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Abstract: We report onmeasurements of high-order dispersionmaps of an optical fiber, showing
how the ratio between the third and fourth-order dispersion (β3/β4) and the zero-dispersion
wavelength (λ0) vary along the length of the fiber. Our method is based on Four-Wave Mixing
between short pulses derived from an incoherent pump and a weak laser. We find that the
variations in the ratio β3/β4 are correlated to those in λ0. We present also numerical calculations
to illustrate the limits on the spatial resolution of the method. Due to the good accuracy in
measuring λ0 and β3/β4 (10 −3% and 5% relative error, respectively), and its simplicity, the
method can be used to identify fiber segments of good uniformity, suitable to build nonlinear
optical devices such as parametric amplifiers and frequency comb generators.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

It is well known that optical fibers exhibit random longitudinal variations of their chromatic
dispersion properties, resulting from the drawing and preform fabrication processes [1–3]. These
fluctuations are a shortcoming on the efficiency of parametric devices based on Four-wave
mixing (FWM), especially fiber optical parametric amplifiers (FOPAs) [3–6]. In most studies,
the influence of dispersion fluctuations on the FOPA gain has been evaluated in terms of
the variations of the zero-dispersion wavelength (λ0) or the wavevector mismatch (∆β). A
more complete analysis should consider also the fluctuations of high-order dispersion (HOD)
(i.e. βn = dnβ(ω)/dωn |ω=ω0 , for n > 2), given that minute changes in HOD have a strong
impact in FWM-based parametric devices [7–17]. HOD is also important in fiber solitons
and supercontinuum generation [17–22]; and ultra-high-capacity optical communications, in
which the compensation of residual dispersion up to fourth-order is required [23–25]. Accurate
modeling in all these problems require knowledge of the HOD dispersion maps.
Given that FWM is very sensitive to dispersion, several dispersion characterization methods

based on FWM have been experimentally demonstrated in optical fibers [26–43]. Some of these
methods provide useful information about dispersion fluctuations along the fiber length, also
known as dispersion mapping techniques [34–43]. The first dispersion mapping experiment was
presented by Honaka et al. [34], in which a map of λ0, i.e. λ0(z), was obtained by cutting a
23 km dispersion shifted fiber (DSF) in segments from 0.3 to 1 km, and fitting the measured
FWM conversion efficiency spectrum of each segment with a theoretical prediction. Since then,
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many non-destructive dispersion mapping techniques have been demonstrated [35–43] that may
be classified as follows:
Type I methods measure the FWM conversion efficiency [35,36] or the parametric gain

spectrum [37] generated by continuous wave (CW) tunable lasers, at the output of the fiber, as a
function of wavelength (and keeping a constant wavelength difference between the two lasers).
In the end, a numerical approach is used to retrieve λ0(z) by fitting.
Type II methods measure the FWM spectrum generated by two overlapping pulses [38,39].

One of the pulses (used as a pump) is tuned around λ0, and the second pulse (used as a signal)
is located far from λ0 (∼80 nm). Because of the difference in group velocities, both pulses
overlap just along a specific segment of the fiber. The FWM efficiency as a function of the signal
frequency exhibits a maximum when the phase-matching condition is satisfied (i.e. ∆β = 0),
which is used to obtain λ0. Then λ0(z) is obtained by varying the spatial overlap region along the
entire fiber by adjusting the initial delay between the pulses. If the overlap region is longer than
the correlation length of the dispersion fluctuations, the so measured FWM spectrum may exhibit
more than one maximum, indicating that there is more than one λ0 within that particular fiber
segment [38]. The shortest overlap region obtained in DSFs is ∼700 m by using ∼100 ps pulses
[39]. A better spatial resolution can be obtained by using shorter pulses, but at the expense of a
coarser spectral resolution [38,39].

Type III methods measure the Rayleigh backscattered power of a wave parametrically amplified
[40] or generated [41] by FWM, by means of an optical time-domain reflectometry (OTDR)
configuration. In [40], the λ0(z)map is obtained by identifying the transition between normal and
anomalous dispersion, tuning a pump laser around λ0 and measuring the OTDR trace at a probe
wavelength, considering that there is an abrupt increase in this backscattered power when the
pump wavelength matches λ0. In [41], the chromatic dispersion map D(z) is obtained by using
two lasers and measuring the backscattered power at one of the generated FWM frequencies.
This OTDR trace oscillates locally with a spatial period related to D(z). Despite the ease of
implementation, these OTDR-based methods have limited spatial resolution (∼1 km), which is
associated to the OTDR sensitivity requirements. For instance, the spatial resolution in [40] could
be improved by reducing the width of the probe pulse, but at the expense of a reduced OTDR
signal. Similarly, in [41] the spatial resolution could be improved by increasing the separation of
the FWM pump lasers, but this would result again in a weaker OTDR signal [42].
Type IV methods measure either D(z) [42] or λ0(z) [43] from the spatial oscillations of the

FWM power generated with two pump lasers and exploit the strength of stimulated Brillouin
scattering (SBS), to amplify the FWM signal instead of the weak Rayleigh backscattering. Thus,
overcoming the sensitivity and spatial resolution limitations of Type III methods. In [42], a
counter propagating pump pulse provides a local SBS gain to the spatially oscillating FWM,
which is detected in transmission by optical filtering (instead of back reflection). Thus, the D(z)
map is obtained with a spatial resolution of ∼ 20 m for standard single-mode fibers (SMFs) and
∼ 150 m for DSFs. In [43], an enhanced configuration uses FWM and SBS pulsed pumps and,
therefore, the detected FWM power is generated only from the short overlap region between the
counter-colliding pulses, achieving a meter-scale spatial resolution. Subsequently, the λ0(z) map
is retrieved by means of processing the detected raw data. In this method, the spatial resolution
is limited by the width of the SBS pump pulse (∼25 ns due to the SBS bandwidth). However,
an even better resolution (10 µm) could be achieved by using stimulated Raman scattering gain
mechanism [43].
A common characteristic between all mentioned dispersion mapping experiments is that the

effect of HOD is either neglected or assumed to be constant along the optical fiber. In addition,
although some FWM-based dispersion characterization methods are capable of measuring the
average λ0 and HOD parameters [30–32], they have not been implemented as dispersion mapping
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techniques. Moreover, most of the methods require significant data treatment to retrieve the
dispersion map from the raw data and/or complex experimental setups.

In this paper, we present a new high-order dispersion mapping method based on [31,32], which
allows the measurement of longitudinal fluctuations of λ0 and the ratio between the third and
fourth-order dispersion parameters (i.e. β3/β4). Our measuring method uses a time of flight
concept as in type II, as it is based on the FWM interaction between two overlapping pulses.
However, one of the pulses is from an incoherent pump source and the other is from a weak
laser. The use of an incoherent pump instead of a pump laser presents several advantages [31,32].
First, the time-consuming process of tuning the wavelength of the pump around λ0 is no longer
needed, given that the incoherent pump contains all the necessary Fourier components to drive
the complete FWM spectrum in a single shot. Second, a single measurement of the FWM
spectrum allows to visualize the uniformity of the chromatic dispersion of the overlap segment
[44]. Third, the large bandwidth of the incoherent pump prevents SBS, which usually limits the
pump power in other dispersion-mapping techniques.
We present measured maps of λ0 and β3/β4 in a 7 km DSF, and show that the variations

of these dispersion parameters are correlated. We also evaluate the fiber dispersion by using
a numerical model of a multi-layered step-index fiber profile [45], showing that the measured
dispersion fluctuations may be explained in terms of geometrical variations along the fiber.

The rest of the paper is organized as follows: In section 2 we present the measuring principle
of dispersion mapping by using incoherent-pulsed-pumped FWM; in section 3 we describe our
experiments; in section 4 we show our experimental results; and in section 5 we discuss the
spatial resolution of our method, and the possible physical origins of the dispersion fluctuations.
Finally, we draw our conclusions in section 6.

2. Dispersion mapping by using incoherent-pulsed-pumped Four-Wave Mixing

Our method consists in measuring the power spectrum generated by FWM between an incoherent
pump centered close to λ0, and a weak laser tuned far from λ0 [31,32]. This type of FWM can
be treated analytically in the frequency domain. With some approximations and assumptions
on the nature of the stochastic field, we can predict the shape of the FWM spectrum and how
it depends on experimental parameters such as the laser frequency and fiber length. A more
accurate description is discussed at the end of this section.
We consider a non-uniform single-mode fiber, whose dispersion parameters vary along its

length, but we restrict our attention to the case where the variations are sufficiently small that
the mode profile is unperturbed. In this case, we can represent the (positive frequency) Fourier
amplitude of an optical field as A(z, ν)eiβ̄z, where β̄ =

z
∫
0
β(z′, ν)dz′/z is the cumulative moving

average of the propagation constant, and A is an amplitude that varies slowly in space. We can
use the equations written for the case of uniform fibers and CW sources [31] by substituting β
with β̄ (and taking due care, since β̄ is function of z). Thus, the FWM spectral field (AFWM)
generated in a fiber segment between z1 and z2, can be written as

AFWM(ν) = iγE∗` ∫ A1A2f (ν, ν1)dν1, (1)

where
f (ν, ν1) =

z2
∫
z1
ei∆β̄zdz. (2)

Here γ is the nonlinear coefficient, the laser has been considered as A(ν) = E`δ(ν − ν`);A1 =
A(ν1) and A2 = A(ν2) correspond to two Fourier components, respectively at frequencies ν1
and ν2 = ν + ν` − ν1 within the incoherent spectrum, which is centered at νp and has width
∆νp � |νp − ν` |. Finally, ∆β̄ = β̄(ν) + β̄(ν`) − β̄(ν1) − β̄(ν2) is the relevant propagation constant
mismatch. In Eq. (1) we have neglected the fiber loss (i.e., the attenuation coefficient α = 0) as
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well as pump depletion, self-phase and cross-phase modulation, and assumed that the pump and
laser fields are linearly polarized in the same direction (scalar approximation).

The FWM power spectrum can be obtained from Eq. (1) by taking into account the statistical
properties of the incoherent source [46,47], which is assumed to satisfy

〈A (v′)A∗(v)〉 = S(v)δ (v′ − v) , and (3a)〈
A′1A

′
2A
∗
1A
∗
2
〉
=

〈
A′1A

∗
1
〉 〈

A′2A
∗
2
〉
+

〈
A′1A

∗
2
〉 〈

A′2A
∗
1
〉

,where S(ν) is the power spectral density (W/Hz), 〈 〉 stands for statistical average, andAk
′ = A(νk ′).

These relations are valid for circular Gaussian processes and are very plausible for the source
used in our experiment. The FWM spectrum

〈
AFWM (v′)A∗FWM(v)

〉
= SFWM(v)δ (v′ − v) is then

expressed as
SFWM(ν) = 2γ2P` ∫ S(ν1)S(ν2)|f (ν, ν1)|2dν1, (4)

where P` is the laser power. In a uniform fiber, SFWM(ν) is maximum at a frequency νFWM , such
that the phase-matching condition of the FWM process is satisfied (∆β = 0). Neglecting fifth
and higher order dispersion we can express this condition as

β4
12
(ωc − ω`)

2 = −

[
β3(ωc − ω0) +

β4
2
(ωc − ω0)

2
]
, (5)

where ωc = (ωFWM + ω`)/2. It is possible to show that the FWM peak is maximized if ωp = ωc.
From Eq. (5) we can obtain ωFWM as a function of ω` . This dependence is then used to fit the

measured peak position ωFWM , as we tune ω` over a range of frequencies and, therefore, retrieve
ω0 and β3/β4 as fitting parameters. Note that we do not fit the spectral shape, but only the peak
position.
It can be shown that for ν around the FWM peak, |f (ν, ν1)|2 is a very smooth function of ν1

and can be taken outside the integral symbol in Eq. (4), with its value at ν1 = νp = νc. The FWM
spectrum is then

SFWM(ν) = 2γ2P` |f (ν, νc)|2 ∫ S(ν1)S(ν + ν` − ν1)dν1. (6)

The remaining integral in Eq. (6) is the autoconvolution of the pump spectral power density and
is weakly dependent on ν. Therefore, the spectral shape of the FWM field is essentially given by
the function |f (ν, νc)|2. Although Eq. (2) shows how this function depends on ∆β, this also gives
the dependence with frequency since, around the FWM peak, ∆β is approximately proportional
to Ω = ω − ωFWM: ∆β ≈ bΩ, with the coefficient b = β3(ωFWM − ω`)

2/8.
Equation (6) applies for the case of CW sources. In the experiments reported here we use short

light pulses that superpose over a limited region of fiber. This region is centered at a crossing
position zx and has a length 2 σz (often called the interaction or walk-off length). We control zx
by varying the delay (τ) between the pump and the laser pulses. We can estimate the measured
spectrum by using Eq. (6) (with an appropriate duty cycle factor) but with the integral in Eq. (2)
taken over the region where the pulses overlap. At this point it is perhaps instructive to look at
the animation in Visualization 1, where we show how the FWM spectrum is generated as the
pulses cross in different positions.

The interaction length can be estimated crudely as δt/|δβ1 |, where δβ1 = β1(ω`) − β1(ωp) is
the group delay difference (vg = 1/β1 is the group velocity), and δt is the time required for the
fastest pulse (the pump in our experiments) to pass through the slower pulse and having significant
power to generate measurable amounts of FWM. A more precise approach is as follows [39]: we
introduce an overlap function that takes into account the envelope functions a` and ap of the laser

and pump fields in the time domain, g(z) =
∞

∫
−∞

a`(t)a2p(t − τ + δβ1z)dt, which for the case of

https://doi.org/10.6084/m9.figshare.9949058
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Gaussian pulses with RMS widths σ` and σp, we obtain g(z) = exp[−(z − zx)2(2σz)
−2], i.e., a

Gaussian centered at zx = τ/δβ̄1, and with variance σ2
z = (σ

2
` + σ

2
p /2)/(δβ1)2. This function is

used to redefine f in Eq. (2) as

f (ν, νc) =
L
∫
0
g(z)ei∆β̄zdz (7)

The integration is now over the whole fiber, since the relevant segment of fiber is automatically
selected by the overlap function. If we divide the fiber into segments of uniform dispersion
and lengths L1, L2. . . , we can estimate the FWM spectrum from a particular segment Lk by
considering the integral in Eq. (7) just over this segment, fk. There are two interesting limits: If
Lk � 2σz, then we can set g(z) ≈ 1 in Eq. (7), with the result that |fk |2 = L2ksinc

2(∆βkLk/ 2),
where sinc(x) = sin(x)/x . The spectrum then shows a central peak of width (full-width at
half-maximum, FWHM) ∆Ω ≈ 2π/(bkLk) [32], and sidelobes typical of the sinc2 function.
However, in this case, the overlap function covers at least partially one or two adjacent segments,
and the FWM light from these last will interfere with that from Lk, giving a structured spectrum.
In the other extreme, if Lk � 2σz, we can extend the limits of integration in Eq. (7) to ±∞, and fk
becomes just the spatial Fourier transform of g(z): |fk |2 = 4πσ2

z e−2∆β
2
kσ

2
z . In this case, the FWM

spectrum is a narrow Gaussian, with FWHM width ∆Ω ≈
√
2 ln(2)/bkσz. Examples of these

cases will be shown in Section 5. In practice, thus, we take the interaction length as 2σz and
estimate this quantity directly from the width of the FWM spectrum corresponding to the most
uniform segment, where a single, narrow peak is observed.
The above analysis is useful to provide insights on this incoherently pumped FWM process.

We have neglected several effects that deserve comments. Fiber loss and pump depletion can be
introduced by an effective loss factor e−αz inside the integral in Eq. (7). This tends to decrease the
contrast of the sidelobes of the sinc2 type spectra. In this same direction, the presence of spatially
fast fluctuations can be treated with an extra loss coefficient [48]. Dispersion broadening of the
pulse envelopes are small because the laser is bandwidth limited and the pump is very close to
the zero-dispersion wavelength. A small pulse broadening effect lowers the pulse peak powers,
but is partially compensated by the concomitant lengthening of the overlap region. None of these
effects shifts the position of the FWM peak. Nonlinear phase modulation, on the other hand,
do shift the spectrum and imposes a limit on the amount of pump power that can be used in the
experiments. In practice, one should always verify that the FWM peak does not vary by reducing
the pump power. Finally, the validity of Eqs. (3a) and (3b) may be questioned, since the field
of a pump pulse is not a stationary random process. We can say here that, in the experiments,
the pulses are produced by using an electro-optical modulator at hundreds of MHz, thus these
pulses are samples of an originally true stationary process and the optical spectrum analyzer
instrument (whose response time is of the order of tens of milliseconds or larger) takes averages
over millions of pulses. For such large number of samples, the statistical relations in (3a) and
(3b) are expected to be the same as those of the original stationary process.

For a more realistic calculation of the spectral shape, we solve a generalized scalar generalized
Nonlinear Schrodinger Equation (NLSE) taking into account high order dispersion and its
longitudinal variation, the measured pulse shapes, the fiber loss, and a randomly generated
field for the incoherent source. The most relevant nonlinear effects (FWM, Self and Cross
Phase Modulation, Modulation Instability and cascaded effects) are well accounted for with this
approach. However, these simulations are time consuming due to the randomness of the process
and the short duration of the pulses. For short pulses, we are essentially sampling the stationary
process during a very short time, and thus we require averaging over hundreds of realizations to
obtain a stable spectrum. Results from these simulations are presented later in sections 4 and 5.
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3. Experiments

Our experimental setup is presented in Fig. 1. The interacting incoherent-pump and laser pulses
were generated at the pump and laser stages, respectively.

Fig. 1. Dispersion-mapping experimental setup: EDFA, erbium-doped fiber amplifier;
MZM, Mach-Zehnder modulator; PPG, pulse pattern generator; PC, polarization controller;
TDL, time delay line; HNLF, highly-nonlinear fiber; BPF, optical bandpass filter; WDM,
wavelength division multiplexer; DSF, dispersion shifted fiber; HPF, optical high-pass filter;
LPF, optical low-pass filter; OSA, optical spectrum analyzer.

We derived the pump from a spectrally sliced supercontinuum, due to the fact that we wanted to
explore different pump regions, not limited by that of the amplified spontaneous emission (ASE)
of the available erbium-doped fiber amplifiers (EDFAs) in our laboratory. The supercontinuum
was generated in 38 m of HNLF (nonlinear coefficient γ ≈ 6 W−1 km−1 and λ0 ≈ 1554 nm),
seeded by a high peak power pulsed ASE (∼10 W of peak power measured with a 28 GHz
bandwidth photodetector), and then spectrally sliced by using an optical bandpass filter (BPF).
This BPF consisted of a fiber connectorized monochromator (Yenista WSM-160), tunable both in
bandwidth (from 0.25 to 60 nm) and in central wavelength (from 1510 to 1635 nm). In order to
obtain the pulsed ASE, the ASE from EDFA1 was intensity-modulated by using a Mach-Zehnder
modulator (MZM1), driven by a pulse train of ∼ 25 ps duration (FWHM) and 155 MHz repetition
rate, generated by a pulse pattern generator (PPG1). Subsequently, a second amplifier (EDFA2)
was used to boost the power of the pulsed ASE.

The laser, on the other hand, consisted of a tunable laser intensity-modulated by MZM2 (both
MZM1 and MZM2 have & 30 dB extinction ratio and 20 GHz bandwidth), driven by ∼35 ps
duration pulses at 155 MHz, generated by PPG2 (synchronous to PPG1). Subsequently, the laser
pulses were passed through an optical low-pass filter (LPF, AC Photonics MWDM 54, with cutoff
wavelength of 1510 nm and an out-of-band rejection >20 dB) in order to reject the laser noise at
the expected wavelength region for the FWM spectrum (i.e. between 1472 and 1493 nm).
The pump and laser pulses were coupled into the FUT by using a wavelength division

multiplexer (WDM) coupler. The FUT consisted in a DSF of 7 km (Corning) with λ0 ≈ 1550.8
nm, as previously measured by using a dispersion measuring instrument (2008 Chromatic
Dispersion Measurement System, by Photon Kinetics) and γ ≈ 2.3 W−1km−1 [26]. We have
chosen a DSF as our FUT because almost all the equipment available in our laboratory operates
around 1550 nm (i.e. amplifiers, modulators, lasers). Obviously, the method can be applied to
other fibers with proper equipment. Figures 2(a) and 2(b) show the pump and laser pulses at the
input of the FUT with a peak power of ∼200 and ∼2 mW respectively. Although the electrical
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pulses from the PPGs had 25 ps and 35 ps of FWHM for the pump and laser respectively, the
optical pulse measured durations were 39 ps and 43 ps. This difference can be attributed to the
limited bandwidth of the MZMs (20 GHz).

Fig. 2. Temporal and spectral characteristics of the experiments: (a) Pump and (b) laser
pulses at the input of the FUT (measured by an oscilloscope with a 28 GHz built-in detector).
(c) Optical spectrum at the input of the FUT and at the output, after the high-pass optical
filter. Both spectra were measured with λ` = 1627.56 nm and a resolution bandwidth of
100 pm.

We placed the fiber inside a box to minimize dispersion changes due to temperature variations
(∆T). Since dλ0/dT in DSFs is ∼ 0.03 nm/°C [49], we ensured that ∆T < 1 °C inside the box.

Figure 2(c) shows the spectrum at the input of the FUT, where the pump has ∼17 nm bandwidth,
and at the output, but after a high-pass optical filter (HPF) used to attenuate the laser and the
pump. This filter (AC Photonics MWDM 54, cutoff wavelength of ∼1510 nm and an out-of-band
rejection of ∼25 dB) significantly reduces the background level which is due stray light within
the OSA. The output spectrum, so filtered, exhibits a FWM peak generated with ∼15 dB of signal
to noise ratio (SNR).
The overlap region between the pulses was controlled by means of a time delay line (TDL,

Narda Microwave RF phase shifter) after the pulse pattern generator PPG2, which triggers
PPG1. For each laser wavelength, we measured the FWM power spectrum for 58 different delays
between both pulses at the input of the FUT, thus, each delay step corresponded to a fiber step
size of ∆L ≈ 120 m. We verified that no FWM was generated when the pulses overlapped outside
the FUT, and that at the 155 MHz repetition rate, the pulses overlapped only once in the FUT.
We measured the FWM power spectrum for all delays at five different laser wavelengths

(i.e. λ` = 1610.54, 1616.54, 1622.56, 1627.56 and 1632.54 nm). For each delay, we used the
measured set of ωFWM for the five values of ω` , and then fitted the relations between ω` and
ωFWM described in Section 2. The measured values of λ0 and β3/β4 that were obtained as fitting
parameters were used to construct the dispersion maps (see Results). An important point must be
considered regarding the use of pulses for the construction of dispersion maps, is the fact that, for
different laser wavelengths, the same value of the delay does not correspond to the same overlap
region in the fiber, since the group-delay depends on wavelength. One should take into account
this dependence when selecting the delay step.
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4. Results

In Fig. 3, we show the normalized FWM power spectrum generated in a DSF of 7 km by using
CW sources [Fig. 3(a)] and by using pulses [Fig. 3(b)] with the delay adjusted to superpose the
pulses in four different fiber segments. Comparing the FWM power spectra generated by CW
and pulsed sources, one can note that each FWM peak that appears in the CW spectrum can be
spatially resolved. In both cases (CW and pulses), the pump source is the same, since the pump
pulses are obtained from the CW source that has been passed through an electrooptic modulator,
thus the pulses can be seen as temporal samples (of ∼40 ps duration) of an otherwise stationary
random field.

Fig. 3. Normalized FWM power spectra generated by an incoherent pump and a compara-
tively weak laser (at λ` = 1632.54 nm): (a) CW sources; (b) pulsed sources with a relative
delay adjusted to superimpose the pulses at four different segments of the same fiber. All
spectra were measured with a resolution bandwidth of 10 pm.

We now present the measured maps for λ0 and β3/β4 in Figs. 4(a) and 4(b), respectively. Our
measuredmaps reveal that λ0 varies around amean value λ0 ≈ 1550.5 nmwith a standard deviation
of σ(λ0) ≈ 0.1 nm. Meanwhile, β3/β4 varies around β3/β4 ≈ –220 ps−1 with σ(β3/β4) ≈
– 10 ps−1. The standard deviation of each data point [indicated by the vertical width of the
shadowed areas in Figs. 4(a) and 4(b)] was estimated assuming that λ` and λFWM were measured
with an uncertainty of 0.1 nm, which corresponds to a typical wavelength shift of the OSA when
not calibrated. However, we have verified the calibration of the OSA before and after every set of
measurements, thus, the shadowed areas in Fig. 4 are somewhat overestimated. We have also
made two important verifications. First, we have verified that λFWM did not shift with the pump
power, thus, ensuring that the phase-matching condition was power independent. Second, we
have verified that varying the state of polarization of the laser relative to that of the pump (by
means of another PC, not shown in Fig. 1) did not cause a shift of the FWM spectrum. We also
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point out that in the CW case we can excite the fiber with an unpolarized pump source, and the
measured FWM spectrum does not differ from that reported in Fig. 3(a).

Fig. 4. Maps for (a) λ0 and (b) β3/β4. The symbols (squares and triangles) represent
the measured mean values and the measured standard deviations are represented by the
shadowed areas.

One can see from Fig. 4 that the maps show some correlation between the measured dispersion
parameters λ0 and β3/β4. These maps also show that the measured fiber has two regions with
larger variations, i.e. from 0 to 3.5 km and from 5.5 to 7 km. In contrast, the region between
3.5 and 5.5 km seems to be more uniform. This region would be suitable, for example, to build
efficient parametric devices such as amplifiers or wavelength converters.

A clear evidence of the longitudinal fluctuations of ∆β is the evolution of the measured FWM
power spectrum along the fiber, as it is shown in Fig. 5(a) for λ` = 1632.54 nm (normalized
to the peak power). In order to further support the validity of our measured maps shown in
Fig. 4, we included in Fig. 5(b) the calculated FWM power spectrum using incoherent-pump
and laser pulses with similar power and temporal and spectral characteristics as those used in
our experiments. For the numerical calculations we solved the generalized NLSE by means of
a split-step Fourier method (SSFM) [50] along 58 concatenated fibers, each with ∼120 m of
length, and λ0(z) corresponding to the measured zero-dispersion wavelength map in Fig. 4(a).
Our calculations of fiber dispersion (see Section 5.2) and measurements in two similar fibers
show that β3 is more affected by fiber non-uniformities than β4. Therefore, for the simulations
we assumed a constant β4(z) = β4 = β3/β3/β4 = – 5.6 × 10−4 ps4/km (considering the measured
β3 = 0.123 ps3/km by using a dispersion measuring instrument) and a longitudinal variation of
β3(z) = β4 β3β4 (z) given by the measured β3/β4 map in Fig. 4(b). As shown in Figs. 5(a) and 5(b),
our calculations are in good agreement with our experiments.
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Fig. 5. Normalized FWM power spectrum along the fiber length with λ` = 1632.54 nm. (a)
Measured spectra with a resolution bandwidth of 10 pm. (b) Simulated spectra using the
generalized NLSE (each spectrum is averaged over 100 realizations).

5. Discussion

5.1. Spatial resolution and sensitivity

As mentioned before, the spatial resolution of type II methods has been attributed to the walk-off
length [38,39] that for pulses of 40 ps of FWHM in our fiber gives 2σz ≈ 200 m. However, our
experiments (made with a step size ∆L ≈ 120 m) show abrupt variations of λFWM , which indicate
that a better resolution should be possible [see Fig. 5(a)].

In general, the spatial resolution depends on the pulse duration, dispersion of the sources, and
step size. Also, as in all OTDR type of measurements, a trustable value of the group velocity is
necessary to translate time measurements into absolute distance along the fiber. Given that our
dispersion maps were elaborated by identifying the transition of λFWM (as illustrated in Fig. 5),
two important questions arise: (i) What is the minimum uncertainty ∆L that allows to localize the
position where a transition in λFWM occurs? (ii) What is the minimum length of a fiber segment
with uniform dispersion but different from the surrounding fiber that can produce a detectable
FWM peak? We address these questions by means of simulation of two scenarios.
The first scenario, schematized in Fig. 6(a), corresponds to an ideal case of two consecutive

uniform fibers with different zero-dispersion wavelengths, namely λ0 = 1550.55 and 1550.45 nm
for the first and second fiber respectively, whereas HOD is the same in both fibers (i.e., β3 =
0.123 ps3/km and β4 = –5.6×10−4 ps4/km). For this simulation, we have used similar pulses as
those used in our experiments (i.e., FWHM pulse duration of ∼ 39 ps and ∼ 43 ps, respectively,
for the pump and the laser) and calculated the FWM power spectrum along the fibers by changing
the initial delay between pulses (τ), as we did experimentally, but using a finer step size of ∆L ≈
45 m (corresponding to a delay step of ∼ 10 ps). Each spectrum was calculated 200 times to
obtain a stable peak. In this scenario, two FWM spectral peaks can be identified and the transition
between peaks, represented by a discontinuous line in Fig. 6(a), clearly evidences the change



Research Article Vol. 28, No. 3 / 3 February 2020 / Optics Express 4268

of fiber dispersion [see also an animation of the pulses propagation and longitudinal evolution
of the FWM power spectrum in Visualization 1]. Furthermore, we have analyzed in detail the
transition of power between the two peaks by using an even shorter step size of ∆L ≈ 2.25 m in
our calculations (i.e., delay step of ∼ 0.5 ps). We show this transition in Fig. 6(b) and note that
for such a small change in the crossing position of the pulses a relative power difference of ∼5%
between the two FWM peaks is produced. Similarly, we have calculated that a relative power
difference of ∼2% between the two FWM peaks (i.e., ∼ 0.1 dB) could be identified when using a
∆L ≈ 0.90 m (equivalent to a delay step of ∼ 0.2 ps). Therefore, considering that power changes
of 0.1 dB are detectable by means of a commercial OSA (as the one used in our experiments),
a step size of ∆L ≈ 0.9 m could be considered as the limit in localizing transitions of fiber
dispersion. In addition, we have evaluated the same scenario by using broader pulses of ∼ 100 ps
FWHM width and found that the limit in localizing dispersion transitions (∼2% relative power
difference between two peaks) is ∆L ≈ 3 m.

Fig. 6. Simulation scenario of two consecutive fibers with different λ0 (1550.55 and 1550.45
nm), same HOD parameters (β3 = 0.123 ps3/km and β4 = –5.6×10−4 ps4/km) and λ` =
1627.6 nm. (a) calculated FWM power spectrum along the fibers in steps of ∆L ≈ 45 m.
(b) Power transition between FWM peaks in steps of ∆L ≈ 2.25 m. Visualization 1 in
Supplementary Material shows an animation of the pulses propagation and the evolution of
the FWM power spectrum.

In the second scenario we look at the minimum detectable segment where λ0 is different from
the rest. As described in Fig. 7(a) we consider three consecutive fibers, the first and third fibers
are identical, with λ0 = 1550.65 nm, whereas the second fiber has λ0 = 1550.35 nm (HOD
parameters were kept constant in all three fibers, β3 = 0.123 ps3/km and β4 = – 5.6×10−4 ps4/km).
The lengths of the first and third fibers were L1 = L3 = (L − L2)/2, with a fixed total L= 1200 m,
whereas the length of the second fiber (L2) was varied. In Fig. 7(b) we show the generated FWM
power spectrum for three different values of L2 and the delay such that the crossing position of
the pulses is at the midpoint of the concatenated fibers (i.e., zx = L1 + L2/2 = L/2 ).
In the case of long L2 [900 m in Fig. 7(b)], the corresponding FWM peak can be easily

identified and, as expected, has more power than that corresponding to L1 and L3. In addition, as
explained in Section 2, the FWM peak from L2 represents a clear example of the case where the
length of the uniform fiber is longer than the interaction length of the pulses (i.e., L2 � 2σz ≈

200 m). Thus, according to the arguments in section 2, the FWM spectral shape from the central
segment is a narrow Gaussian. In contrast, the FWM peak at a longer wavelength resembles the
sinc2 type of spectrum, corresponding to a short length of fiber (arising from the partial overlap

https://doi.org/10.6084/m9.figshare.9949058
https://doi.org/10.6084/m9.figshare.9949058
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Fig. 7. Simulation scenario of three consecutive fibers. (a) The first and third fibers
are identical, with λ0 = 1550.65 nm, and the second fiber has λ0 = 1550.35 nm (HOD
parameters β3 = 0.123 ps3/km and β4 = –5.6×10−4 ps4/km were kept constant in all fibers).
(b) Calculated FWM power spectrum (with λ` = 1627.6 nm) for different values of L2.

of the pulses along the end region of L1 and the beginning region of L3, adding up to a length
that is shorter than 2σz).
In the case of shorter L2 [70 m in Fig. 7(b)], the corresponding FWM peak is comparatively

broader and smaller in height, but the two FWM peaks can still be identified. In addition, the
Gaussian and sinc2 spectral shapes of the peaks become inverted in comparison with the previous
case of 900 m. This is due to the fact that the pulse overlap takes place mostly along fibers L1
and L3.
In the case of even shorter L2 [10 m in Fig. 7(b)], the corresponding FWM peak cannot be

identified and, therefore, by using our method it is not possible to detect the presence of a such a
short segment of fiber.

Although our method can be sensitive enough to localize an abrupt dispersion change within
an uncertainty of ∆L ≈ 0.9 m, the spatial resolution (in the sense of the shortest segment of fiber
that produces a detectable FWM peak) is between 10 and 70 m, depending on the difference
between dispersion parameters of the fiber to be detected and those of the adjacent segments, as
well as on settable experimental parameters (σ` , σp, and |λ` − λp |). We point out that the spatial
step in our measured maps (∆L ≈ 120 m) is larger than the estimated limit (∼70 m), but still
shorter than the pulse’s overlap length considering the rms pulse widths, (2 σz ≈ 200 m) – and
much shorter than that considering the FWHM pulses widths (470 m). Note also in Fig. 7, that a
spurious peak can appear, which is more evident for the 70 m fiber. This is due to interference
with the FWM light emitted from adjacent fiber segments [see the discussion following Eq. (7)].
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Experimentally, since the FWM spectrum is continuously displayed in the OSA, one can decide if
a given peak is spurious or not by observing its evolution as we vary slightly the delay and/or λ` .

5.2. Origin of dispersion fluctuations

In order to evaluate possible grounds of the variations observed in our measured maps, we have
performed numerical calculations to study how fiber dispersion could be modified by changes
in geometry. For the calculations, we assumed the refractive index profile (RIP) shown in
Fig. 8(a), which nearly matches the measured RIP of the DSF used in our experiments. In
addition, appropriate fiber parameters for our DSF model were found by evaluating λ0 and β3/β4
while varying the inner core radius [the base of the inner triangular core in Fig. 8(a)] and the
dopant concentration of the core. The dispersion parameters of the obtained DSF model match
the measured mean dispersion parameters (i.e. λ0 ≈ 1550.5 nm and β3/β4 ≈ – 220 ps −1). We
used a numerical model of a multi-layered step-index fiber profile [45] to calculate β(ω) for a
wide frequency range (corresponding to 1330 - 1860 nm), and then, through finite-difference
numerical differentiation, we obtained dnβ(ω)/dωn. The frequency dependence of the refractive
indices of silica and doped-silica glasses have been obtained from Sellmeier formulae [51,52].
The fiber profile was modeled by using different germanium concentrations as dopant for the
core and raised-index ring while using Boron as dopant for the cladding.

Fig. 8. (a) Measured and modeled refractive index profile at 1550 nm. (b) Calculated λ0
(left axis) and β3/β4 (right axis) as a function of the relative change in fiber geometry.

Given the good agreement between dispersion parameters of the modeled fiber and our
measurements, we have evaluated the effect of a uniform ‘breathing’ of the radial dimensions of
the fiber. In Fig. 8(b) we present the calculated variation of λ0 and β3/β4 as a function of this
relative change. A variation of λ0 comparable to that presented in Fig. 4(a) (i.e. approximately
from 1550.3 to 1550.7 nm) is observed for a range of relative changes in geometry of the order of
± 1% (this is equivalent to a ± 28 nm change at the base of the core radius). For core radius
variations larger than 1%, the variation of λ0 and β3/β4 are no longer correlated, becoming
anticorrelated. Meanwhile, for the same relative change in geometry of ±1%, the calculated
β3/β4 varies about ± 2.5 ps−1. Although, this prediction is comparatively smaller than the range
presented in Fig. 4(b), it is worth noting that a variation of ± 2.5 ps−1 is within the uncertainty of
our method for the measurements of β3/β4, which is approximately 7 ps−1.
A uniform deformation, as assumed here, is more likely to be expected in typical preform

fabrication and fiber drawing processes, but other non-symmetrical deformations may occur.
These last might be invoked to explain the larger variations of β3/β4 observed in our FUT. Despite
the discrepancy between model and measurements, at least both agree in that the variations in λ0
and in β3/β4 are correlated for geometry variations within ∼±1%, as highlighted in Fig. 8(b). We
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should note that other variations in the index profile due to variations in the dopant concentrations
and stress should also be taken into account in order to elucidate the physical origin of the high
order dispersion fluctuations in fibers.

6. Conclusions

We have experimentally demonstrated high-order dispersion mapping in a DSF of 7 km by means
of the FWM interaction between two optical pulses, an incoherent pump and a weak laser.
Although the variation of high-order dispersion has been neglected in previous dispersion

mapping experiments, our measurements and numerical calculations show that high-order
dispersion exhibits larger variations than λ0 in this kind of fibers, that is 0.01% in λ0 and 5%
in β3/β4. By using a numerical model of an approximate fiber profile, we have explained the
observed variations of dispersion in terms of changes in fiber geometry that may arise during
fabrication.

Our measurements have revealed a spatial resolution of .120 m, considerably better than that
predicted for the walk-off length [38,39] for ∼40 ps pulses and relative group delay of δβ1 ≈
220 ps/km. By using numerical simulations, we have analyzed the main limitations on the spatial
resolution of our method and found that it should be possible to localize an abrupt change in λ0
of ∼0.1 nm with a resolution of only ∼ 1 m by using delay steps of 200 fs. We also found that the
spatial resolution is mostly limited by the fiber length dependence of the FWM power spectrum,
which implies that a segment of fiber with uniform dispersion must be long enough (& 50 m) to
produce a distinguishable FWM spectral peak.

Our method may be useful in several applications, in particular, those that require fibers with
uniform dispersion. For example, to build high-performance parametric devices, frequency comb
generators, and for experiments sensitive to dispersion such as those found in soliton physics
and quantum optics in fibers. By using our method, one should be able to identify the most
uniform segments in a long fiber that could be employed to build high performance fiber optical
parametric devices.
The high accuracy achieved by our measuring method (i.e. ∼40 pm in λ0 and ∼10 ps−1 in

β3/β4) allows it to be applied in special HNLFs or photonic-crystal fibers (PCFs) that are robust
against geometry fluctuations [2,53,54]. Our method could be used also with few-mode fibers
(FMF) to map not only irregularities, but also the regions where mode coupling occurs. Since the
ZDWs of different modes are well separated in typical FMFs, if we want to observe simultaneously
the FWM peaks from all modes, we need a sufficiently broadband tunable source, which should
be possible by using a supercontinuum source (similar to that used in our experiments). Finally,
our method could be a good candidate to evaluate dispersion uniformity of much shorter but
highly dispersive waveguides, for example silicon and silicon nitride spirals, by using shorter
pulses and larger separation between the laser and the pump wavelengths.

Appendix

Legend toVisualization 1: The left panels represent the pulses propagating along two concatenated
fibers for three different initial delays. The right panels show the accumulated FWM spectrum.
The pulse parameters are the same as in the experiments, and the fiber parameters are those of
Fig. 6. The first (130 ps) and third (390 ps) delays correspond to cases where the pulses overlap
on the first and second fiber, respectively. In the case of the second delay (263. 5 ps) the peak of
the pulses cross at the transition between the two fibers, generating a spectrum with two peaks of
equal heights.

https://doi.org/10.6084/m9.figshare.9949058
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