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Abstract. Quasiconformal transformation optics is used to design two-dimensional polarization beam splitters.
The resulting media present inhomogeneous uniaxial permittivity and nonmagnetic response. The compact devi-
ces are theoretically designed and investigated for symmetrical and asymmetrical geometries, with footprint of
64 and 110 μm2, respectively. The polarization splitter performance is evaluated for the fundamental mode and
third mode, exhibiting an insertion loss closer to 0 dB and extinction ratio above 40 dB over a broad wavelength
range. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.57.3.037111]
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1 Introduction
The polarization beam splitter (PBS) is a polarization-
handling device that is able to split the incoming optical
modes based on their polarization, i.e., transverse electric
(TE) and transverse magnetic (TM) modes. This optical
device is a key component largely used in optical commu-
nication systems. The polarization-division multiplexing
technique1 allows the use of polarization diversity for multi-
plexing channels, increasing the data transmission capacity
in optical links and reducing the insertion losses.2 The PBS
also finds application in polarization sensitive devices,
such as fiber-optic sensors,3 quantum photonics integrated
circuits,4 and electro-optic detectors.5

However, the development of a compact PBS with low
insertion loss and a high extinction ratio over a broad band-
width is still a challenge. Different approaches to develop
PBS have been reported, such as those that use the transfor-
mation optics (TO) technique,6–9 directional coupler (DC),10

multimode interference (MMI),11,12 Mach–Zehnder inter-
ferometer (MZI),13,14 gratings,15,16 and tapered waveguide
coupling.17,18 A traditional DC has two straight waveguides
with identical lengths preventing high extinction ratio. An
alternative to enhance the extinction ratio is to use two or
more cascaded stages,10 but it makes the PBS longer and
with a narrower bandwidth. Alternatively, the MMI-based
PBS typically needs a phase shifter; therefore, the structure
usually requires a high fabrication precision,11 and it is large
in the footprint area.12 Another approach based on MZI also
leads to large footprints,13 even though, in some cases it can
be implemented with relaxed tolerance.14 The PBS designs
based on waveguide gratings present lower coupling effi-
ciency, a narrow wavelength range,15 and it needs a high
fabrication resolution,16 similarly to PBSs developed from
tapered waveguides.17,18

Apart from these cases, a PBS using a hybrid plasmonic
Y-branch on a silicon-on-insulator (SOI) platform has been

demonstrated.19 The structure is formed by silicon and silver
strip waveguides sandwiched with a silicon dioxide layer.
It was found that the figures of merit of this device are
dependent on the thicknesses of silicon dioxide layer and
silver strip. Thus, the optimal values of insertion loss were
below 2.35 dB and extinction rate of 10 dB in a bandwidth
of 285 nm.

A different strategy proposed by Shen et al.20 used the
free-form metamaterials to experimentally obtain an ultra-
compact PBS with a footprint of 2.4 × 2.4 μm2. The PBS is
patterned on an SOI substrate, and it presents an extinction
rate around 12 dB within a bandwidth of 32 nm.

Another concept used to create PBS is based on the appli-
cation of photonic crystals.21 In this approach, the polariza-
tion splitting is obtained with an operating bandwidth of
53 nm and maximum extinction rate of 23.64 dB. A dual-
core photonic crystal fiber with holes filled with magnetic
fluids was used to develop a tunable PBS,22 and it
was observed that the structure can reach an extinction
rate >100 dB.

Zhang et al.23 implemented a device that can work as
a polarization splitter and rotator simultaneously, based on
a silicon bent DC structure. The structure presents insertion
loss lower than 0.3 dB in the wavelength of 1530 to 1600 nm.
A PBS based on three cascaded bent DCs has also been
demonstrated.24 That device consists of SOI nanowires
with a silicon dioxide upper cladding, and it has extinction
rate values>20, 25, and 30 dB within the approximate band-
widths of 135, 95, and 70 nm, respectively. Beyond those,
a PBS based on the DC uses the high birefringence property
of lithium niobate (LiNbO3) to separate the TE and TM
polarizations.25 The simulations showed that this device
has an extinction rate >10 dB in a bandwidth of 65 nm.
Additionally, a PBS based on an asymmetrical DC used
silicon hybrid plasmonic waveguide and silicon nanowire.26

An ultrasharp bend radius was added at the end of one port to
improve the extinction ratio of the device. The PBS perfor-
mance was evaluated through simulations, and an extinction
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rate >12 dB and insertion loss <0.66 dB were obtained in
a bandwidth of ∼120 nm.

Silicon-based slot waveguides are used to develop a PBS,
and an asymmetric multimode waveguide is employed to
separate the TE and TM modes.27 In addition, tapered wave-
guide structures and S-bend are introduced into this PBS to
achieve better performance. Numerical results showed that
the device has a maximum extinction rate of 20.9 dB and
insertion loss below 1.37 dB at the wavelength of 1550 nm.

Watanabe et al.28 proposed an indium phosphide (InP)-
based PBS using an MZI, which enables the easy individual
adjustment of the TE polarization of the device. The used
method allows positive and negative changes in the refractive
index, due to the Pockels effects. A test sample was imple-
mented and extinction rate of about 14 dB at the wavelength
1550 nm was exhibited. Another approach to realize a PBS
using symmetric MZI on InP platform was presented.29,30

For these projects, plasma dispersion effect and the
Pockels effect in a p-i-n structure, whose bulk intrinsic
region was inserted between the p-type and n-type layers,
were used in order to do the polarization beam splitting.
The experimental results showed an insertion loss of 3.5 dB
and an extinction rate >15 dB over the entire C-band. In the
same way, Pérez-Galacho et al.31 implemented an asymmet-
rical MZI based on PBS, showing that thermal tuning can
simultaneously compensate fabrication errors and achieve
wavelength tunability. The experimental model presented
extinction rate of 16 dB and insertion loss around 1.2 dB
within C-band.

On the other hand, PBSs designed by TO are broadband
with high extinction ratio and low insertion loss. With
this technique, it is possible to choose the geometrical
shape for each polarization, allowing great flexibility in the
splitter design, which is useful to achieve compact devices.
Nevertheless, designs with TO, in general, result in uncom-
mon media requirements, which are not available in nature
and cannot be easily fabricated even with metamaterials.32

TO is a technique used to design electromagnetic devices
simply based on coordinate transformations, enabling the
designer to control the propagation of waves.33,34 One of
the most investigated devices created from TO is the
invisibility cloak.32,33 Beyond the invisibility cloak, a great
amount of devices have been realized via TO, such as perfect
lenses,35 waveguides,36 compressors,37 field rotators,38 and
collimators.39 To allow such flexibility, TO designs generally
require media with anisotropic permittivity and permeability.
Nevertheless, such media can be avoided with the quasicon-
formal transformation optics (QCTO) technique,40 which
reduces the anisotropy of the media and allows it to be
described by a graded refractive index.

Kwon andWerner6 used a nonconformal coordinate trans-
formation to realize a PBS via TO but obtained a medium
with anisotropic magnetic response, representing a challenge
to be implemented in practice. Another PBS design based
on TO was proposed by Zhou et al.,7 where the medium
presents inhomogeneous anisotropic permeability and vac-
uum permittivity. Furthermore, some terms in the permeabil-
ity tensor have negative values, also rendering it impractical
to be manufactured. The PBS proposed by Wu et al.8 makes
use of a linear coordinate transformation to design a homo-
geneous anisotropic medium. Its properties for the TE polari-
zation are the same as vacuum, but for the TM polarization,

a homogeneous anisotropic material is necessary. A draw-
back of this approach is that again a few off-diagonal
terms in the permittivity tensor have negative values, leading
to uncommon media requirements, not available in nature.
Moreover, reflections are still observed at the output boun-
dary of the device. Recently, Eskandari et al.9 designed
a PBS with a nonmagnetic, homogeneous, and reflectionless
medium with reduced anisotropy. However, once again, the
off-diagonal terms εxy and εyx also present negative values.

For integrated photonics, there are numerous PBS manu-
factured in the SOI platform, due to the advantages of being
compatible with the complementary metal–oxide–semicon-
ductor fabrication process and offering a compact footprint,
owing to the high index contrast between Si and SiO2.

12,13,17

However, other materials can also be used in PBS implemen-
tation, such as LiNbO3

25,41 and III–V semiconductor com-
pounds,42 which is desirable to enable low-cost photonic
integrated circuits. Another design possibility for obtaining
a PBS is based on effective medium theory,43,44 on which the
effective refractive index values for the TE and TM polariza-
tions may be different and calculated by effective medium
theory.45

In this paper, two-dimensional (2-D) QCTO is used to
design the PBS. This approach eliminates the magnetic
response, and the permittivity tensor becomes uniaxial facili-
tating the device manufacture. Due the application of QCTO,
one can consider that the proposed device can operate at any
wavelength.40 The use of TO to create the PBS guarantees an
insertion loss closer 0 dB, an extinction ratio above 40 dB,
and it preserves the propagation mode characteristics over
a wide wavelength range. Two examples of compact PBS,
one symmetric and one asymmetric, with footprints of 64
and 110 μm2, respectively, are presented. The device perfor-
mances are analyzed under the fundamental mode and third
mode for each polarization.

2 Theoretical Basis
From the TO theory, the medium properties after a coordi-
nate transformation are33

EQ-TARGET;temp:intralink-;e001;326;322ε 0 ¼ JTεJ
detðJÞ ; μ 0 ¼ JTμJ

detðJÞ ; (1)

where J is the Jacobian matrix of the coordinate transforma-
tion, which represents the wave propagation, and ε and μ are
the original medium parameters.

If the coordinate transformation is nonconformal, the
material properties defined in Eq. (1) are anisotropic.
However, if a quasiconformal mapping is used, the medium
can become quasi-isotropic and it can be implemented using
dielectric materials.

The design principle of PBS starts from the fact that
Maxwell’s equations can be separated in two polarizations
for 2-D geometries. Considering the work plane as the xy
plane, the TE mode is affected by material parameters εzz,
μxx, μxy, μyx, and μyy, and the TM mode interacts with the
material parameters μzz, εxx, εxy, εyx, and εyy.

6 As each
polarization is affected by disjoints sets of parameters,
they can be separately controlled. The PBS explores this
situation by being defined as a superposition of two wave-
guides one for each polarization, with identical inputs and
separate outputs. The corresponding properties for each
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arm are defined by TO using one coordinate transformation
for each polarization. If a quasiconformal mapping is used,
the TE mode is affected only by ϵzz ¼ n2zz and the TM mode
is affected only by ϵxx ¼ ϵyy ¼ n2xx ¼ n2yy. In this case, these
properties are evaluated as

EQ-TARGET;temp:intralink-;e002;63;697

ε 0zz ¼ ε
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where the subscript e and m indicate the coordinates trans-
formation for the TE and TM modes, respectively. The
proposed design reduces anisotropy for each polarization,
but the final device will necessarily have εxx ¼ εyy ≠ εzz.
Nonetheless, the off-diagonal terms in the permittivity matrix
vanish, and therefore, the resulting medium is uniaxial.

In this work, the QCTO is applied, and the original
medium is considered a dielectric slab waveguide as shown
in Fig. 1, where the thickness in the z-axis is, in principle,
assumed as infinite. The wave propagation occurs in
the y-axis.

With QCTO application, it is possible to design a sym-
metrical PBS, in which one waveguide shifts the TE mode
to the left and another shifts the TM mode to the right,
according to Fig. 2(a). It is also possible to design an asym-
metrical PBS, as shown in Fig. 2(b); in such case, a wave-
guide for the TE mode shifts to the left and expands the mode
while another waveguide for the TM mode is bent to the
right. Figure 2 consists in a 2-D view of the obtained device,
which should be assumed as infinite in the z-direction.

Using the technique demonstrated by Junqueira et al.46 to
design waveguides, the initial coordinate transformations for
the symmetrical PBS are defined (in μm) as
EQ-TARGET;temp:intralink-;e003;326;620
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where the output at y ¼ 10 μm is shifted by 2 μm to the left
for the TE mode and 2 μm to the right for the TM mode.
For the 2-D asymmetrical PBS, the initial transformations for
the TE and TM modes are (in μm)
EQ-TARGET;temp:intralink-;e004;326;503
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where the TE mode is again shifted 2 μm to the left and
introduces a beam waist broadening of 50%, whereas the
TM waveguide undergoes a 90-deg bend to the right.

The initial transformations in Eqs. (3) and (4) are noncon-
formal, resulting in anisotropic permittivity and permeability.
Nevertheless, they have the boundary conditions necessary
to describe the device functionality with reflectionless inter-
faces. Applying an anisotropy minimization technique,46 the

Fig. 1 Overview of the original medium as a dielectric slab
waveguide.

Fig. 2 Quasiconformal coordinate transformation for each polarization, highlighting the anisotropic index
region: (a) symmetrical and (b) asymmetrical PBS designs.
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optimized coordinate transformation x 0
e and y 0

e for the TE
mode and x 0

m and y 0
m for the TM mode can be used in

Eq. (2) to define the PBS as a uniaxial medium, which occurs
only in the region where both waveguides intersect, as shown
by the highlighted regions (gray) in Fig. 2. All remaining
areas can be implemented from isotropic materials, because
they support only one of the polarizations. For the uniaxial
region, one could consider the use of naturally occurring uni-
axial materials, such as LiNbO3,

41 or layered metamaterials
for manufacturing.

3 Numerical Results
The PBSs were obtained after QCTO application over
a dielectric slab waveguide with an 800-nm-wide core with
refractive index of 2.5. The cladding for the original slabs
of the symmetrical and asymmetrical PBSs had indices of
1.5 and 1.7, respectively.

After the transformation, the refractive index map for
each PBS example is presented in Fig. 3 for both the TE
(nzz ¼ ffiffiffiffiffiffi

εzz
p

) and TM (nxx ¼ ffiffiffiffiffiffi
εxx

p
) modes. The symmetrical

PBS [Figs. 3(a) and 3(b)] ends up requiring a graded refrac-
tive index raging between 2.57 and 1.30. The asymmetrical
PBS index ranges from 1.08 to 3.28. These values of min-
imal and maximal refractive indices can be found in an SOI
platform. Furthermore, as mentioned earlier, the proposed
medium has uniaxial properties and may be implemented
from appropriate materials with effective medium theory.

The PBS examples were simulated using the finite-
element method for a wavelength λ ¼ 1550 nm. The normal-
ized electromagnetic field distributions for each polarization
in the fundamental modes are shown in Fig. 4. In Fig. 4(a),
the TE mode is shifted by 2 μm to the left is presented, and
in Fig. 4(b), the TM mode is shifted by 2 μm to the right in
the symmetrical PBS design. For the asymmetrical PBS, the
output for TE mode is shifted by 2 μm to the left, and the
output for TM mode undergoes a 90-deg bend to the right.

Because the TO technique does not depend on wave-
length or propagation constants, the devices, thus, designed
should be inherently wavelength and mode independent
(except for material dispersion effects). To verify that the pre-
sented PBSs work for higher-order modes, the results for the
excitation of the third-order mode of the slabs are presented

in Fig. 5. We note that each mode is guided according to its
polarization in the exact same fashion as for the fundamental
modes. Due to the weaker confinement of those modes,
we can see that their respective insertion losses will not be
optimal but that is a limitation of the original slab waveguide,
which operates close to cutoff for the third-order modes, and
not the PBS designs.

The total power flow is also demonstrated through the
Poynting vector magnitude plotted in Fig. 6 for both geom-
etries, polarizations, and mode orders as before. In these
examples, the TE and TM modes are excited simultaneously
and with equal powers; therefore, each arm should carry
half of the incident power. The deviations from the ideal
responses are results of the residual anisotropy, and for the
high-order modes, the extensive evanescent tails of each
mode leaving the transformed region.

To quantify the performance of the devices, Table 1
presents the insertion losses for each one of the modes
studied in the proposed geometries with λ ¼ 1460 nm,
λ ¼ 1550 nm, and λ ¼ 1625 nm, respectively.

Table 1 shows insertion losses close to zero for all studied
cases. They were not exactly zero due to residual anisotropy

Fig. 3 Components of the refractive index tensor. Symmetrical PBS: (a) nzz and (b) nxx ¼ nyy .
Asymmetrical PBS: (c) nzz and (d) nxx ¼ nyy .

Fig. 4 Normalized electromagnetic field distributions for PBS ana-
lyzed on the fundamental mode. Symmetrical PBS: (a) out-of-plane
component of the electric field (TE mode) and (b) out-of-plane
component of the magnetic field (TM mode). Asymmetrical PBS:
(c) out-of-plane component of the electric field (TE mode) and
(d) out-of-plane component of the magnetic field (TM mode).
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resulting from quasiconformal mapping, which induces
some scattering of the fields. Moreover, the extinction ratio
was above 40 dB for all cases, and its values were also
affected by the residual anisotropy.

To evaluate the PBS performance in a more realistic three-
dimensional geometry, the behavior of the extinction ratio
in relation to the increase of the waveguide thickness was
analyzed. The results show a convergence to 40 dB for
the extinction rate when the thickness increases. This is
an expected result, since it approximated for the values

found in the 2-D simulations, in which the thickness is con-
sidered infinite. This analysis was done in the asymmetric
PBS at λ ¼ 1625 nm for the fundamental mode and third
mode as shown in Fig. 7. Furthermore, the insertion loss
was practically unaffected by the thickness modification,
since this loss, in the simulations, is attributed to the inherent
residual anisotropy of the quasiconformal mapping.

Finally, a comparison is given in Table 2 for different
structures used to create PBS, summarizing some reported
results of the PBSs and comparing them with our work. In
this paper, we show a splitter which simultaneously presents:
low insertion loss, high extinction rate, broadband and multi-
mode. All these properties together represent an important
improvement with respect to those found in the literature.

4 Conclusion
The QCTO enables the design of PBS without magnetic
response and with uniaxial refractive index. The ability of
choosing arbitrary shape for each polarization TE and TM
ensures flexibility in the design, allowing compact and small
footprint devices. The designed PBS has insertion loss
closer to 0 dB and extinction ratio above 40 dB in a broad
bandwidth, since it was designed with TO, which makes
its application attractive in optical communication systems.

Fig. 6 Poynting vector normalized magnitude distribution: (a) symmetrical PBS with fundamental mode,
(b) asymmetrical PBS with fundamental mode, (c) symmetrical PBS with third mode, and (d) asymmet-
rical PBS with third modes.

Table 1 Insertion losses for all supported modes in both devices for
different wavelengths.

Mode

Symmetrical PBS (dB) Asymmetrical PBS (dB)

1460 nm 1550 nm 1625 nm 1460 nm 1550 nm 1625 nm

TE1 0.03 0.04 0.06 0.07 0.03 0.13

TE3 0.05 0.06 0.09 0.17 0.19 0.22

TM1 0.03 0.04 0.06 0.08 0.02 0.14

TM3 0.05 0.06 0.09 0.16 0.18 0.20

Fig. 5 Same as in Fig. 4 but for the third-order mode for each polarization.
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Furthermore, the designed PBS can support higher-order
modes, allowing applications in mode-division multiplexing.
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