
UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://www.sciencedirect.com/science/article/pii/S2352711017300079

DOI: 10.1016/j.softx.2017.03.001

Direitos autorais / Publisher's copyright statement:

©2017 by Elsevier. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo
CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/355838022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.repositorio.unicamp.br/


SoftwareX 6 (2017) 81–84
Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

iamxt: Max-tree toolbox for image processing and analysis
Roberto Souza a,∗, Letícia Rittner a, Rubens Machado b, Roberto Lotufo a

a School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
b Center for Information Technology Renato Archer, Campinas, Brazil

a r t i c l e i n f o

Article history:
Received 14 August 2015
Received in revised form
1 September 2016
Accepted 14 March 2017

Keywords:
Max-tree
Component tree
Mathematical morphology

a b s t r a c t

The iamxt is an array-based max-tree toolbox implemented in Python using the NumPy library for array
processing. It has state of the art methods for building and processing the max-tree, and a large set of
visualization tools that allow to view the tree and the contents of its nodes. The array-based programming
style and max-tree representation used in the toolbox make it simple to use. The intended audience of
this toolbox includes mathematical morphology students and researchers that want to develop research
in the field and image processing researchers that need a toolbox simple to use and easy to integrate in
their applications.

© 2017 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Code metadata
Current code version
Permanent link to code/repository used of this code version
Legal Code License
Code versioning system used
Software code languages, tools, and services used
Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual
Support email for questions

1. Motivation and significance

The max-tree [1] is a data structure that represents a gray-
scale image through the hierarchical relationship of its connected
components. A simple illustration of the max-tree is depicted in
Fig. 1. Filtering an image using the max-tree consists in remov-
ing some of its nodes. It has been used for attribute filtering and
interactive visualization [2], morphological filtering [3], feature
extraction with Maximally Stable Extremal Regions (MSER) [4],
interactive collection of training samples [5], image segmentation
[6,7], among other applications. Despite its large applicability, the
max-tree is still little known outside the mathematical morphol-
ogy community.

The motivation for this work is to provide to the scientific
community a max-tree toolbox that implements state of the art
algorithms, a large set of connected filters [8], anddisposes ofmany

∗ Corresponding author.
E-mail address: roberto.medeiros.souza@gmail.com (R. Souza).

http://dx.doi.org/10.1016/j.softx.2017.03.001
2352-7110/© 2017 The Authors. Published by Elsevier B.V. This is an open access artic
v0.1
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00049
BSD 2-Clause License
git
python, C++, OpenMP
NumPy, OpenCV, gvgen, dot
http://adessowiki.fee.unicamp.br/adesso/wiki/iamxt/view/
iamxt@googlegroups.com, roberto.medeiros.souza@gmail.com

visualization tools to display the tree nodes and the connected
components they represent. The toolbox is intended for developing
applications, and teaching purposes.

There are a few public max-tree libraries. The SDC morphology
toolbox for MATLAB and Python [9] has a limited number of max-
tree processing functions, and the source code is not available.
The PINK image processing library has the max-tree algorithm
and Python bindings. The Milena implementation [10] in C++
also has Python bindings. It is not focused on max-trees, but it
has many max-tree construction algorithms implemented. Also, it
lacks themax-tree visualization features that our toolbox provides,
which is very useful for understanding and designingmethods. For
instance, built on top of our toolbox Tavares et al. [11] developed an
interactive visualization demo that displays not only the image, but
its max-tree. This demo is very useful for understanding the max-
tree. Westenberg et al. [2] provide a max-tree demo for interactive
volume visualization with attribute filtering.

To the best of our knowledge, there is no max-tree code
available that gathers so many features as our iamxt toolbox, and
is written in a high level programming language, such as Python,

le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.softx.2017.03.001
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2017.03.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00049
http://adessowiki.fee.unicamp.br/adesso/wiki/iamxt/view/
mailto:iamxt@googlegroups.com
mailto:roberto.medeiros.souza@gmail.com
mailto:roberto.medeiros.souza@gmail.com
http://dx.doi.org/10.1016/j.softx.2017.03.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


82 R. Souza et al. / SoftwareX 6 (2017) 81–84
Fig. 1. (a) Brain image. (b) Max-tree illustration of (a). The arrows point to some of the connected components corresponding to the max-tree nodes.
using an array programming style. The toolbox is well documented
and with many usage examples, making easier its use even for
people with not much knowledge of mathematical morphology.
Our iamxt toolbox can be employed in many applications and be
used to answer many research questions like the presence of a
common topology in brain magnetic resonance images of healthy
subjects.

This paper is organized as follows: Section 2 describes the
software implementation and its features. Section 3 illustrates
some examples of the toolbox features. Section 4 describes the
impact we expect iamxt will have in the scientific community.
Section 5 concludes this paper.

2. Software description

In this section we describe the languages and libraries used to
implement the iamxt toolbox.We also describe the structure of the
toolbox and the algorithms implemented.

2.1. iamxt implementation

The iamxt toolbox was implemented in Python using the
NumPy [12] library, which allows fast array processing. Our
implementation uses the array programming style, which avoids
using explicit loops as much as possible, but the portions of the
code in which we were not able to avoid it were implemented
in C++ and wrapped using SWIG [13]. The parallel loops where
optimized using OpenMP [14]. The toolbox also depends on other
libraries for rendering graphs. A complete list of the dependencies
and instructions on how to install the toolbox are available at:
https://github.com/rmsouza01/iamxt.

2.2. iamxt structure

The toolbox was structured using the object oriented program-
ming paradigm. The iamxt is divided in two classes: the base class
called MorphTreeAlpha and the derived class MaxTreeAlpha. The
MorphTreeAlpha class has the methods for walking on the tree,
such as retrieving nodes ancestors, descendants and children. It
has methods for drawing the tree and parts of it, and it also has
methods that are inherent to morphological trees other than the
max-tree, such as the tree of shapes [15]. The MaxTreeAlpha class
implements methods specific of max-trees.

The toolbox has a total of 30 methods: 4 for walking on the
tree, 2 filtering algorithms, 7 max-tree filters, 4 for drawing the
tree and parts of it, 9 for computing attributes from the max-tree
nodes, 2 auxiliary methods, and 2 reconstructionmethods: one for
recovering the image corresponding to the max-tree and the other
to recover the connected component corresponding to a node.

2.3. iamxt algorithms

The max-tree construction algorithm implemented in the
toolbox is the one based on the union-find with level compression
algorithm, which is described in [16]. The filtering algorithm
implementation is the one proposed in [17], which uses a different
array-based parent pointer max-tree representation, called node
oriented max-tree, which is more memory efficient than the usual
max-tree representation structures and easier for manipulating
the max-tree nodes. Our toolbox uses this structure to represent
the max-tree. The toolbox also implements many methods to
extract attributes from the max-tree nodes and to filter the
max-tree, such as extinction values [18], the hmax filter [1],
the area-open [19], the vmax [18], the extinction filter [20], the
maximal max-tree simplification (MMS) [21], among others that
are detailed in the toolbox documentation.

3. Illustrative examples

3.1. Bounding-box filtering

In this example we show how to use the max-tree for license
plate location using a bounding-box filter. In this case we filter all
the max-tree nodes whose bounding-box height is not between
13 and 25 pixels, the width is not between 7 and 17 pixels,
and the rectangularity ratio is larger than 0.45. The license plate
image and the result of the filtering procedure are depicted in
Fig. 2. The code to perform that is shown in the Code Fragment
1, and the comments describe the code. This example shows
some of the power of the max-tree. A simple filtering procedure
simplified greatly the image leaving practically just the license
plate characters.

Code Fragment 1: Bounding-box filter.
1 import iamxt

import numpy as np
3 #St ruc tu r ing element , connec t iv i ty−8

Bc = np . ones ( ( 3 , 3 ) , dtype = bool )
5 mxt = iamxt . MaxTreeAlpha ( img , Bc ) # max−t r e e cons t ruc t ion

7 #S i z e and shape thre sho ld s
Wmin,Wmax = 7 ,17

9 Hmin ,Hmax = 13 ,25
rr = 0.45

https://github.com/rmsouza01/iamxt


R. Souza et al. / SoftwareX 6 (2017) 81–84 83
Fig. 2. (a) Original image, (b) after the bounding-box filter.
Fig. 3. (a) Original image, (b) after EF (c) after MMS. (d) Resulting max-tree.
11
#Computing bounding−box lengths from the

13 #a t t r i b u t e s s tored in NA
dx = mxt . node_array [ 7 , : ] − mxt . node_array [ 6 , : ]

15 dy = mxt . node_array [10 , : ] − mxt . node_array [ 9 , : ]
area = mxt . node_array [ 3 , : ]

17 RR = 1.0∗ area / ( dx∗dy)

19 #Se l e c t i n g nodes that f i t the c r i t e r i a
nodes = (dx>Hmin) & (dx<Hmax) & (dy > Wmin) &

21 (dy < Wmax) & (RR > rr )

23 #F i l t e r i n g
mxt . contractDR (nodes )

25 img_f i l tered = mxt . getImage ( )

3.2. Maximal max-tree simplification methodology

In this example we illustrate the maximal max-tree simplifica-
tion (MMS) methodology [21]. This methodology consists of set-
ting the number of tree leaves using an extinction filter (EF) fol-
lowed by the MMS filter. It guarantees that at the end of the pro-
cedure the number of max-tree nodes is bounded between the
number of leaves plus one and two times the number of leaves.
This methodology can be used for image segmentation and object
recognition [21]. Thismethodology applied to a 2D brainMR image
set to preserve 7 leaves is depicted in Fig. 3.

3.3. Processing time

Abrief notion of the toolboxprocessing time is presentedhere, a
more detailed analysis is presented in [17]. The experiments were
performed on a 4-core virtual machine running in the Intel Xeon
X5675 serverwith clock of 3.06 GHz.We chose the three 256×256
pixels sample images shown in Fig. 4. We measured the average
times for building the max-tree using a 8-neighborhood, filtering
the max-tree using an area-open filter set to remove nodes with
area smaller than 500, and reconstructing the image. The images
were interpolated up to 1024 × 1024 pixels, so we can have an
idea of how the processing times evolve according to the images
size. The average processing times are summarized in Table 1.

4. Impact

Although very powerful, mathematical morphology tools,
such as the max-tree, are not very known/used outside the



84 R. Souza et al. / SoftwareX 6 (2017) 81–84
Fig. 4. Sample images.
Table 1
Average max-tree construction, filtering and image restitution processing times in
milliseconds.

Dimensions Construction Filtering Restitution Total

256 × 256 17.7 1.7 0.08 19.5
512 × 512 72.7 2.6 0.3 75.6
1024 × 1024 216.7 4.3 1.3 222.3

morphology community, one of the reasons for that may be
the fact that mathematical morphology algorithms can be very
complex to understand and implement. The iamxt is an educative
toolbox, where users that are not specialists on max-trees and
mathematical morphology can learn and develop applications,
and mathematical morphology researchers can benefit from our
toolbox. The impact of providing a simple to use, efficient, and easy
to extend open-source code is that the number of max-tree users
will grow, and they will extend our toolbox and use it to develop
their applications.

Our toolbox has been used in our research [21,20,17,11]. Also,
wehave international collaborators that use our toolbox for remote
sensing applications [22]. Also, iamxt is used to teach courses at
graduate level at the University of Campinas.

5. Conclusions

We provided a max-tree toolbox implemented in Python and
NumPy using the array-based programming style, where the
explicit loops that were not suitable to be implemented using
this style were optimized using C++ and OpenMP. State of the art
algorithms available in the literature were implemented in the
toolbox. That allied to the max-tree visualization routines that we
provide and the fact that it was implemented in an easy and open-
source programming language, such as Python/NumPy, makes
our toolbox suitable for developing applications, and teaching
purposes. In our next release of the toolbox we will incorporate
themethodology that builds a max-tree from a another tree-based
image representation proposed in [3].

Acknowledgments

The authors would like to thank FAPESP grants 2013/23514-0
and 2013/07559-3 and CNPq grant 311228/2014-3.
References

[1] Salembier P, Oliveras A, Garrido L. Antiextensive connected operators for
image and sequence processing. IEEE Trans Image Process 1998;7(4):555–70.

[2] Westenberg M, Roerdink J, Wilkinson M. Volumetric attribute filtering and
interactive visualization using the max-tree representation. IEEE Trans Image
Process 2007;16(12):2943–52.

[3] Xu Y, Géraud T, Najman L. Morphological filtering in shape spaces: Applica-
tions using tree-based image representations. In: 2012 21st International Con-
ference on Pattern Recognition (ICPR). IEEE; 2012. p. 485–8.

[4] Matas J, Chum O, Urban M, Pajdla T. Robust wide-baseline stereo from
maximally stable extremal regions. In: British machine vision conference.
2002. p. 384–93.

[5] Ouzounis G, Gueguen L. Interactive collection of training samples from
the max-tree structure, in: 18th IEEE international conference on image
processing; 2011, pp. 1449–1452.

[6] Jones R. Connected filtering and segmentation using component trees. Comput
Vis Image Underst 1999;75(3):215–28.

[7] Naegel B, PassatN. Interactive segmentation based on component-trees. Image
Processing On Line 2014;89–97.

[8] Salembier P, Serra J. Flat zones filtering, connected operators, and filters by
reconstruction. IEEE Trans Image Process 1995;4(8):1153–60.

[9] Dougherty E, Lotufo R. Hands-on morphological image processing. SPIE
tutorial texts in optical engineering, vol. TT59. SPIE Publications; 2003.

[10] Levillain R, Géraud T, Najman L. Milena: Write generic morphological
algorithms once, run onmany kinds of images. Mathematical morphology and
its application to signal and image processing, vol. 5720. 2009. p. 295–306.

[11] Tavares L, Souza R, Rittner L, Machado R, Lotufo R. Interactive max-tree
visualization tool for image processing and analysis, in: 2015 International
conference on image processing theory, tools and applications; 2015.
p. 119–24.

[12] van der Walt S, Colbert S, Varoquaux G. The numpy array: A structure for
efficient numerical computation. Comput Sci Eng 2011;13(2):22–30.

[13] Beazley D. SWIG: An easy to use tool for integrating scripting languages with
C and C++. In: Proceedings of the 4th conference on USENIX Tcl/Tk workshop,
1996-Volume 4, USENIX Association; 1996. p. 15.

[14] Dagum L, Menon R. OpenMP: An industry-standard API for shared-memory
programming. IEEE Comput Sci Eng 1998;5(1):46–55.

[15] Monasse P, Guichard F. Fast computation of a contrast-invariant image
representation. IEEE Trans Image Process 1998;9:860–72.

[16] Carlinet E, Geraud T. A comparative review of component tree computation
algorithms. IEEE Trans Image Process 2014;23(9):3885–95.

[17] Souza R, Rittner L, Lotufo R, Machado R. An array-based node-oriented
max-tree representation. In: 2015 IEEE International Conference on Image
Processing (ICIP). IEEE; 2015. p. 3620–4.

[18] Vachier C. Extinction value: a newmeasurement of persistence. IEEEworkshop
on nonlinear signal and image processing, vol. I. 1995. p. 254–7.

[19] Vincent L. Morphological area openings and closings for grey-scale images.
In: Toet A Y-LO, Foster D, Heijmans H, Meer P, editors. Shape in picture,
vol. 126. Berlin, Heidelberg: Springer; 1994. p. 197–208.

[20] Souza R, Rittner L, Machado R, Lotufo R. A comparison between extinction
filters and attribute filters. In: Mathematical morphology and its applications
to signal and image processing. 2015. p. 63–74.

[21] Souza R, Rittner L, Machado R, Lotufo R. Maximal max-tree simplification. In:
2014 22nd International conference on pattern recognition; 2014, p. 3132–37.

[22] Ghamisi P, Souza R, Benediktsson J, Zhu X, Rittner L, Lotufo R. Extinction
profiles for the classification of remote sensing data. IEEE Trans Geosci Remote
Sens 2016;54(10):5631–45.

http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref1
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref2
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref3
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref4
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref6
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref7
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref8
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref9
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref10
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref12
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref14
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref15
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref16
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref17
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref18
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref19
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref20
http://refhub.elsevier.com/S2352-7110(17)30007-9/sbref22

