ℎ defined in 𝐷𝑢 × T𝜎, consider

𝐹 [𝑘]
𝜅1 (𝑓)(𝑣) =

∫︁ 𝑣

−∞

𝑒𝜔𝑖𝑘(𝑟−𝑣)𝑍𝜅1(𝑟)
𝑍𝜅1(𝑣) 𝑓 [𝑘](𝑟)𝑑𝑟,
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and 𝐺[𝑘](𝑔), 𝐻 [𝑘](ℎ) given in (7.6.9). Then, we define the linear operator 𝒢𝜅1
𝜔

𝒢𝜅1
𝜔 (𝑓, 𝑔, ℎ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑︁
𝑘

𝐹 [𝑘]
𝜅1 (𝑓)(𝑣)𝑒𝑖𝑘𝜏

∑︁
𝑘

𝐺[𝑘](𝑔)(𝑣)𝑒𝑖𝑘𝜏

∑︁
𝑘

𝐻 [𝑘](ℎ)(𝑣)𝑒𝑖𝑘𝜏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7.8.6)

Lemma 7.8.3. Fix 𝛼 ≥ 1 and 𝜎 > 0. There exists 𝜅0
1 > 0 sufficiently small, such that,

for 0 < 𝜀 ≤ 𝜀0 and 0 < 𝜅1 ≤ 𝜅0
1, the operator

𝒢𝜅1
𝜔 : 𝒳 3

𝛼+1,𝜎 → 𝒴3
𝛼,𝜎

is well-defined and satisfies:

1. 𝒢𝜅1
𝜔 is an inverse of the operator ℒ𝜔,𝜅1 : 𝒴3

𝛼,𝜎 → 𝒳 3
𝛼+1,𝜎, i.e. 𝒢𝜅1

𝜔 ∘ ℒ𝜔,𝜅1 = ℒ𝜔,𝜅1 ∘
𝒢𝜅1

𝜔 = Id;

2. J𝒢𝜅1
𝜔 (𝑓, 𝑔, ℎ)K𝛼,𝜎 ≤ 𝑀‖(𝑓, 𝑔, ℎ)‖𝛼+1,𝜎;

3. If 𝑓 [0] = 𝑔[1] = ℎ[−1] = 0, then J𝒢𝜅1
𝜔 (𝑓, 𝑔, ℎ)K𝛼,𝜎 ≤ 𝑀

𝜔
J(𝑓, 𝑔, ℎ)K𝛼,𝜎,

where 𝑀 is a constant independent of 𝜅1 and 𝜀.

The proof of the following lemma is analogous to that in Lemma 7.9.3 below.

Lemma 7.8.4. Let 𝐹 , 𝑋𝜅1 , 𝑍𝜅1 be given by (7.1.7) and (7.3.5). There exist 𝜅0
1 > 0 and

a constant 𝑀 > 0 such that, for 𝑣 ∈ 𝐷𝑢 and 0 < 𝜅1 ≤ 𝜅0
1,

1. |𝐹 (𝑋𝜅1(𝑣))′′|≤ 𝑀

|𝑣2 + 2|3/2 ;

2.
⃒⃒⃒⃒
⃒𝑍

′
𝜅1(𝑣)

𝑍𝜅1(𝑣)

⃒⃒⃒⃒
⃒ ≤ 𝑀

|
√
𝑣2 + 2|

.

Lemma 7.8.5. Fix 𝜎 > 0 and 𝐾 > 0. There exist 𝜀0 > 0 and ℎ0 > 0 sufficiently small
such that, for 0 < 𝜀 < 𝜀0, 0 ≤ ℎ ≤ ℎ0 and 𝜅1, 𝜅2 ≥ 0 with 𝜅1 + 𝜅2 = ℎ, the operator
𝒫𝜅1,𝜅2 : 𝒴3

1,𝜎 → 𝒳 3
2,𝜎, is well defined and there exists a constant 𝑀 > 0 such that

‖𝒫𝜅1,𝜅2(0, 0, 0)‖2,𝜎≤ 𝑀
𝛿

𝜔
.

Moreover, given (𝑧𝑗, 𝛾𝑗, 𝜃𝑗) ∈ ℬ0(𝐾𝛿/𝜔) ⊂ 𝒴3
1,𝜎, 𝑗 = 1, 2,

‖𝒫𝜅1,𝜅2(𝑧1, 𝛾1, 𝜃1) − 𝒫𝜅1,𝜅2(𝑧2, 𝛾2, 𝜃2)‖2,𝜎 ≤ 𝑀

(︃
𝛿 + 𝛿

𝜔3/2

√
ℎ

)︃
J(𝑧1, 𝛾1, 𝜃1) − (𝑧2, 𝛾2, 𝜃2)K1,𝜎 .

Proof. Recall that 𝒫𝜅1,𝜅2(0, 0, 0) = (𝑓𝜅1,𝜅2
1 , 𝑓𝜅1,𝜅2

2 ,−𝑓𝜅1,𝜅2
2 ), where 𝑓𝜅1,𝜅2

1 , 𝑓𝜅1,𝜅2
2 are given in

(7.8.3) and (7.8.4), respectively, and involve the functions 𝐹 ′(𝑋𝜅1), 𝑍 ′
𝜅1/𝑍𝜅1 , 𝑄

𝜅1 , (𝑄𝜅1)′,
𝑍𝜅1,𝜅2 , 𝜕𝑣𝑍𝜅1,𝜅2 which can be computed using the expressions in (7.1.7), (7.3.5), (7.3.11),
and (7.3.15). By Lemmas 7.7.6, 7.7.7 and 7.8.4, we have
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‖𝑄𝜅1‖1,𝜎, ‖(𝑄𝜅1)′‖2,𝜎≤ 𝑀
𝛿

𝜔
,

‖𝑍𝜅1,𝜅2‖1,𝜎 , ‖𝜕𝑣𝑍𝜅1,𝜅2‖2,𝜎≤ 𝑀
𝛿
√
𝜅2

𝜔3/2 ,

‖𝑍 ′
𝜅1/𝑍𝜅1‖1,𝜎, ‖𝐹 ′(𝑋𝜅1)‖1,𝜎≤ 𝑀.

Therefore, using also Lemma 7.6.4, one has

‖𝑓𝜅1,𝜅2
1 ‖2,𝜎 ≤ 𝑀 max

{︃
𝛿
√
𝜅2

𝜔3/2 ,
𝛿2

𝜔
,
𝛿2

𝜔3𝜅2

}︃
= 𝑀 max

{︃
𝛿
√
𝜅2

𝜔3/2 ,
𝛿2

𝜔

}︃
,

‖𝑓𝜅1,𝜅2
2 ‖2,𝜎 ≤ 𝑀 max

{︃
𝛿

𝜔
,
𝛿2

𝜔5/2
√
𝜅2

}︃
= 𝑀

𝛿

𝜔
.

Thus, ‖𝒫𝜅1,𝜅2(0, 0, 0)‖2,𝜎≤ 𝑀𝛿/𝜔.
Following the lines of the proof of Lemma 7.6.7 one can complete the proof of Lemma

7.8.5.

Now, we write Proposition 7.8.2 in terms of Banach spaces. Then, it can be proved in
the same way as Proposition 7.6.8 by considering the operator 𝒢𝜔,𝜅1,𝜅2 = 𝒢𝜅1

𝜔 ∘ 𝒫𝜅1,𝜅2 .

Proposition 7.8.6. Fix 𝜎 > 0. There exist ℎ0 > 0 and 𝜀0 > 0 such that, for 0 < 𝜀 ≤ 𝜀0,
0 < ℎ ≤ ℎ0 and 𝜅1, 𝜅2 ≥ 0 with 𝜅1 + 𝜅2 = ℎ, the operator 𝒢𝜔,𝜅1,𝜅2 = 𝒢𝜅1

𝜔 ∘ 𝒫𝜅1,𝜅2, with 𝒢𝜅1
𝜔

and 𝒫𝜅1,𝜅2 given in (7.8.6) and (7.8.5), respectively, has a fixed point (𝑧𝑢
𝜅1,𝜅2 , 𝛾

𝑢
𝜅1,𝜅2 , 𝜃

𝑢
𝜅1,𝜅2) ∈

𝒴3
1,𝜎. Furthermore, there exists a constant 𝑀 > 0 independent of 𝜀, 𝜅1 and 𝜅2 such that

J(𝑧𝑢
𝜅1,𝜅2 , 𝛾

𝑢
𝜅1,𝜅2 , 𝜃

𝑢
𝜅1,𝜅2)K1,𝜎 ≤ 𝑀

𝛿

𝜔
.

This completes the proof of Theorem 7.3.11.

7.9 Proof of Theorem 7.3.12
We compare the parameterizations of 𝑊 𝑢

𝜀 (Λ−
𝜅1,𝜅2) obtained in Sections 7.6, 7.7 and 7.8,

respectively, with the parameterization (7.4.1) of 𝑊 𝑢
𝜀 (𝑝−

0 ) obtained in Section 7.4.

7.9.1 Approximation of 𝑊 𝑢
𝜀 (Λ−

ℎ ) by 𝑊 𝑢
𝜀 (𝑝−

0 )
We compare the parameterizations 𝑁𝑢

0,ℎ and 𝑁𝑢
0,0 of 𝑊 𝑢

𝜀 (Λ−
ℎ ) and 𝑊 𝑢

𝜀 (𝑝−
0 ), obtained

in Theorems 7.3.8 and 7.3.5, respectively.

Proposition 7.9.1. Let Γ𝑢
0(𝑣), Θ𝑢

0(𝑣) and Γ𝑢
0,ℎ(𝑣, 𝜏), Θ𝑢

0,ℎ(𝑣, 𝜏) be given in (7.3.10) and
(7.3.14), respectively. Given ℎ0 > 0, there exists 𝜀0 > 0 and a constant 𝑀 > 0, such that
for 𝑣 ∈ 𝐷𝑢 ∩ R, 𝜏 ∈ T, 0 ≤ 𝜀 ≤ 𝜀0 and 0 ≤ ℎ ≤ ℎ0,

⃒⃒⃒
𝜕𝜏 (Γ𝑢

0,ℎ(𝑣, 𝜏) − Γ𝑢
0(𝑣))

⃒⃒⃒
,
⃒⃒⃒
Γ𝑢

0,ℎ(𝑣, 𝜏) − Γ𝑢
0(𝑣)

⃒⃒⃒
≤ 𝑀

𝛿
√
ℎ

𝜔3/2 ,⃒⃒⃒
𝜕𝜏 (Θ𝑢

0,ℎ(𝑣, 𝜏) − Θ𝑢
0(𝑣))

⃒⃒⃒
,
⃒⃒⃒
Θ𝑢

0,ℎ(𝑣, 𝜏) − Θ𝑢
0(𝑣)

⃒⃒⃒
≤ 𝑀

𝛿
√
ℎ

𝜔3/2 .
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Proof. Considering ℎ = 0 in Theorem 7.3.8, it follows that 𝑁𝑢
0,0(𝑣, 𝜏) is also a param-

eterization of 𝑊 𝑢
𝜀 (𝑝−

0 ). Since 𝑊 𝑢
𝜀 (𝑝−

0 ) is parameterized by both 𝑁𝑢
0,0(𝑣) (from Theorem

7.3.5) and 𝑁𝑢
0,0(𝑣, 𝜏) (from Theorem 7.3.8) and both have the same first coordinate, these

parameterizations coincide. Therefore 𝛾𝑢
0,0 and 𝜃𝑢

0,0 given in Theorem 7.3.8 with ℎ = 0
depend only on the variable 𝑣 and we can write

Γ𝑢
0(𝑣) = 𝑄0(𝑣) + 𝛾𝑢

0,0(𝑣),
Θ𝑢

0(𝑣) = −𝑄0(𝑣) + 𝜃𝑢
0,0(𝑣).

Based on these arguments, we can use Theorem 7.3.8 and Proposition 7.6.8 to see that⎛⎝ Γ𝑢
0,ℎ(𝑣, 𝜏) − Γ𝑢

0(𝑣)
Θ𝑢

0,ℎ(𝑣, 𝜏) − Θ𝑢
0(𝑣)

⎞⎠ =
⎛⎝ 𝛾𝑢

0,ℎ(𝑣, 𝜏) − 𝛾𝑢
0,0(𝑣)

𝜃𝑢
0,ℎ(𝑣, 𝜏) − 𝜃𝑢

0,0(𝑣)

⎞⎠ ,
where (𝑧𝑢

0,0, 𝛾
𝑢
0,0, 𝜃

𝑢
0,0) and (𝑧𝑢

0,ℎ, 𝛾
𝑢
0,ℎ, 𝜃

𝑢
0,ℎ) are fixed points of the operators 𝒢𝜔,0 and 𝒢𝜔,ℎ

given in (7.6.11), respectively.
Denoting

ℰ = (𝑧𝑢
0,ℎ − 𝑧𝑢

0,0, 𝛾
𝑢
0,ℎ − 𝛾𝑢

0,0, 𝜃
𝑢
0,ℎ − 𝜃𝑢

0,0),
we compute ‖ℰ‖1,𝜎.

Notice that

ℰ = (𝑧𝑢
0,ℎ − 𝑧𝑢

0,0, 𝛾
𝑢
0,ℎ − 𝛾𝑢

0,0, 𝜃
𝑢
0,ℎ − 𝜃𝑢

0,0)
= 𝒢𝜔,ℎ(𝑧𝑢

0,ℎ, 𝛾
𝑢
0,ℎ, 𝜃

𝑢
0,ℎ) − 𝒢𝜔,ℎ(𝑧𝑢

0,0, 𝛾
𝑢
0,0, 𝜃

𝑢
0,0)

+𝒢𝜔,ℎ(𝑧𝑢
0,0, 𝛾

𝑢
0,0, 𝜃

𝑢
0,0) − 𝒢𝜔,0(𝑧𝑢

0,0, 𝛾
𝑢
0,0, 𝜃

𝑢
0,0).

For 0 ≤ ℎ ≤ ℎ0, (𝑧𝑢
0,ℎ, 𝛾

𝑢
0,ℎ, 𝜃

𝑢
0,ℎ) ∈ ℬ0(𝑀𝛿/𝜔) and 𝒢𝜔,ℎ is Lipschitz in this ball with

Lip(𝒢𝜔,ℎ) ≤ 𝑀𝛿. Then,

J𝒢𝜔,ℎ(𝑧𝑢
0,ℎ, 𝛾

𝑢
0,ℎ, 𝜃

𝑢
0,ℎ) − 𝒢𝜔,ℎ(𝑧𝑢

0,0, 𝛾
𝑢
0,0, 𝜃

𝑢
0,0)K1,𝜎 ≤ 𝑀𝛿JℰK1,𝜎.

Choosing 𝜀0 sufficiently small such that Lip(𝒢𝜔,ℎ) < 1/2, we obtain

JℰK1,𝜎 ≤ 𝑀J𝒢𝜔,ℎ(𝑧𝑢
0,0, 𝛾

𝑢
0,0, 𝜃

𝑢
0,0) − 𝒢𝜔,0(𝑧𝑢

0,0, 𝛾
𝑢
0,0, 𝜃

𝑢
0,0)K1,𝜎.

Now, denoting 𝒫ℎ(𝑧𝑢
0,0, 𝛾

𝑢
0,0, 𝜃

𝑢
0,0)−𝒫0(𝑧𝑢

0,0, 𝛾
𝑢
0,0, 𝜃

𝑢
0,0) = Δ0

ℎ, where 𝒫ℎ is given in (7.6.7),
and using that

q
(𝑧𝑢

0,0, 𝛾
𝑢
0,0, 𝜃

𝑢
0,0)

y
1,𝜎

≤ 𝑀𝛿/𝜔, we have that ‖Δ0
ℎ‖2,𝜎 ≤ 𝑀 𝛿

√
ℎ

𝜔3/2 .

It follows from the linearity of 𝒢𝜔 and Lemma 7.6.5 that

q
𝒢𝜔,ℎ(𝑧𝑢

0,0, 𝛾
𝑢
0,0, 𝜃

𝑢
0,0) − 𝒢𝜔,0(𝑧𝑢

0,0, 𝛾
𝑢
0,0, 𝜃

𝑢
0,0)

y
1,𝜎

≤ 𝑀
𝛿
√
ℎ

𝜔3/2 .

Thus, we conclude that JℰK1,𝜎 ≤ 𝑀
𝛿
√
ℎ

𝜔3/2 .

7.9.2 Approximation of 𝑊 𝑢
𝜀 (𝑝−

ℎ ) by 𝑊 𝑢
𝜀 (𝑝−

0 )
We compare the parameterizations 𝑁𝑢

0,0 and 𝑁𝑢
ℎ,0 of 𝑊 𝑢

𝜀 (𝑝−
0 ) and 𝑊 𝑢

𝜀 (𝑝−
ℎ ), obtained in

Theorems 7.3.5 and 7.3.10, respectively.
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Proposition 7.9.2. Let Γ𝑢
0(𝑣), Θ𝑢

0(𝑣) and Γ𝑢
ℎ,0(𝑣), Θ𝑢

ℎ,0(𝑣) be given in (7.3.10) and (7.3.17),
respectively. There exist 𝜀0 > 0, ℎ0 > 0 and a constant 𝑀 > 0 such that, for 0 < 𝜀 ≤ 𝜀0
and 0 ≤ ℎ ≤ ℎ0,

1.
⃒⃒⃒
Γ𝑢

ℎ,0(0) − Γ𝑢
0(0)

⃒⃒⃒
≤ 𝑀

𝛿
√
ℎ

𝜔2 ;

2.
⃒⃒⃒
Θ𝑢

ℎ,0(0) − Θ𝑢
0(0)

⃒⃒⃒
≤ 𝑀

𝛿
√
ℎ

𝜔2 .

Technical Lemmas

To prove Proposition 7.9.2, we first state some lemmas.

Lemma 7.9.3. Let 𝑋0, 𝑍0, 𝑋ℎ, 𝑍ℎ, 𝑄
0, and 𝑄ℎ be given in (7.3.4), (7.3.5), (7.3.11)

and (7.3.18) and fix 𝑀0 > 0. There exist ℎ0 > 0 and a constant 𝑀 > 0 such that, for
0 ≤ ℎ ≤ ℎ0 and 𝑣 ∈ 𝐷𝑢 with |ℎ1/4𝑣|≤ 𝑀0,

1. |𝐹 (𝑋ℎ(𝑣)) − 𝐹 (𝑋0(𝑣))| ≤ 𝑀
√
ℎ

|
√
𝑣2 + 2|

;

2. |𝑍ℎ(𝑣) − 𝑍0(𝑣)| ≤ 𝑀
√
ℎ

|
√
𝑣2 + 2|

;

3.
⃒⃒⃒⃒
⃒ 1
𝑍ℎ(𝑣) − 1

𝑍0(𝑣)

⃒⃒⃒⃒
⃒ 1
|
√
𝑣2 + 2|

≤ 𝑀
√
ℎ;

4.
⃒⃒⃒
(𝑄ℎ)′(𝑣) − (𝑄0)′(𝑣)

⃒⃒⃒
≤ 𝑀𝛿

√
ℎ

𝜔|𝑣2 + 2|
.

Proof. Using the formulas (7.1.7), (7.3.4) and (7.3.5), we obtain

𝐹 (𝑋ℎ(𝑣)) − 𝐹 (𝑋0(𝑣)) = −2
⎛⎝

√︁
2+ℎ

ℎ
sinh(𝑣

√
ℎ/2)

1 + 2+ℎ
ℎ

sinh2(𝑣
√
ℎ/2)

−
√

2 𝑣

𝑣2 + 2

⎞⎠ .
Since |𝑣ℎ1/4|≤ 𝑀0, it follows that |𝑣

√
ℎ/2|≤ 𝑀ℎ1/4 ≪ 1.

Expanding sinh(𝑧) at 0, we have√︃
2 + ℎ

ℎ
sinh(𝑣

√
ℎ/2)

1 + 2+ℎ
ℎ

sinh2(𝑣
√
ℎ/2)

=

√︃
2 + ℎ

ℎ

(︃
𝑣
√
ℎ

2 + 𝒪(ℎ3/2|𝑣|3)
)︃

1 + 2 + ℎ

ℎ

(︃
𝑣2ℎ

4 + 𝒪(ℎ2|𝑣|4)
)︃

=
√

2𝑣 + 𝒪(
√
ℎ|𝑣|)

𝑣2 + 2 + 𝒪(
√
ℎ|𝑣|2)

=
√

2𝑣
𝑣2 + 2

(︁
1 + 𝒪(

√
ℎ)
)︁
.

Item (1) follows directly from this expression, considering ℎ sufficiently small. Items
(2) and (3) can be computed in an analogous way.
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Formulas (7.3.11) and (7.3.18) imply⃒⃒⃒
(𝑄ℎ)′(𝑣) − (𝑄0)′(𝑣)

⃒⃒⃒
≤ 𝑀

𝛿

𝜔
|𝐹 ′(𝑋ℎ(𝑣))𝑍ℎ(𝑣) − 𝐹 ′(𝑋0(𝑣))𝑍0(𝑣)|.

Thus, it is enough to apply the bounds in items (1) and (2) to obtain item (4).

Lemma 7.9.4. Let 𝜂0 and 𝜂ℎ be given in (7.4.4) and (7.7.3), respectively, and consider
the functions (𝛾𝑢

0 , 𝜃
𝑢
0 ) obtained in Proposition 7.4.6. Fix 𝑀0 > 0. There exist 𝜀0 > 0,

ℎ0 > 0 and a constant 𝑀 > 0 such that for 0 < 𝜀 ≤ 𝜀0, 0 ≤ ℎ ≤ ℎ0 and 𝑣 ∈ 𝐷𝑢 with
|ℎ1/4𝑣|≤ 𝑀0,

|𝜂ℎ(𝑣, 𝛾𝑢
0 , 𝜃

𝑢
0 ) − 𝜂0(𝑣, 𝛾𝑢

0 , 𝜃
𝑢
0 )| ≤ 𝑀𝛿

√
ℎ

𝜔
.

Proof. Using the expression of 𝜂ℎ in (7.7.3) and that ‖(𝛾𝑢
0 , 𝜃

𝑢
0 )‖2 ≤ 𝑀𝛿/𝜔2 ≪ 1, it follows

from Lemmas 7.7.6, 7.7.7 and 7.9.3 that

|𝜂ℎ(𝑣, 𝛾𝑢
0 , 𝜃

𝑢
0 ) − 𝜂0(𝑣, 𝛾𝑢

0 , 𝜃
𝑢
0 )| ≤ 𝑀

𝛿

𝜔

⃒⃒⃒⃒
⃒⃒
(︃
𝐹 (𝑋ℎ)
𝑍ℎ

)︃2

−
(︃
𝐹 (𝑋0)
𝑍0

)︃2
⃒⃒⃒⃒
⃒⃒+𝑀𝜔 |𝛾𝑢

0 𝜃
𝑢
0 |
⃒⃒⃒⃒
⃒ 1
𝑍2

ℎ

− 1
𝑍2

0

⃒⃒⃒⃒
⃒

≤ 𝑀𝛿
√
ℎ

𝜔
.

Proof of Proposition 7.9.2

The domain 𝐷𝑢 defined in (7.3.12) is contained in the domain 𝐷𝑢
𝜀 defined in (7.3.9).

Therefore, the restriction of the fixed point obtained in Section 7.4 can be seen as an
element of the space 𝒳 2

2 with the same bound.

Proposition 7.9.5. Consider (𝛾𝑢
0 , 𝜃

𝑢
0 ) and (𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) obtained in Theorems 7.4.6 and

7.7.11, respectively, and the operator 𝒢𝜔,ℎ given by (7.7.4). Then, there exist 𝜀0 > 0,
ℎ0 > 0 and a constant 𝑀 > 0 such that for 0 ≤ ℎ ≤ ℎ0 and 0 < 𝜀 ≤ 𝜀0,⃦⃦⃦

𝒢𝜔,ℎ(𝛾𝑢
ℎ,0, 𝜃

𝑢
ℎ,0) − 𝒢𝜔,ℎ(𝛾𝑢

0 , 𝜃
𝑢
0 )
⃦⃦⃦

0
≤ 𝑀

𝛿2

𝜔

⃦⃦⃦
(𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) − (𝛾𝑢

0 , 𝜃
𝑢
0 )
⃦⃦⃦

0
.

Proof. By Proposition 7.7.10, we have⃒⃒⃒
𝜂ℎ(𝑣, 𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) − 𝜂ℎ(𝑣, 𝛾𝑢

0 , 𝜃
𝑢
0 )
⃒⃒⃒
≤ 𝑀

𝛿

𝜔

⃦⃦⃦
(𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) − (𝛾𝑢

0 , 𝜃
𝑢
0 )
⃦⃦⃦

0
.

Thus, using the expression of ℱℎ in (7.7.5) and Proposition 7.7.10,⃦⃦⃦
𝜋1(ℱℎ(𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) − ℱℎ(𝛾𝑢

0 , 𝜃
𝑢
0 ))
⃦⃦⃦

0
≤ 𝜔

⃦⃦⃦
𝜂ℎ(𝑣, 𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) − 1

⃦⃦⃦
0

⃦⃦⃦
𝛾𝑢

ℎ,0 − 𝛾𝑢
0

⃦⃦⃦
0

+𝜔 ‖𝛾𝑢
0 ‖0

⃦⃦⃦
𝜂ℎ(𝑣, 𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) − 𝜂ℎ(𝑣, 𝛾𝑢

0 , 𝜃
𝑢
0 )
⃦⃦⃦

0

≤ 𝑀𝛿2
⃦⃦⃦
𝛾𝑢

ℎ,0 − 𝛾𝑢
0

⃦⃦⃦
0

+𝑀𝛿 ‖𝛾𝑢
0 ‖2

⃦⃦⃦
(𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) − (𝛾𝑢

0 , 𝜃
𝑢
0 )
⃦⃦⃦

0

≤ 𝑀

(︃
𝛿2 + 𝛿2

𝜔2

)︃ ⃦⃦⃦
(𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) − (𝛾𝑢

0 , 𝜃
𝑢
0 )
⃦⃦⃦

0
.
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The same bound can be obtained for the second coordinate of ℱℎ. Thus⃦⃦⃦
ℱℎ(𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) − ℱℎ(𝛾𝑢

0 , 𝜃
𝑢
0 )
⃦⃦⃦

0
≤ 𝑀𝛿2

⃦⃦⃦
(𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) − (𝛾𝑢

0 , 𝜃
𝑢
0 )
⃦⃦⃦

0
.

Now, denote Δ𝑗
ℎ = 𝜋𝑗

(︁
ℱℎ(𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) − ℱℎ(𝛾𝑢

0 , 𝜃
𝑢
0 )
)︁
, 𝑗 = 1, 2, and Δℎ = (Δ1

ℎ,Δ2
ℎ). Then,

⃒⃒⃒
𝜋1
(︁
𝒢𝜔,ℎ(𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) − 𝒢𝜔,ℎ(𝛾𝑢

0 , 𝜃
𝑢
0 )
)︁

(𝑣)
⃒⃒⃒

=
⃒⃒⃒⃒∫︁ 0

−∞
𝑒𝜔𝑖𝑠Δ1

ℎ(𝑠+ 𝑣)𝑑𝑠
⃒⃒⃒⃒
.

Since Δℎ ∈ 𝒳 2
2 , we can change the path of integration to obtain⃒⃒⃒⃒∫︁ 0

−∞
𝑒𝜔𝑖𝑠Δ1

ℎ(𝑠+ 𝑣)𝑑𝑠
⃒⃒⃒⃒

=
⃒⃒⃒⃒∫︁ 0

−∞
𝑒𝜔𝑖𝑒−𝑖𝛽𝜉Δ1

ℎ(𝑒−𝑖𝛽𝜉 + 𝑣)𝑒𝑖𝛽𝑑𝜉
⃒⃒⃒⃒

≤
∫︁ 0

−∞
𝑒𝜔 sin(𝛽)𝜉|Δ1

ℎ(𝑒−𝑖𝛽𝜉 + 𝑣)|𝑑𝜉

≤ ‖Δℎ‖0

∫︁ 0

−∞
𝑒𝜔 sin(𝛽)𝜉𝑑𝜉

≤ 𝑀

𝜔
‖Δℎ‖0.

The same argument holds for the second coordinate of 𝒢𝜔,ℎ(𝛾𝑢
ℎ,0, 𝜃

𝑢
ℎ,0) − 𝒢𝜔,ℎ(𝛾𝑢

0 , 𝜃
𝑢
0 ).

Lemma 7.9.6. Let ℱ0 and ℱℎ be given in (7.4.7) and (7.7.5), respectively, and consider
the functions (𝛾𝑢

0 , 𝜃
𝑢
0 ) obtained in Theorem 7.4.6. Given 𝑀0 > 0 fixed, there exist 𝜀0,

ℎ0 > 0 and a constant 𝑀 > 0 such that for 0 ≤ ℎ ≤ ℎ0, 0 < 𝜀 ≤ 𝜀0 and 𝑣 ∈ 𝐷𝑢 with
|ℎ1/4𝑣|≤ 𝑀0,

|𝜋𝑗 ∘ ℱℎ(𝛾𝑢
0 , 𝜃

𝑢
0 )(𝑣) − 𝜋𝑗 ∘ ℱ0(𝛾𝑢

0 , 𝜃
𝑢
0 )(𝑣)| ≤ 𝑀𝛿

√
ℎ

𝜔|𝑣2 + 2|
, 𝑗 = 1, 2.

Proof. Lemmas 7.9.3 and 7.9.4 imply

|𝜋1(ℱℎ(𝛾𝑢
0 , 𝜃

𝑢
0 )(𝑣) − ℱ0(𝛾𝑢

0 , 𝜃
𝑢
0 ))(𝑣)| ≤ |(𝑄ℎ)′(𝑣) − (𝑄0)′(𝑣)|

+𝜔 |𝛾𝑢
0 | |𝜂ℎ(𝑣, 𝛾𝑢

0 , 𝜃
𝑢
0 ) − 𝜂0(𝑣, 𝛾𝑢

0 , 𝜃
𝑢
0 )|

≤ 𝑀
𝛿
√
ℎ

𝜔|𝑣2 + 2|
.

The same holds for the second coordinate.

Proposition 7.9.7. Consider the functions (𝛾𝑢
0 , 𝜃

𝑢
0 ) obtained in Proposition 7.4.6 and the

operators 𝒢𝜔,0 and 𝒢𝜔,ℎ given in (7.4.5) and (7.7.4), respectively. There exist 𝜀0 >, ℎ0 > 0
and a constant 𝑀 > 0 such that, for 0 < 𝜀 ≤ 𝜀0 and 0 < ℎ ≤ ℎ0

‖𝒢𝜔,ℎ(𝛾𝑢
0 , 𝜃

𝑢
0 ) − 𝒢𝜔,0(𝛾𝑢

0 , 𝜃
𝑢
0 )‖0 ≤ 𝑀𝛿

√
ℎ

𝜔2 .

Proof. It follows from the proof of Proposition 7.7.11 that the Lipschitz constant of 𝒢𝜔,ℎ

in a ball ℬ0(𝐾𝛿/𝜔2), for some 𝐾 > 0 fixed, satisfies Lip(𝒢𝜔,ℎ) ≤ 𝑀𝛿2/𝜔. Moreover,
‖𝒢𝜔,ℎ(0, 0)‖2≤ 𝑀𝛿/𝜔2 and ‖(𝛾𝑢

0 , 𝜃
𝑢
0 )‖2≤ 𝑀𝛿/𝜔2. Thus

‖𝒢𝜔,ℎ(𝛾𝑢
0 , 𝜃

𝑢
0 )‖2≤ ‖𝒢𝜔,ℎ(𝛾𝑢

0 , 𝜃
𝑢
0 ) − 𝒢𝜔,ℎ(0, 0)‖2+‖𝒢𝜔,ℎ(0, 0)‖2≤ 𝑀

𝛿

𝜔2 .
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Moreover, ‖𝒢𝜔,0(𝛾𝑢
0 , 𝜃

𝑢
0 )‖2= ‖(𝛾𝑢

0 , 𝜃
𝑢
0 )‖2≤ 𝑀𝛿/𝜔2.

Let 𝑣 ∈ 𝐷𝑢 and first assume that |ℎ1/4𝑣|≥ 1, hence

|𝜋𝑗(𝒢𝜔,ℎ(𝛾𝑢
0 , 𝜃

𝑢
0 )(𝑣) − 𝒢𝜔,0(𝛾𝑢

0 , 𝜃
𝑢
0 )(𝑣))| ≤

‖𝒢𝜔,ℎ(𝛾𝑢
0 , 𝜃

𝑢
0 )‖2

|𝑣2 + 2|
+ ‖𝒢𝜔,0(𝛾𝑢

0 , 𝜃
𝑢
0 )‖2

|𝑣2 + 2|

≤ 𝑀
𝛿

𝜔2||𝑣|2−2|

≤ 𝑀
𝛿

𝜔2(1/
√
ℎ− 2)

≤ 𝑀
𝛿

𝜔2

√
ℎ,

for ℎ > 0 sufficiently small, 𝑗 = 1, 2.
Now, assume that |ℎ1/4𝑣|< 1, and denote Δ𝑗

ℎ = 𝜋𝑗(ℱℎ(𝛾𝑢
0 , 𝜃

𝑢
0 ) − ℱ0(𝛾𝑢

0 , 𝜃
𝑢
0 )), 𝑗 = 1, 2.

Consider the path 𝑠 = 𝑒−𝑖𝛽𝜉 (since Δℎ ∈ 𝒳 2
2 ) and let 𝜉0(𝑣) ∈ R be such that 𝑣0(𝑣) =

𝑣 + 𝑒−𝑖𝛽𝜉0(𝑣) is the unique point of intersecion between the curve 𝛾(𝜉) = 𝑣 + 𝑒−𝑖𝛽𝜉 and
the circle 𝑆ℎ of radius ℎ−1/4 centered at the origin.

|𝜋1(𝒢𝜔,ℎ(𝛾𝑢
0 , 𝜃

𝑢
0 ) − 𝒢𝜔,0(𝛾𝑢

0 , 𝜃
𝑢
0 ))(𝑣)| =

⃒⃒⃒⃒∫︁ 0

−∞
𝑒𝜔𝑖𝑠Δ1

ℎ(𝑠+ 𝑣)𝑑𝑠
⃒⃒⃒⃒

=
⃒⃒⃒⃒∫︁ 0

−∞
𝑒−𝜔𝑖𝑒−𝑖𝛽𝜉Δ1

ℎ(𝑣 + 𝑒−𝑖𝛽𝜉)𝑒−𝑖𝛽𝑑𝜉
⃒⃒⃒⃒

≤
⃒⃒⃒⃒
⃒
∫︁ 𝜉0(𝑣)

−∞
𝑒−𝜔𝑖𝑒−𝑖𝛽𝜉Δ1

ℎ(𝑣 + 𝑒−𝑖𝛽𝜉)𝑒−𝑖𝛽𝑑𝜉

⃒⃒⃒⃒
⃒

+
⃒⃒⃒⃒
⃒
∫︁ 0

𝜉0(𝑣)
𝑒−𝜔𝑖𝑒−𝑖𝛽𝜉Δ1

ℎ(𝑣 + 𝑒−𝑖𝛽𝜉)𝑒−𝑖𝛽𝑑𝜉

⃒⃒⃒⃒
⃒

Notice that the points in the path 𝛾(𝜉) = 𝑣+ 𝑒−𝑖𝛽𝜉 satisfy that |𝛾(𝜉)ℎ1/4|≥ 1 for every
𝜉 ≤ 𝜉0(𝑣) and |𝛾(𝜉)ℎ1/4|< 1 for every 𝜉0(𝑣) < 𝜉 < 0. Also, let 𝑣*

0(𝑣) = 𝑒𝑖𝛽𝑣0(𝑣), and notice
that Im(𝑣*

0(𝑣)) = Im(𝑣) and |ℎ1/4𝑣*
0(𝑣)|= 1.

ℎ−1/4

𝑆ℎ

𝛾(𝜉)

𝑣*
0(𝑣)

𝑣0(𝑣)

𝑣𝛽

𝛽

Figure 7.10: Definition of the points 𝑣0(𝑣) and 𝑣*
0(𝑣).
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Thus the first integral satisfies that⃒⃒⃒⃒
⃒
∫︁ 𝜉0(𝑣)

−∞
𝑒−𝜔𝑖𝑒−𝑖𝛽𝜉Δ1

ℎ(𝑣 + 𝑒−𝑖𝛽𝜉)𝑒−𝑖𝛽𝑑𝜉

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
∫︁ 𝑣*

0(𝑣)

−∞
𝑒𝜔𝑖(𝑣−𝑟)Δ1

ℎ(𝑟)𝑑𝑟
⃒⃒⃒⃒
⃒

=
⃒⃒⃒⃒
⃒𝑒𝜔𝑖(𝑣−𝑣*

0(𝑣))
∫︁ 𝑣*

0(𝑣)

−∞
𝑒𝜔𝑖(𝑣*

0(𝑣)−𝑟)Δ1
ℎ(𝑟)𝑑𝑟

⃒⃒⃒⃒
⃒

= |𝜋1(𝒢𝜔,ℎ(𝛾𝑢
0 , 𝜃

𝑢
0 )(𝑣*

0(𝑣)) − 𝒢𝜔,0(𝛾𝑢
0 , 𝜃

𝑢
0 )(𝑣*

0(𝑣)))|

≤ 𝑀
𝛿
√
ℎ

𝜔2 .

Now, since |𝛾(𝜉)ℎ1/4|< 1 for every 𝜉0(𝑣) < 𝜉 < 0, we can use Lemma 7.9.6 to see that
the second integral satisfies⃒⃒⃒⃒

⃒
∫︁ 0

𝜉0(𝑣)
𝑒−𝜔𝑖𝑒−𝑖𝛽𝜉Δ1

ℎ(𝑣 + 𝑒−𝑖𝛽𝜉)𝑒−𝑖𝛽𝑑𝜉

⃒⃒⃒⃒
⃒ ≤

∫︁ 0

𝜉0(𝑣)
𝑒𝜔 sin(𝛽)𝜉|Δ1

ℎ(𝑣 + 𝑒−𝑖𝛽𝜉)|𝑑𝜉

≤ 𝑀𝛿
√
ℎ

𝜔

∫︁ 0

−∞
𝑒𝜔 sin(𝛽)𝜉 1

|(𝑣 + 𝑒−𝑖𝛽𝜉)2 + 2|
𝑑𝜉

≤ 𝑀𝛿
√
ℎ

𝜔|𝑣2 + 2|

∫︁ 0

−∞
𝑒𝜔 sin(𝛽)𝜉𝑑𝜉

≤ 𝑀𝛿
√
ℎ

𝜔2|𝑣2 + 2|
.

The result follows from these bounds.

Now, define ℰ(𝑣) = (𝛾𝑢
ℎ,0(𝑣) − 𝛾𝑢

0 (𝑣), 𝜃𝑢
ℎ,0(𝑣) − 𝜃𝑢

0 (𝑣)) and notice that⎛⎝ Γ𝑢
ℎ,0(0) − Γ𝑢

0(0)
Θ𝑢

ℎ,0(0) − Θ𝑢
0(0)

⎞⎠ =
⎛⎝ 𝑄ℎ(0) −𝑄0(0)

−𝑄ℎ(0) +𝑄0(0)

⎞⎠+ ℰ(0)𝑇 .

Using (7.3.11) and (7.3.18), we have 𝑄ℎ(0) = 𝑄0(0) = 0. Hence, to prove Proposition
7.9.2, it is enough to bound ‖ℰ‖0. Since (𝛾𝑢

ℎ,0, 𝜃
𝑢
ℎ,0) and (𝛾𝑢

0 , 𝜃
𝑢
0 ) are fixed points of 𝒢𝜔,ℎ

and 𝒢𝜔,0, respectively,

ℰ = (𝛾𝑢
ℎ,0, 𝜃

𝑢
ℎ,0) − (𝛾𝑢

0 , 𝜃
𝑢
0 )

= 𝒢𝜔,ℎ(𝛾𝑢
ℎ,0, 𝜃

𝑢
ℎ,0) − 𝒢𝜔,ℎ(𝛾𝑢

0 , 𝜃
𝑢
0 ) + 𝒢𝜔,ℎ(𝛾𝑢

0 , 𝜃
𝑢
0 ) − 𝒢𝜔,0(𝛾𝑢

0 , 𝜃
𝑢
0 ).

It follows from Propositions 7.9.5 and 7.9.7 that

‖ℰ‖0 ≤ ‖𝒢𝜔,ℎ(𝛾𝑢
ℎ,0, 𝜃

𝑢
ℎ,0) − 𝒢𝜔,ℎ(𝛾𝑢

0 , 𝜃
𝑢
0 )‖0+‖𝒢𝜔,ℎ(𝛾𝑢

0 , 𝜃
𝑢
0 ) − 𝒢𝜔,0(𝛾𝑢

0 , 𝜃
𝑢
0 )‖0

≤ 𝑀𝛿2‖ℰ‖0+
𝑀𝛿

√
ℎ

𝜔2 .

Thus, for 𝜀0 sufficiently small, we have that ‖ℰ‖0≤ 2𝑀𝛿
√
ℎ

𝜔2 . This completes the proof.
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7.9.3 Approximation of 𝑊 𝑢
𝜀 (Λ−

𝜅1,𝜅2
) by 𝑊 𝑢

𝜀 (𝑝−
0 )

In this section, we obtain an approximation of 𝑁𝑢
𝜅1,𝜅2 by 𝑁𝑢

0,0, by approximating 𝑁𝑢
𝜅1,𝜅2

by 𝑁𝑢
𝜅1,0 and 𝑁𝑢

𝜅1,0 by 𝑁𝑢
0,0.

Proceeding as for Proposition 7.9.1 and Lemma 7.8.5, one can obtain the next result.

Proposition 7.9.8. Let Γ𝑢
𝜅1,0(𝑣), Θ𝑢

𝜅1,0(𝑣) and Γ𝑢
𝜅1,𝜅2(𝑣, 𝜏), Θ𝑢

𝜅1,𝜅2(𝑣, 𝜏) be given in (7.3.17)
and (7.3.20), respectively. There exist 𝜀0 > 0, ℎ0 > 0 and a constant 𝑀 > 0 such that,
for 𝑣 ∈ 𝐷𝑢 ∩ R, 𝜏 ∈ T, 0 ≤ 𝜀 ≤ 𝜀0, 0 ≤ ℎ ≤ ℎ0 𝜅1, 𝜅2 ≥ 0 with 𝜅1 + 𝜅2 = ℎ,

⃒⃒⃒
𝜕𝜏 (Γ𝑢

𝜅1,𝜅2(𝑣, 𝜏) − Γ𝑢
𝜅1,0(𝑣))

⃒⃒⃒
,
⃒⃒⃒
Γ𝑢

𝜅1,𝜅2(𝑣, 𝜏) − Γ𝑢
𝜅1,0(𝑣)

⃒⃒⃒
≤ 𝑀

𝛿
√
𝜅2

𝜔3/2 ,⃒⃒⃒
𝜕𝜏 (Θ𝑢

𝜅1,𝜅2(𝑣, 𝜏) − Θ𝑢
𝜅1,0(𝑣))

⃒⃒⃒
,
⃒⃒⃒
Θ𝑢

𝜅1,𝜅2(𝑣, 𝜏) − Θ𝑢
𝜅1,0(𝑣)

⃒⃒⃒
≤ 𝑀

𝛿
√
𝜅2

𝜔3/2 .

Notice that Proposition 7.9.2 allows us to approximate 𝑁𝑢
𝜅1,0 by 𝑁𝑢

0,0, for 𝜅1 sufficiently
small. Thus, we can combine this fact with Proposition 7.9.8 to obtain the following
proposition.

Proposition 7.9.9. Let Γ𝑢
0(𝑣), Θ𝑢

0(𝑣) and Γ𝑢
𝜅1,𝜅2(𝑣, 𝜏), Θ𝑢

𝜅1,𝜅2(𝑣, 𝜏) be given in (7.3.10)
and (7.3.20), respectively. There exist 𝜀0 > 0, ℎ0 > 0 and a constant 𝑀 > 0 such that,
for 𝑣 ∈ 𝐷𝑢 ∩ R, 𝜏 ∈ T, 0 ≤ 𝜀 ≤ 𝜀0, 0 ≤ ℎ ≤ ℎ0 and 𝜅1, 𝜅2 ≥ 0 with 𝜅1 + 𝜅2 = ℎ,

⃒⃒⃒
Γ𝑢

𝜅1,𝜅2(𝑣, 𝜏) − Γ𝑢
0(𝑣)

⃒⃒⃒
,
⃒⃒⃒
Θ𝑢

𝜅1,𝜅2(𝑣, 𝜏) − Θ𝑢
0(𝑣)

⃒⃒⃒
≤ 𝑀

𝛿
√
𝜅2

𝜔3/2 +𝑀
𝛿
√
𝜅1

𝜔2 ,

⃒⃒⃒
𝜕𝜏 (Γ𝑢

𝜅1,𝜅2(𝑣, 𝜏) − Γ𝑢
0(𝑣))

⃒⃒⃒
,
⃒⃒⃒
𝜕𝜏 (Θ𝑢

𝜅1,𝜅2(𝑣, 𝜏) − Θ𝑢
0(𝑣))

⃒⃒⃒
≤ 𝑀

𝛿
√
𝜅2

𝜔3/2 .

(7.9.1)

7.10 Conclusion and Further Directions
In this chapter we have studied a 2-dof Hamiltonian 𝐻 arising from an approxima-

tion of the solutions of the partial differential equation (7.1.3). More specifically, we
have found conditions on the energy of 𝐻 in order to detect certain heteroclinic connec-
tions (corresponding to quasi kink-like and oscillating kink-like solutions). It provides
a rigorous treatment for the computation of the critical velocity done in [47]. Also, we
provided an asymptotic formula for the final velocity of a quasi kink-like solution which
was conjectured in [47].

As we have mentioned in Section 7.1, there are many works studying the efficacy of
this toy-model to approximate the solutions of (7.1.3), nevertheless a rigorous study of it
remains as an open problem.

Also, in [47], they mention the existence of 𝑛-bounce resonant solutions of 𝐻, which
correspond to heteroclinic connections passing 𝑛 times through the transversal section Σℎ

considered in this work (see (7.2.6)). A rigorous study of the existence of such solutions
is a difficult task which deserves attention.

Finally, a similar approach can be performed to validate the formula of critical velocity
obtained for another models in [48, 49].
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Chapter 8
On the Breakdown of Breathers for Reversible
Klein-Gordon Equations

Breathers are nontrivial time-periodic and spatially localized solutions of evolutionary
Partial Differential Equations (PDE’s). In this chapter, we associate breathers of

certain reversible Klein-Gordon equations with homoclinic orbits of a singularly perturbed
Hamiltonian at the origin (which is a critical point) and we provide an asymptotic formula
for the splitting of the invariant manifolds at the origin, which happens to be exponentially
small with respect to the perturbation parameter.

8.1 Introduction
As far as the authors know, breathers were introduced by [1] in the context of the

sine-Gordon partial differential equation

𝜕2
𝑡 𝑢− 𝜕2

𝑥𝑢+ sin(𝑢) = 0. (8.1.1)

This kind of solutions has shown to be very important in physical applications and
thus the proof of their existence or breakdown is a fundamental problem in the study of
the dynamics of evolutionary PDE’s. Moreover, this problem is strongly related to the
analysis of invariant manifolds of PDE’s.

It is known that (8.1.1) admits an explicit family of breathers

𝑢𝑚(𝑥, 𝜏) = 4 arctan
(︃
𝑚

𝜔

sin(𝜔𝑡)
cosh(𝑚𝑥)

)︃
, 𝑚, 𝜔 > 0, 𝑚2 + 𝜔2 = 1. (8.1.2)

Nevertheless, in general, the existence of such solutions for nonlinear wave equations is
rare (see [31, 94]).

As far as the authors know, there are few results concerning breathers which have
been rigorously proved. In [31], Denzler has shown that the breathers of the sine-Gordon
equation do not persist under any nontrivial perturbation of the form

𝜕2
𝑡 𝑢− 𝜕2

𝑥𝑢+ sin(𝑢) = 𝜀Δ(𝑢) + 𝒪(𝜀2),

where Δ is an analytic function in a small neighborhood of 𝑢 = 0. In [71], Lu has shown
that reversible nonlinear Klein-Gordon equations admit small amplitude breathers with
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exponentially small tails. In [31], the author has related breathers to homoclinic orbits at
the origin of an infinite dimensional dynamical system, then the solutions constructed in
[71] correspond to homoclinic orbits which tend to exponentially small solutions in some
center manifold in the phase space of an infinite dimensional dynamical system.

In [93], Kruskal and Segur use formal asymptotic expansions to justify the nonexistence
of small amplitude breathers in a certain Klein-Gordon equation, but no rigorous proof is
given. In the present chapter, we use rigorous analysis to obtain some results concerning
this problem.

There are several physical problems which make use of nonlinear Klein-Gordon equa-
tions in one-dimensional space

𝜕2
𝑡 𝑢− 𝜕2

𝑥𝑢+ ℎ(𝑢) = 0,

where ℎ is a real-analytic function such that ℎ(0) = 0 and ℎ′(0) > 0. For example, we can
point their use in the study of magnetic chains and quantum field theory as mentioned
in [93]. The existence or not of breathers is a relevant topic in these physical models,
and thus to know whether a Klein-Gordon equation admits breathers is a fundamental
problem which remains open.

In this work, we consider a class of reversible Klein-Gordon equations

𝜕2
𝑡 𝑢− 𝜕2

𝑥𝑢+ 𝑢− 1
3𝑢

3 − 𝑓(𝑢) = 0, (8.1.3)

where 𝑓 is a real-analytic odd function which satisfies 𝑓(𝑢) = 𝒪(𝑢5), and we associate the
existence of breathers of (8.1.3) with the existence of homoclinic orbits (with respect to
the variable 𝑥) of (8.1.3) at the origin (which is a critical point). In fact, a solution 𝑢(𝑥, 𝑡)
of (8.1.3) is a breather if, and only if, 𝑢(𝑥, 𝑡) is periodic in the variable 𝑡, and for each 𝑡
fixed, 𝑢𝑡(𝑥) := 𝑢(𝑥, 𝑡) is a homoclinic solution of (8.1.3). We are interested in reversible
breathers of the form

𝑢(𝑥, 𝑡) =
∑︁
𝑛≥1

𝑢𝑛(𝑥) sin(𝑛𝜔𝑡), (8.1.4)

which are 2𝜋
𝜔

−periodic in the variable 𝑡 and real-analytic in the variable 𝑥 with 𝜔 ≈ 1. In
this case, the origin has one-dimensional stable and unstable invariant manifolds 𝑊 𝑠(0)
and 𝑊 𝑢(0).

In this work, we provide a rigorous treatment to compute the distance between 𝑊 𝑠(0)
and 𝑊 𝑢(0) when they intersect a transversal section for the first time.

Such class of Klein-Gordon equations has also been considered in [62], and the authors
have proved the non-existence of small breathers 𝑢(𝑥, 𝜏) of (8.1.3) which are odd in the
variables 𝑥 and 𝜏 . It is worth saying that the known family of breathers of the sine-Gordon
equation given by (8.1.2) is even in the variable 𝑥, thus the oddness assumption on the
variable 𝑥 considered in [62] excludes such solutions. Therefore, our study concerns about
a larger (and more complicated) class of solutions of (8.1.3) than the ones considered in
[62].

8.1.1 Model
Considering the ansatz (8.1.4) and the parameterization of time 𝜏 = 𝜔𝑡, with 𝜔 ̸= 0,

we obtain that
𝑢(𝑥, 𝜏) =

∑︁
𝑛≥1

𝑢𝑛(𝑥) sin(𝑛𝜏), (8.1.5)
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and the Fourier coefficients 𝑢𝑛 ∈ R, for every 𝑛 ∈ N (due to real-analyticity hypothesis).
Denote

𝑔(𝑢) = 1
3𝑢

3 + 𝑓(𝑢), (8.1.6)

and observe that, since 𝑔 is odd, we have that 𝑔(𝑢(𝑥,−𝜏)) = 𝑔(−𝑢(𝑥, 𝜏)) = −𝑔(𝑢(𝑥, 𝜏)),
and thus 𝑔(𝑢(𝑥, 𝜏)) admits a sine Fourier expansion.

Define the projections

Π𝑛[𝑓 ](𝑦) = 1
𝜋

∫︁ 𝜋

−𝜋
𝑓(𝑦, 𝜏) sin(𝑛𝜏)𝑑𝜏 𝑎𝑛𝑑 ̂︀Π[𝑓 ](𝑦, 𝜏) =

∑︁
𝑛≥2

Π𝑛(𝑓)(𝑦) sin(𝑛𝜏), (8.1.7)

and denote
𝑔𝑛(𝑢) = Π𝑛 [𝑔(𝑢(𝑥, 𝜏))] .

Thus, replacing (8.1.5) in (8.1.3) and using (8.1.6), we obtain

(𝜕2
𝑥 + 𝑛2𝜔2 − 1)𝑢𝑛 = −𝑔𝑛(𝑢), 𝑛 ∈ N. (8.1.8)

From the definition of breathers, 𝑢(𝑥, 𝜏) given in (8.1.5) is a breather of (8.1.3) if and
only if

lim
𝑥→±∞

𝑢(𝑥, 𝜏) = 0, ∀𝜏 ∈ T,

where T = R/2𝜋Z.
Therefore, we have a bijection between reversible breathers of (8.1.3) and homoclinic

connections at 0 of (8.1.8) seen as a dynamical system taking 𝑥 as time. A simple
analysis shows us that the eigenvalues of the linearization of (8.1.8) at 0 are given by
𝜇±

𝑛 = ±
√

1 − 𝑛2𝜔2, for each 𝑛 ≥ 1. Thus, for 𝜔 > 0 fixed such that 𝜔 ̸= 𝑛−2, for every
𝑛 ∈ N, we have that there exists 𝑁0 = 𝑁0(𝜔) ≥ 0 such that 𝜇±

𝑛 ∈ R, for each 1 ≤ 𝑛 ≤ 𝑁0
and 𝜇±

𝑛 are purely imaginary for every 𝑛 > 𝑁0. It means that the singular point 0 has a
hyperbolic eigenspace 𝐸ℎ(0) of dimension 2𝑁0 (with 𝑁0 unstable directions and 𝑁0 stable
ones) and a central eigenspace 𝐸𝑐(0) of codimension 2𝑁0. Notice that 𝑁0(𝜔) = 0 for each
𝜔 ≥ 1.

It means that, if 𝜔 < 1, then 0 has stable and unstable local invariant manifolds
𝑊 𝑠(0) and 𝑊 𝑢(0), respectively, both of dimension 𝑁0 > 0, and a central manifold 𝑊 𝑐(0)
with codimension 2𝑁0 (it has infinite dimension). Thus, the breathers of (8.1.3) are
characterized as intersections of 𝑊 𝑠(0) and 𝑊 𝑢(0).

It is known from the study of splitting of separatrices that, the difficulty of the problem
increases when the dimensions of the invariant manifolds increase. In order to attack the
simplest version of the problem (which already presents major difficulties), we consider
that 𝜔 < 1 and 𝜔 ≈ 1 to have 𝑁0 = 1.

Now, we set a singular perturbation problem to compute the distance between the
invariant manifolds 𝑊 𝑠(0) and 𝑊 𝑢(0). Define

𝜀 =
√

1 − 𝜔2, for 𝜔 < 1,

and observe that 0 < 𝜀 < 1. Consider the following scaling of the variables and time

𝑢 = 𝜀𝑣 and 𝑦 = 𝜀𝑥.

Thus 𝑢(𝑥, 𝜏) = 𝜀𝑣(𝜀𝑥, 𝜏) satisfies (8.1.3) if, and only if, 𝑣(𝑦, 𝜏) satisfies

𝜕2
𝑦𝑣 − 𝜔2

𝜀2 𝜕
2
𝜏𝑣 − 1

𝜀2𝑣 + 1
3𝑣

3 + 1
𝜀3𝑓 (𝜀𝑣) = 0, (8.1.9)
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which is a Hamiltonian Partial Differential Equation with respect to

ℋ(𝑣, 𝜕𝑦𝑣) = 1
𝜋

∫︁
T

(︃
(𝜕𝑦𝑣)2

2 + (𝜔𝜕𝜏𝑣)2

2𝜀2 − 𝑣2

2𝜀2 + 𝑣4

12 + 𝐹 (𝜀𝑣)
𝜀4

)︃
𝑑𝜏, (8.1.10)

where 𝐹 is an analytic function such that 𝐹 (𝑧) = 𝒪(𝑧6) and 𝐹 ′(𝑧) = 𝑓(𝑧).
Also, denoting 𝑣𝑛(𝑦) = Π𝑛[𝑣](𝑦) and · = 𝑑/𝑑𝑦, we obtain

𝑣𝑛 = −(𝑛2𝜔2 − 1)
𝜀2 𝑣𝑛 − 1

𝜀3 Π𝑛 [𝑔(𝜀𝑣)] . (8.1.11)

Now, define
𝜆𝑛 =

√︁
𝑛2(1 − 𝜀2) − 1,

for each 𝑛 ≥ 2 and notice that 𝜆𝑛 ∈ R and 𝜇+
𝑛 = 𝑖𝜆𝑛 (with 𝜔2 = 1 − 𝜀2). Thus, system

(8.1.11) may be written as⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑣1 = 𝑣1 − 1

𝜀3 Π1 [𝑔(𝜀𝑣)] ,

𝑣𝑛 = −𝜆2
𝑛

𝜀2 𝑣𝑛 − 1
𝜀3 Π𝑛 [𝑔(𝜀𝑣)] , 𝑛 ≥ 2,

(8.1.12)

and notice that 𝜀−3𝑔(𝜀𝑣) = 𝒪(1), therefore, 𝜀−3Π𝑛 [𝑔(𝜀𝑣)] = 𝒪(1), for every 𝑛 ≥ 1. Then,
the one-dimensional stable and unstable invariant manifolds 𝑊 𝑠(0) and 𝑊 𝑢(0) of the
singular point 0 are characterized as the solutions 𝑣𝑠 and 𝑣𝑢 of (8.1.12) satisfying the
asymptotic conditions

lim
𝑦→+∞

𝑣𝑠(𝑦, 𝜏) = lim
𝑦→−∞

𝑣𝑢(𝑦, 𝜏) = 0, ∀𝜏 ∈ T. (8.1.13)

Notice that the singular perturbation problem (8.1.12) may be written as⎧⎨⎩ 𝑣1 = 𝑣1 − 𝜀−3Π1 [𝑔(𝜀𝑣)] ,
𝜀2𝑣𝑛 = −𝜆2

𝑛𝑣𝑛 − 𝜀−1Π𝑛 [𝑔(𝜀𝑣)] , 𝑛 ≥ 2.
(8.1.14)

The singular limit of (8.1.14) (𝜀 = 0) defines a slow-manifold ℳ, which is a plane
given by

ℳ = {𝑣(𝑦, 𝜏); ̂︀Π[𝑣] = 0}.
with dynamics

𝑣1 = 𝑣1 − 1
3Π1[(𝑣3

1 sin3(𝜏))], 𝑣 ∈ ℳ. (8.1.15)

Hence, ℳ has dimension 1 and the limit problem has a drastic reduction of dimensions
in comparison to the original one.

Recalling the expression of the projection Π1 (see (8.1.7)), we obtain that the dynamics
of the slow variable 𝑣1 in ℳ is governed by the Duffing equation

𝑣1 = 𝑣1 − 𝑣3
1
4 . (8.1.16)

It is known that (8.1.16) has a unique homoclinic orbit at 0 with 𝑣1 > 0, which is
given by

𝑣ℎ
1 (𝑦) = 2

√
2

cosh(𝑦) . (8.1.17)

See Figure 8.1.
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𝑣1

�̇�1

ℳ (𝑣ℎ
1 , �̇�

ℎ
1 )

∞ − dim spacecentral manifold

Figure 8.1: Representation of the homoclinic orbit 𝑣ℎ
1 in the slow manifold ℳ.

Remark 8.1.1. The Duffing equation has another homoclinic orbit at 0 with 𝑣1 < 0,
which is symmetric to 𝑣ℎ

1 . In this paper, we treat only 𝑣ℎ
1 .Nevertheless all the results hold

for the another homoclinic orbit in an analogous way.

Therefore, we have that in the limit problem (8.1.15), the invariant manifolds 𝑊 𝑠(0)
and 𝑊 𝑢(0) of (8.1.12) coincide. This paper is devoted to obtain an asymptotic formula
for the difference between 𝑊 𝑠(0) and 𝑊 𝑢(0), for 𝜀 > 0, at certain section Σ.

8.2 Main Theorem
Since (8.1.12) is a Hamiltonian system with respect to ℋ given in (8.1.10) and and

(𝑣𝑠, 𝜕𝑦𝑣
𝑠) and (𝑣𝑢, 𝜕𝑦𝑣

𝑢) are contained in the zero energy level of ℋ. Thus, we consider
the section

Σ = {(𝑣, 𝜕𝑦𝑣); ℋ(𝑣, 𝜕𝑦𝑣) = 0 𝑎𝑛𝑑 Π1 [𝜕𝑦𝑣] = 0},
to measure the distance between 𝑊 𝑢(0) and 𝑊 𝑠(0). Since ℋ(𝑣, 𝜕𝑦𝑣) = 0 and Π1 [𝜕𝑦𝑣] = 0
for all points of Σ, we use the coordinates (̂︀Π [𝑣] , ̂︀Π [𝜕𝑦𝑣]) to parameterize Σ.

Throughout this paper, given an odd function 𝑓(𝑦, 𝜏) periodic in 𝜏 , we consider the
point-wise ℓ1-norm

‖𝑓‖ℓ1(𝑦) =
∑︁
𝑛≥1

|Π𝑛[𝑓 ](𝑦)| .

We state the main result of this paper.

Theorem U (Main Theorem). Consider system (8.1.12). Then, there exist 𝜀0 > 0 and a
complex constant 𝐶in independent of 𝜀 such that, for every 𝜀 ≤ 𝜀0, the following statements
hold.

1. The invariant manifolds 𝑊 𝑢(0) and 𝑊 𝑠(0) are parameterized by real-analytic solu-
tions 𝑣𝑢(𝑦, 𝜏) and 𝑣𝑠(𝑦, 𝜏) of (8.1.12) satisfying (8.1.13) such that Π1 [𝜕𝑦𝑣

𝑢,𝑠] (0) = 0,
respectively. Moreover, Π2𝑙 [𝑣] ≡ 0, for every 𝑙 ∈ N.

2. Let 𝑝⋆(𝜏) = (̂︀Π [𝑣⋆] (0, 𝜏), ̂︀Π [𝜕𝑦𝑣
⋆(0, 𝜏)]) ∈ Σ, for ⋆ = 𝑢, 𝑠, and consider 𝑑(𝜏 ; 𝜀) =

𝑝𝑢(𝜏) − 𝑝𝑠(𝜏), therefore

𝑑(𝜏 ; 𝜀) =

⎛⎜⎜⎜⎜⎜⎝
2
𝜀
𝑒− 𝜋𝜆3

2𝜀

(︃
Re(𝐶in) sin(3𝜏) + 𝒪ℓ1

(︃
1

log(𝜀−1)

)︃)︃
2𝜆3

𝜀2 𝑒
− 𝜋𝜆3

2𝜀

(︃
Im(𝐶in) sin(3𝜏) + 𝒪ℓ1

(︃
1

log(𝜀−1)

)︃)︃
⎞⎟⎟⎟⎟⎟⎠ , (8.2.1)
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𝑖𝜋
2 𝑖𝜋

2

−𝑖𝜋
2 −𝑖𝜋

2

𝑖
(︀

𝜋
2 − 𝜅𝜀

)︀

−𝑖
(︀

𝜋
2 − 𝜅𝜀

)︀
𝑖
(︀

𝜋
2 − 𝜅𝜀

)︀

−𝑖
(︀

𝜋
2 − 𝜅𝜀

)︀
𝛽 𝛽

𝐷out,𝑢
𝜅 𝐷out,𝑠

𝜅

Figure 8.2: Outer domains 𝐷out,𝑢
𝜅 and 𝐷out,𝑠

𝜅 .

for 0 < 𝜀 < 𝜀0 and 𝜏 ∈ T.

3. If 𝐶in ̸= 0, then the invariant manifolds 𝑊 𝑢(0) and 𝑊 𝑠(0) do not intersect the first
time that they reach Σ.

We highlight that Theorem U concerns with the breakdown of breathers which crosses
the transversal section Σ only one time. Nevertheless, (8.1.12) may admit breathers which
cross Σ at 𝑛 distinct points, 𝑛 ≥ 2.

8.3 Description of the Proof
In this section we give an overall description of the steps to prove Theorem U. First,

notice that the homoclinic orbit (𝑣ℎ
1 (𝑦) sin(𝜏), 𝜕𝑦𝑣

ℎ
1 (𝑦) sin(𝜏)) of the singular limit (8.1.15)

is transverse to the section Σ, and 𝑣ℎ
1 (𝑦) has poles at 𝑦 = ±𝑖(𝜋/2 + 𝑘𝜋), 𝑘 ∈ Z.

In order to compute the distance between the perturbed 𝑊 𝑠(0) and 𝑊 𝑢(0) in Σ, we
obtain complex parameterizations of them in the outer domains

𝐷out,𝑢
𝜅 =

{︂
𝑦 ∈ C; |Im(𝑦)| ≤ − tan 𝛽 Re(𝑦) + 𝜋

2 − 𝜅𝜀
}︂
,

𝐷out,𝑠
𝜅 = {𝑦 ∈ C; −𝑦 ∈ 𝐷out,𝑢

𝜅 } ,
(8.3.1)

where 0 < 𝛽 < 𝜋/4 is a fixed parameter independent of 𝜀 and 𝜅 ≥ 1 (see Figure 8.2).
Also, notice that in the complex domains, the invariant manifolds 𝑊 𝑢(0) and 𝑊 𝑠(0)

are characterized as solutions 𝑣𝑢 and 𝑣𝑠 of (8.1.12) such that

lim
Re(𝑦)→+∞

𝑣𝑠(𝑦, 𝜏) = lim
Re(𝑦)→−∞

𝑣𝑢(𝑦, 𝜏) = 0, ∀𝜏 ∈ T, (8.3.2)

respectively.

Theorem 8.3.1 (Outer). Consider the equation (8.1.9). There exist 𝜅0 ≥ 1 and 𝜀0 > 0,
such that, for each 𝜀 ≤ 𝜀0 and 𝜅 ≥ 𝜅0, the invariant manifold 𝑊 ⋆(0) of (8.1.9), ⋆ = 𝑢, 𝑠,
is parameterized by

𝑣⋆(𝑦, 𝜏) = 𝑣ℎ
1 (𝑦) sin(𝜏) + 𝜉⋆(𝑦, 𝜏), 𝑦 ∈ 𝐷out,⋆

𝜅 , 𝜏 ∈ T,

where 𝑣ℎ
1 is given by (8.1.17) and 𝜉⋆ : 𝐷out,⋆

𝜅 × T → C is a real-analytic function in the
variable 𝑦 satisfying 𝜕𝑦Π1[𝜉⋆](0) = 0 and the asymptotic condition (8.3.2). Moreover,
Π2𝑙[𝜉⋆](𝑦) ≡ 0, for every 𝑙 ∈ N, and there exists a constant 𝑀1 > 0 independent of 𝜀 and
𝜅, such that



238

1. ‖𝜉⋆‖ℓ1
(𝑦), ‖𝜕𝜏𝜉

⋆‖ℓ1
(𝑦), ‖𝜕2

𝜏 𝜉
⋆‖ℓ1

(𝑦) ≤ 𝑀1𝜀
2

|𝑦2 + 𝜋2/4|3
and ‖𝜕𝑦𝜉

⋆‖ℓ1
(𝑦) ≤ 𝑀1𝜀

2

|𝑦2 + 𝜋2/4|4
,

for every 𝑦 ∈ 𝐷out,⋆
𝜅 ∩ {|Re(𝑦)|≤ 1};

2. ‖𝜉⋆‖ℓ1
(𝑦), ‖𝜕𝑦𝜉

⋆‖ℓ1
(𝑦), ‖𝜕𝜏𝜉

⋆‖ℓ1
(𝑦), ‖𝜕2

𝜏 𝜉
⋆‖ℓ1

(𝑦) ≤ 𝑀1𝜀
2

|cosh(𝑦)| , for every 𝑦 ∈ 𝐷out,⋆
𝜅 ∩

{|Re(𝑦)|> 1}.

Notice that, the parameterization 𝑣⋆(𝑦, 𝜏) of 𝑊 ⋆(0), ⋆ = 𝑢, 𝑠, given by Theorem 8.3.1
has the homoclinic orbit 𝑣ℎ

1 (𝑦) sin(𝜏) as a first order, for 𝑦 ∈ R. Nevertheless, at distance
𝒪(𝜀) of the poles 𝑦 = ±𝑖𝜋/2 of 𝑣ℎ

1 , we have that 𝑣ℎ
1 has the same size of the error 𝜉⋆.

In light of this, we need to analyze the first order of the invariant manifolds at distance
𝒪(𝜀) of the poles of the unperturbed homoclinic to compute a correct asymptotic formula
for the distance between the invariant manifolds 𝑊 𝑢,𝑠(0).

We focus on the singularity 𝑖𝜋/2. Nevertheless similar results can be proved near the
singularity −𝑖𝜋/2 in an analogous way.

Consider the inner variable

𝑧 = 𝜀−1
(︂
𝑦 − 𝑖

𝜋

2

)︂
, (8.3.3)

and the scaling
𝜑(𝑧, 𝜏) = 𝜀𝑣

(︂
𝑖
𝜋

2 + 𝜀𝑧, 𝜏
)︂
. (8.3.4)

Writing equation (8.1.9) for 𝜑 in the inner variable, we obtain

𝜕2
𝑧𝜑− 𝜔2𝜕2

𝜏𝜑− 𝜑+ 1
3𝜑

3 + 𝑓(𝜑) = 0, 𝜔 =
√

1 − 𝜀2. (8.3.5)

The first order of (8.3.5) corresponds to the limit case 𝜀 = 0, which gives the so-called
inner equation

𝜕2
𝑧𝜑

0 − 𝜕2
𝜏𝜑

0 − 𝜑0 + 1
3(𝜑0)3 + 𝑓(𝜑0) = 0. (8.3.6)

Now, we present the results concerning the existence of two solutions 𝜑0,⋆ of (8.3.5),
⋆ = 𝑢, 𝑠, which will give a good approximation for 𝑊 ⋆(0) for 𝑦 near the pole 𝑖𝜋/2.
Moreover, we provide an asymptotic expression for the difference 𝜑0,𝑢 −𝜑0,𝑠 which will be
crucial to compute the first order of the difference 𝑣𝑢 − 𝑣𝑠.

Consider the inner domains

𝐷𝑢,in
𝜃,𝜅 = {𝑧 ∈ C; |Im(𝑧)|> tan 𝜃Re(𝑧) + 𝜅},

𝐷𝑠,in
𝜃,𝜅 = {𝑧 ∈ C; −𝑧 ∈ 𝐷𝑢,in

𝜃,𝜅 },
(8.3.7)

where 0 < 𝜃 < 𝜋/2 and 𝜅 > 0 (see Figure 8.3).

Theorem 8.3.2 (Inner). Let 𝜃 > 0 be fixed. There exists 𝜅0 ≥ 1 such that, for each
𝜅 ≥ 𝜅0,

1. equation (8.3.6) has two solutions 𝜑0,⋆ : 𝐷⋆,in
𝜃,𝜅 × T → C × ℓ1(C), ⋆ = 𝑢, 𝑠, given by

𝜑0,⋆(𝑧, 𝜏) = −2
√

2𝑖
𝑧

sin(𝜏) + 𝜓⋆(𝑧, 𝜏), (8.3.8)
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𝑖𝜅

−𝑖𝜅

𝑖𝜅

−𝑖𝜅

𝜃 𝜃

𝐷𝑠,in
𝜃,𝜅 𝐷𝑢,in

𝜃,𝜅

Figure 8.3: Inner domains 𝐷𝑠,in
𝜃,𝜅 and 𝐷𝑢,in

𝜃,𝜅 .

−𝑖𝜅

𝜃𝜃

ℛin,+
𝜃,𝜅

Figure 8.4: Domain ℛin,+
𝜃,𝜅 .

which are analytic in the variable 𝑧. Moreover, Π2𝑙 [𝜑0,⋆] ≡ 0, for every 𝑙 ∈ N, and
there exists a constant 𝑀2 > 0 independent of 𝜅 such that, for every 𝑧 ∈ 𝐷⋆,in

𝜃,𝜅

‖𝜓⋆‖ℓ1
(𝑧), ‖𝜕𝜏𝜓

⋆‖ℓ1
(𝑧) ≤ 𝑀2

|𝑧|3
.

2. the difference Δ𝜑0(𝑧, 𝜏) = 𝜑0,𝑢(𝑧, 𝜏) − 𝜑0,𝑠(𝑧, 𝜏) is given by

Δ𝜑0(𝑧, 𝜏) = 𝑒−𝑖𝜆0,3𝑧 (𝐶in sin(3𝜏) + 𝜒(𝑧, 𝜏)) , (8.3.9)

for each 𝑧 ∈ ℛin,+
𝜃,𝜅 = 𝐷𝑢,in

𝜃,𝜅 ∩ 𝐷𝑠,in
𝜃,𝜅 ∩ {𝑧; 𝑧 ∈ 𝑖R and Im(𝑧) < 0} (see Figure 8.4),

where 𝜆0,3 = 2
√

2, and 𝜒 is an analytic function in the variable 𝑧 such that

‖𝜒‖ℓ1(𝑧), ‖𝜕𝜏𝜒‖ℓ1(𝑧) ≤ 𝑀2

|𝑧|
𝑎𝑛𝑑 ‖𝜕𝑧𝜒‖ℓ1(𝑧) ≤ 𝑀2

|𝑧|2
, ∀𝑧 ∈ ℛin,+

𝜃,𝜅 .

Notice that, for ⋆ = 𝑢, 𝑠, the outer solution 𝑣⋆(𝑦) given by Theorem 8.3.1 provides
a good approximation for 𝑊 ⋆(0) when 𝑦 is 𝒪(1)−distant from the poles ±𝑖𝜋/2, but it
does not give us an accurate approximation near the poles. On the other hand, the inner
solution 𝜀−1𝜑0,⋆(𝜀−1(𝑦 − 𝑖𝜋/2), 𝜏) obtained in Theorem (8.3.2) approximates 𝑊 ⋆(0) near
the pole 𝑦 = 𝑖𝜋/2 with good bounds, but it is not a good approximation for real values
of 𝑦.

In light of this, we perform the complex matching near the pole 𝑦 = 𝑖𝜋/2 between the
outer solution 𝑣⋆(𝑦, 𝜏) and the inner solution 𝜀−1𝜑0,⋆(𝜀−1(𝑦 − 𝑖𝜋/2), 𝜏), in order to take
advantage of the good properties of these solutions.

Take 0 < 𝛽1 < 𝛽 < 𝛽2 < 𝜋/4 constants independents of 𝜀 and 𝜅, and define 𝑦𝑗 ∈ C,
𝑗 = 1, 2 as the two points satisfying
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𝑖 𝜋
2 𝑖

(︀
𝜋
2 − 𝜅𝜀

)︀ 𝑖 𝜋
2𝑖

(︀
𝜋
2 − 𝜅𝜀

)︀

𝛽 𝛽𝛽2 𝛽1
𝑐𝜀𝛾

𝑦1

𝑦2

Figure 8.5: Matching domains 𝐷mch,𝑢
+,𝜅 (on the left) and 𝐷mch,𝑠

+,𝜅 (on the right).

1. Im(𝑦𝑗) = − tan 𝛽𝑗 Re(𝑦𝑗) + 𝜋/2 − 𝜅𝜀;

2. |𝑦𝑗 − 𝑖(𝜋/2 − 𝜅𝜀)|= 𝑐𝜀𝛾, where 𝛾 ∈ (0, 1) and 𝑐 > 0 are constants independent of 𝜀
and 𝜅;

3. Re(𝑦1) < 0 and Re(𝑦2) > 0;

4. Im(𝑧1) ̸= Im(𝑧2);

5. ‖𝑦1‖̸= ‖𝑦2‖.

Consider the following matching domains for 𝛾 ∈ (0, 1) (see Figure 8.5),

𝐷mch,𝑢
+,𝜅 = {𝑦 ∈ C; Im(𝑦) ≤ − tan 𝛽1 Re(𝑦) + 𝜋/2 − 𝜅𝜀, Im(𝑦) ≤ − tan 𝛽2 Re(𝑦) + 𝜋/2 − 𝜅𝜀,

Im(𝑦) ≥ Im(𝑦1) − tan
(︃
𝛽1 + 𝛽2

2

)︃
(Re(𝑦) − Re(𝑦1))

}︃
,

𝐷mch,𝑠
+,𝜅 =

{︁
𝑦 ∈ C; −𝑦 ∈ 𝐷mch,𝑢

+,𝜅

}︁
.

(8.3.10)

Notice that there exist constants 𝑀1,𝑀2 > 0 independent of 𝜀 and 𝜅 such that

𝑀1𝜀
𝛾 ≤ |𝑦𝑗 − 𝑖𝜋/2|≤ 𝑀2𝜀

𝛾, 𝑗 = 1, 2,

and for 𝑦 ∈ 𝐷mch,𝑢
+,𝜅 ,

𝑀1𝜅𝜀 ≤ |𝑦 − 𝑖𝜋/2|≤ 𝑀2𝜀
𝛾.

In terms of the inner variable 𝑧 (see (8.3.3)), we obtain that

𝑀1𝜅 ≤ |𝑧|≤ 𝑀2𝜀
𝛾−1, |𝑧|≤ 𝑀2|𝑧𝑗|, 𝑗 = 1, 2, ∀𝑧 ∈ 𝐷mch,𝑢

+,𝜅 ,

where 𝑧1 and 𝑧2 are the vertices of the inner domain 𝑦1 and 𝑦2, respectively, expressed in
the inner variable.

Theorem 8.3.3 (Matching). Fix 𝛾 ∈ (0, 1). Let 𝜑⋆(𝑧, 𝜏) = 𝜀𝑣⋆(𝑖𝜋/2 + 𝜀𝑧, 𝜏), ⋆ = 𝑢, 𝑠,
where 𝑣⋆ is the parameterization obtained in Theorem 8.3.1. Then, there exist 𝜀0 > 0 and
𝜅0 ≥ 1 such that, for each 𝜀 ≤ 𝜀0, 𝜅 ≥ 𝜅0, and 𝑧 ∈ 𝐷mch,+,⋆

𝜅,𝑐 ,

𝜑⋆(𝑧, 𝜏) = 𝜑0,⋆(𝑧, 𝜏) + 𝜙⋆(𝑧, 𝜏),
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𝑖𝜋
2

−𝑖𝜋
2

𝑖
(︀

𝜋
2 − 𝜅𝜀

)︀

−𝑖
(︀

𝜋
2 − 𝜅𝜀

)︀

𝛽 𝛽

𝐷out,𝑢
𝜅 𝐷out,𝑠

𝜅

ℛ𝜅

Figure 8.6: Domain ℛ𝜅.

where 𝜑0,⋆ is the solution of the inner equation (8.3.6) obtained in Theorem 8.3.2, and
there exists a constant 𝑀3 > 0 independent of 𝜀 and 𝜅 such that

‖𝜙⋆‖ℓ1(𝑧), ‖𝜕𝜏𝜙
⋆‖ℓ1(𝑧) ≤ 𝑀3(𝜀1−𝛾 + 𝜀3𝛾−1)

|𝑧|2
𝑎𝑛𝑑 ‖𝜕𝑧𝜙

⋆‖ℓ1(𝑧) ≤ 𝑀3(𝜀1−𝛾 + 𝜀3𝛾−1)
𝜅|𝑧|2

,

for every 𝑧 ∈ 𝐷mch,+,⋆
𝜅,𝑐 .

Finally, we study the difference Δ𝑣(𝑦, 𝜏) = 𝑣𝑢(𝑦, 𝜏) − 𝑣𝑠(𝑦, 𝜏), between the solutions
obtained in Theorem 8.3.1 in the domain

ℛ𝜅 = 𝐷out,𝑢
𝜅 ∩𝐷out,𝑠

𝜅 ∩ 𝑖R,

illustrated in Figure 8.6.
From Theorem 8.3.3, we have that, near the poles, the solutions 𝑣𝑢 and 𝑣𝑠 are well

approximated by the solutions 𝜑0,𝑢 and 𝜑0,𝑠 of the inner equation 8.3.6 given by Theorem
8.3.2, respectively. Therefore, the asymptotic formula for the difference Δ𝜑0 given by
Theorem 8.3.2, provides a first order for the total difference Δ𝑣 near the poles. In Section
8.7, we use functional analysis to show that the knowledge of the asymptotic behavior
of the difference near the poles induces a first order for the total difference. This will
conclude the proof of Theorem U.

8.4 Proof of Theorem 8.3.1
We prove Theorem 8.3.1 by setting a fixed point argument. In order to do this, we

replace 𝑣(𝑦, 𝜏) =
∑︁
𝑛≥1

𝑣𝑛(𝑦) sin(𝑛𝜏) into (8.1.9), and write the equation in sine Fourier

expansion as ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑣1 = 𝑣1 − 𝑣3

1
4 +

(︃
− 1
𝜀3 Π1 [𝑔(𝜀𝑣)] + 𝑣3

1
4

)︃
,

𝑣𝑛 = −𝜆2
𝑛

𝜀2 𝑣𝑛 − 1
𝜀3 Π𝑛 [𝑔(𝜀𝑣)] , 𝑛 ≥ 2,

(8.4.1)

where Π𝑛 is the Fourier projection given by (8.1.7) and 𝑔 is given by (8.1.6).
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We study the invariant manifolds 𝑊 𝑢,𝑠(0) of (8.1.9) as a perturbation of the homoclinic
orbit 𝑣ℎ

1 (𝑦) sin(𝜏) given by (8.1.17). Thus, we set

𝜉(𝑦, 𝜏) = 𝑣(𝑦, 𝜏) − 𝑣ℎ
1 (𝑦) sin(𝜏) =

∑︁
𝑛≥1

𝜉𝑛(𝑦) sin(𝑛𝜏),

and thus, system (8.4.1) is brought into⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜉1 = 𝜉1 − 3(𝑣ℎ

1 )2𝜉1

4 − 3𝑣ℎ
1 𝜉

2
1

4 − 𝜉3
1
4 +

(︃
− 1
𝜀3𝜋1(𝑔(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏)))) + (𝜉 + 𝑣ℎ
1 )3

4

)︃
,

𝜉𝑛 = −𝜆2
𝑛

𝜀2 𝜉𝑛 − 1
𝜀3𝜋𝑛(𝑔(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏)))), 𝑛 ≥ 2.

Now, define the operators

ℒ(𝜉) =
(︃
𝜉1 − 𝜉1 + 3(𝑣ℎ

1 )2𝜉1

4

)︃
sin(𝜏) +

∑︁
𝑛≥2

(︃
𝜉𝑛 + 𝜆2

𝑛

𝜀2 𝜉𝑛

)︃
sin(𝑛𝜏), (8.4.2)

and

ℱ(𝜉) = − 1
𝜀3 𝑔(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏))) +
(︃

(𝜉1 + 𝑣ℎ
1 )3

4 − 3𝑣ℎ
1 𝜉

2
1

4 − 𝜉3
1
4

)︃
sin(𝜏), (8.4.3)

and notice that, for ⋆ = 𝑢, 𝑠, to find a solution 𝑣⋆ of (8.1.9) satisfying (8.1.13) is equivalent
to find a fixed point 𝜉⋆ of the functional equation

ℒ(𝜉) = ℱ(𝜉), (8.4.4)

which satisfies
lim

𝑦→−∞
𝜉𝑢(𝑦, 𝜏) = lim

𝑦→∞
𝜉𝑠(𝑦, 𝜏) = 0, ∀𝜏 ∈ T. (8.4.5)

In the remainder of this section, we find a fixed point of (8.4.4) in some appropriate
Banach space. We consider only the unstable case, since the stable one is completely
analogous.

8.4.1 Banach Spaces and Linear Operators
First, we set the Banach spaces we will work with to invert the operator ℒ given in

(8.4.2).
Given 𝜅 ≥ 1 and a real-analytic function ℎ : 𝐷out,𝑢

𝜅 → C, we define

‖ℎ‖𝜅,𝑚,𝛼= sup
𝑦∈𝐷out,𝑢

𝜅 ∩{Re(𝑦)≤−1}
|cosh(𝑦)𝑚ℎ(𝑦)|+ sup

𝑦∈𝐷out,𝑢
𝜅 ∩{Re(𝑦)≥−1}

|(𝑦2 +𝜋2/4)𝛼ℎ(𝑦)|, (8.4.6)

and given a function 𝜉 : 𝐷out,𝑢
𝜅 × T → C which is 2𝜋-periodic in 𝜏 ∈ T and real analytic

in 𝑦 ∈ 𝐷out,𝑢
𝜅 , we define

‖𝜉‖ℓ1,𝜅,𝑚,𝛼=
∑︁
𝑛≥1

‖Π𝑛[𝜉]‖𝜅,𝑚,𝛼,

where Π𝑛 is given by (8.1.7).
Consider the Banach spaces

ℰ𝜅,𝑚,𝛼 = {𝜉 : 𝐷out,𝑢
𝜅 → C; 𝜉 is real-analytic in 𝑦, and ‖𝜉‖𝜅,𝑚,𝛼< ∞}.
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and

ℰℓ1,𝜅,𝑚,𝛼 = {𝜉 : 𝐷out,𝑢
𝜅 ×T → C; 𝜉(𝑦, 𝜏) is real-analytic in 𝑦, 2𝜋−periodic in 𝜏, and ‖𝜉‖ℓ1,𝜅,𝑚,𝛼< ∞}.

If there is no misunderstanding about the domain 𝐷out,𝑢
𝜅 and the norm ‖·‖ℓ1,𝜅,𝑚,𝛼, we

will not write the dependence on 𝜅, and therefore

‖·‖𝑚,𝛼= ‖·‖𝜅,𝑚,𝛼, ‖·‖ℓ1,𝑚,𝛼= ‖·‖ℓ1,𝜅,𝑚,𝛼, ℰ𝑚,𝛼 = ℰ𝜅,𝑚,𝛼, and ℰℓ1,𝑚,𝛼 = ℰℓ1,𝜅,𝑚,𝛼.

Proposition 8.4.1. Given an analytic function 𝑓 : 𝐵(𝑅0) → C, and 𝑔, ℎ : 𝐷out,𝑢
𝜅 ×T𝜎 →

C, where 𝐵(𝑅0) ⊂ C is a ball with center at the origin and radius 𝑅0, the following
statements hold.

1. If 𝛼2 ≥ 𝛼1 ≥ 0, then

‖ℎ‖ℓ1,𝑚,𝛼2≤ 𝑀‖ℎ‖ℓ1,𝑚,𝛼1 𝑎𝑛𝑑 ‖ℎ‖ℓ1,𝑚,𝛼1≤ 𝑀

(𝜅𝜀)𝛼2−𝛼1
‖ℎ‖ℓ1,𝑚,𝛼2 .

2. If 𝛼1, 𝛼2 ≥ 0, and ‖𝑔‖ℓ1,𝑚,𝛼1 , ‖ℎ‖ℓ1,𝑚,𝛼2< ∞, then

‖𝑔ℎ‖ℓ1,𝑚,𝛼1+𝛼2≤ ‖𝑔‖ℓ1,𝑚,𝛼1‖ℎ‖ℓ1,𝑚,𝛼2 .

3. If ‖𝑔‖ℓ1,𝑚,𝛼, ‖ℎ‖ℓ1,𝑚,𝛼≤ 𝑅0/4, then

‖𝑓(𝑔) − 𝑓(ℎ)‖ℓ1,𝑚,𝛼≤ 𝑀‖𝑔 − ℎ‖ℓ1,𝑚,𝛼.

4. Given 𝑛 ≥ 1, if 𝑓 (𝑘)(0) = 0, for every 1 ≤ 𝑘 ≤ 𝑛− 1, and ‖𝑔‖ℓ1,𝛼≤ 𝑅0/4, where 𝑅0
is the convergence ratio of 𝑓 (𝑛) at 0, then

‖𝑓(𝑔)‖ℓ1,𝑚,𝑛𝛼≤ 𝑀(‖𝑔‖ℓ1,𝑚,𝛼)𝑛.

Consider

𝜁1(𝑦) = −2
√

2 sinh(𝑦)
cosh2(𝑦)

𝑎𝑛𝑑 𝜁2(𝑦) = −
√

2
16

sinh(𝑦)
cosh2(𝑦)

(6𝑦−4 coth(𝑦)+sinh(2𝑦)), (8.4.7)

and define the operator 𝒢(𝜉) acting on the Fourier coefficients of 𝜉 as

𝒢(𝜉) =
∑︁
𝑛≥1

𝒢𝑛(𝜉𝑛) sin(𝑛𝜏),

where
𝒢1(𝜉1) = −𝜁1(𝑦)

∫︁ 𝑦

0
𝜁2(𝑠)𝜉1(𝑠)𝑑𝑠+ 𝜁2(𝑦)

∫︁ 𝑦

−∞
𝜁1(𝑠)𝜉1(𝑠)𝑑𝑠, (8.4.8)

and

𝒢𝑛(𝜉𝑛) = − 𝑖𝜀

2𝜆𝑛

𝑒𝑖 𝜆𝑛
𝜀

𝑦
∫︁ 𝑦

−∞
𝑒−𝑖 𝜆𝑛

𝜀
𝑠𝜉𝑛(𝑠)𝑑𝑠+ 𝑖𝜀

2𝜆𝑛

𝑒−𝑖 𝜆𝑛
𝜀

𝑦
∫︁ 𝑦

−∞
𝑒𝑖 𝜆𝑛

𝜀
𝑠𝜉𝑛(𝑠)𝑑𝑠, 𝑛 ≥ 2. (8.4.9)

Proposition 8.4.2. Consider 𝜅 ≥ 1. Given 𝛼 ≥ 5 and 𝑚 > 1, the operator

𝒢 : ℰℓ1,𝑚,𝛼 → ℰℓ1,1,𝛼−2

is well defined and the following statements hold.
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1. 𝜕𝑦𝜋1(𝒢(𝜉))(0) = 0.

2. 𝒢 ∘ ℒ(𝜉) = ℒ ∘ 𝒢(𝜉) = 𝜉.

3. There exists a constant 𝑀 > 0 independent of 𝜀 and 𝜅 such that, for every 𝜉 ∈ ℰℓ1,𝛼,

‖𝒢(𝜉)‖ℓ1,1,𝛼−2 ≤ 𝑀‖𝜉‖ℓ1,𝑚,𝛼. (8.4.10)

Moreover, given 𝑙, 𝛽 ≥ 0 and denoting ℰ1
ℓ1,𝑙,𝛽 = {𝜉 ∈ ℰℓ1,𝑙,𝛽; 𝜋1(𝜉) = 0}, then

𝒢 : ℰ1
ℓ1,𝑙,𝛽 → ℰ1

ℓ1,𝑙,𝛽

is well defined and, for every 𝜉 ∈ ℰ1
ℓ1,𝑙,𝛽,

‖𝒢(𝜉)‖ℓ1,𝑙,𝛽 ≤ 𝑀𝜀2‖𝜉‖ℓ1,𝑙,𝛽. (8.4.11)

4. The operators 𝜕𝜏 ∘ 𝒢 and 𝜕2
𝜏 ∘ 𝒢 are well defined and satisfy (8.4.10).

5. The operator 𝜕𝑦 ∘ 𝒢 : ℰℓ1,𝑚,𝛼 → ℰℓ1,1,𝛼−1 is well defined and

‖𝜕𝑦 ∘ 𝒢(𝜉)‖ℓ1,1,𝛼−1 ≤ 𝑀‖𝜉‖ℓ1,𝑚,𝛼.

Proof. Despite when it is said, 𝑀 will denote any constant independent of 𝜅 and 𝜀.
First, we must construct an inverse for the operator ℒ given in (8.4.2). Since ℒ acts

on the Fourier coefficients of 𝜉, it is sufficient to construct inverses of the operators Π𝑛 ∘ℒ,
which will be denoted by ℒ𝑛, to obtain an inverse for ℒ.

From (8.4.5), we have that 𝜉(𝑦, 𝜏) satisfies 𝜉(𝑦, 𝜏) → 0 as Re(𝑦) → −∞ for every 𝜏 .
Thus, we must look for 𝜁(𝑦) such that ℒ𝑛(𝜁) = ℎ and

lim
Re(𝑦)→−∞

𝜁(𝑦) = 0, (8.4.12)

where ℎ : 𝐷out,𝑢
𝜅 → C is a real-analytic function.

First, consider 𝑛 ≥ 2. Notice that the homogeneous equation ℒ𝑛(𝜁) = 0 has 𝜁1,𝑛(𝑦) =
𝑒𝑖 𝜆𝑛

𝜀
𝑦 and 𝜁2,𝑛(𝑦) = 𝑒−𝑖 𝜆𝑛

𝜀
𝑦 as fundamental solutions. Thus, using the variation of constants

formula, we obtain that the solutions of ℒ𝑛(𝜁) = ℎ are given by

𝜁(𝑦) = − 𝑖𝜀

2𝜆𝑛

𝑒𝑖 𝜆𝑛
𝜀

𝑦
(︂∫︁ 𝑦

𝑦0
𝑒−𝑖 𝜆𝑛

𝜀
𝑠ℎ(𝑠)𝑑𝑠− 𝐶0

)︂
+ 𝑖𝜀

2𝜆𝑛

𝑒−𝑖 𝜆𝑛
𝜀

𝑦
(︂∫︁ 𝑦

𝑦1
𝑒𝑖 𝜆𝑛

𝜀
𝑠ℎ(𝑠)𝑑𝑠− 𝐶1

)︂
,

where 𝐶0, 𝐶1, 𝑦0, 𝑦1 are constants.
Using (8.4.12), we have that

𝐶0 = −
∫︁ −∞

𝑦0
𝑒−𝑖 𝜆𝑛

𝜀
𝑠ℎ(𝑠)𝑑𝑠 𝑎𝑛𝑑 𝐶1 = −

∫︁ −∞

𝑦1
𝑒𝑖 𝜆𝑛

𝜀
𝑠ℎ(𝑠)𝑑𝑠,

and notice that both integrals in the definition of 𝐶0 and 𝐶1 are convergent since ℎ ∈
ℰℓ1,𝑚,𝛼, with 𝑚 > 1.

Thus, 𝜁 = 𝒢𝑛(ℎ), where 𝒢𝑛 is given by (8.4.9), 𝑛 ≥ 2. Now, we construct an inverse
for ℒ1. In this case, notice that the homogeneous equation ℒ1(𝜁) = 0 is the variational
equation of the solution 𝑣ℎ

1 , thus it follows that 𝜁1 = �̇�ℎ
1 is a solution of this equation,

which is given in (8.4.7).
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Now, applying the reduction of order technique, we obtain another solution 𝜁2 which
is linearly independent from 𝜁1 and since we are dealing with a second order differential
equation, {𝜁1, 𝜁2} is a fundamental set of solutions of the homogeneous problem. In this
case

𝜁2(𝑦) = 𝜁1(𝑦)
(︃∫︁ 𝑦

𝑦0

1
𝜁2

1 (𝑠)𝑑𝑠+ 𝐴

)︃
,

where 𝐴, 𝑦0 are constants.Choosing 𝐴, 𝑦0 such that 𝜁2(0) = 0, we obtain that 𝜁2 is given
in (8.4.7).

Notice that these solutions satisfy the asymptotic conditions

lim
Re(𝑦)→−∞

𝜁1(𝑦) = 0 and lim
Re(𝑦)→−∞

𝜁2(𝑦) = −∞,

and their Wronskian is given by 𝑊 (𝜁1, 𝜁2) = 1. Again, using the variation of constants
formula, we obtain that the solutions of ℒ1(𝜁) = ℎ are given by

𝜁(𝑦) = −𝜁1(𝑦)
(︂∫︁ 𝑦

𝑦0
𝜁2(𝑠)ℎ(𝑠)𝑑𝑠− 𝐶0

)︂
+ 𝜁2(𝑦)

(︂∫︁ 𝑦

𝑦1
𝜁1(𝑠)ℎ(𝑠)𝑑𝑠− 𝐶1

)︂
,

where 𝐶0, 𝐶1, 𝑦0, 𝑦1 are constants.
Now, using (8.4.12), it follows that

𝐶1 = −
∫︁ −∞

𝑦1
𝜁1(𝑠)ℎ(𝑠)𝑑𝑠.

Also, we choose
𝐶0 = −

∫︁ 0

𝑦0
𝜁1(𝑠)ℎ(𝑠)𝑑𝑠,

in order to have 𝜁(0) = 0.
Thus 𝜁 = 𝒢1(ℎ), where 𝒢1 is given by (8.4.8) and notice that 𝒢1 is an inverse of ℒ1

such that 𝜕𝑦𝒢1(ℎ)(0) = 0 and 𝒢1(ℎ)(𝑦) decays at infinity. This proves items (1) and (2)
of this proposition.

Now, to prove item (3), let ℎ ∈ ℰ𝑚,𝛼, and consider the twisted path 𝑤 = 𝑒∓𝑖𝛽𝜂. Thus,
if 𝑦 ∈ 𝐷𝑜𝑢𝑡,𝑢

𝜅 , then∫︁ 𝑦

−∞
𝑒±𝑖 𝜆𝑛

𝜀
(𝑠−𝑦)ℎ(𝑠)𝑑𝑠 =

∫︁ 0

−∞
𝑒±𝑖 𝜆𝑛

𝜀
𝑤ℎ(𝑤 + 𝑦)𝑑𝑤

=
∫︁ 0

−∞
𝑒±𝑖 𝜆𝑛

𝜀
𝑒∓𝑖𝛽𝜂ℎ(𝑒∓𝑖𝛽𝜂 + 𝑦)𝑒∓𝑖𝛽𝑑𝜂.

If Re(𝑦) ≤ −1, then⃒⃒⃒⃒
cosh𝑚(𝑦)

∫︁ 𝑦

−∞
𝑒±𝑖 𝜆𝑛

𝜀
(𝑠−𝑦)ℎ(𝑠)𝑑𝑠

⃒⃒⃒⃒
≤ ‖ℎ‖𝑚,𝛼

∫︁ 0

−∞
𝑒

𝜆𝑛
𝜀

sin(𝛽)𝜂
⃒⃒⃒⃒
⃒ cosh(𝑦)
cosh(𝑒∓𝑖𝛽𝜂 + 𝑦)

⃒⃒⃒⃒
⃒
𝑚

𝑑𝜂

≤ 𝑀‖ℎ‖𝑚,𝛼

∫︁ 0

−∞
𝑒

𝜆𝑛
𝜀

sin(𝛽)𝜂𝑑𝜂

≤ 𝑀
𝜀

𝜆𝑛

‖ℎ‖𝑚,𝛼.

If Re(𝑦) ≥ −1, then let 𝜌*(𝑦) ≤ 0 be such that

Re(𝑒∓𝑖𝛽𝜌*(𝑦) + 𝑦) = −1.
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In this case, we have that⃒⃒⃒⃒
(𝑦2 + 𝜋2/4)𝛼

∫︁ 𝑦

−∞
𝑒±𝑖 𝜆𝑛

𝜀
(𝑠−𝑦)ℎ(𝑠)𝑑𝑠

⃒⃒⃒⃒
≤

⃒⃒⃒⃒
⃒(𝑦2 + 𝜋2/4)𝛼

∫︁ 𝜌*(𝑦)

−∞
𝑒±𝑖 𝜆𝑛

𝜀
𝑒∓𝑖𝛽𝜂ℎ(𝑒∓𝑖𝛽𝜂 + 𝑦)𝑒∓𝑖𝛽𝑑𝜂

⃒⃒⃒⃒
⃒

+
⃒⃒⃒⃒
⃒(𝑦2 + 𝜋2/4)𝛼

∫︁ 0

𝜌*(𝑦)
𝑒±𝑖 𝜆𝑛

𝜀
𝑒∓𝑖𝛽𝜂ℎ(𝑒∓𝑖𝛽𝜂 + 𝑦)𝑒∓𝑖𝛽𝑑𝜂

⃒⃒⃒⃒
⃒

≤ ‖ℎ‖𝑚,𝛼

∫︁ 𝜌*(𝑦)

−∞
𝑒

𝜆𝑛
𝜀

sin(𝛽)𝜂
⃒⃒⃒⃒
⃒ (𝑦2 + 𝜋2/4)𝛼

cosh𝑚(𝑒∓𝑖𝛽𝜂 + 𝑦)

⃒⃒⃒⃒
⃒ 𝑑𝜂

+ ‖ℎ‖𝑚,𝛼

∫︁ 0

𝜌*(𝑦)
𝑒

𝜆𝑛
𝜀

sin(𝛽)𝜂
⃒⃒⃒⃒
⃒ 𝑦2 + 𝜋2/4
(𝑒∓𝑖𝛽𝜂 + 𝑦)2 + 𝜋2/4

⃒⃒⃒⃒
⃒
𝛼

𝑑𝜂

≤ 𝑀‖ℎ‖𝑚,𝛼

∫︁ 0

−∞
𝑒

𝜆𝑛
𝜀

sin(𝛽)𝜂𝑑𝜂

≤ 𝑀
𝜀

𝜆𝑛

‖ℎ‖𝑚,𝛼.

Notice that 𝑀 > 0 is a constant independent of 𝜀, 𝜅 and 𝑛, and thus it follows that

‖𝒢𝑛(ℎ)‖𝑚,𝛼≤ 𝑀𝜀2

𝜆2
𝑛

‖ℎ‖𝑚,𝛼, 𝑛 ≥ 2. (8.4.13)

As we have seen before, the operator 𝒢1 has to be considered separately since it
demands a special attention. Roughly speaking, we have no exponentials in the integrals
of (8.4.8), and thus the technique used to show the estimates above can not be applied
to this case.

First, we bound 𝒢1(ℎ)(𝑦) for values of 𝑦 in 𝐷out,𝑢
𝜅 ∩ {Re(𝑦) ≤ −1}. Notice that the

functions 𝜁1(𝑦), 𝜁2(𝑦) given in (8.4.7) satisfy

|𝜁1(𝑦)|≤ 𝑀

|cosh(𝑦)| and |𝜁2(𝑦)|≤ 𝑀 |cosh(𝑦)|, (8.4.14)

for every 𝑦 ∈ 𝐷out,𝑢
𝜅 ∩ {𝑦 ∈ C; |Im(𝑦)|≤ −𝐾 Re(𝑦)}, where

𝐾 =
(︂

tan(𝛽) + 𝜋

2 − 𝜅𝜀
)︂
.

The second integral in the following expression

𝒢1(ℎ)(𝑦) = −𝜁1(𝑦)
∫︁ 𝑦

0
𝜁2(𝑠)ℎ(𝑠)𝑑𝑠+ 𝜁2(𝑦)

∫︁ 𝑦

−∞
𝜁1(𝑠)ℎ(𝑠)𝑑𝑠.

satisfies ⃒⃒⃒⃒∫︁ 𝑦

−∞
𝜁1(𝑠)ℎ(𝑠)𝑑𝑠

⃒⃒⃒⃒
≤ ‖ℎ‖𝑚,𝛼

∫︁ 0

−∞

1
|cosh𝑚+1(𝑠+ 𝑦)|

𝑑𝑠

≤ 𝑀
‖ℎ‖𝑚,𝛼

|cosh𝑚(𝑦)|

∫︁ 0

−∞

1
|cosh(𝑠+ 𝑦)|𝑑𝑠

≤ 𝑀
‖ℎ‖𝑚,𝛼

|cosh𝑚(𝑦)|

∫︁ 0

−∞
𝑒𝑠+𝑦𝑑𝑠

≤ 𝑀
‖ℎ‖𝑚,𝛼

|cosh𝑚+1(𝑦)|
,
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for every 𝑦 ∈ 𝐷out,𝑢
𝜅 ∩ {Re(𝑦) ≤ −1}.

From (8.4.14), we conclude that⃒⃒⃒⃒
𝜁2(𝑦)

∫︁ 𝑦

−∞
𝜁1(𝑠)ℎ(𝑠)𝑑𝑠

⃒⃒⃒⃒
≤ 𝑀‖ℎ‖𝑚,𝛼

|cosh𝑚(𝑦)| , (8.4.15)

for every 𝑦 ∈ 𝐷out,𝑢
𝜅 ∩ {Re(𝑦) ≤ −1}.

Now, let 𝑦* be the unique point in the segment of line between 0 and 𝑦 such that
Re(𝑦*) = −1. Hence, it follows from (8.4.14) that

1. if 𝑠 is in the line between 0 and 𝑦*, then

|𝜁2(𝑠)ℎ(𝑠)| ≤ 𝑀‖ℎ‖𝑚,𝛼|cosh(𝑠)|
|𝑠2 + 𝜋2/4|𝛼

≤ 𝑀‖ℎ‖𝑚,𝛼sup
𝑠∈𝑈

|cosh(𝑠)|
|𝑠2 + 𝜋2/4|𝛼

≤ 𝑀‖ℎ‖𝑚,𝛼

where 𝑈 = {𝑦 ∈ C; |Im(𝑦)|≤ −𝐾 Re(𝑦) and Re(𝑦) ≥ −1};

2. if 𝑠 is in the line between 𝑦* and 𝑦, then

|𝜁2(𝑠)ℎ(𝑠)|≤ 𝑀‖ℎ‖𝑚,𝛼

|cosh𝑚−1(𝑠)|
.

Notice that Re(𝑦*) = −1 and |Im(𝑦*)|≤
⃒⃒⃒⃒
tan(𝛽) + 𝜋

2 − 𝜅𝜀
⃒⃒⃒⃒
, thus since 𝑚 > 1, we have

that ⃒⃒⃒⃒∫︁ 𝑦

0
𝜁2(𝑠)ℎ(𝑠)𝑑𝑠

⃒⃒⃒⃒
≤

⃒⃒⃒⃒∫︁ 0

𝑦*
𝜁2(𝑠)ℎ(𝑠)𝑑𝑠

⃒⃒⃒⃒
+
⃒⃒⃒⃒
⃒
∫︁ 𝑦*

𝑦
𝜁2(𝑠)ℎ(𝑠)𝑑𝑠

⃒⃒⃒⃒
⃒

≤ 𝑀‖ℎ‖𝑚,𝛼|𝑦*|+𝑀‖ℎ‖𝑚,𝛼

∫︁ 𝑦*

𝑦

1
|cosh𝑚−1(𝑠)|

𝑑𝑠

≤ 𝑀‖ℎ‖𝑚,𝛼+𝑀‖ℎ‖𝑚,𝛼

∫︁ 𝑦*

−∞

1
|cosh𝑚−1(𝑠)|

𝑑𝑠

≤ 𝑀‖ℎ‖𝑚,𝛼.

Hence, it follows from (8.4.14) that⃒⃒⃒⃒
𝜁1(𝑦)

∫︁ 𝑦

0
𝜁2(𝑠)ℎ(𝑠)𝑑𝑠

⃒⃒⃒⃒
≤ 𝑀‖ℎ‖𝑚,𝛼

|cosh(𝑦)| , (8.4.16)

for every 𝑦 ∈ 𝐷out,𝑢
𝜅 ∩ {Re(𝑦) ≤ −1}.

Now, from (8.4.8), (8.4.15) and (8.4.16), we obtain that

sup
𝑦∈𝐷out,𝑢

𝜅 ∩{Re(𝑦)≤−1}
|cosh(𝑦)𝒢1(ℎ)(𝑦)| ≤ 𝑀‖ℎ‖𝑚,𝛼. (8.4.17)

The set of fundamental solutions {𝜁1, 𝜁2} given in (8.4.7) of the equation ℒ1(𝜁) = 0
provides the operator 𝒢1 defined in (8.4.8) which is quite useful to bound 𝒢1(ℎ)(𝑦) for
values of 𝑦 in 𝐷out,𝑢

𝜅 ∩ {Re(𝑦) ≤ −1}, as we have seen in (8.4.17).
Nevertheless, both solutions 𝜁1(𝑦), 𝜁2(𝑦) have poles of order 2 at ±𝑖𝜋/2, and this might

prevent us to see cancellations of poles in the domain 𝐷out,𝑢
𝜅 ∩ {Re(𝑦) ≥ −1}. In order
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to avoid this kind of problem, we consider a new set of fundamental solutions {𝜁+, 𝜁−} of
ℒ1(𝜁) = 0 which has good properties at ±𝑖𝜋/2.

The main idea is to rewrite the solutions 𝜁1(𝑦) and 𝜁2(𝑦) as linear combinations of
𝜁+(𝑦) and 𝜁−(𝑦) and use them to obtain a new expression of the operator 𝒢1, which will
be useful to bound 𝒢1(ℎ)(𝑦) for values of 𝑦 in 𝐷out,𝑢

𝜅 ∩ {Re(𝑦) ≥ −1}. We emphasize that
the operator 𝒢1 is already defined. We will only express it in a different manner.

Since 𝜁1(𝑦) is a solution of ℒ1(𝜁) = 0, it follows from the method of reduction of order
that

𝜁±(𝑦) = 𝜁1(𝑦)
∫︁ 𝑦

±𝑖 𝜋
2

1
𝜁2

1 (𝑠)𝑑𝑠, (8.4.18)

are also solutions of the homogeneous equation. Notice that

𝜁±(𝑦) = −
√

2
4

sinh(𝑦)
cosh2(𝑦)

∫︁ 𝑦

±𝑖 𝜋
2

cosh4(𝑠)
sinh2(𝑠)

𝑑𝑠. (8.4.19)

Claim: The solutions 𝜁± : 𝐷𝑜𝑢𝑡,𝑢
𝜅 → C of ℒ1(𝜁) = 0 given in (8.4.18) are well defined and

they are given by

𝜁±(𝑦) = −
√

2
4

1
cosh2(𝑦)

(︃
3𝑦 sinh(𝑦)

2 − cosh(𝑦) + 1
4 sinh(𝑦) sinh(2𝑦) ∓ 𝑖

3𝜋
4 sinh(𝑦)

)︃
,

(8.4.20)
for each 𝑦 ∈ 𝐷out,𝑢

𝜅 . Furthermore,

• 𝜁± are linearly independent and

𝑊 (𝜁+, 𝜁−) = 𝜁+𝜁− − 𝜁−𝜁+ = −𝑖3𝜋16 . (8.4.21)

• There exist uniformly bounded (with respect to 𝜀 and 𝜅) analytic functions 𝜉± :
𝐷out,𝑢

𝜅 ∩ {Re(𝑦) ≥ −1} → C such that

𝜁±(𝑦) = (𝑦 ∓ 𝑖𝜋/2)3

(𝑦 ± 𝑖𝜋/2)2 𝜉±(𝑦), (8.4.22)

for each 𝑦 ∈ 𝐷out,𝑢
𝜅 ∩ {Re(𝑦) ≥ −1}.

Proof: The integrand of (8.4.19) is analytic in 𝐷𝑜𝑢𝑡,𝑢
𝜅 ∖ {0}, and thus, 𝜁±(𝑦) is well defined

for each 𝑦 ∈ 𝐷𝑜𝑢𝑡,𝑢
𝜅 ∖ {0}.

Now, 𝐹 (𝑠) = 3𝑠
2 − coth(𝑠) + 1

4 sinh(2𝑠) is a primitive of 𝑓(𝑠) = cosh4(𝑠)
sinh2(𝑠)

, for every

𝑠 ∈ C ∖ ({2𝑘𝜋; 𝑘 ∈ Z} ∪ {𝑖𝜋 + 2𝑘𝜋; 𝑘 ∈ Z}).
Thus, for each 𝑦 ∈ 𝐷𝑜𝑢𝑡,𝑢

𝜅 ∖ {0}, we have that
∫︁ 𝑦

±𝑖 𝜋
2

cosh4(𝑠)
sinh2(𝑠)

𝑑𝑠 = 3𝑦
2 − coth(𝑦) + 1

4 sinh(2𝑦) ∓ 𝑖
3𝜋
4 .

It follows from (8.4.19) that (8.4.20) holds for each 𝑦 ∈ 𝐷𝑜𝑢𝑡,𝑢
𝜅 ∖ {0}. From the expres-

sion in (8.4.20), both 𝜁±(𝑦) can be analytically extended to 𝐷𝑜𝑢𝑡,𝑢
𝜅 by defining 𝜁±(0) =

√
2

4 .

A straightforward computation shows (8.4.21) and thus 𝜁± are linearly independent.
A simple analysis of (8.4.20) allows us to conclude (8.4.22). �
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Since {𝜁+, 𝜁−} is a fundamental set of solutions of ℒ1(𝜁) = 0, we are able to rewrite
the operator 𝒢1 given in (8.4.8) in terms of 𝜁+ and 𝜁−.
Claim: Given 𝜅 ≥ 1, consider the operator 𝒢1 given by (8.4.8). Let ℎ : 𝐷out,u

𝜅 → C be a
real-analytic function, then

𝒢1(ℎ) = 𝑖
16
3𝜋

(︂
−𝜁+(𝑦)

∫︁ 𝑦

0
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠+ 𝜁−(𝑦)

∫︁ 𝑦

0
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠

)︂
+ 𝜁2(𝑦)

∫︁ 0

−∞
𝜁1(𝑠)ℎ(𝑠)𝑑𝑠,

(8.4.23)
where 𝜁1, 𝜁2 and 𝜁± are given in (8.4.7) and (8.4.20), respectively.
Proof: In fact, using the expressions of 𝜁1, 𝜁2 and 𝜁± in (8.4.7) and (8.4.20), we can see
that

𝜁1(𝑦) = 𝑖
16
3𝜋 (𝜁+(𝑦) − 𝜁−(𝑦)) and 𝜁2(𝑦) = 𝜁+(𝑦) + 𝜁−(𝑦)

2 . (8.4.24)

From definition of 𝒢1 in (8.4.8) and (8.4.24), we have

𝒢1(ℎ) = −𝑖 8
3𝜋𝜁+(𝑦)

∫︁ 𝑦

0
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠− 𝑖

8
3𝜋𝜁+(𝑦)

∫︁ 𝑦

0
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠

+𝑖 8
3𝜋𝜁−(𝑦)

∫︁ 𝑦

0
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠+ 𝑖

8
3𝜋𝜁−(𝑦)

∫︁ 𝑦

0
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠

+𝑖 8
3𝜋𝜁+(𝑦)

∫︁ 𝑦

−∞
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠− 𝑖

8
3𝜋𝜁+(𝑦)

∫︁ 𝑦

−∞
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠

+𝑖 8
3𝜋𝜁−(𝑦)

∫︁ 𝑦

−∞
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠− 𝑖

2
3𝜋𝜁−(𝑦)

∫︁ 𝑦

−∞
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠

= −𝑖 8
3𝜋𝜁+(𝑦)

(︂∫︁ 𝑦

0
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠+

∫︁ 𝑦

−∞
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠

)︂
+𝑖 8

3𝜋𝜁−(𝑦)
(︂∫︁ 𝑦

0
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠+

∫︁ 𝑦

−∞
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠

)︂
+𝑖 8

3𝜋𝜁+(𝑦)
∫︁ 0

−∞
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠− 𝑖

8
3𝜋𝜁−(𝑦)

∫︁ 0

−∞
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠

= −𝑖 8
3𝜋𝜁+(𝑦)

(︂
2
∫︁ 𝑦

0
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠+

∫︁ 0

−∞
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠

)︂
+𝑖 8

3𝜋𝜁−(𝑦)
(︂

2
∫︁ 𝑦

0
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠+

∫︁ 0

−∞
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠

)︂
+𝑖 8

3𝜋𝜁+(𝑦)
∫︁ 0

−∞
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠− 𝑖

2
3𝜋𝜁−(𝑦)

∫︁ 0

−∞
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠

= 𝑖
16
3𝜋

(︂
−𝜁+(𝑦)

∫︁ 𝑦

0
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠+ 𝜁−(𝑦)

∫︁ 𝑦

0
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠

)︂
+𝜁+(𝑦) + 𝜁−(𝑦)

2

∫︁ 0

−∞
𝑖
16
3𝜋 (𝜁+(𝑠) − 𝜁−(𝑠))ℎ(𝑠)𝑑𝑠

= 𝑖
16
3𝜋

(︂
−𝜁+(𝑦)

∫︁ 𝑦

0
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠+ 𝜁−(𝑦)

∫︁ 𝑦

0
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠

)︂
+ 𝜁2(𝑦)

∫︁ 0

−∞
𝜁1(𝑠)ℎ(𝑠)𝑑𝑠.

�
Now, let 𝑦 ∈ 𝐷out,𝑢

𝜅 satisfying Re(𝑦) ≥ −𝜌, and use (8.4.23) to write 𝒢1(ℎ) as

𝒢1(ℎ)(𝑦) = 𝑖
16
3𝜋

(︂
−𝜁+(𝑦)

∫︁ 𝑦

0
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠+ 𝜁−(𝑦)

∫︁ 𝑦

0
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠

)︂
+𝜁2(𝑦)

∫︁ 0

−∞
𝜁1(𝑠)ℎ(𝑠)𝑑𝑠.
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First, notice that we can use (8.4.14) to see that⃒⃒⃒⃒∫︁ 0

−∞
𝜁1(𝑠)ℎ(𝑠)𝑑𝑠

⃒⃒⃒⃒
≤ 𝑀‖ℎ‖𝑚,𝛼

(︃∫︁ −1

−∞

1
|cosh𝑚+1(𝑠)|

𝑑𝑠+
∫︁ 0

−1

1
|cosh(𝑠)(𝑠2 + 𝜋2/4)𝛼|

𝑑𝑠

)︃
≤ 𝑀‖ℎ‖𝑚,𝛼.

From the expression of 𝜁2(𝑦) given in (8.4.7), we have that 𝜁2(𝑦) has poles only at
±𝑖𝜋/2 + 𝑖2𝑘𝜋, 𝑘 ∈ Z, and they have order 2. Since 𝛼 ≥ 5, it follows that

sup
𝑦∈𝐷out,𝑢

𝜅 ∩{Re(𝑦)≥−1}

⃒⃒⃒⃒
(𝑦2 + 𝜋2/4)𝛼−2𝜁2(𝑦)

∫︁ 0

−∞
𝜁1(𝑠)ℎ(𝑠)𝑑𝑠

⃒⃒⃒⃒
≤ 𝑀‖ℎ‖𝑚,𝛼. (8.4.25)

Now, we use that 𝛼 ≥ 5 and equation (8.4.22) to see that⃒⃒⃒⃒
𝜁+(𝑦)

∫︁ 𝑦

0
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠

⃒⃒⃒⃒
≤ 𝑀

|𝑦 − 𝑖𝜋/2|3

|𝑦 + 𝑖𝜋/2|2
∫︁ 𝑦

0

|𝑠+ 𝑖𝜋/2|3

|𝑠− 𝑖𝜋/2|2
|ℎ(𝑠)|𝑑𝑠

≤ 𝑀‖ℎ‖𝑚,𝛼
|𝑦 − 𝑖𝜋/2|3

|𝑦 + 𝑖𝜋/2|2
∫︁ 𝑦

0

1
|𝑠+ 𝑖𝜋/2|𝛼−3|𝑠− 𝑖𝜋/2|𝛼+2𝑑𝑠

≤ 𝑀‖ℎ‖𝑚,𝛼
|𝑦 − 𝑖𝜋/2|3

|𝑦 + 𝑖𝜋/2|2

(︃∫︁ 𝑦

0

1
|𝑠+ 𝑖𝜋/2|𝛼−3𝑑𝑠+

∫︁ 𝑦

0

1
|𝑠− 𝑖𝜋/2|𝛼+2𝑑𝑠

)︃

≤ 𝑀‖ℎ‖𝑚,𝛼
|𝑦 − 𝑖𝜋/2|3

|𝑦 + 𝑖𝜋/2|2

(︃
1

|𝑦 + 𝑖𝜋/2|𝛼−5

∫︁ 𝑦

0

1
|𝑠+ 𝑖𝜋/2|2

𝑑𝑠

+ 1
|𝑦 − 𝑖𝜋/2|𝛼

∫︁ 𝑦

0

1
|𝑠− 𝑖𝜋/2|2

𝑑𝑠

)︃

≤ 𝑀‖ℎ‖𝑚,𝛼
|𝑦 − 𝑖𝜋/2|3

|𝑦 + 𝑖𝜋/2|2
1

|𝑦 + 𝑖𝜋/2|𝛼−4|𝑦 − 𝑖𝜋/2|𝛼+1

≤ 𝑀‖ℎ‖𝑚,𝛼

|𝑦2 + 𝜋2/4|𝛼−2 .

We conclude that

sup
𝑦∈𝐷out,𝑢

𝜅 ∩{Re(𝑦)≥−1}

⃒⃒⃒⃒
(𝑦2 + 𝜋2/4)𝛼−2𝜁+(𝑦)

∫︁ 𝑦

0
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠

⃒⃒⃒⃒
≤ 𝑀‖ℎ‖𝑚,𝛼. (8.4.26)

In a similar way, we can prove that

sup
𝑦∈𝐷out,𝑢

𝜅 ∩{Re(𝑦)≥−1}

⃒⃒⃒⃒
(𝑦2 + 𝜋2/4)𝛼−2𝜁−(𝑦)

∫︁ 𝑦

0
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠

⃒⃒⃒⃒
≤ 𝑀‖ℎ‖𝑚,𝛼. (8.4.27)

It follows from (8.4.23), (8.4.25), (8.4.26) and (8.4.27) that

sup
𝑦∈𝐷out,𝑢

𝜅 ∩{Re(𝑦)≥−1}

⃒⃒⃒
(𝑦2 + 𝜋2/4)𝛼−2𝒢1(ℎ)(𝑦)

⃒⃒⃒
≤ 𝑀‖ℎ‖𝑚,𝛼. (8.4.28)

Hence, using (8.4.6), (8.4.17) and (8.4.28) we obtain

‖𝒢1(ℎ)‖1,𝛼−2≤ 𝑀‖ℎ‖𝑚,𝛼.

Thus, item (3) is proved. To prove item (4) it is sufficient to use (8.4.13) and remark
that

Π𝑛[𝜕𝜏 ∘ 𝒢(ℎ)] = 𝑛Π𝑛[𝒢(ℎ)] 𝑎𝑛𝑑 Π𝑛[𝜕2
𝜏 ∘ 𝒢(ℎ)] = 𝑛2Π𝑛[𝒢(ℎ)].
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Finally, notice that

𝜕𝑦 ∘ 𝒢𝑛(ℎ) = 1
2𝑒

𝑖 𝜆𝑛
𝜀

𝑦
∫︁ 𝑦

−∞
𝑒−𝑖 𝜆𝑛

𝜀
𝑠ℎ(𝑠)𝑑𝑠+ 1

2𝑒
−𝑖 𝜆𝑛

𝜀
𝑦
∫︁ 𝑦

−∞
𝑒𝑖 𝜆𝑛

𝜀
𝑠ℎ(𝑠)𝑑𝑠, 𝑛 ≥ 2,

and thus, following the same ideas previously used in this proof, we obtain

‖𝜕𝑦 ∘ 𝒢𝑛(ℎ)‖𝑚,𝛼≤ 𝑀𝜀

𝜆𝑛

‖ℎ‖𝑚,𝛼, 𝑛 ≥ 2.

Also,

𝜕𝑦∘𝒢1(ℎ) = 𝑖
16
3𝜋

(︂
−𝜁 ′

+(𝑦)
∫︁ 𝑦

0
𝜁−(𝑠)ℎ(𝑠)𝑑𝑠+ 𝜁 ′

−(𝑦)
∫︁ 𝑦

0
𝜁+(𝑠)ℎ(𝑠)𝑑𝑠

)︂
+𝜁 ′

2(𝑦)
∫︁ 0

−∞
𝜁1(𝑠)ℎ(𝑠)𝑑𝑠,

and
𝜁 ′

±(𝑦) = (𝑦 ∓ 𝑖𝜋/2)2

(𝑦 ± 𝑖𝜋/2)3
̂︁𝜉±(𝑦),

where ̂︁𝜉± are analytic functions. Hence, since 𝜉′
2 has a pole of order 1 at ±𝑖𝜋/2+𝑖2𝑘𝜋, 𝑘 ∈

Z, we follow the same ideas above to obtain

‖𝜕𝑦 ∘ 𝒢1(ℎ)‖1,𝛼−1≤ 𝑀‖ℎ‖𝑚,𝛼.

This proves item (5).

8.4.2 Fixed Point Argument
Now, we use Proposition 8.4.2 to rewrite (8.4.4) as

𝜉 = 𝒢 ∘ ℱ(𝜉),

and in the following proposition we study some properties of the operator
̃︀ℱ = 𝒢 ∘ ℱ . (8.4.29)

Proposition 8.4.3. Consider 𝜅 ≥ 1. The following statements hold.

1. There exists a constant 𝑀1 > 0 independent of 𝜀 and 𝜅 such that, for 𝜀 sufficiently
small,

‖ ̃︀ℱ(0)‖ℓ1,1,3≤ 𝑀1𝜀
2.

2. Given 𝑅 > 0, there exists 𝜀0 > 0 such that, for every 0 < 𝜀 ≤ 𝜀0, the operator
̃︀ℱ : ℬ0(𝑅𝜀2) ⊂ ℰℓ1,1,3 → ℰℓ1,1,3

is well defined, and there exists a constant 𝑀2 > 0 independent of 𝜀 and 𝜅 such that,
for every 𝜉, 𝜉′ ∈ ℬ0(𝑅𝜀2) ⊂ ℰℓ1,1,3 and 0 < 𝜀 ≤ 𝜀0,

‖ ̃︀ℱ(𝜉) − ̃︀ℱ(𝜉′)‖ℓ1,1,3≤ 𝑀2

(︂(︂
𝜀2 + 1

𝜅2

)︂
‖𝜉 − 𝜉′‖ℓ1,1,3+‖̂︀Π[𝜉] − ̂︀Π[𝜉′]‖ℓ1,1,3

)︂
.

Furthermore,
‖̂︀Π[ ̃︀ℱ(𝜉)] − ̂︀Π[ ̃︀ℱ(𝜉′)]‖ℓ1,1,3≤

𝑀2

𝜅2 ‖𝜉 − 𝜉′‖ℓ1,1,3.
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Proof. First, we need to rewrite the operator ℱ given in (8.4.3), in order to make explicit
some cancellations between its terms. Recall that 𝑔 is given by (8.1.6).

ℱ(𝜉) = − 1
𝜀3 𝑔(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏))) +
(︃

(𝜉1 + 𝑣ℎ
1 )3

4 − 3𝑣ℎ
1 𝜉

2
1

4 − 𝜉3
1
4

)︃
sin(𝜏)

= − 1
𝜀3
̂︀Π [︁
𝑔(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏)))
]︁

+
(︂

−1
3Π1

[︂(︁
(𝜉1 + 𝑣ℎ

1 ) sin(𝜏) + ̂︀Π(𝜉)
)︁3
]︂

− 1
𝜀3 Π1

[︁
𝑓(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏)))
]︁

+ (𝜉1 + 𝑣ℎ
1 )3

4 − 3𝑣ℎ
1 𝜉

2
1

4 − 𝜉3
1
4

)︃
sin(𝜏)

= − 1
𝜀3
̂︀Π [︁
𝑔(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏)))
]︁

+
(︂

−1
3Π1

[︁
(𝜉1 + 𝑣ℎ

1 )3 sin3(𝜏) + 3(𝜉1 + 𝑣ℎ
1 )2 sin2(𝜏)̂︀Π[𝜉]

+3(𝜉1 + 𝑣ℎ
1 ) sin(𝜏)(̂︀Π[𝜉])2 + (̂︀Π[𝜉])3

]︁
− 1
𝜀3 Π1

[︁
𝑓(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏)))
]︁

+(𝜉1 + 𝑣ℎ
1 )3

4 − 3𝑣ℎ
1 𝜉

2
1

4 − 𝜉3
1
4

)︃
sin(𝜏).

Therefore,

ℱ(𝜉) = − 1
𝜀3
̂︀Π[𝑔(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏)))] +
(︁
Π1
[︁
−(𝜉1 + 𝑣ℎ

1 )2 sin2(𝜏)̂︀Π[𝜉] − (𝜉1 + 𝑣ℎ
1 ) sin(𝜏)(̂︀Π[𝜉])2

−1
3(̂︀Π[𝜉])3

]︂
− 1
𝜀3 Π1

[︁
𝑓(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏)))
]︁

− 3𝑣ℎ
1 𝜉

2
1

4 − 𝜉3
1
4

)︃
sin(𝜏).

(8.4.30)
Now,

ℱ(0) = − 1
𝜀3
̂︀Π [︁
𝑔(𝜀(𝑣ℎ

1 sin(𝜏)))
]︁

− 1
𝜀3 Π1

[︁
𝑓(𝜀(𝑣ℎ

1 sin(𝜏)))
]︁

sin(𝜏).

Since 𝑔, and therefore, 𝑓 are analytic functions such that 𝑔(𝑧) = 𝒪(𝑧3) and 𝑓(𝑧) =
𝒪(𝑧5) and 𝑣ℎ

1 sin(𝜏) ∈ ℰℓ1,1,1, and using Proposition 8.4.2 (with 𝑚 = 𝛼 = 5, 𝑙 = 1 for 𝑓 ,
and 𝛽 = 3, 𝑙 = 1 for 𝑔) it follows that

‖ ̃︀ℱ(0)‖ℓ1,1,3 ≤ 𝑀𝜀2
⃦⃦⃦⃦ 1
𝜀3
̂︀Π [︁
𝑔(𝜀(𝑣ℎ

1 sin(𝜏)))
]︁⃦⃦⃦⃦

ℓ1,1,3
+𝑀

⃦⃦⃦⃦ 1
𝜀3 Π1

[︁
𝑓(𝜀(𝑣ℎ

1 sin(𝜏)))
]︁⃦⃦⃦⃦

ℓ1,5,5

≤ 𝑀𝜀2
⃦⃦⃦
𝑣ℎ

1 sin(𝜏)
⃦⃦⃦3

ℓ1,1,1
+𝑀𝜀2

⃦⃦⃦
𝑣ℎ

1 sin(𝜏)
⃦⃦⃦5

ℓ1,1,1

≤ 𝑀𝜀2.

Now, let 𝜉, 𝜉′ ∈ ℬ0(𝑅𝜀2), thus we have that
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ℱ(𝜉) − ℱ(𝜉′) = − 1
𝜀3
̂︀Π [︁
𝑔(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏))) − 𝑔(𝜀(𝜉′ + 𝑣ℎ
1 sin(𝜏)))

]︁
−Π1

[︁
(𝜉1 + 𝑣ℎ

1 )2 sin2(𝜏)(̂︀Π[𝜉] − ̂︀Π[𝜉′])
]︁

sin(𝜏)

+
(︁
−Π1

[︁ ̂︀Π[𝜉′] sin2(𝜏)
(︁
(𝜉1 + 𝑣ℎ

1 )2 − (𝜉′
1 + 𝑣ℎ

1 )2
)︁]︁

−Π1
[︁
(𝜉1 + 𝑣ℎ

1 ) sin(𝜏)((̂︀Π[𝜉])2 − (̂︀Π[𝜉′])2)
]︁)︁

sin(𝜏)

+
(︂

−Π1
[︁
(̂︀Π[𝜉′])2 sin(𝜏)(𝜉1 − 𝜉′

1)
]︁

− 1
3Π1

[︁
(̂︀Π[𝜉])3 − (̂︀Π[𝜉′])3

]︁)︂
sin(𝜏)

+
(︂

− 1
𝜀3 Π1

[︁
𝑓(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏))) − 𝑓(𝜀(𝜉′ + 𝑣ℎ
1 sin(𝜏)))

]︁
−3𝑣ℎ

1 (𝜉2
1 − (𝜉′

1)2)
4 − 𝜉3

1 − (𝜉′
1)3

4

)︃
sin(𝜏)

Now, using the Mean Value Theorem, we obtain that

𝑔(𝜀(𝜉+𝑣ℎ
1 sin(𝜏)))−𝑔(𝜀(𝜉′+𝑣ℎ

1 sin(𝜏))) = 𝜀(𝜉−𝜉′)
∫︁ 1

0
𝑔′(𝜀(𝑠(𝜉+𝑣ℎ

1 sin(𝜏))+(1−𝑠)(𝜉′+𝑣ℎ
1 sin(𝜏))))𝑑𝑠,

thus, since 𝑔′(𝑥) = 𝒪(𝑥2) and 𝜉 + 𝑣ℎ
1 sin(𝜏) ∈ ℰℓ1,1,1, it follows that

‖𝑔(𝜀(𝜉 + 𝑣ℎ
1 sin(𝜏))) − 𝑔(𝜀(𝜉′ + 𝑣ℎ

1 sin(𝜏)))‖ℓ1,3,3≤
𝑀𝜀

𝜅2 ‖𝜉 − 𝜉′‖ℓ1,1,3.

Analogously, we obtain

•
⃦⃦⃦
Π1
[︁
(𝜉1 + 𝑣ℎ

1 )2 sin2(𝜏)(̂︀Π[𝜉] − ̂︀Π[𝜉′])
]︁

sin(𝜏)
⃦⃦⃦

3,5
≤ 𝑀

⃦⃦⃦ ̂︀Π[𝜉] − ̂︀Π[𝜉′]
⃦⃦⃦

ℓ1,1,3
;

•
⃦⃦⃦
Π1
[︁ ̂︀Π[𝜉′] sin2(𝜏)

(︁
(𝜉1 + 𝑣ℎ

1 )2 − (𝜉′
1 + 𝑣ℎ

1 )2
)︁]︁

sin(𝜏)
⃦⃦⃦

3,5
≤ 𝑀

𝜅2 ‖𝜉1 − 𝜉′
1‖1,3;

•
⃦⃦⃦
Π1
[︁
(𝜉1 + 𝑣ℎ

1 ) sin(𝜏)((̂︀Π[𝜉])2 − (̂︀Π[𝜉′])2)
]︁

sin(𝜏)
⃦⃦⃦

3,5
≤ 𝑀

𝜅2

⃦⃦⃦ ̂︀Π[𝜉] − ̂︀Π[𝜉′]
⃦⃦⃦

ℓ1,1,3
;

•
⃦⃦⃦
Π1
[︁
(̂︀Π[𝜉′])2 sin(𝜏)(𝜉1 − 𝜉′

1)
]︁

sin(𝜏)
⃦⃦⃦

3,5
≤ 𝑀

𝜅4 ‖𝜉1 − 𝜉′
1‖1,3;

•
⃦⃦⃦
Π1
[︁
(̂︀Π(𝜉))3 − (̂︀Π(𝜉′))3

]︁
sin(𝜏)

⃦⃦⃦
3,5

≤ 𝑀

𝜅4

⃦⃦⃦ ̂︀Π[𝜉] − ̂︀Π[𝜉′]
⃦⃦⃦

ℓ1,1,3
;

•
⃦⃦⃦
Π1
[︁
𝑓(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏))) − 𝑓(𝜀(𝜉′ + 𝑣ℎ
1 sin(𝜏)))

]︁
sin(𝜏)

⃦⃦⃦
3,5

≤ 𝑀𝜀3

𝜅2 ‖𝜉 − 𝜉′‖ℓ1,1,3;

•
⃦⃦⃦
𝑣ℎ

1 (𝜉2
1 − (𝜉′

1)2 sin(𝜏)
⃦⃦⃦

3,5
≤ 𝑀

𝜅2 ‖𝜉1 − 𝜉′
1‖1,3;

• ‖(𝜉3
1 − (𝜉′

1)3) sin(𝜏)‖3,5 ≤ 𝑀

𝜅4 ‖𝜉1 − 𝜉′
1‖1,3.
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Therefore, applying (8.4.10) to bound 𝒢, we have the second statement of this propo-
sition. Finally, using (8.4.11), notice that⃦⃦⃦ ̂︀Π [︁ ̃︀ℱ(𝜉))

]︁
− ̂︀Π [︁ ̃︀ℱ(𝜉′)

]︁⃦⃦⃦
ℓ1,1,3

= ‖𝒢(̂︀Π ∘ ℱ(𝜉) − ̂︀Π ∘ ℱ(𝜉′))‖ℓ1,1,3

=
⃦⃦⃦⃦
𝒢
(︂

− 1
𝜀3
̂︀Π [︁
𝑔(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏))) − 𝑔(𝜀(𝜉′ + 𝑣ℎ
1 sin(𝜏)))

]︁)︂⃦⃦⃦⃦
ℓ1,1,3

≤ 𝑀

𝜀

⃦⃦⃦ ̂︀Π [︁
𝑔(𝜀(𝜉 + 𝑣ℎ

1 sin(𝜏))) − 𝑔(𝜀(𝜉′ + 𝑣ℎ
1 sin(𝜏)))

]︁⃦⃦⃦
ℓ1,1,3

≤ 𝑀

𝜅2 ‖𝜉 − 𝜉′‖ℓ1,1,3.

The proof is complete.

We want to find a small fixed point of the operator ̃︀ℱ : ℰℓ1,1,3 → ℰℓ1,1,3 given in (8.4.29).
Now, in order to use a Gauss-Seidel type argument, we set the operator

̃︀ℱ𝐺𝑆(𝜉) = Π1
[︁ ̃︀ℱ(𝜉1 sin(𝜏) + ̂︀Π [︁ ̃︀ℱ(𝜉))

]︁]︁
sin(𝜏) + ̂︀Π [︁ ̃︀ℱ(𝜉)

]︁
(8.4.31)

If ̂︀Π[𝜉*] = ̂︀Π[ ̃︀ℱ(𝜉*)], then

Π1
[︁ ̃︀ℱ(𝜉*)

]︁
= Π1

[︁ ̃︀ℱ(𝜉1 sin(𝜏) + ̂︀Π( ̃︀ℱ(𝜉)))
]︁

(8.4.32)

which implies that ̃︀ℱ and ̃︀ℱ𝐺𝑆 have the same fixed points.

Proposition 8.4.4. Consider 𝜅 ≥ 1. The following statements hold.

1. There exists a constant 𝑀1 > 0 independent of 𝜀 and 𝜅 such that, for 𝜀 sufficiently
small,

‖ ̃︀ℱ𝐺𝑆(0)‖ℓ1,1,3≤ 𝑀1𝜀
2.

2. Given 𝑅 > 0, there exists 𝜀0 > 0 such that, for every 0 < 𝜀 ≤ 𝜀0, the operator
̃︀ℱ𝐺𝑆 : ℬ0(𝑅𝜀2) ⊂ ℰℓ1,1,3 → ℰℓ1,1,3

is well defined, and there exists a constant 𝑀2 > 0 independent of 𝜀 and 𝜅 such that,
for every 𝜉, 𝜉′ ∈ ℬ0(𝑅𝜀2) ⊂ ℰℓ1,1,3 and 0 < 𝜀 ≤ 𝜀0,

‖ ̃︀ℱ𝐺𝑆(𝜉) − ̃︀ℱ𝐺𝑆(𝜉′)‖ℓ1,1,3≤ 𝑀2

(︂
𝜀2 + 1

𝜅2

)︂
‖𝜉 − 𝜉′‖ℓ1,1,3.

Proof. Notice that
̃︀ℱ𝐺𝑆(0) = Π1

[︁ ̃︀ℱ(̂︀Π( ̃︀ℱ(0)))
]︁

sin(𝜏) + ̂︀Π( ̃︀ℱ(0)).

Therefore, using Proposition 8.4.3, we obtain

‖ ̃︀ℱ𝐺𝑆(0)‖ℓ1,1,3 ≤ ‖ ̃︀ℱ(̂︀Π( ̃︀ℱ(0)))‖ℓ1,1,3+‖ ̃︀ℱ(0)‖ℓ1,1,3

≤ ‖ ̃︀ℱ(̂︀Π( ̃︀ℱ(0))) − ̃︀ℱ(0)‖ℓ1,1,3+2‖ ̃︀ℱ(0)‖ℓ1,1,3

≤ 𝑀𝜀2,
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Finally, item (2) follows from follows and the following estimate⃦⃦⃦
Π1
[︁ ̃︀ℱ(𝜉1 sin(𝜏) + ̂︀Π[ ̃︀ℱ(𝜉)])

]︁
− Π1

[︁ ̃︀ℱ(𝜉′
1 sin(𝜏) + ̂︀Π[ ̃︀ℱ(𝜉′)])

]︁⃦⃦⃦
1,3

≤
⃦⃦⃦ ̃︀ℱ(𝜉1 sin(𝜏) + ̂︀Π[ ̃︀ℱ(𝜉)]) − ̃︀ℱ(𝜉′

1 sin(𝜏) + ̂︀Π[ ̃︀ℱ(𝜉′)])))
⃦⃦⃦

ℓ1,1,3

≤ 𝑀
(︂
𝜀2 + 1

𝜅2

)︂ ⃦⃦⃦
(𝜉1 − 𝜉′

1) sin(𝜏) + ̂︀Π[ ̃︀ℱ(𝜉)] − ̂︀Π[ ̃︀ℱ(𝜉′)]
⃦⃦⃦

ℓ1,1,3

+𝑀
⃦⃦⃦ ̂︀Π[ ̃︀ℱ(𝜉)] − ̂︀Π[ ̃︀ℱ(𝜉′)]

⃦⃦⃦
ℓ1,1,3

≤ 𝑀
(︂
𝜀2 + 1

𝜅2

)︂
‖𝜉 − 𝜉′‖ℓ1,1,3 .

Recall that 𝑊 𝑢(0) is parameterized by 𝑣𝑢(𝑦, 𝜏) = 𝑣ℎ
1 (𝑦) sin(𝜏)+𝜉𝑢(𝑦, 𝜏), where 𝜉𝑢(𝑦, 𝜏)

is a fixed point of
𝜉 = ̃︀ℱ𝐺𝑆(𝜉).

In what follows, we prove Theorem 8.3.1 by showing that ̃︀ℱ𝐺𝑆 has a fixed point in
ℰℓ1,1,3.
Proposition 8.4.5. There exist 𝜀0 > 0 and 𝜅0 ≥ 1 such that the operator ̃︀ℱ𝐺𝑆 : ℰℓ1,1,3 →
ℰℓ1,1,3 has a fixed point 𝜉𝑢 ∈ ℰℓ1,1,3, for every 𝜀 ≤ 𝜀0. Furthermore, there exists 𝑀 > 0
independent of 𝜀 such that

‖𝜉𝑢‖ℓ1,1,3, ‖𝜕𝜏𝜉
𝑢‖ℓ1,1,3, ‖𝜕2

𝜏 𝜉
𝑢‖ℓ1,1,3≤ 𝑀𝜀2. (8.4.33)

Proof. From Proposition 8.4.4, it follows that there exists a constant 𝑏1 > 0, such that

‖ ̃︀ℱ𝐺𝑆(0)‖ℓ1,1,3≤
𝑏1

2 𝜀
2.

Also, given 𝜉, 𝜉′ ∈ ℬ0(𝑏1𝜀
2), it follows that

‖ ̃︀ℱ𝐺𝑆(𝜉) − ̃︀ℱ𝐺𝑆(𝜉′)‖ℓ1,1,3≤ 𝑀
(︂
𝜀2 + 1

𝜅2

)︂
‖𝜉 − 𝜉′‖ℓ1,1,3.

Thus, choosing 𝜀0 > 0 sufficiently small and 𝜅0 ≥ 1 sufficiently big such that Lip( ̃︀ℱ𝐺𝑆) ≤
1/2, it follows that ̃︀ℱ𝐺𝑆 sends ℬ0(𝑏1𝜀

2) into itself and it is a contraction. Thus, it follows
from Banach’s Fixed Point Theorem that ̃︀ℱ𝐺𝑆 admits a unique fixed point 𝜉𝑢 in ℬ0(𝑏1𝜀

2).
Now, since 𝜉𝑢 = 𝒢 ∘ ℱ(𝜉𝑢), then it follows from Proposition 8.4.2 that

‖𝜕𝜏𝜉
𝑢‖ℓ1,1,3 ≤ ‖𝜕𝜏 ∘ 𝒢 ∘ ℱ(𝜉𝑢) − 𝜕𝜏 ∘ 𝒢 ∘ ℱ(0)‖ℓ1,1,3+‖𝜕𝜏 ∘ 𝒢 ∘ ℱ(0)‖ℓ1,1,3

≤ 𝑀𝜀2.

Analogously, we prove that ‖𝜕2
𝜏 𝜉

𝑢‖ℓ1,1,3≤ 𝑀𝜀2 and ‖𝜕𝑦𝜉
𝑢‖ℓ1,1,4≤ 𝑀𝜀2.

Since 𝑔 given in (8.1.6) is an odd function, and the product 𝑠 = 𝑠1 · · · 𝑠2𝑘+1 of 2𝑘 + 1
terms of type 𝑠𝑙 = sin(2𝑘𝑙 + 1), with 𝑘𝑙 ≥ 0, 1 ≤ 𝑙 ≤ 2𝑘 + 1, is written as

𝑠 =
∑︁
𝑚≥0

𝑎𝑚 sin((2𝑚+ 1)𝜏),

where 𝑎𝑚 ∈ R, it follows that the operator ℱ given in (8.4.3) leaves invariant the subspace
of functions 𝜉 : 𝐷𝑜𝑢𝑡,𝑢

𝜅 × T →→ C such that Π2𝑙[𝜉] = 0, ∀𝑙 ≥ 0. The same remark holds
for the operator ̃︀ℱ𝐺𝑆.

Now, since 𝜉* is a fixed point of ̃︀ℱ𝐺𝑆, we have that Π2𝑙[𝜉] = 0, ∀𝑙 ≥ 0. Thus the proof
of Theorem (8.3.1) is complete.
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8.5 Proof of Theorem 8.3.2
In this section we use a fixed point argument to prove the existence of certain solutions

of the inner equation (8.3.6). Since, we look solutions odd in 𝜏 of (8.3.6), we write

𝜑0 =
∑︁
𝑛≥1

𝜑0
𝑛 sin(𝑛𝜏). (8.5.1)

Replacing (8.5.1) in (8.3.6), we obtain that

(𝜕2
𝑧 + (𝑛2 − 1))𝜑0

𝑛 + Π𝑛

[︂1
3(𝜑0)3 + 𝑓(𝜑0)

]︂
= 0, 𝑛 ≥ 1. (8.5.2)

Since we are interested in matching the solutions of (8.3.6) with the outer solutions
𝑣𝑢,𝑠 given in Theorem 8.3.1, we must look for solutions 𝜑0,𝑢,𝑠 of (8.3.6) which have the
same expansion of

𝜀𝑣𝑢,𝑠
(︂
𝑖
(︂
𝜋

2 + 𝜀𝑧
)︂
, 𝜏
)︂

= −2
√

2𝑖
𝑧

sin(𝜏) + ℎ.𝑜.𝑡.,

and satisfy the asymptotic conditions

lim
𝑧→−∞

𝜑0,𝑢(𝑧, 𝜏) = lim
𝑧→+∞

𝜑0,𝑠(𝑧, 𝜏) = 0, ∀𝜏 ∈ T, 𝑎𝑛𝑑 Im(𝑧) < 0. (8.5.3)

Near the pole 𝑦 = 𝑖𝜋/2, we have

𝑣𝑢,𝑠(𝑦, 𝜏) = −2
√

2𝑖
𝑦 − 𝑖𝜋/2 sin(𝜏) + 𝒪(𝑦 − 𝑖𝜋/2) + 𝒪

(︃
𝜀2

(𝑦 − 𝑖𝜋/2)3

)︃
,

which corresponds to

𝜑𝑢,𝑠(𝑧, 𝜏) = −2
√

2𝑖
𝑧

sin(𝜏) + 𝒪(𝜀2𝑧) + 𝒪
(︁
𝑧−3

)︁
,

in the inner variables (8.3.3) and (8.3.4).
In the limit case 𝜀 = 0, we have that

𝜑𝑢,𝑠(𝑧, 𝜏) = −2
√

2𝑖
𝑧

sin(𝜏) + 𝒪
(︁
𝑧−3

)︁
.

It means that we must look solutions of the inner equation (8.3.6) of the form

𝜑0(𝑧, 𝜏) = −2
√

2𝑖
𝑧

sin(𝜏) + 𝜓(𝑧, 𝜏),

where 𝜓 = 𝒪(𝑧−3).
Since 𝜑0 has to satisfy (8.5.2), it follows that 𝜓(𝑦, 𝜏) = ∑︀

𝑛≥1 𝜓𝑛(𝑦) sin(𝑛𝜏) must satisfy

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜓′′

1 − 6
𝑧2𝜓1 = −Π1

[︃
− 8
𝑧2 sin2(𝜏)̂︀Π [𝜓] − 2

√
2𝑖
𝑧

sin(𝜏)𝜓2 + 1
3𝜓

3 + 𝑓

(︃
−2

√
2𝑖

𝑧
sin(𝜏) + 𝜓

)︃]︃
,

𝜓′′
𝑛 + 𝜆2

0,𝑛𝜓𝑛 = −Π𝑛

⎡⎣1
3

(︃
−2

√
2𝑖

𝑧
sin(𝜏) + 𝜓

)︃3

+ 𝑓

(︃
−2

√
2𝑖

𝑧
sin(𝜏) + 𝜓

)︃⎤⎦ , 𝑛 ≥ 2,

(8.5.4)
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where ′ = 𝑑/𝑑𝑧, and 𝜆0,𝑛 =
√
𝑛2 − 1.

Now, define the operators

ℐ(𝜓) =
(︂
𝜓′′

1 − 6
𝑧2𝜓1

)︂
sin(𝜏) +

∑︁
𝑛≥2

(︁
𝜓′′

𝑛 + 𝜆2
0,𝑛𝜓𝑛

)︁
sin(𝑛𝜏), (8.5.5)

and

𝒲(𝜓) = −Π1

[︃
− 8
𝑧2 sin2(𝜏)̂︀Π [𝜓] − 2

√
2𝑖
𝑧

sin(𝜏)𝜓2 + 1
3𝜓

3
]︃

sin(𝜏)

− ̂︀Π
⎡⎣(︃−2

√
2𝑖

𝑧
sin(𝜏) + 𝜓

)︃3⎤⎦− 𝑓

(︃
−2

√
2𝑖

𝑧
sin(𝜏) + 𝜓

)︃ (8.5.6)

and notice that, for ⋆ = 𝑢, 𝑠, to find a solution 𝜑0,⋆ of (8.3.6) satisfying (8.5.3) is equivalent
to find a fixed point 𝜓⋆ of the functional equation

ℐ(𝜓) = 𝒲(𝜓), (8.5.7)

which satisfies

lim
𝑧→−∞

𝜓𝑢(𝑧, 𝜏) = lim
𝑧→+∞

𝜓𝑠(𝑧, 𝜏) = 0, ∀𝜏 ∈ T. = 0, ∀𝜏 ∈ T 𝑎𝑛𝑑 Im(𝑧) < 0. (8.5.8)

In the remainder of this section, we find a fixed point of (8.5.7) and (8.5.8) in some
appropriate Banach space. As before, we consider only the unstable case, since the stable
one is completely analogous.

8.5.1 Banach Spaces and Linear Operators
Given 𝛼 ≥ 0 and an analytic function 𝑓 : 𝐷𝑢,in

𝜃,𝜅 → C, where 𝐷𝑢,in
𝜃,𝜅 is given in (8.3.7),

consider the norm
‖𝑓‖𝛼= sup

𝑧∈𝐷𝑢,in
𝜃,𝜅

|𝑧𝛼𝑓(𝑧)|,

and the Banach space

𝒳𝛼 = {𝑓 : 𝐷𝑢,in
𝜃,𝜅 → C; 𝑓 is an analytic function and ‖𝑓‖𝛼< ∞}.

Also, if 𝑓 : 𝐷𝑢,in
𝜃,𝜅 × T → C is an analytic function in the variable 𝑧, we define

‖𝑓‖ℓ1,𝛼=
∑︁
𝑛≥1

‖𝑓𝑛‖𝛼,

and the Banach space

𝒳ℓ1,𝛼 =
{︁
𝑓 : 𝐷𝑢,in

𝜃,𝜅 × T → C; 𝑓 is an analytic function in the variable 𝑧 and ‖𝑓‖ℓ1,𝛼< ∞
}︁
.

Proposition 8.5.1. Given an analytic function 𝑓 : 𝐵(𝑅0) → C, and 𝑔, ℎ : 𝐷𝑢,in
𝜃,𝜅 ×T → C,

where 𝐵(𝑅0) ⊂ C is a ball with center at the origin and radius 𝑅0, the following statements
hold

1. If 𝛼 ≥ 𝛽 ≥ 0, then
‖ℎ‖ℓ1,𝛼−𝛽≤ 𝑀

𝜅𝛽
‖ℎ‖ℓ1,𝛼.
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2. If 𝛼, 𝛽 ≥ 0, and ‖𝑔‖ℓ1,𝛼, ‖ℎ‖ℓ1,𝛽< ∞, then

‖𝑔ℎ‖ℓ1,𝛼+𝛽≤ ‖𝑔‖ℓ1,𝛼‖ℎ‖ℓ1,𝛽.

3. If ‖𝑔‖ℓ1,𝛼, ‖ℎ‖ℓ1,𝛼≤ 𝑅0/4, then

‖𝑓(𝑔) − 𝑓(ℎ)‖ℓ1,𝛼≤ 𝑀‖𝑔 − ℎ‖ℓ1,𝛼.

4. Given 𝑛 ≥ 1, if 𝑓 (𝑘)(0) = 0, for every 1 ≤ 𝑘 ≤ 𝑛− 1, and ‖𝑔‖ℓ1,𝛼≤ 𝑅0/4, where 𝑅0
is the convergence ratio of 𝑓 (𝑛) at 0, then

‖𝑓(𝑔)‖ℓ1,𝑛𝛼≤ 𝑀(‖𝑔‖ℓ1,𝛼)𝑛.

5. If ℎ ∈ 𝒳ℓ1,𝛼 (with respect to the inner domain 𝐷𝑢,in
𝜃,𝜅 ), then 𝜕𝑧ℎ ∈ 𝒳ℓ1,𝛼+1 (with

respect to the inner domain 𝐷𝑢,in
2𝜃,4𝜅), and

‖𝜕𝑧ℎ‖ℓ1,𝛼+1≤ 𝑀‖ℎ‖ℓ1,𝛼.

The proposition above is proved in [7, 53].
Now, define the linear operator acting on the Fourier coefficients of 𝜓

𝒥 (𝜓) =
∑︁
𝑛≥1

𝒥𝑛(𝜓𝑛) sin(𝑛𝜏),

where
𝒥1(𝜓1)(𝑧) = 𝑧3

5

∫︁ 𝑧

−∞

𝜓1(𝑠)
𝑠2 𝑑𝑠− 1

5𝑧2

∫︁ 𝑧

−∞
𝑠3𝜓1(𝑠)𝑑𝑠,

and

𝒥𝑛(𝜓𝑛)(𝑧) = 1
2𝑖𝜆0,𝑛

∫︁ 𝑧

−∞
𝑒−𝑖𝜆0,𝑛(𝑠−𝑧)𝜓𝑛(𝑠)𝑑𝑠− 1

2𝑖𝜆0,𝑛

∫︁ 𝑧

−∞
𝑒𝑖𝜆0,𝑛(𝑠−𝑧)𝜓𝑛(𝑠)𝑑𝑠, 𝑛 ≥ 2.

Proposition 8.5.2. Consider 𝜅 ≥ 1. Given 𝛼 ≥ 3, the operator

𝒥 : 𝒳ℓ1,𝛼+2 → 𝒳ℓ1,𝛼

is well defined and the following statements hold.

1. 𝒥 ∘ ℐ(𝜓) = ℐ ∘ 𝒥 (𝜓) = 𝜓.

2. There exists a constant 𝑀 > 0 independent of 𝜅 such that, for every 𝜓 ∈ 𝒳ℓ1,𝛼+2,

‖𝒥 (𝜓)‖ℓ1,𝛼 ≤ 𝑀‖𝜓‖ℓ1,𝛼+2. (8.5.9)

Moreover, given 𝛽 ≥ 0 and denoting 𝒳 1
ℓ1,𝛽 = {𝜓 ∈ 𝒳ℓ1,𝛽; 𝜋1(𝜓) = 0}, then

𝒥 : 𝒳 1
ℓ1,𝛽 → 𝒳 1

ℓ1,𝛽

is well defined and, for every 𝜓 ∈ 𝒳 1
ℓ1,𝛽,

‖𝒥 (𝜓)‖ℓ1,𝛽 ≤ 𝑀‖𝜓‖ℓ1,𝛽.
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3. The operators 𝜕𝜏 ∘ 𝒥 and 𝜕2
𝜏 ∘ 𝒥 are well defined and satisfy (8.5.9).

Proof. Consider the equation ℐ(𝜓)(𝑧, 𝜏) = ℎ(𝑧, 𝜏) = ∑︀
𝑛≥1 ℎ𝑛(𝑧) sin(𝑛𝜏) and denote ℐ𝑛 =

Π𝑛 ∘ ℐ.
First, we consider 𝑛 = 1. Using that 𝜂1

1(𝑧) = 𝑧3 and 𝜂1
2(𝑧) = −(5𝑧2)−1 are fundamental

solutions of the homogeneous equation ℐ1(𝜓1) = 0, we obtain from the method of variation
of constants that

𝜓1(𝑧) = 𝑧3

5

(︃∫︁ 𝑧

𝑧1
0

ℎ1(𝑠)
𝑠2 𝑑𝑠+ 𝐶1

0

)︃
− 1

5𝑧2

(︃∫︁ 𝑧

𝑧1
1

𝑠3ℎ1(𝑠)𝑑𝑠+ 𝐶1
1

)︃
,

where 𝑧1
0 , 𝑧

1
1 , 𝐶

1
0 and 𝐶1

1 are constants.
Now, for 𝑛 ≥ 2, the fundamental solutions of the homogeneous equation ℐ𝑛(𝜓𝑛) = 0

are given by 𝜂𝑛
1 (𝑧) = 𝑒𝑖𝜆0,𝑛𝑧 and 𝜂𝑛

2 (𝑧) = 𝑒−𝑖𝜆0,𝑛𝑧. Again, it follows from the method of
variation of constants that the equation ℐ𝑛(𝜓𝑛) = ℎ𝑛 implies that

𝜓𝑛(𝑧) = 𝑒𝑖𝜆0,𝑛𝑧

2𝑖𝜆0,𝑛

(︃∫︁ 𝑧

𝑧𝑛
0

𝑒−𝑖𝜆0,𝑛𝑠ℎ𝑛(𝑠)𝑑𝑠+ 𝐶𝑛
0

)︃
− 𝑒−𝑖𝜆0,𝑛𝑧

2𝑖𝜆0,𝑛

(︃∫︁ 𝑧

𝑧𝑛
1

𝑒𝑖𝜆0,𝑛𝑠ℎ𝑛(𝑠)𝑑𝑠+ 𝐶𝑛
1

)︃
,

where 𝑧𝑛
0 , 𝑧

𝑛
1 , 𝐶

𝑛
0 and 𝐶𝑛

1 are constants, for each 𝑛 ≥ 2.
Since we are looking for solutions of (8.5.4) satisfying (8.5.3) and such that ‖𝜓‖ℓ1(𝑧) ∼

𝑧−3, we choose

𝐶1
0 = −

∫︁ ∞

𝑧1
0

ℎ1(𝑠)
𝑠2 𝑑𝑠 𝑎𝑛𝑑 𝐶1

1 = −
∫︁ −∞

𝑧1
1

𝑠3ℎ1(𝑠)𝑑𝑠,

and
𝐶𝑛

0 = −
∫︁ −∞

𝑧𝑛
0

𝑒−𝑖𝜆0,𝑛𝑠ℎ𝑛(𝑠)𝑑𝑠 𝑎𝑛𝑑 𝐶𝑛
1 = −

∫︁ −∞

𝑧𝑛
1

𝑒𝑖𝜆0,𝑛𝑠ℎ𝑛(𝑠)𝑑𝑠, 𝑛 ≥ 2,

which proves item (1). Notice that,the integrals in the definition of the constants above
converge for every ℎ ∈ 𝒳ℓ1,𝛼+2.

Now, let ℎ1 ∈ 𝒳𝛼+2 and assume that 𝛼 ≥ 3. Thus,

|𝑧𝛼𝒥1(ℎ1)(𝑧)| =
⃒⃒⃒⃒
⃒𝑧𝛼+3

5

∫︁ 𝑧

−∞

ℎ1(𝑠)
𝑠2 𝑑𝑠− 𝑧𝛼−2

5

∫︁ 𝑧

−∞
𝑠3ℎ1(𝑠)𝑑𝑠

⃒⃒⃒⃒
⃒

≤ 𝑀‖ℎ1‖𝛼+2

(︃∫︁ 𝑧

−∞

|𝑧|𝛼+3

|𝑠|𝛼+4 𝑑𝑠+
∫︁ 𝑧

−∞

|𝑧|𝛼−2

|𝑠|𝛼−1 𝑑𝑠

)︃
≤ 𝑀‖ℎ1‖𝛼+2,

for each 𝑧 ∈ 𝐷𝑢,in
𝜃,𝜅 .

Also, if 𝛽 ≥ 0 and ℎ𝑛 ∈ 𝒳𝛽, we have that, for each 𝑛 ≥ 2, changing the path of
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integration,

⃒⃒⃒
𝑧𝛽𝒥𝑛(ℎ𝑛)(𝑧)

⃒⃒⃒
=

⃒⃒⃒⃒
⃒ 1
2𝑖𝜆0,𝑛

∫︁ 𝑧

−∞
𝑒−𝑖𝜆0,𝑛(𝑠−𝑧)𝑧𝛽ℎ𝑛(𝑠)𝑑𝑠− 1

2𝑖𝜆0,𝑛

∫︁ 𝑧

−∞
𝑒𝑖𝜆0,𝑛(𝑠−𝑧)𝑧𝛽ℎ𝑛(𝑠)𝑑𝑠

⃒⃒⃒⃒
⃒

=
⃒⃒⃒⃒
⃒ 1
2𝑖𝜆0,𝑛

∫︁ 0

−∞
𝑒−𝑖𝜆0,𝑛𝑒𝑖𝜃𝑟𝑧𝛽ℎ𝑛(𝑧 + 𝑒𝑖𝜃𝑟)𝑒𝑖𝜃𝑑𝑟

− 1
2𝑖𝜆0,𝑛

∫︁ 0

−∞
𝑒𝑖𝜆0,𝑛𝑒−𝑖𝜃𝑟𝑧𝛽ℎ𝑛(𝑧 + 𝑒−𝑖𝜃𝑟)𝑒−𝑖𝜃𝑑𝑟

⃒⃒⃒⃒
⃒

≤ 𝑀

𝜆0,𝑛

‖ℎ𝑛‖𝛽

(︃∫︁ 0

−∞
𝑒𝜆0,𝑛 sin(𝜃)𝑟 |𝑧|𝛽

|𝑧 + 𝑒𝑖𝜃𝑟|𝛽
𝑑𝑟 +

∫︁ 0

−∞
𝑒𝜆0,𝑛 sin(𝜃)𝑟 |𝑧|𝛽

|𝑧 + 𝑒−𝑖𝜃𝑟|𝛽
𝑑𝑟

)︃

≤ 𝑀

𝜆2
0,𝑛

‖ℎ𝑛‖𝛽,

for each 𝑧 ∈ 𝐷𝑢,in
𝜃,𝜅 . Item (2) follows directly, and the proof of item (3) of this proposition

is analogous to the proof of item (4) of Proposition 8.4.2.

8.5.2 Fixed Point Argument
Now, we use Proposition 8.5.2 to rewrite (8.5.7) as

𝜓 = 𝒥 ∘ 𝒲(𝜓),

where 𝒲 is given by (8.5.6), and in the following proposition we study some properties
of the operator ̃︁𝒲 = 𝒥 ∘ 𝒲 .

Proposition 8.5.3. Consider 𝜅 ≥ 1. The following statements hold.

1. There exists a constant 𝑀1 > 0 independent of 𝜅 such that,

‖̃︁𝒲(0)‖ℓ1,3≤ 𝑀1.

2. Given 𝑅 > 0, the operator

̃︁𝒲 : ℬ0(𝑅) ⊂ 𝒳ℓ1,3 → 𝒳ℓ1,3

is well defined, and there exists a constant 𝑀2 > 0 independent of 𝜅 such that, for
every 𝜓, 𝜓′ ∈ ℬ0(𝑅) ⊂ 𝒳ℓ1,3,⃦⃦⃦ ̃︁𝒲(𝜓) − ̃︁𝒲(𝜓′)

⃦⃦⃦
ℓ1,3

≤ 𝑀2

(︂ 1
𝜅2 ‖𝜓 − 𝜓′‖ℓ1,3+‖̂︀Π[𝜓] − ̂︀Π[𝜓]‖ℓ1,3

)︂
.

Furthermore, ⃦⃦⃦ ̂︀Π[̃︁𝒲(𝜓)] − ̂︀Π[̃︁𝒲(𝜓′)]
⃦⃦⃦

ℓ1,3
≤ 𝑀2

𝜅2 ‖𝜓 − 𝜓′‖ℓ1,3.
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Proof. In fact,

𝒲(0) = −̂︀Π
⎡⎣(︃−2

√
2𝑖

𝑧
sin(𝜏)

)︃3⎤⎦− 𝑓

(︃
−2

√
2𝑖

𝑧
sin(𝜏)

)︃
,

and thus, since 𝑓(𝑧) = 𝒪(𝑧5), it follows from Proposition 8.5.1 that

‖Π1[𝒲(0)]‖5 ≤ 𝑀

⃦⃦⃦⃦
⃦−2

√
2𝑖

𝑧
sin(𝜏)

⃦⃦⃦⃦
⃦

5

ℓ1,1
≤ 𝑀,

and ⃦⃦⃦ ̂︀Π[𝒲(0)]
⃦⃦⃦

ℓ1,3
≤ 𝑀

⎛⎝⃦⃦⃦⃦⃦−2
√

2𝑖
𝑧

sin(𝜏)
⃦⃦⃦⃦
⃦

3

ℓ1,1
+ 1
𝜅2

⃦⃦⃦⃦
⃦−2

√
2𝑖

𝑧
sin(𝜏)

⃦⃦⃦⃦
⃦

5

ℓ1,1

⎞⎠ ≤ 𝑀.

Hence, from Proposition 8.5.2, we have that⃦⃦⃦̃︁𝑊 (0)
⃦⃦⃦

ℓ1,3
= ‖𝒥 (Π1[𝒲(0)] sin(𝜏))‖ℓ1,3 +

⃦⃦⃦
𝒥
(︁̂︀Π[𝒲(0)]

)︁⃦⃦⃦
ℓ1,3

≤ 𝑀
(︂

‖Π1[𝒲(0)]‖5 +
⃦⃦⃦ ̂︀Π[𝒲(0)]

⃦⃦⃦
ℓ1,3

)︂
≤ 𝑀.

Now, to prove item (2), assume that ‖𝜓‖ℓ1,3, ‖𝜓′‖ℓ1,3≤ 𝑅, and notice that

𝒲(𝜓) − 𝒲(𝜓′) = −Π1

[︃
− 8
𝑧2 sin2(𝜏)

(︁̂︀Π [𝜓] − ̂︀Π [𝜓′]
)︁

− 2
√

2𝑖
𝑧

sin(𝜏) (𝜓2 − (𝜓′)2)

+1
3 (𝜓3 − (𝜓′)3)

]︂
sin(𝜏)

−̂︀Π
⎡⎣(︃−2

√
2𝑖

𝑧
sin(𝜏) + 𝜓

)︃3

−
(︃

−2
√

2𝑖
𝑧

sin(𝜏) + 𝜓′
)︃3⎤⎦

−𝑓
(︃

−2
√

2𝑖
𝑧

sin(𝜏) + 𝜓

)︃
+ 𝑓

(︃
−2

√
2𝑖

𝑧
sin(𝜏) + 𝜓′

)︃

Thus,

‖Π1 [𝒲(𝜓) − 𝒲(𝜓′)]‖5 ≤
⃦⃦⃦⃦ 8
𝑧2 sin2(𝜏)

⃦⃦⃦⃦
ℓ1,2

⃦⃦⃦ ̂︀Π [𝜓] − ̂︀Π [𝜓′]
⃦⃦⃦

ℓ1,3

+
⃦⃦⃦⃦
⃦2

√
2𝑖
𝑧

sin(𝜏)
⃦⃦⃦⃦
⃦

ℓ1,1
‖𝜓 + 𝜓′‖ℓ1,1 ‖𝜓 − 𝜓′‖ℓ1,3

+ ‖𝜓2 + 𝜓𝜓′ + (𝜓′)2‖ℓ1,2 ‖𝜓 − 𝜓′‖ℓ1,3

+
⃦⃦⃦⃦
⃦
∫︁ 1

0
𝑓 ′
(︃

−2
√

2𝑖
𝑧

sin(𝜏) + 𝑠𝜓 + (1 − 𝑠)𝜓′
)︃
𝑑𝑠

⃦⃦⃦⃦
⃦

ℓ1,2
‖𝜓 − 𝜓′‖ℓ1,3

≤ 𝑀
(︂⃦⃦⃦ ̂︀Π [𝜓] − ̂︀Π [𝜓′]

⃦⃦⃦
ℓ1,3

+ 1
𝜅2 ‖𝜓 − 𝜓′‖ℓ1,3

)︂
,
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and, recalling that 𝑔(𝑧) = 𝑧3 + 𝑓(𝑧) is an analytic function such that 𝑔(𝑧) = 𝒪(𝑧3), we
have that
⃦⃦⃦ ̂︀Π [𝒲(𝜓) − 𝒲(𝜓′)]

⃦⃦⃦
ℓ1,3

≤
⃦⃦⃦⃦
⃦
∫︁ 1

0
𝑔′
(︃

−2
√

2𝑖
𝑧

sin(𝜏) + 𝑠𝜓 + (1 − 𝑠)𝜓′
)︃
𝑑𝑠

⃦⃦⃦⃦
⃦

ℓ1,0
‖𝜓 − 𝜓′‖ℓ1,3

≤ 𝑀

𝜅2 ‖𝜓 − 𝜓′‖ℓ1,3 .

Item (2) follows from the estimates above and Proposition 8.5.2.

As in Section 8.4.2, we also have to use a Gauss-Seidel argument to obtain a contractive
operator. Therefore, consider the operator

̃︁𝒲𝐺𝑆(𝜓) = Π1
[︁ ̃︁𝒲(𝜓1 sin(𝜏) + ̂︀Π [︁ ̃︁𝒲(𝜓))

]︁]︁
sin(𝜏) + ̂︀Π [︁ ̃︁𝒲(𝜓)

]︁
,

which has the same fixed points of ̃︁𝒲 .
Analogously to Proposition 8.4.4, we obtain the following result.

Proposition 8.5.4. Consider 𝜅 ≥ 1. The following statements hold.

1. There exists a constant 𝑀1 > 0 independent of 𝜅 such that,

‖̃︁𝒲𝐺𝑆(0)‖ℓ1,3≤ 𝑀1.

2. Given 𝑅 > 0, the operator

̃︁𝒲𝐺𝑆 : ℬ0(𝑅) ⊂ 𝒳ℓ1,3 → 𝒳ℓ1,3

is well defined, and there exists a constant 𝑀2 > 0 independent of 𝜅 such that, for
every 𝜓, 𝜓′ ∈ ℬ0(𝑅) ⊂ 𝒳ℓ1,3

‖̃︁𝒲𝐺𝑆(𝜓) − ̃︁𝒲𝐺𝑆(𝜓′)‖ℓ1,3≤
𝑀2

𝜅2 ‖𝜓 − 𝜓′‖ℓ1,3.

Therefore, item (1) of Theorem 8.3.2 is proved by the next proposition which shows
that ̃︁𝒲𝐺𝑆 has a fixed point in 𝒳ℓ1,3.

Proposition 8.5.5. There exist 𝜅0 ≥ 1 such that the operator ̃︁𝒲𝐺𝑆 : ℰℓ1,1,3 → ℰℓ1,1,3 has
a fixed point 𝜓𝑢 ∈ 𝒳ℓ1,3, for every 𝜅 ≥ 𝜅0. Furthermore, there exists 𝑀 > 0 independent
of 𝜅 such that

‖𝜓𝑢‖ℓ1,3, ‖𝜕𝜏𝜓
𝑢‖ℓ1,3, ‖𝜕2

𝜏𝜓
𝑢‖ℓ1,3≤ 𝑀.

We omit the proof of Proposition 8.5.5 due to its similarity with the proof of Propo-
sition 8.4.5. Finally, we remark that using the same arguments presented in the end of
Section 8.4.2, we conclude Π2𝑙[𝜓] ≡ 0, ∀𝑙 ≥ 0.
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8.5.3 The Difference between the Solutions of the Inner Equa-
tion

This section is devoted to prove the second statement of Theorem 8.3.2. In Proposition
8.5.5, we have proven the existence of two solutions 𝜑𝑢,𝑠

0 of the inner equation (8.3.6) which
are given by (8.3.8). Now, we study the difference

Δ𝜓(𝑧, 𝜏) = 𝜑𝑢
0(𝑧, 𝜏) − 𝜑𝑠

0(𝑧, 𝜏) = 𝜓𝑢(𝑧, 𝜏) − 𝜓𝑠(𝑧, 𝜏), (8.5.10)

for 𝑧 ∈ ℛin,+
𝜃,𝜅 = 𝐷𝑢,in

𝜃,𝜅 ∩𝐷𝑠,in
𝜃,𝜅 ∩ {𝑧; 𝑧 ∈ 𝑖R and Im(𝑧) < 0} and 𝜏 ∈ T.

Remark 8.5.6. We are interested in the behavior of the difference in the connected com-
ponent ℛin,+

𝜃,𝜅 of 𝐷𝑢,in
𝜃,𝜅 ∩𝐷𝑠,in

𝜃,𝜅 ∩ 𝑖R because the change 𝑧 = 𝜀−1(𝑦 − 𝑖𝜋/2) brings the origin
𝑦 = 0 into 𝑧 = −𝑖𝜀−1𝜋/2 ∈ ℛin,+

𝜃,𝜅 .

Proposition 8.5.7. The function Δ𝜓(𝑧, 𝜏) given in (8.5.10) satisfies the following dif-
ferential equation

ℐ(Δ𝜓) = ℬ(Δ𝜓), (8.5.11)
where ℐ is given in (8.5.5) and

ℬ : 𝒳ℓ1,0 → 𝒳ℓ1,2 (8.5.12)

is a linear operator. Moreover, there exists a constant 𝑀 > 0 independent of 𝜅 such that

‖ℬ(Δ𝜓)‖ℓ1,2 ≤ 𝑀 ‖Δ𝜓‖ℓ1,0 .

Proof. Since 𝜓𝑢,𝑠 satisfy (8.5.7), subtracting the solution and using the Mean Value The-
orem, we obtain

ℐ(Δ𝜓) = Π1

[︃
8
𝑧2 sin(𝜏)̂︀Π [Δ𝜓] + 2

√
2𝑖
𝑧

sin(𝜏)(𝜓𝑢 + 𝜓𝑠)Δ𝜓

−1
3 ((𝜓𝑢)2 + 𝜓𝑢𝜓𝑠 + (𝜓𝑠)2) Δ𝜓

]︂
sin(𝜏)

−̂︀Π
⎡⎣∫︁ 1

0
3
(︃

−2
√

2𝑖
𝑧

sin(𝜏) + 𝑟𝜓𝑢 + (1 − 𝑟)𝜓𝑠

)︃2

𝑑𝑟Δ𝜓
⎤⎦

−
∫︁ 1

0
𝑓 ′
(︃

−2
√

2𝑖
𝑧

sin(𝜏) + 𝑟𝜓𝑢 + (1 − 𝑟)𝜓𝑠

)︃
𝑑𝑟Δ𝜓.

The proof follows by taking ℬ as the righthand side of the equation above and recalling
that 𝜓𝑢, 𝜓𝑠 are known functions such that ‖𝜓𝑢,𝑠‖ℓ1,3≤ 𝑀 and 𝑓(𝑧) = 𝒪(𝑧5).

Now, given an analytic function 𝑓 : ℛin,+
𝜃,𝜅 → C, we define the norm

‖𝑓‖𝛼,in= sup
𝑧∈ℛin,+

𝜃,𝜅

|𝑧𝛼𝑒𝑖𝜆0,3𝑧𝑓(𝑧)|,

and if 𝑓 : ℛin,+
𝜃,𝜅 ×T → C is an analytic function in the variable 𝑧, then we define the norm

‖𝑓‖ℓ1,𝛼,in=
∑︁
𝑘≥0

‖Π𝑛[𝑓 ]‖𝛼,in,
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and the Banach space

𝒵ℓ1,𝛼,in =
{︁
𝑓 : ℛin,+

𝜃,𝜅 × T → C; 𝑓 is analytic in the variable 𝑧, Π2𝑙[𝑓 ] = 0,∀𝑙 ≥ 0,

and ‖𝑓‖ℓ1,𝛼,in< ∞} .

In particular, we denote

‖·‖𝒵= ‖·‖ℓ1,0,in 𝑎𝑛𝑑 𝒵 = 𝒵ℓ1,0,in.

Remark 8.5.8. One can see that, for 𝑓 ∈ 𝒵ℓ1,𝛼 and 𝑔 ∈ 𝒵, the norm ‖·‖ℓ1,𝛼,in satisfies
the property ‖𝑓𝑔‖ℓ1,𝛼,in≤ ‖𝑓‖ℓ1,𝛼‖𝑔‖𝒵 , Hence, we can adapt the proof of Proposition 8.5.7
to see that the linear operatorℬ satisfies

‖ℬ(Δ𝜓)‖ℓ1,2,in ≤ 𝑀 ‖Δ𝜓‖𝒵 .

We write equation (8.5.11) as an integral equation. To this end, for a function ℎ :
ℛin,+

𝜃,𝜅 × T → C, we define the following linear operator

𝒜(ℎ) =
∑︁
𝑘≥0

𝒜2𝑘+1(ℎ), (8.5.13)

where
𝒜1(ℎ) = 𝑧3

5

∫︁ 𝑧

−𝑖∞

Π1 [ℎ] (𝑠)
𝑠2 𝑑𝑠− 1

5𝑧2

∫︁ 𝑧

−𝑖∞
𝑠3Π1 [ℎ] (𝑠)𝑑𝑠,

and

𝒜2𝑘+1(ℎ) =
∫︁ 𝑧

−𝑖∞

𝑒−𝑖𝜆0,2𝑘+1(𝑠−𝑧)Π2𝑘+1 [ℎ] (𝑠)
2𝑖𝜆0,2𝑘+1

𝑑𝑠−
∫︁ 𝑧

−𝑖𝜅

𝑒𝑖𝜆0,2𝑘+1(𝑠−𝑧)Π2𝑘+1 [ℎ] (𝑠)
2𝑖𝜆0,2𝑘+1

𝑑𝑠, 𝑘 ≥ 1.

(8.5.14)

Lemma 8.5.9. The operator ̃︀ℬ : 𝒵 → 𝒵 given by

̃︀ℬ = 𝒜 ∘ ℬ (8.5.15)

is well defined, where ℬ and 𝒜 are given by (8.5.12) and (8.5.13), respectively. Moreover,
there exists a constant 𝑀 > 0 independent of 𝜅 such that, for each 𝜅 ≥ 1,

1. the operators ̃︀ℬ, 𝜕𝜏 ∘ ̃︀ℬ : 𝒵 → 𝒵 satisfies

‖ ̃︀ℬ‖𝒵 , ‖𝜕𝜏 ∘ ̃︀ℬ‖𝒵≤ 𝑀

𝜅
; (8.5.16)

2. for each ℎ ∈ 𝒵, ⃦⃦⃦ ̃︀ℬ(ℎ) −𝐾(𝜅, ℎ)𝑒−𝑖𝜆0,3𝑧 sin(3𝜏)
⃦⃦⃦

ℓ1,1,in
≤ 𝑀‖ℎ‖𝒵 ,

where 𝐾(𝜅, ℎ) ∈ C is given by

𝐾(𝜅, ℎ) = −
∫︁ −𝑖∞

−𝑖𝜅

𝑒𝑖𝜆0,3𝑠Π3[ℬ(ℎ)](𝑠)
2𝑖𝜆0,3

𝑑𝑠. (8.5.17)
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Proof. First, we prove that the operator 𝒜 : 𝒵ℓ1,2,in → 𝒵 is well defined and satisfies

‖𝒜(ℎ)‖𝒵 , ‖𝜕𝜏 ∘ 𝒜(ℎ)‖𝒵≤ 𝑀

𝜅
‖ℎ‖ℓ1,2,in. (8.5.18)

Let ℎ(𝑧, 𝜏) = ∑︀
𝑘≥0 ℎ2𝑘+1(𝑧) sin((2𝑘+ 1)𝜏) ∈ 𝒵ℓ1,2,in. We have that, for each 𝑧 ∈ ℛin,+

𝜃,𝜅 ,

|𝒜1(ℎ)(𝑧)𝑒𝑖𝜆0,3𝑧| ≤ 1
5

(︃
|𝑧|3

∫︁ 𝑧

−𝑖∞

⃒⃒⃒⃒
⃒ℎ1(𝑠)
𝑠2

⃒⃒⃒⃒
⃒ 𝑒−𝜆0,3 Im(𝑧)𝑑𝑠+ 1

|𝑧|2
∫︁ 𝑧

−𝑖∞

⃒⃒⃒
𝑠3ℎ1(𝑠)

⃒⃒⃒
𝑒−𝜆0,3 Im(𝑧)𝑑𝑠

)︃

≤ 𝑀‖ℎ1‖2,in

(︃
|𝑧|3

∫︁ 𝑧

−𝑖∞

𝑒𝜆0,3 Im(𝑠−𝑧)

|𝑠|4
𝑑𝑠+ 1

|𝑧|2
∫︁ 𝑧

−𝑖∞
|𝑠|𝑒𝜆0,3 Im(𝑠−𝑧)𝑑𝑠

)︃

Considering the integration path 𝑠 = 𝑖 Im(𝑧)𝑙, 𝑙 ∈ (−∞, 1], and integrating by parts,
we obtain

|𝒜1(ℎ)(𝑧)𝑒𝑖𝜆0,3𝑧| ≤ 𝑀‖ℎ1‖2,in

(︃
1

|𝑧|

∫︁ 𝑧

−𝑖∞
𝑒𝜆0,3 Im(𝑠−𝑧)𝑑𝑠+ |Im(𝑧)|2

|𝑧|2
∫︁ 1

∞
𝑙𝑒𝜆0,3 Im(𝑧)(𝑙−1)𝑑𝑙

)︃

≤ 𝑀‖ℎ1‖2,in

(︃
1

𝜆0,3|𝑧|
+ 𝑀 |Im(𝑧)|

𝜆0,3|𝑧|2

)︃

≤ 𝑀

𝜆0,3|𝑧|
‖ℎ1‖𝒵,ℓ1 ,

and

|𝒜3(ℎ)(𝑧)𝑒𝑖𝜆0,3𝑧| ≤
∫︁ 𝑧

−𝑖∞

⃒⃒⃒⃒
⃒𝑒−2𝑖𝜆0,3(𝑠−𝑧)ℎ3(𝑠)𝑒𝑖𝜆0,3𝑠

2𝑖𝜆0,3

⃒⃒⃒⃒
⃒ 𝑑𝑠+

∫︁ 𝑧

−𝑖𝜅

⃒⃒⃒⃒
⃒𝑒𝑖𝜆0,3𝑠ℎ3(𝑠)

2𝑖𝜆0,3

⃒⃒⃒⃒
⃒ 𝑑𝑠

≤ 𝑀‖ℎ3‖2,in

𝜆0,3

(︃
1
𝜅2

∫︁ 𝑧

−𝑖∞
𝑒2𝜆0,3 Im(𝑠−𝑧)𝑑𝑠+

∫︁ 𝑧

−𝑖𝜅

1
|𝑠|2

𝑑𝑠

)︃

≤ 𝑀‖ℎ3‖2,in

𝜆0,3𝜅
.

Now, for each 𝑘 ≥ 2, we have that 𝜆0,3 ≤ 𝜆0,2𝑘+1 and thus,

⃒⃒⃒
𝒜2𝑘+1(ℎ)(𝑧)𝑒𝑖𝜆0,3𝑧

⃒⃒⃒
≤
∫︁ 𝑧

−𝑖∞

⃒⃒⃒⃒
⃒𝑒−𝑖(𝜆0,2𝑘+1+𝜆0,3)(𝑠−𝑧)ℎ2𝑘+1(𝑠)𝑒𝑖𝜆0,3𝑠

2𝑖𝜆0,2𝑘+1

⃒⃒⃒⃒
⃒ 𝑑𝑠+

∫︁ 𝑧

−𝑖𝜅

⃒⃒⃒⃒
⃒𝑒𝑖(𝜆0,2𝑘+1−𝜆0,3)(𝑠−𝑧)ℎ2𝑘+1(𝑠)𝑒𝑖𝜆0,3𝑠

2𝑖𝜆0,2𝑘+1

⃒⃒⃒⃒
⃒ 𝑑𝑠

≤ 𝑀‖ℎ2𝑘+1‖2,in

𝜆0,2𝑘+1

(︃∫︁ 𝑧

−𝑖∞

𝑒(𝜆0,2𝑘+1+𝜆0,3) Im(𝑠−𝑧)

|𝑠|2
𝑑𝑠+

∫︁ 𝑧

−𝑖𝜅

𝑒−(𝜆0,2𝑘+1−𝜆0,3) Im(𝑠−𝑧)

|𝑠|2
𝑑𝑠

)︃

≤ 𝑀‖ℎ2𝑘+1‖2,in

𝜆0,2𝑘+1

(︃
1

|𝑧|2
∫︁ 𝑧

−𝑖∞
𝑒(𝜆0,2𝑘+1+𝜆0,3) Im(𝑠−𝑧)𝑑𝑠+

∫︁ 𝑧

−𝑖𝜅

𝑒−(𝜆0,2𝑘+1−𝜆0,3) Im(𝑠−𝑧)

|𝑠|2
𝑑𝑠

)︃
.

In the expression above, we compute the first integral and bound the second one by the
maximum of the function and the length of the interval of integration. Thus, we get

⃒⃒⃒
𝒜2𝑘+1(ℎ)(𝑧)𝑒𝑖𝜆0,3𝑧

⃒⃒⃒
≤ 𝑀‖ℎ2𝑘+1‖2,in

𝜆0,2𝑘+1|𝑧|
,
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for every 𝑘 ≥ 2. Consequently,

‖𝒜2𝑘+1(ℎ)‖0,in≤ 𝑀

𝜆0,2𝑘+1𝜅
‖ℎ2𝑘+1‖2,in,

for every 𝑘 ≥ 1, and (8.5.18) follows directly.
From Proposition 8.5.7 (see Remark 8.5.8), it follows that ℬ : 𝒵 → 𝒵ℓ1,2,in is well

defined and
‖ℬ(Δ𝜓)‖ℓ1,2,in≤ 𝑀‖Δ𝜓‖𝒵 . (8.5.19)

Hence, from the definition of ̃︀ℬ given in (8.5.15), we have that ̃︀ℬ, 𝜕𝜏 ∘ ̃︀ℬ : 𝒵 → 𝒵 are
well defined and (8.5.16) follows from (8.5.18) and (8.5.19). This proves item (1).

To prove item (2), let ℎ ∈ 𝒵, and notice that, using similar arguments, we obtain

|𝒜3(ℬ(ℎ))𝑒𝑖𝜆0,3𝑧 −𝐾(𝜅, ℎ) sin(3𝜏)| =
⃒⃒⃒⃒
⃒𝑒𝑖𝜆0,3𝑧

∫︁ 𝑧

−𝑖∞

𝑒−𝑖𝜆0,3(𝑠−𝑧)Π3[ℬ(ℎ)](𝑠)
2𝑖𝜆0,3

𝑑𝑠

−
∫︁ 𝑧

−𝑖∞

𝑒𝑖𝜆0,3𝑠Π3[ℬ(ℎ)](𝑠)
2𝑖𝜆0,3

𝑑𝑠

⃒⃒⃒⃒
⃒

≤ 𝑀‖Π3(ℬ(ℎ))‖2,in

𝜆0,3|𝑧|
.

It proves item (2).
Corollary 8.5.10. There exists 𝜅0 ≥ 1 such that the linear operator Id − ̃︀ℬ : 𝒵 → 𝒵 is
invertible, where ̃︀ℬ is given by (8.5.15).
Proof. From item (1) of Lemma 8.5.9, there exists 𝜅0 ≥ 1 sufficiently big such that,
‖ ̃︀ℬ‖𝒵≤ 1/2. Therefore, Id − ̃︀ℬ : 𝒵 → 𝒵 is invertible and ‖(Id − ̃︀ℬ)−1‖𝒵≤ 2.

Given a sequence 𝑎 = (𝑎2𝑘+1)𝑘≥1, we define the function

𝒞in(𝑎)(𝑧, 𝜏) =
∑︁
𝑘≥1

𝑎2𝑘+1𝑒
−𝑖𝜆0,2𝑘+1𝑧 sin((2𝑘 + 1)𝜏). (8.5.20)

Proposition 8.5.11. Let Δ𝜓(𝑧, 𝜏) be the function given in (8.5.10) and 𝜅0 given in
Corollary 8.5.10. There exists a unique sequence of constants 𝑏 = (𝑏2𝑘+1)𝑘≥1 such that
𝒞in(𝑏) ∈ 𝒵 and Δ𝜓 satisfies

Δ𝜓(𝑧, 𝜏) = 𝒞in(𝑏)(𝑧, 𝜏) + ̃︀ℬ(Δ𝜓)(𝑧, 𝜏), (8.5.21)

for every 𝑧 ∈ ℛin,+
𝜃,𝜅0 and 𝜏 ∈ T, where ̃︀ℬ and 𝒞in are given by (8.5.15)(with 𝜅 = 𝜅0) and

(8.5.20), respectively. Furthermore, Δ𝜓 ∈ 𝒵.
Proof. Recall that Π2𝑘[Δ𝜓] = 0, ∀𝑘 ≥ 0 and denote Π2𝑘+1[Δ𝜓] = Δ𝜓2𝑘+1. Since Δ𝜓
satisfies (8.5.11), we use the Method of Variation of Constants as before to obtain

Δ𝜓1 = 𝑧3

5

(︃∫︁ 𝑧

𝑧1
0

Π1 [ℬ(Δ𝜓)] (𝑠)
𝑠2 𝑑𝑠+ 𝐶1

0

)︃
− 1

5𝑧2

(︃∫︁ 𝑧

𝑧1
1

𝑠3Π1 [ℬ(Δ𝜓)] (𝑠)𝑑𝑠+ 𝐶1
1

)︃
,

and

Δ𝜓2𝑘+1 = 𝑒𝑖𝜆0,2𝑘+1𝑧

(︃∫︁ 𝑧

𝑧2𝑘+1
0

𝑒−𝑖𝜆0,2𝑘+1𝑠Π2𝑘+1 [ℬ(Δ𝜓)] (𝑠)
2𝑖𝜆0,2𝑘+1

𝑑𝑠+ 𝐶2𝑘+1
0

)︃

−𝑒−𝑖𝜆0,2𝑘+1𝑧

(︃∫︁ 𝑧

𝑧2𝑘+1
0

𝑒𝑖𝜆0,2𝑘+1𝑠Π2𝑘+1 [ℬ(Δ𝜓)] (𝑠)
2𝑖𝜆0,2𝑘+1

𝑑𝑠+ 𝐶2𝑘+1
1

)︃
,
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where 𝑧2𝑘+1
0 , 𝑧2𝑘+1

1 , 𝐶2𝑘+1
0 and 𝐶2𝑘+1

1 are constants, for each 𝑘 ≥ 0.
Recalling that ‖Δ𝜓‖ℓ1,3≤ 𝑀 (see Proposition 8.5.5), and taking 𝑧 → −𝑖∞, we obtain

that the equations above are satisfied, if and only if

𝐶1
0 = −

∫︁ −𝑖∞

𝑧1
0

Π1 [ℬ(Δ𝜓)] (𝑠)
𝑠2 𝑑𝑠, 𝐶1

1 = −
∫︁ −𝑖∞

𝑧1
1

𝑠3Π1 [ℬ(Δ𝜓)] (𝑠)𝑑𝑠

and
𝐶2𝑘+1

0 = −
∫︁ −𝑖∞

𝑧2𝑘+1
0

𝑒−𝑖𝜆0,2𝑘+1𝑠Π2𝑘+1 [ℬ(Δ𝜓)] (𝑠)
2𝑖𝜆0,2𝑘+1

𝑑𝑠.

Hence, choosing 𝑧2𝑘+1
1 = −𝑖𝜅0, for every 𝑘 ≥ 1, we have that (8.5.21) is satisfied with

constants 𝑏2𝑘+1 = 𝐶2𝑘+1
1 , 𝑘 ≥ 1. Using the expression of 𝒜2𝑘+1 given in (8.5.14) (with

𝜅 = 𝜅0), we have that, for each 𝑘 ≥ 1,

|𝒜2𝑘+1(ℬ(Δ𝜓))(−𝑖𝜅0)| =
⃒⃒⃒⃒
⃒
∫︁ −𝑖𝜅0

−𝑖∞

𝑒−𝑖𝜆0,2𝑘+1(𝑠+𝑖𝜅0)Π2𝑘+1 [ℬ(Δ𝜓)] (𝑠)
2𝑖𝜆0,2𝑘+1

𝑑𝑠

⃒⃒⃒⃒
⃒ ≤ 𝑀

𝜅0
‖Π2𝑘+1 [Δ𝜓] ‖ℓ1,0,

and thus, it follows from (8.5.15) that

‖Δ𝜓 − ̃︀ℬ(Δ𝜓)‖ℓ1(−𝑖𝜅0) ≤ 𝑀.

Hence, ‖𝒞in(𝑏)‖ℓ1(−𝑖𝜅0) ≤ 𝑀 and

‖𝒞in(𝑏)‖𝒵 =
∑︁
𝑘≥1

|𝑏2𝑘+1|‖𝑒−𝑖𝜆0,2𝑘+1𝑧‖0,in

=
∑︁
𝑘≥0

|𝑏2𝑘+1|𝑒−(𝜆0,2𝑘+1−𝜆0,3)𝜅0

= 𝑒𝜆0,3𝜅‖𝒞in(𝑏)‖ℓ1(−𝑖𝜅0)
≤ 𝑀𝑒𝜆0,3𝜅0 ,

which proves that 𝒞in(𝑏) ∈ 𝒵. Finally, it follows from Corollary 8.5.10, that

Δ𝜓 = (Id − ̃︀ℬ)−1(𝒞in(𝑏)) ∈ 𝒵.

Finally, we prove the second statement of Theorem 8.3.2. Let

𝐾0 = 𝐾(𝜅0,Δ𝜓), (8.5.22)

where 𝐾, 𝜅0 and Δ𝜓 are given by (8.5.17), Corollary 8.5.10 and (8.5.10), respectively.
Take

𝐶in = 𝑏3 +𝐾0,

where 𝑏3 is the first term of the sequence 𝑏 given in 8.5.11 and 𝐾0 is given by (8.5.22).
Also, notice that 𝒞in(𝑏) = 𝒞in(𝑏) − 𝑏3𝑒

−𝑖𝜆0,3𝑧 sin(3𝜏) ∈ 𝒵ℓ1,1,in.
Thus, using the second item of Lemma 8.5.9 (with 𝜅 = 𝜅0 and ℎ = Δ𝜓) and Proposi-

tion 8.5.11, we have that



268

‖Δ𝜓 − 𝐶in𝑒
−𝑖𝜆0,3𝑧 sin(3𝜏)‖ℓ1,1,in = ‖Δ𝜓 − 𝒞in(𝑏) −𝐾0𝑒

−𝑖𝜆0,3𝑧 + 𝒞in(𝑏)]‖ℓ1,1,in

≤ ‖ ̃︀ℬ(Δ𝜓) −𝐾0𝑒
−𝑖𝜆0,3𝑧‖ℓ1,1,in+‖𝒞in(𝑏)‖ℓ1,1,in

≤ 𝑀(1 + ‖Δ𝜓‖ℓ1,1,in)
≤ 𝑀0.

Taking
𝜒(𝑧, 𝜏) = 𝑒𝑖𝜆0,3𝑧

(︁
Δ𝜓 − 𝐶in𝑒

−𝑖𝜆0,3𝑧 sin(3𝜏)
)︁
,

it follows that
‖𝜒‖ℓ1,1, ‖𝜕𝜏𝜒‖ℓ1,1≤ 𝑀,

and formula (8.3.9) holds for every 𝜅 ≥ 𝜅0, since ℛin,+
𝜃,𝜅 ⊂ ℛin,+

𝜃,𝜅0 provided that 𝜅 ≥ 𝜅0.
Finally, it follows from item (5) of Proposition 8.5.1 that 𝜕𝑧𝜒 ∈ 𝒳ℓ1,𝛼+1 (with respect

to the domain ℛin,+
2𝜃,4𝜅0) and

‖𝜕𝑧𝜒‖ℓ1,2≤ 𝑀.

The proof of Theorem 8.3.2 follows by reducing the initial domain ℛin,+
𝜃,𝜅0 to ℛin,+

2𝜃,4𝜅0 . In
order to simplify the notation, we make no distinction between ℛin,+

𝜃,𝜅0 and ℛin,+
2𝜃,4𝜅0 .

8.6 Proof of Theorem 8.3.3
As usual, we consider only the unstable case, and in order to simplify the notation,

we omit the superscript 𝑢 of the solutions. Also, throughout this section, we change the
domain 𝐷𝑢,in

𝜃,𝜅 by 𝐷mch,𝑢
+,𝜅 (see (8.3.7) and (8.3.10))in the definition of the norms and Banach

spaces introduced in Section 8.5.1, but we keep the same notation.
We begin by studying the equation satisfied by the difference

𝜙(𝑧, 𝜏) = 𝜑(𝑧, 𝜏) − 𝜑0(𝑧, 𝜏). (8.6.1)

Proposition 8.6.1. The function 𝜙 : 𝐷mch,𝑢
+,𝜅 × T → C given by (8.6.1) satisfies the

following differential equation

ℐ(𝜙)(𝑧, 𝜏) = 𝒞mch(𝑧, 𝜏) +
(︁
𝐿(𝜙)(𝑧) + ̂︀𝐿(̂︀Π[𝜙])(𝑧)

)︁
sin(𝜏) +𝐾(𝜙)(𝑧, 𝜏),

where ℐ is the operator given by (8.5.5), 𝐿 : 𝒳ℓ1,𝛼 → 𝒳𝛼+4, ̂︀𝐿 : 𝒳ℓ1,𝛼 → 𝒳𝛼+2, and
𝐾 : 𝒳ℓ1,𝛼 → 𝒳ℓ1,𝛼+2 are linear operators and 𝒞mch : 𝐷mch,𝑢

+,𝜅 × T → C is an analytic
function in the variable 𝑧 given by

𝒞mch(𝑧, 𝜏) = −2
√

2𝑖𝜀2

𝑧
sin(𝜏) + 𝑑1(𝑧) sin(𝜏) + 𝑑2(𝑧, 𝜏). (8.6.2)

Moreover, Π1 ∘ 𝐾 ≡ 0, and there exists a constant 𝑀 > 0 independent of 𝜀 and 𝜅 such
that

1. ‖𝐿(𝜙)‖𝛼+4≤ 𝑀‖𝜙‖ℓ1,𝛼;

2. ‖̂︀𝐿(𝜙)‖𝛼+2≤ 𝑀‖𝜙‖ℓ1,𝛼;
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3. ‖𝐾(𝜙)‖ℓ1,𝛼+2≤ 𝑀‖𝜙‖ℓ1,𝛼;

4. ‖𝑑2‖ℓ1,3≤ 𝑀𝜀2 and |𝑑1(𝑧)|≤ 𝑀𝜀4|𝑧|, for every 𝑧 ∈ 𝐷mch,𝑢
+,𝜅 .

Proof. Since 𝜑 and 𝜑0 satisfy (8.3.5) and (8.3.6), respectively, we have that 𝜙(𝑧, 𝜏) satisfies

𝜕2
𝑧𝜙− 𝜕2

𝜏𝜙− 𝜙 = −𝜀2𝜕2
𝜏𝜑− 1

3(𝜑3 − (𝜑0)3) − 𝑓(𝜑) + 𝑓(𝜑0). (8.6.3)

Now, recall that 𝜑(𝑧, 𝜏) = 𝜀𝑣(𝑖𝜋/2 + 𝜀𝑧, 𝜏), where 𝑣(𝑦, 𝜏) = 𝑣ℎ
1 (𝑦) sin(𝜏) + 𝜉(𝑦, 𝜏), 𝑣ℎ

1
is given by (8.1.17) and 𝜉 is given by Theorem 8.3.1. An easy computation shows that

𝜀𝑣ℎ
1 (𝑖𝜋/2 + 𝜀𝑧) = −2

√
2𝑖
𝑧

+ 𝑙1(𝑧, 𝜀),

where 𝑙1 is an analytic function such that |𝑙1(𝑧, 𝜀)|≤ 𝑀𝜀2|𝑧|, for each 𝑧 ∈ 𝐷mch,𝑢
+,𝜅 . For the

sake of simplicity, we omit the dependence of ł1 on 𝜀. Thus,

𝜑(𝑧, 𝜏) = −2
√

2𝑖
𝑧

sin(𝜏) + 𝑙1(𝑧) sin(𝜏) + 𝑙2(𝑧, 𝜏), (8.6.4)

where 𝑙2(𝑧, 𝜏) = 𝜀𝜉(𝑖𝜋/2 + 𝜀𝑧, 𝜏).
Notice that, since 𝑦 = 𝑖𝜋/2 + 𝜀𝑧, we have⃒⃒⃒

(𝑦 − 𝑖𝜋/2)3Π𝑛

[︁
𝜕2

𝜏 𝜉(𝑦, 𝜏)
]︁⃒⃒⃒

= 𝜀3
⃒⃒⃒
𝑧3Π𝑛

[︁
𝜕2

𝜏 𝜉(𝑖𝜋/2 + 𝜀𝑧, 𝜏)
]︁⃒⃒⃒
,∀ 𝑛 ≥ 1,

and thus, from Proposition 8.4.5,

‖𝑙2‖ℓ1,3= ‖𝜀𝜕2
𝜏 𝜉(𝑖𝜋/2 + 𝜀𝑧, 𝜏)‖ℓ1,3≤

1
𝜀2 ‖𝜕2

𝜏 𝜉(𝑦, 𝜏)‖ℓ1,1,3≤ 𝑀,

where ‖·‖ℓ1,1,3 is the norm introduced in Section 8.4.1.
Differentiating 𝜑 with respect to 𝜏 twice, we obtain

𝜕2
𝜏𝜑(𝑧, 𝜏) = 2

√
2𝑖
𝑧

sin(𝜏) − 𝑙1(𝑧) sin(𝜏) + 𝜕2
𝜏 𝑙2(𝑧, 𝜏). (8.6.5)

Since 𝑀𝜅 ≤ |𝑧|≤ 𝑀𝜀𝛾−1, for every 𝑧 ∈ 𝐷mch,𝑢
+,𝜅 , and⃦⃦⃦⃦

⃦𝜑0(𝑧, 𝜏) + 2
√

2𝑖
𝑧

sin(𝜏)
⃦⃦⃦⃦
⃦

ℓ1,3
≤ 𝑀, (8.6.6)

we obtain that

−1
3 (𝜑3 − (𝜑0)3) = −1

3 (𝜑2 + 𝜑𝜑0 + (𝜑0)2)𝜙

= 6
𝑧2 Π1[𝜙] sin(𝜏) − 2

𝑧2 Π1[𝜙] sin(3𝜏) + 𝑙3(̂︀Π [𝜙]) + 𝑙4(𝜙) + 𝑙5(𝑧, 𝜏),
(8.6.7)

where 𝑙3 : 𝒳ℓ1,𝛼 → 𝒳ℓ1,𝛼+2, 𝑙4 : 𝒳ℓ1,𝛼 → 𝒳ℓ1,𝛼+4, are linear operators such that

‖𝑙3(̂︀Π [𝜙])‖ℓ1,𝛼+2≤ 𝑀‖̂︀Π [𝜙] ‖ℓ1,𝛼 𝑎𝑛𝑑 ‖𝑙4(𝜙)‖ℓ1,𝛼+4≤ 𝑀‖𝜙‖ℓ1,𝛼,
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and 𝑙5 : 𝐷mch,𝑢
+,𝜅 × T → C is an analytic function in the variable 𝑧 such that

‖𝑙5‖ℓ1,3≤ 𝑀𝜀2.

Also, using that ‖𝜑‖ℓ1,1, ‖𝜑0‖ℓ1,1≤ 𝑀 , 𝑓(𝑧) = 𝒪(𝑧5), and the Mean Value Theorem,
we have that

−𝑓(𝜑) + 𝑓(𝜑0) = −𝜙
∫︁ 1

0
𝑓 ′(𝑠𝜑+ (1 − 𝑠)𝜑0)𝑑𝑠 = 𝑙6(𝜙), (8.6.8)

where 𝑙6 : 𝒳ℓ1,𝛼 → 𝒳ℓ1,𝛼+4, is a linear operator such that

‖𝑙6(𝜙)‖ℓ1,𝛼+4≤ 𝑀‖𝜙‖ℓ1,𝛼.

Taking,

• ̂︀𝐿(̂︀Π [𝜙]) = Π1
[︁
𝑙3(̂︀Π [𝜙])

]︁
,

• 𝐿(𝜙) = Π1 [𝑙4(𝜙) + 𝑙6(𝜙)],

• 𝐾(𝜙) = ̂︀Π [︂
𝑙3(̂︀Π [𝜙]) − 2

𝑧2 Π1[𝜙] sin(3𝜏) + 𝑙4(𝜙) + 𝑙6(𝜙)
]︂

• 𝑑1(𝑧) = 𝜀2𝑙1(𝑧), and 𝑑2(𝑧, 𝜏) = −𝜀2𝜕2
𝜏 𝑙2(𝑧, 𝜏) + 𝑙5(𝑧, 𝜏),

the proof follows from (8.6.3), (8.6.5), (8.6.7) and (8.6.8).

Let 𝑧𝑗 = 𝜀−1(𝑦𝑗 − 𝑖𝜋/2), 𝑗 = 1, 2, where 𝑦1 and 𝑦2 are the vertices of the matching
domain 𝐷mch,𝑢

+,𝜅 given by (8.3.10). Consider the following linear operator acting on the
Fourier coefficients of ℎ = ∑︀

𝑘≥0 ℎ2𝑘+1(𝑧) sin((2𝑘 + 1)𝜏).

𝒯 (𝜙) =
∑︁
𝑘≥0

𝒯2𝑘+1(ℎ2𝑘+1) sin((2𝑘 + 1)𝜏), (8.6.9)

where 𝒯2𝑘+1 is given by

𝒯1(ℎ1) = 𝑧3

5

∫︁ 𝑧

𝑧1

ℎ1(𝑠)
𝑠2 𝑑𝑠− 1

5𝑧2

∫︁ 𝑧

𝑧2
ℎ1(𝑠)𝑠3𝑑𝑠

− 1
5(𝑧5

2 − 𝑧5
1)

(︃(︃
𝑧3 − 𝑧5

2
𝑧2

)︃∫︁ 𝑧1

𝑧2
ℎ1(𝑠)𝑠3𝑑𝑠+

(︃
𝑧3𝑧5

2 − (𝑧1𝑧2)5

𝑧2

)︃∫︁ 𝑧2

𝑧1

ℎ1(𝑠)
𝑠2 𝑑𝑠

)︃
,

(8.6.10)
and

𝒯2𝑘+1(ℎ2𝑘+1) =
∫︁ 𝑧

𝑧2

ℎ2𝑘+1(𝑠)𝑒−𝑖𝜆0,2𝑘+1(𝑠−𝑧)

2𝑖𝜆0,2𝑘+1
𝑑𝑠−

∫︁ 𝑧

𝑧1

ℎ2𝑘+1(𝑠)𝑒𝑖𝜆0,2𝑘+1(𝑠−𝑧)

2𝑖𝜆0,2𝑘+1
𝑑𝑠,

+ sin(𝜆0,2𝑘+1(𝑧2 − 𝑧))
sin(𝜆0,2𝑘+1(𝑧1 − 𝑧2))

∫︁ 𝑧1

𝑧2

ℎ2𝑘+1(𝑠)𝑒−𝑖𝜆0,2𝑘+1(𝑠−𝑧1)

2𝑖𝜆0,2𝑘+1
𝑑𝑠

+ sin(𝜆0,2𝑘+1(𝑧1 − 𝑧))
sin(𝜆0,2𝑘+1(𝑧1 − 𝑧2))

∫︁ 𝑧2

𝑧1

ℎ2𝑘+1(𝑠)𝑒−𝑖𝜆0,2𝑘+1(𝑠−𝑧2)

2𝑖𝜆0,2𝑘+1
𝑑𝑠, for every 𝑘 ≥ 1.

(8.6.11)
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Also, consider the following function 𝒬 : 𝐷mch,𝑢
+,𝜅 × T → C, which is analytic in the

variable 𝑧, given by

𝒬(𝑧, 𝜏 ;𝜙) =
∑︁
𝑘≥0

𝒬2𝑘+1(𝑧1, 𝑧2;𝜙2𝑘+1)(𝑧) sin((2𝑘 + 1)𝜏), (8.6.12)

where

𝒬1(𝑧1, 𝑧2, 𝜙1)(𝑧) = 1
𝑧5

2 − 𝑧5
1

(︂
𝑧3(𝑧2

2𝜙1(𝑧2) − 𝑧2
1𝜙1(𝑧1)) − 1

𝑧2

(︁
𝑧5

1𝑧
2
2𝜙1(𝑧2) − 𝑧2

1𝑧
5
2𝜙1(𝑧1)

)︁)︂
,

(8.6.13)
for 𝑘 = 0,

𝒬2𝑘+1(𝑧1, 𝑧2, 𝜙2𝑘+1)(𝑧) = sin(𝜆0,2𝑘+1(𝑧 − 𝑧2))
sin(𝜆0,2𝑘+1(𝑧1 − 𝑧2))

𝜙2𝑘+1(𝑧1) − sin(𝜆0,2𝑘+1(𝑧 − 𝑧1))
sin(𝜆0,2𝑘+1(𝑧1 − 𝑧2))

𝜙2𝑘+1(𝑧2),

(8.6.14)
for 𝑘 ≥ 1, and 𝜙 is given by (8.6.1).

Remark 8.6.2. Notice that the functions 𝒬2𝑘+1, 𝑘 ≥ 0, are chosen in such way that
Π2𝑘+1 [𝒬 + 𝒯 (ℎ)] (𝑧𝑗) = 𝜙2𝑘+1(𝑧𝑗), 𝑗 = 1, 2 and 𝑘 ≥ 0.

Proposition 8.6.3. Consider the operator ℐ given by (8.5.5). Let ℎ, ̂︀𝜙 : 𝐷mch,𝑢
+,𝜅 ×C → C

be functions which are analytic in the variable 𝑧 and assume that

ℐ( ̂︀𝜙) = ℎ,

and ̂︀𝜙(𝑧𝑗) = 𝜙(𝑧𝑗), 𝑗 = 1, 2, where 𝜙 is given in (8.6.1), and 𝑧1, 𝑧2 are the vertices of
the matching domain 𝐷mch,𝑢

+,𝜅 given by (8.3.10). Therefore, there exist angles 𝛽0 and 𝛽2 of
(8.3.10), such that ̂︀𝜙(𝑧, 𝜏) = 𝒬(𝑧, 𝜏 ;𝜙) + 𝒯 (ℎ)(𝑧, 𝜏),
where 𝒯 and 𝒬 are given by (8.6.9) and (8.6.12), respectively.

Proof. Denote Π𝑛[ℎ] = ℎ𝑛, Π𝑛 ∘ ℐ = ℐ𝑛, Π1[𝜙] and Π𝑛[ ̂︀𝜙] = ̂︀𝜙𝑛. First, we consider the
operator ℐ1 (see (8.5.5)) and we solve the equation ℐ1( ̂︀𝜙1) = ℎ1. Considering the solutions
𝜁1(𝑧) = 𝑧3 and 𝜁2(𝑧) = −𝑧2/5 of the homogeneous equation ℐ1( ̂︀𝜙1) = 0, and applying the
method of variation of constants, we obtain

̂︀𝜙1(𝑧) = 𝑧3

5

(︃∫︁ 𝑧

𝑧1

ℎ1(𝑠)
𝑠2 𝑑𝑠+ 𝐶1

1

)︃
− 1

5𝑧2

(︂∫︁ 𝑧

𝑧2
ℎ1(𝑠)𝑠3𝑑𝑠+ 𝐶1

2

)︂
,

where 𝑧1 and 𝑧2 are the vertices of the matching domain 𝐷in,+,𝑢
𝜅,𝑐 .

Recall that the function 𝜙1 is already known, therefore the points 𝜙1(𝑧1) and 𝜙1(𝑧2)
are already given, and using the initial conditions ̂︀𝜙1(𝑧1) = 𝜙1(𝑧1) and ̂︀𝜙1(𝑧2) = 𝜙1(𝑧2),
we determine the constants 𝐶1

1 and 𝐶1
2 . In fact,

⎛⎝ 5−1𝑧3
1 −(5𝑧2

1)−1

5−1𝑧3
2 −(5𝑧2

2)−1

⎞⎠⎛⎝ 𝐶1
1

𝐶1
2

⎞⎠ =

⎛⎜⎜⎜⎜⎝
𝜙1(𝑧1) + 1

5𝑧2
1

∫︁ 𝑧1

𝑧2
ℎ1(𝑠)𝑠3𝑑𝑠

𝜙1(𝑧2) − 𝑧3
2
5

∫︁ 𝑧2

𝑧1

ℎ1(𝑠)
𝑠2 𝑑𝑠

⎞⎟⎟⎟⎟⎠ ,

and since ‖𝑧1‖̸= ‖𝑧2‖ (see (8.3.10)), we have that the matrix on the right side of the last
equation is invertible, and thus, we obtain the values of 𝐶1

1 and 𝐶1
2 . Therefore,
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̂︀𝜙1(𝑧) = 𝒬1(𝑧1, 𝑧2, 𝜙1)(𝑧) + 𝒯1(ℎ1)(𝑧),
where 𝒯1 is the linear operator given in (8.6.10), and 𝒬1 is the independent term given in
(8.6.13).

Proceeding in the same way for the higher modes, we obtain that the homogeneous
equation ℐ2𝑘+1( ̂︀𝜙2𝑘+1) = 0 has independent solutions 𝜁∓

2𝑘+1 = 𝑒±𝑖𝜆0,2𝑘+1𝑧, where 𝜆0,2𝑘+1 =√︁
(2𝑘 + 1)2 − 1, and thus applying the method of variation of constants to the equation

ℐ2𝑘+1( ̂︀𝜙2𝑘+1) = ℎ2𝑘+1, we obtain

̂︀𝜙2𝑘+1(𝑧) = −𝑒−𝑖𝜆0,2𝑘+1𝑧

2𝑖𝜆0,2𝑘+1

(︂∫︁ 𝑧

𝑧1
ℎ2𝑘+1(𝑠)𝑒𝑖𝜆0,2𝑘+1𝑠𝑑𝑠+ 𝐶2𝑘+1

1

)︂

+ 𝑒𝑖𝜆0,2𝑘+1𝑧

2𝑖𝜆0,2𝑘+1

(︂∫︁ 𝑧

𝑧2
ℎ2𝑘+1(𝑠)𝑒−𝑖𝜆0,2𝑘+1𝑠𝑑𝑠+ 𝐶2𝑘+1

2

)︂
.

Again, using that the function 𝜙2𝑘+1(𝑧) is already known and imposing the initial
conditions ̂︀𝜙2𝑘+1(𝑧1) = 𝜙2𝑘+1(𝑧1) and ̂︀𝜙2𝑘+1(𝑧2) = 𝜙2𝑘+1(𝑧2), we determine the constants
𝐶2𝑘+1

1 and 𝐶2𝑘+1
2 through the following system⎛⎝ −𝑒−𝑖𝜆0,2𝑘+1𝑧1 𝑒𝑖𝜆0,2𝑘+1𝑧1

−𝑒−𝑖𝜆0,2𝑘+1𝑧2 𝑒𝑖𝜆0,2𝑘+1𝑧2

⎞⎠⎛⎝ 𝐶2𝑘+1
1

𝐶2𝑘+1
2

⎞⎠ =
⎛⎜⎜⎜⎝

2𝑖𝜆0,2𝑘+1𝜙2𝑘+1(𝑧1) − 𝑒𝑖𝜆0,2𝑘+1𝑧1

∫︁ 𝑧1

𝑧2
ℎ2𝑘+1(𝑠)𝑒−𝑖𝜆0,2𝑘+1𝑠𝑑𝑠

2𝑖𝜆0,2𝑘+1𝜙2𝑘+1(𝑧2) + 𝑒−𝑖𝜆0,2𝑘+1𝑧2

∫︁ 𝑧2

𝑧1
ℎ2𝑘+1(𝑠)𝑒𝑖𝜆0,2𝑘+1𝑠𝑑𝑠

⎞⎟⎟⎟⎠ .

Since Im(𝑧1) ̸= Im(𝑧2) (see (8.3.10)), we have that 𝑒𝑖𝜆0,2𝑘+1(𝑧1−𝑧2) − 𝑒−𝑖𝜆0,2𝑘+1(𝑧1−𝑧2) ̸= 0,
for every 𝑘 ≥ 1. Thus, the matrix on the right of the equation above is invertible and
consequently, we obtain the values of 𝐶2𝑘+1

1 and 𝐶2𝑘+1
2 . Hence,

̂︀𝜙2𝑘+1(𝑧) = 𝒬2𝑘+1(𝑧1, 𝑧2, 𝜙2𝑘+1)(𝑧) + 𝒯2𝑘+1(ℎ2𝑘+1)(𝑧),

where 𝒯2𝑘+1 is the linear operator given in (8.6.11), and 𝒬2𝑘+1 is the independent term
given in (8.6.14), for 𝑘 ≥ 1. The proof is complete.

Now, we study the operator 𝒯 given in (8.6.9) in some appropriate Banach spaces.

Proposition 8.6.4. The following statements hold.

1. Given 𝛼 ≥ 4, the linear operator 𝒯 : 𝒳𝛼 → 𝒳𝛼−2 is well defined and there exists a
constant 𝑀 independent of 𝜀 and 𝜅 such that

‖𝒯 (ℎ)‖ℓ1,𝛼−2 ≤ 𝑀 ‖ℎ‖ℓ1,𝛼 𝑎𝑛𝑑 ‖𝜕𝜏 ∘ 𝒯 (ℎ)‖ℓ1,𝛼−2 ≤ 𝑀 ‖ℎ‖ℓ1,𝛼 .

2. Given 𝛼 ≥ 0, the linear operator 𝒯 : 𝒳 1
𝛼 → 𝒳 1

𝛼 is well defined, where 𝒳 1
𝛼 is the

Banach space
𝒳 1

𝛼 = {ℎ ∈ 𝒳𝛼; Π1[ℎ] = 0},

and there exists a constant 𝑀 independent of 𝜀 and 𝜅 such that

‖𝒯 (ℎ)‖ℓ1,𝛼 ≤ 𝑀 ‖ℎ‖ℓ1,𝛼 𝑎𝑛𝑑 ‖𝜕𝜏 ∘ 𝒯 (ℎ)‖ℓ1,𝛼 ≤ 𝑀 ‖ℎ‖ℓ1,𝛼 .
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3. Given 2 ≤ 𝛼 ≤ 3, there exists a constant 𝑀 > 0 independent of 𝜀 and 𝜅 such that

‖𝒬(𝑧1, 𝑧2, 𝜙)‖ℓ1,𝛼 ≤ 𝑀(𝜀(𝛼−3)(𝛾−1) + 𝜀2+(𝛼+1)(𝛾−1)),

where 𝜙 is given in (8.6.1).

Proof. Notice that, for every 𝑧 ∈ 𝐷in,+,𝑢
𝜅,𝑐 , we have |𝑧𝑖|≥ 𝑀 |𝑧|, 𝑖 = 1, 2, for some constant

𝑀 > 0 independent of 𝜀 and 𝑘. Also, |𝑧2|5−|𝑧1|5≥ 𝑀 |𝑧2|5≥ 𝑀 |𝑧|5, for every 𝑧 ∈ 𝐷in,+,𝑢
𝜅,𝑐 .

Now, using these properties, we show the following bounds for 𝛼 ≥ 4.⃒⃒⃒⃒
⃒𝑧3

5

∫︁ 𝑧

𝑧1

ℎ1(𝑠)
𝑠2 𝑑𝑠

⃒⃒⃒⃒
⃒ ≤ 𝑀‖ℎ1‖𝛼|𝑧|3

∫︁ 𝑧

𝑧1

1
|𝑠|2+𝛼

𝑑𝑠

≤ 𝑀‖ℎ1‖𝛼|𝑧|3
(︃

1
|𝑧|1+𝛼

+ 1
|𝑧1|1+𝛼

)︃
≤ 𝑀‖ℎ1‖𝛼|𝑧|2−𝛼,

⃒⃒⃒⃒ 1
5𝑧2

∫︁ 𝑧

𝑧2
ℎ1(𝑠)𝑠3𝑑𝑠

⃒⃒⃒⃒
≤ 𝑀‖ℎ1‖𝛼

|𝑧|2
∫︁ 𝑧

𝑧2
|𝑠|3−𝛼𝑑𝑠

≤ 𝑀‖ℎ1‖𝛼

|𝑧|2
|𝑧2|3−𝛼|𝑧 − 𝑧2|

≤ 𝑀‖ℎ1‖𝛼

|𝑧|𝛼−2 (|𝑧2|3−𝛼|𝑧|𝛼−3+|𝑧2|4−𝛼|𝑧|𝛼−4)

≤ 𝑀‖ℎ1‖𝛼|𝑧|2−𝛼,⃒⃒⃒⃒
⃒ 1
5(𝑧5

2 − 𝑧5
1)

(︃
𝑧3 − 𝑧5

2
𝑧2

)︃∫︁ 𝑧1

𝑧2
ℎ1(𝑠)𝑠3𝑑𝑠

⃒⃒⃒⃒
⃒ ≤ 𝑀‖ℎ‖𝛼

|𝑧|2
∫︁ 𝑧1

𝑧2
|𝑠|3−𝛼𝑑𝑠

≤ 𝑀‖ℎ1‖𝛼

|𝑧|2
|𝑧2|3−𝛼|𝑧1 − 𝑧2|

≤ 𝑀‖ℎ1‖𝛼

|𝑧|𝛼−2 |𝑧|𝛼−4|𝑧2|4−𝛼

≤ 𝑀‖ℎ1‖𝛼|𝑧|2−𝛼,

⃒⃒⃒⃒
⃒ 1
5(𝑧5

2 − 𝑧5
1)

(︃
𝑧3𝑧5

2 − (𝑧1𝑧2)5

𝑧2

)︃∫︁ 𝑧2

𝑧1

ℎ1(𝑠)
𝑠2 𝑑𝑠

⃒⃒⃒⃒
⃒ ≤ 𝑀‖ℎ1‖𝛼

(︃
|𝑧|3+ |𝑧2|5

|𝑧|2

)︃∫︁ 𝑧2

𝑧1

1
|𝑠|2+𝛼

𝑑𝑠

≤ 𝑀‖ℎ1‖𝛼

(︃
|𝑧|3+ |𝑧2|5

|𝑧|2

)︃
1

|𝑧2|1+𝛼

≤ 𝑀‖ℎ1‖𝛼

|𝑧|𝛼−2 (|𝑧|1+𝛼|𝑧2|−1−𝛼+|𝑧|𝛼−4|𝑧2|4−𝛼)

≤ 𝑀‖ℎ1‖𝛼|𝑧|2−𝛼.

Hence, we can see that
‖𝒯1(ℎ1)‖𝛼−2≤ 𝑀‖ℎ1‖𝛼, 𝛼 ≥ 4. (8.6.15)

Now, to deal with the higher modes, we will see that⃒⃒⃒⃒
⃒ sin(𝜆0,2𝑘+1(𝑧𝑗 − 𝑧))
sin(𝜆0,2𝑘+1(𝑧1 − 𝑧2))

⃒⃒⃒⃒
⃒ ≤ 𝑀, 𝑗 = 1, 2, ∀ 𝑧 ∈ 𝐷mch,𝑢

+,𝜅 , ∀ 𝑘 ≥ 1, (8.6.16)
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where 𝑀 > 0 is independent of 𝜀 and 𝑘.
In fact, recalling that |sin2(𝑧)|= 1

2(cosh(2 Im(𝑧)) − cos(2 Re(𝑧))), we have⃒⃒⃒⃒
⃒ sin(𝜆0,2𝑘+1(𝑧𝑗 − 𝑧))
sin(𝜆0,2𝑘+1(𝑧1 − 𝑧2))

⃒⃒⃒⃒
⃒
2

= cosh(2𝜆0,2𝑘+1 Im(𝑧𝑗 − 𝑧)) − cos(2𝜆0,2𝑘+1 Re(𝑧𝑗 − 𝑧))
cosh(2𝜆0,2𝑘+1 Im(𝑧1 − 𝑧2)) − cos(2𝜆0,2𝑘+1 Re(𝑧1 − 𝑧2))

≤ cosh(2𝜆0,2𝑘+1 Im(𝑧𝑗 − 𝑧)) + 1
cosh(2𝜆0,2𝑘+1 Im(𝑧1 − 𝑧2)) − 1 ,

and since Im(𝑧1 − 𝑧2) = 𝐾𝜀𝛾−1 and |Im(𝑧𝑗 − 𝑧)|≤ |Im(𝑧1 − 𝑧2)|, we obtain that⃒⃒⃒⃒
⃒ sin(𝜆0,2𝑘+1(𝑧𝑗 − 𝑧))
sin(𝜆0,2𝑘+1(𝑧1 − 𝑧2))

⃒⃒⃒⃒
⃒
2

≤ 𝑀
cosh(2𝜆0,2𝑘+1 Im(𝑧𝑗 − 𝑧)) + 1

cosh(2𝜆0,2𝑘+1 Im(𝑧1 − 𝑧2))
≤ 2𝑀.

Now, assume that 𝛼 ≥ 0. For each 𝑧 ∈ 𝐷mch,𝑢
+,𝜅 , there exist 𝛽*

1 , 𝛽
*
2 (depending on

𝑧) between 𝛽0 and 𝛽2 and 𝑡*2, 𝑡
*
1 > 0 (depending on 𝑧) such that 𝑧2 = 𝑧 + 𝑒−𝑖𝛽*

2 𝑡*2 and
𝑧1 = 𝑧 + 𝑒𝑖𝛽*

1 𝑡*1. Thus, we have that

⃒⃒⃒⃒∫︁ 𝑧

𝑧2
ℎ2𝑘+1(𝑠)𝑒−𝑖𝜆0,2𝑘+1(𝑠−𝑧)𝑑𝑠

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒
∫︁ 0

𝑡*
2

ℎ2𝑘+1
(︁
𝑧 + 𝑒−𝑖𝛽*

2 𝑡
)︁
𝑒−𝑖𝜆0,2𝑘+1𝑡𝑒−𝑖𝛽*

2 𝑒−𝑖𝛽*
2𝑑𝑡

⃒⃒⃒⃒
⃒

≤
∫︁ 𝑡*

2

0

⃒⃒⃒
ℎ2𝑘+1

(︁
𝑧 + 𝑒−𝑖𝛽*

2 𝑡
)︁⃒⃒⃒
𝑒−𝜆0,2𝑘+1 sin(𝛽*

2 )𝑡𝑑𝑡

≤ ‖ℎ2𝑘+1‖𝛼

∫︁ 𝑡*
2

0

𝑒−𝜆0,2𝑘+1 sin(𝛽*
2 )𝑡

|𝑧 + 𝑒−𝑖𝛽*
2 𝑡|𝛼

𝑑𝑡

≤ ‖ℎ2𝑘+1‖𝛼

|𝑧|𝛼
∫︁ ∞

0
𝑒−𝜆0,2𝑘+1 sin(𝛽*

2 )𝑡𝑑𝑡

≤ ‖ℎ2𝑘+1‖𝛼

𝜆0,2𝑘+1 sin(𝛽*
2)|𝑧|𝛼

≤ 𝑀‖ℎ2𝑘+1‖𝛼

𝜆0,2𝑘+1|𝑧|𝛼

Analogously, we prove that⃒⃒⃒⃒∫︁ 𝑧

𝑧1
ℎ2𝑘+1(𝑠)𝑒𝑖𝜆0,2𝑘+1(𝑠−𝑧)𝑑𝑠

⃒⃒⃒⃒
≤ 𝑀‖ℎ2𝑘+1‖𝛼

𝜆0,2𝑘+1|𝑧|𝛼
,

and in particular,⃒⃒⃒⃒∫︁ 𝑧1

𝑧2
ℎ2𝑘+1(𝑠)𝑒−𝑖𝜆0,2𝑘+1(𝑠−𝑧1)𝑑𝑠

⃒⃒⃒⃒
≤ 𝑀‖ℎ2𝑘+1‖𝛼

𝜆0,2𝑘+1|𝑧1|𝛼
≤ 𝑀‖ℎ2𝑘+1‖𝛼

𝜆0,2𝑘+1|𝑧|𝛼
,

and ⃒⃒⃒⃒∫︁ 𝑧2

𝑧1
ℎ2𝑘+1(𝑠)𝑒𝑖𝜆0,2𝑘+1(𝑠−𝑧2)𝑑𝑠

⃒⃒⃒⃒
≤ 𝑀‖ℎ2𝑘+1‖𝛼

𝜆0,2𝑘+1|𝑧2|𝛼
≤ 𝑀‖ℎ2𝑘+1‖𝛼

𝜆0,2𝑘+1|𝑧|𝛼
.

Hence,
‖𝒯2𝑘+1(ℎ2𝑘+1)‖𝛼≤ 𝑀

𝜆0,2𝑘+1
‖ℎ2𝑘+1‖𝛼, 𝑘 ≥ 1, 𝛼 ≥ 0. (8.6.17)

Items (1) and (2) follows from (8.6.15) and (8.6.17).
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Now, using (8.6.4) and (8.6.6), we obtain that

𝜙(𝑧, 𝜏) = 𝑙1(𝑧) sin(𝜏) + 𝑏(𝑧, 𝜏),

where
‖𝑏‖ℓ1,3≤ 𝑀

and |𝑙1(𝑧)|≤ 𝑀𝜀2|𝑧|, for each 𝑧 ∈ 𝐷mch,𝑢
+,𝜅 . Notice that 𝑏(𝑧, 𝜏) = 𝑙2(𝑧, 𝜏) − (𝜑0(𝑧, 𝜏) +

2
√

2𝑖/𝑧 sin(𝜏)), where 𝑙2 is the function given in (8.6.4).
Thus, we can see that

|𝒬1(𝑧1, 𝑧2, 𝜙1)(𝑧)| =
⃒⃒⃒⃒
⃒ 1
𝑧5

2 − 𝑧5
1

(︂
𝑧3(𝑧2

2𝜙1(𝑧2) − 𝑧2
1𝜙1(𝑧1)) − 1

𝑧2 (𝑧5
1𝑧

2
2𝜙1(𝑧2) − 𝑧2

1𝑧
5
2𝜙1(𝑧1))

)︂⃒⃒⃒⃒
⃒

≤ 𝑀

(︃
|𝜙1(𝑧1)| + |𝜙1(𝑧2)| + |𝑧2

1 |
|𝑧|2

|𝜙1(𝑧1)| + |𝑧2
2 |

|𝑧|2
|𝜙1(𝑧2)|

)︃

≤ 𝑀

(︃
1

|𝑧2||𝑧|2
+ 𝜀2|𝑧2|+

𝜀2|𝑧2|3

|𝑧|2

)︃
.

Now, recalling that |𝑧2|= 𝑀𝜀𝛾−1 and 𝑀𝜅 ≤ |𝑧|≤ 𝑀𝜀𝛾−1, for every 𝑧 ∈ 𝐷in,+,𝑢
𝜅,𝑐 , we

obtain that, for 𝛼 ≥ 2,

‖𝒬1(𝑧1, 𝑧2, 𝜙1)‖𝛼 ≤ 𝑀
(︁
𝜀(𝛼−3)(𝛾−1) + 𝜀2+(𝛼+1)(𝛾−1)

)︁
.

Finally, from (8.6.16) and (8.6.12), we can see that, for 0 ≤ 𝛼 ≤ 3 and 𝑘 ≥ 1,

|𝑧𝛼𝒬2𝑘+1(𝑧1, 𝑧2, 𝜙2𝑘+1)(𝑧)| =
⃒⃒⃒⃒
⃒ sin(𝜆0,2𝑘+1(𝑧 − 𝑧2))
sin(𝜆0,2𝑘+1(𝑧1 − 𝑧2))

𝑧𝛼𝜙2𝑘+1(𝑧1)

− sin(𝜆0,2𝑘+1(𝑧 − 𝑧1))
sin(𝜆0,2𝑘+1(𝑧1 − 𝑧2))

𝑧𝛼𝜙2𝑘+1(𝑧2)
⃒⃒⃒⃒
⃒

≤ 𝑀‖Π2𝑘+1[𝑏]‖3
|𝑧|𝛼

|𝑧2|3

≤ 𝑀‖Π2𝑘+1[𝑏]‖3
1

|𝑧2|3−𝛼

≤ 𝑀‖Π2𝑘+1[𝑏]‖3𝜀
(𝛼−3)(𝛾−1),

and thus

‖𝒬2𝑘+1(𝑧1, 𝑧2, 𝜙2𝑘+1)‖𝛼≤ 𝑀‖Π2𝑘+1[𝑏]‖3𝜀
(𝛼−3)(𝛾−1), 𝛼 ≤ 3, 𝑘 ≥ 1.

Now, for 2 ≤ 𝛼 ≤ 3, we have that

‖𝒬(𝑧1, 𝑧2, 𝜙)‖ℓ1,𝛼 =
∑︁
𝑘≥0

‖𝒬2𝑘+1(𝑧1, 𝑧2, 𝜙2𝑘+1)‖𝛼

≤ 𝑀
(︁
𝜀(𝛼−3)(𝛾−1) + 𝜀2+(𝛼+1)(𝛾−1)

)︁
+𝑀𝜀(𝛼−3)(𝛾−1)

∑︁
𝑘≥1

‖Π2𝑘+1[𝑏]‖3

≤ 𝑀
(︁
𝜀(𝛼−3)(𝛾−1) + 𝜀2+(𝛼+1)(𝛾−1)

)︁
+𝑀𝜀(𝛼−3)(𝛾−1)‖𝑏‖ℓ1,3

≤ 𝑀
(︁
𝜀(𝛼−3)(𝛾−1) + 𝜀2+(𝛼+1)(𝛾−1)

)︁
,

which proves item (3).
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Finally, for 𝑧 ∈ 𝐷mch,𝑢
+,𝜅 , from Propositions 8.6.1 and 8.6.3, we have that 𝜙 given in

(8.6.1) is written as

𝜙(𝑧, 𝜏) = 𝒬(𝑧1, 𝑧2, 𝜙)(𝑧, 𝜏)+𝒯
(︁
𝒞mch(𝑧, 𝜏) +

(︁
𝐿(𝜙)(𝑧) + ̂︀𝐿(̂︀Π[𝜙])(𝑧)

)︁
sin(𝜏) +𝐾(𝜙)(𝑧, 𝜏)

)︁
,

(8.6.18)
and thus, we prove Theorem (8.3.3) through the following proposition

Proposition 8.6.5. Consider the function 𝜙(𝑧, 𝜏) given in (8.6.1). There exist 𝜅0 > 0
and a constant 𝑀 > 0 independent of 𝜀, such that, for every 𝜅 ≥ 𝜅0 and 𝛾 ∈ (1/3, 1) (in
the definition of 𝐷mch,𝑢

+,𝜅 given in (8.3.10)), we have

‖𝜙‖ℓ1,2, ‖𝜕𝜏𝜙‖ℓ1,2, ‖𝜕𝑧𝜙‖ℓ1,3≤ 𝑀(𝜀1−𝛾 + 𝜀3𝛾−1).

Proof. From (8.6.18), and Propositions 8.6.1 and 8.6.4, we have that

‖𝜙1‖2 =
⃦⃦⃦
𝒬1(𝑧1, 𝑧2, 𝜙1) + 𝒯1

(︁
Π1 [𝒞mch] + 𝐿(𝜙) + ̂︀𝐿(̂︀Π[𝜙])

)︁⃦⃦⃦
2

≤ ‖𝒬1(𝑧1, 𝑧2, 𝜙1)‖2 +𝑀
(︁
‖Π1 [𝒞mch]‖4 + ‖𝐿(𝜙)‖4 +

⃦⃦⃦ ̂︀𝐿(̂︀Π[𝜙])
⃦⃦⃦

4

)︁
≤ 𝑀(𝜀1−𝛾 + 𝜀2+3(𝛾−1)) +𝑀

(︂
𝜀3𝛾−1 + 𝜀𝛾+1 + 𝜀5𝛾−1 + ‖𝜙‖ℓ1,0 +

⃦⃦⃦ ̂︀Π[𝜙]
⃦⃦⃦

ℓ1,2

)︂
≤ 𝑀

(︂
𝜀1−𝛾 + 𝜀3𝛾−1 + 1

𝜅2 ‖𝜙‖ℓ1,2 +
⃦⃦⃦ ̂︀Π[𝜙]

⃦⃦⃦
ℓ1,2

)︂
.

Also, since Π1 ∘𝐾 ≡ 0, we have that⃦⃦⃦ ̂︀Π[𝜙]
⃦⃦⃦

ℓ1,2
=

⃦⃦⃦ ̂︀Π ∘ 𝒬(𝑧1, 𝑧2, 𝜙) + 𝒯
(︁̂︀Π [𝒞mch] +𝐾(𝜙)

)︁⃦⃦⃦
ℓ1,2

≤
⃦⃦⃦ ̂︀Π ∘ 𝒬(𝑧1, 𝑧2, 𝜙)

⃦⃦⃦
ℓ1,2

+𝑀
(︂⃦⃦⃦ ̂︀Π [𝒞mch]

⃦⃦⃦
ℓ1,2

+ ‖𝐾(𝜙)‖ℓ1,2

)︂

≤ 𝑀(𝜀1−𝛾 + 𝜀2+3(𝛾−1)) +𝑀

(︃
𝜀2

𝜅
+ ‖𝜙‖ℓ1,0

)︃

≤ 𝑀
(︂
𝜀1−𝛾 + 𝜀3𝛾−1 + 1

𝜅2 ‖𝜙‖ℓ1,2

)︂
It follows that

‖𝜙‖ℓ1,2 ≤ 𝑀
(︂
𝜀1−𝛾 + 𝜀3𝛾−1 + 1

𝜅2 ‖𝜙‖ℓ1,2

)︂
.

Now, choosing 𝜅0 sufficiently big, we have that, for every 𝜅 ≥ 𝜅0

‖𝜙‖ℓ1,2≤ 𝑀(𝜀1−𝛾 + 𝜀3𝛾−1).

Also, it follows from Proposition 8.6.4 that

‖𝜕𝜏𝜙‖ℓ1,2≤ 𝑀(𝜀1−𝛾 + 𝜀3𝛾−1).

Finally, from Lemma 8.1 of [8], reducing the domain 𝐷mch,𝑢
+,𝜅 (see (8.3.10)), with vertices

𝑦1 and 𝑦2 such that |𝑦𝑗 − 𝑖(𝜋/2 − 𝜅𝜀)|= 𝑐𝜀𝛾, 𝑗 = 1, 2, to 𝐷mch,𝑢
+,2𝜅 ⊂ 𝐷mch,𝑢

+,𝜅 having vertices̃︀𝑦1 and ̃︀𝑦2 such that |̃︀𝑦𝑗 − 𝑖(𝜋/2 − 2𝜅𝜀)|= ̃︀𝑐𝜀𝛾, 𝑗 = 1, 2, and 0 < ̃︀𝑐 < 𝑐, we obtain that

‖𝜕𝑧𝜙‖ℓ1,2≤
𝑀

𝜅
(𝜀1−𝛾 + 𝜀3𝛾−1).

It completes the proof of this proposition. In order to simplify the notation, we make
no distinction between 𝐷mch,𝑢

+,𝜅 and 𝐷mch,𝑢
+,2𝜅 .
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Remark 8.6.6. Notice that 𝛾 = 1/2 minimizes the size of ‖𝜙‖ℓ1,2 in Theorem 8.6.5. In
this case,

‖𝜙‖ℓ1,2≤ 𝑀𝜀1/2.

8.7 Proof of Theorem U
In Theorem 8.3.1, we have obtained the existence of the solutions 𝑣⋆ : 𝐷out,⋆

𝜅 ×T → C
of (8.1.9), ⋆ = 𝑢, 𝑠 which parameterize the invariant manifolds 𝑊 𝑢(0) and 𝑊 𝑠(0). Notice
that both solutions are defined in the domain

ℛ𝜅 = 𝐷out,𝑢
𝜅 ∩𝐷out,𝑠

𝜅 ∩ 𝑖R,

where 𝐷out,⋆
𝜅 is given in (8.3.1).

Our aim is to obtain an asymptotic formula for the function

𝑑(𝜏 ; 𝜀) = 𝑣𝑢(0, 𝜏) − 𝑣𝑠(0, 𝜏). (8.7.1)

In order to do this, we write the equations satisfied by the difference

Δ𝑣(𝑦, 𝜏) = 𝑣𝑢(𝑦, 𝜏) − 𝑣𝑠(𝑦, 𝜏), (8.7.2)

and recall that Π2𝑙[Δ𝑣] = 0, for every 𝑙 ≥ 0.
From (8.4.4) and Theorem 8.3.1, we have that Δ𝑣(𝑦, 𝜏) = 𝜉𝑢(𝑦, 𝜏) − 𝜉𝑠(𝑦, 𝜏) and

ℒ(Δ𝑣) = ℱ(𝜉𝑢) − ℱ(𝜉𝑠),

where ℒ and ℱ are the operators given in (8.4.2) and (8.4.3), respectively.

Proposition 8.7.1. The function Δ𝑣(𝑦, 𝜏) given by (8.7.2) satisfies the equation

ℒ(Δ𝑣) = Π1
[︁
𝜂1(𝑦, 𝜏)Π1[Δ𝑣] sin(𝜏) + 𝜂2(𝑦, 𝜏)̂︀Π[Δ𝑣]

]︁
sin(𝜏) + ̂︀Π[𝜂3(𝑦, 𝜏)Δ𝑣],

where ℒ is the operator given in (8.4.2) and 𝜂𝑗 : ℛ𝜅 ×T → C, 𝑗 = 1, 2, 3 are real analytic
functions in the variable 𝑦. Moreover, there exists a constant 𝑀 > 0 independent of 𝜅
and 𝜀 such that

‖𝜂1‖ℓ1,4≤ 𝑀𝜀2, 𝑎𝑛𝑑 ‖𝜂2‖ℓ1,2, ‖𝜂3‖ℓ1,2≤ 𝑀.

Proof. Using the expression of ℱ given in (8.4.3) (see also (8.4.30)), we obtain that

ℱ(𝜉𝑢) − ℱ(𝜉𝑠) = − 1
𝜀3
̂︀Π [︁
𝑔(𝜀(𝜉𝑢 + 𝑣ℎ

1 sin(𝜏))) − 𝑔(𝜀(𝜉𝑠 + 𝑣ℎ
1 sin(𝜏)))

]︁
−Π1

[︁
(𝜉𝑢

1 + 𝑣ℎ
1 )2 sin2(𝜏)̂︀Π(𝜉𝑢) − (𝜉𝑠

1 + 𝑣ℎ
1 )2 sin2(𝜏)̂︀Π(𝜉𝑠)

]︁
sin(𝜏)

−Π1
[︁
(𝜉𝑢

1 + 𝑣ℎ
1 ) sin(𝜏)(̂︀Π[𝜉𝑢])2 − (𝜉𝑠

1 + 𝑣ℎ
1 ) sin(𝜏)(̂︀Π[𝜉𝑠])2

+1
3
(︁
(̂︀Π[𝜉𝑢])3 − (̂︀Π[𝜉𝑠])3

)︁]︂
sin(𝜏)

+
(︂

− 1
𝜀3 Π1

[︁
𝑓(𝜀(𝜉𝑢 + 𝑣ℎ

1 sin(𝜏))) − 𝑓(𝜀(𝜉𝑠 + 𝑣ℎ
1 sin(𝜏)))

]︁
−3𝑣ℎ

1 ((𝜉𝑢
1 )2 − (𝜉𝑠

1)2)
4 − (𝜉𝑢

1 )3 − (𝜉𝑠
1)3

4

)︃
sin(𝜏).

The proof follows from the Mean Value Theorem, the estimates ‖𝑣ℎ
1 ‖1≤ 𝑀 , ‖𝜉𝑢,𝑠‖ℓ1,3≤

𝑀𝜀2 obtained in Theorem 8.3.1, and the fact that 𝑔(𝑧) = 𝒪(𝑧3) and 𝑓(𝑧) = 𝒪(𝑧5).
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As an abuse of notation, we consider the spaces

ℰ𝛼 = {𝑓 : ℛ𝜅 → C; 𝑓 is real-analytic and ‖𝑓‖𝛼< ∞}

and

ℰℓ1,𝛼 = {𝑓 : ℛ𝜅× → C; 𝑓 is real-analytic in the variable 𝑦 and ‖𝑓‖ℓ1,𝛼< ∞},

where
‖𝑓‖𝛼= sup

𝑦∈ℛ𝜅

|(𝑦2 + 𝜋2/4)𝛼𝑓(𝑦)| 𝑎𝑛𝑑 ‖𝑓‖ℓ1,𝛼=
∑︁
𝑛≥1

‖Π𝑛[𝑓 ]‖𝛼.

Recall that equation (8.1.9) is a Hamiltonian Partial Differential Equation. In fact, if
we write it as the system⎧⎪⎨⎪⎩

𝜕𝑦𝑣 = 𝑤,

𝜕𝑦𝑤 = 𝜔2

𝜀2 𝜕
2
𝜏𝑣 + 1

𝜀2𝑣 − 1
3𝑣

3 − 1
𝜀3𝑓 (𝜀𝑣) ,

(8.7.3)

we obtain that (8.7.3) is a Hamiltonian system with respect to

ℋ(𝑣, 𝑤) = 1
𝜋

∫︁
T

(︃
𝑤2

2 + (𝜔𝜕𝜏𝑣)2

2𝜀2 − 𝑣2

2𝜀2 + 𝑣4

12 + 𝐹 (𝜀𝑣)
𝜀4

)︃
𝑑𝜏,

where 𝐹 is an analytic function such that 𝐹 (𝑧) = 𝒪(𝑧6) and 𝐹 ′(𝑧) = 𝑓(𝑧).
Notice that the solutions 𝑣⋆(𝑦, 𝜏) of (8.1.9), ⋆ = 𝑢, 𝑠, obtained in Theorem 8.3.1 are

contained in the same energy level of ℋ. We use the Hamiltonian ℋ to obtain the variable
Π1[Δ𝑣] in terms of the variables Π1[Δ𝑤], ̂︀Π[Δ𝑤] and ̂︀Π[Δ𝑣], where Δ𝑤 = 𝜕𝑦Δ𝑣.

Proposition 8.7.2. There exist two linear operators 𝐴 : ℰℓ1,0 → ℰ1 and 𝐵 : ℰℓ1,0 → ℰ0,
such that

Π1[Δ𝑣](𝑦) = �̇�ℎ
1 (𝑦)
𝑣ℎ

1 (𝑦)Π1[Δ𝑤](𝑦) + 𝐴(Δ𝑤)(𝑦) +𝐵(̂︀Π[Δ𝑣])(𝑦), (8.7.4)

where

1. |𝐴(Δ𝑤)(𝑦)|≤ 𝑀𝜀2

|𝑦2 + 𝜋2/4|
‖Δ𝑤‖ℓ1(𝑦), for every 𝑦 ∈ ℛ𝜅;

2. |𝐵(̂︀Π[Δ𝑣])(𝑦)|≤ 𝑀‖̂︀Π[Δ𝑣]|ℓ1(𝑦), for every 𝑦 ∈ ℛ𝜅;

Proof. First, recall that the projections Π1 and ̂︀Π given in (8.1.7) are orthogonal. There-
fore, we obtain that ℋ is given by

ℋ(𝑣, 𝑤) = (Π1[𝑤])2

2 −(Π1[𝑣])2

2 + 1
𝜋

∫︁
T

(︃
(̂︀Π[𝑤])2

2 + (𝜔𝜕𝜏
̂︀Π[𝑣])2

2𝜀2 − (̂︀Π[𝑣])2

2𝜀2 + 𝑣4

12 + 𝐹 (𝜀𝑣)
𝜀4

)︃
𝑑𝜏.

Using that ℋ(𝑣⋆, 𝑤⋆) = 0, ⋆ = 𝑢, 𝑠, integrability by parts of the 𝜕𝜏 terms and the
Mean Value Theorem, we have that
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0 = ℋ(𝑣𝑢, 𝑤𝑢) − ℋ(𝑣𝑢, 𝑤𝑢)

= Π1[𝑤𝑢] + Π1[𝑤𝑠]
2 Π1[Δ𝑤] − Π1[𝑣𝑢] + Π1[𝑣𝑠]

2 Π1[Δ𝑣]

+ 1
𝜋

∫︁
T

[︃ ̂︀Π[𝑤𝑢] + ̂︀Π[𝑤𝑠]
2

̂︀Π[Δ𝑤] − 𝜔2

𝜀2
𝜕2

𝜏
̂︀Π[𝑣𝑢] + 𝜕2

𝜏
̂︀Π[𝑣𝑠]

2
̂︀Π[Δ𝑣] −

̂︀Π[𝑣𝑢] + ̂︀Π[𝑣𝑠]
2𝜀2

̂︀Π[Δ𝑣]
]︃
𝑑𝜏

+ 1
𝜋

∫︁
T

[︃
(𝑣𝑢)3 + (𝑣𝑢)2(𝑣𝑠) + (𝑣𝑢)(𝑣𝑠)2 + (𝑣𝑠)3

12 Δ𝑣

+
(︂ 1
𝜀3

∫︁ 1

0
𝑓(𝜀(𝜎𝑣𝑢(𝑦, 𝜏) + (1 − 𝜎)𝜎𝑣𝑠(𝑦, 𝜏)))𝑑𝜎

)︂
Δ𝑣

]︂
𝑑𝜏.

Finally, we use that 𝑣⋆ = 𝑣ℎ
1 sin(𝜏) + 𝜉⋆(𝑦, 𝜏), 𝑣ℎ

1 = 𝑣ℎ
1 − (𝑣ℎ

1 )3/4 and

‖𝜉⋆‖ℓ1,3, ‖𝜕2
𝜏 𝜉

⋆‖ℓ1,3, ‖𝜕𝑦𝜉
⋆‖ℓ1,4≤ 𝑀𝜀2, ⋆ = 𝑢, 𝑠

we conclude that

0 = −(𝑣ℎ
1 + ̃︀𝑎(𝑦))Π1[Δ𝑣] + �̇�ℎ

1 Π1[Δ𝑤] + ̃︀𝐴(Δ𝑤) + ̃︀𝐵(̂︀Π[Δ𝑣]),
where

• ‖̃︀𝑎‖5≤ 𝑀𝜀2;

• | ̃︀𝐴(Δ𝑤)(𝑦)|≤ 𝑀𝜀2

|𝑦2 + 𝜋2/4|4
‖Δ𝑤‖ℓ1(𝑦), for every 𝑦 ∈ ℛ𝜅;

• | ̃︀𝐵(̂︀Π[Δ𝑣])(𝑦)|≤ 𝑀

|𝑦2 + 𝜋2/4|3
‖̂︀Π[Δ𝑣]‖ℓ1(𝑦), for every 𝑦 ∈ ℛ𝜅;

Now, observe that 𝑣ℎ
1 (𝑦) =

√
2(cosh(2𝑦) − 3) sech3(𝑦) is strictly negative, for every

𝑦 = 𝑖̃︀𝑦 with ̃︀𝑦 ∈ (−𝜋/2, 𝜋/2). Also, since 𝑣ℎ
1 (𝑦) has a third order pole at the points

𝑦 = ±𝑖𝜋/2, we obtain that
⃦⃦⃦̃︀𝑎/𝑣ℎ

1

⃦⃦⃦
2

≤ 𝑀𝜀2, which means that
⃒⃒⃒⃒
⃒ ̃︀𝑎𝑣ℎ

1

⃒⃒⃒⃒
⃒ ≤ 𝑀

𝜅2 ,

for every 𝑦 ∈ ℛ𝜅.
Hence, taking 𝜅 sufficiently big, we have that the function

𝐷(𝑦) = 𝑣ℎ
1 (𝑦)

(︃
1 +

̃︀𝑎(𝑦)
𝑣ℎ

1 (𝑦)

)︃
,

is non-zero for every 𝑦 ∈ ℛ𝜅. Moreover, the function 𝐷(𝑦)−1 has a third order zero at the
points 𝑦 = ±𝑖𝜋/2, and

𝐷(𝑦)−1 = (𝑣ℎ
1 (𝑦))−1 (1 + 𝑎(𝑦)) ,

where 𝑎 : ℛ𝜅 → C is a real-analytic function such that ‖𝑎‖2≤ 𝑀𝜀2.
Hence, it follows that
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Π1[Δ𝑣] = �̇�ℎ
1 Π1[Δ𝑤] + ̃︀𝐴(Δ𝑤) + ̃︀𝐵(̂︀Π[Δ𝑣])

𝐷

=
(︃
�̇�ℎ

1 Π1[Δ𝑤] + ̃︀𝐴(Δ𝑤) + ̃︀𝐵(̂︀Π[Δ𝑣])
𝑣ℎ

1

)︃
(1 + 𝑎)

= �̇�ℎ
1
𝑣ℎ

1
Π1[Δ𝑤] + 𝐴(Δ𝑤) +𝐵(̂︀Π[Δ𝑣]),

where 𝐴 and 𝐵 are the linear operators

𝐴(Δ𝑤)(𝑦) = 1 + 𝑎(𝑦)
𝑣ℎ

1 (𝑦)
̃︀𝐴(Δ𝑤)(𝑦) + �̇�ℎ

1 (𝑦)
𝑣ℎ

1 (𝑦)𝑎(𝑦)Π1[Δ𝑤](𝑦)

and
𝐵(̂︀Π[Δ𝑣]) = 1 + 𝑎(𝑦)

𝑣ℎ
1 (𝑦)

̃︀𝐵(̂︀Π[Δ𝑣]).

The proof of the proposition follows directly from the estimates of ̃︀𝐴(Δ𝑤), ̃︀𝐵(̂︀Π[Δ𝑣]),
𝑎 and the fact that 𝑣ℎ

1 and �̇�ℎ
1 have a third and second order pole at the points 𝑦 = ±𝑖𝜋/2,

respectively.

Remark 8.7.3. Notice that Δ𝑤 = Π1[Δ𝑤] sin(𝜏) + ̂︀Π[Δ𝑤], and thus the operator 𝐴 in
(8.7.4) also acts in the first harmonic.

Now, denote Δ𝑣2𝑘+1 = Π2𝑘+1[Δ𝑣] and Δ𝑤2𝑘+1 = Π2𝑘+1[Δ𝑤], for every 𝑘 ≥ 0, and
consider the following change of variables⎧⎨⎩ Γ2𝑘+1 = 𝜆2𝑘+1Δ𝑣2𝑘+1 + 𝑖𝜀Δ𝑤2𝑘+1,

Θ2𝑘+1 = 𝜆2𝑘+1Δ𝑣2𝑘+1 − 𝑖𝜀Δ𝑤2𝑘+1,
(8.7.5)

for every 𝑘 ≥ 1.
Consider

Γ =
∑︁
𝑘≥1

Γ2𝑘+1(𝑦) sin((2𝑘 + 1)𝜏) 𝑎𝑛𝑑 Θ =
∑︁
𝑘≥1

Θ2𝑘+1(𝑦) sin((2𝑘 + 1)𝜏),

and define the operator

𝒩 (Δ𝑤1,Γ,Θ) =
⎛⎝Δ̇𝑤1 −

...
𝑣 ℎ

1
𝑣ℎ

1
Δ𝑤1,

∑︁
𝑘≥1

(︃
Γ̇2𝑘+1 + 𝑖

𝜆2𝑘+1

𝜀
Γ2𝑘+1

)︃
sin((2𝑘 + 1)𝜏),

∑︁
𝑘≥1

(︃
Θ̇2𝑘+1 − 𝑖

𝜆2𝑘+1

𝜀
Θ2𝑘+1

)︃
sin((2𝑘 + 1)𝜏)

⎞⎠
(8.7.6)

Notice that, from Theorem 8.3.1, Δ𝑣 satisfies∑︁
𝑘≥1

𝜆2
2𝑘+1‖Δ𝑣2𝑘+1‖ℓ1,3≤ 𝑀𝜀2,

and thus ∑︁
𝑘≥1

𝜆2𝑘+1‖Γ2𝑘+1‖3≤ 𝑀𝜀2 𝑎𝑛𝑑
∑︁
𝑘≥1

𝜆2𝑘+1‖Θ2𝑘+1‖3≤ 𝑀𝜀2.
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It follows that operator 𝒩 is well defined.
Consider the Banach space given by

ϒℓ1,𝛼 = {𝑓 : ℛ𝜅 × T → C; 𝑓 is an analytic function in the variable 𝑦 such that
Π1[𝑓 ] = Π2𝑙[𝑓 ] = 0, ∀𝑙 ≥ 0 and ‖𝑓‖ℓ1,𝛼< ∞} .

(8.7.7)

Proposition 8.7.4. Let Δ𝑣(𝑦, 𝜏) be the function given in (8.7.2), and consider Δ𝑤 =
𝜕𝑦Δ𝑣. Therefore, Δ𝑣1(𝑦) is given by (8.7.4), and (Δ𝑤1(𝑦),Γ(𝑦, 𝜏),Θ(𝑦, 𝜏)) (see (8.7.5))
satisfies the following equation

𝒩 (Δ𝑤1,Γ,Θ) = ℳ(Δ𝑤1,Γ,Θ), (8.7.8)

where 𝒩 is given in (8.7.6) and 𝒴 is a linear operator which can be written as

ℳ(Δ𝑤1,Γ,Θ) =

⎛⎜⎜⎜⎜⎝
𝑚𝑊 (𝑦)Δ𝑤1 + ℳ𝑊 (Γ,Θ)

𝑚osc(𝑦, 𝜏)Δ𝑤1 + ℳosc(Γ,Θ)
−𝑚osc(𝑦, 𝜏)Δ𝑤1 − ℳosc(Γ,Θ)

⎞⎟⎟⎟⎟⎠ , (8.7.9)

where, 𝑚𝑊 : ℛ𝜅 → C, 𝑚osc : ℛ𝜅 × T → C are real-analytic functions in the variable 𝑦,
and ℳ𝑊 : ϒℓ1,0 × ϒℓ1,0 → ϒ2, ℳosc : ϒℓ1,0 × ϒℓ1,0 → ϒℓ1,2 are linear operators, where
ϒℓ1,𝛼 is given by (8.7.7). Moreover, there exists a constant 𝑀 > 0 independent of 𝜀 and
𝜅 such that

1. ‖𝑚𝑊 ‖3≤ 𝑀𝜀2 and ‖𝑚osc‖ℓ1,1≤ 𝑀𝜀;

2. |ℳ𝑊 (Γ,Θ)(𝑦)| ≤ 𝑀

|𝑦2 + 𝜋2/4|2
(‖Γ‖ℓ1(𝑦) + ‖Θ‖ℓ1(𝑦)), for every 𝑦 ∈ ℛ𝜅;

3. ‖ℳosc(Γ,Θ)‖ℓ1
(𝑦) ≤ 𝑀𝜀

|𝑦2 + 𝜋2/4|2
(‖Γ‖ℓ1(𝑦) + ‖Θ‖ℓ1(𝑦)), for every 𝑦 ∈ ℛ𝜅.

Proof. In fact, from (8.7.5) and Proposition 8.7.1, we have that, for each 𝑘 ≥ 1,

Γ̇2𝑘+1 = 𝜆2𝑘+1Δ𝑤2𝑘+1 + 𝑖𝜀Δ̈𝑣2𝑘+1

= 𝜆2𝑘+1Δ𝑤2𝑘+1 + 𝑖𝜀

(︃
−
𝜆2

2𝑘+1
𝜀2 Δ𝑣2𝑘+1 + Π2𝑘+1 [𝜂3(𝑦, 𝜏)Δ𝑣]

)︃

= −𝑖𝜆2𝑘+1

𝜀
Γ2𝑘+1 + 𝑖𝜀Π2𝑘+1 [𝜂3(𝑦, 𝜏)Δ𝑣] .

(8.7.10)

Analogously, for each 𝑘 ≥ 1,

Θ̇2𝑘+1 − 𝑖
𝜆2𝑘+1

𝜀
Θ𝑛 = −𝑖𝜀Π2𝑘+1 [𝜂3(𝑦, 𝜏)Δ𝑣] . (8.7.11)

Also, for the variable Δ𝑤1, we have that

Δ̇𝑤1 =
(︃

1 − 3(𝑣ℎ
1 )2

4

)︃
Δ𝑣1 + Π1

[︁
𝜂1(𝑦, 𝜏)Δ𝑣1 sin(𝜏) + 𝜂2(𝑦, 𝜏)̂︀Π[Δ𝑣]

]︁
. (8.7.12)
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Therefore, by the definition of 𝒩 in (8.7.6), equations (8.7.10), (8.7.11) and (8.7.12)
are equivalent to

𝒩 (Δ𝑤1,Γ,Θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
−

...
𝑣 ℎ

1
𝑣ℎ

1
Δ𝑤1 +

(︃
1 − 3(𝑣ℎ

1 )2

4

)︃
Δ𝑣1 + Π1

[︁
𝜂1(𝑦, 𝜏)Δ𝑣1 sin(𝜏) + 𝜂2(𝑦, 𝜏)̂︀Π[Δ𝑣]

]︁
𝑖𝜀̂︀Π [𝜂3(𝑦, 𝜏)Δ𝑣]

−𝑖𝜀̂︀Π [𝜂3(𝑦, 𝜏)Δ𝑣]

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,
(8.7.13)

where 𝜂𝑗, 𝑗 = 1, 2, 3 are given by Proposition 8.7.1. Using formula (8.7.4) for Δ𝑣1, we get(︃
1 − 3(𝑣ℎ

1 )2

4

)︃
�̇�ℎ

1 = ...
𝑣 ℎ

1 ,

we have

Δ̇𝑤1 −
...
𝑣 ℎ

1
𝑣ℎ

1
Δ𝑤1 =

(︃
1 − 3(𝑣ℎ

1 )2

4

)︃(︁
𝐴(Δ𝑤) +𝐵(̂︀Π[Δ𝑣])

)︁

+Π1

[︃
𝜂1(𝑦, 𝜏)

(︃
�̇�ℎ

1
𝑣ℎ

1
Δ𝑤1 + 𝐴(Δ𝑤) +𝐵(̂︀Π[Δ𝑣])

)︃
sin(𝜏) + 𝜂2(𝑦, 𝜏)̂︀Π[Δ𝑣]

]︃

=
(︃

1 − 3(𝑣ℎ
1 )2

4

)︃
𝐴(Δ𝑤1 sin(𝜏))

+Π1

[︃
𝜂1(𝑦, 𝜏)

(︃
�̇�ℎ

1
𝑣ℎ

1
Δ𝑤1 + 𝐴(Δ𝑤1 sin(𝜏))

)︃
sin(𝜏)

]︃

+
(︃

1 − 3(𝑣ℎ
1 )2

4

)︃(︁
𝐴(̂︀Π[Δ𝑤]) +𝐵(̂︀Π[Δ𝑣])

)︁
+Π1

[︁
𝜂1(𝑦, 𝜏)

(︁
𝐴(̂︀Π[Δ𝑤]) +𝐵(̂︀Π[Δ𝑣])

)︁
sin(𝜏) + 𝜂2(𝑦, 𝜏)̂︀Π[Δ𝑣]

]︁
.

Using (8.7.5), we have

Δ̇𝑤1 −
...
𝑣 ℎ

1
𝑣ℎ

1
Δ𝑤1 =

(︃
1 − 3(𝑣ℎ

1 )2

4

)︃
𝐴(Δ𝑤1 sin(𝜏))

+Π1

[︃
𝜂1(𝑦, 𝜏)

(︃
�̇�ℎ

1
𝑣ℎ

1
Δ𝑤1 + 𝐴(Δ𝑤1 sin(𝜏))

)︃
sin(𝜏)

]︃

+
(︃

1 − 3(𝑣ℎ
1 )2

4

)︃⎛⎝ 1
2𝑖𝜀𝐴(Γ − Θ) +𝐵

⎛⎝∑︁
𝑛≥2

Γ𝑛 + Θ𝑛

2𝜆𝑛

sin(𝑛𝜏)
⎞⎠⎞⎠

+Π1

[︂
𝜂1(𝑦, 𝜏)

(︂ 1
2𝑖𝜀𝐴(Γ − Θ)

)︂
sin(𝜏)

+𝜂1(𝑦, 𝜏)𝐵
⎛⎝∑︁

𝑘≥1

Γ2𝑘+1 + Θ2𝑘+1

2𝜆2𝑘+1
sin((2𝑘 + 1)𝜏)

⎞⎠ sin(𝜏)

+𝜂2(𝑦, 𝜏)
⎛⎝∑︁

𝑛≥2

Γ2𝑘+1 + Θ2𝑘+1

2𝜆2𝑘+1
sin((2𝑘 + 1)𝜏)

⎞⎠⎤⎦
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and,

𝑖𝜀̂︀Π [𝜂3(𝑦, 𝜏)Δ𝑣] = 𝑖𝜀̂︀Π [︃
𝜂3(𝑦, 𝜏)

(︃(︃
�̇�ℎ

1
𝑣ℎ

1
Δ𝑤1 + 𝐴(Δ𝑤) +𝐵(̂︀Π[Δ𝑣])

)︃
sin(𝜏) + ̂︀Π[Δ𝑣]

)︃]︃

= 𝑖𝜀̂︀Π [︃
𝜂3(𝑦, 𝜏)

(︃
�̇�ℎ

1
𝑣ℎ

1
Δ𝑤1 + 𝐴(Δ𝑤1 sin(𝜏))

)︃
sin(𝜏)

]︃

+𝑖𝜀̂︀Π [︁
𝜂3(𝑦, 𝜏)

(︁
𝐴(̂︀Π[Δ𝑤]) sin(𝜏) +𝐵(̂︀Π[Δ𝑣]) sin(𝜏) + ̂︀Π[Δ𝑣])

)︁]︁
= 𝑖𝜀̂︀Π [︃

𝜂3(𝑦, 𝜏)
(︃
�̇�ℎ

1
𝑣ℎ

1
Δ𝑤1 + 𝐴(Δ𝑤1 sin(𝜏))

)︃
sin(𝜏)

]︃

+𝑖𝜀̂︀Π [︃
𝜂3(𝑦, 𝜏)

2𝑖𝜀 𝐴(Γ − Θ) sin(𝜏)

+𝜂3(𝑦, 𝜏)𝐵
⎛⎝∑︁

𝑘≥1

Γ2𝑘+1 + Θ2𝑘+1

2𝜆2𝑘+1
sin((2𝑘 + 1)𝜏)

⎞⎠ sin(𝜏)

+𝜂3(𝑦, 𝜏)
∑︁
𝑘≥1

Γ2𝑘+1 + Θ2𝑘+1

2𝜆2𝑘+1
sin((2𝑘 + 1)𝜏)

⎤⎦
Now, the proof is concluded by taking

𝑚𝑊 (𝑦)Δ𝑤1 =
(︃

1 − 3(𝑣ℎ
1 )2

4

)︃
𝐴(Δ𝑤1 sin(𝜏))

+Π1

[︃
𝜂1(𝑦, 𝜏)

(︃
�̇�ℎ

1
𝑣ℎ

1
Δ𝑤1 + 𝐴(Δ𝑤1 sin(𝜏))

)︃
sin(𝜏)

]︃
;

ℳ𝑊 (Γ,Θ) =
(︃

1 − 3(𝑣ℎ
1 )2

4

)︃⎛⎝ 1
2𝑖𝜀𝐴(Γ − Θ) +𝐵

⎛⎝∑︁
𝑛≥2

Γ𝑛 + Θ𝑛

2𝜆𝑛

sin(𝑛𝜏)
⎞⎠⎞⎠

+Π1

[︃
𝜂1(𝑦, 𝜏)

2𝑖𝜀 𝐴(Γ − Θ) sin(𝜏)

+𝜂1(𝑦, 𝜏)𝐵
⎛⎝∑︁

𝑘≥1

Γ2𝑘+1 + Θ2𝑘+1

2𝜆2𝑘+1
sin((2𝑘 + 1)𝜏)

⎞⎠ sin(𝜏)

+𝜂2(𝑦, 𝜏)
⎛⎝∑︁

𝑘≥1

Γ2𝑘+1 + Θ2𝑘+1

2𝜆2𝑘+1
sin((2𝑘 + 1)𝜏)

⎞⎠⎤⎦ ;

𝑚osc(𝑦, 𝜏)Δ𝑤1 = 𝑖𝜀̂︀Π [︃
𝜂3(𝑦, 𝜏)

(︃
�̇�ℎ

1
𝑣ℎ

1
Δ𝑤1 + 𝐴(Δ𝑤1 sin(𝜏))

)︃
sin(𝜏)

]︃
;

ℳosc(Γ,Θ) = 𝑖𝜀̂︀Π [︂
𝜂3(𝑦, 𝜏)

(︂ 1
2𝑖𝜀𝐴(Γ − Θ) sin(𝜏)

+𝐵
⎛⎝∑︁

𝑘≥1

Γ2𝑘+1 + Θ2𝑘+1

2𝜆2𝑘+1
sin((2𝑘 + 1)𝜏)

⎞⎠ sin(𝜏)

+
∑︁
𝑘≥1

Γ2𝑘+1 + Θ2𝑘+1

2𝜆2𝑘+1
sin((2𝑘 + 1)𝜏)

⎞⎠⎤⎦ ,
(8.7.14)
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and using the bounds for the functions 𝜂𝑗, 𝑗 = 1, 2, 3 and the operators 𝐴 and 𝐵 provided
in Propositions 8.7.1 and 8.7.2.

8.7.1 Banach Space and Operators
In this section, we rewrite (8.7.8) as a fixed point of certain functional operator in

some appropriate Banach space.
Given an analytic function 𝑓 : ℛ𝜅 → C, we define the norm

‖𝑓‖𝛼,exp= sup
𝑦∈ℛ𝜅

⃒⃒⃒⃒
(𝑦2 + 𝜋2/4)𝛼𝑒

𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|)𝑓(𝑦)
⃒⃒⃒⃒
, (8.7.15)

and the Banach space

𝒳𝛼,exp = {𝑓 : ℛ𝜅 → C; 𝑓 is an analytic function such that ‖𝑓‖𝛼,exp< ∞}. (8.7.16)

Also, given an analytic odd function 𝑓 : ℛ𝜅 × T → C, we define the norm

‖𝑓‖ℓ1,𝛼,exp=
∑︁
𝑘≥1

‖Π2𝑘+1[𝑓 ]‖𝛼,exp, (8.7.17)

and the Banach space

𝒳ℓ1,𝛼,exp = {𝑓 : ℛ𝜅 × T → C; 𝑓 is an analytic function in the variable 𝑦 such that
Π1[𝑓 ] = Π2𝑙[𝑓 ] = 0,∀𝑙 ≥ 0 and ‖𝑓‖ℓ1,𝛼,exp< ∞} .

(8.7.18)
Finally, we consider the product Banach space

𝒴ℓ1,−1,exp = 𝒳−1,exp × 𝒳ℓ1,0,exp × 𝒳ℓ1,0,exp, (8.7.19)

endowed with the weight norm

J(𝑓, 𝑔, ℎ)Kℓ1,−1,exp = 1
𝜀

‖𝑓‖−1,exp+‖𝑔‖ℓ1,exp+‖ℎ‖ℓ1,exp. (8.7.20)

Now, given a sequence 𝑎 = (𝑎2𝑘+1)𝑘≥1, we define the functions

ℐΓ(𝑎)(𝑦, 𝜏) =
∑︁
𝑘≥1

𝑎2𝑘+1𝑒
−𝑖

𝜆2𝑘+1
𝜀

𝑦 sin((2𝑘 + 1)𝜏) (8.7.21)

and
ℐΘ(𝑎)(𝑦, 𝜏) =

∑︁
𝑘≥1

𝑎2𝑘+1𝑒
𝑖

𝜆2𝑘+1
𝜀

𝑦 sin((2𝑘 + 1)𝜏). (8.7.22)

Also, considering
𝑦± = ±𝑖

(︂
𝜋

2 − 𝜅𝜀
)︂
,

we define the diagonal linear operator

𝒫(𝑓, 𝑔, ℎ) =
(︁
𝒫𝑊 (𝑓),𝒫Γ(𝑔),𝒫Θ(ℎ)

)︁
, (8.7.23)

where
𝒫𝑊 (𝑓)(𝑦) =

∫︁ 𝑦

0

𝑓(𝑠)
𝑣ℎ

1 (𝑠)𝑑𝑠, (8.7.24)
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𝒫Γ(𝑔) =
∑︁
𝑘≥1

𝒫Γ
2𝑘+1(𝑔) sin((2𝑘+1)𝜏) 𝑎𝑛𝑑 𝒫Θ(ℎ) =

∑︁
𝑘≥1

𝒫Θ
2𝑘+1(ℎ) sin((2𝑘+1)𝜏), (8.7.25)

with
𝒫Γ

2𝑘+1(𝑔)(𝑦) =
∫︁ 𝑦

𝑦+
𝑒𝑖

𝜆2𝑘+1
𝜀

(𝑠−𝑦)Π2𝑘+1[𝑔](𝑠)𝑑𝑠

and
𝒫Θ

2𝑘+1(ℎ)(𝑦) =
∫︁ 𝑦

𝑦−
𝑒−𝑖

𝜆2𝑘+1
𝜀

(𝑠−𝑦)Π2𝑘+1[ℎ](𝑠)𝑑𝑠, 𝑘 ≥ 1.

Lemma 8.7.5. For 𝛼 = 2, 3, the operators 𝒫Γ,𝒫Θ : 𝒳ℓ1,𝛼,exp → 𝒳ℓ1,0,exp given by (8.7.25)
are well-defined. Moreover, there exists a constant 𝑀 > 0 independent of 𝜀 and 𝜅 such
that, for every ℎ ∈ 𝒳ℓ1,𝛼,exp,

‖𝒫Γ(ℎ)‖ℓ1,0,exp, ‖𝒫Θ(ℎ)‖ℓ1,0,exp≤ 𝑀

(𝜅𝜀)𝛼−1 ‖ℎ‖ℓ1,𝛼,exp. (8.7.26)

Proof. We prove the lemma only for the operator 𝒫Γ, since the result for 𝒫Θ follows
analogously. Let ℎ(𝑦, 𝜏) = ∑︀

𝑘≥1 ℎ2𝑘+1(𝑦) sin((2𝑘 + 1)𝜏). First, we prove that

⃦⃦⃦
𝒫Γ

3 (ℎ3)
⃦⃦⃦

0,exp
≤ 𝑀

(𝜅𝜀)𝛼−1 ‖ℎ3‖𝛼,exp

In fact,

⃒⃒⃒⃒
𝒫Γ

3 (ℎ3)𝑒
𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|)
⃒⃒⃒⃒

≤ ‖ℎ3‖𝛼,exp

∫︁ 𝑦

𝑦+

⃒⃒⃒⃒
⃒⃒𝑒𝜆3

𝜀 (𝜋
2 −|Im(𝑦)|) 𝑒

− 𝜆3
𝜀 (𝜋

2 −|Im(𝑠)|)
|𝑠2 + 𝜋2/4|𝛼

𝑒𝑖
𝜆3
𝜀

(𝑠−𝑦)

⃒⃒⃒⃒
⃒⃒ 𝑑𝑠

≤ ‖ℎ3‖𝛼,exp

∫︁ 𝑦

𝑦+

𝑒
𝜆3
𝜀

(|Im(𝑠)|− Im(𝑠)−(|Im(𝑦)|− Im(𝑦)))

|𝑠2 + 𝜋2/4|𝛼
𝑑𝑠

≤ ‖ℎ3‖𝛼,exp

∫︁ Im(𝑦)

𝜋
2 −𝜅𝜀

𝑒
𝜆3
𝜀

(|𝜎|−𝜎−(|Im(𝑦)|− Im(𝑦)))

|𝜎2 − 𝜋2/4|𝛼
𝑑𝜎

Now, if Im(𝑦) ≥ 0, and recalling that 𝛼 = 2, 3, we obtain⃒⃒⃒⃒
𝒫Γ

3 (ℎ3)𝑒
𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|)
⃒⃒⃒⃒

≤ ‖ℎ3‖𝛼,exp

∫︁ Im(𝑦)

𝜋
2 −𝜅𝜀

1
|𝜎2 − 𝜋2/4|𝛼

𝑑𝜎

≤ 𝑀

|𝑦2 + 𝜋2/4|𝛼−1 ‖ℎ3‖𝛼,exp

≤ 𝑀

(𝜅𝜀)𝛼−1 ‖ℎ3‖𝛼,exp,

and, if Im(𝑦) < 0, then

⃒⃒⃒⃒
𝒫Γ

3 (ℎ3)𝑒
𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|)
⃒⃒⃒⃒

≤ ‖ℎ3‖𝛼,exp

⎛⎝∫︁ 0

𝜋
2 −𝜅𝜀

1
|𝜎2 − 𝜋2/4|𝛼

𝑑𝜎 +
∫︁ Im(𝑦)

0

𝑒−2 𝜆3
𝜀

(𝜎−Im(𝑦)))

|𝜎2 − 𝜋2/4|𝛼
𝑑𝜎

⎞⎠
≤ 𝑀

(𝜅𝜀)𝛼−1 ‖ℎ3‖𝛼,exp.
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For 𝑘 ≥ 2, we have that⃦⃦⃦
𝒫Γ

2𝑘+1(ℎ2𝑘+1)
⃦⃦⃦

0,exp
≤ 𝑀

𝜅𝛼𝜀𝛼−1 ‖ℎ2𝑘+1‖𝛼,exp.

In fact,
⃒⃒⃒⃒
𝒫Γ

2𝑘+1(ℎ2𝑘+1)𝑒
𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|)
⃒⃒⃒⃒

≤ ‖ℎ2𝑘+1‖𝛼,exp

∫︁ 𝑦

𝑦+

⃒⃒⃒⃒
⃒⃒𝑒𝜆3

𝜀 (𝜋
2 −|Im(𝑦)|) 𝑒

− 𝜆3
𝜀 (𝜋

2 −|Im(𝑠)|)
|𝑠2 + 𝜋2/4|𝛼

𝑒𝑖
𝜆2𝑘+1

𝜀
(𝑠−𝑦)

⃒⃒⃒⃒
⃒⃒ 𝑑𝑠

≤ ‖ℎ2𝑘+1‖𝛼,exp

∫︁ 𝑦

𝑦+

𝑒
1
𝜀

(𝜆3|Im(𝑠)|−𝜆2𝑘+1 Im(𝑠)−(𝜆3|Im(𝑦)|−𝜆2𝑘+1 Im(𝑦)))

|𝑠2 + 𝜋2/4|𝛼
𝑑𝑠

If Im(𝑦) ≥ 0, then

⃒⃒⃒⃒
𝒫Γ

2𝑘+1(ℎ2𝑘+1)𝑒
𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|)
⃒⃒⃒⃒

≤ ‖ℎ2𝑘+1‖𝛼,exp

∫︁ 𝑦

𝑦+

𝑒−
𝜆2𝑘+1−𝜆3

𝜀
(Im(𝑠)−Im(𝑦))

|𝑠2 + 𝜋2/4|𝛼
𝑑𝑠

≤ 𝑀‖ℎ2𝑘+1‖𝛼,exp
𝜀

(𝜆2𝑘+1 − 𝜆3)(𝜅𝜀)𝛼

(︂
1 + 𝑒−

𝜆2𝑘+1−𝜆3
𝜀 (𝜋

2 −𝜅𝜀−Im(𝑦))
)︂

≤ 𝑀

𝜅𝛼𝜀𝛼−1 ‖ℎ2𝑘+1‖𝛼,exp,

and, if Im(𝑦) < 0, then

⃒⃒⃒⃒
𝒫Γ

2𝑘+1(ℎ2𝑘+1)𝑒
𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|)
⃒⃒⃒⃒

≤ ‖ℎ2𝑘+1‖𝛼,exp

⎛⎝∫︁ 0

𝑦+

𝑒−
𝜆2𝑘+1−𝜆3

𝜀
(Im(𝑠)−Im(𝑦))

|𝑠2 + 𝜋2/4|𝛼
𝑑𝑠+

∫︁ 𝑦

0

𝑒−
𝜆2𝑘+1+𝜆3

𝜀
(Im(𝑠)−Im(𝑦))

|𝑠2 + 𝜋2/4|𝛼
𝑑𝑠

⎞⎠
≤ 𝑀

𝜅𝛼𝜀𝛼−1 ‖ℎ2𝑘+1‖𝛼,exp

(︃
1

𝜆2𝑘+1 − 𝜆3

(︂
𝑒

𝜆2𝑘+1−𝜆3
𝜀

Im(𝑦) + 𝑒−
𝜆2𝑘+1−𝜆3

𝜀 (𝜋
2 −𝜅𝜀−Im(𝑦))

)︂

+ 1
𝜆2𝑘+1 + 𝜆3

(︂
𝑒

𝜆2𝑘+1+𝜆3
𝜀

Im(𝑦) + 1
)︂)︃

≤ 𝑀

𝜅𝛼𝜀𝛼−1 ‖ℎ2𝑘+1‖𝛼,exp.

This shows (8.7.26) and concludes the proof.

Proposition 8.7.6. Let Δ𝑣(𝑦, 𝜏) be the function given in (8.7.2), and consider Δ𝑤 =
𝜕𝑦Δ𝑣. Therefore, Δ𝑣1(𝑦) is given by (8.7.4), and there exist two unique sequences of con-
stants 𝑐 = (𝑐2𝑘+1)𝑘≥1 and 𝑑 = (𝑑2𝑘+1)𝑘≥1 such that Δ𝑤1 = 𝑣ℎ

1
̃︂Δ𝑤1 and ( ̃︂Δ𝑤1(𝑦),Γ(𝑦, 𝜏),Θ(𝑦, 𝜏))

(see (8.7.5)) satisfies the following equation

( ̃︂Δ𝑤1,Γ,Θ) = (0, ℐΓ(𝑐), ℐΘ(𝑑)) + ̃︁ℳ (︁ ̃︂Δ𝑤1,Γ,Θ
)︁
, (8.7.27)

where ̃︁ℳ (︁ ̃︂Δ𝑤1,Γ,Θ
)︁

= 𝒫 ∘ ℳ
(︁
𝑣ℎ

1
̃︂Δ𝑤1,Γ,Θ

)︁
,

𝒫 is given by (8.7.23) and ℳ is given by (8.7.9). In addition, the following statements
hold.
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1. (0, ℐΓ(𝑐), ℐΘ(𝑑)) ∈ 𝒴ℓ1,−1,exp and

J(0, ℐΓ(𝑐), ℐΘ(𝑑))Kℓ1,−1,exp ≤ 𝑀𝑒𝜆3𝜅

𝜀𝜅3

2. The operator ̃︁ℳ : 𝒴ℓ1,−1,exp → 𝒴ℓ1,−1,exp is well-defined and there exists a constant
independent of 𝜀 and 𝜅 such that

r ̃︁ℳ (︁ ̃︂Δ𝑤1,Γ,Θ
)︁z

ℓ1,−1,exp
≤ 𝑀

r(︁ ̃︂Δ𝑤1,Γ,Θ
)︁z

ℓ1,−1,exp
,

and, denoting ̃︁ℳ = ( ̃︁ℳ1, ̃︁ℳ2, ̃︁ℳ3), we have that

⃦⃦⃦ ̃︁ℳ1
(︁ ̃︂Δ𝑤1,Γ,Θ

)︁⃦⃦⃦
−1,exp

≤ 𝑀

𝜅3 ‖ ̃︂Δ𝑤1‖−1 exp+𝑀𝜀
(︁
‖Γ‖ℓ1,0,exp + ‖Θ‖ℓ1,0,exp

)︁
(8.7.28)

and

⃦⃦⃦̃︂ℳ𝑗

(︁ ̃︂Δ𝑤1,Γ,Θ
)︁⃦⃦⃦

ℓ1,0,exp
≤ 𝑀

𝜅

r(︁ ̃︂Δ𝑤1,Γ,Θ
)︁z

ℓ1,−1,exp
, 𝑗 = 2, 3. (8.7.29)

Proof. From (8.7.8), we have that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ̇𝑤1 −
...
𝑣 ℎ

1
𝑣ℎ

1
Δ𝑤1 = 𝑚𝑊 (𝑦)Δ𝑤1 + ℳ𝑊 (Γ,Θ),

Γ̇2𝑘+1 + 𝑖
𝜆2𝑘+1

𝜀
Γ2𝑘+1 = Π2𝑘+1 [𝑚osc(𝑦, 𝜏)Δ𝑤1 + ℳosc(Γ,Θ)] , 𝑘 ≥ 1,

Θ̇2𝑘+1 − 𝑖
𝜆2𝑘+1

𝜀
Θ2𝑘+1 = −Π2𝑘+1 [𝑚osc(𝑦, 𝜏)Δ𝑤1 + ℳosc(Γ,Θ)] , 𝑘 ≥ 1.

Using that 𝑣ℎ
1 , 𝑒−𝑖

𝜆2𝑘+1
𝜀

𝑦 and 𝑒𝑖
𝜆2𝑘+1

𝜀
𝑦 are solutions of the homogeneous equations Δ̇𝑤1 −...

𝑣 ℎ
1

𝑣ℎ
1

Δ𝑤1 = 0, Γ̇2𝑘+1 + 𝑖
𝜆2𝑘+1

𝜀
Γ2𝑘+1 = 0 and Θ̇2𝑘+1 − 𝑖

𝜆2𝑘+1

𝜀
Θ2𝑘+1 = 0. It follows from the

method of variation of constants, using that Δ𝑤1(0) = 0, that there exists constants 𝑐2𝑘+1
and 𝑑2𝑘+1, 𝑘 ≥ 1, such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δ𝑤1 = 𝑣ℎ
1 𝒫𝑊 (𝑚𝑊 (𝑦)Δ𝑤1 + ℳ𝑊 (Γ,Θ)) ,

Γ2𝑘+1 = 𝑐2𝑘+1𝑒
−𝑖

𝜆2𝑘+1
𝜀

𝑦 + 𝒫Γ
2𝑘+1 (Π2𝑘+1 [𝑚osc(𝑦, 𝜏)Δ𝑤1 + ℳosc(Γ,Θ)]) , 𝑘 ≥ 1,

Θ2𝑘+1 = 𝑑2𝑘+1𝑒
𝑖

𝜆2𝑘+1
𝜀

𝑦 − 𝒫Θ
2𝑘+1 (Π2𝑘+1 [𝑚osc(𝑦, 𝜏)Δ𝑤1 + ℳosc(Γ,Θ)]) , 𝑘 ≥ 1.

Hence, writing Δ𝑤1 = 𝑣ℎ
1
̃︂Δ𝑤1 and the definitions of 𝒫 , ℳ and ℐΓ, ℐΘ given in (8.7.23),

(8.7.9), (8.7.21) and (8.7.22), we obtain (8.7.27).
Now, notice that ℐΓ(𝑐)(𝑦+) = Γ(𝑦+), and since ‖Γ‖ℓ1,3≤ 𝑀𝜀2, we obtain that

∑︁
𝑘≥1

⃒⃒⃒⃒
𝑐2𝑘+1𝑒

𝜆2𝑘+1
𝜀 (𝜋

2 −𝜅𝜀)
⃒⃒⃒⃒
= ‖Γ‖ℓ1(𝑦+) ≤ 𝑀

𝜀𝜅3 ,
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which implies that

∑︁
𝑘≥1

⃒⃒⃒⃒
𝑐2𝑘+1𝑒

𝜆2𝑘+1−𝜆3
𝜀 (𝜋

2 −𝜅𝜀)𝑒
𝜆3𝜋

2𝜀

⃒⃒⃒⃒
= ‖Γ‖ℓ1(𝑦+)𝑒𝜆3𝜅 ≤ 𝑀𝑒𝜆3𝜅

𝜀𝜅3 .

Now, notice that
∑︁
𝑘≥1

⃦⃦⃦⃦
𝑐2𝑘+1𝑒

−𝑖
𝜆2𝑘+1

𝜀
𝑦

⃦⃦⃦⃦
0,exp

=
∑︁
𝑘≥1

⃒⃒⃒⃒
𝑐2𝑘+1𝑒

𝜆2𝑘+1−𝜆3
𝜀 (𝜋

2 −𝜅𝜀)𝑒
𝜆3𝜋

2𝜀

⃒⃒⃒⃒
,

and thus
‖ℐΓ(𝑐)‖ℓ1,0,exp≤ 𝑀𝑒𝜆3𝜅

𝜀𝜅3 .

Analogously, we prove that ‖ℐΘ(𝑑)‖ℓ1,0,exp≤ 𝑀𝑒𝜆3𝜅

𝜀𝜅3 , and hence, item (1) is proved.

Assume that
(︁ ̃︂Δ𝑤1,Γ,Θ

)︁
∈ 𝒴ℓ1,−1,exp. Notice that, for each 𝑦 ∈ ℛ𝜅

⃒⃒⃒⃒
(𝑦2 + 𝜋2/4)−1𝑒

𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|) ̃︁ℳ1
(︁ ̃︂Δ𝑤1,Γ,Θ

)︁⃒⃒⃒⃒
≤ 𝑒

𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|)
|𝑦2 + 𝜋2/4|

(︂∫︁ 𝑦

0

⃒⃒⃒
𝑚𝑊 (𝑠) ̃︂Δ𝑤1(𝑠)

⃒⃒⃒
𝑑𝑠

+
∫︁ 𝑦

0

⃒⃒⃒⃒
⃒ℳ𝑊 (Γ,Θ)(𝑠)

𝑣ℎ
1 (𝑠)

⃒⃒⃒⃒
⃒ 𝑑𝑠

)︃

Now, from item (1) of Proposition 8.7.4, we have that

𝑒
𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|)
|𝑦2 + 𝜋2/4|

∫︁ 𝑦

0

⃒⃒⃒
𝑚𝑊 (𝑠) ̃︂Δ𝑤1(𝑠)

⃒⃒⃒
𝑑𝑠 ≤ 𝑀‖ ̃︂Δ𝑤1‖−1,exp

𝑒
𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|)
|𝑦2 + 𝜋2/4|

∫︁ 𝑦

0

𝜀2𝑒− 𝜆3
𝜀 (𝜋

2 −|Im(𝑠)|)
|𝑠2 + 𝜋2/4|2

𝑑𝑠

≤ 𝑀‖ ̃︂Δ𝑤1‖−1,exp

𝜅3𝜀
𝑒− 𝜆3

𝜀
|Im(𝑦)|

∫︁ 𝑦

0
𝑒

𝜆3
𝜀

|Im(𝑠)|𝑑𝑠

≤ 𝑀‖ ̃︂Δ𝑤1‖−1,exp

𝜅3𝜀
𝑒− 𝜆3

𝜀
|Im(𝑦)| 𝜀

𝜆3

(︂
𝑒

𝜆3
𝜀

|Im(𝑦)| − 1
)︂

≤ 𝑀‖ ̃︂Δ𝑤1‖−1,exp

𝜅3 .

Using that 𝑦 ∈ 𝑖R and

‖Γ‖ℓ1(𝑦)𝑒
𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|) ≤ ‖Γ‖ℓ1,0,exp 𝑎𝑛𝑑 ‖Θ‖ℓ1(𝑦)𝑒
𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|) ≤ ‖Θ‖ℓ1,0,exp,

we obtain that, using item (2) of Proposition 8.7.4 and that 𝑣ℎ
1 has a a pole of order 3,
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for Im(𝑦) > 0,

𝑒
𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|)
|𝑦2 + 𝜋2/4|

∫︁ 𝑦

0

⃒⃒⃒⃒
⃒ℳ𝑊 (Γ,Θ)(𝑠)

𝑣ℎ
1 (𝑠)

⃒⃒⃒⃒
⃒ 𝑑𝑠

≤ 𝑀
𝑒

𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|)
|𝑦2 + 𝜋2/4|

∫︁ 𝑦

0
|𝑠2 + 𝜋2/4|(‖Γ‖ℓ1(𝑠) + ‖Θ‖ℓ1(𝑠)) 𝑑𝑠

≤ 𝑀 (‖Γ‖ℓ1,0,exp+‖Θ‖ℓ1,0,exp) 𝑒
𝜆3
𝜀 (𝜋

2 −|Im(𝑦)|)
|𝑦2 + 𝜋2/4|

∫︁ 𝑦

0
|𝑠2 + 𝜋2/4|𝑒− 𝜆3

𝜀 (𝜋
2 −|Im(𝑠)|)𝑑𝑠

≤ 𝑀 (‖Γ‖ℓ1,0,exp+‖Θ‖ℓ1,0,exp) 𝑒
𝜆3
𝜀 (𝜋

2 −Im(𝑦))
|𝑦 − 𝑖𝜋/2|

∫︁ Im(𝑦)

0
|𝜎 − 𝜋/2|𝑒− 𝜆3

𝜀 (𝜋
2 −𝜎)𝑑𝜎

≤ 𝑀 (‖Γ‖ℓ1,0,exp+‖Θ‖ℓ1,0,exp) 𝑒
𝜆3
𝜀 (𝜋

2 −Im(𝑦))
|𝑦 − 𝑖𝜋/2|

∫︁ 𝜋
2 −Im(𝑦)

𝜀

𝜋
2𝜀

𝜀𝑟𝑒−𝜆3𝑟𝜀𝑑𝑟

≤ 𝑀𝜀2 (‖Γ‖ℓ1,0,exp+‖Θ‖ℓ1,0,exp) 𝑒
𝜆3
𝜀 (𝜋

2 −Im(𝑦))
|𝑦 − 𝑖𝜋/2|

(︃
𝑒− 𝜆3

𝜀 (𝜋
2 −Im(𝑦))

(︃
1 + 𝜋/2 − Im(𝑦)

𝜀

)︃

+𝑒− 𝜋𝜆3
2𝜀

(︂
1 + 𝜋

2𝜀

)︂)︂
≤ 𝑀𝜀 (‖Γ‖ℓ1,0,exp+‖Θ‖ℓ1,0,exp)

|𝑦 − 𝑖𝜋/2|

(︂
𝜀+ 𝜋

2 − Im(𝑦) + 𝑒− 𝜆3
𝜀

Im(𝑦)
(︂
𝜀+ 𝜋

2

)︂)︂

≤ 𝑀𝜀 (‖Γ‖ℓ1,0,exp+‖Θ‖ℓ1,0,exp)
⎛⎝1
𝜅

+ 1 +
(︂
𝜀+ 𝜋

2

)︂
𝑒− 𝜆3

𝜀
Im(𝑦)

|𝑦 − 𝑖𝜋/2|

⎞⎠
≤ 𝑀𝜀 (‖Γ‖ℓ1,0,exp+‖Θ‖ℓ1,0,exp) .

Analogously, we obtain the same estimate for Im(𝑦) < 0. The proof of (8.7.28) follows
directly from these bounds.

Using the expressions of 𝑚𝑜𝑠𝑐 and ℳ𝑜𝑠𝑐 given in (8.7.14) (such as the bounds of the
operators 𝐴 and 𝐵 obtained in the proof of Proposition 8.7.2), and the property

‖ℎ1ℎ2‖ℓ1,𝛼1+𝛼2,exp≤ ‖ℎ1‖ℓ1,𝛼1‖ℎ2‖ℓ1,𝛼2,exp

we can see that
‖𝑚𝑜𝑠𝑐𝑣

ℎ
1
̃︂Δ𝑤1‖ℓ1,3,exp≤ 𝑀𝜀‖ ̃︂Δ𝑤1‖−1,exp (8.7.30)

and ⃦⃦⃦
ℳosc

(︁ ̃︂Δ𝑤1,Γ,Θ
)︁⃦⃦⃦

ℓ1,2,exp
≤ 𝑀𝜀 (‖Γ‖ℓ1,0,exp+‖Θ‖ℓ1,0,exp) . (8.7.31)

Also, notice that

̃︂ℳ2
(︁ ̃︂Δ𝑤1,Γ,Θ

)︁
= 𝒫Γ

(︁
𝑚𝑜𝑠𝑐𝑣

ℎ
1
̃︂Δ𝑤1

)︁
+ 𝒫Γ

(︁
ℳosc

(︁ ̃︂Δ𝑤1,Γ,Θ
)︁)︁
. (8.7.32)

From Lemma 8.7.5, the operators 𝒫Γ,𝒫Θ : 𝒳ℓ1,𝛼,exp → 𝒳ℓ1,0,exp are well-defined for 𝛼 =
2, 3 and satisfy (8.7.26). Now, (8.7.29) (with 𝑗 = 2) follows directly from (8.7.30),(8.7.31)
and (8.7.32). Analogously, we prove (8.7.29) for 𝑗 = 3.

The proof of item (2) follows directly from these estimates.
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In order to obtain good estimates for the linear operator in (8.7.27), we use a Gauss-
Seidel argument. Since Γ = ℐΓ(𝑐) + ̃︁ℳ2( ̃︂Δ𝑤1,Γ,Θ), Θ = ℐΘ(𝑑) + ̃︁ℳ3( ̃︂Δ𝑤1,Γ,Θ), and̃︁ℳ1 is a linear operator, it follows that

̃︂Δ𝑤1 = ̃︁ℳ1( ̃︂Δ𝑤1, ℐΓ(𝑐) + ̃︁ℳ2( ̃︂Δ𝑤1,Γ,Θ), ℐΘ(𝑑) + ̃︁ℳ3( ̃︂Δ𝑤1,Γ,Θ))

= ̃︁ℳ1(0, ℐΓ(𝑐), ℐΘ(𝑑)) + ̃︁ℳ1( ̃︂Δ𝑤1, ̃︁ℳ2( ̃︂Δ𝑤1,Γ,Θ), ̃︁ℳ3( ̃︂Δ𝑤1,Γ,Θ)).

Thus, we rewrite (8.7.27) as

( ̃︂Δ𝑤1,Γ,Θ) = (ℐ𝑊 , ℐΓ(𝑐), ℐΘ(𝑑)) + ̃︁ℳ𝐺𝑆

(︁ ̃︂Δ𝑤1,Γ,Θ
)︁
, (8.7.33)

where
ℐ𝑊 = ̃︁ℳ1(0, ℐΓ(𝑐), ℐΘ(𝑑)) = 𝒫𝑊 ∘ ℳ𝑊 (ℐΓ(𝑐), ℐΘ(𝑑)), (8.7.34)

and ̃︁ℳ𝐺𝑆

(︁ ̃︂Δ𝑤1,Γ,Θ
)︁

=
(︁ ̃︁ℳ1

(︁ ̃︂Δ𝑤1, ̃︁ℳ2( ̃︂Δ𝑤1,Γ,Θ), ̃︁ℳ3( ̃︂Δ𝑤1,Γ,Θ)
)︁
,

̃︁ℳ2( ̃︂Δ𝑤1,Γ,Θ), ̃︁ℳ3( ̃︂Δ𝑤1,Γ,Θ)
)︁
.

Proposition 8.7.7. The linear operator ̃︁ℳ𝐺𝑆 : 𝒳ℓ1,−1,exp → 𝒳ℓ1,−1,exp is well-defined,
and there exist 𝜅0 ≥ 1 and a constant 𝑀 > 0 independent of 𝜀 and 𝜅 such that, for every
𝜅 ≥ 𝜅0 r ̃︁ℳ𝐺𝑆

z

ℓ1,−1,exp
≤ 𝑀

𝜅
.

Proof. In fact, from (8.7.28) and (8.7.29), it follows that

r ̃︁ℳ𝐺𝑆

(︁ ̃︂Δ𝑤1,Γ,Θ
)︁z

ℓ1,−1,exp

= 1
𝜀

⃦⃦⃦ ̃︁ℳ1
(︁ ̃︂Δ𝑤1, ̃︁ℳ2( ̃︂Δ𝑤1,Γ,Θ), ̃︁ℳ3( ̃︂Δ𝑤1,Γ,Θ)

)︁⃦⃦⃦
−1,exp

+
⃦⃦⃦ ̃︁ℳ2( ̃︂Δ𝑤1,Γ,Θ)

⃦⃦⃦
ℓ1,0,exp

+
⃦⃦⃦ ̃︁ℳ3( ̃︂Δ𝑤1,Γ,Θ)

⃦⃦⃦
ℓ1,0,exp

≤ 𝑀

𝜅3
‖ ̃︂Δ𝑤1‖−1 exp

𝜀
+𝑀

(︂⃦⃦⃦ ̃︁ℳ2( ̃︂Δ𝑤1,Γ,Θ)
⃦⃦⃦

ℓ1,0,exp
+
⃦⃦⃦ ̃︁ℳ3( ̃︂Δ𝑤1,Γ,Θ)

⃦⃦⃦
ℓ1,0,exp

)︂

≤ 𝑀

𝜅3
‖ ̃︂Δ𝑤1‖−1 exp

𝜀
+ 𝑀

𝜅

⎛⎝‖ ̃︂Δ𝑤1‖−1,exp

𝜀
+ ‖Γ‖ℓ1,0,exp + ‖Θ‖ℓ1,0,exp

⎞⎠
≤ 𝑀

𝜅

r(︁ ̃︂Δ𝑤1,Γ,Θ
)︁z

ℓ1,−1,exp
,

which proves the result.

8.7.2 Asymptotic Formula
Denote

Δ(𝑦, 𝜏) = ( ̃︂Δ𝑤1(𝑦),Γ(𝑦, 𝜏),Θ(𝑦, 𝜏)), (8.7.35)
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and define

Δ0(𝑦, 𝜏) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝒫𝑊 ∘ ℳ𝑊

(︂2
𝜀
𝐶in𝑒

−𝑖
𝜆3
𝜀

(𝑦−𝑖𝜋/2) sin(3𝜏), 2
𝜀
𝐶in𝑒

𝑖
𝜆3
𝜀

(𝑦+𝑖𝜋/2) sin(3𝜏)
)︂

2𝜆0,3

𝜀
𝐶in𝑒

−𝑖
𝜆3
𝜀

(𝑦−𝑖𝜋/2) sin(3𝜏)

2𝜆0,3

𝜀
𝐶in𝑒

𝑖
𝜆3
𝜀

(𝑦+𝑖𝜋/2) sin(3𝜏)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.7.36)

where 𝐶in is given by Theorem 8.3.2. In order to prove Theorem U, we consider the
following decomposition

Δ = Δ0 + Δ1. (8.7.37)

Lemma 8.7.8. Consider 𝜅 = 1
2𝜆3

log(𝜀−1) and ℐtot = (ℐ𝑊 , ℐΓ(𝑐), ℐΘ(𝑑)) (see (8.7.27)
and (8.7.34)). There exist 𝜀0 > 0 and a constant 𝑀 > 0 independent of 𝜀 such that, for
each 𝜀 < 𝜀0,

JΔ0 − ℐtotKℓ1,−1,exp ≤ 𝑀

𝜀 log(𝜀−1) .

Proof. First, notice that, from Theorems 8.3.2 and 8.3.3, we have that the function Δ𝑣
given in (8.7.2) is written as

Δ𝑣(𝑦, 𝜏) = 1
𝜀
𝜑𝑢

(︃
𝑦 − 𝑖𝜋/2

𝜀
, 𝜏

)︃
− 1
𝜀
𝜑𝑠

(︃
𝑦 − 𝑖𝜋/2

𝜀
, 𝜏

)︃

= 1
𝜀

Δ𝜑0
(︃
𝑦 − 𝑖𝜋/2

𝜀
, 𝜏

)︃
+ 1
𝜀
𝜙𝑢

(︃
𝑦 − 𝑖𝜋/2

𝜀
, 𝜏

)︃
− 1
𝜀
𝜙𝑠

(︃
𝑦 − 𝑖𝜋/2

𝜀
, 𝜏

)︃

= 1
𝜀
𝑒−𝑖𝜆0,3

𝑦−𝑖𝜋/2
𝜀

(︃
𝐶in sin(3𝜏) + 𝜒

(︃
𝑦 − 𝑖𝜋/2

𝜀
, 𝜏

)︃)︃

+1
𝜀
𝜙𝑢

(︃
𝑦 − 𝑖𝜋/2

𝜀
, 𝜏

)︃
− 1
𝜀
𝜙𝑠

(︃
𝑦 − 𝑖𝜋/2

𝜀
, 𝜏

)︃

= 1
𝜀
𝐶in𝑒

−𝑖𝜆0,3
𝑦−𝑖𝜋/2

𝜀 sin(3𝜏) + 𝐸+
1 (𝑦, 𝜏) + 𝐸+

2 (𝑦, 𝜏),

for every 𝑦 ∈ ℛ+
mch,𝜅 = 𝐷mch,𝑢

+,𝜅 ∩ 𝐷mch,𝑠
+,𝜅 ∩ 𝑖R (with 𝛾 = 1/2) and 𝜅 ≥ 𝜅0 (𝜅0 is given by

Theorems 8.3.2 and 8.3.3), where 𝐸+
1 , 𝐸

+
2 : ℛmch,𝜅 × T → C are analytic functions in the

variable 𝑦. It follows from Theorem 8.3.2 that

‖𝐸+
1 ‖ℓ1(𝑦), ‖𝜕𝜏𝐸

+
1 ‖ℓ1(𝑦) ≤ 𝑀 |𝑒−𝑖𝜆0,3

𝑦−𝑖𝜋/2
𝜀 |

|𝑦 − 𝑖𝜋/2|
𝑎𝑛𝑑 ‖𝜕𝑦𝐸

+
1 ‖ℓ1(𝑦) ≤ 𝑀 |𝑒−𝑖𝜆0,3

𝑦−𝑖𝜋/2
𝜀 |

𝜀|𝑦 − 𝑖𝜋/2|
,

(8.7.38)
and from Theorem 8.3.3, we obtain

‖𝐸+
2 ‖ℓ1(𝑦), ‖𝜕𝜏𝐸

+
2 ‖ℓ1(𝑦) ≤ 𝑀𝜀3/2

|𝑦 − 𝑖𝜋/2|2
𝑎𝑛𝑑 ‖𝜕𝑦𝐸

+
2 ‖ℓ1(𝑦) ≤ 𝑀𝜀1/2

𝜅|𝑦 − 𝑖𝜋/2|2
. (8.7.39)

Analogously, performing the same study for the pole 𝑦 = −𝑖𝜋/2, we obtain that

Δ𝑣(𝑦, 𝜏) = 1
𝜀
𝐶in𝑒

𝑖𝜆0,3
𝑦+𝑖𝜋/2

𝜀 sin(3𝜏) + 𝐸−
1 (𝑦, 𝜏) + 𝐸−

2 (𝑦, 𝜏),
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for every 𝑦 ∈ ℛ−
mch,𝜅 = 𝐷mch,−,𝑢

𝜅,𝑐 ∩ 𝐷mch,−,𝑠
𝜅,𝑐 ∩ 𝑖R (with 𝛾 = 1/2) and 𝜅 ≥ 𝜅0 (𝜅0 is given

by Theorems 8.3.2 and 8.3.3), where 𝐸−
1 , 𝐸

−
2 : ℛ−

mch,𝜅 × T → C are analytic functions in
the variable 𝑦 satisfying

‖𝐸−
1 ‖ℓ1(𝑦), ‖𝜕𝜏𝐸

−
1 ‖ℓ1(𝑦) ≤ 𝑀 |𝑒𝑖𝜆0,3

𝑦+𝑖𝜋/2
𝜀 |

|𝑦 + 𝑖𝜋/2|
𝑎𝑛𝑑 ‖𝜕𝑦𝐸

−
1 ‖ℓ1(𝑦) ≤ 𝑀 |𝑒𝑖𝜆0,3

𝑦+𝑖𝜋/2
𝜀 |

𝜀|𝑦 + 𝑖𝜋/2|
,

‖𝐸−
2 ‖ℓ1(𝑦), ‖𝜕𝜏𝐸

−
2 ‖ℓ1(𝑦) ≤ 𝑀𝜀3/2

|𝑦 + 𝑖𝜋/2|2
𝑎𝑛𝑑 ‖𝜕𝑦𝐸

−
2 ‖ℓ1(𝑦) ≤ 𝑀𝜀1/2

𝜅|𝑦 + 𝑖𝜋/2|2
.

Now, using that 𝜆3 = 𝜆0,3 + 𝒪(𝜀2), we obtain that

Γ(𝑦, 𝜏) =
∑︁
𝑘≥1

(𝜆2𝑘+1Δ𝑣2𝑘+1(𝑦) + 𝑖𝜀𝜕𝑦Δ𝑣2𝑘+1(𝑦)) sin((2𝑘 + 1)𝜏)

=
∑︁
𝑘≥1

𝜆2𝑘+1Δ𝑣2𝑘+1(𝑦) sin((2𝑘 + 1)𝜏) + 𝑖𝜀̂︀Π [𝜕𝑦Δ𝑣] (𝑦, 𝜏)

= 2𝜆0,3

𝜀
𝐶in𝑒

−𝑖𝜆0,3
𝑦−𝑖𝜋/2

𝜀 (1 + 𝒪(𝜀2)) sin(3𝜏)

+
∑︁
𝑘≥1

𝜆2𝑘+1Π2𝑘+1
[︁
𝐸+

1 + 𝐸+
2

]︁
sin((2𝑘 + 1)𝜏) + 𝑖𝜀̂︀Π [︁

𝜕𝑦𝐸
+
1 + 𝜕𝑦𝐸

+
2

]︁
(𝑦, 𝜏),

for every 𝑦 ∈ ℛ+
mch,𝜅 and 𝜏 ∈ T. Also, we have that⃦⃦⃦⃦

⃦⃦∑︁
𝑘≥1

𝜆2𝑘+1Π2𝑘+1
[︁
𝐸+

1 + 𝐸+
2

]︁
sin((2𝑘 + 1)𝜏)

⃦⃦⃦⃦
⃦⃦

ℓ1

(𝑦) ≤ 𝑀
(︁
‖𝜕𝜏𝐸

+
1 ‖ℓ1(𝑦) + ‖𝜕𝜏𝐸

+
2 ‖ℓ1(𝑦)

)︁

≤ 𝑀

⎛⎝ |𝑒−𝑖𝜆0,3
𝑦−𝑖𝜋/2

𝜀 |
|𝑦 − 𝑖𝜋/2|

+ 𝜀3/2

|𝑦 − 𝑖𝜋/2|2

⎞⎠ ,
and it follows from (8.7.38) and (8.7.39) that

⃦⃦⃦
𝑖𝜀̂︀Π [︁

𝜕𝑦𝐸
+
1 + 𝜕𝑦𝐸

+
2

]︁⃦⃦⃦
ℓ1

(𝑦) ≤ 𝑀

⎛⎝ |𝑒−𝑖𝜆0,3
𝑦−𝑖𝜋/2

𝜀 |
|𝑦 − 𝑖𝜋/2|

+ 𝜀3/2

𝜅|𝑦 − 𝑖𝜋/2|2

⎞⎠ ,
which means that, near the pole 𝑦 = 𝑖𝜋/2, Γ satisfies

Γ(𝑦, 𝜏) = 2𝜆0,3

𝜀
𝐶in𝑒

−𝑖𝜆0,3
𝑦−𝑖𝜋/2

𝜀 sin(3𝜏) + 𝐸+
Γ (𝑦, 𝜏),

for every 𝑦 ∈ ℛ+
mch,𝜅 and 𝜏 ∈ T, where 𝐸+

Γ : ℛ+
mch,𝜅 × T → C is an analytic function in

the variable 𝜏 such that

⃦⃦⃦
𝐸+

Γ

⃦⃦⃦
ℓ1

(𝑦) ≤ 𝑀

⎛⎝ |𝑒−𝑖𝜆0,3
𝑦−𝑖𝜋/2

𝜀 |
|𝑦 − 𝑖𝜋/2|

+ 𝜀3/2

|𝑦 − 𝑖𝜋/2|2

⎞⎠
Analogously, near the pole 𝑦 = −𝑖𝜋/2, we can see that

‖Γ‖ℓ1(𝑦) ≤ 𝑀

⎛⎝ |𝑒𝑖𝜆0,3
𝑦+𝑖𝜋/2

𝜀 |
|𝑦 + 𝑖𝜋/2|

+ 𝜀3/2

|𝑦 + 𝑖𝜋/2|2

⎞⎠ ,
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for every 𝑦 ∈ ℛ−
mch,𝜅.

Proceeding in the same way for the function

Θ(𝑦, 𝜏) =
∑︁
𝑘≥0

(𝜆2𝑘+1Δ𝑣2𝑘+1(𝑦) − 𝑖𝜀𝜕𝑦Δ𝑣2𝑘+1(𝑦)) sin((2𝑘 + 1)𝜏),

we conclude that there exists a function 𝐸−
Θ : ℛ−

mch,𝜅 × T → C analytic in the variable 𝑦
such that, near the pole 𝑦 = −𝑖𝜋/2, Θ writes as

Θ(𝑦, 𝜏) = 2𝜆0,3

𝜀
𝐶in𝑒

𝑖𝜆0,3
𝑦+𝑖𝜋/2

𝜀 sin(3𝜏) + 𝐸−
Θ(𝑦, 𝜏),

for every 𝑦 ∈ ℛ−
mch,𝜅, and

⃦⃦⃦
𝐸−

Θ

⃦⃦⃦
ℓ1

(𝑦) ≤ 𝑀

⎛⎝ |𝑒𝑖𝜆0,3
𝑦+𝑖𝜋/2

𝜀 |
|𝑦 + 𝑖𝜋/2|

+ 𝜀3/2

|𝑦 + 𝑖𝜋/2|2

⎞⎠ , for 𝑦 ∈ ℛ−
mch,𝜅,

and, near the pole 𝑦 = 𝑖𝜋/2,

‖Θ‖ℓ1(𝑦) ≤ 𝑀

⎛⎝ |𝑒−𝑖𝜆0,3
𝑦−𝑖𝜋/2

𝜀 |
|𝑦 − 𝑖𝜋/2|

+ 𝜀3/2

|𝑦 − 𝑖𝜋/2|2

⎞⎠ ,
for every 𝑦 ∈ ℛ+

mch,𝜅.
Now that we have good estimates for the function Γ and Θ near the poles 𝑦 = ±𝑖𝜋/2,

we are able to bound the function ℐtot.
In fact, recall that ℐΓ(𝑐)(𝑦+) = Γ(𝑦+). Therefore⃦⃦⃦⃦

⃦ℐΓ(𝑐) − 2𝜆0,3

𝜀
𝐶in𝑒

−𝑖
𝜆3
𝜀

(𝑦−𝑖𝜋/2) sin(3𝜏)
⃦⃦⃦⃦
⃦

ℓ1

(𝑦+) =
⃦⃦⃦⃦
⃦Γ − 2𝜆0,3

𝜀
𝐶in𝑒

−𝑖
𝜆3
𝜀

(𝑦−𝑖𝜋/2) sin(3𝜏)
⃦⃦⃦⃦
⃦

ℓ1

(𝑦+)

=
⃦⃦⃦
𝐸+

Γ

⃦⃦⃦
ℓ1

(𝑦+)

≤ 𝑀

⎛⎝ |𝑒−𝑖𝜆0,3
𝑦+−𝑖𝜋/2

𝜀 |
|𝑦+ − 𝑖𝜋/2|

+ 𝜀3/2

|𝑦+ − 𝑖𝜋/2|2

⎞⎠
≤ 𝑀

(︃
𝑒−𝜆0,3𝜅

𝜅𝜀
+ 𝜀3/2

𝜅2𝜀2

)︃
,

and notice that, from (8.7.21), we have that⃦⃦⃦⃦
⃦ℐΓ(𝑐) − 2𝜆0,3

𝜀
𝐶in𝑒

−𝑖
𝜆3
𝜀

(𝑦−𝑖𝜋/2) sin(3𝜏)
⃦⃦⃦⃦
⃦

ℓ1,0,exp
= 𝑒𝜆3𝜅

⃦⃦⃦⃦
⃦ℐΓ(𝑐) − 2𝜆0,3

𝜀
𝐶in𝑒

−𝑖
𝜆3
𝜀

(𝑦−𝑖𝜋/2) sin(3𝜏)
⃦⃦⃦⃦
⃦

ℓ1

(𝑦+),

and thus, taking 𝜅 = 1
2𝜆3

log(𝜀−1), we have that
⃦⃦⃦⃦
⃦ℐΓ(𝑐) − 2𝜆0,3

𝜀
𝐶in𝑒

−𝑖
𝜆3
𝜀

(𝑦−𝑖𝜋/2) sin(3𝜏)
⃦⃦⃦⃦
⃦

ℓ1,0,exp
≤ 𝑀

(︃
𝑒(𝜆3−𝜆0,3)𝜅

𝜅𝜀
+ 𝜀3/2𝑒𝜆3𝜅

𝜅2𝜀2

)︃

≤ 𝑀

(︃
1

𝜀 log(𝜀−1) + 𝜀3/2𝜀−1/2

log(𝜀−1)2𝜀2

)︃

≤ 𝑀

𝜀 log(𝜀−1) .

(8.7.40)
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Analogously, we prove that⃦⃦⃦⃦
⃦ℐΘ(𝑑) − 2𝜆0,3

𝜀
𝐶in𝑒

𝑖
𝜆3
𝜀

(𝑦+𝑖𝜋/2) sin(3𝜏)
⃦⃦⃦⃦
⃦

ℓ1,0,exp
= 𝑀

𝜀 log(𝜀−1) . (8.7.41)

Finally, recall that

‖𝒫𝑊 ∘ ℳ𝑊 (Γ,Θ)‖−1,exp≤ 𝑀𝜀 (‖Γ‖ℓ1,0,exp+‖Θ‖ℓ1,0,exp) ,

and thus
1
𝜀

⃦⃦⃦⃦
𝒫𝑊 ∘ ℳ𝑊

(︂
ℐΓ(𝑐) − 2

𝜀
𝐶in𝑒

−𝑖
𝜆3
𝜀

(𝑦−𝑖𝜋/2) sin(3𝜏), ℐΘ(𝑑) − 2
𝜀
𝐶in𝑒

𝑖
𝜆3
𝜀

(𝑦+𝑖𝜋/2) sin(3𝜏)
)︂⃦⃦⃦⃦

−1,exp

≤ 𝑀

𝜀 log(𝜀−1) .

(8.7.42)
The proof follows from (8.7.20), (8.7.34), (8.7.40), (8.7.41) and (8.7.42).

Finally, the proof of Theorem U follows directly from the following result.

Proposition 8.7.9. The function Δ1 is completely determined by equation

Δ1 = ℐtot − Δ0 + ̃︁ℳ𝐺𝑆(Δ0) + ̃︁ℳ𝐺𝑆(Δ1), (8.7.43)

and there exist 𝜀0 > 0 and a constant 𝑀 > 0 independent of 𝜀 such that, for each 𝜀 < 𝜀0

and taking 𝜅 = 1
2𝜆3

log(𝜀−1),

JΔ1Kℓ1,−1,exp ≤ 𝑀

𝜀 log(𝜀−1) .

Proof. In fact, (8.7.43) follows directly from (8.7.33), (8.7.35), (8.7.37), and the linearity
of ̃︁ℳ𝐺𝑆. Now, taking 𝜀0 sufficiently small, we have from Proposition 8.7.7 that

r ̃︁ℳ𝐺𝑆

z

ℓ1,−1,exp
≤ 𝑀

log(𝜀−1) ≤ 1
2 ,

for every 𝜀 < 𝜀0. Thus the operator Id − ̃︁ℳ𝐺𝑆 : 𝒴ℓ1,−1,exp → 𝒴ℓ1,−1,exp is invertible and

J(Id − ̃︁ℳ𝐺𝑆)−1K ≤ 𝑀.

Now,
Δ1 = (Id − ̃︁ℳ𝐺𝑆)−1

(︁
ℐtot − Δ0 + ̃︁ℳ𝐺𝑆(Δ0)

)︁
,

and it is easy to check that
JΔ0Kℓ1,−1,exp ≤ 𝑀

𝜀
.

Therefore

JΔ1Kℓ1,−1,exp ≤ 𝑀

(︃
Jℐtot − Δ0Kℓ1,−1,exp + 1

log(𝜀−1)JΔ0Kℓ1,−1,exp

)︃

≤ 𝑀

𝜀 log(𝜀−1) .
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Finally, from (8.7.5), we have that 𝑑(𝜏 ; 𝜀) given by (8.7.1) writes as

𝑑(𝜏 ; 𝜀) =
⎛⎝ ̂︀Π [Δ𝑣] (0, 𝜏)̂︀Π [Δ𝑤] (0, 𝜏)

⎞⎠

=

⎛⎜⎜⎜⎜⎝
∑︁
𝑘≥1

Γ2𝑘+1(0) + Θ2𝑘+1(0)
2𝜆2𝑘+1

sin((2𝑘 + 1)𝜏)

Γ(0, 𝜏) − Θ(0, 𝜏)
2𝑖𝜀

⎞⎟⎟⎟⎟⎠ ,

and thus, formula (8.2.1) in the second statement of Theorem U follows from (8.7.35),
(8.7.36), (8.7.37) and Proposition 8.7.9. The proof of Theorem U is concluded by noticing
that its third statement follows directly from the second one.

8.8 Conclusion and Further Directions
In this chapter we have associated breather solutions with period near 2𝜋 of reversible

Klein-Gordon equations (8.1.3) with homoclinic solutions at the origin of a singularly
perturbed Hamiltonian 𝐻𝜀 (where 𝜀 is the perturbation parameter). We have seen that, in
the limit case 𝜀 = 0, 𝐻0 has a homoclinic orbit and we have computed the distance between
the invariant manifolds 𝑊 𝑢(0) and 𝑊 𝑠(0) of 𝐻𝜀 at the origin (in certain transversal
section), for 𝜀 > 0, which happens to be exponentially small with respect to 𝜀.

As a future work, one can prove that the constant 𝐶in in Theorem U is generically non-
vanishing. Moreover, based on numerical simulations and formal expansions, considering
𝑓 = 0 in (8.1.3), we believe that 𝐶in ̸= 0, and thus the breather solution of the limit
problem 𝜀 = 0 breaks down for 𝜀 > 0.
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