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Abstract
The idea of improving human’s life quality by making life more comfortable and easy is nowadays possible using current

technologies and techniques to solve complex daily problems. The presented idea in this work proposes a control strategy

for autonomous robotic systems, specifically car-like robots. The main objective of this work is the development of a

reactive navigation controller by means of obstacles avoidance and position control to reach a desired position in an

unknown environment. This research goal was achieved by the integration of potential fields and neuroevolution con-

trollers. The neuro-evolutionary controller was designed using the (NEAT) algorithm ‘‘Neuroevolution of Augmented

Topologies’’ and trained using a designed training environment. The methodology used allowed the vehicle to reach a

certain level of autonomy, obtaining a stable controller that includes kinematic and dynamic considerations. The obtained

results showed significant improvements compared to the comparison work.

Keywords Neuroevolution � Artificial neural network � Genetic algorithm � Control strategy � Non-holonomic wheeled

robot � Car-like robot

1 Introduction

Nowadays, due to the evolution of transport systems and

intelligent systems, the requirement of autonomous trans-

portation systems has increased, creating an important area

of study for mobile robots and several control schemes that

works under real conditions. Likewise, mobile robotic

development and the improvement of new automation

technologies and data processing have created the need to

develop control systems that improve the autonomy of

mobile robots in different work environments.

In the mobile robotics field, trajectory, position, and

orientation controls have been the key development topics,

applying techniques such as PID controllers, neuronal

networks, and fuzzy logic controllers, specifically in cou-

pled constrained models, like the car-like robot system.

The navigation controller development for wheeled devices

with kinematic constraints, like the non-holonomic robots,

is significantly more complex than controllers designed for

unconstrained robots.

In the following work, a constrained and non-holonomic

mobile car-like robot is studied and controlled. Also, its

navigation through an unknown environment filled with

obstacles makes the controller task even more challenging,

reason why the implementation of many obstacle avoid-

ance techniques are required. In this study case, the

dynamics of the system are included in a simplified way to

make even more realistic the controller training.

In addition, some artificial intelligence techniques allow

several kinds of algorithms to achieve example-based

learning, Also a fitness function like neuroevolution

methodology allows the neural network population
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evolution using the algorithm as a method to optimize the

network parameters [1]. One method of neuroevolution

used commonly is the algorithm known as Neuroevolution

of Augmenting Topologies (NEAT), which improves the

neural network’s topology, achieving thus better perfor-

mance in some control tasks, in comparison to some tra-

ditional fixed topology neural networks [1–3].

There are many NEAT techniques and implementations,

used in areas like robotics and control of mechanical sys-

tems, like the work of [4], where the NEAT algorithm was

used to find a constrained optimal controller for the legs of

a quadruped robot. A similar case is shown by Wen et al.

[5], where a muscular-skeletal arm neurocontroller was

developed using the NEAT algorithm. Another supple-

mentary documented case is the video games field, where a

neural network was used as a decision-making system for a

strategy game [6]. Also, some other learning methods are

applied in the mechatronics field, like control of different

kinds of systems with artificial neural networks [7] or using

fuzzy logic controllers [8–10].

With respect to autonomous robots, there are cases

where different mobile robot types are controlled by means

of fuzzy logic [11, 12], artificial neural networks [13],

neuro-fuzzy algorithms [14] or neuroevolutive algorithms

[15].

Traditional methods for mobile robots reactive naviga-

tion are a set of rules like the Bug 0, Bug 1 and Bug 2

algorithms, presented in [16]. Those algorithms do not

heed the robot kinematic constraints, making some deci-

sions very hard to follow by adding additional maneuvers

to the robot motion; this makes them non-efficient algo-

rithms for constrained robots.

Recent developments prove the good results of the

popular idea of using soft computing techniques for

autonomous robot navigation; in [17] the results of a brief

survey of current techniques for path planning in realistic

conditions were mostly soft computing techniques and

statistical methods. An example of soft computing tech-

niques usage for a mobile robot full control is shown in

[18] by spiking neural networks and Hebbian learning

implementation, demonstrating a control strategy with

obstacle avoidance for holonomic robots inside unknown

environments. Two similar works [19, 20] propose hybrid

artificial intelligence usage, the first case a Neuro-Fuzzy

algorithm and second one an Evolutionary Fuzzy control

for mobile robots; in both cases, the navigation is through

unknown environments, avoiding obstacles by reading the

sensors information mounted on the robot chassis.

According to brief state of art presented above, the

usage of soft computing algorithms and the need of

including the robot physical behavior in the controller

design algorithms, an unknown environment reactive

navigation method based on soft computing techniques is

proposed; it includes the robot kinematic constraints,

dynamics, and control theory. This work is the consecutive

part of [21]; however, in this case, the obstacle avoidance

method has been significantly improved and the robot

dynamics are also added to the model, increasing this

proposal profoundness and strengthening its structure.

Therefore, the objective of this paper is to propose a

control strategy for a non-holonomic car-like robot, cap-

able of avoiding obstacles and reaching a target point

inside unknown environment by means of neural networks,

genetic algorithms, and potential fields. The objective is

achieved by including the system behavior in the embed-

ded algorithm and testing the chosen non-holonomic car-

like robot in some random environments.

This paper is organized as follows: In Sect. 2, the car-

like robot kinematics and dynamics are presented, includ-

ing the PID motor controllers. In Sect. 3, the neuroevolu-

tive controller design together with the position controller

and the obstacle avoidance method are developed. In

Sect. 4, the algorithm behavior is presented with the

complete controller integration and its results. Finally, the

conclusions of the study are presented.

2 Kinematics and dynamics

The kinematic and dynamic models of the chosen car-like

robot are fundamental for the development of this research.

Those models allow the controller training and evolution

for the studied mobile robot in a simulation environment.

The selected car-like robot is a prototype built in the

LAIR laboratory of the Mechanical Engineering School at

the University of Campinas (Brazil) [22]. Figure 1 shows

the real prototype and its 3D model.

2.1 Kinematics

The selected mobile robot is a car-type one, which is a

widely used model for four-wheeled vehicles behavior

analysis. The bicycle-like approach is an approximate

model that eases the understanding and the modeling of

any four-wheel car. This model has a front wheel for

direction control and a back wheel for support.

The global quadrant corresponds to X0, Y0, and h. The

position of the car is represented by the frame X1 and Y1,

where the X1 axis points to the front of the car, aligned with

the front and rear wheels. The vehicle’s orientation and

position are presented in Fig. 2 according to [23, 24].

The robot’s kinematics equation regarding the local

reference is described by the following Eq. (1), which

follows the constant of Ackerman differential for the

vehicle’s direction regarding R.
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Vx ¼ v; Vy ¼ 0; _h ¼ v

R
) R ¼ L

tan c
ð1Þ

Subsequently, it is considered the global axis. The robot

velocities seen from the global frame correspond to

Eq. (2).

_x ¼ v cos h; _y ¼ v sin h; _h ¼ v

L
tan c ð2Þ

It is possible to obtain a kinematic restriction of the vehicle

by Eq. (2), finding a relation between _x and _y, using v. The

obtained restriction is described by Eq. (3), showing a

nonlinear relation and a dependency between _x and _y, and

the above is a constraint directly related to the trajectory

that the car is able to follow.

_y cos h� _x sin h ¼ 0 ð3Þ

The restriction described by Eq. (3) means that the robot

cannot move if v = 0, which produces _h ¼ 0. It is also

important to indicate that c cannot be equal to p/2; since

being orthogonal to the rear wheel the robot cannot move,

it indicates an undefined region [24].

In this case, the bicycle model approach used on the

selected mobile robot requires the implementation of a

mathematical relationship between velocity v and the input

velocity for the right (vr) and the left (vl) wheels. There are

two independent motors, one for each rear wheel, which is

the reason for this requirement.

This mathematical relationship is based on the vehicle’s

instant center of rotation (ICR) and the steering wheel

angle c. The obtained expressions are given in Eqs. (4) and

(5).

vr ¼ v 1 þ cos h
2

� �
ð4Þ

vl ¼ v 1 � cos h
2

� �
ð5Þ

Using Eqs. (4) and (5), the robot velocity controller can

be separated properly for both rear car wheels using the

bicycle model system.

In addition, the defined constants used for the studied

system are presented in Table 1.

Besides the defined sensors for the selected robot, sen-

sors that allow a reactive navigation were selected as well,

distance and compass sensors. The robot has 3 distance

sensors arranged in front of its case and 2 on the back as

shown in Fig. 1. Distance sensors are a group of analog IR-

LED with a detection range of 4–30 cm; the sensor output

is an analog voltage signal that keeps an inverse relation

with the measured distance.

In addition, the location system for the training platform

is based on the mobile robot kinematic model, according to

the Eq. (2); those equations are numerically integrated

using Euler’s method to obtain the ideal vehicle position,

as shown in Eq. (6) and the sampling time T is 1 ms in all

Fig. 1 Prototype and 3D model

[22]

Fig. 2 Car-like robot kinematic model

Table 1 Constants and mobile

robot ranges
Constant Value

L 0.2 m

c [- 30�, 30�]
v [- 1, 1]

Neural Computing and Applications

123



simulation cases. The hypothesis of the numerical inte-

gration can be made since the simulation environment is

considered ideal, without slippage and where the robot

wheels are in constant contact with the ground [24].

x

y

h

2
4
3
5 ¼

x0 þ ðT � v � cos hÞ
y0 þ ðT � v � sin hÞ
h0 þ T � v � tan c

L

� �
2
64

3
75 ð6Þ

The training platform based on the mobile robot kine-

matics allows an estimation of robot’s position and orien-

tation. It allows the mobile robot simulation as a system

with inputs and outputs, which is perfect to test any kind of

controller.

2.2 Dynamic approach

The dynamic model allows a clearer understanding of the robot

behavior, considering the different forces interacting with the

drive system. This mathematical approximation, based on

physics, brings primal information to the drive system proper

selection. In this case, the dynamic model for each robot wheel

is the same, so only one model has to be developed. The

dynamic model of the wheel is based on the Eq. (7).

C ¼ J €uþ B _uþ Tp ð7Þ

where C is the motor torque interacting with the wheel

dynamics, J is the inertia due to the angular wheel accel-

eration €u; B is the viscous friction coefficient due to the

angular velocity _u, and Tp is the perturbation torque. The

value of J in this case is represented by the expression

J ¼ 1
2
mr2; it corresponds to the inertia value of a cylinder

on the Z axis, where m is the wheel mass expressed in kg

and r is the wheel radius expressed in meters.

Also, Tp in this case corresponds to the wheel and

ground interaction, which is represented by the Eq. (8),

showing the relation between the gravity g, the wheel robot

mass M, the wheel radius r and the static friction constant l
that is assumed as 1.

Tp ¼ Ff r ¼ mglr ð8Þ

2.3 Transfer function definition and control
implementation

Assuming that the drive system selection was made based

on the described dynamics in Eqs. (7) and (8) and chosen

the right way. The relation between the drive system and

the external forces does not represent a big disturbance

because the motors output torques are much higher than the

resistance obtained by the dynamics values.

Following the methodology, the mathematical dynamics

definition of each wheel and drive system is needed. To

describe mathematically those relations, the model of a DC

motor with load is used, as shown in the Eq. (9).

uL sð Þ
Ea sð Þ ¼

Kt

LaJeqs3 þ RaJeq þ LaBeq

� �
s2 þ RaBeq þ KbKt

� �
s

ð9Þ

where uL is the angular position of the wheel, Ea is the

input voltage on the DC motor, Kt is the torque constant, La
is the terminal inductance, Jeq is the equivalent inertia, Ra

is the terminal resistance, Beq is the equivalent viscous

friction, Kb is the speed constant, Jeq and Beq are the

equivalent inertia and the equivalent system motor–gear-

box–wheel viscous friction, respectively. The correspond-

ing values are obtained as follows Jeq ¼ Jm þ JL
N1

N2

� �2

and

Beq ¼ Bm þ BL
N1

N2

� �2

.

All the variables presented in the Eq. (8) are inner

parameters of the DC motor, gearbox, and wheel; those

parameters are presented in Table 2.

The graphical model described by the Eq. (9) that rep-

resents the DC motor load is presented in Fig. 3.

The obtained transfer function in the Eq. (9) should be

controlled by reaching the desired wheel speed; for that

purpose, in this case, the chosen controller is a PID tuned in

Simulink� following the closed loop configuration as

observed in Fig. 4.

The PID controller function is shown in Eq. (10) and the

tuned obtained values are presented in Table 3.

PID sð Þ ¼ P 1 þ I
1

s
þ D

N

1 þ N 1
s

 !
ð10Þ

To implement the PID controller in a realistic scenario,

it is important to analyze the discrete PID controller

behavior too, since it can be embedded on a microcon-

troller to control the real prototype power of each wheel.

The discrete PID has the structure presented in Fig. 5, with

Table 2 Gearbox and wheel

system model motor parameters
Parameter Value

Ra 0.212 X

La 0.077e-3 H

Kt 23.4e-3 N m/A

Ke 23.4e-3 V/(rad/s)

Jm 10.2e-6 kg m2

Bm 2.57e-3 N m/rad

Jl 0.024 kg m2

Bl 0.236 N m/rad

N1 1

N2 103

r 0.05 m
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the parameters given in Table 4. The discrete PID structure

was obtained using the backward finite difference method.

The PID values of the continuous and the discrete con-

troller are the same, as shown in Tables 3 and 4.

The steering wheel motor system is the same as the

presented above, but in this case, the variable to control is

the angular position instead of the angular velocity; the

followed methodology is the same but adapted for the

angular position case.

Fig. 3 Motor-load diagram

Fig. 4 PID motor control loop

Table 3 Tuned PID values

Parameter Value

Proportional (P) 1.0140

Integral (I) 648.2393

Derivative (D) 0.00036

Filter coefficient (N) 1,241,053.46

Fig. 5 Discrete PID structure

Table 4 Tuned discrete PID

values
Parameter Value

Proportional (P) 1.0140

Integral (I) 648.2393

Derivative (D) 0.00036

Sample time (Te) 0.1 ms
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3 Neuroevolutive controller design

The current research is based on our previous work presented

in [21]. It proposes a hybrid kinematic controller, based on

the evolved neural networks with genetic algorithms to

control a car kinematics to avoid obstacles. In contrast to that

investigation, the current study includes the dynamics of the

vehicle and a different approach for obstacle avoidance but

based on the same controller principles.

According to the obtained results in [21], and after

observing the obtained controller and the obstacle avoid-

ance algorithm behavior, it was possible to conclude that

the algorithms have many improvement spots, like choos-

ing better inputs for the neural position controller or a

better algorithm to avoid obstacles.

The current proposed neural controller has a single posi-

tion controller. The initial reference of the position controller

is the goal location, but this reference is modified when an

obstacle appears. The position reference under the presence

of an obstacle follows the value given by the potential fields

algorithm [25], in order to avoid the obstacles detected. This

potential field algorithm is calculated in the robot’s local

frame by using the mounted distance sensors. This algorithm

will be named Local Potential Field (LPF), due to the current

use of the algorithm.

3.1 Neuroevolutive position controller

To design the position controller, the NEAT algorithm was

used; a detailed and specific explanation can be found in

[2–4, 6, 26]. This was the selected method to create the

neural network topology and its optimization by means of

genetic algorithms, which allows an evolution of the neural

network topology.

The NEAT algorithm was developed and implemented

using Matlab� 2017a, and some modifications were made

to make the algorithm behavior come closer to a memetic

algorithm, according to [1]. The implemented algorithm is

presented in Fig. 6.

The current proposal of a neuroevolutive position con-

troller was based on [21] but adding some modifications

due to the results of the realized tests. Those tests allowed

to make some improvements to the controller inputs and

outputs. The most significant improvement was the

removal of a group of nonrelevant inputs, corresponding to

the delayed outputs of the neurocontroller, parameters that

did not affect the neurocontroller response. Due to the last

consideration, the set of inputs correspond only to the error

and delayed errors signals compared with the proposal of

[21]. The proposed control loop diagram for the evaluation

of the controller’s fitness is presented in Fig. 7; it is pos-

sible to observe that the number of inputs of the selected

neural controller is variable and corresponds only to the

error of the system, and also that there are 2 outputs. Two

different control loops were tested to verify and compare

the simulation time and results, one of them with the

dynamics and the other one without them.

As it is seen in Fig. 7, the implemented genetic algo-

rithm fitness function which finally selects the best con-

trollers for the system works as an optimizer criterion and

regulator of the algorithm population. The chosen fitness

function is presented in Eq. (11), where s represents the

start of the steady-state controller response with a maxi-

mum total simulation time limit of 25% and n characterizes

the simulation end. Also, qo is the desired distance in polar

coordinates and q is the current position in the same

coordinate system, then qo � q is the instantaneous system

error.

Fitness kð Þ ¼ 1

n

Xn
i¼s

qo � qð Þ

þ 1

n

Xn
i¼s

qo � qð Þ
 !

d qo � qð Þ
dt

� � !
ð11Þ

3.2 Obstacle avoidance algorithm: potential
field path planning

In contrast with the proposed algorithm in the last work

[21], the current proposed method aims to have a mathe-

matical and more exact approach to avoid the obstacles on

the path, keeping the plasticity of the neural networks to

adapt the position controller performance to the restrictions

and the dynamics and kinematics of the system. In this

case, the chosen method is the potential field path planning,

which is used in a local frame by using the mounted robot

sensors. Due to the current use of this algorithm and for

keeping a logic name according to its purpose, it will be

named Local Potential Field (LPF) path planning, where

the used abbreviation will be LPF.

The original method of potential fields was proposed by

Khatib [25] and was used in different cases for path

planning in a local or global way, dynamic or static envi-

ronments and different kinds of robots [27–29].

The path planning method creates a field, in this case

around the robot and directs it to the desired position from

a prior position. The potential field method treats a robot

like a point under the influence of a potential field U(q).

The desired point represents an attractive force and the

obstacles act as a repulsive force; the superposition of both

forces guides the robot to the desired point while avoiding

the obstacles [23]. The basic idea of the method proposes a

differentiable potential field function U(q) associated with

a related artificial force F(q), where q is a position q = (x,

y), as shown in Eq. (12).
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F qð Þ ¼ �rU qð Þ ð12Þ

where rU qð Þ is the gradient of the vector U at position q,

presented in the Eq. (13).

rU ¼
oU

ox
oU

oy

2
64

3
75 ð13Þ

U(q) acts as the superposition of the attracting and

repulsive fields as is shown in the Eq. (14).

U qð Þ ¼ Uatt qð Þ þ Urep qð Þ ð14Þ

Consequently, it makes us think about the attractive and

the repulsive potential fields, defined by the Eq. (15),

where the attractive potential field can define a parabolic

function.

Uatt qð Þ ¼ 1

2
kattq

2
goal qð Þ

Urep qð Þ ¼
1

2
krep

1

q qð Þ �
1

q0

� �2

if q qð Þ� q0

0 if q qð Þ� q0

8><
>:

ð15Þ

where katt and krep are positive scaling factors, qgoal qð Þ
corresponds to the Euclidean distance between

Fig. 6 Structure of the genetic/

mimetic algorithm implemented

using the NEAT principles

Fig. 7 Proposed control loop diagram for the neural position controller
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q� qgoal

�� ���� ��, q qð Þ is the minimal distance from q to the

object and q0 is the distance of influence of the object.

The method works as Fig. 8 shows.

3.3 Position controller integration
with the obstacle avoidance method

The integration of the position controller and the obstacle

avoidance method is based on the reference changing that

depends on an obstacle presence or absence. If an obstacle

is sensed between the path of the car and the goal, the

reference automatically is modified to follow the LPF

method as the Fig. 9 shows.

It is possible to observe in Fig. 9 the same control

structure proposed in the Fig. 7, the difference now is the

variable reference that depends on the sensors state.

On one hand, the LPF algorithm target is to reach

desired final position, so for the obstacle avoidance, the

objective will be trying to achieve that target in a local way

(sensor range). On the other hand, the change of reference

from the desired final point to the given point by the LPF is

activated when the sensors detect an obstacle on the path.

The obstacle avoidance gives a reference to a point on the

sensors ranges that will try to avoid the obstacles using the

LFP method. An important point on the LPF method is the

given goal to the robot, which is its desired final position.

Fig. 8 Potential fields example

Fig. 9 Position controller integration with the obstacle avoidance method
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4 Results and discussion

4.1 Position controller training results

For the controllers training and testing, the used computer

was a Windows 10 laptop, with 4 GB of RAM, Intel Core

i7 (2.4 GHz) processor, and NVIDIA GT 650M video card.

Also, the used programming language was Matlab� 2017a,

where the NEAT library was specifically implemented by

the authors and the simulation environment included the

robot physical behavior and the PID controllers.

For the position controller training, the fitness function

means the lower value is better. All the tests were com-

pleted following the next conditions: initial vehicle posi-

tion (X, Y, h) = (0, 0, - p) and desired final position (X,

Y) = (1, 1), the same initial conditions presented by [21].

The controller inputs compared with the inputs presented

by Caceres et al. [21] are quite different according to the

explained in Sect. 3.1 and the Fig. 7.

The position controller was trained with and without the

vehicle dynamics (mechanics), varying the number of

inputs that corresponds to the delay error number. The

objective of testing different training scenarios was the

training time validation, the best fitness value and the

number of generations needed to train the controller. The

number of tests done was 10, starting in 1 delay until 15

delays, which represents the number of inputs (X) of the

neural network position controller presented in the Figs. 7

and 9. Two different cases were tested: kinematic case and

dynamic case (this also includes kinematic). The simula-

tion results are summarized in Tables 5 and 6.

According to the listed results in Tables 5 and 6, it is

possible to perceive that the best fitness value obtained in

the kinematic case is always better than the dynamic case

due to the complexity and response time. However, the best

fitness value is easier to achieve using at least 3 delays.

Results coincide with the basic discrete PID controller

structure that uses exactly 3 delays. The results are pre-

sented in the Fig. 10.

Although the results listed in Tables 5 and 6 allow

perceiving the training time of the kinematic and dynamic

cases depending on the number of inputs, which permits to

observe that the kinematic case training time is shorter than

the dynamic training time. Another interesting point to

observe is the almost linear relation between the number of

inputs and the training time; this means that the more the

inputs, the more training time is required. Results are

shown in Fig. 11.

Another important thing would be the analysis of the

average generations numbers needed for training a con-

troller; this behavior is presented in Fig. 12.

Compared to the [21] work results, the training time was

improved from an average of 6084 s to a lower value that

depends on the input and training case as shown in Fig. 11.

Also, the best fitness value obtained was 0.3092 and, in this

case, the best fitness result obtained in the kinematic case

was 0.3078 with 11 delays. The improvement of the control

scheme results showed some advantages of using the

algorithm.

Table 5 Kinematic case simulation results—10 test per each number of inputs

Number of inputs

or delays

Training

time (s)

STD training

timE (s)

Average best

fitness

STD average

best fitness

Number of

generations

STD number of

generations

Best fitness of all

the tests

1 400.93 286.34 0.94 0.56 8.40 3.89 0.3086

2 514.40 278.55 0.50 0.44 8.10 3.57 0.3088

3 801.77 473.72 0.33 0.06 11.20 4.54 0.3089

4 908.86 536.78 0.45 0.43 10.90 4.31 0.3090

5 938.27 644.99 0.31 0.01 11.00 7.44 0.3091

6 1139.86 1057.58 0.45 0.43 12.30 8.62 0.3093

7 1185.35 629.03 0.32 0.02 13.40 7.59 0.3094

8 1080.49 910.19 0.45 0.43 10.50 6.72 0.3095

9 1684.69 480.62 0.31 0.00 11.80 5.14 0.3096

10 2338.55 1189.70 0.31 0.01 13.10 4.04 0.3088

11 1674.49 1117.75 0.31 0.01 12.30 5.81 0.3078

12 1390.25 383.27 0.37 0.16 9.20 1.93 0.3104

13 1703.69 1225.34 0.59 0.57 10.70 7.02 0.3104

14 1393.77 600.91 0.31 0.00 9.60 3.57 0.3103

15 2019.21 852.04 0.45 0.42 12.20 4.49 0.3105
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Table 6 Dynamic case simulation results—10 test per each number of inputs

Number of inputs

or delays

Training

time (s)

STD training

time (s)

Average best

fitness

STD average

best fitness

Number of

generations

STD number of

generations

Best fitness of all

the tests

1 2343.70 790.01 0.91 0.58 9.00 2.91 0.3869

2 2792.08 1147.80 0.55 0.34 9.80 3.91 0.3863

3 4104.15 1588.91 0.39 0.01 11.20 3.74 0.3864

4 3871.66 2037.03 0.42 0.11 9.10 4.43 0.3865

5 2703.37 1299.86 0.40 0.02 9.10 3.25 0.3869

6 3684.52 2115.60 0.47 0.26 11.30 6.31 0.3867

7 3405.01 1482.93 0.39 0.00 9.00 2.62 0.3869

8 3774.00 4293.21 0.39 0.01 9.40 3.81 0.3872

9 4125.50 4416.38 0.39 0.00 9.20 4.69 0.3874

10 4476.99 4539.56 0.39 0.01 12.80 5.65 0.3875

11 3580.48 3744.93 0.39 0.00 9.50 4.36 0.3878

12 5367.92 2950.30 0.41 0.05 8.90 3.54 0.3880

13 4772.87 4501.16 0.39 0.00 10.00 4.36 0.3909

14 6104.21 469.56 0.53 0.38 7.10 1.10 0.3887

15 6612.90 4377.52 0.39 0.01 14.11 9.47 0.3884

Fig. 10 Controller training

results

Fig. 11 Controller training time

results
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4.2 Integration of the position controllers
and the obstacle avoidance method

The integration of the position controller and the obstacle

avoidance method following the Sect. 3.3 and the Fig. 9

was implemented. Some of the obtained controllers were

tested. It is remarkable to remind the inclusion of the

system dynamics and the kinematics for these tests and the

similar results of the obtained controllers, making an

approach to the real system.

Figure 13 presents a testing environment; it shows the

path the vehicle took under the given conditions; the red

dots are the obstacles, the green dot is the initial position,

the yellow dot is the desired position, the scattered black

line is the trajectory followed by the mobile robot and the

black rectangle represents the mobile robot. Figures 14, 15,

16, 17, and 18 show different graphs of the controlled car

detailed behavior using the proposed method for the ana-

lyzed conditions.

Figures 17 and 18 allow perceiving the mechanical

system dynamics. That dynamic behavior can be observed

in the robot response (blue signal), trying to follow the

signal of reference (red signal). The robot response has a

delay whether it is compared with the signal of reference,

due to the slower reaction time of an electromechanical

system when compared with a computational system. The

electromechanical response, being slower, corresponds to

the mechanical robot dynamics given by the reaction time

of the mechanical parts, like the DC motors and gearboxes.

On the other hand, the computational response, which is

faster, is the signal of reference given by the neuroevolu-

tive controller.

4.3 The proposed method and the current state
of the art

To find the position of the proposed method compared to

similar works, it is essential to identify the differences of

each implementation and the theoretical background. The

current method uses a non-holonomic car-like robot that

represents a constrained system; similar current works use

holonomic robots like [11, 12, 18, 20, 30] that are non-

constrained and fully controllable, a substantial difference

to compare the proposed method. Other considerable dif-

ference is the physical (mechanical) analysis of the mobile

robot, where most of the authors consider the mobile robot

as a dot in the space [11, 12, 18, 20, 23, 24, 30] and others

consider only the kinematics of the system [19]; in the

current work, the systems considered the system kinemat-

ics and dynamics, including a PID controller for each

wheel motor. Another theoretical consideration is the

automatic control view, which holds an automatic control

and mathematical theory that does not take into account the

obstacle avoidance system, like the case of [31].

Under a similar technical approach, it is possible to

compare the developed method with the method proposed

by Caceres et al. [21]. In both cases, a similar position

Fig. 12 Controller training

average number of generations

Fig. 13 Full control integration and response
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Fig. 14 Control response. X-

axis

Fig. 15 Control response Y-axis

Fig. 16 Car angle control

response

Fig. 17 Steering wheel signal
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controller method was used in the same type of robot, using

only its kinematics. The position controller method in both

cases used the same fitness function and the same initial

conditions, and the results showed an improvement in the

fitness function result from 0.3092 in the work of [21] to

0.3078 in the current work (the lower the fitness, the bet-

ter). The improvement was obtained due to the reduction in

inputs to the neural network. Another improvement is

solving an environment without crashing. The enhance-

ment is related to the obstacle avoidance method and the

improved response of the position controller; the value

went from the 89 to a 94% in 100 simulated random

environments.

The advantages and differences with the proposed

method and similar works are the use of automatic control

theory for the selection of the fitness function that allowed

the natural selection to pick the more fit neural controllers.

However, the neural network is used as a universal function

for approximations. This means that it could be adapted to

different conditions like dynamics and kinematics con-

straints, non-linearity functions and related.

5 Conclusions and further developments

From the current work results, it is possible to conclude

that the neural controller designed using the NEAT algo-

rithm reached the proposed objectives of controlling the

kinematics and dynamics systems of a non-holonomic car-

like robot in an unknown environment, avoiding obstacles

and reaching the target point. Also, it was possible to

determine that the kinematic controller works with the

car’s dynamics in a proper way under controlled

conditions.

It is also important to highlight that the robot kinematic

modeling was crucial because it is the basis of the training

environment, which allows the controller to be tested and

enables it to evolve differently. Additionally, the applica-

tion of a simulation environment based on the electronic

and mechanical characteristics of the robot allows the

controller design process being faster and more efficient.

The selection of the fitness function based on the con-

cepts of automatic control theory was also decisive to

obtain a neural controller based on evolutionary algo-

rithms. Although the usage of different fitness functions is

an open topic to be studied in the future, with the study and

comparison of a neural inverse controller and some other

kinds of control strategies, the topic is an open issue in this

study field.

The usage of the neural network as a universal controller

approximation function must be emphasized, due to its

adapting characteristics to different conditions. The

adapting process of the neural network as a full robot

controller is guided by the fitness function and the natural

selection mechanism of the evolutionary system, obtaining

a neuroevolutive controller as result.

Finally, an important aspect to remark is the influence of

the kinematic and dynamic analysis of this system for the

implementation and development of a soft computing

algorithm to control a mobile robot, which is usually

unnoticed and not considered in similar works.
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