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Abstract

Digital forensics is a branch of Computer Science aiming at investigating and analyzing electro-
nic devices in the search for crime evidence. With the rapid increase in data storage capacity,
the use of automated procedures to handle the massive volume of data available nowadays is
required, especially in forensic investigations, in which time is a scarce resource. One possible
approach to make the process more efficient is the Known File Filter (KFF) technique, where a
list of interest objects is used to reduce/separate data for analysis. Holding a database of hashes
of such objects, the examiner performs lookups for matches against the target device under in-
vestigation. However, due to limitations over cryptographic hash functions (inability to detect
similar objects), new methods have been designed based on Approximate Matching (AM). They
appear as suitable candidates to perform this process because of their ability to identify simila-
rity (bytewise level) in a very efficient way, by creating and comparing compact representations
of objects (a.k.a. digests). In this work, we present the Approximate Matching functions. We
show some of the most known AM tools and present the Similarity Digest Search Strategies
(SDSS), capable of performing the similarity search (using AM) more efficiently, especially
when dealing with large data sets. We perform a detailed analysis of current SDSS approaches
and, given that current strategies only work for a few particular AM tools, we propose a new
strategy based on a different tool that has good characteristics for forensic investigations. Fur-
thermore, we address some limitations of current AM tools regarding the similarity detection
process, where many matches pointed out as similar, are indeed false positives; the tools are
usually misled by common blocks (pieces of data common in many different objects). By re-
moving such blocks from AM digests, we obtain significant improvements in the detection of
similar data. We also present a detailed theoretical analysis of the capabilities of the sdhash AM
tool and provide some improvements to its comparison function, where our improved version
has a more precise similarity measure (score). Lastly, new applications of AM are presented
and analyzed: One for fast file identification based on data samples and another for efficient
fingerprint identification. Through our results, we hope that practitioners in the forensics field
and other related areas will benefit from our studies on AM when solving their problems.

Keywords: Digital Forensics, Known File Filtering, Approximate Matching, Similarity Search,
Similarity Digest Search Strategies, Common blocks, Jaccard Similarity.



Resumo
A forense digital é apenas um dos ramos da Ciência da Computação que visa investigar e ana-
lisar dispositivos eletrônicos na busca por evidências de crimes. Com o rápido aumento da
capacidade de armazenamento de dados, é necessário o uso de procedimentos automatizados
para lidar com o grande volume de dados disponíveis atualmente, principalmente em investi-
gações forenses, nas quais o tempo é um recurso escasso. Uma possível abordagem para tornar
o processo mais eficiente é através da técnica KFF (Filtragem por arquivos conhecidos - Known

File Filtering), onde uma lista de objetos de interesse é usada para reduzir/separar dados para
análise. Com um banco de dados de hashes destes objetos, o examinador realiza buscas no
dispositivo de interesse sob investigação por qualquer item que seja igual ao buscado. No en-
tanto, devido a limitações nas funções criptográficas de hash (incapacidade de detectar objetos
semelhantes), novos métodos foram projetados baseando-se em funções de Pareamento Apro-
ximado (ou Approximate Matching) (AM). Estas funções aparecem como candidatos para re-
alizar buscas uma vez que elas têm a capacidade de identificar similaridade (no nível de bytes)
de uma maneira eficiente, criando e comparando representações compactas de objetos (con-
hecidos como resumos). Neste trabalho, apresentamos as funções de Pareamento Aproximado.
Mostramos algumas das ferramentas de AM mais conhecidas e apresentamos as Estratégias
de Busca por Similaridade baseadas em resumos, capazes de realizar a busca de similaridade
(usando AM) de maneira mais eficiente, principalmente ao lidar com grandes conjuntos de
dados. Realizamos também uma análise detalhada das estratégias atuais e, dado que as mes-
mas trabalham somente com algumas ferramentas específicas de AM, nós propomos uma nova
abordagem baseada em uma ferramenta diferente que possui boas características para investi-
gações forenses. Além disso, abordamos algumas limitações das ferramentas atuais de AM em
relação ao processo de detecção de similaridade, onde muitas comparações apontadas como
semelhantes, são de fato falsos positivos; as ferramentas geralmente são enganadas por blocos
comuns (pedaços de dados em comum encontrados em muitos objetos diferentes). Ao remover
estes blocos dos resumos de AM, obtemos melhorias significativas na detecção de objetos si-
milares. Também apresentamos neste trabalho uma análise teórica detalhada das capacidades
de detecção da ferramenta de AM sdhash e propomos melhorias em sua função de compara-
ção, onde a versão aprimorada apresenta uma medida de similaridade (score) mais precisa. Por
último, novas aplicações de AM são apresentadas e analisadas: uma de identificação rápida de
arquivos por meio de amostragem de dados e outra de identificação eficiente de impressões
digitais. Através de nossos resultados, esperamos que profissionais da área forense e de outras
áreas relacionadas se beneficiem de nosso estudo sobre AM para resolver seus problemas.

Palavras-chaves: Forense Digital, Filtragem por Arquivos Conhecidos, Pareamento Aproxi-
mado, Busca de Similaridade, Estratégias de Busca de Similaridade baseadas em Resumos,
Blocos comuns, Similaridade de Jaccard.
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1 Introduction

Digital forensics is a branch of forensics aiming at investigating digital devices
in the search for crime evidence. According to Raghavan, S. (RAGHAVAN, 2013), digital
forensics is a multi-staged process involving a sequence of activities, such as evidence iden-
tification, acquisition, examination, analysis, documentation and preservation. All procedures
adopted during an investigation must be concerned with two issues: Integrity and authenticity.
The first one ensures that the act of seizing and acquiring digital evidence does not modify it.
In contrast, the second one allows one to confirm the integrity of the acquired information.

Applications of digital forensics include: Criminal investigations (child pornogra-
phy, identity thief, e-crimes), civil litigation (e-discovery), and intelligence (terrorist attacks).
Besides, this area of forensics have sub-branches related to the type of digital device under ana-
lysis. An example of some common branches are: Disk forensics, mobile forensics, network
forensics, memory analysis and cloud forensics.

Among digital forensic branches, one problem that all areas are facing today is
that, due to technology improvements, storage devices’ capabilities have increased significantly
in the past years. The growth is a result of the popularity of digital devices that became more
accessible to people due to a decrease in costs. This trend imposes a severe challenge on forensic
practitioners, who, even in ordinary investigations, have to handle terabytes of digital evidence
(GARFINKEL, 2010; RAGHAVAN, 2013; QUICK; CHOO, 2014; LILLIS et al., 2016). More-
over, according to Quick, D. and Choo, K. (QUICK; CHOO, 2014), there is a potential gap in
the processing power and storage capabilities improvements, showing that we have more data
than processing power as time passes. This observation is based on the predictions of Moore
and Kryder’s laws. The first one states that the number of transistors (and, indirectly, the com-
puting power) doubles on an integrated circuit every 18-24 months, while the other says that the
storage density of hard drives doubles every 12 months; in short, we have more space to store
data than processing power for handling it. Consequently, the time and effort to undertake ana-
lysis on seized devices remain a challenge, forcing practitioners to explore solutions to handle
the massive volume of data in a short time.

One possible approach to deal with the problem mentioned above more efficiently
is the Known File Filter (KFF) method, which separates relevant from irrelevant information in
prior analysis. In the triage phase, practitioners can use lists of interest objects to remove known
good files from the analysis (objects of operating systems, known software, and other inoffen-
sive ones in a white list) and/or separate bad ones (illegal or suspicious objects in a blacklist).
Cryptographic hash functions (e.g., MD5, SHA-1, SHA-2, etc.) are a straightforward technique
to perform KFF. Indeed, NIST (National Institute of Standards and Technology) (NIST, 2016)
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provides a hash database of good files that can be used by practitioners to do the filtering pro-
cess, called NSRL (National Software Reference Library). An example of the adoption of KFF
in practice can be seen in the well-establish forensic tool Autopsy (AUTOPSY, 2015), whose
goal is to analyze Windows and UNIX disk and file systems. Among all the modules with dis-
tinctive functions of the tool, a particular one, called Hash Database Lookup Module, uses hash
databases like the NSRL or others added by the practitioner, to determine if a file is known bad,
known good, or unknown, based on its MD5 hash value (AUTOPSY, 2016).

However, cryptographic hash functions do not perform well in the scenario pre-
sented here since even small changes in an object will produce an entirely different hash, which
will make the correlation of the original object and its modified version almost impossible. This
way, attackers can bypass investigations by inserting random bytes in malicious objects. Also,
since some objects get newer versions frequently (e.g., operating system updates), keeping a
hash for every release is infeasible due to the database size required and the difficulties to keep
it up to date.

Suitable candidates to mitigate hash limitations are the Approximate Matching (AM)
functions. Using a small and compact data representation (digest), they can identify the simila-
rity between objects in a way that similar objects will have similar digests; small changes in the
input object will reflect in minor variations in its digest representation. When comparing two
digests, AM produces a score related to the amount of content shared between them. Usually,
if a minimal and pre-defined value (or threshold) is achieved, they can be considered as similar.
The use of these functions in digital forensics is very beneficial, mainly when used as a data
reduction technique. As shown by Breitinger, F. et al. (BREITINGER et al., 2014b), this sort of
function can increase the file identification rate significantly (from 1,82% using the traditional
cryptographic hash to 23,76% with approximate matching). Furthermore, AM can be applied
to digital forensic investigations in the examination phase, especially in a triage, dealing with
a copy of the data acquired from seized devices (e.g., computers, mobiles, tablets, or any other
electronic device capable of storing valuable data).

The downside of AM is that they are computationally more expensive than tradi-
tional hash functions. Comparing two digests is not as straightforward as the string comparison
of traditional hashes. Specifically, AM requires a particular function to determine the simila-
rity of two digests that is more complex and tool-dependent. Besides, current functions present
other limitations regarding compression rates and/or precision. Each solution usually focuses
on addressing satisfactorily one of these aspects to the detriment of others.

Another obstacle of the AM adoption for KFF is that the straightforward compari-
son solution usually adopted is the brute force (all-against-all). In this mode, every reference
list digest is compared to every digest created for the target device under analysis. This way, the
complexity of this search is quadratic, and the whole process becomes very time-consuming.

Given the limitations of the field, new solutions are required to handle the massive
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volume of data found in investigations nowadays. In this work, we present new solutions to deal
with the current limitations of AM. We aim at showing how a digital forensic practitioner could
use Approximate Matching functions to perform a similarity search, where large data sets are
compared to identify similar objects. Our main goal is to answer the following leading research
question:

Leading RQ. How can we perform a similarity search (from a digital forensic practitioner
perspective) over large data sets in a (time/space) efficient manner?

To help us answer this general question, we elaborated and explored other and more
specific research questions to cover many topics over the AM field.

RQ1. Can AM functions deal with huge data sets efficiently? How would digital forensic inves-
tigations benefit from the use of such functions?

RQ.2 How can we estimate the (theoretical) minimum similarity detected by AM functions?

RQ3. How can we improve current AM tools to perform better over large data sets and produce
more reliable results?

RQ.4 Is there any other application for AM functions?

Topics outside the scope of this work: We emphasize that the following topics will not be ad-
dressed in this thesis.

• Adversary argument: According to Flowers, M. et al. (FLOWERS et al., 1982), ad-
versary argument encompasses the situation where we have two participants and
neither of them expects to persuade or be persuaded; their intention is to remain
adversaries and present arguments to make their side look good while making the
opponent’s look bad. In our scenario, the participants are the digital forensic practi-
tioner and a malicious user who seeks to hide information, such as crime evidence.
Both participants will try their best to accomplish their goal.

• Syntactic/Semantic similarity: All object similarity evaluation performed in this the-
sis does not take into consideration the internal structure of objects nor try to inter-
pret them. The similarity is only assessed by looking at the object bytes.

• Stream data: No solution regarding stream data similarity is considered in this thesis.

Assumptions: This thesis considers the following assumption:

• Most of the solutions provided here consider that the devices under analysis, such as
seized media, for instance, allow a complete or partial recovery of the objects stored
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on them, which means that the file system of the operating system is intact. Only
in the last chapter of our work we deal with media having a corrupted file system,
where no information about how to restore objects is available. This way, we only
have access to shreds of objects.

The remainder of the text is structured as follow to deal with our research questions.

• Chapter II: Discuss the main problems we are facing in this work and presents Approxi-
mate Matching and other related terms, as well as the main tools of the field.

• Chapter III: Compares the similarity digest search strategies and show their benefits and
limitations.

• Chapter IV: Proposes a new similarity digest search strategy and present some results
when performing a similarity search.

• Chapter V: Presents, defines, and discusses the common blocks and proposes a new way
to identify and remove these blocks from the similarity assessment. Results discuss how
the common blocks affect digital forensics investigations.

• Chapter VI: Performs a theoretical analysis of the sdhash AM tool and shows some
limitations. A new tool, called J-sdhash, is proposed and its benefits are discussed.

• Chapter VII: Proposes new applications for AM functions: Fast file identification (using
sampling techniques) and Fingerprint identification (when dealing with larger data sets of
templates).

• Chapter VIII: Gives the conclusions and some directions for future works.
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2 Background and Related Work

The main concepts in the Approximate Matching field are presented in this chapter.
Our study focus in the tools that operate in the bytewise level, where only the object bytes are
analyzed when assessing similarity. We highlight that it is not in the scope of this chapter to
provide a detailed and complete analysis of the field but to present the necessary background
for the understanding of our contributions in this area. We begin by presenting the problem
which led us to the AM field and possible solutions to it found in the literature.

2.1 Problem description

Finding similar data (from a digital forensics perspective) in documents, pictures,
videos, or programs that share some pieces in common on large data sets is one of the problems
faced by digital forensics practitioners nowadays. Due to technology improvements, users have
digital devices with terabytes of data, given the easy access to storage media (external hard
drives, pendrives, etc) with great capacities. The increase in media capacity makes forensic
practitioners’ job a challenging task, where terabytes of data have to be inspected in the search
for crime evidence. Usually, white/black-listing techniques are employed, where one database
of interest objects is contrasted to the media under investigation for the search of equal/similar
data. All this process must happen in a time/space-efficient manner, which is a problem.

The identification of exact duplicates can be easily solved with cryptographic hashes
(e.g, SHA-1, SHA-2 etc.), which are efficient; however, they can not deal with similar dupli-
cates. For addressing such limitation, AM tools were developed.

2.2 What is similarity?

According to the Oxford dictionary, similarity is "the state of fact of being similar".
The same dictionary defines the term similar as "having resemblance in appearance, character,

or quantity, without being identical". Dekang, L. (LIN, 1998) states that:

1. The more commonality two objects share, the more similar they are.

2. The more differences two objects have, the less similar they are.

3. The maximum similarity between two objects is achieved when they are identical.

Furthermore, there are two categories in which similarity can be expressed: Resem-
blance and Containment. Broder, A.Z. (BRODER, 1997) defines resemblance when two objects
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resemble each other, while containment when one object is contained inside another. In digital
forensic investigations, we may encounter both types of similarity. For instance, when looking
for a picture, we may encounter other pictures with the same dimensions and similar content
(resemblance) but also can find this picture inside a book with many other images and text
(containment). Which similarity type we should focus on depends on the investigation goals.

2.3 Cryptographic hash functions

Cryptographic hash functions have many applications on several security areas,
such as message authentication, digital signatures, one-way password, among others, including
data integrity. In the forensics field, it plays a vital rule related to data integrity, where we can
quickly verify whether two objects are identical or not. One of the applications of this latter
example is on KFF (Known File Filtering), when we search for objects in a target device using
a reference list, which is the focus of this work.

When looking for duplicate objects, the best option is to use cryptographic hash
functions. This sort of technique is already well explored and for the purpose of detecting equal
artifacts is the most appropriate option due to its interesting characteristics: Compact represen-
tations (a small fixed-size digest to represent an object of any size) and fast digest generation
and comparison processes. Besides, modern processors have specific instructions to process
hash functions more efficiently (INTEL, 2013).

According to Stallings, W. (STALLINGS, 2014), the security requirements for crypto-
graphic hash functions are:

• Variable input size: The hash function H can be applied to data of any size;

• Fixed output size: A fixed-length output is produced by H;

• Efficiency: Computing H(x) is relatively easy for any given input data x, leading to prac-
tical hardware and software implementations;

• Preimage resistance (one-way property): It is easy to generate a hash value h from a
message y, but it must be computationally infeasible to generate the message y from the
hash value h;

• Second preimage resistance (weak collision resistance): It must be computationally in-
feasible to find an alternative message y with the same hash value of a message x;

• Collision resistance (strong collision resistance): It must be computationally infeasible to
find any two messages (x,y) such that their hash values are the same (H(x) = H(y)).

Another characteristic of a good hash function is that applying it to a broad set of in-
puts will produce evenly distributed and apparently random hash values. Furthermore, changing
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a single or several bits in the input data will produce, with high probability, a significant change
in the hash code. Examples of hash functions are MD5, SHA-1, SHA-2, SHA-3, among others.
Related to attacks on cryptographic hash functions, Stallings, W. says that collisions will exist
in any good function, but it must be computationally infeasible to find them.

When using cryptographic hash functions for KFF with a black/white list, a severe
limitation arrives: The identification of similar data. Such functions are very sensitive to even
small changes in the input data, since the hash value of the original object will be completely
different from the one of an object with the same content but differing in a single bit. Fixing
this issue demands to store hashes for every new version of the object. However, as software,
libraries and operating systems files are constantly updated, keeping a hash database for every
single change is difficult to keep it up to date. Furthermore, attackers can bypass investiga-
tions by inserting random bytes in malicious objects. For this reason, we focus on approximate
matching functions as a possible solution to mitigate hashes limitations.

2.4 Approximate matching

Approximate matching functions are defined by NIST (BREITINGER et al., 2014b)
as a "Promising technology designed to identify similarities between two digital artifacts. It is

used to find objects that resemble each other or find objects that are contained in another

object". They can be classified according to their operational level, as follows:

• Bytewise1 Matching relies on the byte sequence of the object. Since it does not try to
interpret data either consider any structure within it, this level is more efficient than others
and is format independent. Bytewise functions are also known as similarity hashing or
fuzzy hashing.

• Syntactic: Relies on the internal structure of the object. For this reason, they are format
dependent but does not interpret the content of the object to produce results. For example,
the structure of a TCP network packet could be used to match packets from the same
source and/or destination.

• Semantic: Relies on the contextual attributes of the object. It is also known as perceptual
hashing or robust hashing, and it is closer to human perception. In this operational level,
the object is interpreted and hence format dependent. Therefore, it is more expensive.
The similarity of JPG and PNG images with the same content is an example: Their byte
structures are different due to encoding, although the picture is the same.

1 Although NIST differentiates the bytewise and syntactic level and separates them, one can argue that the first
one can be classified as part of the second. The bytewise level considers an abstraction created by users to
manipulate data (byte structure). To be more precise, one should refer to a bitwise level (free of any internal
structure) and considers the bit as a unit. However, in this thesis, we will adopt the definition used by NIST and
followed by most of the AM literature.
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In this thesis, we focus on the bytewise level because of its interesting characteris-
tics: Format independence and efficiency. In a triage process, forensic examiners must produce
results as quickly as possible when dealing with a huge amount of data. This way, approximate
matching appears as a suitable candidate for a first step into separating devices that potentially
have evidence from those that do not. More details about the syntactic and semantic levels can
be found in Dorneles, C. F. et al.’s (DORNELES et al., 2011) work.

2.4.1 Main steps of any AM function

Every tool that implements AM concepts has at least two main functions: Digest
generation and comparison. These two functions are presented next.

2.4.1.1 Digest generation process

To create a similarity digest, AM functions usually perform the following steps:

Extraction The object bytes are read and some information is extracted from them to compose
the digest. We will refer to the information extracted in this step as a feature, independent
of the AM tool. However, we highlight that the concept of a feature may change from tool
to tool.

Selection/filtering After extracting the features from an object, some tools ended up with many
features to deal with. Some features may not be as important as others (e.g., a sequence
of all 0’s in a byte sequence) or there are too many features that using all of them will
create large digests. For this reason, some of the features are discarded.

Codification (digest generation) The last process is the codification of features into a digest,
a byte sequence that can be easily compared to another digest to indicate the level of
similarity between two objects. Some tools use as digest data structures such as bloom
filters (BLOOM, 1970), ASCII characters, vectors, among others.

2.4.1.2 Digest comparison process

After creating the digest, we need to compare it to the digest of another object to
assess how similar they are. For this reason, the second function present in any AM tool is
the comparison function. We emphasize that this function depends on the data structure used to
codify the features performed in the digest generation process. For instance, if we use bloom fil-
ters to store the features, our comparison function is the one that receives two filters and returns
the number of bits in common between them. Another example is the use of ASCII characters
to represent each feature of the object. We could just use the Edit distance (UKKONEN, 1983)
to measure how distant a character is from its correspondent in the other digest and then repeat
the measurement for the whole digest.
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After comparing two digests, the comparison function returns a value indicating
how similar two objects are, which can be in a fixed interval (0-100), for example.

2.4.2 Cryptographic hashes X Approximate matching

In comparison to traditional hash functions (e.g. MD5, SHA-1, SHA-2) where every
bit change in the input is expected to cause a dramatic change in the digest and only binary
answers are provided (two objects are equal or not), AM provides a confidence measure about
the similarity shared between two objects. Some methods provide an answer in a fixed interval:
0-100, 0-128, etc.; others provide a value indicating dissimilarity.

We can also compare traditional hashes to approximate matching functions regar-
ding the digest length. The output size of traditional hashes is fixed independent of the input,
while approximate matching produces either a fixed or variable size output (proportional to the
input), depending on the method. They also are more expensive than traditional hashes in both
processes: Digest generation and comparison. Approximate matching methods need a special
function designed to compare digests, requiring a more complex computation and processing
due to their singularities and largest digests.

In short: Hashes are less computationally expensive and only say whether two ob-
jects are equal or not. AM requires more computational power in both digest and comparison
functions but it is able to identify similarity in its two forms: Resemblance and Containment.

2.4.3 Applications

The range of applications for AM is vast. One can use it to identify new versions
of documents and software, embedded objects (e.g. jpg file inside a word document), objects
in network packets (without reconstructing the packet flow), locate variants of malware fami-
lies, clustering, code reuse (intellectual property protection and/or bug detection), detection of
deleted objects (fragments remaining on disk), deduplication on storage systems (e.g. cloud
computing - save storage and bandwidth), cross-device deduplication, among others (ROUS-
SEV, 2011; HARICHANDRAN et al., 2016; LI et al., 2015). Besides, Bjelland et al. (BJEL-
LAND et al., 2014) present other scenarios in which AM can be used and show practical ex-
periments where forensics can benefit from this technology. In one experiment, they look for
emails using a small set given as leads to figure out other similar ones. The search uses an email
database, and from the results, unexpected information about alternative conversations was re-
vealed. The other scenario presented by Bjelland determined successfully that cryptographic
software was downloaded in a machine by just analyzing recorded network traffic.
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2.4.4 Approximate matching vs. Locality-sensitive hashing: Candidates to the

Nearest Neighborhood Search problem

It is important to pay attention to an usual misleading of concepts between two
different functions: Approximate matching (AM) and locality-sensitive hashing (LSH). The
idea behind the LSH is to map similar objects into the same positions in a structure (e.g., table)
with high probabilities. This structure, usually a table, will store all objects for which one wants
to check for similarity. This function is usually applied in the data mining field, for clustering
or resolving the Nearest Neighborhood Search problem (see next). Besides, LSH usually uses
semantic information extracted from objects (or their attributes) to find similar objects in a given
set. A broader view of LSH techniques can be found in Wang, J. et al.’s work (WANG et al.,
2014a). AM functions, on the other hand, are designed to produce a digest from the object and,
by comparing two object digests, establish a confidence measure about their similarity.

The Nearest Neighborhood Search (NNS) is an optimization problem that aims to
find the closest (or most similar) object in a given set to a given object (ANDONI, 2009). It is a
broader concept that can be applied to many areas, such as pattern recognition, computer vision,
databases, among others. Besides, there are many variants of NNS like k-nearest neighbors (k
most similar objects), Approximate nearest neighbor, Nearest neighbor distance ratio, Fixed-

radius near neighbors, and All nearest neighbors. LSH is one of the most common functions
employed for solving the NNS problem.

We can define NNS for digital forensics investigations. Here, we can create a new
definition of NNS based on the investigator perspective for this particular context such as
"finding the file in a given data set (media under analysis) that is closest (or most similar)
to a given file (of a reference list)"; for establishing closeness, we can use AM. Note that here
we used the term file indicating that the similarity is related to the object bytes as well as its fea-
tures are bytewise, and no semantic interpretations are performed. Given the definition below,
we can perform NNS for digital forensics investigations as well and use AM to this end.

2.4.5 Some known AM tools

There are many tools that implement the concepts of AM to perform the similarity
identification by using digests at the byte level. Among them, we can mention the ones that have
better characteristics and are the target of constant research:

• Nilsimsa (DAMIANI et al., 2004);

• ssdeep (KORNBLUM, 2006);

• bbhash (BREITINGER; BAIER, 2012a);

• sdhash (ROUSSEV, 2010);
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• mrsh (ROUSSEV et al., 2007) and mrsh-v2 (BREITINGER; BAIER, 2013);

• mvhash-b (BREITINGER et al., 2013)

• TLSH (OLIVER et al., 2013);

• saHash (BREITINGER et al., 2014c);

• LZJD (RAFF; NICHOLAS, 2018).

Even though many functions were developed, none of them was able to address the main
requirements for a proper AM function: Efficient digest generation and comparison, high de-
tection capabilities and low space requirement. Nilsimsa mainly suffers from significantly
high false positive rates (OLIVER et al., 2013), while ssdeep works only for relatively small
objects of similar sizes and cannot stand an active adversary against some attacks, such as anti-
blacklisting and pre-computation of trigger sequences (BAIER; BREITINGER, 2011). bbhash
is quite slow compared to other tools, and sdhash suffers from the same problem and also
from another related to the low digest compression rate (digests are about 2.6% of the input ob-
ject size). Although mvhash-b is very fast, it requires a specific configuration for each file type
(HARICHANDRAN et al., 2016) and seems to work only with objects of similar size. mrsh-v2
has detection capabilities worse than sdhash. TLSH, although being robust in the detection of
small changes on objects, is less powerful than sdhash and mrsh-v2 with respect to contain-
ment similarity detection. At last, saHash works only for objects of similar sizes, restricting its
application to only resemblance detection.

Next, we summarize some of the aforementioned tools that are explored along this
work. We give special attention to sdhash since this tool is target of improvements in the
following chapters of this thesis. Then, we present the similarity digest search strategies, which
make use of AM tools to perform more efficient searches.

2.4.5.1 Block-based hashing

This is the most basic approximate matching function, where data is broken into
fixed-size blocks (e.g., 512 bytes) and hashes are computed for each of them. The final signature
is the concatenation of all hashes, as shown in Fig. 1. The similarity between two objects is
measured by counting the number of common hashes. The dcfldd tool (HARBOUR, 2002),
an extension of the disk dump tool dd, implements this scheme.

Although the Block-based hashing scheme is computationally efficient and straight-
forward to implement, it suffers from alignment issues. The insertion/deletion of a single bit at
the beginning of the input will affect the content of all remaining blocks, and their hashes will
be completely different. Besides, it cannot detect containment similarity.
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Figure 1 – Creating a digest with a Block-based hash approach.

2.4.5.2 Nilsimsa

Damiani, E. et. al. (DAMIANI et al., 2004) proposes Nilsimsa as a method to
detect spam messages. The technique consists in using a fixed-size sliding window (5 bytes) that
goes byte-by-byte through the input and produces trigrams of possible combinations of the input
characters. A subset of trigrams (eight from the ten possible ones for a 5 bytes sliding window)
are mapped to a array of 256 positions (of integers), called accumulator, using a particular
hash function; we highlight that some trigrams are removed because the last bytes of the of the
sliding window repeats in the next window. Every time a position in the accumulator is selected,
its value, initially set to zero, is incremented. After processing the entire input, all accumulator
positions whose value is above a given threshold are set to one in a new array; the remaining
ones are set to zero. This new array is the final digest (32 bytes). Fig. 2 shows the whole process.

Nilsimsa compares two digests by checking the number of identical bits in the
same position (Hamming distance). The result is adjusted, and the range varies from 0 (dissi-
milar objects) to 128 (identical or very similar objects).

2.4.5.3 ssdeep

Adapted from Tridgell’s spam email detector algorithm (TRIDGELL, 2002), Ko-
rnblum developed ssdeep (KORNBLUM, 2006). This tool is based on the Content Triggered
Piecewise Hashing (CTPH) method, which is also meant to detect content similarity in the byte
level, proposed by Tridgell. The main idea of ssdeep is to create variable-sized blocks using a
rolling hash algorithm to determine the block boundaries (when it starts and stops). The rolling
hashing function produces a random value based on a window that moves through the input ob-
ject byte-by-byte. After the first value is generated, the next ones are created very quickly given
the old hash value, the removed part of the window and the new added byte. The algorithm
adopted by ssdeep was inspired in the Adler-32 checksum (KORNBLUM, 2006).

When generating a ssdeep digest, a sliding window of fixed-size (7 bytes) moves
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Figure 2 – Creating a digest with Nilsimsa (based on the work of (DAMIANI et al., 2004)).

through the input, byte-by-byte, and whenever the rolling hash produces a specific output, based
on the current bytes in the window, ssdeep identifies a trigger point, denoting the ending and
beginning of a block. Then, all generated blocks are hashed using a cryptographic hash function
(FNV (NOLL, 2012)) and the 6 least significant bits of each hash is encoded using a Base64
character. The final digest is the concatenation of all characters generated through the blocks.
Figs. 3 and 4 depict the digest generation process of ssdeep. For a detailed explanation, in-
cluding trigger values and required parameters, see (KORNBLUM, 2006).

To compare two digests, ssdeep uses the Edit Distance algorithm (UKKONEN,
1983). This function counts the minimum number of operations required to transform one string
(digest) into another, using weighted operations, like insertion, deletion, substitution (single
character), and transpositions (two adjacent characters). The result is a number in the range
0-100, where 0 means that the two objects are dissimilar and 100, a perfect match.

This scheme is not as sensitive to alignment issues as the Block-based hashing, and
insertions/deletions are expected to have a minor impact on the similarity score. Although this
is one of the most known schemes for approximate matching, it works only for relatively small
objects of similar sizes, mostly due to one of the rolling hash parameters being the object size.
One way found to increase its detection capabilities regarding the object size was using two
digests per item instead of one. When creating the digest, ssdeep uses two different values as
trigger point (derived from the object size, called block size and represented by b). The result is
the creation of two digests, where the first corresponds to a trigger value b and the second 2b.
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44 69 67 69 74 61 6c 20 46 6f 72 65 6e 73 69 63  ...
n bytes

44 69 67 69 74 61 6c 20 46 6f 72 65 6e 73 69 63  ...

Step1

Step2

...

BS = s bytes 
(e.g., 7 bytes)

44 69 67 69 74 61 6c 20 46 6f 72 65 6e 73 69 63  ...Step3

44 69 67 69 74 61 6c 20 46 6f 72 65 6e 73 69 63  ...
Block B1

44 69 67 69 74 61 6c 20 46 6f 72 65 6e 73 69 63  ...Step5

...

Rolling hash

Rolling hash

Rolling hash

Rolling hash

f(BS) ≡ b-1 mod b → NO

f(BS) ≡ b-1 mod b → NO

f(BS) ≡ b-1 mod b → Trigger!

f(BS) ≡ b-1 mod b → NO

ssdeep

Step4

Figure 3 – Identifying object blocks with the rolling hash function in ssdeep (based on the
work of (KORNBLUM, 2006)).

This way, it is only possible to compare objects if their block sizes differ by a factor of two at
most. Also, the first digest is always two times larger than the second, resulting in digest lengths
of up to 64 and 32 bytes, respectively.

ssdeep has been object of researches that address its limitations, especially regar-
ding performance (CHEN; WANG, 2008; BREITINGER; BAIER, 2012b). A security analy-
sis was also done and concluded that ssdeep is vulnerable to an active attack (BAIER; BRE-
ITINGER, 2011).

2.4.5.4 sdhash

One of the most popular AM tools is sdhash, proposed by Roussev, V. (ROUSSEV,
2010) in 2010. The main purpose of this tool is to identify and pick features (byte sequences)
from an object that are least likely to occur by chance in other objects (according to the feature
entropy value) and use these features to represent the given object. Here, we present sdhash and
its main working process, discussing the digest generation and comparison processes. Before
going into specifics, we define the main terms used, as follows:

feature: Sequence of β bytes (default: 64) extracted from objects;
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Table
base64

FNV

ssdeep
                        ...B2 B3 B4 Bm-1 BmB1

n' bytes

≤ 64 bytes

6

The 6 least significant bits are selected of each hash value

32

Signature (digest)

Figure 4 – Creating the object digest from the identified blocks with ssdeep (based on the work
of (KORNBLUM, 2006)).

W (window size): The size of the sliding window (default: 64) used to select the feature with
the smallest entropy in the current window;

m: Bloom Filter size, usually expressed in bits;

k: Number of hash functions used to set bits into the bloom filter (the order of the filter);

fmax: Maximum number of features inserted into a single bloom filter;

t: Threshold value (default: 16) used by sdhash to select which feature will be part of the
digest;

Rprec: Precedence rank with the entropy value of each feature, proportional to the probability
of encountering a feature;

Rpop: Popularity rank of each feature, representing the number of times a feature had the lowest
entropy value in the selection feature process.

2.4.5.4.1 Digest generation process

The sdhash digest generation process can be divided into four steps depicted in
Fig. 5, named: Feature extraction, filtering, selection, and encoding. In the following, we pro-
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vide details of each step based on sdhash proposal (ROUSSEV, 2010).

Object
___________________
___________________
___________________
___________________
___________________
___________________
___________________
___________________
___________________

_______
_______
_______
_______
_______

Features

Feature enconding

Feature 
extraction

Feature 
filtering

Feature 
selection

digest

Figure 5 – sdhash digest generation process.

Feature extraction process The first step of the digest generation process is feature ex-
traction. A set of features is extracted from a given object by a fixed-size sliding window (of the
same size as a feature) that moves byte-by-byte through the whole object. After the extraction,
all features have their Shannon entropy score (H) computed by Eq. 2.1; each entropy value
has a precedence rank (Rprec) associated with it proportional to the probability that it will be
encountered.

H =−
j

∑
i=0

P(Xi) · log2(P(Xi)) (2.1)

Here, P(Xi) is the empirical probability of encountering byte Xi in the feature and j is the
number of different bytes that compose the feature. H is scaled in the range 0 to 1000 (integer),
according to Eq. 2.2.

Hnorm = b1000 ·H/log2Wc (2.2)

Note that the H calculus does not take into consideration all the 256 possible com-
binations of a byte, but only those related to the values present in a particular feature; this way,
a byte that occurs only one time in a feature has P(Xi) = 1/β (for 1≤ j ≤ β ≤ 256).

Feature filtering process Features considered weak are not taken into consideration. Rous-
sev, V. (ROUSSEV, 2010) argues that this filtering helps in reducing the false positives rates and
has minimal impact on the object coverage. All features with Hnorm ≤ 100 or Hnorm > 990 are
dropped out from consideration. The first condition ensures that many features with repeated
characters blocks (e.g., sequences of the same byte - 0x00, 0xFF) be removed, while the second
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condition excludes features with near-maximum entropy value (found in tables spread across
many objects, such as Huffman and quantization tables in JPEG headers).

Feature selection process After eliminating weak features, sdhash picks the ones that
seem unique to represent the object. The sliding window goes through all features (moving
feature-by-feature) and increments the corresponding Rpop of the leftmost feature in the current
context with the smallest entropy value. In the end, all features having Rpop ≥ t are selected to
be part of the object digest. Fig. 6 illustrates a simplified feature selection process. The input
object has 18 features, W = 8, and t = 4. In the end, only two features ( f3 and f13) are chosen
to represent the object.

  0      1     2      3     4      5     6      7     8     9     10   11   12    13   14   15    16   17

Figure 6 – Example of the sdhash feature selection process, using W = 8 (adapted from
(ROUSSEV, 2010)).

Feature encoding process The last step of the digest generation process encodes all se-
lected features into a small representation of the object, the digest. sdhash uses a sequence of
bloom filters to store all object features. Fig. 7 illustrates the whole process. Each selected fea-
ture is mapped into a filter. More specifically, a feature is hashed (using SHA-1) and the result
is split into k parts; the log2(m) least significant bits of each piece are selected to set bits within
the bloom filter. A maximum of fmax features is inserted into a single bloom filter, and when the
filter reaches its capacity, a new one is created. The final sdhash digest is the concatenation of
all bloom filters produced. The default parameters values of sdhash are: k = 5, m = 2048 bits,
and fmax = 160.
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Figure 7 – Encoding feature process of sdhash

2.4.5.4.2 Digest comparison process

To assess the similarity of two objects with sdhash, we need to create and compare
the objects’ digests. The first step was introduced in the previous subsection, while the latter
will be explained here based on (ROUSSEV, 2010).

The sdhash digest is composed by a small header followed by one or more bloom
filters (all concatenated). The header keeps the information about the file represented by the
digest, such as filename, size, number and type of hash functions used to map features into the
digest, number of bloom filters the file has, etc (ROUSSEV; QUATES, 2013). Basically, when
assessing the similarity of two objects Fx and Fy, sdhash compares the set of bloom filters of
both. One filter of Fx is compared to all filters of Fy and the maximum similarity value (number
of common bits) is selected; after comparing all filters of Fx to all filters of Fy, an average is
produced representing the similarity score. The score ranges from 0 (dissimilar, non-match) to
100 (very similar, not necessarily identical). A value of -1 produced as similarity score is a rare
occurrence and it is classified as an unknown result (data with large regions with low entropy
data) (ROUSSEV; QUATES, 2013). In the next paragraphs, we explain in detail how digests are
compared by sdhash.

First, we start by explaining the comparison of two bloom filters and how to come
up with a similarity measure. Consider two filters b fi and b f j with m bits and k hash functions
each. The comparison of these filters takes into consideration the bits in common (set to one)
to measure the overlap between the sets they represent (in this case, the features in common).
Before we present the formula for such comparison, we need to be aware that bloom filters are
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probabilistic structures and are prone to false positives. A single bit set in common between
two filters could be due to the same element or any other one particular to each set. By using
classical bloom filter analysis (BLOOM, 1970), we can estimate (using Eq. 2.3) the number
of expected bits in common in b fi and b f j (Ei, j). Consider that each filter contains gi and g j

elements (gi≤ g j) and G(b fi,b f j) is a functions that returns the number of elements in common
between b fi and b f j.

Ei, j = m · (1− pk·gi− pk·g j + pk·(gi+g j−G(b fi,b f j))) (bits) (2.3)

Here, p (defined in Eq. 2.4) is the probability that, after setting a single bit in the filter, a
randomly taken bit is still 0 (zero).

p = 1−1/m (2.4)

Based on eq. 2.3, we can estimate the maximum and the minimum number of pos-
sible overlapping bits due to chance, using Eq. 2.5 and 2.6. Variables ei and e j represent the
number of bits set to one in b fi and b f j, respectively.

emax = min(ei,e j) (bits), (2.5)

emin = m · (1− pk·gi− pk·g j + pk·(gi+g j)) (bits) (2.6)

Based on emax and emin, Roussev defines a cutoff point C (Eq. 2.7). Only if a cer-
tain number of bits (>C) is found, a similarity score is produced; otherwise, sdhash assumes
that the common bits of the filters under comparison were due to chance and no similarity is
attributed (score = 0).

C = α · (emax− emin)+ emin (2.7)

where α is a variable defined empirically (default: 0.3) (ROUSSEV, 2010).

Given all this background, we can finally compute the similarity score of filters b fi

and b f j, using Eq. 2.8.

SFscore(b fi,b f j) =


−1, if gi < Nmin

0, if ei, j ≤C[
100. (ei, j−C)

(emax−C)

]
otherwise

(2.8)

Here, Nmin is the minimal number of elements in a bloom filter to compute a meaningful score
(default: 16). The -1 value is just a flag to indicate this particular bloom filter comparison does
not produce a meaningful result and should not be considered while computing the average
value. Parameter ei, j is the number of bits set to one in b fi∩b f j.

After comparing all filters, sdhash summarizes the results according to Eq. 2.9,
where the similarity score is computed for two digests, SDx and SDy, produced from objects Fx
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and Fy, where each one consists of u and v bloom filters each (u≤ v) (ROUSSEV, 2010).

SDscore(SDx,SDy) =
1
u

u

∑
i=1

max1≤ j≤vSFscore(b fx,i , b fy, j) (2.9)

2.4.5.4.3 Research on sdhash

Extensive research has been conducted over sdhash exposing some vulnerabilities
when one attempts to perform changes on objects to avoid blacklists, and also some improve-
ments in mitigating these issues (CHANG et al., 2015; OLIVER et al., 2014; BREITINGER
et al., 2012). Furthermore, Roussev, V. (ROUSSEV, 2011) showed that sdhash outperforms
ssdeep with respect to its detection capabilities. Besides, sdhash can detect both resemblance
and containment similarity.

2.4.5.5 mrsh and mrsh-V2

Multi-Resolution Similarity Hashing-v2 (mrsh-v2) (BREITINGER; BAIER, 2013)
is an extension of mrsh (ROUSSEV et al., 2007) regarding the detection capabilities and per-
formance, that combines parts of the digest generation process of the most known AM tools,
such as ssdeep and sdhash. The mrsh-v2 uses a rolling hash algorithm over a 7-byte sliding
window that moves through the object byte-by-byte. Whenever the hash function hits a specific
value (based on a predefined block size parameter b), it identifies a trigger point, denoting the
ending and beginning of a block. Fig. 8 depicts the first part of the process, based on ssdeep

(with the difference in the chosen rolling hash algorithm and block size value). On the second
part, based on the sdhash tool, a hash function (FNV-1a) is used to hash each block defined
previously; the result is split into k sub-hashes, where the k · log2(m) bits of each part are used
to address bits in a bloom filter (k is the number of sub-hashes and m the bloom filter size), as
shown in Fig 9. The final digest is a sequence of bloom filters, with a length of about 0.5% of
the input size.

The comparison digest function is the same as the one used by sdhash (Sec.2.4.5.4.2).
Although this method is faster than sdhash, its precision and recall rates are worse.

2.4.5.6 TLSH

Proposed by Oliver, J. et al. (OLIVER et al., 2013), TLSH is based on the locality-
sensitive hashing (LSH) scheme, producing a fixed-size digest used to find similarities among
objects. Given an object as input, TLSH starts processing it using a 5-byte sliding window that
moves byte-by-byte, extracts six trigrams in each step (a combination of the window charac-
ters), and populates a 128-bit array of counter buckets using a mapping function (Pearson hash
(PEARSON, 1990)); next, three quartile points are calculated based on the array. Fig. 10 il-
lustrates this process. The final digest is composed of a header and a body, with 35 bytes of
size. The first part (header) has 3 bytes corresponding to the quartile points, the object size,
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Figure 8 – Extracting object blocks with mrsh-v2 (based on the work of (BREITINGER;
BAIER, 2013))

Figure 9 – Hashing and inserting object blocks into the digest with mrsh-v2 (based on the work
of (BREITINGER; BAIER, 2013))
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Figure 10 – Digest generation process of TLSH. Part I: extracting trigrams and populating the
bucket array (based on the work of (OLIVER et al., 2013))

and a checksum (one byte per parameter), according to Fig. 11. The second part (body), en-
compassing 32 bytes as depicted in Fig. 12, is constructed by comparing each position in the
counter buckets array to the quartile points, and the result is a bit pair defined according to the
quartile the value ranges on.

The comparison function of TLSH is divided into two, each comparing one part of
the digest. The first one, Distance Header, produces an output based on the object size and
quartile points. The second one, Distance Body, calculates an approximation of the hamming
distance between the digests. The sum of both functions is the final result, scoring 0 (zero) for
identical (or nearly identical) objects or more for different ones.

Further research showed that TLSH is more robust to random changes and adver-
sarial manipulations than ssdeep and sdhash (OLIVER et al., 2014). However, this scheme
focuses on resemblance detection and does not seem to work well for containment detection.
This statement is corroborated by Lee, A. and Atkison, T. (LEE; ATKISON, 2017), showing in
their work a small detection capability of TLSH concerning containment similarity.
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Figure 11 – Digest generation process of TLSH. Part 2: Creating the digest header (based on the
work of (OLIVER et al., 2013)).

2.5 Strategies for similarity digest search

The major bottleneck in digital forensic investigations when performing KFF based
on AM is the similarity digest search. An examiner, who usually has a reference list containing
objects of interest, needs to compare each object from this set to each one got from the target
system under analysis. The goal here is to find similar objects, which can be efficiently done
by using one of the AM tools described in the previous section. As stated by Harichandran,
V. S. et al. (HARICHANDRAN et al., 2016), this challenge is related to the Nearest Neighbor
Search problem, with the difference that we need to identify the similar objects by comparing
their digests only.

It is important to mention that this problem is different from finding exact matches,
which can be solved efficiently with ordinary databases (WINTER et al., 2013). The similarity
search involves finding similar objects sharing a certain degree of commonality (higher than a
threshold) only by the comparison of their digests. The objects found this way are separated for
a further and deeper analysis (blacklist) or eliminated from the investigation (white list).

Most AM tools perform the similarity search by the naive brute force method: each
object from the target system is compared to all objects from the reference list (all-against-all
comparison). However, the brute force could be too time-consuming when dealing with large
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Figure 12 – Digest generation process of TLSH. Part 3: Creating the digest body (based on the
work of (OLIVER et al., 2013)).

data sets. The complexity of a search is O(r ·n), where r is the number of digests in the reference
list and n the number in the target system. On the other hand, traditional approaches aiming at
finding exact matches usually create indexes for the objects (using traditional hash functions
as SHA-1, SHA-2) of the reference list and store them in sorted lists, balanced trees or hash
tables. The complexity of a single query in such cases is O(log(r) ·n) for sorted lists and trees
and O(n) for hash tables, which is lower than the O(r ·n) from brute force similarity search.

To cope with this problem, researchers have proposed techniques aiming to reduce
the time involved in the similarity digest search, which encompasses at least the two phases
described as follows (CHAWATHE, 2012):

• Preparation phase: The reference list objects (black list, for instance) have their digest
created using the chosen AM tool, and then these digests are organized somehow in a
structure to improve the lookup procedure;

• Operational phase: The target system has digests created for its objects and, for each one,
a comparison is done using the material compiled in the preparation phase. In this phase,
the digital forensic examiner verifies the presence or not of the objects of interest in the
target system.
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In the following subsections, we will present the approaches proposed so far (from
the best of our knowledge), which seek to deal with the growing amount of data in forensic
investigations by reducing somehow the required time for the search process. For the rest of
this section, we will refer to r and n as the number of digests in the reference list and the target
system, respectively.

2.5.1 The naive brute force approach

The naive method for pursuing a similarity digest search process is by brute force
(all-against-all comparison). Every object in the target system is compared to all objects in the
reference list. This approach can be performed with all AM tools presented in section 2.4.5. In
the preparation phase, the forensic examiner needs to create digests for the reference list objects
using the chosen tool and store them in a file, database or any other structure. In the operational
phase, the examiner needs to create a digest for each object of the target system and compare it
to all reference list digests, using the comparison function in the AM tool. The best match is the
one sharing the highest similarity value with the queried object, and if it is above a predefined
threshold, the corresponding object is separated.

The major drawback of this approach is the time complexity, which is O(r · n) or
O(r) for a single query. For larger data sets, the search can take days or weeks using common
hardware (WINTER et al., 2013).

2.5.2 Distributed P2P search

This strategy aims at performing the search in a distributed way through a peer-to-
peer approach. Each node in the network is responsible for managing part of the data in the
reference list. Basically, under a request for a search of a given digest, it is calculated in which
nodes similar objects may reside based on the distance to the nodes reference digests. The
queried digest is then sent to the nodes sharing the higher similarity in order to be compared
with the reference data stored on them. The nodes return whether there is or not a similar digest.
This method assumes that similar digests will always be distributed to the same nodes.

Although this approach seems interesting due to the distributed processing, which
could decrease the time taken in investigations, it presents some drawbacks, as extra storage
requirement, a high number of machines to work with, and network delays. The first problem
comes when one node leaves the network. Since each node manages one reference point, ano-
ther one must come up and take this reference point to maintain data availability. However, this
is not the ideal solution if it takes longer for a new node to enter the network. A solution would
involve storing extra data (redundancy) on each node, in a way that, even though some nodes
are gone, data can still be recovered, which would increase even more the storage requirement
of the system.
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Another problem of the distributed P2P approach is the high number of machines
needed to maintain both availability and scalability. Communication delays could also degrade
the quality of an investigation process. For this strategy, we will present two approaches: DHT-
nil and iCTPH. Both approaches do not address the aforementioned problems.

2.5.2.1 DHTnil: Distributed Hash Tables with Nilsimsa

DHTnil is an efficient lookup strategy for finding similar digests, based on the
Nilsimsa AM tool and DHT (Distributed Hash Tables). Its main goal is to identify spam e-
mails. According to Jianzhong, Z. et al. (ZHANG et al., 2008), DHTnil stores digests in diffe-
rent nodes in a way that digests of similar objects are stored on one of a few nodes. It divides
the Nilsimsa digest space into some subspaces (with no overlap) managed by the DHT nodes.
Space is divided based on a point set, where every point is a core of a subspace (reference
point) attributed to a node. Chord was chosen as DHT as well as the Voronoi diagram to divide
the multi-dimensioned space, using Euclidean distance to verify similarity. As each subspace is
managed by a DHT node, the similarity digest search involves only comparing the digest to the
ones stored in a few chosen DHT nodes.

In the preparation phase, DHTnil requires that forensic examiners create digests for
the reference list objects and generate the reference points. These points are few digests selected
from the reference list to represent the subspace. The selection could be randomly or carefully
chosen. Next, the remaining digests are stored on the corresponding DHT nodes where the
distance from the queried digest and the reference point is smaller.

In the operation phase, a digest is created for the queried object, and the subspace
it belongs to is evaluated. The DHT node selected and its neighbors are searched for similarity,
where the digest is compared to all other ones stored in the nodes. The number of matches is
then returned (ZHANG et al., 2008).

The main drawbacks of DHTnil are the already mentioned ones related to dis-
tributed P2P systems and also one due to the AM tool chosen (Nilsimsa), which suffers from
significantly high false positive rates (OLIVER et al., 2013). This approach also performs un-
necessary lookups per digest and hence possesses a high time complexity (O(r)), equal to the
brute force method, although in practice the time is expected to be smaller. This high com-
plexity is due to the number of items in each node being proportional to the number in the set
(considering a uniform distribution of the items).

2.5.2.2 iCTPH: Distributed Hash Tables with ssdeep

A similar approach to DHTnil is iCTPH, which also uses Chord to store and lookup
digests, but instead of Nilsimsa, it uses the ssdeep tool. The iDistance technique (JAGADISH
et al., 2005) is used to map similar digests into near clusters. The vector space is divided into
clusters, identified by reference points, and the digests are mapped into a cluster according to
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their distance from the reference point, using the Edit distance algorithm (minimum number of
operations required to transform one string into another) (JIANZHONG et al., 2010).

Jianzhong, Z. et al. (JIANZHONG et al., 2010) explains that, in the preparation
phase, one must compute the digest of all objects in the reference list, choose a set of points as
a reference, and then decide which cluster each digest belongs to. In the operational phase, each
queried object has its digest calculated. iCTPH generates a query interval for each cluster related
to the queried item and performs a comparison with all digests of the clusters corresponding to
that interval. The number of similar digests found is returned.

iCTPH has the same drawbacks of DHTnil: poor AM tool (ssdeep) (ROUSSEV,
2011) and some unnecessary lookups per digest, resulting in a time complexity equal to the
brute force: O(r) (single query). Just like DHTnil, this approach also inherits the limitations of
a P2P system.

2.5.3 Indexing strategy

Winter, C. et al. (WINTER et al., 2013) present a different approach for simila-
rity digest search, called Fast Forensic Similarity Search (F2S2). The authors use an index-
ing strategy based on ssdeep (but not restricted to it) to avoid the overwhelming amount of
time required by the naive brute force method. It builds an index structure over the n-grams
(n consecutive bytes) contained in a digest. All digests with the same n-gram queried are re-
turned in a lookup procedure. They are suitable candidates for being similar to the queried item,
and the comparison is restricted to these candidates only. Here we are interested in finding
exact matches on the n-grams level. The results presented in the paper points out an impressive
speedup compared to brute force method.

The index structure chosen was a particular kind of hash table, containing two parts:
A central array (index table) and variable size buckets that can store multiple entries each (n-
grams). The n-grams of a digest b with l bytes are: b1...bn, b2...bn+1, ..., bl−n+1...bl . They
serve as lookup key and provide a link to all digests containing the same values. N-grams are
composed by two parts. The first one is used as the entry in an address function, responsible for
mapping keys (n-grams) to positions in the index table, using the k leading bits of the n-gram
(since a digest of ssdeep is base64 encoded, it is necessary to decode it before selecting the
bits). The other part, called e-key, is used to identify the n-gram and it is part of the bucket entry,
as well as the ID, a link to the corresponding digest (WINTER et al., 2013).

In the preparation phase of F2S2, digests are created for all reference list objects
using ssdeep and an ID is assigned to each one. Then, an index table is created, and the digests
are inserted on it. However, they are not added directly. A sliding window goes byte-by-byte
mapping each n-gram and ID to a position in the index table, inserting it in a new bucket or
adding it to an existing one (as long as they share the same n-gram but have different IDs), as
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shown in Fig. 13.

In the operational phase, the first step is loading the index structure into the main
memory. Then, digests are created for each item in the target system, and their n-grams are
extracted. A lookup procedure using these n-grams selects all digests (candidates) in the index
containing the same n-gram queried. Finally, the ssdeep comparison function is executed for
the queried digest and each candidate to confirm the similarity. We highlight that since ssdeep
digests have two signatures for each object (one using block size b and another 2b), the lookup
procedure is done for both.

Figure 13 – Inserting a n-gram in the index table in Winter’s method (based on the work of
(WINTER et al., 2013)).

The main drawback of F2S2 is the chosen AM tool; ssdeep is less accurate than
others, especially when comparing objects of different sizes (ROUSSEV, 2011). The proposed
strategy does not work with more precise tools, such as sdhash, since it does not support digests
represented by Bloom filters, which cannot be ordered/indexed. Also, since the number of can-
didates sharing the same n-grams as query digest is proportional to the number of entries in the
index, the time complexity of F2S2 is the same as brute force, O(r), even though experiments
have shown a speedup factor above 2000 compared to brute force (WINTER et al., 2013).
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2.5.4 Bloom filter-based search

2.5.4.1 The MRSH-NET strategy

Breitinger, F. et al. (BREITINGER et al., 2014a) present a new similarity digest
search strategy based on bloom filters, which reduces the lookup complexity of a single query
from O(r) to O(1). The MRSH-NET approach is intended to work with sdhash and mrsh-v2

AM tools and uses a single, huge bloom filter to represent all the objects of a reference list.
However, due to the characteristics of bloom filters, the method is restricted to membership
queries only: Does this set contain any similar object to the queried one? If so, an affirmative
answer is returned, but it does not point the similar object(s).

MRSH-NET uses sdhash/mrsh-v2 to extract features from the reference list objects
and insert them into a single bloom filter instead of having one or multiple filters per object. This
procedure aims to avoid the expensive brute force approach and hence speedup the similarity
digest search process. To decide whether or not an object is inserted in the filter, the match
decision is based on a sufficiently large number of succeeding features that needs to be found
in the filter so the queried object is considered part of the set.

In the preparation phase, one has to extract the features from all objects in the refe-
rence list, create a single, huge bloom filter, and then insert the features into the filter.

The operational phase involves loading the structure into the main memory, extrac-
ting the features of the queried object, and checking in the bloom filter for their presence. If
the object has more than a predefined threshold of succeeding features found in the filter, the
object is said to be part of the set and can be separated; otherwise, it is discarded, and the lookup
procedure moves to another object.

One of the main drawbacks of MRSH-NET is only answering membership queries
and not pointing out the similar objects. Also, the filter has to fit into the main memory due to
efficiency reasons, another possible problem when the reference list set increases. Removing
elements from the structure and inserting too many new objects are both problematic since the
false positive rates can increase.

2.5.4.2 Bloom filter-based tree structure

As a form of mitigating MRSH-NET main limitation (answering only whether an
object is present in a set or not), Breitinger, F. et al. (BREITINGER et al., 2014c; LILLIS et

al., 2017) propose a new similarity digest search strategy based on the well-known divide and
conquer paradigm. In the new strategy, defined as HBFT, the authors build a bloom filter-based
tree data structure to store digests and efficiently locate similar objects. The time complexity
of a single lookup is O(logx(r)), where x is the degree of the tree. Even though the complexity
is higher than the previous method (MRSH-NET - (O(1))), HBFT can return the actual matching
object(s).



Chapter 2. Background and Related Work 50

The basic idea of the HBFT approach is to recursively divide a given set S of simila-
rity digests into X subsets. First, each object has its features extracted (e.g., by the sdhash tool)
and inserted into the root node of the tree, a huge bloom filter. Then, S is divided into X subsets
containing n/X elements, a child node of the root node is created for each subset and the objects
inserted in each corresponding new filter. This procedure is applied recursively. Finally, an FI

(File Identifier) is created in the leaf (a link to a database containing the digest of the related
bloom filter) as well as an FIC (File Identifier Counter), initially set to zero and incremented in
a lookup procedure when FI is reached. An example of the construction of a Bloom filter-based
tree is illustrated in Fig. 14.

Figure 14 – Bloom filter-based tree construction (Binary tree). Adapted from (BREITINGER
et al., 2014c).

One of the main advantages of the scheme is the lookup operation. It is not ne-
cessary to compare a digest of a target system against all reference list digests but only to a
subset of nodes in the tree structure. Also, as most comparisons will yield a non-match for
blacklisting cases, the search starts and ends in the root node. The tree is only traced down to
a leaf if a match is found in the root, which means that the queried object (feature) is present
in the reference list, and now we only have to determine which object it belongs to, by tracing
down the tree and locating the corresponding FI. The match decision on whether an object is
inserted in the tree data structure or not is based on a threshold, representing the number of
following features required to be found in the tree. Every time we identify a leaf containing the
features queried, we increase FIC. In the end, the highest FIC is compared to the threshold,
and if its value is equal or higher, we can say that the object is present in the set and take the
corresponding FI to reach it. Once we have found the candidate similar to the queried object,
we might perform the conventional comparison using the approximate matching tool chosen.
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The preparation phase of HBFT consists in extracting the features of all objects in the
reference list, create the bloom filter-based tree structure and insert all features on it, including
the corresponding metadata (FI and FIC).

The first step of the operational phase is to load the bloom filter tree into the main
memory. Then, for each queried object, we need to extract its features and check the filter
for their presence. In the end, the object with the highest FIC is returned, and the simila-
rity may be confirmed by using the conventional comparison function of the chosen AM tool
(sdhash/mrsh-v2).

The main problem of HBFT is the huge amount of memory required for its operation
since several large bloom filters are created to store all data from the reference list.

2.5.5 Cuckoo filter: A new alternative for bloom filters

The MRSH-CF is a new strategy for the similarity digest search problem, presented
as an alternative for the MRSH-NET approach, where Cuckoo filters are used to mitigate some of
the limitations of bloom filters. The same sdhash and mrsh-v2 can be used to work with this
strategy (GUPTA; BREITINGER, 2015).

Cuckoo filter (FAN et al., 2014), a modification of Pagh et al. (PAGH; RODLER,
2004) cuckoo hashing, is a minimized hash table for performing membership queries; cuckoo
hashing is used to resolve collisions when inserting elements into the structure (different items
inserted into the same hash table position). Data is transformed in a fingerprint before being
inserted into the structure, where it is stored into buckets. The filter has an array of buckets of
size b, referring to the number of fingerprints that can be stored on it. Also, there is a load factor
(α) describing the usage percentage of the filter to decide if the filter needs to be resized.

A Cuckoo filter is composed by a hash table and three hash functions. Each key
(entry value) is hashed by two of the hash functions (H1 and H2), responsible for assigning
the key to buckets in the table. The bucket corresponding to the first hash is tried and checked
for an empty space. The key is placed into this bucket in case it is empty. Otherwise, the key
is stored in another bucket, corresponding to the second hash value. In case there is already a
key stored on the second bucket, the stored key is moved to its second bucket option, and the
process repeats until all keys are allocated. If a cycle happens (the same bucket is visited twice),
it means that the table is not big enough and needs to be resized, or the hash function needs to be
replaced. The third hash function (H3) is used to store the key in the structure in a compressed
form, hashing it and using only f bits as the tag size (FAN et al., 2014).

According to Fan, B. et al. (FAN et al., 2014), the main benefits achieved with this
structure compared to bloom filters, is the support for adding and removing items dynamically,
better lookup performance, and less space requirement for some applications (related to some
false positive rates). Although insertion operations are more complex due to possible keys real-
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locations, its time complexity is the same one as for bloom filters (O(1)). Deletion and lookup
complexity are also O(1).

To allow similarity identification, MRSH-CF stores only object features in the filter
instead of the whole object. Based on MRSH-NET, this new Cuckoo filter-based strategy considers
an object match when a specific number of features are found in the structure.

The preparation phase of this strategy requires the extraction of the features from
the reference list objects using the chosen AM tool. Then, the Cuckoo filter structure is created,
and all features are inserted on it.

In the operational phase, the first step is to load the structure into the main memory.
The queried object has its features extracted and checked within the filter. If a number equal or
higher than a predefined threshold of features is found, the queried object is said to be part of
the set; otherwise, it is put away, and the lookup procedure continues with the next object.

The main limitations of MRSH-CF are the same ones of MRSH-NET: membership
queries and high memory consumption. The Cuckoo filter strategy only gives binary answers:
the object belongs or not to the set. It does not point out which is the similar object, which could
be enough for some problems, but for KFF it represents a limitation.

2.5.6 Other strategies

There are other similarity digest search strategies not addressed in this thesis for a
particular reason or because we are not aware of. A particular one is proposed by Chawathe, S.
S. (CHAWATHE, 2009; CHAWATHE, 2012) which it is based on a Locality Sensitive Hashing
(LSH) method. However, due to the lack of data presented in the papers, we choose not to
include it in our analysis.

2.6 Conclusions

In this chapter, we discussed one of the main problems of digital forensic inves-
tigations: The efficient identification of similar objects. To perform such task, we pointed out
the AM functions as an alternative and presented some background, where one can efficiently
perform black/white-listing using them. We also showed some tools proposed in the field and
presented a brief description of their main characteristics. Furthermore, for dealing with large
data sets, we indicated that AM can be used in the form of the similarity digest search strategies,
which can reduce significantly the time taken in forensic investigations. In the next chapters,
we present some limitations of current AM solutions and some contributions of this thesis with
respect to this field.
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3 Comparative analysis of the Similarity Di-
gest Search Strategies

To cope with the excessive amount of time required by digital forensic investiga-
tions when dealing with large data sets, new strategies have been proposed in the literature to
perform queries more efficiently and avoid the expensive brute force approach. In this chapter,
we present a detailed comparison of the Similarity Digest Search Strategies (SDSS), first in-
troduced by Zhang, J. et al. (ZHANG et al., 2008). Our comparison involves several aspects,
as time complexity, memory requirement, search precision, among others. We pointed out their
strengths and weakness, and show that even though some strategies outperform others in some
aspects, they fail in others. There is no currently suitable approach that satisfies the most rele-
vant requirements.

The second part of this chapter presents an evaluation of the operational costs of
some SDSS and show how they would behave in practical scenarios. We conclude by showing
the significant improvements of the strategies in comparison to the corresponding brute force
approach, indicating the impact of more clever ways when dealing with large data sets. For the
rest of this chapter, we consider a scenario where digital forensic practitioners have a data set
consisting of many objects (black or white list), referred to as the reference list. This set will be
contrasted to the devices under investigation (referred to as the target system) to identify similar
content, which can be excluded from/separated for analysis, depending on the investigation
goal. We aim at comparing the SDSS when performing such a process.

From the best of our knowledge, this is the first work that compares current SDSS
present in the literature, showing their strengths and weakness from many aspects and also how
they would perform in practical scenarios.

3.1 Part I: Characteristics and theoretical evaluation of the SDSS

In this section, we present a comparison of all strategies for similarity digest search
discussed previously in related work. We first present the strategies and some of their characte-
ristics and then present a theoretical evaluation assessing the time and space required by the
approaches, along with other topics such as false positive rates and detection capability.

We highlight that for the MRSH-NET, HBFT, and MRSH-CF strategies, we have consi-
dered sdhash as the AM tool since it presents better detection capabilities, although they could
also work with mrsh-v2 tool.
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3.1.1 Characteristics

One of our analysis of the SDSS involves comparing the approaches through their
main characteristics. Table 1 presents our results followed by a discussion of the evaluated
aspects and their importance for the strategies’ performance.

Table 1 – Similarity digest search strategies - Characteristics

Strategy Tools Input
Insert/ Data-

Main Output Match remove base
technology threshold (t) decision elements use

Brute force
(sdhash)

sdhash Bloom filters sdhash
digest

Digest ≥ t Bloom filter
comparison

X / X
X

Brute force
(ssdeep)

ssdeep Rolling Hash ssdeep
digest

Digest ≥ t Edit distance X / X
X

Brute force
(TLSH)

TLSH LSH TLSH
digest

Digest ≥ t Header/ body
distance

X / X
X

DHTnil Nilsimsa DHT + Voronoi
Diagram

Bit
vector

Number of matches
≥ t

Adapted
euclidean
distance

X / X
X

iCTPH ssdeep DHT +
iDistance

ssdeep
digest

Number of matches
≥ t

Edit distance X / X
X

F2S2 ssdeep Indexing
(n-grams) +
hash table

ssdeep
digest

Candidates sharing the
same n-gram queried

Edit distance
X∗ / X

X

MRSH-NET sdhash,
mrsh-v2

Single, huge
Bloom filter

Object
features

YES / NO
(Consecutive features
found in the filter ≥ t)

Bloom filter
matches X / X

X

HBFT sdhash,
mrsh-v2

Bloom filter tree
structure

Object
features

Candidate with
highest number of

features found in the
filter ≥ t

Bloom filter
matches X / X

X

MRSH-CF sdhash,
mrsh-v2

Cuckoo filter Object
features

YES / NO
(Consecutive features
found in the filter ≥ t)

Cuckoo filter
matches X / X

X

* A data set increase (beyond its real capacity) is allowed at the cost of performance.

3.1.1.1 Supported AM tools and technology

Some strategies can be used with any AM tool while others are restricted to a spe-
cific one. In the latter case, we may have to use a tool with low accuracy depending on the
strategy. In one hand, this would decrease the time to perform a similarity digest search, but on
the other hand, it would increase the process of manual inspection of the results due to the high
number of false positive matches. In the worst case, some tools could miss relevant data in the
search. Another point for consideration: Depending on the chosen technology to perform the
search, we need more computational power than we have. The strategies iCPTH and DHTnil,
for example, require several machines working together to perform the search efficiently, which
may not be the case for some forensic investigations, and therefore, these methods would not
be appropriate.
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3.1.1.2 Strategy input/output

Each approach aiming at reducing the time for the similarity digest search requires
a different input format. Some strategies require only the digest created by the supported simi-
larity tool while others, a pre-computed set of values generated by a sub-process of the tool.
The naive brute force method requires as input only the digest created by the chosen tool, while
other strategies receive as input the features extracted from objects, like MRSH-NET, HBFT, or
MRSH-CF, which take only the result of the intermediary step of the digest generation process of
sdhash/mrsh-v2 tools as input.

The outcome of some strategies is a list of possible candidates to similarity found
above some threshold value (e.g. brute force and F2S2) or the most similar object (HBFT); a
next step requires the inspection from the practitioner to confirm the similarity and/or eliminate
candidates, either by using the corresponding AM tool or by manually looking at the matches.
Other tools (e.g. DHTnil and iCPTH) return the number of similar matches found or a binary
answer indicating the presence or not of the queried object in the set (MRSH-NET and MRSH-CF);
although these last cases are too restricted, they could be sufficient in a blacklisting case to
separate the corresponding media for further and deeper analysis.

3.1.1.3 Strategies’ match decision

The decision of whether two objects are similar (match) or not usually incorporates
the characteristics of the AM tools supported by the strategy and take advantage of their struc-
ture. F2S2 creates n-grams of ssdeep digests based on the assumption that the tool encodes each
feature extracted from the object in one byte in the digest. This way, similar objects will have
similar features and hence similar bytes in the digests; the strategy tries to identify similarity by
indexing and later comparing small parts (n consecutive bytes) of the digests. MRSH-NET, HBFT,
and MRSH-CF take the features extracted from sdhash/mrsh-v2 and insert them into a single,
huge bloom filter. The match decision in such cases is the number of following features found
in the structures. The choice of the AM tool and match decision can bring some undesired side
effects to the SDSS, such as false positives. F2S2 does not create false positives because its
match decision method does not decide whether two digests are similar or not (WINTER et al.,
2013); it relies on ssdeep’ approach to perform comparisons. However, MRSH-NET, HBFT, and
MRSH-CF approaches do, according to the explanation presented next.

According to Breitinger, F. et al. (BREITINGER et al., 2014c), the false positive
probability for a match between two different objects in HBFT (which also applies to MRSH-NET

and MRSH-CF) is calculated by p f = pr, where p is the false positive probability of a single
feature and r the number of following features required to be found in the filter for two objects
being considered as similar. While r can be adjusted according to the desired false positive rate,
p is defined by: p≈ (1− e−kz/m)k, where k is the number of independent hash functions (filter
order), z the number of features inserted into the bloom filter and m the filter size (BREITINGER
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et al., 2014c). This way, the strategy decides when a match is found by the number of features
present in the filter, and based on it, it can create more or less false positives depending on the
parameters used by the strategy.

On the other hand, we have strategies in which a match decision does not depend
on the strategy itself, but on the tool under consideration. The chosen comparison method is the
tool’s comparison function, and it is responsible for establishing when a match is found or not.
The most simple strategy (brute force) is an example of such a case. When using the sdhash

AM tool, the method is the comparison of bloom filters. Using ssdeep, it changes to the edit
distance, while for TLSH, it uses a distance header/body (Hamming distance approximation)
function. Changing the tool does not interfere in the strategy itself, but only in the comparison
function, which is tool-related.

3.1.1.4 Insert/remove elements and use of an own database

With respect to the insertion of new elements, some strategies allow the increase
of the database size dynamically, while others need to be constructed considering a predefined
maximum number of objects that the strategy will store. Brute force, DHTnil, iCPTH, and F2S2

are examples that allow the data set to increase dynamically without requiring the re-creation of
the database. F2S2, which uses a chaining hash table, is a particular case in which the insertion
beyond its real capacity is allowed at the cost of performance degradation (linear cost as the
table fills). Other strategies, such as MRSH-NET and HBFT rely on technologies (Bloom filters)
that require the knowledge about the maximum number of elements beforehand to adjust some
parameters, like false positives rates, for instance. Although it is possible to insert as many
elements into a bloom filter as we want, its false positive rates will increase and degrades the
search quality, compromising the results of the strategy. In such cases, a new data structure will
have to be created and adjusted to the new number of elements. MRSH-CF is another case that
needs the maximum number of objects before the structure creation since the hash table and
buckets have a fixed and predefined size. However, this structure is more robust than bloom
filters as it can store multiple elements in each bucket without altering the false positives rates
significantly.

Removal operations are also possible for most strategies, except for the ones based
on bloom filters, in which, once we insert several elements on it, we can not distinguish the bits
set in the filter by one particular object. This way, removing elements is not possible.

Another point for consideration is that some strategies have their own technology to
store the similarity data, as F2S2 (hash table), MRSH-NET and HBFT (Bloom filters), and MRSH-CF
(Cuckoo filter). Others, like the brute force, DHTnil, and iCPTH require an external database to
store the digests. These strategies may use whatever storage technology the practitioner wants:
Ordinary databases, files, xml, and others. Although the latter methods scale better to data
set increasing, they may have their efficiency degraded depending on the chosen technology,
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causing some extra delays.

3.1.2 Evaluation

We also evaluate the approaches concerning time and space requirements, false po-
sitives rates and detection capability. We present in this section a discussion of these aspects and
summarizes ours results in Tab. 2. The formulas used in each case are available in Appendix A.

Table 2 – Similarity digest search strategies - Performance assessment of different properties

Strategy
Single Resemblance/

Memory requirements for data sets of: lookup False containment
1 GiB 10 GiB 100 GiB 1 TiB complexity positives detection

Brute force
(sdhash)

25.60 MiB
(2.50%)

256.00 MiB
(2.50%)

2.50 GiB
(2.50%)

25.60 GiB
(2.50%)

O(n)
No

X / X

Brute force
(ssdeep)

0.19 MiB
(0.02%)

1.87 MiB
(0.02%)

18.75 MiB
(0.02%)

192.00 MiB
(0.02%)

O(n)
No X / X

Brute force
(TLSH)

0.07 MiB
(0.01%)

0.68 MiB
(0.01%)

6.84 MiB
(0.01%)

70.00 MiB
(0.01%)

O(n)
No X / X

DHTnil 32.49 MiB
(3.17%)

33.05 MiB
(0.32%)

38.68 MiB
(0.04%)

96.43 MiB
(0.01%)

O(n)
No X / X

iCTPH 96.62 MiB
(9.44%)

98.30 MiB
(0.96%)

115.18 MiB
(0.11%)

288.43 MiB
(0.03%)

O(n)
No X / X

F2S2 1.71 MiB
(0.17%)

17.07 MiB
(0.17%)

170.70 MiB
(0.17%)

1.71 GiB
(0.17%)

O(n)
No X / X

MRSH-NET 16.00 MiB
(1.56%)

128.00 MiB
(1.25%)

1.00 GiB
(1.00%)

16.00 GiB
(1.56%)

O(1) Yes X / X

HBFT 176.00 MiB
(17.19%)

1.79 GiB
(17.90%)

17.64 GiB
(17.64%)

336.00 GiB
(32.81%)

O(log(n)) Yes X / X

MRSH-CF 14.00 MiB
(1.37%)

140.00 MiB
(1.37%)

1.37 GiB
(1.37%)

14.00 GiB
(1.37%)

O(1) Yes X / X

3.1.2.1 Memory requirements

We evaluated all SDSS related to the amount of memory required for different data
set sizes, varying from 1 GiB to 1 TiB. We emphasize that the memory evaluated here is not
the storage one, but the working memory (e.g., RAM) of devices, which allows fast similarity
queries using SDSS structures. Our results are shown in Table 2, describing the amount required
(MiB or GiB) and the compression rate for each strategy. The details of our calculations are
presented in Appendix A.

We highlight that some strategies, as MRSH-NET and HBFT, have their structure size
adjusted for practical reasons, since they are based on bloom filters; the size has to be a power
of two (2c, for c ∈ N). For this reason, when calculating the filter size and getting a result of
231.27 bits, for instance, we need to adjust the size for 232. Although this modification can almost
double the size of the filter in some cases, it is necessary for practical implementations. Other
strategies are less effected by this issue, as MRSH-CF, which also needs some adjustments in
the tag size. After defining the size for the object representation in the filter according to the
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false positive rate and number of entries in each bucket, we may obtain a decimal number. In
such case, we choose the next integer in order to not increase the false positive rates. The result
is an increase in the structure size, but not as significant as it happens with the bloom filter
approaches. The brute force, DHTnil, iCTPH, and F2S2 strategies do not suffer from this issue.

The first point to mention about our analysis is the memory growth rate of some
strategies, as shown in Fig. 15. While some of them have a linear behavior (brute force, F2S2,
MRSH-NET, HBFT and, MRSH-CF), others do not (DHTnil and iCTPH). The latter group presents
some specific costs which do not scale linearly since they have minimum setting costs necessary
for operation, as the need for storing the Chord finger table and reference points list in each node
(which in our case are kept fixed for all reference list sizes). These two values are counted in
the final memory requirement and, as the digests of both approaches have a short length, this
setting cost stands out for small data sets.

Figure 15 – Memory requirements: Strategies’ growth behavior according to data set variation.

According to these results, we see a significant disparity from one approach to ano-
ther, especially when increasing the reference list size. This fact is noticed comparing the brute
force (TLSH) and HBFT approaches. For a 1 TiB data set, the difference is ≈ 4915 times. The
main reason for this difference is related to the AM tool under use, a fact that can be corrobo-
rated comparing all other approaches with the ones using sdhash, for instance. Comparing the
brute force approaches using TLSH (digest of 35 bytes) and ssdeep (up to 96 bytes) with the one
using sdhash (which has large digest size, varying according the object size - ≈ 2.6%), we can
see another great disparity, being sdhash 374.50 and 136.53 times more expensive than TLSH

and ssdeep, respectively. The same applies to F2S2 and the two methods using bloom/cuckoo
filters (MRSH-NET, HBFT, and MRSH-CF), where the former beats the others since it is based on
ssdeep and the others on sdhash.

Due to efficiency reasons, the structures should fit into main memory, a major pro-
blem for some strategies as the reference list grows. We can see that the HBFT approach stands
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out due to its high memory consumption in comparison to others. It has a bad compression rate,
consuming about 336 GiB of memory for 1 TiB data set size (corresponding to 32.81% of the
whole set size). Given a blacklisting case and the increasing size of data nowadays (images and
videos are becoming larger due to high-quality standards), 1 TiB is a reasonable size to consider.
Therefore, this approach becomes impractical for examiners to handle. On the other hand, for
the same amount of data, F2S2 consumes only 1.71 GiB (0.17%), which is easier to deal with.
Other strategies like a brute force for TLSH and ssdeep, DHTnil, and iCTPH consume even less,
about 70, 192.00, 96.43, and 288.43 MiB, respectively.

We emphasize that the structure size must be taken into consideration when choosing
a strategy, since it is a major requirement in practical scenarios. A good choice would be the one
that fits the hardware specifications of the processing machine since loading the entire structure
into main memory is the desirable form to have a more efficient search.

3.1.2.2 Lookup complexity

Another import requirement for SDSS is the lookup complexity, which gives us
an idea on how the strategies would scale in response to the reference list data set increase,
presented in the form of Big-O notation. Table 2 shows the asymptotic upper bound for per-
forming a single lookup. Our results indicate MRSH-NET and MRSH-CF as the best options for
performing efficient queries, with time complexity of O(1), although they are limited to only
membership queries. Besides, experiments corroborate this statement since they indicate that
MRSH-NET (best case) is about 12 times faster than brute force sdhash (BREITINGER et al.,
2014a). The HBFT strategy comes up as our third option, with O(log(n)) complexity. All other
approaches presented complexity equal to the naive brute force method (O(n)).

Although the lookup complexity is an important and necessary measurement for
evaluating SDSS, in some cases having the time spent in the process is a more accurate form of
comparison. Most strategies are much faster than brute force for normal operating conditions
and yet have the same time complexity, as F2S2, for instance. Winter, C. et al. (WINTER et

al., 2013) show that calculating the complexity of this approach requires two steps: Finding
candidates (digests sharing the same n-gram as the queried item) and similarity calculus. The
first task can be accomplished with O(log(n)) for a fixed index table or O(1) for dynamic re-
sizing of the index table, while the second one presents complexity similar to brute force: O(n).
The reason for this high complexity is because the effort required is proportional to the size of
the reference list. Then, when summing the complexity of the two steps, we get a complexity
of O(n)+O(log(n)) ≈ O(n) (single lookup) for both dynamic resizing and fixed index table.
However, in practice, the benefits achieved by F2S2 will depend mainly on the efficiency and
effectiveness of the candidates’ selection. As we will not compare the queried objects with all
reference list digests but with a restricted set of those sharing the same n-grams with it, we ex-
pect a much faster process. According to Winter, C. et al. experiments (WINTER et al., 2013),
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F2S2 achieved speedup above 2000 times faster than brute force ssdeep.

Other strategies may also be faster than the brute force approach, as DHTnil and
iCPTH. In both methods, instead of computing r operations for a single lookup procedure just
like the brute force approach, we compute only p+ l operations, where p denotes the number of
reference points chosen and l the sum of the number of digests presented in each selected node.
The sum p+ l is expected to be much smaller than r, resulting in a significant reduction in the
search time in practice. However, the time complexity for this approach is the same as the brute
force one (O(r)), since p+ l is proportional to the data set size and increases with it.

It is important to analyze the strategies regarding their time complexity and also
their running time for a more accurate comparison, since some schemes may perform better
in practice. In section 3.2, we provide an evaluation considering the running time for some
strategies in order to complement our analysis. We derive equations to estimate their running
time for both phases (preparation and operational), showing how the strategies scale in practice
and in which conditions one is better than others.

3.1.2.3 False positives

As discussed in Sec. 3.1.1.3, some approaches create false positives in the simila-
rity digest search, as MRSH-NET, HBFT, and MRSH-CF. Others do not have the match decision
incorporated in the strategy (brute force) and rely on the decision given by the tool.

DHTnil, iCTPH, and F2S2 are a middle term class since they have the match de-
cision associated with the strategy. However, they do not create new false positives because
the approach does not decide which objects are similar. The process is delegated to a function
derived from the AM tool where its goal is to separate a small set of possible candidates only.
The tool’s comparison function is later used to compare the set with the queried item to decide
the similarity, and hence reduce the number of objects to be manually inspected by forensics
practitioners.

3.1.2.4 Resemblance/containment similarity detection

Detecting both resemblance and containment is a desirable property in any AM tool
since a practitioner can find objects that resemble each other as objects contained in others.
However, most AM techniques are designed to detect only resemblance, the most basic ope-
ration mode. sdhash is the only one that can efficiently identify both modes. This statement
is corroborated by Lee, A. and Atkison, T. (LEE; ATKISON, 2017) showing that sdhash per-
formed the best regarding this aspect in comparison to most tools. Since the strategy is mostly
tied to the tool it uses, it becomes limited to the sort of detection performed by it.

Most strategies analyzed in this work cannot detect containment. Only those based
on sdhash may have this ability (MRSH-NET, HBFT, and MRSH-CF). There is no current analysis
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on literature (from our knowledge) about the effectiveness of the strategies and the minimum
amount of data shared between two objects for having a containment/resemblance detection.
However, we believe that as these strategies encode the features extracted by sdhash into their
structures, any element sharing the same (or a few) features will be a possible candidate for
both detection modes. Since the strategies require a minimum number of consecutive features
found in the filter to consider the queried object a match, any object fragment (small piece of
data) already stored in the set is expected to have its features present in the filter and will be
considered a match. For this reason, we believe containment can be detected by sdhash related
strategies. Future work is necessary to corroborate this statement.

3.1.2.5 Approximate matching tool’s precision

The search precision is more tied to the tool than to the strategy itself. In some
cases, the strategy only reduces the number of comparisons the examiner should do. While
some approaches are based on tools like sdhash, which have interesting characteristics and
can detect resemblance and containments for a variety of object sizes without compromising its
results, others rely on limited tools. An example is the classic ssdeep, limited to only comparing
objects of similar sizes and not suitable for dealing with large objects. This is corroborated by
Roussev, V. (ROUSSEV, 2011) and Breitinger, F. et al. (BREITINGER et al., 2013), showing
that sdhash outperforms ssdeep in accuracy and scalability. Furthermore, Breitinger. F. and
Roussev, V. (BREITINGER; ROUSSEV, 2014) present an evaluation of ssdeep, mrsh-v2,
and sdhash using real data (extracted from the t5 corpus database (ROUSSEV, 2011)). They
analyze the precision and recall rates of these tools and point out that sdhash has the best
overall performance. The authors also state that even though the precision rates of ssdeep and
sdhash are high, the recall of all tools are relatively low.

With respect to Nilsimsa tool, Oliver, J. et al. (OLIVER et al., 2013) state that even
though this technique has powerful capabilities for resemblance detection, it suffers from sig-
nificantly higher false positive rates compare to TLSH. Harichandran, V. S. et al. (HARICHAN-
DRAN et al., 2016) mentions that TLSH is less powerful than sdhash for cross correlation.

Considering the tools’ precision aspect, the strategies using sdhash are a better
choice than the ones using ssdeep, Nilsimsa, or TLSH since the final result will be more
accurate and scalable. Besides, it supports both detection modes efficiently.

3.1.3 Discussion

All similarity digest search strategies presented so far either show a high cost as-
sociated with memory requirements have an approximate matching function not as good as
the best ones available nowadays, or have high costs related to the lookup procedures. In the
first case, we have the HBFT strategy which incorporates sdhash as AM function, having de-
sirable detection capabilities (both resemblance and containment). However, the tree structure
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is too memory-consuming and becomes infeasible to work with large data sets. On the other
hand, F2S2 presents better scalability regarding memory consumption, but it uses ssdeep as
a similarity function, which leads to major limitations regarding similarity detection that can
compromise and/or restrict analysis.

MRSH-NET and MRSH-CF are strategies that use a good similarity tool (sdhash), have
low lookup complexity, and require less memory consumption compared to HBFT. However,
they are restricted to membership queries only, which limits their application. The two P2P
strategies (DHTnil and iCPTH) have the smallest memory consumption on average, but they use
weak AM tools (Nilsimsa and ssdeep), have high operating costs associated with the several
machines necessary to perform the search, and they may suffer from network communication
delays. These strategies suffer from the following dilemma: The fewer machines used, the more
it becomes similar to brute force; the more machines, the higher the costs and delays.

The brute force methods are very time-consuming independent of the chosen simi-
larity tool due to the high number of comparisons when dealing with large data sets. Any other
strategy can perform better than brute force. They are not suitable candidates for conducting
investigations since the amount of data for each case has been increasing very fast (QUICK;
CHOO, 2014). Besides, they are strongly dependent on the tool in terms of precision, time and
memory requirement.

In this first part, our findings showed that none of the SDSS presented so far ad-
dressed at least the most desirable aspects: low memory requirement, high detection capabilities
(for both resemblance and containment), and efficient lookup procedure. In the second part of
our study, we aim at showing how some of the strategies may behave in practical scenarios to
complement our analysis.

3.2 Part II: Operational costs evaluation

In the second part of this analysis, we evaluate the operational costs of SDSS. We
show how some strategies carry out the search when dealing with large data sets and develop
equations to estimate their operational costs, allowing a more precise time comparison. We
performed this theoretical analysis because most strategies do not have their source codes or
a compiled version available (at least by the time we were executing experiments) to calculate
their costs and compare them. Besides, some strategies were removed from comparison since
they require a complex environment for performing the experiments (e.g., DHTnil and iCPTH,
which are P2P-based approaches) and do not have interesting characteristics given our previous
analysis. Here, we consider that the preparation phase was previously performed with all digests
computed for each object (from the reference list) and inserted in each strategy’s structure.
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3.2.1 Steps in a similarity digest search procedure

We evaluate the necessary steps in the operational phase of each strategy and present
equations that we developed to estimate the time needed for each of them.

3.2.1.1 Brute force

The procedure involving the brute force can be summarized in the following steps:

1. For each item in the target system, perform:

a) Digest generation;

b) For each item in the reference list, perform:

i. Digests comparison.

c) Return pair of digest with a higher similarity score above a predefined threshold t.

The above steps correspond to the operation phase of a simple brute force approach.
We can estimate the time to perform such a task using Eq. 3.1.

Top = i · (TdigCalc +(r ·TcompFunc)) (3.1)

Here, i is the number of objects in the target system, TdigCalc is the time for calculating a single
digest using the chosen AM tool (ssdeep, sdhash, etc.) or hash function (SHA-1, SHA-2, etc.),
r the number of objects in the reference list, and TcompFunc is the time to compare two entries
using the same tool.

Brute force can be used with any similarity tool. In our work, we chose ssdeep

(KORNBLUM, 2006) and sdhash (ROUSSEV, 2010) to perform brute force and hence com-
pare them with other strategies regarding time performance. We also chose SHA-1 hash function
as a benchmark since most AM functions aim at achieving times close to it. We emphasize that
SHA-1 vulnerabilities regarding collisions are not an issue here, as this hash function is not be-
ing used with a security role. Even simpler (and also compromised) functions as MD-5 would
be useful here, as well.

3.2.1.2 F2S2

Upon an investigation process where the forensic examiner wants to perform KFF
in a target system, the following steps must be done for F2S2:

1. Load the F2S2 index structure into main memory;

2. For each item in the target system, perform:

a) ssdeep digest generation;
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b) n-gram extraction;

c) n-gram lookup (this step returns all digests that share the same n-grams as the ones
belonging to the queried item; L represents the amount returned)

d) ssdeep comparison of the queried item with the L returned digests.

e) Return pair of digest with higher similarity score above a predefined threshold t.

To estimate the time to perform the operational phase of F2S2, we can use Eq. 3.2.

Top = TindexLoad + i · (TgenSsdeep +TngramExtr +TngramLookup +(L ·TcompSsdeep)), (3.2)

where TindexLoad represents the time to load the index into memory (step 1), i the number of
objects in the target system, TgenSsdeep the time to compute a single ssdeep digest (step 2.a), and
TngramExtr the time to extract all n-grams from the corresponding object (step 2.b). TngramLookup

refers to the time to perform a lookup procedure in the index (step 2.c), calculated by Eq. 3.3.
L represents the number of candidates sharing the same n-grams as the queried item, returned
by the lookup process, and TcompSsdeep denotes the time to calculate the Edit Distance for two
digests (ssdeep comparison function)(step 2.d).

To calculate the time to perform the lookup procedure, we can use Eq. 3.3.

TngramLookup = g · (ThashI +(TcompStrE ·b)). (3.3)

Here g is the number of n-grams extracted from the digest (g = ldig− n+ 1, where ldig is the
digest size (bytes) and n the n-gram sequence size), ThashI the time to hash a string (n-gram
index), TcompStrE the time to compare two strings (n-gram e-key), and b the average number of
different n-grams in each bucket (section 3.2.2.2 shows how to compute it).

3.2.1.3 MRSH-NET

The operational process using MRSH-NET involves the following steps:

1. Load the bloom filter structure into the main memory;

2. For each object x in the target system, perform:

a) feature extraction (with sdhash), resulting in |Fx| features;

b) |Fx| lookups.

c) Return True (there is a match) in case a minimum number of consecutive features
are found or False otherwise.

To estimate the time to perform this task, we first need to calculate the average
number of features of the target system (z) per object. To this end, we can use Eq. 3.4, derived
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from Breitinger, F. et al (BREITINGER et al., 2014c) statement: “sdhash maps 160 features

into a bloom filter for every approximately 10 KiB of input file".

z = (µ ·220 ·160)/(10 ·210) = 214 ·µ, (3.4)

where µ is the size (MiB) of all objects in the set and both factors, 220 and 210, are used to
change from MiB and KiB to bytes, respectively. By dividing z by the number of objects in the
target system, we get its average (z). Then, we can use Eq. 3.5 to estimate the required time of
MRSH-NET, as follows:

Top = Tb f Load + i · (Tf eatureExtr +(z ·Tb f Lookup)). (3.5)

where Tb f Load is the time to load the bloom filter data structure into memory (step 1), i the
number of objects in the target system and Tf eatureExtr the time to extract the features from an
object (step 2.a). The Tb f Lookup is the time to perform a lookup procedure in the filter (step 2.b),
calculated by eq. 3.6.

Tb f Lookup = ThashF +(k ·TcompStrF) (3.6)

ThashF denotes the time to hash each feature of β bytes and k the number of sub-hashes.
MRSH-NET inserts a feature in the bloom filter by first hashing it and breaking the hash into
k parts (sub-hashes). The resulting pieces are used to set the bloom filter. TcompStrF is the time
to compare two strings of F bytes each (F = feature size divided by k).

3.2.1.4 HBFT

We can sum up the required HBFT operations by the following steps:

1. Load the bloom filter-based tree structure into main memory;

2. For each item x in the target system, perform:

a) feature extraction (with sdhash), resulting in |Fx| features;

b) |Fx| lookups in the tree.

c) If any object FIC (File Identifier Counter) is higher than a minimum predefined
number, then:

• compare the corresponding object digest with the queried one (using sdhash).

d) Return pair of digest with a higher similarity score above a predefined threshold t.

To estimate the operational phase time of HBFT, we can use Eq. 3.7.

Top = Tb f TreeLoad + i · (Tf eatureExtr +(z · (Tb f Lookup ·h))+TcompFunc). (3.7)
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where Tb f TreeLoad corresponds to the time to load the structure into memory (step 1), i is the
number of objects in the target system, Tf eatureExtr the time to extract the features from a single
object (2.a) and Tb f Lookup the time to lookup each feature in the tree (Eq. 3.6) (step 2.b). The h

parameter denotes the number of steps required to reach an object in the tree (see Sec. 3.2.2.3),
while TcompFunc is the time to compare two digests using the chosen tool (step 2.c).

3.2.2 Methodology and some peculiarities

The SDSS costs were estimated using the formulas developed in the previous sec-
tion. We have designed pieces of code simulating the operations required by the strategies and
then measured the necessary time for performing them. However, some parameters required
deeper analysis to understand their behavior and to estimate their values. To this end, we cre-
ated a database of real data objects to perform the measurements. In this section, we discuss the
details about this database, the peculiarities of some parameters, and finally, our results.

In this work, the analysis is focused on one of the most important parameters in
forensics investigations: The data set size (of the reference list and target system). Other vari-
ations in the strategies parameters to find their best-operating conditions can be addressed in
future works.

3.2.2.1 Test database details

To better understand the behavior of some operations and then estimate their values
more precisely, we created a database from real data. This set encompasses over one million ob-
jects extracted from two Linux operating systems (Elementary OS client - Ubuntu 16.04-based
- and Ubuntu 16.04 server), Microsoft Windows 10 Home, and also from personal data, which
includes photos, documents, videos, applications, etc. Our database has 1,256,356 objects,
corresponding to about 233.32 GiB of data. There were several typical applications installed
in each operating system, including Latex, LibreOffice, Microsoft Office 2013, Foxit Reader,
NetBeans IDE, Internet Explorer, Google Chrome, Firefox, and default operating system ap-
plications. There is a significant diversity about the object types encompassing our database:
.pdf, .jpg, .png, .bmp, .txt, .doc, .docx, .odf, .mkv, .avi, .py, .mp3, .wma, html, .jar,
.rar, .c, .bin, among others. Since this work focus on the best performance of the AM tools
in their best conditions and our experience shows that ssdeep do not produce reliable results
with large objects, we limited the object size in our database to 200 MiB. Future works will
address scenarios using larger objects.

Given that the files have private information, we will not release them for the com-
munity. We believe that one can easily obtain the same sort of data and get approximate results
(given the approximate number and size of our database) using a similar amount of the same
types of files.
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3.2.2.2 The F2S2 case analysis: Using different database sizes

To estimate some parameters of the F2S2 strategy, we implemented a simplified
version of this approach, aiming to observe how data is spread over the hash table. Then, we
estimated the values of variables b (number of different n-grams per bucket) and L (number
of objects sharing the same n-gram as the queried item), necessary to the calculus of F2S2

operational phase. To this end, we generated ssdeep hashes for every object in our database
(encompassing all four data sets) and inserted them in the index structure. The chosen hash
table size was 224 (four 6-bit base64 characters from the n-gram).

After inserting all n-grams obtained from our database objects in the index struc-
ture, a total of 75,549,716 n-grams were counted. However, 2,218,267 of 16,777,216 (13.22%)
buckets were still empty, which means that lots of buckets contained multiple entries. Fig 16
shows the distribution of the number of different n-grams per bucket (b), while Fig. 17 is an
amplified version of it, presenting only the b value for the 300 first buckets. Estimating b can
be done using Eq. 3.8, as follows:

b = dngrams/nbuckets, (3.8)

where dngrams is the number of different n-grams inserted in the hash table and nbuckets the
hash table size (number of buckets). The statistic information about the distribution of b in
the table follows: standard deviation = 5.22, median = 2, and mode = 2. To find the average
number of different n-grams in each bucket, we applied Eq. 3.8 for the data inserted in the F2S2
structure, obtaining a result of 2.27. Although we may find a few buckets with lots of n-grams, a
significant portion of the table is empty and will lead to empty buckets, as we can see by Fig. 17.
There is a peak in one bucket with a significant number of n-grams occurrences and others, but
as expressed by the mode and median got from the analysis, most buckets have two or fewer
elements. This fact led us to choose the average number of different n-grams as the b value
(Eq. 3.8) since this seems a better choice when comparing to the other statistic components got
from the analysis.

Concerning the number of objects sharing the same n-gram L, we have used Eq. 3.9
to calculate this value.

L = nob j/dngrams. (3.9)

Here, the new variable nob j denotes the number of objects in our database. We cannot use the
average as we did in the previous case because digests may share multiple n-grams and we are
only interested in finding the number of different digests sharing at least one n-gram with the
queried object, not the number of similar n-grams. When we apply Eq. 3.9 to the data of the
F2S2 hash table, we get a result of 0.033, which express our expectation for the average number
of different objects sharing the same n-gram.
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Figure 16 – Number of different n-grams per bucket

The values calculated so far are concerning to our data set only. Other sets of si-
milar or different sizes may present different values for b and L since these parameters depend
exclusively on the data being handled, which could have a different n-gram distribution. To ex-
tend our results to other sets, one needs to compute the b and L values for them. To this end,
equations 3.8 and 3.9 can be applied. However, if by on hand we can define our hash table size
(nbuckets) and count the number of objects in our database (nob j) quickly, on the other hand, it is
hard to know the number of different n-grams (dngrams) without inserting all ssdeep digests in
the hash table and counting them.

To estimate the value of different n-grams (dngrams) for a data set with different types
and sizes, required to the calculus of the parameters b and L, we need to find an expression that
gives us such value based on the total number of the n-grams in this set. First, we consider
the different data sources that form the database (Linux client, Linux server, Windows 10, and
personal data) to simulate different systems and get a more general idea on how the n-grams are
spread across them. Then, we insert each set separately in the F2S2 index structure and count
the number of different n-grams. We also use the data got from our first analysis where the
entire database (all former sets together) was inserted in the structure since it can represent a
different and larger set.
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Figure 17 – Number of different n-grams per bucket (zoomed)

To find the expression that gives us the value of dngrams, we use regression analysis
techniques. This way, we can determine the relationship between the values of different n-grams
(unknown) and the total number of n-grams in the database (known). We chose the least squares
method to this end. After applying this technique to our results, summarized in Tab. 3, we came
up with the following expression:

dngrams = 2237231.04+(0.4816 ·nngrams), (3.10)

where nngrams is the number of n-grams of the database. We can obtain this number by multi-
plying the number of objects for the average number of n-grams in a single digest.

Table 3 – Number of different n-grams in each data source

Source Total number of
n-grams

Number of
different n-grams

% of different
n-grams

Linux client 22,937,595 12,828,701 55.93
Linux server 28,071,532 18,405,835 65.57
Microsoft Windows 11,376,395 7,357,119 64.67
Personal data 13,164,194 7,316,768 55,58

∑ 75,549,716 38,053,476 50,37
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The expression above allows us to estimate the number of different n-grams in any
database size and hence calculate both b and L values.

3.2.2.3 HBFT case analysis: Average steps in a search

Estimating the time needed for the HBFT strategy demands the knowledge of the
number of times we will need to go through the tree structure to identify a given element. In a
lookup procedure, there will be cases where the search stops in the root when the given element
is not present in the structure, but in others, we may have to go through the entire structure to
find it. Knowing the number of steps performed by element (h) will allow us to estimate the
operational cost of the HBFT strategy (Eq. 3.7). To this end, one can develop an algorithm to
count the average number of steps considering two scenarios: when the input is present in the
tree and when it is not. In the first case, we go through the tree structure checking each node
(bloom filter) for the presence of the given object until we find it, stopping the procedure in
a leaf. For the second one, the search ends in the root tree, but there is also the possibility of
occurring false positives, leading the process to go through the tree until all nodes of any level
return a negative result. In the end, a weighted average between the number of steps found in
each scenario and the number of elements must be returned, where the percentages of the two
events occurrences are used as weight.

3.2.2.4 Parameters definitions and measurements

Using the proposed formulas we can estimate the costs for performing the searches
with different data set sizes. The values adopted in our experiments are presented in Table 4.
We performed the tests using the following machine: Elementary OS 0.4.1 Loki 64-bit (built
on Ubuntu 16.04.2 LTS), i7-5500U CPU @2.40 GHz processor, 8 GB of memory, 1 TB SATA
3Gb/s hard disk drive (5,400 rpm), and NVIDIA GeForce 920M. We measured the time for
each operation using the clock library from the C language, except for ssdeep and sdhash

times (generation and comparison functions), which were measured using the time command
(sys + user times) available on Linux distributions, since we used the compiled version of both
tools. The times to compute the ssdeep, sdhash, and SHA-1 (both hashes generation and
comparison) were calculated over the average object size, presented in the table. We repeated
all experiments 20 times and took the average, taking care of clearing the cache each time to
prevent previous results influencing new ones.

Before calculating the operational costs, we need to determine the strategies struc-
ture size, by using the formulas and parameters presented in sec. 3.1.1, adapting only the data
set and average object sizes. We measured the time to load an object of 1 GiB from disk to
memory (buffer of sbu f bytes) and adjusted this value according to the strategies structure size
to simulate the loading process.
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Table 4 – Similarity digest search strategies experiments - Parameters

Parameter Description Value STD

sob j Average object size 195 (KiB) -
sstrategy Strategies’ structure size see section 3.2.2.4 -
sbu f Buffer size 4096 (bytes) -
Tread Time to read 1 GiB from disk to memory 429.7565 (ms) 8.1452 (ms)
TgenSH SHA-1 digest generation 0.6581 (ms) 0.0949 (ms)
TcompSH SHA-1 comparison function 0.0102 (ms) 0.0037 (ms)
sngram n-gram size 7 (bytes) -
sindex index size 4 (bytes) -
sekey e-key size 3 (bytes) -
TgenSS ssdeep digest generation 5.6000 (ms) 2.3324 (ms)
TcompSS ssdeep comparison function 1.0000 (ms) 1.7320 (ms)
TindexLoad Time to load the index structure sstrategy ·Tread (ms) -
TngramExtr Time to extract n-grams from ssdeep digest 0.0207 (ms) 0.0062 (ms)
b N-grams in each bucket see section 3.2.2.2 -
L Candidates sharing the same n-gram see section 3.2.2.2 -
ThashI Time to hash sindex bytes 0.0813 (ms) 0.0115
TcompStrE Time to compare two strings (sekey bytes) 0.0010 (ms) 0.0001 (ms)
TgenSD sdhash digest generation 19.2000 (ms) 5.3066 (ms)
TcompSD sdhash comparison function 19.4000 (ms) 4.7791 (ms)
Tb f Load Time to load the bloom filter structure sstrategy ·Tread (ms) -
Tf eatureExtr Time to extract features from an object 12.2975 (ms) 4.4667 (ms)
β Feature size 64 (bytes) -
ThashF Time to hash a feature of β bytes 0.0929 (ms) 0.0295 (ms)
TcompStrF Time to compare two strings (β bytes) 0.0010 (ms) 0.0001 (ms)
k Number of hash functions for the bloom filter 5 -
Tb f TreeLoad Time to load the bloom filter tree structure sstrategy ·Tread (ms) -
h Average steps in a lookup procedure see section 3.2.2.3 -
x Degree of the tree 2 -

3.2.3 Evaluation

We measured the time for the three presented strategies (F2S2, MRSH-NET, and
HBFT) and also for brute force using SHA-1, ssdeep, and sdhash. In our experiments, we
first considered the database presented in section 3.2.2.1 as our reference list and then mea-
sured the time for performing over it using different target system sizes, varying them from 1
GiB to 10 TiB. It is important to mention that our database encompasses objects from different
fonts gathered in a single set. Using the equations from Section 3.2.1 along with the values of
section 3.2.2.4, we can estimate the strategies operational costs, shown in Fig. 18 (a).

According to our results, the strategies presented a linear growth as the target system
size increased. As expected, the brute force approach had the worst results, with sdhash as the
most expensive one, followed by ssdeep and SHA-1. The latter one had similar (but worst)
results to HBFT. The best strategy regarding the operational time for our experiments was F2S2,
presenting, on average, a speedup of 1,933,723.39, 99,676.83, and 996.82 times compared to
the brute force approaches sdhash, ssdeep, and SHA-1, respectively, and 778.89 and 25.24
times better than HBFT and MRSH-NET strategies, respectively.

Fig. 18 (b) shows how the strategies perform over a reference list size variation



Chapter 3. Comparative analysis of the Similarity Digest Search Strategies 72

Figure 18 – Strategies operational costs:
(a) Target system size variation, considering a fixed size ref. list (233.32 GiB)
(b) Ref. list size variation, considering a fixed size target system (1 TiB)

(10 GiB to 250 GiB) and using a fixed target system size database (1 TiB). We limited our
experiments to this particular range since it is the one covered by our data. Estimating the
behavior of b and L parameters in the F2S2 equation for data set sizes far beyond ours could
lead to wrong results once the data distribution in such cases could be different. For larger sets,
additional studies are required to estimate these variables and hence the strategies operational
costs.

Again, our results pointed out that sdhash brute force is the most time-consuming
approach and, on average, F2S2 is the best one. However, despite the linear behavior of brute
force, other strategies presented a different time variation as the reference list size increased.
When increasing the reference list size, MRSH-NET showed constant time as expected due to
the lookup procedure time being independent of the structure size. The time on HBFT was not
constant but increased slowly due to the tree structure getting larger as the reference list ex-
panded (number of elements growth), elevating the average number of steps in a lookup proce-
dure and hence the time to go through the tree. For F2S2 strategy, we had a very small increase
in time due to the number of similar n-grams increase. For data sets ranging from 10 GiB to
250 GiB, the F2S2 time increase was only 1.24% of the initial value.

3.2.4 Discussion

Our findings showed the prohibitive costs of the brute force method when per-
forming over large data sets. For instance, an investigation of a 1 TiB target system using a
reference list of 233.32 GiB and sdhash in the form of brute force could take more than 4
thousand years to be accomplished (around 6,917,958,887,350 comparisons between the data
sets are necessary). The same search using the strategies MRSH-NET and the HBFT could take
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only 70 and 2145 days, respectively. Using the ssdeep (brute force), the same process would
require around 754 years, while F2S2 would only demand no more than 20 hours. It is impor-
tant to mention that this enormous amount of time is due to the hardware used to perform the
experiments. In a working station with powerful hardware and using parallelism techniques,
these times are expected to decrease, but the relative differences found among the strategies are
expected to remain.

Another important fact to mention is that even though F2S2 presents higher lookup
complexity than MRSH-NET and HBFT (see part I of this section), it performed better in our
experiments when comparing large data sets. As expected, MRSH-NET was better than the HBFT.

Our results indicate that these strategies are a better choice than the simple brute
force, and can reduce significantly the time consumed in KFF investigations. We also show
how they scale when performing over different data set sizes.

3.3 Conclusions

In this chapter, we presented the Similarity Digest Search Strategies (SDSS) as an
efficient alternative to the brute force method, which is too time-consuming and even prohibitive
for dealing with large data sets. Our contributions to the field include a comparison of current
similarity digest search strategies to point out strengths and weaknesses. We also provided a
detailed analysis of the operational costs of some strategies, showing how they scale with diffe-
rent data set sizes and which performed best. Our results demonstrated that even though some
strategies outperform others in some aspects, they fail in others. There is no currently suitable
approach satisfying the most relevant requirements. From the best of our knowledge, this is the
first work of this kind.

We conclude that new strategies are required to address the overwhelming amount
of data forensics examiners have to deal with. For this reason, we present below a list of
requirements for a new similarity digest search strategy, aiming to fulfill the most desirable
points discussed so far and also other complementary ones.

A desirable strategy should:

• Have low memory consumption;

• Have an efficient lookup procedure (low time complexity);

• Support the most accurate approximate matching tools;

• Allow both detection modes: resemblance and containment;

• Return the actual object(s) similar to the queried one (in contrast to membership queries);

• Have few or no false positives in the process;
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• Rely on its own storage structure;

• Insert/remove elements dynamically.

As shown by our analysis, none of the current approaches in the literature can ad-
dress well all these aspects, since they mostly focus on improving only a particular aspect in
detriment of others. Finding a balance of these requirements would already be a significant
improvement to the field, allowing more efficient investigations in an era of an overwhelming
amount of data.

Future studies regarding SDSS encompass extending our analysis to other similarity
digest search strategies, along with the estimation of the preparation phase costs and variations
of the strategies parameters to find the best operating conditions of each approach. Future work
also includes analyzing scenarios using larger objects, since we limited the object size in our
database to 200 MiB. We also plan to find new methods to estimate the parameters b and L of
F2S2 to scale with any data set size.

Given that some gaps remain on the similarity digest search field, we present in the
next section, a new strategy that addresses most of the proposed requirements.
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4 A new Similarity Digest Search Strategy:
FSDS

4.1 Introduction

The similarity digest search strategies presented earlier work with different AM
tools: Nilsimsa, ssdeep, mrsh-v2, and sdhash. However, newer AM tools normally can not
work with existed strategies due to their unique characteristics; all strategies were developed
taking into consideration the working process of a particular tool. This way, the default option
for other tools when performing searches is the brute force approach. TLSH is an example, even
though it presents attractive features for forensics investigations as robustness to detect small
changes in objects, small digests, and low latency to create and compare digests. With no better
strategy than brute force, TLSH use becomes restricted. In this chapter, we developed a search
strategy to work with TLSH and thus reduce the required time for investigations. We start by a
description of the proposed strategy, followed by an assessment of such approach comparing
it with brute force to assess its effectiveness, memory requirements, lookup efficiency, among
other parameters. The comparison of our strategy to others present in the literature will be done
in future works.

4.2 Fast Similarity Digest Search strategy (FSDS) proposal

In this section, we propose a strategy to perform similarity digests search efficiently,
called FSDS. Our strategy was inspired on the F2S2 approach and uses a hash table to store
digests based on their distance from a reference point. When performing a search with the goal
of finding similar objects, one needs to compute the TLSH digest for the given object and the
distance of such digest to the reference point. The result points to a position in the hash table
where similar objects will reside. Using TLSH comparison function with all digests in the given
position and with others stored around it, we can figure out whether there is or not similar items
stored in the structure. In the following sections, we describe the details of our proposal along
with our design choices. The implementation of our approach can be found in our GitHub page
<https://github.com/regras/fsds>. Since the proposed strategy is based on the TLSH AM tool,
details about how this AM tool works can be found in 2.

4.2.1 Structure

FSDS uses a particular kind of hash table to store digests, consisting of a central
array (main table) and buckets. Each position in the main table, referred to as a bucket, can

https://github.com/regras/fsds
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keep multiple entries composed by one field only, the ID, which is a link to the corresponding
digest.

4.2.2 Distance function

The distance function maps digests to positions in the main table according to their
distance to a reference point. We choose the TLSH comparison function itself to perform such a
task since it estimates the hamming distance between two digests. This way, similar objects will
produce similar digests with small differences between each other; they will be mapped to the
same or near position in the main table. For instance, let’s suppose we have digests A, B, C, and
R, where the later is our reference point. Digests A and B are similar (with distance dAB ≈ 0),
while A and C, and B and C, are very different (dAC ≈ dBC >> 0). When we compare B and
R, we get a distance of dBR, which is expected to be close to dAR since A and B are similar. On
the other hand, comparing C to R is expected to result in a value larger than dAR and dBR. It is
important to mention that we work with the absolute value (modulus) of the distance.

However, the downside of our distance function is that it may store different digests
in the same bucket since this function is like a modulo operation. For instance, the character A is
four positions distant from character E, but at the same time, I is also four positions distant from
E. Taking E as the reference point, our function will store A and I in the same bucket since they
present the same distance to E, even though the two characters are different (8 position distant).
There is also a problem with the header calculus in our distance function (OLIVER et al., 2013)
that may store distant digests in the same bucket.

Given the limitations of our distance function, we need to take an extra step when
performing queries. We first need to calculate the distance from the input digest to the reference
point. Then, all digests stored in the main table at the given position and also the ones around
it are selected. The extra step is related to performing a normal digest comparison (using TLSH)
of the queried digest with all selected candidates to confirm similarity. We emphasize that our
strategy is meant only to reduce the number of total comparisons one should make, limiting the
search to a small digest subset instead of the whole set.

4.2.3 Reference point

The reference point is used in conjunction with the distance function to map digests
in the main table. Our choice is to use a random TLSH digest selected from our data set for such
task. Section 4.3.1 discusses the impact of our decision based on some experiments.

4.2.4 Main table size

The maximum size of the main table is limited by the maximum difference between
two digests since our distance function maps digests into buckets based on their differences.
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For this reason, we simulated a case where we have two digests that would return the maxi-
mum distance when computing TLSH comparison function (Header and Body distance) found
in (OLIVER et al., 2013); our results yielded a value of 2089. This way, the main table should
have 2089 buckets. Although it can have less than this number, the consequence of using small
sizes is a concentration of different digests in the same buckets, increasing the number of com-
parisons. One alternative to increase the table size beyond its capacity (2089 buckets) is to
increase TLSH digest size.

4.2.5 Preparation phase: Inserting digests in the structure

The preparation phase of FSDS strategy, represented in Fig. 19 and detailed in Al-
gorithm 4.1, consists in creating the main table and fill it up with our data set objects, got
from the digital forensic practitioner reference list (black or white list), for instance. First, we
need to compute the TLSH digest for the objects from our set and assign an ID to each one.
Then, we store the ID of each digest in the main table position related to the distance from the
corresponding digest and the reference point, according to our distance function. Eq. 4.1 shows
the time taken by this process.

TFSDSpp = Tcreation +n · (Tcalc +Tcomp +Tinsertion) (4.1)

Here Tcreation is the time to create the main table, n the number of digests in the reference list,
Tcalc and Tcomp the time to compute and compare a TLSH digest, respectively, and Tinsertion the
time to insert the digest ID in the table.

Algorithm 4.1 FSDS Preparation Phase
1: input : Main table size (size) and reference list objects (re f List).
2: output : FSDS created structure (mainTable).
3: procedure PreparationPhase(re f List : list < string >)
4: foreach ob ject in re f List do
5: digest← GenerateDigestT LSH(ob ject)
6: id←CreateId()
7: position← DistanceFunction(digest,re f erencePoint)
8: StoreDigestInMainTable(id, position)
9: end for

10: return 0
11: end procedure
12: procedure Main(re f List : list < string >,size : int)
13: mainTable←CreateMainTable(size)
14: PreparationPhase(re f List)
15: return mainTable
16: end procedure
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Figure 19 – Preparation phase of FSDS.

4.2.6 Operational phase: Performing similarity digest queries with FSDS

After the preparation phase, FSDS will be available for handling queries. The input
object has its TLSH digest created and then processed by the distance function to point out to the
main table position where possible similar candidates will be placed. All digests in that position
along with their neighbors (those stored in r near buckets from each direction) will be selected.
Then, all candidates are compared with the queried digest to determine which ones are indeed
similar. The whole process is depicted in Fig. 20 and also in Algorithm 4.2. Eq. 4.7 estimates
the time for FSDS operational phase.

TFSDSop = Tload +q · (Tcalc +((L+1) ·Tcomp)) (4.2)

where Tload is the time to load the structure into main memory and q the number of target system
digests. Tcalc and Tcomp are the time to compute and compare L+1 TLSH digest, respectively, in-
cluding the reference point calculus. The parameter L denotes the number of similar candidates
returned in a query, estimated by the average number of digests per bucket (avg) multiplied by
the number of near buckets visited (L = avg · (2 · r)).

4.2.7 Number of visited buckets

A starting point to determine the number of visited buckets near the position indi-
cated by the distance function is the TLSH threshold value. For instance, if we set the threshold
for t, every comparison performed by TLSH which result is less than this value will be ac-
cepted as similar. Then, all digests in the r = t buckets below and above a given position will
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Figure 20 – Operational phase of FSDS.

Algorithm 4.2 FSDS Operational Phase
1: input : Target system objects list (targetList), TLSH threshold (t), and radius (r) for

searching similar objects in the hash table (main table).
2: output : List of similar pairs (list).
3: procedure OperationalPhase(targetList : list < string >, t : int,r : int)
4: foreach ob ject in targetList do
5: digest← GenerateDigestT LSH(ob ject)
6: position← DistanceFunction(digest,re f erencePoint)
7: candidatesList← f indCandidatesOnMainTable(position,r)
8: foreach candidate in candidatesList do
9: score←CompareDigestsT LSH(digest,candidate)

10: if score≤ t then
11: similarOb jList← addToList(digest,candidate)
12: end if
13: end for
14: end for
15: return similarOb jList
16: end procedure
17: procedure Main(targetList : list < string >, t : int,r : int)
18: mainTable← LoadMainTable()
19: list← OperationalPhase(targetList, t,r)
20: return list
21: end procedure
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be candidates for similarity to the queried object. We can increase/decrease the threshold value
according to the level of similarity demanded.

4.2.8 Using FSDS

FSDS proof of concept was implemented in C language and requires the TLSH tool.
When initialized, the forensic practitioner needs to provide the hash table size (number of
buckets) and choose one of the following options:

• Digest data set (reference list) insertion: The examiner provides a list of digests to be
inserted in the FSDS structure.

• Searching procedure: The examiner chooses one of the following options:

– All objects: All objects with a difference equal or less than a predefined threshold t

with the queried object are returned.

– First object: The search looks for one object with a difference of at most t with the
queried object, stopping the search when finding the first one.

– Closest object: The object with a smaller distance in comparison with the queried
object is returned. No threshold is established, only a maximum number of buckets
to visit.

• Main table information: Shows information about the structure, such as the number of
filled and empty buckets and distribution of the digests in the main table.

4.3 Assessment

The tests performed in this work used the following resources: Linux Ubuntu 16.10
64-bit, Quad core (3425MHz) processor, 500 GB SATA hard disk drive (5,400 rpm), and 4 GB
of memory. We measured the times using the time command (sys + user times) available on
Linux distributions. We repeated all executions 20 times and took the average, with exception
of TLSH brute force operational phase due to its large processing time. We took care of clearing
the cache each time to prevent previous results influencing new ones.

Our experiments were conducted using t5-corpus as data set (ROUSSEV, 2011).
The corpus is a collection of real-world files containing various file types having a total of 4457
objects (1.78 GiB) as summarized in Table 5. The average object size is 419 KiB. We extracted
from t5-corpus 20 random objects to perform our experiments. The only restriction imposed for
the object selection was that all of them had at least one similar object in the set.
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Table 5 – t5-corpus file type statistics.

html text pdf doc ppt xls jpg gif

# of files 1,093 711 1,073 533 368 250 362 67

Avg. size (KB) 66 345 590 433 1,003 1,164 156 218

4.3.1 Impact of the reference point

We performed several experiments in the chosen data set to find the best reference
point. Our goal is to locate the one that better spread the digests in the FSDS structure to reduce
the number of comparison in the final step and hence to avoid false positives. We considered
different elements in our experiments, such as object type (xls, doc, ppt, pdf, text, jpg), object
size (ranging from 4 KB to 17 MB), entropy, and digest entropy.

An analysis of several experiments taking into consideration the four elements
aforementioned was performed. After each test varying the parameters, we counted the number
of empty buckets in the structure. Our results indicated no pattern regarding our choices. In
general, the type, size, and entropy of an object caused a small impact in the digest spread in
the main table. All tests presented similar results: ≈ 44% of buckets filled up with digests on
average. Due to the maximum main table size of 2089, we chose a structure of 211 buckets,
enough to comport all of our data set objects.

Since we could not identify any influence for choosing a good reference point, we
picked a random one to continue our assessments. Although we believe that using any reference
point will produce similar results (on average) as shown in our experiments, future work is
necessary to corroborate our assumptions, using larger data sets. Furthermore, in this work,
we have used an FSDS structure composed of a single table and reference point to store the
object digests. Future studies also encompass extending FSDS to work with multiple tables,
each having its own reference points. This way, a query object is compared to all reference
points and the one(s) with the smallest distance, have the lookup process performed, in the
same way as presented in 4.2.6. This improvement will allow us to work with larger data sets
more efficiently.

4.3.2 Memory requirement

Before creating the FSDS structure, we need to create TLSH digests for each object
in our reference list. The results must be stored in a database, XML file, or even in ordinary files
to allow quick access to the digests for later identification. Next, we need to assign IDs to each
digest, create the FSDS main table, and insert the data into the structure. In the end, the amount
of memory required by FSDS is given by Eq. 4.3:

M = n · (sdigest + s f + sID) (4.3)
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Here n is the number of digests of our reference list, sdigest the size of a TLSH digest, s f the size
of the object name, and sID the size of the ID in the structure.

In our experiments, we have adopted the following values for these parameters:
n = 4457, sdigest = 70 bytes, s f = 12 bytes, and sID = 4 bytes. We believe it is more than enough
to allocate 12 characters for each object name as well as 4 bytes (corresponding to an integer
variable in modern systems) for the ID, which are more than enough given the 4457 objects
of our set. These choices led us to a memory requirement of ≈ 375 KiB. The TLSH brute force
approach required ≈ 357 KiB, a small difference compared to FSDS strategy using the same
parameters and data set (t5-corpus).

4.3.3 Lookup efficiency

We also evaluated the effectiveness of our strategy in finding similar objects. We
compared FSDS with the naive brute force concerning the three searching modes implemented
in our approach: All objects, First object, and Closest object. Brute force requires an all-against-
all comparison for the modes All objects and Closest object. The First object mode depends on
the objects in the data set and their similarity with the queried one. Supposing that we have at
least one object with similarity below the threshold with respect to the queried item, we expect
to find it with half of all comparisons on average. Considering the t5-corpus, it is expected to
find a similar item with 2228 comparisons on average.

Performing the same search procedure using the FSDS strategy is more efficient.
Table 6 shows our results for performing 20 lookups with random objects extracted from t5-

corpus using the three searching modes with FSDS. We established a threshold of t=30 for low
false positive rates (OLIVER et al., 2013). However, we are not interested in measuring false
positives rates, but the potential of FSDS strategy in locating similar objects. To this end, we
evaluated t5 using TLSH brute force to establish the ground truth of the set. Our next experiment
aims to find the same similar objects pointed by TLSH but using FSDS instead, where we expect
to have the same results but with a significant reduction in the number of comparisons. We
first used the threshold t value as the number of visited buckets (as discussed in Sec. 4.2.7).
However, after some experiments using other values (r = {10,20,50}), we found out that that
r = 20 has the best balance between the number of digest comparisons and efficiency in finding
similar items according to our experiments.

The results summarized in the table present the object queried followed by the score
of the most similar object in the set and the results for the three modes. The All objects mode
encompasses the total number of comparisons of a given search, the number of similar items
found in relation to the expected one, and the score of the most similar object found. The First

object and Closest object modes present the number of comparisons necessary in the search and
the score of the similar object found.
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Table 6 – FSDS-TLSH: Lookup efficiency

Searching modes
Random objects Min. ALL objects First object Closest object

(t5-corpus) score #Comp. Found / Total Min. score #Comp. Score #Comp. Min. score

000649.text 5 203 6 / 6 5 5 11 203 5
001816.text 5 193 5 / 5 5 9 9 193 5
000047.xls 22 97 1 / 1 22 20 22 97 22
000073.html 19 200 1 / 1 19 179 19 200 19
000836.text 23 138 1 / 1 23 17 23 138 23
001434.text 8 212 5 / 5 8 67 10 212 8
001443.text 12 235 2 / 2 12 72 12 235 12
003056.html 9 245 5 / 9 9 3 14 245 9
001519.html 8 235 8 / 9 8 1 16 235 8
001531.html 15 189 3 / 3 15 11 15 189 15
001708.html 10 228 5 / 9 10 30 10 228 10
002138.html 0 229 2 / 2 0 4 0 229 0
004347.html 30 134 1 / 1 30 50 30 134 30
002038.html 0 286 6 / 6 0 3 0 286 0
000659.text 7 213 6 / 8 7 22 11 213 7
000935.text 18 221 3 / 5 18 86 18 221 18
001435.text 10 200 10 / 10 10 12 15 200 10
001619.doc 27 219 1 / 1 27 69 27 219 27
001723.html 25 167 1 / 1 25 96 25 167 25
002161.ppt 27 47 1 / 1 27 6 27 47 27

∑ - 3891 - - 762 - 3891 -

According to our results, there is a significant reduction in the average number of
comparisons using FSDS in the three modes in relation to TLSH brute force. Considering the
All objects and Closest object modes, only 3891 comparisons are necessary in contrast to the
((4457− 20) · 20 =) 88740 comparisons of brute force (4.38 % of the comparisons). Even
though we could not find all similar objects in some cases, such as in the search for the object
003056.html, which found 5 objects from a total of 9, we were able to locate at least the
most similar one as indicated by the minimum score. When comparing the First object mode
of the two strategies, we were able to identify a similar item in all cases. In 35% of cases, we
could not find the most similar one. However, the number of comparisons dropped from the
( (4457−20)

2 ) ·20 =) 44370 of brute force to only 762 using FSDS (1.72%), showing the efficiency
of this strategy mode.

4.3.4 Time efficiency

We measured the time for a single TLSH digest generation and comparison over
the average object size to estimate the preparation (Eq. 4.4) and operational (Eq. 4.6) phases
using TLSH brute force and FSDS strategy (Eq. 4.1 and 4.7). Table 7 summarizes our results.
The following parameters were adopted in the experiments: Tcalc = 1.16 · 10−1 (sec.), Tcomp =
1.29 · 10−3 (sec.), Tcreate = 1 · 10−6 (sec.), Tinsert = 1 · 10−6 (sec.), Tload = 3.4 · 10−4 (sec.), L =
170.65 and r =20. All of these parameters were estimated by using the corresponding functions
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of the code provided in our GitHub page (see Sec. 4.2).

We also applied brute force over t5 to measure the necessary time to accomplish
both phases to corroborate the previous results got from the formulas. The preparation phase
was completed in 487.88 sec., while the operational one in 24,730.25 sec. The difference is
small but acceptable value which we believe is due to the time command limitation in detecting
tiny differences of time and other low costs operations not accounted for in the estimation. The
difference is around 6.35% for both preparation and operational cases (on average).

Table 7 – FSDS vs. Brute Force: Estimated Preparation and Operational costs

Strategy Preparation phase (sec.) Operational phase (sec.)

Brute force 517.01 26,102.94
FSDS (All objects mode) 522.76 (+1.11%) 1,502.41 (-94.24%)

Table 7 shows that brute force took for an all-against-all comparison about 7 hour
and 15 minutes of processing time while FSDS, only 25 minutes (5.76%). The preparation phases
of both strategies were similar, showing another benefit of FSDS since the extra cost for using it
is not significant (see Sec 4.3.5). The reduction of the number of comparisons (discussed in the
previous section) is significant, even though an analysis of other data set sizes is still required to
measure more precisely the improvements regardless of size. However, the hours took by brute
force in the whole process with t5-corpus data set were reduced to minutes with FSDS.

The asymptotic complexity of FSDS is O(q ·L). Since the value of L tends to increase
according to n (more objects will be placed in the same position in the hash table, requiring more
digest comparisons), in the worst case, the complexity of this approach becomes the same as
brute force. However, we showed that, in practice, we achieved a significant reduction in the
time to find similar objects with FSDS than brute force.

4.3.5 Break-even point

The FSDS preparation phase requires time to create the main table, calculate the
TLSH digests of all objects in the reference list, and insert them into the structure (Eq. 4.1). On
the other hand, the brute force approach requires only the time to calculate the digests of the
reference list objects, given by Eq. 4.4.

TBF pp = n ·Tcalc (4.4)

To compensate the extra cost of FSDS in relation to brute force in term of queries:

TFSDSpp +TFSDSop = TBF pp +TBFop (4.5)

where TBFop is the operational phase of TLSH brute force, given by Eq. 4.6.

TBFop = q · (Tcalc +(r ·Tcomp)) (4.6)
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We can ignore the costs of creating and loading the hash table (Tcreate and Tload) and inserting
elements in the structure (Tinsert) which can be very low compared to the other ones, as well as
reading the digests from any database in the brute force approach. Then, we can estimate the
break-even point by:

q′ =
r ·Tcomp

(r ·Tcomp)− ((L+1) ·Tcomp)
(4.7)

where q′ represents the number of objects that need to be searched to compensate the extra costs
of FSDS in relation to brute force.

Using the parameters presented in Sec. 4.3.3, we can calculate q′. Our results yield
that 1.04 queries are necessary, which means that performing two queries only are enough for
amortizing the extra cost of FSDS over brute force. The reason for the low cost is due to the
generation digest process taking longer than the comparison one.

4.4 Conclusions

In this chapter, we proposed FSDS, a new strategy to efficiently analyze large digests
data sets based on the TLSH tool. We performed experiments showing the efficiency of our
approach in comparison to the simple brute force method in three different scenarios, where a
reduction about 95% in time was observed with a minimum impact on precision. Future work
encompasses extending FSDS to work with multiple tables instead of only one. This way, each
table will have its own reference point, which we believe will allow the strategy to perform
better over large data sets. We also plan to develop and test other distance functions to reduce
even more the number of comparisons and hence the required time for forensics investigations.
Another interesting work to be done is the comparison between FSDS (after extending it as
discussed before) and other strategies, considering the efficiency of such approaches in finding
similar objects.

The next chapter presents another problem faced with digital forensic investiga-
tions: The high number of false positives. We show that common structures found in many
different objects are the reason for many false positives, and when we removed them, the simi-
larity search is improved significantly in relation to the quality of matches.
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5 The impact of common blocks on Appro-
ximate Matching

5.1 Introduction

The problem of current AM functions is that too many matches with irrelevant
results (i.e., many false positives) are produced due to common structures found in many objects
of the same and different file types. Since these structures may repeat in many different files,
they are not suitable for assessing similarity in some contexts. This issue was first addressed
by Garfinkel et al. (GARFINKEL et al., 2010), who called them common blocks. Examples
of such common data are header/footer information, color palettes, font specifications, or other
data structures belonging to particular software vendors.

To differentiate the importance of similarity from a practitioner perspective, it is
important to find a strategy to separate the content generated by users from content generated
by applications. In this chapter, we present how we use approximate matching techniques to
identify and remove common blocks and how our proposal can contribute to digital forensic
investigations. Since we will use AM for dealing with common blocks and these tools work
with the concept of features when creating the similarity digests, we will use the terms common
blocks and common features as synonyms.

This chapter analyzes the effects of common blocks in approximate matching and
shows how to use AM to identify and filter out these blocks. We discuss how common blocks
are spread across different objects, their frequency, and how to improve the quality of matches.
We also measure how precision/recall rates are affected by common blocks and show how the
recommended threshold score to identify similar matches used by some tools (in particular for
sdhash) is affected. We highlight that although common blocks can be useful in some scenarios
(file type identification, for example), we believe this sort of information should be avoided
because of the many irrelevant results produced when black/white lists are used. Future work
encompasses exploring other applications for common blocks.

5.2 Related work

The concept of common blocks was first discussed by Garfinkel, S. L. et al. (GAR-
FINKEL et al., 2010) where the authors presented hash-based carving for content identification:
The idea is to hash hard drive sectors (fixed-size pieces of data between 512 and 4,096 bytes)
and try to match a block to a given file. The authors utilized the term distinct for the first time
referring to blocks that occur only once in their test-corpus. Foster, K. (FOSTER, 2012) and
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Garfinkel, S. L. and McCarrin, M. (GARFINKEL; MCCARRIN, 2015) continued the study of
hash-based carving, and during their tests, they found many common blocks across files which
made it difficult to prove the existence of a given file on a media under investigation. The solu-
tion adopted by those authors was to use distinct blocks only.

Besides using a database to filter blocks that appeared several times, Foster, K. (FOS-
TER, 2012) also proposed rules to identify the common (less relevant) blocks. The first rule was
to ignore blocks with low entropy (i.e., repetition of the same character, NULL blocks, etc.). The
second rule addressed blocks with repeating n-grams. In a follow-up work, Garfinkel, S. L.
and McCarrin, M. (GARFINKEL; MCCARRIN, 2015) recommended additional rules as the
entropy calculus was insufficient:

• Ramp test: Deals with blocks belonging to a special structure found in Microsoft Office
documents, the Sector Allocation Table (SAT) (RENTZ, 2007);

• White space test: Searches and removes blank lines of 100 spaces, each terminated by a
newline character. This pattern is mostly found in JPEG files;

• The 4-byte histogram test: 4-byte values, either repeating or alternating 4-byte values,
are searched and eliminated. This pattern was found in Apple QuickTime and Microsoft
Office file formats.

According to Gutierrez-Villarreal, F. J. (GUTIERREZ-VILLARREAL, 2015), the
rules were redundant, and they proposed replacing them by a single one. Also, by focusing their
research on JPEG files only, they found out that using blocks (4,096-byte segment of a file) with
an entropy of 10.9 or higher removes many of the common blocks.

Garcia, J. (GARCIA, 2018) also explored how common blocks affect the similarity
assessment by showing mismatches between fragments of data due to the common structure
found among objects. They compared two approaches to extract the common blocks, one using
the usual block-based hashing (disk sector level) and another using a rolling hash algorithm
(similar to ssdeep/mrsh-v2) to explore the fragment hash uniqueness on JPEG images and
compressed file archives. They report a successful detection of JPEG files inside compressed
archives, arguing that many compression algorithms ignore high entropy data (a previous test on
the data segment is done beforehand). Since JPEG files encompass this category, most content of
such files is stored without compression. Later, one can correlate a JPEG file with a compressed
archive and yet find some similarity (in case the same image is inside the archive).

However, the aforementioned references have some constraints when it comes to
similarity detection. First, some authors restricted their applications to finding exact duplicates
while we are interested in finding similar data. Second, previous research often focused on re-
latively large blocks for analysis; however, the larger the block, the more likely to encompasses
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changes in the object content, resulting in a different hash and preventing from finding similar
blocks. Lastly, previous work ignores the block alignment problem, i.e., adding or removing a
single byte at the beginning of an object will shift the subsequent bytes and change the repre-
senting hash. For this reason, we explore the use of Approximate Matching tools (which deal
with the aforementioned issues efficiently) to perform object identification (of similar content).

5.3 Similarity classes

Whenever AM tools provide a score > 0 from the comparison of two objects, the
similarity detected can be related to three classes, as shown below:

User-generated content (UGC): Data created by users, such as text, pictures, tables, etc.

Template content (TC): Data created by users that repeats over many different files. An example
is a company’s document template, where every file created by this company will con-
tain the same header, footer, logo picture, etc. This is a form of similarity less relevant
but could be useful for practitioners in specific cases. However, it may also lead to many
irrelevant results.

Application-generated content (AGC): Data created by applications. An example is a file-
header information with metadata required to access the file. This information is usually
shared among (almost) all files of the same type and, in some cases, even with files of
different types.

Since similarity can occur in these three forms, the definition of these classes is
important so the digital forensic practitioners can perform their searches with their purpose in
mind. Besides, we also need to provide methods for highlighting each similarity class accord-
ingly in a way that AM results can be more specific to the practitioner’s goals. In this thesis, we
focus on providing a new approach for finding mostly UGC matches since we believe this is the
most wanted form of similarity in scenarios like the KFF involving the use of black/white lists.

5.4 Impact of excluding common blocks for AM

In this section, we provide a detailed study about the impact of removing common
blocks from the similarity digest of AM and how it would impact the number of matches.

5.4.1 Research direction, design decisions and implementation

The impact of common features on the behavior of approximate matching algo-
rithms is not well explored. Therefore, this work addresses the following research questions:
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RQ1 What are the common features? How frequently do they appear? How do they spread
across various file types?

RQ2 How does ignoring common features impact the similarity detection (i.e., number of
matches)?

RQ3 Is there a clear threshold N for which common features are ignored in the data set at hand?

RQ4 How does removing common features affect the runtime efficiency of the algorithm?

It is important to note that we are not interested in measuring the accuracy or detec-
tion capabilities of the algorithms but strictly to focus on the impact of common features on the
similarity matches.

5.4.1.1 Procedure overview / workflow

To analyze the impact of common blocks, we performed several experiments. While
for RQ1 we compared the behavior of sdhash and mrsh-v2, the remaining tests concentrated
on sdhash for three reasons: (a) It appears to be the most widespread approach; (b) it uses
a constant and shorter feature size than its competitor; and (c) it produces more features as
shown in Sec. 5.4.2.1. Additionally, sdhash utilizes the Shannon entropy to exclude undesirable
features, eliminating some of the most common blocks by default, e.g., the ones composed by
only values of 0s or 1s. Regardless of this choice, we expect similar outcomes for mrsh-v2
although it has to be validated in future work.

Definition For a better and common understanding, we define the following terms:

S denotes a data set of files l and |S| denotes its cardinality;

f denotes a feature where each f belongs to one or more files;

l represents a file and it is composed by a k-tuple of features, e.g., l = ( f0, f1, ..., fk−1). Note,
features are not unique and may repeat in l;

T denotes a tuple containing all features for all l ∈ S (order not important). Note, features are
not unique and may repeat;

F denotes the set containing all features from T . Recall that sets only contain unique ele-
ments;

t f ( f ,T ) denotes the feature frequency1 and is the raw count of f in T ;

it f ( f ,S) denotes the inverse term frequency1 and is the raw count of l ∈ S that contain f , i.e.,
the number of files containing f one or more times;

Common feature f is a feature where it f ( f ,S)> N where N denotes a threshold.
1 Terms are borrowed from information retrieval field as they are similar.
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Procedure for RQ1 In order to understand the spreading of common features, we modified
sdhash and mrsh-v2 to store the extracted features in a database. Next, we executed
both modified implementations on S and counted the frequencies of each feature. Lastly,
we analyzed the frequencies which allowed us to compare sdhash and mrsh-v2 as well
as provide an overview of how many common and unique features exist in S. Results
are discussed in Sec. 5.4.2.1. Additionally, we manually analyzed some common features
which are highlighted in Sec. 5.4.2.2.

Procedure for RQ2 To measure the impact of ignoring common features on similarity matches
(number of matches), we compared the matching behavior of sdhash to the proposed
algorithm (based on sdhash, named NCF_sdhash) for various N. If a feature is common
according to our definition, it will be ignored during processing. All ignored features are
not represented in the similarity digest. Findings are summarized in Sec. 5.4.3.1.

Procedure for RQ3 To identify a valid threshold, we used some predefined N-values and ma-
nually inspected the matches. This allowed us to assess the best N for S as well as various
file types. Results are presented in Sec. 5.4.3.1.

Procedure for RQ4 Our modified version is compared to the original version with respect to
runtime efficiency, i.e., the time to generate and compare digests. Results are outlined in
Sec. 5.4.3.6.

Differentiation of similarity To assess whether a match was related to user-generated con-
tent, application-generated content, or template similarity, we manually investigated the
matches. When two files had no visual similarity, i.e., no common text, picture, table, or
other user-generated elements, we classified the match as application-generated content
similarity. A match was considered template similarity when the same layout repeated
over several files, but their content was different. For instance, two html pages, ‘contact
us’ and ‘our organization’, where both files had identical colors, elements disposition,
menu bar, headlines, logo, etc., but their content was different. In this work, we focus on
user-generated content which will be considered true positives; template and application-
generated content are considered false positives.

5.4.1.2 Database implementation

We chose SQLite as the relational database management system for its simplicity
and being open source2. In our experiment, three tables were created to store all extracted
feature hashes including related metadata such as offsets. An overview is depicted in Fig. 21.
The field highlight with an asterisk (*) is the index (SQLITE, 2019a).
2 SQLite is slower than other databases which impairs runtime efficiency tests. If the focus is efficiency, a custom

build storage solution as pointed out by Foster, K. (FOSTER, 2012) should be preferred.
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Objects

ID : INTEGER

NAME : TEXT NOT NULL

EXTENSION : TEXT

SIZE : INTEGER

Common features

*HASH : TEXT NOT NULL

tƒ(ƒ, Ƭ) : INTEGER

itƒ(ƒ, S) : INTEGER

1

n
m

1
Features

ID_FEAT : INTEGER

ID_OBJ : INTEGER

HASH : TEXT NOT NULL

OFFSET : TEXT

SIZE_FEAT : INTEGER

Figure 21 – SQLite database tables used to store all features (distinct and common) and related
metadata.

The Objects-table contains information about the processed file such as name (path),
size (bytes), and extension (file type). The Features-table stores data about the features them-
selves, e.g., feature hash, offset (position where the feature content is stored in the file), and
feature size. Note, a file consists of many features and each one has a distinct entry in the fea-
tures table (even if the same feature occurs multiple times, they all have different offsets). The
final table, Common features, acts as counter storage for each feature f and contains t f ( fi,T )

for 0 < i ≤ |T | as well as it f ( f ,S) for all f ∈F . For instance, for a set S = {A,B}, if feature
f1 occurs 10 times in file A and twice in file B, then t f ( f1,T ) = 12 and it f ( f1,S) = 2.

5.4.1.3 Implementation changes to existing tools

To perform our assessment, both sdhash and mrsh-v2 required some modification
to cope with a database. The database and developed applications can be downloaded from
Github (C++ programming language): <https://github.com/regras/cbamf>. Specifically, the fol-
lowing changes were made:

DB creation: The feature extraction process in each tool was modified to insert the features
and required metadata into the database.

No common feature (NCF): The second modification was slightly more complex as it per-
forms queries in the database. In other words, before proceeding with an identified fea-
ture, the database is queried to check if it is a common feature, where ‘common’ depends
on the parameter N. If a feature is common, it is discarded; otherwise, it will be further
processed and added to the similarity digest. The new versions are named NCF_sdhash

(based on sdhash 3.4) and NCF_mrsh-v2.

Lastly, we also decided to use FNV-1a (64 bits) for the feature hashing algorithm as
suggested by Kameyama, A. S. (KAMEYAMA et al., 2018) to improve the runtime efficiency
without affecting the tool’s precision.

https://github.com/regras/cbamf
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5.4.2 Experimental results on common features

The data set S used for the experiments is the same t5-corpus (ROUSSEV, 2011)
adopted earlier (see Sec. 4), which established itself as a default set in this domain. For vali-
dation, we performed a manual comparison of several matches to classify them according to
their similarity type (user-generated content, application-generated content, or template con-
tent). Since the number of matches is too large, we only analyzed a sample of the them using
either the appropriate software (e.g., MS office, browser etc.) or Bless3 editor for binary files.
These results can be found on Appendix B.

5.4.2.1 Common blocks overview in t5-corpus

Table 8 shows the statistics for the extracted features in S separated by tool. Notice
that max(t f ( f ,T )) returns the number of the most frequently counted feature while max(it f ( f ,S))

for all f ∈F looks for the most common (wide spread) feature and returns the number of files
sharing it (e.g., the last row in Table 8 indicates that the most common feature was found in
843 different files). Here, we can see that sdhash extracted more features than mrsh-v2 (about
3.5 times), which was expected since mrsh-v2 comes with a higher compression rate: sdhash
produces fixed-size features of 64 bytes while mrsh-v2 has variable-size features. In our exper-
iment, we verified that the average feature size for mrsh-v2 was 215.3 bytes.

Table 8 – Feature statistics across S.

Parameter sdhash mrsh-v2

|T | 31,387,592 8,842,032
|F | 27,203,732 8,049,461
max(t f ( f ,T )) 153,037 8,141
max(it f ( f ,S)) 843 790

The frequencies of the extracted features are presented in Table 9, where the left
column shows the analyzed condition followed by the two algorithms on the right. For instance,
row X > 10 means that sdhash found 39,069 features that occurred more than ten times in T .
In contrast, the other part of the table (described with N values) focuses on the number of files
containing particular features, e.g., last row indicates that for mrsh-v2 we found ten features
that were in more than 400 files. The results also showed that a significant number of features
repeats frequently, e.g., sdhash found 2,663 features that repeated more than 100 times (this
also means many features repeat within the same file). As indicated by the last part of the table,
some features were widely spread among files, e.g., 579 features appeared in more than 50 files.
3 <https://github.com/bwrsandman/Bless> (last accessed 2019-10-21).

https://github.com/bwrsandman/Bless
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Table 9 – Feature frequencies across S.

Condition sdhash mrsh-v2

count( f | t f ( f ,T ) = X)
X = 1 25,861,720 7,751,709
X = 2 942,182 225,740
X = 3 145,236 28,392

count( f | t f ( f ,T )> X)
X > 3 254,594 43,620
X > 5 124,413 22,100
X > 10 39,069 8,044
X > 20 16,840 3,318
X > 50 5,986 1,232
X > 100 2,663 526
X > 200 1,124 231
X > 400 471 81
X > 800 185 32
X > 2,000 63 11
X > 10,000 6 0

count( f | f ∈F ∧ it f ( f ,S) = N)
N = 1 26,467,390 7,886,026
N = 2 567,267 140,064
N = 3 68,719 12,251

count( f | f ∈F ∧ it f ( f ,S)> N)
N > 3 100,356 11,120
N > 5 43,845 5,419
N > 10 5,386 1,356
N > 20 1,676 488
N > 50 579 200
N > 100 287 115
N > 200 115 55
N > 400 17 10

5.4.2.2 Most common features for each file type

Table 10 shows the features that repeated the most across different files of the same
type and includes the feature’s FNV-1a hash, the number of files having the given feature, and
a brief description of the feature’s content. The doc feature was related to necessary structural
information common in Microsoft Office Word documents and is illustrated in Fig. 22 (high-
lighted area). It corresponds to the final part of a stream name followed by some setting and
padding information. The doc feature was found in 442 files which is 83% of all doc’s (533) in
t5-corpus. Although not all doc’s had this particular feature, variations of it were found in other
files (see Fig. 23). While a different feature was selected, it belongs to the same file structure
information. We believe the same happened in the remaining 91 doc files, where some specific
changes affected the feature selection process. The most common feature of pdf, jpg, and gif

files were related to color space information. In the case of html files, the common feature was
associated with a well-known piece of java script code. For text, we found that all 18 files
shared the same template, but they differed in content.
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Table 10 – Most repeated features per file type and their content.

File type FNV-1a hash it f ( f ,S) for all l Feature contentof the same type

doc c5e7aeb2482c56c0 442 / 533 Necessary stream of compound files, specific of
Microsoft Office Word documents.

ppt ef9a5a76d0df0c16 357 / 368 Part of a document summary information stream
with application defined properties.

pdf d5fb4ee41392d833 347 / 1,073 Piece of an indirect object of a pdf stream,
belonging to RGB color space.

xls b3310ce89e000aa4 226 / 250 Font specification.
jpeg f0a05cdcac5796d4 108 / 362 RGB color palette.
html cbac5aaf609ccf54 61 / 1,093 Sample of a well-known piece of java script code

to make web pages have rollover images.
text 69c06bea6c3a3f10 18 / 711 Part of a template content.
gif c91811dfd69ce32b 5 / 67 Related to a global color table, which is a sequence

of bytes representing RGB color triplets.

1 002ea20 4D 69 63 72 6F 73 6F 66 74 20 4F 66 66 69 63 65 Microsoft.Office
2 002ea30 20 57 6F 72 64 20 44 6F 63 75 6D 65 6E 74 00 0A .Word.Document..
3 002ea40 00 00 00 4D 53 57 6F 72 64 44 6F 63 00 10 00 00 ...MSWordDoc....
4 002ea50 00 57 6F 72 64 2E 44 6F 63 75 6D 65 6E 74 2E 38 .Word.Document .8
5 002ea60 00 F4 39 B2 71 00 00 00 00 00 00 00 00 00 00 00 ..9.q...........

6 002ea70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
7 002ea80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
8 002ea90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. ..
9 002eaa0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

Figure 22 – Excerpt of the 000260.doc file corresponding to the most common feature over this
kind of format. The Bless hexadecimal editor is used to show the binary structure
of the file. The highlighted area represents the feature.

1 0044eb20 4D 69 63 72 6F 73 6F 66 74 20 57 6F 72 64 20 44 Microsoft.Word.D
2 0044eb30 6F 63 75 6D 65 6E 74 00 0A 00 00 00 4D 53 57 6F ocument.....MSWo
3 0044eb40 72 64 44 6F 63 00 10 00 00 00 57 6F 72 64 2E 44 rdDoc.....Word.D
4 0044eb50 6F 63 75 6D 65 6E 74 2E 38 00 F4 39 B2 71 00 00 ocument.8..9.q..
5 0044eb60 00 00 00 00 00 00 00 00 00 00 00 00 11 00 00 00 ....,...........
6 0044eb70 8C 00 00 00 17 00 00 00 94 00 00 00 0B 00 00 00 ................
7 0044eb80 9C 00 00 00 10 00 00 00 A4 00 00 00 13 00 00 00 ................
8 0044eb90 AC 00 00 00 16 00 00 00 B4 00 00 00 0D 00 00 00 ................
9 0044eba0 BC 00 00 00 0C 00 00 00 3D 01 00 00 02 00 00 00 ........=.......

Figure 23 – Excerpt of the 004964.doc file corresponding to a feature similar to the one pre-
sented in Fig. 22. The Bless hexadecimal editor is used to show the binary structure
of the file. The highlighted area represents the feature.

5.4.2.3 Common features across different file types

This section presents common features that were found across different file types;
results are summarized in Table 11. Many features appeared across different files, especially
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1 000f2d0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
2 000f2e00 52 00 6F 00 6F 00 74 00 20 00 45 00 6E 00 74 00 R.o.o.t...E .n.t.
3 000f2e10 72 00 79 00 00 00 00 00 00 00 00 00 00 00 00 00 r.y.............

4 000f2e20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
5 000f2e30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
6 000f2e40 16 00 05 01 FF FF FF FF FF FF FF FF 03 00 00 00 ........... .....
7 000f2e50 10 8D 81 64 9B 4F CF 11 86 EA 00 AA 00 B9 29 E8 ...d.o........).
8 000f2e60 00 00 00 00 00 00 00 00 00 00 00 00 20 E5 BE 1D ................
9 000f2e70 DB 1E C8 01 BB 07 00 00 40 08 00 00 00 00 00 00 ........@.......

10 000f2e80 50 00 69 00 63 00 74 00 75 00 72 00 65 00 73 00 P.i.c.t.u.r.e.s.

Figure 24 – Snippet of the 001025.ppt showing the first occurrence of
f = 5d60dae303171ac8 at offset 0xF2E0B.

among doc, ppt, and xls, which are all compound files. For instance, hash( f ) =

536857624aa47c38 was part of a sector allocation table (SAT) data structure of compound files
(RENTZ, 2007). However, we also found features shared by compound, jpg, and pdf files like
d5fb4ee41392d833, which was part of a color space object (RGB). This was due to embedding
objects like images into other file types (in our example all identified objects contained pictures).
We also found features related to font specifications shared by different file types, too.

We also analyzed instances where features repeated within the same file. For instance,
5d60dae303171ac8 occurred 1,014 times in S (in 843 different files). One of the files contain-
ing it was 001025.ppt. The feature was part of a compound file data structure related to a root
directory entry of a stream, where the string Root Entry had to be present. The ppt contained
four similar snippets (see Fig. 24) at different offsets: 0xF2E0B, 0xF360B, 0xF6E0B, and F720B.
Besides the feature, the majority of the bytes shown in the figure are identical among all four
offsets.

Table 11 – Samples of common features that appeared on different file types.

f t f ( f ,T ) it f ( f ,S) it f ( f ,S) separated by file types

5d60dae303171ac8 1,014 843 doc (404), ppt (265), xls (174)
eee894cd42564cc9 634 582 doc (286), ppt (295), xls (1)
c02fde95428198dc 540 531 doc (186), ppt (267), xls (78)
ef9a5a76d0df0c16 691 484 doc (92), ppt (357), xls (35)
c5e7aeb2482c56c0 468 467 doc (443), ppt (2), xls (22)
d5fb4ee41392d833 615 457 doc (14), jpg (49), pdf (347), ppt (47)
536857624aa47c38 451 437 doc (122), ppt (243), xls (72)
ce5c0a5b70cca619 3,608 402 doc (31), jpg (108), pdf (185), ppt (76), xls (2)
3c0dc7d9b4044951 224 220 doc (6), xls (214)
1a5918d3d2ad6ffe 228 203 doc (3), ppt (200)
87b92f4dc954a121 193 116 doc (14), jpg (49), pdf (6), ppt (47)

The feature that repeated the most in S (max( f req(F )) = 153,037) is shown in
Fig. 25 and belongs to template similarity in pdfs. For instance, it repeats 16,092 times in
001958.pdf; another 144 files shared this feature one or more times. It is part of the cross-
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reference table (xref), which contains the references to all the objects in a pdf document. An
object, in this case, is represented by one entry of 20 bytes, consisting of an offset (first 10
bytes), a space separator, the object generation number, another space separator, and a letter ‘f’
or ‘n’ indicating whether the object was free or in use. The final two bytes are the characters
CRLF (0x0D0A) (ADOBE-SYSTEMS, 2008).

1 000bdf40 66 0D 0A 30 30 30 30 30 30 30 30 30 30 20 36 35 f..0000000000 65
2 000bdf50 35 33 35 20 66 0D 0A 30 30 30 30 30 30 30 30 30 535 f. .000000000
3 000bdf60 30 20 36 35 35 33 35 20 66 0D 0A 30 30 30 30 30 0 65535 f..00000
4 000bdf70 30 30 30 30 30 20 36 35 35 33 35 20 66 0D 0A 30 00000 65535 f..0
5 000bdf80 30 30 30 30 30 30 30 30 30 20 36 35 35 33 35 20 000000000 65535
6 000bdf90 66 0D 0A 30 30 30 30 30 30 30 30 30 30 20 36 35 f..000 0000000 65
7 000bdfa0 35 33 35 20 66 0D 0A 30 30 30 30 30 30 30 30 30 535 f..000000000

Figure 25 – Feature aecec3a6185401f1 from 001958.pdf that was found most frequently
(153,037 times) in pdfs.

5.4.3 Impact on similarity detection

This section highlights the impact of removing the common features from digests.
Thus, when comparing two digests, common features will not impact the similarity score.

5.4.3.1 Summary of number of matches in the data set

Table 12 shows the number of file matches performing an all-against-all compari-
son (excluding self-comparisons) on S (t5-corpus) using sdhash and NCF_sdhash which equals
(4457∗4456/2 =) 9,930,196 comparisons. Column one is the range of the similarity score; co-
lumn two the number of file matches for sdhash followed by the number of file matches for
NCF_sdhash for various N. Note that both tools return scores ranging from 0 to 100. However,
we omit 0 scores as we are only interested in comparisons with some level of similarity.

Table 12 – Number of file matches by score range using sdhash and NCF_sdhash for ALL file
types, discarding common features with occurrences > N.

Score sdhash NCF_sdhash for N
3 5 10 20 50 100

= 1 2,992 65 93 152 195 253 311
≥ 1 9,220 409 622 1,188 1,541 2,123 2,371
≥ 10 1,795 241 356 745 963 1,249 1,262
≥ 21 1,038 181 267 563 799 925* 925*
≥ 50 459 79 114 237 414 475 472
≥ 90 86 20 21 55 58 85 85

= 100 18 6 6 15 15 30 30
*Note: The same numbers in two columns do not mean that the sets of matches are identical.

There was a significant reduction in the number of matches when excluding com-
mon features: sdhash returned a total of 9,220 matches (score ≥ 1), while dropping common



Chapter 5. The impact of common blocks on Approximate Matching 97

Table 13 – Number of file matches by score range using sdhash and NCF_sdhash for doc files,
discarding common features with occurrences > N .

Score sdhash NCF_sdhash for N
3 5 10 20 50 100

= 1 1,082 7 6 10 9 19 44
≥ 1 4,095 49 81 97 100 135 194
≥ 10 607 33 62 62 61 69 72
≥ 21 166 25 48 47 49 50 50
≥ 50 15 6 13 12 15 14 14
≥ 90 0 0 0 0 0 0 0

features reduced it to 409 (-95%), 1,188 (-87%), and 2,371 (-74%) for N equal to 3, 10, and
100, respectively. As expected, the more restrictive we were (smaller N), the lower the number
of matches.

To better understand the results, the upcoming sections focus on each file type re-
sults. Specifically, we compare all files to a given type against S.

5.4.3.2 Compound file type (doc, ppt, xls)

Compound files are known for storing numerous files and streams within a single
file, in a hierarchical way, similar to a file system. The streams are further divided into small
blocks of data (called sectors) used to store both user and internal control data. The entire file
consists of a header and a list of all sectors. Each sector has a fixed-size (usually 512 bytes)
defined in the header (RENTZ, 2007).

Tables 13, 14 and 15 summarize our findings. Our results show a similar behavior
among all three types: lots of matches for the original sdhash for low score ranges and a signi-
ficant reduction when removing the common features. For the upcoming detailed analysis, we
focused on doc’s but expect a similar behavior for the others.

Table 14 – Number of file matches by score range using sdhash and NCF_sdhash for xls files,
discarding common features with occurrences > N.

Score sdhash NCF_sdhash for N
3 5 10 20 50 100

= 1 42 9 13 35 26 21 25
≥ 1 133 27 54 98 95 106 108
≥ 10 36 7 16 36 36 37 37
≥ 21 16 4 9 16 16 16 16
≥ 50 2 0 0 1 2 2 2
≥ 90 0 0 0 0 0 0 0

Roussev, V. (ROUSSEV, 2011) mentioned that for compound types, matches with
scores below 21 contain many false positives and should be neglected. Thus, we focused on
the 166 matches with a score ≥ 21. After performing a manual comparison of all matches,
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Table 15 – Number of file matches by score range using sdhash and NCF_sdhash for ppt files,
discarding common features with occurrences > N.

Score sdhash NCF_sdhash for N
3 5 10 20 50 100

= 1 1,252 10 23 29 32 44 44
≥ 1 1,952 70 90 112 115 169 171
≥ 10 55 36 36 37 36 37 39
≥ 21 23 22 23 24 24 23 23
≥ 50 8 9 8 8 7 7 8
≥ 90 2 2 2 2 2 2 2

= 100 1 1 1 1 1 1 1

we conclude that 120 cases were not similar regarding user-generated content (UGC) and 28
matches were classified as template similarity (TC). The remaining 18 matches were similar in
terms of UGC.

When considering the results of NCF_sdhash, we see a significant reduction; for
N = 3 we only had 25 matches, in which four were classified as application-generated con-
tent (AGC) similarity and five as TC. The remaining 16 comparisons were UGC similarity
(compared to sdhash two were missed). Increasing N = 5 resulted in 48 matches and also
included 16 UGC matches plus four AGC; the other matches were related to TC. For N ∈
{10,20,50,100} we had similar results as N = 5; all missed two matches.

Focusing on matches with scores < 21 for sdhash, we randomly sampled 20 out of
the 3,929 (4,095-166) total. 18 had no user-generated content similarity, and the remaining two
had template similarity. On the other hand, NCF_sdhash returned 24 (49-25) matches: Seven
template similarity, eight application-generated, and nine user-generated content matches. Out
of the UGC case, three matches were cross file type comparisons which were matches between
different file types (e.g., doc vs. html); the other six combined similar content as well as tem-
plate similarity. The 24 matches for NCF_sdhash did not include the two matches identified
through random sampling for sdhash.

In other words, removing common features reduced the number of matches sig-
nificantly. For instance, for scores ≥ 1, sdhash had 4,095 cases while NCF_sdhash returned
between 49 matches (N = 3; best case) and 194 (N = 100; worst case), a reduction of 99% and
95%, respectively. The reduction dropped to values between 85% and 70% when considering
only matches with scores ≥ 21 (the recommended value for sdhash). However, 70% is still
a significant reduction considering that the digital forensic practitioner may have to compare
matches manually.

For the compound file type, using N = 3 revealed the best results. We argue that a
significant reduction in the number of matches outweighs the two additional matches (UGC)
identified by sdhash.
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Remark Compound files usually have a minimum size; for the types discussed here it is three
sectors (1,536 bytes). Consequently, an empty document will have at least 1,536 bytes
of structural information which impacts the final similarity score especially for small
files. Since small files have more application-generated than user-generated content, many
(undesirable) matches may occur.

5.4.3.3 PDFs

Out of the 92 matches for sdhash ≥ 21 in Table 16, only 38 pairs could be ma-
nually evaluated; 11 matches included UGC. In the remaining pairs at least one of the files
was corrupted4. A closer look at the AGC matches (27) revealed that the majority of features
were related to color information (e.g., d9e1c063e9c0ba1c); we also found some features
(ca80692484c3235c) corresponding to a pdf object containing Adobe’s Extensible Metadata
Platform (XMP) data, a package to add metadata to images (but also other media files). Another
feature (4c815162434ce18d) contained bytes of the XMP data object and lots of blank spaces.

The impact of removing the common features was again significant. NCF_sdhash
with N = 3 returned exactly the 11 UGC matches found by sdhash plus one extra pair that
sdhash scored with 20. Raising N = 5 resulted in 21 matches; the additional nine matches were
related to application-generated similarity. Thus, for pdfs, N = 3 worked perfectly.

Table 16 – Number of file matches by score range using sdhash and NCF_sdhash for pdf files,
discarding common features with occurrences > N.

Score sdhash NCF_sdhash for N
3 5 10 20 50 100

= 1 492 33 39 62 104 128 163
≥ 1 1,684 91 125 286 393 488 674
≥ 10 191 20 33 109 117 161 171
≥ 21 92 12 21 76 76 88 88
≥ 50 45 4 7 37 37 47 45
≥ 90 31 3 3 27 17 29 29

= 100 0 0 0 0 0 0 0

5.4.3.4 TEXT and HTML

Text and html are flat file types that do not contain AGC information. However,
html files may contain markup elements or scripting languages (e.g., java script). As a conse-
quence, Roussev, V. (ROUSSEV, 2011) suggested using matches with a score ≥ 5 (compared
to ≥ 21).

An overview of the text results is given in Table 17. The 27 matches found by
sdhash consisted of 25 UGC matches, one related to TC and the last one was not actually
4 We found that despite the .pdf extension, these objects are not pdf files but edited html files with a few line

feed (hex:0A) and space (hex:20) characters inserted into their beginning. The list of these objects can be found
in our Github page: <https://github.com/regras/cbamf>.

https://github.com/regras/cbamf
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a text file (although file extension was text, the file was a doc and matched another doc).
Running NCF_sdhash and N = 3 returned 26 matches, where 23 fell into UGC similarity, two
were related to TC, and the last one was a cross file type comparison with one of the corrupted
pdf files. Two matches were missed: in one case there were many changes throughout the file;
in the other the text file was converted into html. Setting N = 5 or higher solved this problem;
all 25 UGC matches were found. In summary: the exclusion of the common features for text
was less effective than other file types but did harm for N ≥ 5.

Table 17 – Number of file matches by score range using sdhash and NCF_sdhash for text
files, discarding common features with occurrences > N.

Score sdhash NCF_sdhash for N
3 5 10 20 50 100

= 1 14 6 8 13 7 9 8
≥ 1 57 35 39 45 41 42 41
≥ 5 27 26 27 26 26 26 26
≥ 10 25 23 25 25 25 25 25
≥ 21 20 18 19 19 19 19 19
≥ 50 5 6 6 6 6 6 6
≥ 90 0 0 0 0 0 0 0

With respect to html, results were different and are shown in Table 18. sdhash
returned 1,052 matches with scores ≥ 5. In comparison, NCF_sdhash reduced this number for
small N’s but found more matches for higher N’s (discussed later). Due to a large number of
matches, we randomly sampled 30 cases in each analysis. sdhash had no UGC match in all
30 samples; 28 were template similarity cases and two showed AGC. NCF_sdhash with N = 3
had six UGC cases and 24 TC (for another 30 samples - all different from the first 30). For
N = 5 and 30 new samples, 25 cases showed template similarity, four cases AGC and one UGC

similarity (an embedded object with minor changes). The tool sdhash found all UGC matches
present in the 90 samples, while NCF_sdhash (for N = {3,5}) missed one match. To conclude:
N = 3 had the best cost/benefit scenario for html files.

Table 18 – Number of file matches by score range using sdhash and NCF_sdhash for html
files, discarding common features with occurrences > N.

Score sdhash NCF_sdhash for N
3 5 10 20 50 100

= 1 43 16 23 24 33 53 55
≥ 1 1,215 185 281 617 857 1,275 1,278
≥ 5 1,052 152 227 568 787 1,099 1,099
≥ 10 936 139 202 510 721 976 976
≥ 21 759 111 158 409 643 765 765
≥ 50 394 57 83 175 349 409 407
≥ 90 56 15 16 26 39 57 57

= 100 17 5 5 14 14 29 29
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Remark: More NCF_sdhash matches than sdhash Table 18 suggests that the number of re-
sults increased for NCF_sdhash for some N’s (e.g., compare column sdhash vs. N =

{50,100}). This behavior was the opposite to other file types which is due to hash col-
lision (sdhash uses SHA-1 for hashing the features while NCF_sdhash uses FNV-1a).
We confirmed this by looking into our database: The most frequent feature has 61 diffe-
rent occurrences (ω = 61). Consequently, NCF_sdhash for N = 100 should have identical
results to sdhash since no feature was removed.

For instance, the last row (= 100) shows 17 matches for sdhash but 29 for NCF_sdhash
with N = {50,100}. The 12 new matching pairs involved two files (001326.html and
003467.html) and received sdhash scores between 92 and 98. The number of features
extracted was 661 by sdhash and 660 by NCF_sdhash (for N > 50). The difference on
both was related to a single feature that had a collision with other feature when inserted
into the digest (bloom filter) of the file. Since this feature was different from the ones of
the other files under comparison, removing it made the similarity score increase to 100.
It is important to mention that changing a single file may impact several comparisons, as
shown by these two files that affected 12 matches. For NCF_sdhash with N = 50 we had
the same situation, but some other comparisons were affected since in this case two html

features were removed as they repeat 55 and 61 times each.

5.4.3.5 JPEG and GIF

Bytewise approximate matching algorithms work less well on images (but are good
for detecting embedded images in compound files). Consequently, no matches were revealed
for scores above 21, as shown in Tables 19 and 20. We investigated the 24 jpg pairs having
a sdhash score >= 10 where two matches showed some similarity: a similar jpg image was
found inside a ppt file. However, the pictures were not identical, and thus we categorized it as
AGC similarity. The other 22 cases had no visual similarity.

Selecting 30 random samples from the 883 (907-24) matches (with score < 10),
we found one case (score 3) where one picture was a scaled version of the other. These two
jpgs had 555 and 1,497 features, respectively. The overlap was 129 features, where 16 were
exclusive to these two jpgs (ω = 2 for these 16 features) and related to header and EXIF
information. Specifically, 97e7cd722414356e was part of the JFIF header of both files, and
features 54fbfe2c46f4bed8 and 581f94d602fd9ac6 were related to EXIF data, such as date
time and camera information. This match was hard to classify: on the one hand it is AGC; on the
other hand it ties it to a particular user. More details are discussed in Sec. 5.4.4: Differentiating

between user-generated and other types of content. When looking at the scores < 10 and 3 ≤
N ≤ 20, only one match had similarity related to template (pictures shared the same background,
fonts, and colors). We did not analyze the matches for N = {50,100}.

gifs had a similar behavior and only one match (gif to text) was found by sdhash
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which was a false positive. NCF_sdhash also had a false positive (with an html file) for some
N-values.

For both file types, sdhash worked suboptimal which is a known challenge for
bytewise approximate matching. However, as shown by our results, NCF_sdhash reduced the
matches without impacting the quality of the results. N = 3 worked reliably in both cases.

Table 19 – Number of file matches by score range using sdhash and NCF_sdhash for jpeg
files, discarding common features with occurrences > N.

Score sdhash NCF_sdhash for N
3 5 10 20 50 100

= 1 547 3 2 3 2 8 10
≥ 1 907 4 3 5 4 63 69
≥ 10 24 0 0 0 0 0 0
≥ 21 0 0 0 0 0 0 0

Table 20 – Number of file matches by score range using sdhash and NCF_sdhash for gif files,
discarding common features with occurrences > N.

Score sdhash NCF_sdhash for N
3 5 10 20 50 100

= 1 1 0 0 1 1 1 0
≥ 1 1 0 0 1 1 1 0
≥ 10 0 0 0 0 0 0 0

5.4.3.6 Performance test

Besides evaluating how the similarity was affected by removing the common fea-
tures, we also measured the runtime efficiency as well as the compression rate for NCF_sdhash
and compared to sdhash. The results are shown in Table 21. Here we present tests measuring
the time taken for creating digests for each file in S and then performing an all-against-all com-
parison (excluding the self-comparison) using both tools. We also measured the final digest size
of all files of the set to examine how the compression rate was affected. In our tests, we did not
include the offline steps (i.e., time to extract all features and insert them into the db). Although
this task requires a long time, it does not impact the investigation as it can be done offline or at
any time. It is also done only once.

The test environment is an i7-5500U CPU @2.40 GHz processor, 8 GB of memory,
1 TB SATA 3Gb/s hard disk drive (5,400 rpm), and NVIDIA GeForce 920M, running an Ele-
mentary OS 0.4.1 Loki 64-bit (built on Ubuntu 16.04.2 LTS). Each experiment ran 20 times;
results were averaged. The cache was cleared every run to prevent falsification of the results.
We also turned off all unneeded system services and stop unnecessary applications (KIM et al.,
2012). The measurement was done using Linux time command (sys + user times).
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Table 21 – Runtime and digest size of sdhash and NCF_sdhash for t5-corpus; includes the
measurement and standard deviation (±).

sdhash NCF_sdhash for N
3 10 100

Digest generation (sec) 87 s ± 0.92 108 s ± 0.42 110 s ± 0.41 110 s ± 0.41
All-against-all comparison (sec) 433 s ± 11.62 413 s ± 11.52 452 s ± 12.53 458 s ± 15.82
Digest size (bytes) 64,321,035 62,594,719 63,786,954 64,138,018

As shown by the results, NCF_sdhash is about 24% to 26% slower with respect to
digest generation time which is related to querying the db (verifying if a feature is common or
not). As expected, the runtime is independent of N as shown in the Table 21. We also measured
the time to perform an all-against-all comparison utilizing the existing db. NCF_sdhash (N = 3)
was slightly faster than sdhash which is due to the removed features resulting in fewer bloom
filters (note the code related to the comparison function did not change). On the other hand,
higher N-values for NCF_sdhash removed fewer features and thus have similar times to sdhash.
The last parameter measured is the digest size generated for S. Here, NCF_sdhash was superior
since it removed the common features, resulting in smaller digests. The lower the N-value, the
larger the reduction achieved.

Remark It is important to highlight that the only optimization performed in the NCF_sdhash

code was the creation of database indexes for the common feature table. As mentioned
before, the creation of the database is required only once and can be done offline; af-
terwards it can be used for all investigations. NCF_sdhash’s bottleneck (when creating
digests) are SQLite queries. The complexity for verifying whether a feature is common
or not is O(log(|T |)) (using database indexes, (SQLITE, 2019b)). Other optimizations
focus on SQLite itself (PUROHITH et al., 2017). On the other hand, one could move to
a customized storage solution, which should improve the query performance (FOSTER,
2012). With respect to a database update: The features of the new objects are extracted
(using the tool) and inserted into the database which is not time critical.

5.4.4 Discussion

Based on the experiments described in the previous section, we will discuss the
lessons learned and the impacts of removing the common features, starting with the research
questions.

RQ1. What are the common features? How frequently do they appear? How do they spread
across file types?

Foster, K. (FOSTER, 2012) stated that most files are made up of distinct blocks/fea-
tures that identify a specific file which also holds for our S: Given the 31 million features, only
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0.8% were common (for N = 3). However, as pointed out by Garfinkel, S. L. and McCarrin,
M. (GARFINKEL; MCCARRIN, 2015), features that appear to be unique could be uncommon
if the data set is expanded.

The common blocks spread widely among the same or different file types although
different file types showed different behavior. For instance, compound file types (doc, ppt, xls)
have a high degree of ‘default similarity’ as they share a similar internal structure which is in
contrast to flat types (text, html) and compressed types (jpg, gif).

For compound types the proposed NCF_sdhash tool can reduce the number of false positi-
ves significantly (similar results were obtained for pdfs and jpgs). NCF_sdhash worked
particularly well for small Ns. However, more research is needed to see if this holds for
larger sets, too.

For flat types the removal of common features had almost no impact as most of their contents
are user-generated data by design. However, NCF_sdhash may be superficial when pro-
cessing flat types that contain layout information such as html to reduce the impact of
template similarity.

For compressed types (images) bytewise approximate matching is not the most efficient tool
to detect similarities. Thus, removing features had only little effect on the results.

Further tests are required to see if these statements hold, e.g., expanding the test
data by zip, rtf, bmp, mp3, and so on.

Common features were also found across different file types (see Sec. 5.4.2.2 and
5.4.2.3). Often these features belong to structure information, color space, font specifications,
or even some well-known code used to accomplish a particular task. For our test, we found an
overlap among compound files, pdf, and jpg, where all shared color information related to the
embedded images/image.

Given that our test set was small, more comprehensive experiments are needed on
larger sets. However, given that N is flexible, a user can define what a common block is. A
more comprehensive data set also has the advantage that it will contain all common features
and that it can be used across multiple different scenarios (forensic cases). On the other hand,
examiners could build case specific databases to filter out common blocks, e.g., the crime scene
consisting of many devices belonging to one company. While it requires additional processing
time, it could exclude features not found in a general set, e.g., metadata information, such as
the owner, application version, or proprietary file types. Furthermore, template similarity may
be reduced.
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Table 22 – Number of true positive matches (user-generated content) found by sdhash and
NCF_sdhash for the most significant file types.

File type Known UGC matches sdhash
NCF_sdhash for N
3 5

doc 18 18 (100%) 16 (89%) 16 (89%)
pdf 12 11 (92%) 12 (100%) 12 (100%)
text 25 25 (100%) 23 (92%) 25 (100%)
html 7 7 (100%) 6 (86%) 1 (86%)

RQ2. How does ignoring common features impact the similarity detection (i.e., number of
matches)?

For most tests removing the common features had a positive impact on the number
of matches, e.g., reducing them from 9,220 to 409 (N = 3 and score ≥ 1, see Table 12). It
did not work equally well for the different file types but effectively for compound types and
pdfs. Having less matches will be time saving from an investigator perspective. On the other
hand, the quality of our results (true positives) remained similar: having low Ns usually found
UGC matches although some few matches were missed. Table 22 presents the number (and
percentage) of true positives found by sdhash and NCF_sdhash (for the most promising values
of N = {3,5}) in relation to the total number of known matches (a.k.a. recall rate (DAVIS;
GOADRICH, 2006)). As mentioned, due to the high number of matches, a complete analysis
is impossible. The values reported in the table correspond to the manually identified matches
(as discussed in Sec. 5.4.1.2, paragraph one) which were restricted to: (1) doc/pdf where we
analyzed all matches with score ≥ 21, (2) text/html where all matches with scores ≥ 5 were
considered, and (3) html where, due to the high number, we sampled 90 matches. While one
may say that NCF_sdhash is missing matches, we argue that

• reducing manual labor significantly is most important, and

• that not all evidence has to be found during an initial run (i.e., finding one piece of evi-
dence in 409 has a similar impact than finding three pieces in 9,220.

To conclude, our results indicate that the internal file structure interferes (nega-
tively) in the similarity identification process when the focus is UGC. Another evaluation is
provided in the next sections, where we analyze how the score and recommended threshold
value of sdhash are impacted by the removal of common features for a subset of the t5-corpus.

RQ3. Is there a clear threshold N for which common features are ignored in the data set at hand?

In our experiments, an N-value between 3 and 5 worked best in most classes. It sig-
nificantly reduced the number of matches and still identified relevant matches. Unfortunately,
NCF_sdhash missed a few matches which we considered difficult (e.g., a lot of changes per-
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formed over the whole document). This is similar to the results published by Foster, K. (FOS-
TER, 2012), who referred to blocks that repeat three or more times as common blocks.

Comparing N = 3 and N = 5: In the latter case, NCF_sdhash found more true posi-
tive cases but at the cost of some extra false positives. For N-values of 10 or more, we noticed
an increase in the false positives, where many were related to template similarity.

RQ4. How does removing common features affect the runtime efficiency?

NCF_sdhash negatively impacts the runtime efficiency (processing time) as shown
in Sec. 5.4.3.6 due to the db lookups. However, this difference is insignificant (for our sample
set) and may be even less if using a more performant database. Furthermore, we argue that
processing time is relatively cheap and it is more important to reduce the needed manual labor
as discussed in the last section.

5.4.4.1 Differentiating between user-generated and other types of content

One challenge we faced in Sec. 5.4.3.5 was how to treat EXIF information as it
can be seen as user-generated, template or application-generated content. Regardless of the
category, “EXIF headers [...] can help the investigator to verify the authenticity of a picture”
and is valuable evidence (ALVAREZ, 2004). In other words, in the case of blacklisting it should
not be ignored. Every camera, user, etc. is unique, and thus there should not be too many images
having the same EXIF information. Depending on N or the size of the database, they may not
be considered common.

More generally: Before starting to remove the common features, the forensics in-
vestigator needs to define the objective of the search, finding (i) user-generated content (UGC);
(ii) application-generated content (AGC); or (iii) template content (TC). While we focused on
the first (i), there may be cases where the desired matches are related to AGC or TC. Another
example is looking for template similarity, where an examiner has to find documents created by
a particular company without considering their content. In such a case, every document sharing
features related to the template of that company will matter. The N-value should be adapted
according to the investigation goals. Next section provides experiments contrasting N and the
kind of similarity desired in a search.

5.4.4.2 Other applications

Apart from using the common feature database to remove undesirable features, one
may use the it for other purposes, such as:

Assessing random samples quality The database could be used for identifying objects on a
device by looking for fragments of it, e.g., parsing unallocated space (GARFINKEL et

al., 2010; FOSTER, 2012). If found, the quality of the fragment can now be assessed. In
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other words, the probability a certain file was on the system is higher if a distinct feature
is found.

File type discovery Common features may also be used for file type identification. Given an
unknown byte sequence (e.g., disk sector, object fragment), sdhash can be used to extract
features and compare them to the database. If there are matches, we can correlate them to
the file types.

Future work is necessary to assess the significance of such approaches.

5.5 Removing common blocks under different scenarios on dig-

ital forensic investigations

This sections explores how the removal of common blocks impacts digital forensic
investigations with different goals. More precisely, we measure recall and precision rates for
AM. We analyze, for different scenarios, how the similarity detection is impacted and show
that many matches that occurred due to application-generated content have their score zeroed
out when common blocks are removed. Consequently, the number of matches that practitioners
have to deal with is significantly reduced. We also analyzed how the score produced by AM
changes and show that many matches with low scores, ignored before, are of interest now.

5.5.1 Research direction, design decisions and implementation

Roussev, V. (ROUSSEV, 2011) found that sdhash matches with scores of < 21
contain many irrelevant results and recommended to ignore them (except for text files where
the author recommended ignoring scores < 5). By removing the common features, we expect
that most of the similar content of two matched files is related to user-generated content, and
even low sdhash scores present relevant matches. This way, a new interpretation of the score
produced by sdhash is necessary.

This section addresses the following research questions:

RQ1 How does the removal of common features impact digital forensics investigations for the
different classes of similarity?

RQ2 How are precision and recall rates affected by the removal of common features?

RQ3 How is the recommended threshold value of 21 for sdhash affected by removing common
features?
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5.5.1.1 Procedure overview

To answer our research questions and assess how similarity is affected by removing
the common features for the different similarity classes, we simulated a digital forensic inves-
tigation where a seized media is compared to a database of known files. We used sdhash and
NCF_sdhash to compare the two sets (see Sec. 5.5.2) against each other. We considered three
different scenarios:

Scenario I: We are interested in finding file matches related to UGC and/or TC. Any match
related to these types is considered true positive; otherwise, false positive.

Scenario II: Here, we are only interested in finding UGC matches, considered as true positives.
Matches related to TC and/or AGC are considered false positives.

Scenario III: This scenario ignores TC matches to remove their impact on investigations.
Matches related to UGC are true positives, and those from AGC are false positives.

To determine the similarity class of a match, we manually investigated all matches
reported by either sdhash or NCF_sdhash (score > 0). To perform manual comparisons, we
either used the appropriate software (e.g., MS office, specific web browser etc.) and, in case of
binary comparisons, we used Bless5.

When the files of a match had no visual similarity, such as common text, pictures, ta-
bles, or other elements created by users, we classified it as application-generated content (AGC).
For template content (TC) matches, files need to have the same layout but differ in their content.
An example is two doc files from the same company where both have identical font specifi-
cations, elements disposition, header/footer with the company information, logo, etc., but the
content is different.

5.5.1.2 Terms and metrics used for the evaluation

We present here the terms, definitions, and metrics used for the rest of this chapter.
The metrics used for the evaluation are based on those used in the field of information retrieval
(OLSON; DELEN, 2008).

Score (s): the score returned by the AM function.

Threshold (t): value used to separate matches from non-matches.

Common feature: f , where | f |> N (i.e., a feature f is considered common if it repeats more
than N times across different files in a given corpus).

Match: a comparison between two files where the score s≥ t.
5 <https://github.com/bwrsandman/Bless> (last accessed 2019-15-05)

https://github.com/bwrsandman/Bless
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True positive (t p): a match of two similar files.

True negative (tn): a non-match of two different files.

False positive ( f p): a match of two different files (false match).

False negative ( f n): a non-match of two similar files (false non-match).

Precision: the ratio of the number of relevant results retrieved (t p) to the total number of results
retrieved (t p+ f p), as depicted in Fig. 26.

Recall: the ratio of the number of relevant results retrieved (t p) to the total number of relevant
results (t p+ f n), as depicted in Fig. 26.

F1 score: harmonic mean of recall and precision, combining these two metrics into one that
better distinguishes good results (close to 1) from bad ones (close to 0).

Precision =
t p

t p+ f p
Recall =

t p
t p+ f n

F1 = 2× precision× recall
precision+ recall

All possible 
comparisons

False matches 
found ( fp ) All true matches 

( tp + fn )

All matches found
( tp + fp )

True matches 
found ( tp )

Figure 26 – Precision and recall rates for matching evaluation.

5.5.1.3 Common feature database and NCF_sdhash implementation

We used the same database and NCF_sdhash implementation as the one presented
in Sec. 5.4.1.2. Besides, we adopted the same N values for NCF_sdhash as before and included
an additional one: N > 2. From now on, the following nomenclature is used to refer to the
different settings of NCF_sdhash with respect to N: low (N > {2,3,5}), mid (N > {10,20}),
and high (N > {50,100}) values. The database scripts and all tools used in this work can be
found in the GitHub page: <https://github.com/regras/cbamf>.

https://github.com/regras/cbamf
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5.5.2 Experimental results

The same t5-corpus was used for our experiments. We broke the corpus into two
sets: Known data set and Target data set. The first one was used as the digital forensics inves-
tigator database and the second one to simulate a seized media under analysis. The objects of
the Target data set were compared against the investigator’s database to look for similar files.
We limited the target set to 100 objects (76.95 MiB) to simplify our manual analysis. For each
file type, we randomly selected between 5 and 20 objects. Table 23 summarizes both sets. The
complete list of the objects that compose each set can be found in Appendix B.

Table 23 – Number of files per type on both data sets (extracted from t5-corpus)

html text pdf doc ppt xls jpg gif ∑

Target data set 20 10 20 20 10 10 5 5 100

Known data set 1073 701 1053 513 358 240 357 62 4357

5.5.2.1 Ground truth

Measuring precision and recall rates of the algorithms requires to know the simila-
rity class of each comparison. Thus, we manually compared the 507 unique matches of sdhash
and NCF_sdhash to determine the class of the match. Table 24 summarizes our results.

Table 24 – Number of file matches per similarity class (ground truth)

Similarity class Number of file matches

User-generated content (UGC) 45
Template content (TC) 93
Application-generated content (AGC) 369

It is important to note that we were not interested in measuring the accuracy or
detection capabilities of sdhash. Instead, we want to evaluate how the removal of the common
features impacted similarity detection based on AM functions.

5.5.2.2 Target data set vs. Known data set

Comparing all files from the Target data set and Known data set required a total of
(4357 ∗ 100 =) 435,700 comparisons. Table 25 shows the number of matches for sdhash and
NCF_sdhash for different score ranges.

We can see a significant reduction in the number of matches for NCF_sdhash, espe-
cially for low N values. The removal of common features reduced the score of many matches;
some cases were filtered out completely. For instance, some matches having s= 100 for sdhash
had s = 0 for NCF_sdhash for N > {2,3} (e.g., 002123.html vs. 002096.html a TC match).
More details are provided in Table 26 in which the removal of common features made s de-
creases as N got lower. Template content matches are challenging to detect and remove since
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Table 25 – Number of file matches by score range using sdhash and NCF_sdhash for the sets
comparison, discarding common features with occurrences > N.

Score sdhash NCF_sdhash for N
2 3 5 10 20 50 100

= 1 92 8 9 18 13 10 19 18
≥ 1 454 78 103 151 171 188 222 265
≥ 10 187 46 75 105 130 143 143 148
≥ 21 131 28 49 69 98 108 111 112
≥ 50 56 9 18 34 40 54 57 57
≥ 90 20 8 8 14 21 20 20 20

= 100 9 3 3 9 9 9 9 9

they depend on the number of files sharing the same layout stored in the reference database. In
our experiments, we had only a few instances of each template available, which is the reason
why low N values worked well in removing related features and decreasing the similarity score.

Table 26 – The impact of common features removal on the score of some file comparisons. All
cases reported here are Template Content matches.

Query set Known set Score (0 - 100) for N
File File sdhash 2 3 5 10 20 50 100

002123.html 002096.html 100 0 0 100 100 100 100 100
000214.html 003083.html 84 2 17 75 84 84 84 84
004338.html 004509.html 81 0 0 0 0 81 80 80
000251.doc 002145.doc 72 0 66 70 71 71 72 72
003751.html 002789.html 62 0 0 0 46 45 61 62
000986.ppt 003662.ppt 11 10 10 10 10 10 10 10
004338.html 000918.html 4 0 0 0 0 4 4 4

Table 27 presents a few examples of matches related to application-generated con-
tent. Some matches having high scores reported by sdhash had s = 0 for NCF_sdhash (e.g.,
002394.doc vs. 004066.doc); the content shared between the matched files was only re-
lated to AGC. In other cases, removing common features just reduced s (e.g., 001675.pdf vs.
000746.pdf), showing that besides the common structure data, the objects shared some UGC.
A third case shows that some comparisons (e.g., 001675.pdf vs. 002203.pdf) had higher
scores for NCF_sdhash than sdhash, even tough the files were visually different (no UGC)6.

Removing some undesirable features also made UGC features prevail and increase
the similarity score, as shown in table 28 (e.g., 003049.pdf vs. 003046.pdf). The disposition
of the remaining features may have influenced the score6. Some matches had about the same
scores (e.g., 000380.xls vs. 000397.xls).

Remark. In the first part of this chapter, we found that a few scores had minor changes due
6 As stated in section 2.4.5.4, sdhash/NCF_sdhash store features into a set of bloom filters (max. of 160 features

per filter). The comparison function evaluates the Hamming distances among the filters from each object, selects
the maximum value and average all results. We believe that removing some features allowed the matching
features to be stored in the same filter (they were more easily stored separately before), increasing s.
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Table 27 – The impact of common features removal on the score of some file comparisons. All
cases reported here are Application-Generated Content matches.

Query set Known set Score (0 - 100) for N
File File sdhash 2 3 5 10 20 50 100

002394.doc 004066.doc 56 0 0 0 0 0 0 0
003047.pdf 001939.pdf 45 0 0 0 0 0 0 0
001675.pdf 000746.pdf 41 0 21 20 21 20 31 32
000698.doc 004419.doc 38 0 0 0 0 0 0 0
001675.pdf 002203.pdf 24 0 63 66 69 71 55 58
000047.xls 000380.xls 21 21 20 20 22 21 21 21
001239.jpg 002627.jpg 17 0 0 0 0 0 9 13

Table 28 – The impact of common features removal on the score of some file comparisons. All
cases reported here are User-Generated Content matches.

Query set Known set Score (0 - 100) for N
File File sdhash 2 3 5 10 20 50 100

002245.html 002238.html 100 100 100 100 100 100 100 100
003299.pdf 003296.pdf 91 95 95 96 98 90 90 90
003049.pdf 003046.pdf 59 92 92 92 93 54 54 54
000380.xls 000397.xls 41 45 41 50 41 41 41 41
001645.doc 001646.doc 23 33 31 32 31 26 24 25
001329.html 001330.html 5 13 13 13 13 13 6 6
004915.html 004914.html 0 18 18 18 18 18 18 18

to hash collisions since sdhash uses 160-bit SHA-1 as hash function and NCF_sdhash

adopts the smaller FNV-1a.

5.5.2.3 Impact on similarity score over different scenarios

Here, we focus on analyzing matches with s≤ 21 to measure the impact on thresh-
old t of removing common features. Roussev, V. (ROUSSEV, 2011) recommended t = 21 to
identify relevant matches. After removing the common features, our hypothesis is that even the
matches having s < 21 will present significant UGC since most features related to TC and AGC

were excluded.

Table 29 and 30 show the number of file matches by score (divided by the matching
class). For instance, consider s≥ 15: sdhash had 156 matches, where 30 were UGC, 47 AGC,
and 79 TC. Based on these results, we calculated precision, recall, and F1 score for the three
different scenarios, as presented in the following sections.

Scenario I - Removing only AGC

In this scenario, all NCF_sdhash versions had better results than sdhash (that be-
haves as if N = ∞) for t ≤ 21 considering precision (see Fig. 27). The best setting was N > 20
with many undesired matches being removed and many templates considered as t p due to the
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Table 29 – Number of file matches per score and per class - Part I: sdhash and NCF_sdhash
(N > 2,3,5).

Score >= File Matches in the form: #matches ( UGC - AGC - TC )
sdhash N >2 N >3 N >5

21 131 ( 29 - 31 - 71 ) 28 ( 18 - 6 - 4 ) 49 ( 20 - 11 - 18 ) 69 ( 25 - 10 - 34 )
20 137 ( 29 - 36 - 72 ) 31 ( 19 - 8 - 4 ) 53 ( 21 - 13 - 19 ) 77 ( 28 - 13 - 36 )
19 138 ( 29 - 37 - 72 ) 32 ( 19 - 9 - 4 ) 55 ( 21 - 15 - 19 ) 79 ( 28 - 15 - 36 )
18 141 ( 29 - 38 - 74 ) 33 ( 20 - 9 - 4 ) 56 ( 22 - 15 - 19 ) 82 ( 29 - 15 - 38 )
17 147 ( 29 - 43 - 75 ) 36 ( 21 - 9 - 6 ) 60 ( 23 - 15 - 22 ) 86 ( 30 - 15 - 41 )
16 151 ( 29 - 45 - 77 ) 37 ( 21 - 9 - 7 ) 63 ( 24 - 16 - 23 ) 88 ( 31 - 16 - 41 )
15 156 ( 30 - 47 - 79 ) 39 ( 21 - 9 - 9 ) 63 ( 24 - 16 - 23 ) 89 ( 31 - 16 - 42 )
14 157 ( 30 - 47 - 80 ) 40 ( 21 - 10 - 9 ) 65 ( 25 - 16 - 24 ) 90 ( 31 - 16 - 43 )
13 161 ( 30 - 50 - 81 ) 43 ( 23 - 10 - 10 ) 67 ( 26 - 16 - 25 ) 93 ( 32 - 18 - 43 )
12 170 ( 31 - 58 - 81 ) 43 ( 23 - 10 - 10 ) 68 ( 26 - 17 - 25 ) 96 ( 32 - 20 - 44 )
11 178 ( 31 - 64 - 83 ) 43 ( 23 - 10 - 10 ) 69 ( 26 - 18 - 25 ) 98 ( 32 - 20 - 46 )
10 187 ( 32 - 72 - 83 ) 46 ( 24 - 10 - 12 ) 75 ( 28 - 20 - 27 ) 105 ( 33 - 25 - 47 )
9 197 ( 32 - 79 - 86 ) 49 ( 24 - 12 - 13 ) 77 ( 28 - 21 - 28 ) 110 ( 33 - 29 - 48 )
8 211 ( 32 - 93 - 86 ) 52 ( 25 - 13 - 14 ) 78 ( 29 - 21 - 28 ) 114 ( 34 - 31 - 49 )
7 224 ( 33 - 104 - 87 ) 56 ( 27 - 14 - 15 ) 82 ( 30 - 22 - 30 ) 120 ( 36 - 33 - 51 )
6 242 ( 35 - 120 - 87 ) 58 ( 27 - 16 - 15 ) 83 ( 30 - 23 - 30 ) 124 ( 36 - 34 - 54 )
5 258 ( 36 - 134 - 88 ) 59 ( 28 - 16 - 15 ) 84 ( 30 - 23 - 31 ) 125 ( 37 - 34 - 54 )
4 273 ( 36 - 148 - 89 ) 60 ( 28 - 17 - 15 ) 87 ( 30 - 25 - 32 ) 129 ( 37 - 37 - 55 )
3 304 ( 36 - 179 - 89 ) 63 ( 28 - 18 - 17 ) 89 ( 30 - 26 - 33 ) 129 ( 37 - 37 - 55 )
2 362 ( 37 - 236 - 89 ) 70 ( 30 - 22 - 18 ) 94 ( 32 - 29 - 33 ) 133 ( 38 - 40 - 55 )
1 454 ( 41 - 321 - 92 ) 78 ( 30 - 30 - 18 ) 103 ( 33 - 37 - 33 ) 151 ( 42 - 52 - 57 )
0 507 ( 45 - 369 - 93 ) 507 ( 45 - 369 - 93 ) 507 ( 45 - 369 - 93 ) 507 ( 45 - 369 - 93 )

small number of files sharing the same layout. sdhash had the worst results, where the decrease
of t had a negative impact due to a large number of f p matches. On the other hand, removing the
common features resulted in many undesirable matches being ignored, having a less significant
impact on NCF_sdhash (except for N > 100) when decreasing t.

Considering now the Recall metric (Fig. 28), no algorithm found all similar matches.
sdhash and NCF_sdhash with N > 20,50,100 had the best results. For this metric, we had a
bad influence of templates for NCF_sdhash with low N settings. Many template matches were
removed from results due to the limited number of models in our database. As N increased, the
features related to templates were not considered common anymore, and the matches became
relevant again. For N > 3, we found only 33/93 template matches, while for N > 20 we had
91/93 (t = 1).

Fig. 29 shows the results for the F1 score. We had the best combination between
precision and recall for N > 20. We could see that sdhash results degraded significantly for
threshold t < 21 due to the high number of false positives (bad precision). On the other hand,
low t values increased the performance of NCF_sdhash (with low and mid N values). However,
mid N values are the ones recommended when template matches are relevant for investiga-
tions. Besides, using t > 0 showed to be beneficial and should be taken into consideration when
working with NCF_sdhash.



Chapter 5. The impact of common blocks on Approximate Matching 114

Table 30 – Number of file matches per score and per class - Part II: NCF_sdhash (N >
10,20,50,100).

Score >= File Matches in the form: #matches ( UGC - AGC - TC )
N >10 N >20 N >50 N >100

21 98 ( 26 - 13 - 59 ) 108 ( 26 - 11 - 71 ) 111 ( 26 - 13 - 72 ) 112 ( 26 - 15 - 71 )
20 102 ( 27 - 14 - 61 ) 113 ( 26 - 14 - 73 ) 114 ( 26 - 15 - 73 ) 114 ( 26 - 16 - 72 )
19 105 ( 28 - 16 - 61 ) 115 ( 27 - 15 - 73 ) 115 ( 27 - 15 - 73 ) 116 ( 27 - 16 - 73 )
18 106 ( 29 - 16 - 61 ) 117 ( 28 - 16 - 73 ) 119 ( 28 - 17 - 74 ) 118 ( 28 - 17 - 73 )
17 110 ( 30 - 16 - 64 ) 122 ( 29 - 17 - 76 ) 123 ( 29 - 18 - 76 ) 122 ( 29 - 17 - 76 )
16 114 ( 31 - 18 - 65 ) 125 ( 31 - 18 - 76 ) 124 ( 30 - 18 - 76 ) 123 ( 30 - 17 - 76 )
15 115 ( 31 - 19 - 65 ) 127 ( 31 - 19 - 77 ) 125 ( 30 - 19 - 76 ) 125 ( 30 - 19 - 76 )
14 116 ( 31 - 19 - 66 ) 128 ( 31 - 19 - 78 ) 127 ( 30 - 19 - 78 ) 128 ( 30 - 20 - 78 )
13 118 ( 33 - 19 - 66 ) 129 ( 32 - 19 - 78 ) 128 ( 30 - 19 - 79 ) 133 ( 31 - 23 - 79 )
12 122 ( 33 - 22 - 67 ) 134 ( 33 - 22 - 79 ) 132 ( 30 - 22 - 80 ) 139 ( 31 - 28 - 80 )
11 124 ( 33 - 23 - 68 ) 137 ( 33 - 23 - 81 ) 137 ( 31 - 25 - 81 ) 142 ( 31 - 30 - 81 )
10 130 ( 33 - 27 - 70 ) 143 ( 33 - 28 - 82 ) 143 ( 31 - 29 - 83 ) 148 ( 31 - 35 - 82 )
9 135 ( 34 - 30 - 71 ) 147 ( 34 - 30 - 83 ) 147 ( 32 - 31 - 84 ) 155 ( 32 - 40 - 83 )
8 138 ( 34 - 33 - 71 ) 151 ( 34 - 32 - 85 ) 151 ( 32 - 33 - 86 ) 162 ( 33 - 44 - 85 )
7 142 ( 36 - 34 - 72 ) 158 ( 36 - 35 - 87 ) 161 ( 35 - 37 - 89 ) 173 ( 35 - 50 - 88 )
6 144 ( 36 - 35 - 73 ) 159 ( 36 - 35 - 88 ) 165 ( 36 - 40 - 89 ) 181 ( 36 - 57 - 88 )
5 146 ( 37 - 36 - 73 ) 163 ( 37 - 38 - 88 ) 172 ( 37 - 46 - 89 ) 188 ( 36 - 64 - 88 )
4 148 ( 37 - 38 - 73 ) 166 ( 37 - 40 - 89 ) 176 ( 37 - 49 - 90 ) 212 ( 37 - 86 - 89 )
3 151 ( 37 - 41 - 73 ) 169 ( 38 - 42 - 89 ) 190 ( 38 - 62 - 90 ) 231 ( 38 - 104 - 89 )
2 158 ( 38 - 46 - 74 ) 178 ( 39 - 50 - 89 ) 203 ( 39 - 74 - 90 ) 247 ( 39 - 119 - 89 )
1 171 ( 41 - 55 - 75 ) 188 ( 42 - 55 - 91 ) 222 ( 42 - 89 - 91 ) 265 ( 42 - 133 - 90 )
0 507 ( 45 - 369 - 93 ) 507 ( 45 - 369 - 93 ) 507 ( 45 - 369 - 93 ) 507 ( 45 - 369 - 93 )

Scenario II - Searching for UGC only

For the second scenario, we are interested in finding only UGC matches. Fig. 30
shows our results regarding precision. Notice that low N values stood out in this experiment
since they were responsible for removing many template matches - the lower the N, the better
the precision. sdhash had the worst results since it detected many TC matches as relevant, once
it does not distinguish the class of similarity. All algorithms had low precision values mostly
due to templates, which were harder to remove even for NCF_sdhash (see tables 29 and 30). In
most cases, decreasing to t = 1 had a small impact on precision.

The recall rates are shown in Fig. 31. The worst results were obtained for low N

values, in which we could not identify a few similar files with too many changes (differences).
Besides, we found a particular case where six comparisons of html files were between iden-
tical objects in our database. This way, all features related to them became common for some
NCF_sdhash settings; N > 2 and N > 3 produced s = 0, while sdhash and others had s = 100.
As t decreased, we had similar results for sdhash and other NCF_sdhash settings. For recall, it
is worth to accept small scores since many additional matches were found; most cases reached
more than 90% at t = 1, while for the recommended t = 21, they had about 60%.

Given the F1 score results (Fig. 32), we can conclude that for scenarios where tem-
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Figure 27 – Scenario I: Precision vs. score

Figure 28 – Scenario I: Recall vs. score

plates matches are not relevant, low N values are recommended due to its good balance between
precision and recall. sdhash had the worst results which degraded significantly for t < 21. For
NCF_sdhash with low/mid N settings, it is worth looking for matches with t ≥ 1 since even low
values tend to present relevant matches.

Scenario III - No template matches

The third scenario does not consider template matches and seeks to analyze how
they influenced precision and recall rates. NCF_sdhash was superior regarding precision
(Fig. 33). Normally, the lower the N, the better the precision. Low N values in NCF_sdhash

are more prone to remove AGC (see tables 29 and 30) since many features repeating in a few
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Figure 29 – Scenario I: F1 vs. score

Figure 30 – Scenario II: Precision vs. score

files are considered common. An example is a match of two pdf files where sdhash and some
NCF_sdhash settings detected as similar, but the files were different. By using N > 2 or N > 3,
we could remove many features shared by those files and with a few other ones (e.g., a feature
related to a font specification) and have s = 0. As we decrease t, sdhash results dropped from
50% to 10%, a significant degradation on its performance. Lower values of N presented a less
aggressive degradation on these precision results due to the small number of false positives
compared to sdhash.
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Figure 31 – Scenario II: Recall vs. score

Figure 32 – Scenario II: F1 vs. score

For recall (Fig. 34), we had the same results as scenario II since in both cases we
ignored TC matches. Finally, the results of F1 score (Fig. 35) for decreasing t showed a poor
performance of sdhash again, while all settings of NCF_sdhash with low/mid N values had
similar/better results. For these settings, no significant degradation was noticed for low t values,
and considering them as relevant results can be beneficial.
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Figure 33 – Scenario III: Precision vs. score

Figure 34 – Scenario III: Recall vs. score

5.5.3 Discussion

Based on the experiments described in the previous sections, we discuss here the
lessons learned, specifically, the correlation of removing common features and the similarity
score with respect to the different scenarios considered in our experiments.
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Figure 35 – Scenario III: F1 vs. score

RQ1. How does the removal of common features impact digital forensics investigations for the
different classes of similarity?

By removing the common features, many AGC matches were filtered out. TC matches
were a problem for low N-values in NCF_sdhash, as well as finding a few UGC matches of high
degree of complexity (too many modifications on the files content). Mid and high-values of N

in NCF_sdhash had similar or better results than sdhash in all cases.

With respect to template matches, we had many instances of a few files sharing the
same layout in our database. Low N-values in NCF_sdhash removed many of these matches
from the results but also kept some of them. Consequently, scenario I and II were impacted
negatively, where we could neither identify nor remove all TC matches effectively. We can
confirm this assumption by observing the increase in recall (scenario I vs. scenario III) and
precision (scenario II vs. scenario III). In the first case, recall dropped significantly since many
templates were removed, while in the second case, some TC matches that we could not remove
from the results were detected as f p.

NCF_sdhash with low N settings (except for N > 5) also underperformed in the de-
tection of a few matches between files with too many modifications (differences). Besides, some
identical files found in the database contributed for degradation in results (see Sec. 5.5.2.3).
sdhash and all settings with N > 5 had more than 91.00% of recall. NCF_sdhash using N > 2
and N > 3 had 66.67% and 73.33%, respectively. The reason for higher recall rates of sdhash
and most versions of NCF_sdhash is due to the common features. By removing them, some
instances had s = 0 since the number of features related to UGC were too small or nonexis-
tent. In such cases, the match may happened because common features were still present in the
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similarity assessment.

In short, sdhash tended to detect many matches related to template/application-
generated content and NCF_sdhash with low N-values is inadequate for template detection or
comparisons with a high level of complexity which do rely on the common features. Although
mid and high values of N could perform well for template detection in this particular data set,
future work is necessary to separate this sort of match since it is hard to know the number of
files sharing the same template in a large set.

RQ2. How are precision and recall rates affected by the removal of common features?

In general, removing the common features increased precision, and for low N va-
lues, decreased recall. sdhash performed the worst regarding precision in all scenarios due to
the presence of the common features. NCF_sdhash had the best results for low N values, ex-
cept for scenario I, where mid-values of N had the best results for detecting many TC matches.
For recall, mid and high-values of N had similar/better results than sdhash. Low N-values for
NCF_sdhash performed worse, especially for scenario I where many TC matches were missed.
Given the F1 score (balance between precision and recall), we can see that sdhash performance
dropped significantly in all scenarios with the decrease of t. On the other hand, low/mid N

values of NCF_sdhash presented the best results as t dropped to 1.

In our experiments, using N > 20 had better results than higher N values (N > 50
or N > 100) for all cases. We believe that no further benefit is achieved for higher values of N.
The number of true positives was about the same with a significant reduction in the number of
false positives. Besides, when considering template similarity as a relevant result (scenario I),
N > 20 should also be the one adopted given its better precision and recall rates.

RQ3. How is the recommended threshold value of 21 for sdhash affected by removing common
features?

Our experiments revealed that many matches were left out by using t = 21 for
sdhash. From the 45 UGC matches, only 29 were found. Using t = 1 allowed us to increase
the number of UGC to 41 at the cost of many additional AGC matches (321/369). TC were also
benefited from using lower t values (92/93). Although recall increased, precision dropped sig-
nificantly for the threshold reduction. Besides, F1 score showed that it is not worth using t < 21
for sdhash due to the significant degradation in its performance.

On the other hand, NCF_sdhash showed improvements when choosing lower thresh-
old values. The best performances of all settings were with N > 20, where many UGC and TC

were found (42/45 and 91/93, respectively) at a small cost of AGC matches (55/369) compared
to sdhash. F1 score values showed minor improvements when using low t values. For this rea-
son, we believe that low thresholds should be considered for digital forensic investigations given
that many relevant matches were found. For N > 2, the best F1 value was using t = 2 (scenario
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I) and t = 5 (scenarios II and III), while for N > 20 we had t = 6 (scenario I), t = 12 (scenario
II), and t = 13 (scenario III).

Remark: The accuracy, defined as (t p+ tn)/(t p+ tn+ f p+ f n), is not presented here since
sdhash and all NCF_sdhash versions had similar values (> 99.00%) due to the enormous
number of true negatives pointed out by both algorithms.

5.6 Limitations

This work comes with three limitations. First, bytewise approximate matching al-
gorithms do not work equally well for all file types, since our experiments showed that common
features depend on the file type. Second, our experiments included a lot of manual testing and
random sampling. It is possible we misclassified matches or we ended up with poor samples
drawn from the data set. Lastly, our results are not of general nature but only valid for our test
set. For instance, for the t5-corpus, a 3 ≤ N ≤ 5 works well; however other sets may require a
different value. Future work is necessary to confirm if these values work for larger data sets.

5.7 Conclusions

In this chapter, we analyzed the impact of common features (and their exclusion)
for approximate matching. We first explained what common features are and showed that they
are shared across files of the same and different types, often relating to application-generated
content or template similarity. In the sequence, we removed the common features to observe
their impact on the amount and quality of matches. By excluding the less important features, the
number of matches was significantly reduced with an acceptable loss in the similarity detection;
in some cases, we obtained approximately 87% fewer matches compared to traditional tools.
This practice also benefited precision and recall rates, where different settings aided each metric
differently based on the goal of the investigation. Finally, we also analyzed the impact on the
threshold score of AM and showed that, after removing the common features, all scores from 0
to 100 produce relevant matches for a small cost in the number of false positives.

As next steps, we want to verify if the results got here with sdhashwill sustain when
changing the AM tool to mrsh-v2. Besides, we want to explore different database solutions or
create a customized structure to store common blocks to improve efficiency. Additionally, other
data sets need to be analyzed to confirm if the N-values used in this work can be adopted
universally, as well as testing different file types, such as zip, rtf, bmp, mp3, and so on.
Although this thesis focused on removing common blocks, we highlight that this sort of data
could be useful in other scenarios. We plan to study how we could use a template or application-
generated content to the benefit of digital forensic investigations. For instance, we could apply
common blocks concepts to the file type discovery or assessment of random sample quality.
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6 Mitigating sdhash limitations with Jaccard
similarity

In this chapter, we present a theoretical analysis of the similarity detection capabili-
ties of one of the most popular AM tools, the sdhash, and show some improvements regarding
the similarity score produced by it. By changing the comparison function of sdhash, the new
tool presented more precise scores and shows the real amount of similarity shared between
objects; besides, its results are easier to interpret.

6.1 Introduction

One of the most popular and used AM tools is sdhash, because of its good detection
capabilities, usability, and for being open source. Many researchers have target sdhash and tried
to understand its benefits and limitations when applied to digital forensic investigations. How-
ever, most of the tests using sdhash focused on empirical analysis using real-world/controlled
data to make estimations about the tool internals. The problem is that no theoretical analysis
was performed so far, showing, for example, the minimal amount of similarity shared between
objects to be highlighted by sdhash, in which scenarios the tool would produce reliable results,
and so on.

Another problem with sdhash is that the score produced in the similarity com-
parison process is difficult to understand. Roussev, V. (ROUSSEV, 2011) suggests that every
comparison with score ≥ 21 should be taken as similar; otherwise, the chances for a false po-
sitive is too high, and the match should be ignored. The only exception is for text files, which
are considered similar for scores ≥ 5. When looking at the score produced (ranging from 0 to
100), it is natural to interpret it as a percentage value of similarity; however, Roussev argues
that such interpretation is wrong. Also, we do not have a clue about which object is the most si-
milar one in case many objects present similarity; the only classification is being similar and not
similar. Furthermore, sdhash does not separate resemblance from containment results, leading
practitioners to wrong interpretations in some contexts.

Given the problems mentioned above, in this chapter, we aim at providing the fol-
lowing contributions:

• A theoretical analysis of sdhash (that could be extended to other bloom filter-based tools,
such as mrsh-v2), showing its detection capabilities and limitations;

• A new AM tool, called J-sdhash, which is an improved version of sdhash using the
Jaccard distance to assess similarity.
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In the following sections, we present our research questions, theoretical analysis,
and the new J-sdhash tool with tests corroborating the improvements made. Details about the
working process of sdhash, required to the understanding of all contributions of this chapter,
can be found in Sec. 2.4.5.4.

6.2 Research direction, forms of similarity, and data set used for

the experiments

6.2.1 Research questions

This chapter focus on answering the following research questions:

RQ.1 What is the minimum amount of similarity that sdhash can detect?

RQ.2 What to expect from sdhash when assessing similarity? In which cases/scenarios will it
work?

RQ.3 What is the impact of the α variable (and its default value) on the similarity assessment?

RQ.4 Can we improve the similarity assessment process of sdhash to make it easier to un-
derstand and accurate?

6.2.2 Forms of similarity

The similarity between objects can be found in many forms. In the following, we
present some scenarios related to the kind of similarity one can find when comparing two ob-
jects. We will consider these scenarios for the theoretical evaluation of sdhash.

1. New version of objects: The most common case of similarity is the one where we have
an object and a new version of it with a few changes. For instance, a document and a
revised version of it where some typos were fixed or new lines were added.

2. Block of similar content: We may found cases where two different objects have a block
of similar content (e.g., a paragraph, embedded picture, table, etc.). In such a case, we
can have two variations:

a) Single block: Only one similar block of content is shared between the objects,
placed at the beginning, ending, or middle of them.

b) Multiple blocks: Many blocks of similar content (with the same or different sizes)
are shared and spread all over the objects.
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3. Object fragment: The last scenario correlates an object and a small piece of it, such as
a fragment. For instance, we could verify if a certain picture is embedded into a doc file
or, given a single book page, we can verify to which book that page belongs to.

In all of these scenarios, the size of the objects under comparison influences the re-
sults. We have comparisons of equal (or very close) object sizes and also comparisons of objects
of very different sizes. The AM tools are usually tested in all of these scenarios and variations
of it. FRASH framework (BREITINGER et al., 2013) proposes four tests to evaluate AM func-
tions simulating all of these similarity forms; the tests are discussed below with their respective
purposes, covering most of the similarity forms presented here. Note that only scenario 2(b)
was not covered directly on the tests for being a variation of 2(a).

• Random noise resistance (sim. form: 1): Given two identical objects F and F ′, what is
the minimum number of bytes that need to be changed all over F ′ (in a random way) to
receive a non-match?

• Single common block correlation (sim. form: 2(a)): Given two different objects Fx and
Fy that share only a single common piece (bytes) of data, what is the smallest size of
the common data for which the similarity tool can reliably correlate the two targets as
similar?

• Alignment robustness (sim. form: 2(a)): Given two identical objects F and F ′, what is
the minimum number of bytes that need to be inserted at the beginning of F ′ to receive a
non-match?

• Fragment detection (sim. form: 3): Given an object F and a piece/fragment of it (Frag),
what is the smallest size of Frag for which the similarity tool can reliably correlates the
fragment to its source?

FRASH framework presents an empirical evaluation of some AM tools using the
tests mentioned above. In our work, we seek to assess the theoretical capabilities of AM func-
tions, in particular of sdhash, focusing on its limitations given each test. Our theoretical eva-
luation is towards a future practice of this kind of analysis on the AM field, which we believe
is of extreme importance. Although we consider tests with controlled and real-world data ne-
cessary, we also feel that the AM field lacks more theoretical analysis showing at least the basic
constraints of the tools.

6.2.3 Use of synthetic data set to enhance evaluations

Data sets composed of real-world data have the advantage of being the kind of data
found during digital forensic investigations, with different file types that have unique characte-
ristics; some types may favor or hinder the analysis of AM tools. For instance, bytewise tools
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are good for assessing similarity of text, compound files, pdf, among other types, but they
do not perform well when dealing with jpg, gif, and other compressed files.

When assessing the detection capabilities of AM, although real-world data is pre-
ferable, it has the limitation that it is hard to know the real similarity shared among objects in a
large and representative set. On the other hand, we can use synthetic data sets instead, since they
are easily controlled and we can adjust them as we need. In this work, we create our synthetic
data set using data provided by the /dev/urandom library to compare the comparison function
proposed in this chapter with the one already in use by sdhash. By using a controlled data set,
we can evaluate which function produces results closer to the real similarity of objects.

We create several objects composed of random data, controlling their sizes and the
amount of similarity shared by each pair. We developed a shell script to create our synthetic data
set, simulating the many forms of similarity discussed in the previous subsection. The script is
available on our GitHub page: <https://github.com/regras/J-sdhash>.

Two different data sets of random data were created to improve our experiments.
The first one is used in the single common block test and consists of three different sets of
object pairs, where each pair has a similar block (corresponding to ps percentage of their size)
placed at the beginning, middle, or ending of the objects. We varied the percentage ps according
to the following values: 90, 80, 70, 60, 50, 40, 30, 20, 10, 5, and 1%. The chosen object sizes
were: 10 KiB, 512 KiB, 1 MiB, and 5 MiB. We used these values for size since they represent
different categories of objects: small objects, the average size of the t5-corpus (see Sec. 4.3),
usual object size of multimedia files, and large objects.

The second data set created is used for the random noise resistance experiment. In
this set, for each object, we have a duplicate of it with r% of randomly modified bytes; the mo-
difications are randomly chosen and include one of the following ones: Insertion, Substitution,
Removal, Swapping, and Replacement. We used the same object sizes as before (10 KiB, 512
KiB, 1 MiB, and 5 MiB) and others based on the number of bloom filters an object has. Since
we are dealing with random data, we used the constant of 9650 bytes for defining the size of an
object having a single bloom filter (see Sec. 6.3.1); this way, the chosen sizes (number of bloom
filters) ranged from 01 to 50 and included the following ones: 55, 60, 65, 70, 75, 80, 85, 90, 95,
and 100 bloom filters (object sizes vary from 9650 to 965000 bytes). The percentage r varies
according to the values: 0.5, 1.0, 1.5, 2.0, 2.5, 5.0, 10.0, and 25.0%.

6.3 Theoretical analysis of sdhash

The usual mainstream for newly proposed AM tools is as follows: The digest ge-
neration process is presented with some concepts about how it works for detecting similarity,
followed by a discussion of the digest comparison function. Next, the tool’s capabilities are
assessed by empirical tests (sometimes using the FRASH framework (BREITINGER et al.,

https://github.com/regras/J-sdhash
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2013)). Although we think this sort of test is of extreme importance, we believe the AM field
lacks a more deep and complementary theoretical analysis of the detection capabilities of the
tools.

A theoretical analysis would allow us to understand the tools’ limitations in a way
that just empirical tests may fail (or present incomplete information) due to the data set at hand
not being vast and representative enough. In this chapter, we focus our analysis on sdhash for
being one of the most known and used AM tools. We present details about sdhash features,
some characteristics of this tool, and what to expect when comparing two objects. We also
analyze different scenarios and show how the tool behaves and what are its constraints. In the
end, we show some limitations of sdhash and propose a new tool aiming to mitigate them.

Definitions For the rest of this section, we will use the following terms:

Fx: the x-th object of a given data set.

b fx,i: the i-th bloom filter of object Fx.

|b fx|: number of bloom filters of object Fx.

fmax: maximum number of features inserted into a single bloom filter (default: 160).

|Fx|: number of features of object Fx

gi: number of features of bloom filter i.

G(b fi,b f j): function that returns the number of features in common between b fi and b f j.

ei: number of bits set to one in a given bloom filter i.

ei, j: number of common bits set to one between bloom filters i and j.

emin: minimum number of overlapping bits between b fi and b f j, given by Eq. 2.6.

emax: maximum number of overlapping bits between b fi and b f j, given by Eq. 2.5.

C: cutoff point, defined by Eq. 2.7.

m: bloom filter size (bits).

score: similarity score, calculated by Eq. 2.9.
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6.3.1 Object size and its relation to the number of object features

The sdhash digest size varies between 2.6% (ROUSSEV, 2010) to 3.3% (BRE-
ITINGER; BAIER, 2013) of the input object size. Breitinger, F. et al. (BREITINGER et al.,
2014c) state that there is a relation between the number of features selected to represent objects
and their respective sizes, estimating 160 features for every 10 KiB of data (using sdhash de-
fault parameters); this means that, on average, a single feature is selected to compose the object
digest for every 64 bytes. To confirm such a statement, we used sdhash to create digests for
a real-world data set (t5-corpus1) and our controlled data set (random data, Sec. 6.2.3). The
statistics for both sets can be seen in Table 31.

Table 31 – Object bytes per feature on real-world and controlled data sets

t5-corpus Random datahtml text pdf doc ppt xls jpg gif ALL

Total size (MiB) 68 234 603 220 352 277 54 14 1823 1139
#features (105) 9 38 100 30 56 52 9 2 297 200
Obj. bytes/feature 78 64 63 78 66 55 61 63 64 60

Breitinger’s statement was based on the t5-corpus as well. Although this is a good
approximation for dealing with objects of different types, we need to keep in mind that the
statistics change from one file type to another. For instance, doc files had the largest number
of object bytes per feature; Roussev, V. (ROUSSEV, 2010) alerts that one of the reasons for
this high number in comparison to other types may be due to about 8% of a doc file content
being composed by only 0s. Since sdhash discards low entropy features, many features are
filtered out, increasing the distance between the selected ones. On the other hand, the statistics
for random data (including jpg and gif) are smaller and closer to the general value of 64. The
reason for a smaller value is due to randomness; a variation on the feature bytes in random
data is more likely to occur than other types having user-generated data (which follows the
distribution of alphabets, a more well-behaved one with many repeating characters). This way,
features with low entropy are more likely to be encountered, decreasing the average value of
the popularity rank (Rpop) of features during selection (see Sec. 2.4.5.4.1).

For xls, we believe that the low relation of object bytes and the number of features
is due to this sort of object has content mostly restricted to a subset of the ASCII set, composed
by numbers and signals. The consequence is a decrease in the entropy score of most features
and an increasing the number of the selected ones. On the other hand, html type had fewer
features per byte than other types (except for doc files, which had the same value). For html,
we attribute the results to the common elements present in this sort of object; for instance, tags,
JavaScript code, style information, among others, may have contributed to many features being
discarded for being duplicate.
1 <http://roussev.net/t5/t5.html> (last accessed: Nov 30, 2019).

http://roussev.net/t5/t5.html
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Assuming that for every 64 bytes a feature is selected, we can estimate the number
of features (|Fx|) of object Fx given only its size with Eq 6.1. Note that this equation provides
the number of selected features, i.e., those that will be inserted into the bloom filters. For more
accurate results, substitute the 64 value for the one in Table 31 according to the corresponding
file type.

|Fx|=
s(Fx)

64
( f eatures) (6.1)

Here, s(Fx) returns the object size (in bytes). Besides, we can also estimate the number of
bloom filters |b fx| an object Fx with |Fx| features has using Eq. 6.2. The estimation is performed
considering sdhash current implementation.

|b fx|=



0 i f (|Fx|< 16)

1 i f (|Fx| ≥ 16 and |Fx| ≤ 160)⌊
|Fx|
fmax

⌋
+1 i f ((|Fx| mod fmax)≥ 20)⌊

|Fx|
fmax

⌋
otherwise

(6.2)

The first condition describes the case where an object does not have enough features
for creating a digest; the second, a case of an object having only a single bloom filter that
represents its digest. The third one means that an additional bloom filter is only created if at least
20 features are available, while in the fourth, we have objects with many features (|Fx|> 160),
but less than 20 were available for insertion in the last bloom filter. In this case, the exceeding
features are dropped out. For more details, see Sec. 6.4.

The information got from Eqs. 6.1 and 6.2 are used for our theoretical analysis of
sdhash, presented in the next sections.

6.3.2 Understanding sdhash features

To understand the similarity computed by sdhash, we need to understand which
features are selected to create the object digest. Here, we are interested in knowing the content
of the features and its relation with the entropy. Roussev, V. (ROUSSEV, 2010) performed
empirical tests with sdhash to set some parameters in the algorithm, including defining the
entropy values in which the so-called weak features are classified and later discarded. In this
section, we present the characteristics of those features. In the filtering process (Sec. 2.4.5.4.1),
features with entropy scores ≤ 100 and those > 990 (on a scale of 0 to 1000) are removed.

A feature is composed of a sequence of β bytes, and its entropy takes into conside-
ration the probability of encountering each byte value in this sequence. The more bytes that are
different from each other in a single feature, the higher the entropy value; this way, having all
different bytes means maximum entropy (i.e., 1000), while having the same byte β times give us
the minimum entropy (i.e., 0). The feature bytes and entropy relation can be better understood
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by the following relation:

entr( f1 = (b0,b0,b0, ...,b0,b0,b1,b1,b1,b1)β )< entr( f2 = (b0,b0,b0, ...,b0,b0,b1,b1,b2,b2)β )

< entr( f3 = (b0,b0,b0, ...,b0,b0,b1,b1,b2,b3)β )

where function entr( fi) returns the entropy value of feature fi in a normalized score (0 - 1000),
and bytes b0 to b3 represent the bytes that compose the features.

However, one may ask: What is the minimum number of different bytes that makes
sdhash to select a feature to compose the object digest? Considering the default feature size of
sdhash (64 bytes), we present here some examples of features (and their entropy values) that
would be selected. We compute the entropy for some artificial features that we created conside-
ring the formulas presented in Sec. 2.2, where we varied the bytes of each feature and observed
the impact in the entropy value. Observe that the letters composing the features represent any
byte value; in this example, we present the variations with the minimum entropy necessary for
a feature to be selected.

• entr( f1 =(b0,b0,b0, ...,b0,b0,b1,b1,b1,b1,b1,b1,b1,b1,b1,b1)64)= 104 (sequence of 54
‘b0’ and 10 ‘b1’)

• entr( f2 = (b0,b0,b0, ...,b0,b0,b0,b1,b1,b1,b1,b2,b2,b2,b2)64) = 111 (sequence of 56
‘b0’, 4 ‘b1’, and 4 ‘b2’)

• entr( f3 = (b0,b0,b0, ...b0,b0,b0,b1,b1,b1,b2,b3,b4)64) = 102 (sequence of 58 ‘b0’, 3
‘b1’, and ‘b2,b3,b4’)

• entr( f4 = (b0,b0,b0, ...,b0,b0,b0,b1,b2,b3,b4,b5,b6)64) = 115 (sequence of 58 ‘b0’ and
‘b1,b2,b3,b4,b5,b6’)

Note: As the number of different bytes in a feature increases, the entropy becomes higher and
requires fewer changes in comparison to blocks of the same byte. For instance, consider a
feature f0 with 64 b0 bytes (entr( f0) = 0); the feature f1 shown in the example above has a
higher entropy (104) than f0 for having 10 bytes modified (a block of bytes b0 was replaced
by a block of bytes b1); however, f4 has fewer changes compared to f1 (only six) and yet has a
higher entropy because all of the six bytes changed are different from each other.

Not only low entropy features are discarded, but also those having near maximum
values, such as the ones with entropy values > 990. Some examples of features with high en-
tropy values are presented below.

• entr( f5 = (b0,b1,b2, ...,b57,b58,b59,b60,b60,b61,b61)64) = 989 (sequence of 62 different
bytes and duplicated ‘b60’ and ‘b61’)
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• entr( f6 =(b0,b1,b2, ...,b58,b59,b60,b61,b61,b61)64)= 987 (sequence of 62 different bytes
and 2 copies of ‘b61’)

• entr( f7 = (b0,b1,b2...,b59,b60,b61,b62,b62)64) = 994 (sequence of 63 different bytes and
duplicated ‘b62’)

• entr( f8 = (b0,b1,b2...,b60,b61,b62,b63)64) = 1000 (sequence of 64 different bytes)

Given the above examples, we see that sdhash only removes features that bytes are
all different or have at most one duplicated byte. If two or more bytes repeat over the feature,
its entropy value will be smaller than the limit, and the feature will not be classified as weak.

In conclusion, sdhash requires a minimum of ([6∗100/64] =) 9% and a maximum
of ([62∗100/64] =) 97% of different bytes in the feature content to consider it as relevant and
to make it a candidate to be part of the similarity digest (although the feature selection process
still must occur).

6.3.3 Estimating the similarity of bloom filters

The similarity score of sdhash is computed by comparing and averaging the digest
(a set of bloom filters) of two objects. To perform a single bloom filter comparison, sdhash uses
the formulas presented in Sec. 2.4.5.4.2 and then produces an average value of all bloom filters
comparisons. However, one may wonder about the minimum number of bytes (or features) two
objects must have in common to their bloom filter comparison produces a significant score. In
this section, we focus on providing such analysis. More specifically, we want to answer the
following question: How many features should two bloom filters (of sdhash) have in common
to produce a score≥ 1 and/or a score≥ 21?

6.3.3.1 Problem definition

Knowing the minimum amount of data (or features) in common between two filters
that produce a significant score is a challenging task, because: (1) We do not have control of the
elements once they are inserted into the filter; (2) many parameters affect the score estimation.
sdhash uses Eq. 2.8 to compute the score of two bloom filters; however, estimating the amount
of features in common requires figuring out which ei, j (number of common bits) give us a
SFscore(b fi,b f j) ≥ scoremin, where scoremin is the minimum score we are looking for. Solving
the equation requires the values of some parameters, such as emax and C, that vary according to
the bloom filters, and we can not control them. Both variables require the number of features and
bits set in each filter under comparison. Since the number of features is fmax in all filters with
the exception of the last one (it varies from 20 to 160 in current implementation, see Sec. 6.4)
and objects usually have many bloom filters, we will make a simplification and consider that all
filters are full (have fmax features) since such assumption will not change results significantly
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(as shown in Sec. 6.3.3.3). To figure out the number of bits set, we present in the next section a
technique for estimating it when the number of features in a bloom filter is given.

6.3.3.2 Number of bits set in a Bloom Filter

Measuring the theoretical boundaries of sdhash requires knowing the number of
bits set to one for all bloom filters of two objects. The number of features in each bloom filter is
known; all filters with the exception of the last one have fmax features, while the last one varies
but can be easily found out by checking the digest header (ROUSSEV; QUATES, 2013).

The number of bits set to one in a filter may vary according to the number of features
inserted on it and their content. In general, a filter has fmax features, and each one of them sets k

bits in the filter; at most fmax ·k bits are set. However, our experiments revealed that in practice,
filters rarely have the maximum value of bits set. sdhash inserts features into a filter by hashing
it and breaking the result into k parts, where only log2(m) bits are used to set the positions in
the filter; by default, the 160 bits resulting from the SHA-1 hash function are broken into five
parts, each having 11 bits used to set the positions within the filter. The hash function space
of 2160 decreases to 211 possibilities, increasing the chances for collisions in the filter level
significantly. This way, features inserted into the bloom filters may present some collisions in
any of the k bits set, resulting in fewer bits set to one than the maximum value after all features
are inserted. Besides, the more features we insert, the more the probability for collisions. To
clarify: A bloom filter collision means that all k hashes used to set bits into the filter for a given
element had the same value for a different element; however, by saying bit collision, we meant
that any of the k hashes collide (not necessary all of them).

Given the constraints above, we are interested in figuring out how to estimate the
number of bits set given the number of features. First, we ran a few tests over a subset of t5-

corpus (80 randomly selected objects, 10 for each file type) to observe how the number of bits
set on the bloom filters were distributed. Table 32 summarizes our results for different file types
and the whole subset. In the experiment, we counted the number of bits set to one in all digests,
considering only filters with 160 features.

Table 32 – Number of bits set on bloom filters (with 160 features) on a subset of t5-corpus

html text pdf doc ppt xls jpg gif all subset

Max. 682 703 692 697 686 695 679 686 703
Min. 647 633 632 628 638 636 645 641 628
Average 662.05 663.03 663.07 662.42 662.58 663.41 660.53 661.80 662.72
STD 10.77 8.92 8.74 9.01 8.77 9.05 6.96 9.62 8.94

For sdhash, the maximum number of bits set in a filter is (160 · 5 =) 800 bits.
However, this is not the number we find on practical scenarios since some positions in the filter
are set more than once. Table 32 shows that, on average, 662.72 bits are set to one in a full
bloom filter when using real-world objects; many of the k parts of a feature happened to set a
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position within the filter in which a bit were already set (on average, this number corresponds to
17.16%). Although the average obtained here could be used for our estimations given the small
variation over different file types, it is incomplete because we still need to figure out the statistics
for filters with less than fmax features. It is important to highlight that there is no proportion
of the number of features of a filter and the number of bits set. The more features we insert
into the filter, the more collisions are likely to occur. For instance, inserting 100 features have
more changes to have bit collisions than when we insert only ten features. Thus, the remaining
question is: How can we estimate the number of bits set for any filter with any number of
features (< fmax)? In the following, we propose the use of linear regression techniques to make
such estimates.

Estimating the number of bits set in a bloom filter with linear regression techniques

One alternative we found to estimate the number of bits set in a filter given any
number of features inserted on it is by using linear regression techniques. We choose the least
square method to make our prediction, where we provide only the number of features, and the
method returns the number of bits set. The technique requires a lot of pairs of data (number of
features and number of bits set in the filter) to create an equation to predict the value we need.
Since sdhash bloom filters require at least 20 features to be created (see Sec. 6.4), with the
exception of the first filter that supports 16 features or more, we counted the number of bits set
for the last filter of every file on t5-corpus. We had, on average, 28.20 (std. 5.45) pairs of data
(number of features and bits set by them) for each value on the range of 20 to 159 (number of
features normally found on a bloom filter). For bloom filters with exactly 160 features in the
last filter we had 509 files. Given the unbalanced distribution, we randomly selected 28 pairs
from these 509 files to create our statistics and balance the number of pairs for each value.

To apply the least square method, we broke our data set into three parts: set 1 varying
the number of features on the last bloom filter from 20 to 50, set 2 varying from 51 to 100, and
set 3 from 101 to 160. The reason for the division is due to the better results obtained when
compared to a single set with all data together. The results of our prediction using the least
squares method are shown in Figs. 36 - 38. We can see that the estimated continuous line
fits better into the range of the real values in the three scenarios (dashed line) than when we
considered all data set to create our estimator (see Fig. 39).

To estimate the number of bits set in a bloom filter given any number of features
from 20 to 160, we can use Eq. 6.3 with the values provided in Table 33. We recommend to use
such values for computing the theoretical value of ei given bloom filter i.

ei = a+b ·gi (6.3)
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Figure 36 – Linear Regression - Least Squares technique: Using the number of features in the
last bloom filter of set 1 (t5-corpus) to estimate the number of bits set.

Figure 37 – Linear Regression - Least Squares technique: Using the number of features in the
last bloom filter of set 2 (t5-corpus) to estimate the number of bits set.

6.3.3.3 Estimating the number of features in common

After knowing the number of bits set in any bloom filter with gi features (20≤ gi ≤
160), we can estimate the minimum amount of data shared between bloom filters to sdhash

produces score≥ 1 or score≥ 21. By estimating the number of shared features, we can correlate
this number with the number of bytes in common between the objects the filters represent, using
the relation introduced in Sec. 6.3.1. To summarize: For each selected feature inserted into the
bloom filter, there is about β bytes (feature size) of similar data. For this reason, to find out the
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Figure 38 – Linear Regression - Least Squares technique: Using the number of features in the
last bloom filter of set 3 (t5-corpus) to estimate the number of bits set.

Figure 39 – Linear Regression - Least Squares technique: Using the number of features in the
last bloom filter of all t5-corpus to estimate the number of bits set.

number of similar bytes between two objects Fx and Fy, we need to know the number of features
they have in common. We use the information provided in the previous section to estimate the
number of bits set in bloom filters. Note that in practice, this number may vary even for two
filters with the same number of features. Although this behavior is not observed in our estimates,
we highlight that we took into consideration real-world data for our analysis and our results are
close to what we have in practice.

To estimate the number of features in common (G(b fi,b f j)) in bloom filters i and
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Table 33 – Least Square technique - Parameters to estimate the number of bits set on a bloom
filter for a given number of features.

Condition a b

gi < 20 0 0
20≤ gi ≤ 50 6.76 4.59

51≤ gi ≤ 100 29.70 4.16
101≤ gi ≤ 160 81.47 3.65

gi > 160 0 0

j, we can use classical bloom filter analysis, and by manipulating Eq. 2.3, we get the following
expression.

G(b fi,b f j) =

⌈
gi +g j−

ln(−1+ pk.gi + pk.g j +
ei, j
m )

k.ln(p)

⌉
( f eatures) (6.4)

Here, we need to provide ei, j to get the number of features in common; in case we do not have
this number, we can estimate it to get a desired score using Eq. 6.5.

ei, j =
⌈
(
score
100

× (emax−C))+C
⌉
(bits) (6.5)

The parameter emax is given by Eq. 2.5 and C by Eq. 2.7. Here, we need to provide the number
of bits set by each filter (ei) using Eq. 6.3 (parameters are provided in Table 33).

When sdhash compares two objects, it provides a score related to the similarity
shared by them. Having score ≥ 1 means that some similar data was detected by the tool,
but it was not enough for a significant similarity. Roussev, V. (ROUSSEV, 2010) recommends
considering as similar all matches with score≥ 21 due to the high number of false positives got
from smaller scores. Here, we will analyze the minimum amount of similar content (features)
shared by two bloom filters to get the two minimum score values: score≥ 1 (scoremin = 1) and
score≥ 21 (scoremin = 21).

6.3.3.3.1 Comparing two full bloom filters

We start our analysis with the following case: Given two full bloom filters (with fmax

= 160 features), what is the minimum number of bytes (features) they must have in common to
sdhash produce score ≥ 1 and score ≥ 21? Note that each filter maps 10 KiB of data. Using
the equations presented before and data got from our linear regression approach to estimate the
number of bits set in each filter, we got the following results (for sdhash default parameters):

scoremin = 1: Minimum of 56 features, corresponding to ≈ 3584 bytes.

scoremin = 21: Minimum of 80 features, corresponding to ≈ 5120 bytes.

As we can see from our results, 10 KiB objects require about 35% of similar content
to sdhash identify some similarity and 50% to produce a significant score.
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6.3.3.3.2 Comparing full vs. incomplete bloom filters

Here, we are interested in performing a single comparison between a full bloom
filter with an incomplete one (with less than fmax features). Figs. 40 and 41 show some examples
of comparisons where one of the filters was set by a number of features varying from 20 to
160. By analyzing the minimum number of features to get the minimum scores, we needed, in
all cases, about 35% of features in common for having scoremin = 1 and about 50% to have
scoremin = 21.

Figure 40 – Minimum number of features in common per similarity score of some bloom filter
comparisons (full vs. incomplete filters).

6.3.3.3.3 Comparing two incomplete bloom filters

A third case involves comparing incomplete filters. We estimate the minimum num-
ber of features in common between all possible bloom filter comparison combinations, varying
the number of features from 20 to 160. On average, we found that 33.18% (std. 1.13) of features
in common is necessary to produce score≥ 1 (with values varying from 30.40% to 37.50%) and
47.61% (std. 1.30) to get score≥ 21 (with values varying from 44.44% to 53.13%).

6.3.3.3.4 Comparing one bloom filter to many

When sdhash is confronted with a case where object Fx has one bloom filter and
object Fy has many, a comparison of the single filter of Fx is performed with all filters from
Fy; the maximum similarity between all comparisons is chosen and returned as the final score.
The constraints of this scenario are the same ones discussed in the three previous ones; about
33.18% of similarity is required for getting scoremin = 1 and 44.44% for getting scoremin = 21.
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Figure 41 – Minimum number of features in common concerning the total number of features
of a bloom filter to get the minimum similarity required.

The difference here is that the similar content must be located in a single block, mapped in only
one of Fy filters.

6.3.3.3.5 Comparing many to many bloom filters

The last case discussed here is what we usually find in practice: Large files having
many bloom filters each. By assessing the similarity of two objects Fx and Fy having |b fx| and
|b fy| bloom filters, sdhash compares each filter of Fx to each filter of Fy and average results
using the maximum values obtained in each step. In this case, we mostly have comparisons of
full vs. full bloom filters, except for those related to the last filters of each object.

For simplicity, we consider only full bloom filters to perform our analysis, arguing
that: (1) As the file size increases, the impact of the last filter becomes more irrelevant; (2) the
impact of the last filter will interfere only when the similar part is located at the end of one of
the objects; if it is in any other part, that will eliminate the influence of incomplete filters as
long as they are not involved in the similarity.

Two main factors impact the score of sdhash: the objects’ size and the similarity
shared between them. The size plays an important role because of the average performed by
the comparison function. The sum of all maximum scores (from the bloom filter comparisons)
is divided by the number of filters of the smallest object. For this reason, as the object size
increases, the similar content should also increase so the similarity can be detected.
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To estimate the minimum amount of similarity that can be detected by sdhash for
two objects with many bloom filters, we need to know how the similarity is spread over the files.
First, we consider a single block of common content starting at the beginning of the objects;
then, the next sections analyze the remaining cases.

It is important to highlight that, after selecting the maximum values of the bloom fil-
ter set comparison, the average is calculated and, in current sdhash implementation, the round
math function is applied to the result; after average, values > 0.5 will be rounded to 1. In our
analysis, we adopted the same criteria. Besides, we highlight that the average takes into con-
sideration the smaller object size, which gives sdhash the ability to compare extremely large
objects with small ones and be limited to the detection capabilities of the smallest file. Our goal
is to figure out how many bytes (or features) are required to get scoremin = 1 and scoremin = 21
for two objects having many bloom filters. To this end, we create a script to simulate the mi-
nimum amount of similarity between objects as their sizes increase using sdhash equations
presented in Sec. 2.4.5.4.2, along with Eqs. 6.4 and 6.5. Here, we increase their sizes to the
point of having scoremin = 1 and scoremin = 21 and measure the percentage of similarity in
comparison to the smallest object size. We summarize our results in Fig. 42.

Figure 42 – Percentage of similar content between objects with many bloom filters to produce
the minimum similarity scores.

Our results show that, for small objects, a significant amount of similarity is re-
quired. For instance, comparing two objects having one bloom filter each (≈10 KiB of data)
requires at least 35% of similar content to get scoremin = 1 and 50% to get scoremin = 21. In-
creasing the objects’ size to two bloom filters (≈20 KiB of data) caused the percentages to drop
to 18% and 32%. With sizes of around 200 bloom filters (≈1.95 MiB), we only need 0.50%
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and 20.50% to get scoremin = 1 and scoremin = 21, respectively, which we found out to be the
minimum percentage values sdhash can get. Although we might expect to have a value of 1%
for scoremin = 1 and 21% for scoremin = 21, we highlight that the percentages got in our tests
were different due to sdhash being able to detect similar with less content, but being limited to
its comparison function. The 0.5% value obtained for scoremin = 1 is due to the round operation
applied in the comparison function result, which makes the score goes to 1. The same behavior
occurred for scoremin = 21, got from a similarity of 20.5% detected.

The curve for scoremin = 21 has a particular behavior in the graphic with some
irregularities at the beginning, and, as the object size increases, it tends to stabilize at the mini-
mum values (20.50%). The ups and downs behavior is due to the similar part shared between
the objects being detected in a new bloom filter, which demands a large piece of similar con-
tent to produce a score. Remember that at least 56 features in common are required for having
score ≥ 1. One of the reasons for this initial effort for detecting similarity is due to the cutoff
point (C) established by sdhash (see section 2.4.5.4.2); once we achieve the minimum amount
of similar content, the increase in score becomes proportional to the number of overlapping bits.

6.3.3.4 The influence of α on sdhash score

To compute the cutoff point (C) value necessary in the score calculation of two
bloom filters (Eq. 2.8), sdhash uses a α variable to decrease the chances for false positive
matches. One element that is part of the equation is emin, responsible for estimating the mini-
mum number of overlapping bits due to chance of two filters; however, the estimate does not
seen to be enough for decreasing the false positive rate since sdhash increases emin by a factor
of α . According to Roussev, some comparisons between random data (expected to be different
from each other) produced score ≥ 1, indicating similarity where there is not, leading to the
adoption of this extra variable. Roussev argues that the α value was "calibrated experimen-

tally so that the comparison of the digests of random data consistently yields a score of zero".
The default value is set to α = 0.3. In this section, we show the impact of α on similarity and
demonstrate through two general cases of bloom filter comparisons that this variable makes
sdhash sub-optimal when comparing small objects with respect to its detection capabilities.

6.3.3.4.1 Comparing two full bloom filters

We showed in the last section that sdhash requires a minimum number of common
bytes (features) between full bloom filters of 3854 (35%) and 5120 (50%) bytes (corresponding
to 56 and 80 features) to produce score≥ 1 and score≥ 21, respectively. When we remove the
interference of the α variable in the equation, making C = emin, i.e., α = 0, the new values for
the same settings become:

scoremin = 1: Minimum of 3 features, corresponding to ≈ 192 bytes (1.88% of the file size).
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scoremin = 21: Minimum of 40 features, corresponding to ≈ 2560 bytes (25% of the file size).

A significant reduction in the minimum number of similar bytes is observed when
removing the interference of α in the calculus. This way, sdhash becomes more sensitive for
detecting similarity, specially when dealing with small objects.

6.3.3.4.2 Comparing many to many bloom filters

When comparing objects with many bloom filters (large ones), we saw that as the
object size increases, the minimum amount of similar data required by sdhash decreases, until
the point of requiring 0.50% and 20.50% to get scoremin = 1 and scoremin = 21, respectively.
Besides, we also showed that every once in a while, when the similar part is mapped into a new
bloom filter, sdhash fails to detect this new part until we have a large portion of similar content
(about 56 features) mapped into this new filter.

By removing the influence of α from the similarity assessment, we could observe
two benefits: (1) A reduction in the minimum amount of similar content required by sdhash to
detect similarity; (2) a small gap between the minimum amount of similarity detected by large
and small objects. Our results are summarized in Fig. 43, where we show the influence of α

when comparing the minimum percentage of similarity detected by the object size variation.
As demonstrated by our results, we achieve the minimum similarity required faster without the
influence of this variable, i.e., when α = 0. We also can see that α impacts most small objects,
which makes sdhash sub-optimal for this class of objects. However, the downside of removing
the influence of this variable in the score is an increase in false positive matches. As a solution,
we present in Sec. 6.6 a new way to deal with false positives and still have better detection
capabilities than when using α .

6.3.3.5 Border effect on similarity

The similarity of two objects can be found at the beginning, ending or middle of
objects; it can also be distributed in several pieces all over it, in a way that we have blocks
of similar data but also blocks of different data. The border features are those features shared
between objects in which some of their bytes are part of a similar block and the rest belong
to the different part. We highlight that these features are considered as differences when as-
sessing similarity due to their composition having some different bytes, resulting in different
hashes. The question we seek to answer here is: How much does the border features influence
similarity?

6.3.3.5.1 The presence of border features

The number of border features can vary between 0 and β −1, where β is the feature
size. Fig. 44 shows two objects having some bytes in common (at the beginning) and the influ-
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Figure 43 – Impact of the α variable on the similarity assessment when comparing objects
having many bloom filters.

ence of the different parts in the feature extraction process. We emphasize that not all extracted
features are selected to be part of the object digest, as discussed in Sec. 2.4.5.4.1. A feature is
selected only if it has the lowest entropy value in a window of W features at least t times; this
way, at most bW −1/tc border features can be selected. In sdhash current implementation, the
number of border features varies from 0 to b64−1/16c= 3. The value of 0 is got when features
from similar and different parts of the object have lower entropy than the border features. Note
that when the block with similar content is in any position of the object except for its beginning,
we have two borders, and the number of border features can be doubled.

The number of features shared between objects can be computed as follows:

V = E +(2 ·B)+D (6.6)

where V is the total number of features of the two objects, E the number of equal features, D

the number of different features, and B is the number of border features (counted only once).

Let’s consider two objects of the same size sharing P% of bytes in common broken
into n pieces of dissimilar size (but all with significant content to have a few features extracted).
By adapting Eq. 6.6 and providing the number of total features of the two objects and the value
of P, we can estimate the number of equal features using eq. 6.7.

E =

⌊
(V ·P)

100

⌋
− (2 ·B ·n) (6.7)

Given sdhash default parameters, we can have between 0≤ B≤ 3 for each border. The impact
of border features for the particular case where two objects share a single block of common
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Figure 44 – Border features definition

data (n = 1) can be seen in Fig. 45. In this experiment, we considered that sdhash selects a
feature for every W = 64 (corresponding to the values found in Sec. 6.3.1); therefore, only one
border feature is selected by each border. By our results, as the number of the total features in
common (V ) increases, the impact of the border features becomes less relevant in the similarity
assessment compared to the set without the border influence. Since the number of features in
an average object is high (e.g., an 1 MiB object has around 16384 features), we expect that the
border features do not impact most scenarios related to a single block of equal content.

Figure 45 – Influence of border features on similarity for a single equal block case and the
relation with objects of different sizes.
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When similarity is fragmented all over the object, more influence of border features
on similarity is expected. Fig. 46 presents a relation between the number of pieces (n) in which
the similar content is broken into and object size (represented by the number of features). The
optimal scenario is not having border features (B = 0) and similarity not fragmented (n = 1).
For small objects, the similarity is barely detected as we increase n; only when the object size
increases (as the similar content), the detection tends to the optimal case. To conclude: Small ob-
jects are sensitive to fragmented similarity, but as the object and similar content sizes increase,
the impact becomes less relevant.

Figure 46 – Influence of border features on similarity by breaking equal data into n pieces for
50% of similarity.

6.3.3.5.2 Impact of border features on bloom filters

When inserting features into bloom filters, we may have cases where the border
features become part of the filters with similar data, influencing (negatively) the similarity score.
Next, we discuss some scenarios involving the insertion of border features into bloom filters.
In each scenario, we consider full bloom filters and the maximum number of border features
(B = 3). Here, we consider only the effect of one border, which means that either the similar
content is placed at the beginning of objects or the similar content is too large that more than
one bloom filter is necessary to store it.

Case 1: The border features impact only one bloom filter. Here, we have up to 157-159 equal
features between two objects and 1-3 border features inserted in the same filter. We expect
that the only impact will be the decrease of similarity score by a few points due to the
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border features. For instance, comparing two bloom filters having E = 157 and B = 3 will
produce score =97.

Case 2: The border features have no impact on similarity. In this case, two objects under compari-
son have more than one bloom filter. The first filter has 160 equal features, and the second
one has the three border features along with the rest of the features (different ones). In
this case, the first filter will have a maximum score (score = 100), and the border features
will have no impact over similarity.

Case 3: The last case considers a scenario where the border features are split into different bloom
filters. The first filter will have 158-159 equal features plus 1-2 border features. The rest
of the border features will be placed on the second filter. In this case, the first filter’s
border features will decrease the similarity score produced to score = 98 or score = 99.

The impact of the border features depends on the object size, amount of similar
content, and the number of pieces the similar part is broken into. As the similar content size de-
creases, and the number of pieces increases, we have more influence of border features, making
sdhash struggles to detect similarity. However, some factors may attenuate the effects of border
features or cancel it: (1) The feature selection process, for not picking up these features; (2) the
border features position, as they are stored in a different bloom filter from the one having similar
content-related features; and (3) the object and similar content sizes: The larger the object, the
better sdhash performs. Besides, the more similar bytes we have, the less the effect of border
features.

6.3.4 Understanding sdhash score and its limitations

Roussev, V. and Candice, Q. (ROUSSEV; QUATES, 2013) mention that "sdhash

comparison result should not be interpreted as a percentage of common content. Rather, it

should be viewed as a confidence value that indicates how certain the tool is that the two data

objects have non-trivial amounts of commonality.". Besides, they propose a guide to interpret
sdhash results, summarized below:

Strong (21-100) Strong indication of similarity with very few false positive matches.

Marginal (11-20) Similarity depends on the underlying data. For composite file types (pdf,
compound files, etc.) similarity is mostly related to common blocks (see Chapter 5), while
simpler file types (txt and html), may present significant results.

Weak (1-10) Most matches are false positives, except for simpler file types, where score ≥ 5
may present matches with similarity.

Negative (0) No similarity found.
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Looking at the interpretation of the sdhash score, although it seems to be simple (it
considers two objects similar or not), in practice, it is hard to separate and prioritize results; also,
some experts on the field argue about problems in the way it works (BREITINGER; BAIER,
2012c; BREITINGER; BAIER, 2013; RAFF; NICHOLAS, 2018). First, it is common sense to
look at the score and interpret it as a percentage value (since it varies from 0 to 100); second,
the labels are not equally distributed: the first range cover most of the possible values (21-
100) (RAFF; NICHOLAS, 2018); third, sdhash does not distinguish between resemblance and
containment and returns a single value representing both metrics. For the last case, consider the
following scenarios: (1) When comparing two objects of the same size having only a couple
of different bytes, sdhash may produce score = 100 (maximum similarity for resemblance);
(2) when comparing a particular object with a small fragment of it, sdhash also may produce
score= 100 (maximum similarity for containment). Here, sdhash produced the same results for
two different cases. In practice, practitioners have to look for further information (e.g., objects
size) to have a clue about the type of similarity related to the match.

6.3.4.1 sdhash score for single common block scenario

In this section, we seek to understand how sdhash score is influenced by the amount
of similarity of two objects to better explain it and to find a relation (if it exists) between them.
To this end, we performed experiments varying the object size (in number of bloom filters, from
1 to 100 - corresponding to about 10 to 1000 KiB) and amount of similarity (percentage value,
from 5 to 95%) of two objects, and observed how the score behaves. We used sdhash compari-
son formulas (Sec. 2.4.5.4.2) to perform our analysis. Results are summarized in Fig. 47, where
we simulate a scenario of a single block in common inserted at the beginning of objects.

We can see in the results that sdhash score approximates the percentage of content
similarity as the object size increases for this particular scenario. Here, the score, which is very
unstable and constantly changes for small object sizes, becomes closer to the real similarity
value as the object size increases; at about 50 bloom filters (500 KiB of data), the score becomes
more consistent and closer to the real similarity value. Besides, as the percentage of common
data also increases, the score oscillation gets weaker, indicating that the more the similarity
content, the more accurate the sdhash score becomes.

By removing the influence of α variable from the comparison calculus (Sec. 6.3.3.4),
we see in Fig. 48 that sdhash score is very close to the real similarity even for small objects; the
oscillations are less frequent, and for sizes as small as ten bloom filters (about 100 KiB of data),
the scores are almost equal to the real similarity percentage (single common block scenario).

6.3.4.2 sdhash score and multiple common blocks scenario

We saw that for the simplest scenario, where we have a single block in common
between objects, the sdhash score approximates the real similarity value as the object size
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Figure 47 – Impact on the sdhash score for the object size and similarity percentage variation
for a single common block scenario.

Figure 48 – Impact on the sdhash score (without α influence) for object size and similarity
percentage variation for a single common block scenario.

increases (especially when removing α influence); however, how does the score behaves when
similar content is spread all over the object?

Here, we break the similar content in several pieces (n parts) and see the impact on
the similarity score. The break occurs with the following restriction: n≤ |b fx|, which means that
the number of breaks (of the similar part) is equal or smaller than the number of bloom filters
of an object x. We used this restriction so that similar pieces were stored into different filters,
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since storing two pieces of similar data in the same filter may increase similarity. Given the high
number of possibilities for parameters variation, we restricted our experiments to object sizes
of 5, 10, 20, 25, 50, 100, and 500 bloom filters; to similarity percentage of 5, 10, 20, 25, and
50%; and to n having at most the number of filters of the smallest object.

Figs. 49 and 50 show the results for the particular cases where we have 50% and
20% of similar content for the object sizes under consideration. In both scenarios, we can see
that, as n increases, the score tends to drop to its minimum value. For the first case, we know
from Sec 6.3.3.3 that for 50% of similar data, sdhash produces score= 21 for small objects and,
as the object size increases, the score produced becomes closer to the percentage of similarity,
to the point of producing score = 50 for 50% of similar content. In Fig. 50, for 20% of similar
content, the score drops to 0 as n increases since the amount of similar content spread over the
object bloom filters is not enough to produce a significant score (the number of features in each
filter will be less than the minimum amount for score≥ 1). Note that: (1) The smaller the size of
the objects and the similar content, the faster the curve falls, and (2) in all cases, the maximum
score is got for low n, and its value is limited to the similarity percentage.

Figure 49 – Similarity fragmentation and its impact on sdhash score for different object sizes
(50% of similarity content).

We also varied the similarity percentage value for fixed object sizes to observe how
the similar content size is impacted when increasing n. Figs. 51 and 52 show some results. We
can observe that, as the similar content increases, the influence of n decreases; for n limited to
the number of bloom filters in the objects, we have a slower reduction in the score than expected.
For 50% of similarity or more, all n parts (limited to the number of bloom filters) will have at
least the minimum score of strong similarity (≥ 21); lower similarity percentages will work for
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Figure 50 – Similarity fragmentation and its impact on sdhash score for different object sizes
(20% of similarity content).

low n values, and as this value increases, the score tends to zero as there are not enough similar
features.

We can estimate the maximum n to the point of having the maximum similarity
score, using Eq. 6.8.

n =
P · |b fx|

100
(6.8)

Here, P is the percentage of similar content. For instance, given P =10% and |b fx|=20, we see
from figure 52 that n =2; from this point on, the score will only drop.

Comparing figures 51 and 52, we can see a relation between the object size and n.
For instance, the object size considered in Fig. 51 is five times larger than the one in figure 52.
Considering the 5% of similar content case, score = 0 is reached for the object of figure 51
with n =15, while the object of figure 52 reaches score = 0 with n =3 (about five times of
difference). The same relation was observed for other percentages of similarity as well as for
different object sizes.

Given the relation discussed above, we noticed that using similarity content lower
than 35% (minimum value for sdhash detects similarity of two bloom filters, see Sec. 6.3.3.3),
we can estimate the maximum n (nmax) in which we start having score < 1; higher percentage
values for similarity will produce score≥ 1 anyway for every n≤ |b fx|.

Table 34 shows some statistics obtained from our experiments in which we found a
relation to get nmax before score drops to zero. Here, we present the following terms:
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Figure 51 – Similarity fragmentation and its impact on sdhash score for different amounts of
similar content (object size: 100 bloom filters).

R: Division of |b fx| of a given object x by nmax +1 by which we have score <1;

Q: Division of P by R and used universally to estimate nmax.

P R Q

1 0.03 33.33
5 0.15 33.33

10 0.15 34.48
15 0.29 34.88
20 0.43 35.09
25 0.71 35.21
30 0.85 35.29
35 0.99 35.35

Average: 34.62

Table 34 – Statistics for estimating nmax

By using Qavg (average of all Q) from our experiments and having P and |b fx|, we
can estimate nmax to have an idea about the maximum value from which we still have score≥ 1
using Eq. 6.9.

nmax =
P · |b fx|

Qavg
−1 (6.9)

Our results show that, although the sdhash score does not perform well for small
objects, it tends to the real percentage values of similarity as the object size increases. Besides,
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Figure 52 – Similarity fragmentation and its impact on sdhash score for different amounts of
similar content (object size: 20 bloom filters).

the major factor contributing to the unexpected behavior of sdhash when dealing with small
objects is α adoption; by removing its influence, the score approximates to real similarity value
at the cost of an increase in the number of false positive matches (as it will be discussed and
mitigated in Sec. 6.6). When the similarity is spread over many parts of the object, the same
conclusions hold for small n; however, as n increases, the score tends to drop to its minimum
value.

6.4 sdhash source code analysis: Limitations of current imple-

mentation

We analyzed sdhash source code (v.3.42) for a better understanding of its working
process and main functions, such as the ones related to the digest generation and comparison
processes. Besides, a deeper analysis helped us to understand sdhash limitations.

Roussev, V. and Candice, Q. (ROUSSEV; QUATES, 2013) mention that sdhash
only works for objects larger than 512 bytes; indeed, this holds for the current implementa-
tion. However, to compare two digests, sdhash requires that each has at least min_elem_count

features (16 by default)3. Given that we have a feature for every 64 bytes (see Sec. 6.3.1), the
minimum object size required for attending this requirement would be an object with the size
2 GitHub page: <https://github.com/sdhash/sdhash/releases/tag/v3.4> (last accessed: Oct 23, 2019)
3 see sdhash sdbf_core.cc file, function sdb f _max_score.

https://github.com/sdhash/sdhash/releases/tag/v3.4
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of (16 ·64 =) 1024 bytes (on average). We argue that although a digest is produced for smaller
objects, it has no use if we cannot compare it and establish its similarity with others.

Another limitation of sdhash that we found out by inspecting its source code is
the creation of new bloom filters when creating the similarity digest. Looking at the code4,
we discovered that an additional bloom filter (after the first one) is only created if the number
of features that will be inserted into this new filter is at least max_elem/8. Current sdhash
implementation sets max_elem as the maximum number of features inserted into a filter (by
default, 160); this way, the minimum number of features necessary for creating a bloom filter
is 20. This design choice is justified in the source code by a commentary stating that it aims to
reduce false positives. However, we argue that relevant information at the end of an object may
be lost since many features are dropped out when the minimum value is not achieved.

6.5 Evaluation of sdhash for the different forms of similarity

In this section, we present a complementary theoretical evaluation of sdhash and
discuss how this tool would perform on each form of similarity presented before.

6.5.1 Single common block correlation

Given two objects Fx and Fy sharing only a single common piece of data of dx,y

bytes, what is the smallest value of dx,y for which sdhash can reliably correlate the two targets
as similar?

We consider similar any match with score≥ 1. We also analyzed the matches having
the recommended score (score ≥ 21). To find out the minimum dx,y size for the two required
scores, we use the analysis performed in Sec. 6.3.3.3, which shows how sdhash behaves for the
single common block correlation test for different object sizes.

Our results show that the value of dx,y varies according to the objects’ size. In ge-
neral, the common piece percentage (concerning the smallest object size) varies from 0.50% to
37.50% for having score ≥ 1 and from 20.50% to 50% for having score ≥ 21. The significant
decrease in the percentage value was obtained by increasing the object size from 10 KiB to 1.95
MiB, for the latter one having the smallest percentage requirement. The similarity requirements
for larger objects tend to hold the same (minimum of 0.50% and 20.05%).

6.5.2 Fragment detection

Consider an object Fx with s(Fx) bytes and a fragment of it (Fragx) with s(Fragx)

bytes (s(Fx) >> s(Fragx)). Since sdhash considers the smallest object size for computing the
4 see sdhash sdbf_core.cc file, function gen_chunk_sdb f .
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similarity score, we need to know the smallest s(Fragx) for which sdhash still correlates it to
its source (having score≥ 1).

We know from Sec. 6.4 that the current implementation of sdhash requires at least
16 features for creating a valid digest, i.e., one that can be compared to another to assess simi-
larity. A simple conversion of the number of features to bytes gives us the smallest Fragx size.
However, we first need to make some assumptions: (1) there is no change in Fragx bytes in re-
lation to its source Fx; (2) sdhash maps 160 features to every 10 KiB of data (BREITINGER et

al., 2014c), which is a feature for every 64 bytes (on average). By assuming the two aforemen-
tioned points as true, the smallest size of Fragx is (16 ·64 =) 1024 bytes. Due to the limitations
on our formulas to perform sdhash estimations for small objects (see Sec. 6.3.3.2 - Linear Re-
gression), we will adopt as the minimum amount of features the value 20; we argue that doing
so, we have only a small increase of a few bytes (20−16 ·64= 256) in the object size in contrast
to more accurate estimations. This way, the smallest object size will be (20 ·64 =) 1280 bytes.

Having a maximum score when comparing the fragment to its source requires
that all similar features shared between the objects be stored on a single bloom filter in their
corresponding bloom filter sets (or in subsequent ones in case the number of similar features
exceeds the maximum allowed by the filters). However, such a scenario is unlikely to occur
unless the fragment was extracted from the beginning or end of the source object; otherwise,
the features will be distributed between two or more filters. In the worst case, half of the similar
features are placed in one filter of Fx and the other half in another. In such a case, sdhash still
produces some similarity, but with a reduced score; using equations presented in Sec. 6.3.3.3,
we come up with a score for such a scenario of score = 21, which is still an indication of strong
similarity.

Due to the file type and sdhash feature selection process, we can not show that the
limits presented here will always stand in any condition. The score may have a small reduction
due to the border features (Sec. 6.3.3.5). However, we believe our assumptions will stand most
of the time. Besides, it gives us a general idea of sdhash limitations and what to expect from it
when assessing similarity.

6.5.3 Alignment robustness

Given two equal objects Fx and Fy, how many extra bytes of any type have to be
inserted at the beginning of Fy to get a score = 0 on sdhash? To answer this question, we need
to consider three scenarios involving Fx size (s(Fx)):

• s(Fx)< 10 KiB (at most one full bloom filter)

• s(Fx) = 10 KiB (exactly one full bloom filter)

• s(Fx)> 10 KiB (object having more than one bloom filter)
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In the first scenario, we started with a minimum object size of s(Fx) = 1024 bytes
and added bytes (to the limit of 10239 bytes) to verify the minimum number of insertions before
sdhash reduces the score to zero. Using equations presented in Sec. 6.3.3.3, we estimated that
adding a sequence of 2240 bytes at the beginning of Fy (having no similarity with Fx) is the
minimum value to produce a zero score (218.75% of the smallest object size).

For the second scenario, when Fx size is about 10 KiB of data (a full bloom filter),
sdhash will always produce score≥ 1. Since the original object (Fx) has only one bloom filter,
adding bytes at the beginning of a copy of it will at most reduce the score, but never turns it
to zero. As we add bytes to Fy, we increase its size, and, at some point, a new bloom filter is
created to store all of its exceeding features. For the alignment robustness test, a similar part
will always be located on the last filters and will match the single filter of Fx. Since sdhash

requires at least 20 features to create a new filter after the first one (Sec. 6.4), while the bytes
addition do not produce this minimum number of features, the similarity is reduced because
the last bytes of Fy will be ignored. Specifically, from the 10240 bytes of the original object,
about (10240− 20 ∗ 64 =) 8960 will still be similar to the source object before the next filter
is created. In this condition, where we have about 140 similar features on a filter (worst case
scenario), sdhash produces a score = 78. When a new bloom filter is created, all bytes set in
this new filter will be the same as those of the Fx filter, producing a score of 100 (which is also
the final score since Fx has only a single filter).

For larger objects, considered in the third scenario, the worst case is when the inser-
tion of bytes shifts 80 features from one bloom filter (b fi) to another (b fi+1). Note that shifting
more features will make b fi+1 the most similar to the original filters. In such a case, consider
that Fx has three bloom filters. When we add bytes to Fy so that about 80 different features are
increased on it, the bloom filters comparison depicted in Fig. 53 is performed.

 211

bfx,2bfx,1 bfx,3
Fx ...1101110101001 111010 ...1110001000011 010001 ...0000100111100 011000

 211 211
||||

 211

bfy,2bfy,1 bfy,3
...1101110101001 111010 ...1110001000011 010001 ...0000100111100 011000

 211 211
||||Fy  211

bfy,4
...0000100111100 011000||

21
21 21 100

21 21

Figure 53 – Bloom filter matching in the alignment test.

We highlight that although the second object has |b fy| = 4, the last filter has only
80 features mapped into it (since we inserted 80 newer and different features at the beginning
of Fy, shifting all other ones). In the figure, we present only the bloom filter comparisons with
a meaningful comparison result (≥ 1). We take into consideration the maximum value of each
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bloom filter comparison (all-against-all fashion) for computing the final similarity score of both
objects. In this example, the maximum values are the following ones:

• (b fx,1 vs. b fy,1) =21 or (b fx,1 vs. b fy.2) =21

• (b fx,2 vs. b fy,2) =21 or (b fx.2 vs. b fy,3) =21

• (b fx,3 vs. b fy,3) =21 or (b fx,3 vs. b fy,4) =100

By averaging results considering |b fx| of the smallest object, we have score = 47.33. We argue
that this value may change due to the border features, but we expect only a slight variation.

Our assumption for the third sceario can be corroborated by the FRASH framework
test (BREITINGER et al., 2013) results, where the authors found similar values as the one we
got theoretically for the same test.

The sdhash tool worked perfectly (for object sizes larger than 10 KiB) in the align-
ment test. Even for the first scenario, where sdhash have limitations when dealing with small
object sizes, it had good results, allowing the similarity detection even after a significant amount
of bytes being inserted at the beginning of the object (about 218% of its original size).

6.5.4 Random noise resistance

Suppose that we have two identical objects Fx and Fy. What is the minimum number
of changes one has to perform on Fy (in a random way) to get a non-match using sdhash?

The three basic manipulations that can be performed on objects are addition, re-
moval, or modification of bytes. These three kinds of manipulations have slight differences
with respect to the impact in the feature extraction and selection processes, as explained below.
Remember that β is the feature size (bytes), W the feature selection window size, and features
are hashed before inserted into bloom filters, so changing one of its bytes, will change its hash
completely.

Modification Changing one byte to another alters β features in the feature extraction process.

Addition The addition of a new byte on an object creates a new feature and changes another
l features in the extraction process, where l can be obtained from Eq. 6.10. It may also
change the bloom filter alignment.

Removal The removal of an object byte eliminates one feature and changes another l features
in the extraction in the feature extraction process, where l can be obtained from Eq. 6.10.
It may also change the bloom filter alignment.
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l =

F(o f f set)
x i f (F(o f f set)

x < β ) OR (s(Fx)−F(o f f set)
x < β )

β −1 otherwise
(6.10)

where F(o f f set)
x is the position of file x where the byte was manipulated (starting in zero), and

s(F) being the object size (bytes).

When changing objects, such as a text file, users tend to perform the three afore-
mentioned manipulations. For this reason and simplicity, we will consider that any change can
be performed, and all of them will have the same effect on the digest creation: A change of β

features. We argue that, although they have different effects and some of them may increase/de-
crease object size, on average, we expect that adding and removing characters produce, in the
end, an object with similar size to its original value (one operation will add one new byte while
the other remove one byte).

The sdhash tool selects a feature to compose the object digest for every 64 bytes
on average (Sec. 6.3.1). With this consideration in mind and that β = 64 on current sdhash
implementation, we expect that each change on object bytes (addition, removal, or modification)
alters β extracted features and at least one of these features be selected to compose the object
digest (at most bβ/tc=3 features can be selected). Therefore, for every single byte changed on
Fy, there will be one less feature in common when comparing Fx to Fy. Here, we are considering
the worst case scenario, where the changed bytes are spaced by β bytes; changing, for example,
two consecutive bytes will have a minimum impact on the feature extraction and selection
processes, since only β +1 features would change. We use equations from Sec. 6.3.3.3 to make
our estimations. Table 35 shows our results on the random noise resistance test for some object
sizes.

Object size # random changes Percentage (%)
(bytes) of object size

1280 15 1.17
4096 44 1.07
4480 48 1.07
5120 55 1.07
5760 61 1.06
7680 81 1.05
9600 100 1.04

10240 104 1.02
20480 208 1.02

204800 2089 1.02
358400 3655 1.02
768000 7832 1.02
1048576 10731 1.02

Table 35 – Estimating the number of random changes supported by sdhash to maintain the
similarity indication.



Chapter 6. Mitigating sdhash limitations with Jaccard similarity 156

Our results show that more than 1.02% of changes (related to object size) are ne-
cessary to get a non-match between identical objects with sdhash. The results displayed here
are corroborated by empirical tests performed by Breitinger, F. et al., who show that although
sdhash deals well with random noise of up to 1.0% of object size, it struggles with noises of
2.0% or more, with no similarity detected (BREITINGER et al., 2014a). Our theoretical re-
sults are close to the literature but presented lower values since we considered the worst case
scenario: The bytes changed are separated so that there is no intersection between their feature
sets.

6.6 Improving the similarity comparison function of sdhash by

using Jaccard similarity

Given sdhash limitations discussed along this chapter, we propose here a new ap-
proach for computing the similarity score which mitigates current constraints. Our goal is to
produce a comparison result that is: (1) Easier to interpret (a percentage value that represents
the real similarity) and (2) capable of distinguishing the kind of similarity detected (containment
or resemblance).

To achieve our goals, we will: (1) Use Jaccard similarity as a new form of estima-
ting similarity between bloom filters; (2) produce two scores related to the kind of similarity
detected; (3) show that, by removing the influence of α from the similarity computation, the
score becomes closer to the real similarity (see Sec. 6.3.3.4) and (4) show other practices that
can be employed to prevent the increase of false positive matches.

To accomplish our goals and show the feasibility of our proposal, we modified
sdhash original implementation and replaced Eqs. 2.8 and 2.7 by a new approach, where we es-
timate the number of features in common between two filters (using Eq. 6.4) and then compute
the Jaccard similarity, as defined next.

6.6.1 Jaccard similarity

Given two sets A and B, we can establish their Jaccard similarity (i.e., number of
elements in common) by using one of the following equations:

Jaccard resemblance (BRODER, 1997):

Jr(A,B) =
|A∩B|
|A∪B|

(6.11)

Jaccard containment (AGRAWAL et al., 2010):

Jc(A,B) =
|A∩B|
|A|

(6.12)
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where | · | denotes the cardinality of a set. If A is a subset of B, then |B| ≥ |A|. The Jc(A,B)

definition considers that the set A is the smaller one.

The new sdhash version that computes the Jaccard similarity is called J-sdhash5.
The new tool was developed from sdhash source code; it computes resemblance and contain-
ment similarity, as explained below.

Consider two digests SDx and SDy having u = |b fx| and v = |b fy| bloom filters
each. The basic idea of our similarity measure is to estimate the number of features in common
between the bloom filters sets of both digests and apply Jaccard equations to come up with a
similarity score. More specifically, we estimate the number of features in common G(b fi,b f j)

(Eq. 6.4) for the first bloom filter of SDx with all other filters of SDy and select the maximum
value; next, we proceed to the second bloom filter of SDx and perform the same process with all
other filters of SDy; after comparing all filters from one digest to all of the other, we sum up all
maximum values to get gcommon as described in Eq. 6.13. Finally, we apply Eqs. 6.14 and 6.15
(based on the definition of Jaccard similarity) to compute the resemblance and containment
scores. We also need to provide the total number of features mapped in each digest (|Fx| and
|Fy|).

gcommon(SDx,SDy) =
u

∑
i=1

max1≤ j≤v(G(b fx,i , b fy, j)) (6.13)

Jr(SDx,SDy) = 100 · gcommon

|Fx|+ |Fy|−gcommon
(6.14)

Jc(SDx,SDy) = 100 · gcommon

min(|Fx|, |Fy|)
(6.15)

Here, min(·, ·) returns the size of the smallest set.

Note that Jr and Jc scores are decimal values varying from 0.00 to 100.00.

6.6.2 Evaluation

The adoption of the Jaccard as a similarity measure makes the interpretation of
the score easier by practitioners as well as produces results closer to the real similarity found
on objects. The first hypothesis is corroborated by the fact that the Jaccard can behave as a
percentage value, which is easily understood and a well-established metric; besides, it does
not suffer from the object size variation as the sdhash score does. The second hypothesis is
demonstrated next, where, for different variations on the object size and type of similarity, we
show how J-sdhash behaves and how it is closer to the real similarity value. In the following,
we introduce the metrics used to evaluate our tool and then show results.
5 Source code is available at our GitHub page: <https://github.com/regras/J-sdhash>

https://github.com/regras/J-sdhash
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6.6.2.1 Metrics used for evaluation

On chapter 5, we presented and made use of two well-known metrics of the Infor-
mation Retrieval field: recall and precision. In this section, we adopt the same metrics and, since
recall and precision only provide a binary answer considering whether or not a match is similar,
we complement our analysis with another metric that considers the quality of the score instead.
Here, we propose a new metric (M) that considers how the score of AM tools are close to the
real similarity shared between objects. Eq. 6.16 defines this metric.

M = |score− sim| (6.16)

where score is the AM tool score and sim the known similarity of a match (percentage of bytes
that are the same). The metric M measures how distant the score reported by the AM tool is from
the real similarity; the shortest the distance, the better. Using this equation, we can measure the
quality of the score of each tool, analyzing how far from reality the tools’ comparison results
are. Note that M ranges from 0 (perfect value) to 100 (worst case).

To have a better idea of a tool’s performance under M, we can use Eq. 6.17, which
is basically an average of M for several comparisons.

di f f =
1
q
·

q

∑
i=1

Mi (6.17)

where q is the number of comparisons performed in the data set with score≥ 1.

Since metric M requires the knowledge of the ground truth of the data set used
for evaluation (the real number of bytes similar among all objects), we use here a synthetic
data set (Sec. 6.2.3), where the exact percentage of similarity among the objects is known (and
controlled). Next, we present the evaluation of sdhash and J-sdhash under the single common
block and random noise resistance tests, varying the amount of similarity on objects, their sizes,
and position where the similar content is placed.

6.6.2.2 Tests, setup and application

The tests performed in this chapter used a machine running Elementary OS 0.4.1
Loki 64-bit (built on Ubuntu 16.04.2 LTS), with an i7-5500U CPU @2.40 GHz processor, 8 GB
of memory, 1 TB SATA 3GB/s hard disk drive (5,400 rpm), and NVIDIA GeForce 920M. The
J-sdhash was implemented by modifying the sdhash source code (written in C++ language)
in only some specific parts related to the digest comparison function. The developed tool (piece
of code changed) and all scripts used to create the synthetic data set used for the evaluation can
be found in GitHub6.
6 GitHub page: <https://github.com/regras/J-sdhash>

https://github.com/regras/J-sdhash
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6.6.2.3 Results

We used sdhash and J-sdhash to create and compare digests of our synthetic data
set (Sec. 6.2.3) and then we evaluate both tools using the metrics presented previously: Recall,
precision, and the M metric. Results are presented and discussed in this section. We highlight
that although J-sdhash produces two scores for each object (resemblance and containment),
the evaluation and comparisons performed here will only take into consideration the contain-
ment one. We argue that containment measure can better express the similarity of objects with
the same or different sizes; furthermore, we expect the same results for resemblance since we
estimate both in the same way. Besides, both metrics have different purposes and consider si-
milarity in different ways; for instance, two objects having |Fx|= |Fy|=100 features and 50% of
similarity, will have a containment score of 50%; for resemblance, the score will be of 33.33%.
Since sdhash uses the size of the smallest object, we believe it is closer to containment and
hence this is the metric used for comparisons here.

6.6.2.3.1 sdhash vs. J-sdhash with no α influence

The first comparison performed considered the sdhash comparison function in
its pure form, with no influence of the α variable on the score computation; this means that
C = emin. We have shown in the previous sections that the addition of α makes the score be-
haves inconsistently concerning the percentage of real similarity shared between small objects.
We removed this variable from the calculation of the sdhash score and compared both tools
(containment score). The comparison here is limited to the synthetic data set in the single com-
mon block scenario, where the similar piece is placed at the beginning or middle of objects.
Results are presented in Table 36 for precision, recall, and di f f (average of M, Eq. 6.17).

Metric Sim. at beginning Sim. at the middle
sdhash J-sdhash sdhash J-sdhash

Recall 97.73% 97.73% 97.73% 97.73%
Precision 1.16% 1.16% 1.16% 1.15%

diff (all matches) 6.42 7.81 6.66 8.10
diff (only true matches) 3.32 4.26 6.18 6.71

Table 36 – Comparison of sdhash (with no α influence) and J-sdhash. Analysis of the number
of matches and quality of the score for the synthetic data set (44 similar matches).

We can see by our results that sdhash performed better than J-sdhash when we
removed α from the similarity score calculation. The reason for sdhash overcoming the pro-
posed tool is due to the way the score is produced. By removing α from consideration, sdhash
computed the score based on the proportion of overlapping bits set on the bloom filters un-
der comparison in relation to emin (Eq. 2.6) and emax (Eq. 2.5). On the other hand, J-sdhash
performed an estimate of the number of features in common between the filters based on the
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number of overlapping bits, producing an approximation of the real value. Since the result is
based on probabilities, there will be a small difference between the real and estimated values in
some cases, causing J-sdhash to perform worst.

Our results also show that both tools produced small values for di f f (considering
only similar objects); besides, the tools found almost all matches; only a single match between
two 10 KiB objects sharing 1% of similarity (only 102 bytes) was missing. Even though we
removed α , we still need 192 bytes of equal bytes between objects so that sdhash can produce
score ≥ 1 (see Sec. 6.3.3.4). The down side of both tools was the poor results for precision,
which was expected due to the removal of α from sdhash, as noted by Roussev, V. (ROUSSEV,
2010), and a similar mechanism for dealing with false positives to J-sdhash.

6.6.2.3.2 sdhash vs. J-sdhash with α influence

In this scenario, we use the original version of sdhash. We also adapted the α

parameter as a mechanism to reduce false positives in J-sdhash, where the tool ignores matches
of two bloom filters with less than C (Eq. 2.7) bits in common. By using α , we had a better
performance, especially for J-sdhash. Table 37 summarizes the results for the synthetic data
set (single common block scenario).

Metric Sim. at beginning Sim. at the middle
sdhash J-sdhash sdhash J-sdhash

Recall 88.64% 88.64% 88.64% 90.91%
Precision 100.0% 100.0% 100.0% 100.0%

diff (all matches) 4.16 2.17 8.43 6.71
diff (only true matches) 4.16 2.17 8.43 6.71

Table 37 – Comparison of sdhash and J-sdhash considering α in the score computation of
both tools. Analysis of the number of matches and quality of the score for the syn-
thetic data set (44 similar matches).

The di f f metric for the whole set was about 48% smaller for J-sdhash than
sdhash in the scenario having the similarity placed at the beginning of objects and 20% smaller
considering the similarity in the middle. Besides, we got maximum precision for both tools, al-
though recall decreased a little; we missed five matches involving the 10 KiB object with small
similarity percentages (30, 20, 10, 5, and 1%) in most scenarios, except for J-sdhash that
found the 30% match (similarity placed at the middle). Both tools perform better in the case
of similarity at the beginning because of the impact of border features. In the first scenario, we
have the influence of only one border in comparison to the two borders of the second scenario,
which makes detection harder.

As we can see, J-sdhash had a better performance than sdhash when we removed
false positives by increasing the minimum number of overlapping bits between two filters (use
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of α). Such an approach is required when comparing many objects due to the huge number
of false positives, which decreases precision to levels not allowed in practice. Given the same
conditions as sdhash, we showed that J-sdhash performed better.

We highlight that using the default cutoff point C set to 0.3 requires at least 56
features in common (about 35% of the total number of features inserted in a filter) in two bloom
filters for score ≥ 1. We showed along this work that using α is inconsistent with small object
sizes, and it is not straightforward to change the default value and understand its impact. Given
the proposed method to compute similarity and to help practitioners to control the amount of
similar content two objects must share to produce a match, we present below a different form
of filtering false positives more adequate to J-sdhash.

6.6.2.3.3 Calibrating J-sdhash to remove false positives

Given that many false positive matches occur when using J-sdhash without a
mechanism like α , we need to establish a method for filtering the most relevant results. Here,
we propose a technique to help to filtering results that is easier to understand and modify by
practitioners, which will be able to adapt the tool according to the investigation needs.

We propose using a predefined percentage of features in common necessary to con-
sider two bloom filters similar. To this end, the practitioner must define γ , the minimal per-
centage of features in common to J-sdhash consider two filters as similar. More specifically,
we convert γ to number of features and apply Eq. 2.3 to estimate the corresponding number
of bits set; two bloom filters must have at least the estimated amount of bits set to one in their
intersection for having a valid match; otherwise, we consider them as different.

Finding the best γ depends on the purpose of the investigation and the minimum
amount of content a practitioner is interested in. Note that using low values for γ may result
in many false positives, while high values filter out most unwanted matches (along with some
similar cases having small similarities). Tables 38 and 39 show the same parameters as before
for some γ settings for the cases with a single common block placed at the beginning and middle
of objects, respectively. The use of α has approximately the same impact as adopting γ=35%.

Metric sdhash J-sdhash
(γ=35%) γ=30% γ=20% γ=15% γ=10%

Recall 89.0% 90.91 93.18% 93.18% 95.45%
Precision 100.0% 100.00 36.94% 10.87% 1.93%

diff (all matches) 4.16 1.55 1.35 0.86 1.65
diff (only true matches) 4.16 1.55 1.19 1.20 1.31

Table 38 – J-sdhash settings varying the minimal percentage of features in common for simi-
larity in the beginning of objects (44 similar matches).
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Metric sdhash J-sdhash
(γ=35%) γ=30% γ=20% γ=15% γ=10%

Recall 88.64% 93.18% 93.18% 95.45% 97.73
Precision 100.0% 100.00% 22.04% 8.57% 1.86

diff (all matches) 8.43 6.50 1.54 0.78 2.45
diff (only true matches) 8.43 6.50 6.46 6.45 6.36

Table 39 – J-sdhash settings varying the minimal percentage of features in common for simi-
larity in the middle of objects (44 similar matches).

From these results, we can see that as we decrease γ for J-sdhash, the better the
recall but the worst the precision. Requiring fewer features in common between filters allows
us to find matches with a small content in common, which was reflected in an increase in recall
when decreasing γ from 30% to 10%. However, by reducing γ , we got poor results for precision
due to many matches with an insignificant amount of similarity, such as 0.09%, for example;
we believe such values have no use and could be excluded from consideration.

All versions of J-sdhash presented better results than sdhash concerning the qual-
ity of the score; the di f f value was smaller for the cases considering similarity at beginning and
middle: For γ=30%, that presented the best relation recall and precision, we had a reduction of
62.74% and 22.89% in di f f in comparison to sdhash for the same value of precision; J-sdhash
had a better recall in all presented cases.

6.6.2.3.4 Evaluating J-sdhash for other scenarios

Two more scenarios are presented here, comparing sdhash to J-sdhash regarding
the quality of the score. The first one is for the same single common block presented before,
with the difference that the similar block is placed at the end of the objects. Table 40 presents
the results, where the same behavior of the two previous scenarios is observed: as we increase γ ,
the precision gets better, but recall gets slighted worst. The γ=30 setting has the same precision
and recall as sdhash, with a significant reduction of 43.35% on the average of the M metric.
Other settings, although recall and di f f were better, had poor results of precision.

Another scenario is presented in Table 41, where we compare a synthetic data set
under the random noise resistance test. In this new form of similarity, a given object is duplicated
and its new version is randomly modified (with the change of r% bytes); then, the original and
modified objects are compared under the AM tools.

The data set used for this experiment is described in Sec. 6.2.3. For each object of
this set, we created 11 new versions of it and compared only the given object to its modified
versions so we still have control of the level of similarity shared between the objects; comparing
all objects in an all-against-all manner would produce many additional matches since all 11
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modified versions have bytes in common among themselves on different levels that we did not
know in advance. In the end, we had 2560 similar matches with no false positive.

The results for the random noise resistance test show that J-sdhash had a better
performance than sdhash for both recall and the M average for all of its settings. As we decrease
γ , the better the recall, and the closer the score gets to the real known similarity. For γ=30%, we
had ≈ 38% reduction in the distance between score and real similarity. For other settings, the
reductions achieved ≈ 40%. Again, J-sdhash was superior in all aspects considered.

Metric sdhash J-sdhash
γ=35% γ=30% γ=20% γ=15% γ=10%

Recall 90.91% 90.91% 93.18% 93.18% 93.18
Precision 100.0% 100.0% 27.52% 7.79% 1.78

diff (all matches) 13.34 7.29 3.23 1.13 1.92
diff (only true matches) 13.34 7.29 6.92 6.90 6.52

Table 40 – J-sdhash settings varying the minimal percentage of features in common for simi-
larity it the end of objects (44 similar matches).

Metric sdhash J-sdhash
γ=35% γ=30% γ=20% γ=15% γ=10%

Recall 99.65% 99.69% 99.88% 99.96% 100.00%
diff (similar matches) 30.00 18.67 18.04 20.35 17.91

Table 41 – J-sdhash settings varying the minimal percentage of features in common for the
random noise resistance test (2560 similar matches not taking into consideration
false positive results: Precision = 100%).

For the experiments performed here with some J-sdhash settings, where we varied
the γ parameter, we had the best recall and precision relation for γ = 30%, which is the value
that we suggest for being used on digital forensic investigations. However, such value can be
easily changed and adapted to work according to the investigation’s needs.

6.7 Discussion

Along this chapter, we presented a study of several aspects of sdhash and reached
some conclusions. In this section, we focus on providing answers to our research questions
presented in Sec. 6.2.1.

Our work focused on a theoretical analysis of the sdhash tool and towards solu-
tions to improve it. By understanding the inner processes of sdhash, we manage to estimate
the minimum amount of similarity it can detect, as shown in Sec. 6.3.3.3. With such an analy-
sis, we answer RQ.1 "What is the minimum amount of similarity that sdhash can detect?" We
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also showed the different scenarios in which the tool works and the minimal conditions for its
operation, where the object size plays an important rule (RQ.2 "What to expect from sdhash

when assessing similarity? In which cases/scenarios it will work?"). We showed that for small
objects, sdhash tends to produce score values different from the real similarity found in ob-
jects. Besides, such objects require many similar bytes to produce valid scores, while larger
objects require lesser (in relation to a percentage of the object size); about 35% of similar data
is required for small objects while only 0.50% is needed for larger ones to produce a score ≥ 1.

In Sec. 6.3.3.4, we answered RQ.3 "What is the impact of the α variable (and its

default value) on the similarity assessment?" by showing the impacts of the α parameter (with
its default value) on the similarity assessment. It is one of the main causes of the inconsistency
found between the similarity score and the real similarity values of small objects.

Sec. 6.6 focused on improving sdhash by changing its comparison function to the
Jaccard Similarity. We say yes to RQ.4 "Can we improve the similarity assessment process of

sdhash to make it easier to understand and accurate?" by showing how J-sdhash presents
an easier to interpret, more adaptable, and accurate similarity value (based on the difference
between a score and real similarity).

6.8 Conclusions

In this chapter, we presented a theoretical analysis of one of the most popular appro-
ximate matching tools, sdhash. In detail, we showed the internal process of creating and com-
paring digests with sdhash, a deep analysis of its detection capabilities, and limitations. We
also proposed a new version of sdhash, where we replaced its comparison function for the
Jaccard similarity. The new application, called J-sdhash, has a more easy to interpret score,
can be adjusted to work in different scenarios, and produces results closer to the real similarity
found in objects. Given all details provided here about sdhash performance on the detection of
similarity and with the newly developed version of it, we hope that practitioners can perform a
similarity search in digital forensic investigations more efficiently according to their needs.
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7 New applications for Approximate
Matching functions

7.1 Introduction

In this chapter, we present two new applications for AM. We start by providing an
approach for fast file identification on forensics investigations, using sampling techniques; then,
we move to the fingerprint realm and propose a new strategy to perform fingerprint identification
in large data sets efficiently. We finish this chapter by presenting conclusions and possible new
applications for AM as future work.

7.2 Fast file identification with AM

A new application for AM is fast file identification using sampling techniques to
reduce the amount of data analyzed in an investigation. Instead of examining all objects from a
seized media, we extract random samples of it to make a statement about the entire population.
We aim to implement the same idea of sampling discussed in Garfinkel’s work (GARFINKEL
et al., 2010) but using AM instead of block hashes to increase the effectiveness of the search
for shreds of evidence. We also use a sector level approach in order to detect even small parts
of the target data. This way, we expect to reduce the amount of time to pursue a triage process
and to increase the accuracy of the search, where shreds of evidence with small changes will
not confuse the digital forensic practitioner on an investigation.

7.2.1 Approximate Matching and Digital Forensics

AM tools have great potential to be used in digital forensic investigations to identify
similarity and embedded objects. However, besides all advantages and flexibility achieved with
AM, its high cost when compared to cryptographic hash functions is a major problem. For
example, one of the most known and used tools of AM is sdhash. For a certain 1 MiB object,
we have about 16.384 features produced by sdhash; as each feature needs to be hashed before
inserted in the bloom filter, a total of 16.384 hashes need to be performed (for more details about
sdhash working process, see Chapter 2). In this case, this tool will be at least 16.384 times more
expensive than the traditional SHA-1 hash function used in such context. As the object size
grows, so the number of hashes and the costs (in time) of investigations. This example shows
how sdhash can be expensive, although it presents desirable detection capabilities; therefore,
ways for improving somehow its efficiency are necessary.
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Another problem with sdhash is the size of the similarity representation. Hash
functions produce fixed-size digests that are independent of object size. On the other hand,
sdhash outputs a digest that varies between 2.6% (ROUSSEV, 2010) to 3.3% (BREITINGER;
BAIER, 2013) of object size. Therefore, the object size is another problem in the use of such a
tool, as it can be a bottleneck in the triage process. Given the constraints discussed so far, we
propose a new way to deal with these problems by using statistical methods, as presented in the
next section.

7.2.2 Sampling in digital forensics

To reduce the time taken for an examiner to classify a seized media as worth or not
for a further and more in-depth analysis, we could reduce the amount of data processed. The task
can be done following the ideas presented by Garfinkel et al. (GARFINKEL et al., 2010), where
the authors show how to adapt the classical "Urn problem without replacement" in the forensic
context. They say that taking enough random samples from a set of objects, there is a good
chance that these samples represent the entire data set satisfactorily. The amount of samples
n required can be obtained from the following equation, which calculates the probability of
missing one of the objects of interest (p).

p =
n

∏
i=1

((N− (i−1))−M)

(N− (i−1))
(7.1)

Here, N represents the total number of objects in the set, M the number of targets (objects of
interest), and n the number of objects required to be sampled. The value of p is set by the
examiner and usually corresponds to less than 1%. We will use the same idea combined with
AM to reduce the time for triage in investigations and yet have an efficient method for detecting
objects that are the same/similar from a reference object. Our goal is to verify whether a media
contains at least one object from a database of interest objects. If so, we can take this media for
further analysis.

In the calculus, the variable N is related to the seized media size. We will work at
the disk sector level; for this reason, N will be the number of media sectors. For determining
the M value, also in sectors, we can use different approaches. The first one considers the case
where we want to find a particular file, which is just using its size (in sectors) as the M value.
Another scenario consists of figuring out whether a seized drive contains any file of a database
or not. In such a case, we need to adopt the "Urn Problem" in this context. Since we do not
know whether the media contains evidence or not, we have to consider that at least one file of a
particular size will be present in the media in order to comply with one of the basic assumptions
of the problem: The presence of an object inside the "urn", or in our case, the media. Then, we
convert the chosen file size to sectors and use it as M (estimated value). Next, we calculate the
formula using M to obtain n for a chosen probability rate. This means that we need to take n

random samples from the media, and with probability 1− p, we will find files with the chosen
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size or larger (we can adjust this value as needed, but the n value will change). We highlight that
the practitioner can control the M value according to the investigation, using an average file size
from the database or a common size for the type of searched files for that particular scenario.
Therefore, prior knowledge about the search can potentially help in determining the M value.

Using the Urn Problem equation and controlling its error rate, practitioners can look
for objects using random samples with a high probability of success. For example, considering
a 2TB seized disk (which contains approximately 500 million 4 KB sectors) and that we want
to find a 100 MB file (25,000 sectors) on it. Using the Eq. 7.1 with N = 500,000,000, M =
25,000, and fixing a success rate of 99%, we need to take around 92,500 random samples from
the hard disk drive in order to find at least one of those 25,000 sectors. If we see one such sector
of interest, we can presume that the disk may contain the 100 MB file, and we can examine it
more carefully.

7.2.3 Using sampling to reduce sdhash cost

To minimize the time to analyze a large volume of data, we propose an approach
to combine the use of sdhash tool with sampling techniques. We will also work with object
fragments (disk sectors) instead of whole objects since we want to encompass scenarios where
the file system is corrupted, and no metadata about its structure is available. Besides, taking
sectors directly from a hard drive gives us the possibility of finding files that were deleted, but
whose fragments were not yet overwritten.

However, using sampling with object fragments can also be costly; the number of
digests and comparisons between the data sets increases as their sizes grow, even though we use
samples. With this in mind, we propose the use of clusters to mitigate such problems.

7.2.3.1 Clustering approach

We propose the use of clusters to reduce sdhash cost. We take a determined number
of sectors from a seized media under analysis and gather them in a single object, which will have
the similarity digest generated and used for comparisons. The fragments can (and most of the
time will) be from different objects, and yet the sdhash tool will be able to identify similarity
due to its characteristics.

Our objective is to figure out whether a seized media contains objects of interest
based on a comparison to a database, in the shortest possible time. To this end, we randomly
sample sectors from the disk, gather them into clusters of j sectors and generate their digests
with sdhash. Then, we compare these digests to a database to find interest objects in common.

One question that stands is how to take the samples. We propose two different ways
to perform this operation: diffuse or contiguous. In the first one (Fig. 54), we select objects
(sectors) randomly around the seized media and group them into clusters, which will have



Chapter 7. New applications for Approximate Matching functions 168

their digest created and compared to a database of interest objects. The second method con-
sists in taking contiguous fragments around some randomly chosen sectors to build the clusters
(Fig. 55). It is important to highlight that for fragmented disks, both methods seem to work fine,
while for a defragmented one, the second method will not get fragments from many different
files and will break the assumption of a random selection of objects partially. In this work, we
will only use the diffuse mode for sampling. The other method will be covered in future studies.

Figure 54 – Diffuse method of selecting
sectors for a cluster.

Figure 55 – Contiguous method for clus-
tering sectors.

7.2.3.2 Experiments

We conducted experiments to validate our ideas using sdhash and sampling. To
this end, we simulated specific scenarios to measure the efficiency of this approach in each one
in order to find evidence in a triage process. Our goal is to find at least one fragment from a
database of interest objects in the seized media being analyzed. If the search is successful, this
media will be selected for further and more in-depth analysis.

We first compared our approach of using similarity digests and sampling to the
common one where a similarity representation is generated for every object in seized media.
Then, we did experiments with the first approach exploring different scenarios and evaluating
the impact of using the clustering method.

In our experiments, we selected two data sets and labeled them as DBIO (Database
of Interest Objects) and SM (Seized Media). The DBIO is the largest one, with 2,204 different
files (218,458 sectors), while the second has 549 files (74,929 sectors). The data sets were taken
from the t5 corpus (ROUSSEV, 2011) and encompass different file formats: text, pdf, html,
doc, ppt, jpg, xls, and gif. For our experiments, the DBIO and SM data sets have only four
files in common, with the following format and size: F1: doc (1,039 sectors), F2: ppt (469
sectors), F3: text (87 sectors) and F4: pdf (273 sectors). Our goal is to find at least one object
in common in the shortest time possible. All files in the SM data set were fragmented (broken
into 4 KB objects) to simulate disk sectors. For the DBIO data set, we disposed of the objects
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in three ways to simulate different scenarios: fragmented (4 KB), whole file and image file. The
latter format is of a single and huge file having all objects together, one appended to another.

We first evaluated the approach of using sdhash without sampling. To this end, we
followed the steps below.

1. Creation of a similarity digest for every object in the DBIO.

2. Creation of a similarity digest for every object of the SM.

3. Comparison of similarity digests between DBIO and SM objects.

4. Evaluation of the results.

The next experiment evaluated the inclusion of sampling in the process. The first
step is to make a sample of the SM data set. To this end, we used the approach described in
sec. 7.2.2. We first estimated the total number of objects we want to search and applied Eq. 7.1
using the SM number of 74,929 sectors. Next, we chose the number of 1,039 sectors (the number
of sectors in the largest common file available in both data sets) and a 99,9% success rate. Using
Eq. 7.1, we got a result of 550, which is the required number of samples we have to take from
the SM.

Then, we did several other experiments based on the described approach with diffe-
rent scenarios to evaluate the impact of clustering and determine the best conditions for using
it. In general, we did our search following the steps below.

1. Creation of a similarity digest for every object in the DBIO.

2. Sampling the SM data set.

3. Creation of a similarity digest for the samples and clusters of SM.

4. Comparison of similarity digests between DBIO objects and SM samples and clusters.

5. Evaluation of the results.

Our first experiment in this second round involved comparing the objects from the
SM with those in DBIO data set in the fragment level, to simulate disk sectors (4 KB). Next,
we set the cluster size c to 100 sectors (a reasonable value got from empirical tests). For larger
values of c, we identified an increasing number of false positives (similarity between unrelated
files); for smaller values, no significant reduction was achieved, only unnecessary comparisons
had to be made. In the next experiment, we evaluated the use of whole files in the database
instead of their fragments. Again, we did it with and without clusters. The last experiment
compared the SM fragments to a DBIO image file. To this end, we created a similarity hash
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using the entire data set as if it was a single object to create a single representation of it. By
default, sdhash breaks large files in 128 MB pieces and creates a similarity hash for each one of
them (ROUSSEV; QUATES, 2013). This way, we ended up with a few digests that represented
the whole image file.

7.2.4 Discussion

The results of our experiments are presented in Tables 42 and 43. In the first one,
we present a comparison of sdhash with and without sampling, using DBIO and SM in the
fragmented level. Notice that there is a difference in the maximum number of comparisons in
both techniques for the expected value (16,368,839,482 without sampling and 120,151,900 with
it). This is because sdhash does not work with objects smaller than 512 bytes, and the data sets
have a few files which do not reach this minimum size.

When we analyze the impact of adding sampling, a significant reduction in the
number of comparisons is noticed, requiring about 136 times fewer operations. Also, we present
the number of objects of interest found by each technique, where we show that both found more
objects than it supposed to. This exceeding value represents the false positives, and it is possible
to see that the use of sampling reduces such value.

The cost of each technique is presented in the form of the number of hash functions
(SHA-1) required to generate the digests, shown in the last three columns of Table 42. For the
traditional approach using a hash-based method, the cost is equal to the number of objects: each
one only requires a single hash to create its representation, resulting in (218.458+ 74.929 =)

293.387 hashes. However, a high cost is observed using sdhash (about (65.738.212/293.387 =

) 224 times more expensive than the traditional technique), which is minimized by the adop-
tion of sampling (reduced to (49.071.984/293.387 =) 167 times). This way, it is evident that
using sdhash is very expensive, and its combination with statistical methods becomes essential
towards a practical approach. To this end, we focus on this combination and propose the use
of clusters to reduce even more the costs, evaluating different scenarios to find the best ones in
which we have the largest reduction in costs.

Table 42 – Experiments comparing sdhash with and without sampling on the fragment level,
measuring the efficiency and the cost.

Technique
#Objs of #Hash functions

#comparisons interest (SHA-1)
(max.) found DBIO SM Total

sdhash only 16.343.700.471 9114 / 1868 48.947.005 16.791.207 65.738.212
sdhash with sampling 120.031.450 62 / 22 48.947.005 124.979 49.071.984

We present in Table 43 the results of sdhash and sampling for different scenarios,
evaluating the use of our clustering approach, where the maximum number of comparisons is
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reduced by a factor of c (size of the cluster). However, the clustering approach was ineffective
in some of the experiments, as shown in cases #3 and #5. In such cases, no matches were
found when comparing fragments with whole files and fragments with the image file on the
DBIO set. We believe that this happened because fragments of different files were selected to
be part of the same cluster due to the random selection process; when creating and comparing
the digest of these clusters, the similarity with the whole object or image file was too small and
could not be identified by sdhash. Only case #1, when the comparison is made considering the
DBIO fragmented, we had significant results, as shown in Table 43, where almost all fragments
of objects F1 and F2 could be found. Also, in the scenarios where we did not use cluster and
consider the DBIO data set in whole file and image file formats (#4 and #6), the number of
comparisons decreased, but the number of false positives (number of matches between scores
20 and 100) is elevated in relation to the other scenarios (#1 and #2).

Table 43 – Experiments with sdhash using clustering

#exp.
#comparisons #matches

Clusters
Database Objs of interest

#Features
(max.) (score: 20-100) format F1 F2

1 1.309.434 107 Yes Fragments 11(4)/4 20(15)/18 48.985.337
2 120.031.450 238 No Fragments 17(4)/4 45(15)/18 49.071.984
3 12.870 0 Yes Whole file 0/4 0/18 14.363.578
4 1.179.750 149 No Whole file 5(4)/4 15/18 14.450.225
5 42 0 Yes Image file 0/4 0/18 10.587.068
6 3850 288 No Image file 4/4 17(15)/18 10.673.715

Table 43 also presents the total number of matches between the data sets according
to a range of scores got from sdhash, where the results express the similarity between ob-
jects in the SM sample to those in the DBIO. We highlight that only scores of similarity ≥ 20
were counted since they are the ones significant (reliable) (ROUSSEV; QUATES, 2012) in the
original version of sdhash.

We also show in Table 43 the number of matches restricted to the objects selected,
where we present the total number of matches and the number of true positives (t p) matches
(parentheses). We knew beforehand that there are only 22 objects in common between the data
sets after the sampling, where 18 belongs to file F1 and 4 to F2. The other two objects (F3 and
F4) had no fragments selected in the sampling. For example, in experiment #2, object F2 had 45
matches for only 18 TP possible. Between parentheses, we show the number 15, which is the
number of t p matches. Object F1 was 100% covered in experiments #1, #2, #4 and #6, while F2

was 83.34% covered for the same cases.

Comparing the expected number of matches to the one got from the total matches
(third column), we can see a high number of false positives results (considering results with
score ≥ 20). The high number can be justified by the presence of common blocks (see chap-
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ter 5), but future work is necessary to find out how to remove common blocks when sampling
with AM and its impacts.

7.2.5 Partial conclusions

Digital forensics is becoming a critical field as its techniques need to scale to fol-
low the fast increase in media storage capacity. In the first part of this section, we presented a
proposal for using approximate matching tools (sdhash) combined with sampling techniques
to reduce the time of a triage process. We showed how the expensive sdhash could be used and
possible ways to reduce the overall cost of investigation, using sampling techniques and clus-
tering disk sectors. Besides the reduction in the number of comparisons and features generated,
the new approach showed effectiveness in finding similar objects of interest and presented a
smaller number of false positives. Also, the proposed technique gives practitioners more flexi-
bility and allow them to find even objects that were deleted while some of their fragments re-
main on disk. We also showed limitations of clustering by evaluating different scenarios, which
proved to be ineffective when comparing clusters to database image files and whole files. On
the other hand, we had good results comparing them to a fragmented database. Although our
experiments have shown that sdhash could identify objects of interest with a small set of data
taken randomly from a seized media, future work is necessary to corroborate our hypothesis
that the false positives generated were indeed due to common blocks.

7.3 Approximate Matching for fingerprint identification

Another application for AM is for the identification of fingerprints. One challeng-
ing problem on the fingerprint realm is the identification of individuals over large databases,
where the most similar template must be found. We believe AM can be used to identify si-
milar fingerprints and become a promising technique to speed up searches. Here, we explore
this hypothesis and present MCC-HBFT, a new fingerprint identification strategy based on the
approximate matching technique HBFT and the state-of-the-art fingerprint representation model
MCC. We show how MCC-HBFT identify fingerprints and outperforms a commonly used indexing
strategy in some public databases.

7.3.1 Introduction

Fingerprint identification is one of the most well-known and publicized biometric
traits due to its interesting characteristics: uniqueness, consistency over time, easy acquisition,
and low cost. However, one problem that remains is how to search an unknown fingerprint
over large repositories, which poses challenging obstacles regarding accuracy and efficiency.
Identifying individuals in such a case requires the comparison of the input fingerprint templates
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to every other template in the database, in an all-against-all fashion. This process, often called
brute-force, is ineffective and becomes impractical for large sets.

One trivial solution to overcome the problem mentioned above is to reduce the total
number of comparisons by prefiltering techniques, such as exclusive classification. The issues
with this approach are the fixed and small number of classes and the uneven distribution among
them. A more efficient solution could be the use of indexing schemes, where the fingerprint
features represent the indexes. Features can be classified as global or local. The first category
gives macro-level details of the ridge flow, such as the fingerprint class, a pattern of ridges, and
valleys on the surface of a finger. Local features can be minutia points, which are discriminative
enough for the recognition task, and are composed of local ridge discontinuities. Minutiae can
be of two types: terminations (ridge endings) and bifurcations.

The minutiae-based fingerprint representation method has been proposed by ANSI-
NIST and includes the minutiae location and orientation (direction of the underlying ridge at the
minutia location). The state-of-the-art fingerprint representation technique used to code minu-
tiae is the Minutiae Cylinder-Code (MCC) (CAPPELLI et al., 2010), which represents each minu-
tia and the ones around it into a single cylinder. The MCC is invariant for translation and rotation
and robust to skin distortion and small feature extraction errors. These characteristics make MCC
a good representation model for a minutiae-based fingerprint. Besides, comparing MCC features
(cylinders) is very efficient since they can be represented as a bit vector and compared using
XOR operations.

Even though comparing two MCC templates is very efficient due to its bit-based
representation, the comparison of large data sets is not. Given that two templates that were
obtained from the same finger could have considerable variability due to numerous reasons,
such as rotation, pressure, noise etc., the problem at hand becomes finding the most similar
template to the queried one in a broad set in the shortest time possible. A comparable situation is
found in the digital forensics field, where approximate matching techniques are used efficiently
to find similar data (BREITINGER et al., 2014b).

As a second application proposal for AM, we explore its use in the fingerprint iden-
tification problem. Our contribution is towards an efficient way of finding similar fingerprints
templates over large databases. To this end, we present MCC-HBFT, a new fingerprint identifi-
cation strategy based on the combination of the HBFT approximate matching technique and the
state-of-the-art MCC representation model. Our results indicate that the merge of AM and finger-
print techniques can be beneficial to the problem at hand. Furthermore, we show that MCC-HBFT
outperforms a commonly used indexing scheme on some public databases in the field.
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7.3.2 The Minutia Cylinder-Code (MCC) representation model

The state-of-the-art fingerprint representation model is the MCC technique. According
to Cappelli, R. et al. (CAPPELLI et al., 2010), MCC encodes each minutia extracted from a fin-
gerprint into a cylinder structure, corresponding to the spatial (cylinder base) and directional
(cylinder height) relationships between a given minutia and the ones around it (ISO/IEC-19794-
2:2005, 2005). Each minutia m is a triplet {m = xm,ym,θm}, where xm and ym are the minutia
location and θm the minutia direction (in the range [0, 2π]).

MCC cylinders can be divided into sections, corresponding to a directional difference
in the range [−π,π]; sections are discretized into cells, and each cell receives a value related to
the accumulating contributions from the minutiae around it, which depends on both spatial and
directional information (CAPPELLI et al., 2010).

One of the most interesting characteristics of MCC is its bit-based representation
with a fixed length. With a negligible loss of accuracy, the value of each cell can be represented
as a bit. This way, a cylinder with n cells becomes an n bit vector by linearizing its cells; a
fingerprint template becomes a set of binary vectors. Another characteristic of MCC is that its
cylinder structure is invariant for translation and rotation and robust against skin distortion and
small feature extraction errors. These singularities make MCC extremely simple, reliable and fast
for matching, being also suitable for indexing with AM techniques.

7.3.3 Related work

The basic concept of fingerprints and techniques for recognition, matching and iden-
tification can be found in surveys of the field (PERALTA et al., 2015; SONI; GOYANI, 2018).
Here, we will present only indexing schemes. There are several approaches to deal with the
fingerprint identification problem when searching for a query fingerprint template against an
extensive database. Among all schemes, we will focus on the minutia-based ones due to their
better accuracy. Furthermore, we focus on MCC because of its bit-based representation since it
is less computationally expensive and consumes less memory compared to other methods. We
highlight that it is not in the scope of this chapter to present a detailed analysis of fingerprint
indexing approaches. For this matter, a review is presented by Parmar, P. A. and Degadwala, S.
D. (PARMAR; DEGADWALA, 2015).

The MCC-LSH (CAPPELLI et al., 2011) indexing approach has outperformed most
indexing algorithms (minutia-based) on several public databases. It is based on the Locality
Sensitive Hashing (LSH) technique and MCC representation model. The index structure corres-
ponds to several hash tables, each having a particular hash function. To populate the index, each
cylinder (bit-based implementation) from each fingerprint in the database is hashed by several
hash functions and stored in their corresponding hash tables. When searching for a fingerprint,
the process repeats, but instead of saving the cylinders in the table, we check for collisions with
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other cylinders. The more collisions we get, the more similar the templates are.

Other methods in the literature are variations of Cappelli’s approach (CAPPELLI
et al., 2011). Wang, Y. et al. (WANG et al., 2014b) use MCC and geometric hashing (Geo-MCC).
Their work is extended in (WANG et al., 2015), where more compact binary hash codes are
learned from MCC binary representations and used again with geometric hashing, but now com-
bined with LSH (Geo-LSH). The authors reduced the cylinder size from 384 bits to only 24 bits,
decreasing the number of hash functions and hash tables used by the system to store fingerprint
templates. The benefit of their scheme comes with a reduction in accuracy, but it is still better
than MCC-LSH according to their experiments. A similar approach is presented by Bai, C. et
al. (BAI et al., 2018), where a learning-based algorithm is used to create shorter codes from
MCC. The authors use these codes to create substrings and store them into multiple hash tables.

Finally, Su, Y. et al. (SU et al., 2016) presented another indexing scheme to speed
up the search. They combine an improved LSH technique (using MCC) with a learning-based
fingerprint pose estimation algorithm to register fingerprints into a unified finger coordinate
system and avoid unnecessary comparisons.

7.3.4 The MCC-HBFT fingerprint identification strategy

The MCC-HBFT proposed here is a fingerprint identification strategy that leverages
the benefits of MCC fingerprint representation and the efficiency of the AM field in finding
similar fingerprint templates. We adapted the similarity digest search strategy HBFT (BRE-
ITINGER et al., 2014c; LILLIS et al., 2017) to operate with MCC fingerprint templates. In
the next subsections, we will describe how our strategy works and the necessary steps to in-
sert and query fingerprint templates efficiently. The algorithms describing our approach, as
well as extra material with all tests performed, can be found in our GitHub page: <https:
//github.com/regras/mcc-hbft>. More details about the working process of HBFT can be found
in sec. 2.5.4.2.

7.3.4.1 The proposed MCC-HBFT scheme

MCC-HBFT has the same working principle as HBFT, except by some modifications
and additional resources necessary to operate with the MCC representation. Here, we explain the
singularities of our approach.

7.3.4.1.1 Features and multiple trees

Just like HBFT, instead of inserting the template itself into the data structure, we
insert small pieces of it (features). In an MCC template, there is one cylinder (fixed-size bit
vector) representing each minutia. One possible candidate to feature is the cylinder itself, but

https://github.com/regras/mcc-hbft
https://github.com/regras/mcc-hbft
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Figure 56 – Inserting fingerprint templates into the MCC-HBFT strategy for MCC representations
with six-cylinder sections.

for a more accurate version, we choose to work in the cylinder section level. Since we have s

sections per cylinder, we will have s features for each cylinder.

The choice of working in the section level from the cylinder perspective has some
advantages. We can reduce the feature size (s times) and the number of hash functions used to
insert the features into the bloom filter structure (for the same accuracy). The downside is that
the number of features is multiplied by s, which will demand an increase of the bloom filter
size. Since bloom filters are space-efficient structures and MCC are compact representations, the
increment is smoothed. Another possible issue is how to distinguish a feature from one section
to another to avoid misleading collisions. The solution adopted in this work for this problem is
based on the same paradigm used by the HBFT approach: divide and conquer. We choose to use
different HBFT data structures to store the features of each section separately, i.e., one bloom
filter tree for each cylinder section, as shown in Fig. 56.

To get the number of features (z) for each bloom filter tree structure, we use Eq. 7.2:

z = n · c, (7.2)

where n is the number of templates and c the average number of cylinders in a template.
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7.3.4.1.2 Hash functions

One efficient way to create different hash functions for setting bits on bloom filters is
to hash the given element with a cryptographic hash function (e.g., MD5, SHA-1 etc.) and split
the result into k parts, where each piece corresponds to a different hash. However, in biometric
systems, we have considerable variability in different fingerprint templates even though they
belong to the same finger. Numerous factors can contribute to this fact, including displacement
(same finger placed at different locations on the acquisition sensor), rotation, pressure, skin
condition, noise etc. A common practice is to establish a threshold of the acceptable difference
between two templates to consider them a match. This way, our problem here is to find “similar"

templates, not precisely identical ones.

Due to the characteristics of the problem at hand, using cryptographic hash func-
tions on fingerprint features will not produce good results since they can not stand minor
changes in the input. Changing a single bit in data will create an entirely different output
(avalanche effect). For this reason, we need a different kind of function. Here, we will use a
new version of the functions presented by Cappelli, R. et al. (CAPPELLI et al., 2011). Given
a fingerprint feature (cylinder section), we will use k1 functions where each of them will ran-
domly choose b bits from each feature; next, a cryptographic hash function is used to create the
hash value from the selected bits. In the end, each feature will have k1 hash values. Since we
expect that some bits may differ from one template to another due to biometric variations, we
only require that k2 hash functions (k2 < k1) match against the bloom filter to consider the fea-
ture as similar. Using many hashes per feature and establishing a minimum number of functions
(k2) to have a match, allow our approach to detect similar fingerprint templates.

7.3.4.1.3 Bloom filters sizes and number of bits in the hash functions

The bloom filter size depends on three factors: the number of elements inserted in
the filter, false positive rates, and the number of hash functions. Since our structure is arranged in
a tree fashion, we can create fixed-size or variable-size filters. Considering we want to keep the
same number of hash functions and false positive rates for all filters, the latter option is more
space-efficient because at each level, we have half the elements of the previous one inserted
in the filter, which decreases the bloom filter size. The root filter (level 1) is the largest one,
containing all elements of the data set. Its children and all other filters from other levels have
half of their parent size. Given that we established a maximum and a minimum number of
hash functions (sec. 7.3.4.1.2), we had to change the root bloom filter size formula slightly
(BREITINGER et al., 2014a). The adapted formula is shown in Eq. 7.3.

mroot =
−k1 · z

ln(1− f p1/k2)
(bits) (7.3)

where mroot is the root bloom filter size, z the number of features, k1 and k2 are the maximum
and a minimum number of hash functions, respectively, and f p the false positive rate.
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Given the size of the root bloom filter (largest filter in the entire structure), we can
compute the number of bits (b) necessary for the hash functions to address the bits into bloom
filters using Eq. 7.4. For efficiency purposes, we compute the feature hashes once and discard
one bit per level when working with filters from other levels, since each bloom filter has half of
its parent size.

b = dlog2(mroot)e (7.4)

7.3.4.1.4 Final score

When searching for a template Ti, we count for each feature the number of hashes
that matched against the queried filter and, in case we have at least k2 matches, that feature is
said to be part of the filter; otherwise, we drop it. Then, we move on and search for the next
feature in the same filter. We stop the search in this particular bloom filter when a predefined
number (hitsmin) of features is found, or we are out of features. In the first case, we assume a
similar template lies in this bloom filter, and we can continue searching in the next levels of
the tree. In the second case, we understand there is no similar template in this filter nor the
subsequent levels of this node.

Once we have reached the last level of the tree (single fingerprint template per filter),
we count the number of features found in that filter. Additionally, we determine a match score
for the queried template and the one belonging to the bloom filter. Eq. 7.5 shows our score
formula, which seeks to normalize the number of matching features by the average number of
features found in the queried template Ti (|Ti|) and bloom filter template BFj (|BFj|).

score(Ti,BFj) =
HM

(k1 · (|Ti|+ |BFj|))/2
. (7.5)

It is important to highlight that HM corresponds to the number of matching hashes of all features
from Ti that had at least k2 hashes values matched.

7.3.4.1.5 Additional resources

Additional resources were integrated into MCC-HBFT to improve its efficiency:

Fingerprint classes: To reduce the number of template comparisons, we added a new com-
ponent to our approach: fingerprint classes. Each bloom filter has a flag indicating the classes
of fingerprints that lies on it. We adopted the six-class model used by NIST: Arch (A), Tented
Arch (T), Left Loop (L), Right Loop (R), Scar (S), and Whorl (W) (KO, 2007). One can use the
NIST PCASYS (Fingerprint Pattern Classification) (KO, 2007) system to predict the class of a
fingerprint or any other method, including establishing it manually.

The classes help to decrease the number of unnecessary comparisons. When crea-
ting the bloom filter tree structure, we group the fingerprints by classes and insert them in the
same or near filters. In the search process, when the queried fingerprint template belongs to a
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different class from the ones of a particular filter, we stop the search in that filter and all subse-
quent levels. Since some fingerprints may have a pattern that classifies it in more than one class,
we allow an assignment of at most two classes per fingerprint.

Compatible function: Like other indexing approaches (CAPPELLI et al., 2011; BAI et al.,
2018), a compatible function is used to narrow down the search. Two minutiae m1 (xm1,ym1,θm1)
and m2 (xm2,ym2,θm2), are only considered a match if their angular difference dθ (θm1,θm2)<σθ

and euclidean distance dxy((xm1,ym1);(xm2,ym2))< σxy. According to Cappelli, R. et al. (CAP-
PELLI et al., 2011), this is done to ensure a minimum rotation and displacement between them.
In the proposed strategy, the minutiae attributes (xm,ym,θm) are stored into a hash table along
with a minutia identification. Each fingerprint template has an exclusive table for keeping its
attributes.

As mentioned before, the problem handled here is to deal with similarity cases,
where fingerprint templates are not identical. For this reason, we use k1 and k2 as a maximum
and a minimum number of hash functions, respectively, to set and query bits in our bloom
filter tree structure. This allows us to have different bits between the database template and
the queried one. The same problem applies to create indexes for storing the minutiae attributes
(represented by k1 hash values) into the hash table. Since each feature has several hash values
and we allow the match of only part of them, we can not create a single index for a feature to
insert it into the table. If we use all hashes to derive an index value, any similar feature having
at least one different bit will probably have a different index and will not be correlated to their
similar ones.

The solution proposed here follows the idea adopted in sec. 7.3.4.1.2. We use all k1

hash values from a feature to derive many indexes and, for each one, we insert the feature in
the corresponding hash table bucket (we only store the feature identification, while its attributes
(xm,ym,θm) are stored elsewhere to avoid redundancy and save memory). Upon a query request,
we check the hash table for the features that collide at least k2 times with the queried one; in
a positive case, we perform the compatible function between the features. Only if these two
conditions are true, we count a match for the queried feature.

7.3.4.2 Creating the MCC-HBFT data structure: The preparation phase

The preparation phase, often called the offline stage, consists of creating the MCC-

HBFT data structure and inserting all database fingerprint templates on it. First, we create s

(cylinder sections) empty bloom filter trees and a set of hash functions for each tree according
to the cylinder section it lies on. The next step is grouping the fingerprint templates according
to their classes and insert them into MCC-HBFT. Since we could have more than one class per
fingerprint, we classify the fingerprints prioritizing the first class.

The insertion process goes as follow: The first template of the first group is inserted
into BFx (where x= 2L−1 is the number of the bloom filter BF in the tree at level L), the first filter
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Figure 57 – MCC-HBFT: Single bloom filter tree structure

of the last level of the tree, and all its parents’ nodes. In BFx, we insert the template features,
some attributes, and create a new hash table for keeping the minutiae information. Besides, we
set the class tag of the current filter and all its parents according to the given template classes.
Then, we proceed to the next template and insert it into BFx+1, the second filter of the last level,
and all its parents. Again, we set the classes of the bloom filters accordingly and proceed until
we have inserted all templates. Fig. 57 shows the MCC-HBFT structure of a single bloom filter
tree.

We highlight that the lowest level of each tree stores only one template per filter
(which has several cylinders, thus having several features). Furthermore, we keep some finger-
print attributes for later identification and comparison purposes, such as an identification (ID),
fingerprint classes (classes 1 and 2), and the number of features. A hash table for each template
is also stored to keep the minutiae information.

7.3.4.3 Searching fingerprint templates: The operational phase

The operational phase, also known as the online stage, follows the preparation and
consists of performing searches on the MCC-HBFT structure. Given the MCC template and its
class, the proposed strategy performs the feature extraction process and looks for each feature
according to their cylinder section in the bloom filter trees. A match is found when at least
hitsmin features are located in a filter. In the case of a non-match in the root filter, we discard
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that feature and move to the next one. When matching, we go further and look for matches in
the bloom filter children of that node. We proceed with the search until we reach a filter on the
last level of the tree, or we have a non-match in the current node and all other ones.

In the last level of the tree, we have one template per filter. Besides looking for
all features, we also compute a match score for the queried template (sec. 7.3.4.1.4), and after
searching into all s trees, we summed up the results and present an ordered list (by match score)
with all possible candidates to the similarity to the queried template.

7.3.5 Assessment

7.3.5.1 Evaluation setup, databases, and parameters

The tests described here used a machine running a dual boot of Elementary OS 0.4.1
Loki 64-bit (built on Ubuntu 16.04.2 LTS) and Microsoft Windows 10 64-bit, with an i7-5500U
CPU @2.40 GHz processor, 8 GB of memory, 1 TB SATA 3Gb/s hard disk drive (5,400 rpm),
and NVIDIA GeForce 920M. The proof of concept MCC-HBFT was developed using C language.

The performance of MCC-HBFT was measured using public domain fingerprint data-
bases, such as the NIST Special Databases 4 (NIST, 2018) and some FVC databases ((FVC2002,
2018) and (FVC2004, 2018)). All database details are shown in Table 44.

Table 44 – Detailed information on public databases used in the experiments

Databases Size Resolution Subject Impressions Sensor Format

NIST DB4 512x512 500dpi 2000 2 Ink-rolled PNG
FVC2002 DB1a 388x374 500dpi 100 8 Optical TIF
FVC2002 DB3a 300x300 500dpi 100 8 Capacitive TIF
FVC2004 DB1a 640x480 500dpi 100 8 Optical TIF

The tests presented here followed the strategy used in the literature (BAI et al.,
2018; CAPPELLI et al., 2011). For the NIST database, the first fingerprint impression of DB4
is used for indexing and the second one for querying. On the FVC database, the first impres-
sion was used for index and remaining seven for querying. To estimate some parameters of
MCC-HBFT, we used 600 fingerprints from NIST DB4 (500 first impressions for index and 100
second impressions for query) and 200 fingerprints from FVC2002 DB1a (25 first impressions
for index and 175 impressions for query).

The fingerprint minutiae extraction was performed in two different ways. For the
NIST fingerprints, we used the open source NBIS1 software. For all FVC sets, we used a set of
manually extracted minutiae (FM3) (KAYAOGLU et al., 2013). Next, the minutia information
of both databases is used to create the MCC representation using MCC SDK v2.02, creating a
1 NIST Biometric Image Software (NBIS) v5.0.0, http://www.nist.gov/itl/iad/ig/nbis.cfm
2 MCC SDK v2.0, http://www.biolab.csr.unibo.it/mccsdk.html
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384-bit-based template for each fingerprint. We adopted the same parameters as reported in
(CAPPELLI et al., 2011) for the cylinder creation.

We limited the comparison of our strategy to only the state-of-the-art index structure
MCC-LSH (CAPPELLI et al., 2011) since it has a free implementation available by MCC SDK

v2.0. All other indexing schemes that work with MCC did not have their source code available for
comparison at the time we were performing our experiments (from the best of our knowledge).
Most approaches only compare their proposals to MCC-LSH, the only readily available one in
the literature. The tests performed here used the same MCC and LSH parameters available in
(CAPPELLI et al., 2011). A C# routine was developed in the Windows operating system to
create the index structure, perform the queries, and then consolidate the results.

MCC-HBFTmakes use of fingerprint classes. Here, we adopted the free NIST PCASYS
(KO, 2007) software to perform the class assignment for first class and a manual adjustment to
insert the second class, when necessary. Since the focus of this research is based on the use
of classes to reduce the number of comparisons and not in the classification process itself, we
are not interested whether PCASYS assigns a right class to a fingerprint or not. We are only
concerned about the fact that two mate fingerprints have the same class.

Other parameters of MCC-HBFT include the number of hash functions k1 and k2, es-
tablished after experiments over the test databases (shown in the next section). We also defined
hitsmin=20%, which is the number of feature matches to conclude that a similar feature is in-
serted in a bloom filter. This value is a proportion of features found in the filter by the total
number of queried features, also found experimentally. Other parameters are s = 6 (the same
value as the one adopted by (CAPPELLI et al., 2010)) and SHA-1 as a cryptographic hash
function. The values used in the compatible function are: σθ = π/4 and σxy = 256.

7.3.5.2 Results

The evaluation of the accuracy and efficiency of fingerprint indexing schemes is
measured by the trade-off between Error Rate (ER) and Penetration Rate (PR). The first metric
is based on the number of queried fingerprints not found in a search, while the latter one corres-
ponds to the proportion of the database explored by the indexing approach in a query. The best
scenario is the smallest possible error to the lowest penetration rate.

In our experiments, we have randomly generated the hash functions (bits selected in
the cylinders) each time we ran a full trial with MCC-HBFT. Even though we require fixed hash
functions to always produce the same results, our tests changed it because (i) the size of the
databases is different, requiring more or fewer bits for each function; (ii) we wanted to verify
the impact of “good" and “bad" bit selections. We also have chosen three versions of MCC-HBFT
using different numbers of hash functions to find the best cost/benefit setting. We highlight that
the more hash functions used, the higher the costs (time) is. The settings include low, mid, and
high-cost versions.
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Determining the values of k1 and k2 required the two test databases. First, we set
k1 = x · k2, where x is a variable controlling the level of changes accepted over two templates.
The best results for x were different for FVC and NIST. In the former, the best values varied
between x = 5 and x = 6, while the later had x = 3 and x = 4. These results helped us to find
the different settings of our approach.

We ran each experiment 10 times and selected the worst, average, and best-case
scenarios, and compared them to MCC-LSH. To be fair, we have compared our approach under
its average-case scenario. Fig. 58 shows the results for the FVC2002-DB1a set with the average
results obtained from MCC-HBFT using the three different settings. We can see that all MCC-HBFT
versions had better outcomes compared with MCC-LSH on average. Even though MCC-LSH had
better results for a low penetration rate (PR≤ 7.0%), MCC-HBFT settings presented better results
from this point on. Besides, our low-cost version reached ER = 0% with PR = 39%, while
MCC-LSH had PR = 48%.

Fig. 59 shows the three scenarios of the low-cost setting (k1 = 20/k2 = 4) and the
baseline MCC-LSH. The worst-case had ER = 0.28% (PR = 100%). However, the average sce-
nario had ER= 0.0% and PR= 39%. We chose to show this particular setting because it had the
worst performance with respect accuracy of all three and because it is a low-cost version. Adopt-
ing a more proper hash function means increasing the number of hashes, as shown in Fig. 58,
where the high-cost version (k1 = 72/k2 = 12) performed better than the others (ER = 0.0%
and PR = 28%).

Fig. 60 shows the experiments under FVC2002-DB3 database. The low-cost ver-
sion (k1 = 20/k2 = 4) performed worst, while the others competed with MCC-LSH but had a
higher error rate. It is important to highlight that none of the approaches reached ER = 0%, and
MCC-LSH had ER = 1%. On the other hand, over FVC2004-DB1 (Fig. 61), MCC-HBFT beats the
state-of-the-art proposal significantly, except for the mid-cost version with PR≥ 82%, when it
ends with a superior error rate.

The tests using the NIST BD4 database have adopted different parameters for the
hash functions, but we still use the idea of the three settings: low, mid, and high-cost versions.
Fig. 62 shows the results of three settings and the baseline MCC-LSH. Even with the low-cost
version (k1 = 18/k2 = 6), we had better results than MCC-LSH from PR ≥ 7.95% and reached
ER= 0.0% before it (with PR= 41.3% in comparison to PR= 100.0% of MCC-LSH). MCC-HBFT
presented similar results over the NIST database in all of its executions. The worst-case sce-
nario of all experiments always had results close to the best one, except in one case, where the
search could not find all templates in the search, as illustrated in Fig. 63. In this setting, we had
ER = 0.05%, which corresponds to a single fingerprint not found. The other two experiments
were successful in finding all candidates with PR = 42.05% (on average) for their worst-case
scenario.
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Figure 58 – Performance evaluation on FVC2002 DB1: Average-case scenario of three different
MCC-HBFT versions

7.3.5.3 Discussion

MCC-HBFT can be used in different settings. We expected that the more hash func-
tions we use, the higher the accuracy. However, the benefits were quite small, given high k1

values. In general, the results for the different settings were quite similar. In opposition, the
time costs increased significantly since we had to perform many more hashes per feature. The
low-cost version appeared as the most cost/benefit combination. Future work encompasses a
cost/benefit analysis of different MCC-HBFT settings.

To understand the hash function parameters changing from FVC to the NIST database,
we analyzed the details of each set and summarized it in Table 45. The number of minutiae per
template in each database varied significantly. NIST database has more minutiae per template,
allowing a smaller proportion of k1 and k2 since it has many minutiae to compare between two
templates (more chances to get matches). The FVC sets have fewer minutiae, decreasing its
chances for matching. For this reason, the difference between k1 and k2 must be higher.

One difference to call attention between NIST and FVC databases results is the error
rate of small values of database penetration. We had significantly lower errors for FVC than
NIST set. We attribute that to the extraction minutia process, which was manually and carefully
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Figure 59 – Performance evaluation on FVC2002 DB1: The worst, average, and best-case sce-
narios (low-cost)

Table 45 – Detailed information on public databases used in the experiments

Database FVC NIST
Parameters 2002DB1 2002DB3 2004DB1 DB4

Number of minutiae (avg) per template 35.02 21.49 38.86 120.0
Max. number of minutiae per template 81 46 77 237
Min. number of minutiae per template 5 2 8 13
Number of bit 1 in each minutia (avg) 11.0681 9.1413 10.5342 12.7070

done for the FVC database and automatic for NIST set. The quality of the minutiae possibly
influenced the results, but here we are more concerned with the performance of our approach
against the state-of-the-art scheme. Since we used the same minutiae for both approaches, we
believe this will not affect the relative results.

7.3.6 Partial conclusions

Identifying individuals over large databases using fingerprints is a challenging pro-
blem, mainly due to efficiency reasons. The approximate matching techniques are efficient so-
lutions in digital forensics to find similar content, and they can do the same in the fingerprint
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Figure 60 – Performance evaluation on FVC2002 DB3: Average-case scenario of three different
MCC-HBFT versions

field. In this chapter, we have presented MCC-HBFT, a new fingerprint identification strategy that
leverages the efficiency of the AM field and the accuracy of the state-of-the-art fingerprint rep-
resentation MCC. We showed how our strategy works and outperforms a commonly used finger-
print indexing approach on public domain databases. Future work encompasses a cost/benefit
analysis of different MCC-HBFT settings. We also plan to analyze the use of more efficient hash
functions to decrease the overall costs without impacting accuracy.

7.4 Other applications for AM

Other than the two approaches presented in this chapter, we can mention another
application for AM: File type identification. By following the concepts explained in Chapter 5,
we believe we could use a database of common features to track some of the most common
structures among several file types. Then, by counting the features in common between the
target file (or just a piece of it) and our database, we could establish the type that file belongs
to. However, future work is necessary to demonstrate the feasibility of our approach.
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Figure 61 – Performance evaluation on FVC2004 DB1: Average-case scenario of three different
MCC-HBFT versions

7.5 Conclusions

In this chapter, we presented two new applications for approximate matching: Fast
file identification and searching fingerprints with AM. We discussed each approach, presented
its results, and a discussion about their effectiveness and limitations. We showed that besides the
high cost associated with AM tools compared to traditional hash-based approaches, the effec-
tiveness achieved in identifying similar objects, makes AM a good choice for file identification,
especially when combined with sampling as proposed in this chapter. The two techniques to-
gether achieved significant results related to the reduction in the number of comparisons and
false positive matches compared to AM alone. Besides, using AM for searching for fingerprints
was also a good choice, where the solution proposed in this chapter outperformed a commonly
used fingerprint indexing approach. By our results, we can see that AM can also be applied for
mitigating problems of other areas successfully.
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Figure 62 – Performance evaluation on NIST DB4: Average-case scenario of three different
MCC-HBFT versions
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Figure 63 – Performance evaluation on NIST DB4: The worst, average, and best-case scenarios
(mid-cost)
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8 Conclusions

8.1 Contributions of this thesis

Digital forensic investigations suffer from the massive amount of data available
nowadays, where time is a scarce resource. In this work, we presented Approximate Matching
(AM) functions as a candidate to deal with such a problem when performing the similarity
search. We presented the main concepts of AM and the limitations of current solutions. Our
contributions to the field were focused on new solutions to mitigate some of the current limi-
tations. In the following paragraphs, we present some of the main conclusions one can obtain
from this study. A list of the publications derived from this work can be found in appendix C.

In Chap. 3, we showed that the Similarity Digest Search Strategies (SDSS) are
efficient approaches for comparing large data sets of objects. Our results demonstrated that,
although the strategies outperform the naive brute force method, there is no suitable approach
that satisfies all the most relevant requirements of forensic investigations, such as low memory
requirement, high detection capabilities (for both resemblance and containment), and efficient
lookup procedure.

Another problem with SDSS is that they are specific for a particular AM tool, being
ssdeep and sdhash the most predominant choices. Other tools with interesting characteristics
for digital forensic investigations do not have better forms to perform the similarity search other
than the brute force. For this reason, Chap. 4 presents Fast Similarity Digest Search (FSDS), a
new strategy aiming to perform efficiently over large amounts of data. FSDS is based on TLSH

approximate matching tool and shows a reduction of about 95% in time concerning brute force
with a minimum impact on precision.

We also analyzed current AM tools with a focus on improving the similarity de-
tection process and hence their effectiveness in producing valid results on investigations. By
simulating real world investigations, we figured out that many matches pointed out as similar
by current solutions were not similar when we visually inspected them and look for similar
content, such as paragraphs, figures, tables, among other elements created by users. We found
out that the matches were indeed a result of common blocks (Chap. 5). Then, we came up with
a classification of the matches according to the kind of similarity detected (e.g., user-generated
content, application-generated content, and template content) and removed the common data
among objects from the similarity digest. Our results showed a significant reduction in the
number of matches; in some cases, we obtained approximately 87% fewer matches compared
to the traditional tool.This practice also benefited precision and recall rates, where different set-
tings aided each metric differently based on the goal of the investigation. Besides, the impact
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on the threshold score of AM after removing common blocks was also noticed, where all scores
produced relevant matches, and no threshold was necessary.

Chapter 6 improved our knowledge about one of the most popular AM tools. It
provided a theoretical analysis of the detection capabilities of sdhash, showing the conditions
for which it works efficiently and the ones where it struggles. In general, the larger the object,
the better the performance of sdhash; it requires 0.50% of similar content between two ob-
jects (with the smallest object size) to detect similarity in the best case. For small objects, on
the other hand, it requires about 35% of similar data to produce valid scores. By identifying
sdhash’s limitation (inconsistency when dealing with small objects), we proposed changing its
comparison function. We developed an improved version of it where we replaced the compa-
rison function for a new one using Jaccard Similarity. Our results showed that the new version
generated an easier to interpret score (that can be adjusted to work in different scenarios) and
produces results more reliable and closer to the real similarity found in objects.

Our last contribution was towards new applications for AM functions. Chap. 7
showed how to use AM combined with sampling techniques for fast file identification.Besides,
it also showed how to apply AM for fingerprint identification where individuals can be identified
over large data sets.

8.2 Research Questions

All of the contributions presented so far led us to answer satisfactorily our research
questions, presented in Chapter 1.

Leading RQ. How can we perform a similarity search (from a digital forensic practitioner
perspective) over large data sets in a (time/space) efficient manner?

To this end, more specific research questions were elaborated, covering many topics
over the AM field. Here, we will provide a brief answer to the proposed questions, according to
the results presented in previous chapters.

RQ1. Can AM functions deal with huge data sets efficiently? How would digital forensic inves-
tigations benefit from the use of such functions?

Our answer to the first part is yes. AM functions can be used to perform similarity
searches in huge data sets using Similarity Digest Search Strategies (SDSS). In Chap-
ter 3, we presented the SDSS and provided a detailed comparison among these strategies,
showing the characteristics and how they would scale for data set size increase. We also
showed how some SDSS perform in real investigations. Finally, we proposed in Chap-
ter 4, a new strategy to perform queries efficiently using the TLSH approximate matching
tool.
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RQ.2 How can we estimate the (theoretical) minimum similarity detected by AM functions?

Most AM tool proposals show their benefits by empirical tests over random and real-
world data sets. We believe that such analysis, although extremely important, is not
enough for making AM a reliable choice in real-life investigations. A more formal study
showing the boundaries of the proposed function is necessary. In this work, we sought to
demonstrate theoretically how sdhash would behave for detecting similarity. We meant
to answer questions like: What is the minimal similarity between two objects detected by

sdhash? In which cases/scenarios will it work? What is the impact of the α variable (on

sdhash score computation) and the chosen default value on similarity assessment?

We answered these and other questions in Chapter 6 in order to provide a detailed analysis
of the sdhash similarity assessment process. In short, sdhash tends to produce score
values different from the real similarity found in small objects and requires many similar
bytes to produce valid scores (about 35% of the same content). For larger objects, on
the other hand, it requires less similar bytes (only 0.50% to produce a score > 0). We
believe that such understanding is important to forensic practitioners when performing
investigations so they can maximize their results according to the tools’ capabilities and
investigation goals.

RQ3. How can we improve current AM tools to perform better over large data sets and produce
more reliable results?

We proposed solutions to improve the similarity assessment process, by removing com-
mon blocks from the similarity digest (Chap. 5) and introducing a new similarity compa-
rison function for one of the most well-known and used AM tools: sdhash (Chap. 6). In
the first case, we removed common structures that repeated over many different objects.
The goal was to avoid this information to interfere with the similarity digest of objects
and influence the similarity assessment process. By removing these blocks, we reduced
significantly the number of matches returned by AM tools, such as sdhash; consequently,
the precision improved. This was achieved with a small cost on the tool’s performance.

The second contribution was based on the improvement of the sdhash comparison func-
tion. By changing the way sdhash computes the similarity score, we could get more
reliable results that express the real similarity shared by two objects. Besides, our new
function (using Jaccard similarity) can also be more easily interpreted regarding the score
produced and the real similarity of objects, since it behaves like a percentage score. This
way, forensic practitioners can adjust the tool more precisely according to their needs and
tool capabilities.

RQ.4 Is there any other application for AM functions?

Chap. 7 presented two new applications for AM: Fast file identification (using sampling
techniques) and fingerprint identification. Considering the quality of our results in both
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applications, we can conclude that AM can be used in other scenarios successfully. Be-
sides, other applications for AM can also be proposed, such as the file type identification,
a possible topic for future work.

By answering all these questions, we addressed our leading research question by
providing enough details on how AM can and should be used in digital forensic investigations;
besides, we showed how to use it when dealing with huge amounts of data.

8.3 Limitations

This thesis has the following limitations:

It does not deal with encrypted data. All approximate matching functions presented here are
unable to detect the similarity of encrypted data. Investigations with encrypted seized
devices require the decryption of the data before the application of the methods discussed
in this thesis.

Plagiarism. Another application of AM could be for plagiarism identification. However, one
should be aware that only the copy and paste approach can be detected for AM approaches
discussed in this thesis that operate in the bytewise level. The similarity of content in the
semantic level is a limitation of AM. An example of such a case is changing a word for
its synonym (e.g., substitute method for technique) or changing the name of variables in
source code.

Image files identification. AM does not work equally well for all file types, such as images.
Any change in the illumination, scale, or other simple operation performed in images,
may change the whole byte structure of the object, making the similarity detection harder.
Algorithms that work at the semantic level should be the ones used for better results,
although they require more resources to operate.

Manual testing on experiments. For not having a proper data set to evaluate AM effectively
concerning recall and precision rates as our thesis did, we had to perform a lot of manual
testing and random sampling in existing databases. Our goal was to find out the ground
truth, and to this end, we selected a subset of the t5-corpus to perform our analysis. We
argue that it is possible that we misclassified some of the matches or that we ended up
with poor samples drawn from the data set. We provide in appendix B a list with our
results so one can validate and complement it.
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8.4 Future works

Along the way of working towards solutions to current limitations of the field, we
also identified opportunities for future work. Next, we summarize the main open issues on the
AM field discussed along with this work.

First, measuring precision and recall rates of the SDSS with/without the influence of
common blocks will show how current approaches would perform in investigations regarding
their detection capabilities of similar content. Besides, including an analysis of resemblance/
containment of the strategies will be desirable.

Another future work is to study the possibility of applying machine learning algo-
rithms to the identification of common blocks. Given enough data, we think it is possible to
train an algorithm for detecting and separating the kind of similarity we want (user-generated
content, application-generated content, or template content).

Last, future work is necessary to find out the viability of applying common blocks
concept and AM to the file type identification problem. Given the byte sequence (e.g., disk
sector, object fragment), we will be able to use such techniques to discover the type of the
object by comparing the provided sequence to known blocks of certain file types.
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APPENDIX A – Similarity Digest Search
Strategies operational costs

In this appendix, we complement Chapter 3, by showing how to estimate the amount
of space required by each SDSS when comparing them and analyzing how they would scale with
the data set increase. To this end, we developed and adapted some formulas. In our calculus,
we had to estimate the number of objects a data set of a given size would have, so we know
the number of digests we would have to create for this set, the number of entries in hash tables,
the size of bloom filters, and any other required parameter. We estimated an average object size
and divide it by the data set size. The chosen object size was 512 KiB (approximation of the
size found in some known forensics data sets, as the govdoc-corpus1, for instance). With this
information in hand, we proceed our calculus. For the rest of this section, we will consider n as
the number of objects in the reference list.

A.1 Brute force

The costs associated with the memory requirement for brute force will be calculated
for the two most used and known tools nowadays: ssdeep and sdhash. We will also consider
the TLSH tool in some scenarios despite none of the strategies found in the literature use it as AM
tool. We will show how TLSH would perform in an investigation as a brute force strategy due
to its interesting characteristics (precision and recall rates and low digest length) and because it
is a recently developed technique. Even though saHash (BREITINGER et al., 2014c) is newer,
it was not chosen because it only works for objects of similar sizes and produces a minimum
digests length of 769 bytes (≈ 22 times greater than TLSH).

A.1.1 ssdeep and TLSH

The memory consumption of ssdeep and TLSH are calculated by Eq. A.1.

mss = n · sss (A.1)

where n is the number of digests in the target system and sss the size of the digest created by
ssdeep/TLSH.
1 http://digitalcorpora.org/corpora/files (last accessed Nov 20th, 2019).
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A.1.2 sdhash

To calculate the memory requirement for sdhash, we need to estimate the number
of features extracted from a set of object (on average). According to Breitinger, F. et al. (BRE-
ITINGER et al., 2014c), "sdhash maps 160 features into a bloom filter for every approximately

10 KiB of input file". This way, we can calculate z (number of features) in the following way:

z = (µ ·220 ·160)/(10 ·210) = 214 ·µ (A.2)

where µ is the reference list size (MiB) and 220 and 210 are factors to change, from MiB and
KiB to bytes, respectively. Once we have calculated the number of features on the reference
list, we can figure out how many bloom filters will be needed to represent all these features, and
hence the memory requirement. To this end, we use Eq. A.3.

msd = (z · sb f )/ fmax (bits) (A.3)

where sb f is the size of each bloom filter (bits) and fmax the maximum number of features
allowed to be inserted by sdhash in each filter.

A.2 DHTnil

To calculate the memory requirement for DHTnil, we can use Eq. A.4.

mDnil = (n · snil)+(nnodes · (L f t +Lrp)) (bits) (A.4)

where snil is the size of Nilsimsa digests (256 bits), nnodes is the number of nodes in the Chord
network, L f t the size of the routing table of each node, and Lrp the size of the list of reference
points stored in each node. We choose the number of entries in each finger table as m = log(N),
where N is the number of nodes. The finger table size is:

L f t = (2 ·Lid ·m)+LidP +LidS (bits) (A.5)

where Lid is the ID length of each one of the m entries (Key and value), LidP is the ID length of
the predecessor node, and LidS the ID length of the successor node. These values are necessary
information to the management of the Chord nodes. Also, Lrp refers to a list of digests which
represent the reference nodes which is kept by each node to manage the search. Its length is:

Lrp = nr f · snil (bits) (A.6)

where nr f is the reference points number chosen.

A.3 iCPTH

The same formula used by DHTnil is applied to iCPTH (Eq. A.4). The difference
here is the digest size, where ssdeep is used instead of Nilsimsa.
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A.4 F2S2

Eq. A.7 estimates the amount of memory required for this strategy,

mF2S2 = n · sss · (1+ p f ac)+ sname (bytes) (A.7)

where sss is the size of ssdeep digests, p f ac the payload factor added for the index (between 7-8)
and sname the length of each object name in the reference list.

A.5 MRSH-NET

To calculate the amount of memory required for the MRSH-NET approach, we can
use the equation from Breitinger’s work (BREITINGER et al., 2014a):

mMRSH−NET =
k · s ·214

ln(1− k·rmin
√p f )

(bits) (A.8)

where k denotes the number of sub-hashes, s the object set size in MiB, 214 the number of
features in the set s, rmin the number of following features required to produce a match, and p f

the probability of false positive for a fragment of an object.

A.6 HBFT

Estimating the amount of memory required for this approach can be done using
Breitinger’s equations (BREITINGER et al., 2014a). We first need to determine the size of the
root bloom filter, using Eq. A.9:

mBFroot =

⌈
−z · ln(p)

ln(2)2

⌉
(bits) (A.9)

where z is the number of features in the set (Eq. A.2) and p the false positive probability for
a single feature, calculated by p = rmin

√p f . The parameter rmin is the number of consecutive
features needed to be found in the filter and p f the false positive probability for a fragment of
an object.

The next step involves calculating the level of the tree, using Eq. A.10.

h = logx(n), (A.10)

where x is the degree of the tree (e.g. x = 2 for a binary tree).

Then we calculate the memory required for the HBFT structure using Eq. A.11:

mBFtree = mBFroot ·h (bits) (A.11)

where mBFroot is root bloom filter size (Eq. A.9) and h the level of the tree (Eq. A.10).
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A.7 MRSH-CF

To estimate the amount of memory required for MRSH-CF, we first need to compute
the tag size for each item, which can be done using Eq. A.12.

f = log2(1/p)+ log2(2 ·b) (bits) (A.12)

Here, p is the false positive probability for a single feature and b the number of entries of each
bucket in the hash table.

Then, we need to estimate the average of bits per item C. According to Fan, B.
et al. (FAN et al., 2014), each entry in the hash table stores one fingerprint, but not all of
them are occupied. This way, there must be some slack in the table to the avoid failures when
inserting new items, making each item cost more than a fingerprint. This value can be calculate
by Eq. A.13,

C =
f
α

(bits/item) (A.13)

where α (load factor) is used to express the percentage of the filter currently used (0≤ α ≤ 1).

Finally, we can estimate the amount of memory required by MRSH-CF using Eq. A.14:

mMRSH−CF = z ·C (bits) (A.14)

where z is the number of features extracted from the reference list (Eq. A.2) and C the average
bit per item (Eq. A.13).

A.8 Parameters

For our experiments, we have adopted the parameters described in Table A.1.



APPENDIX A. Similarity Digest Search Strategies operational costs 207

Table A.1 – Similarity digest search strategies experiments - Parameters

Parameter Value

sss(ssdeep) 96 (bytes)
sss(T LSH) 35 (bytes)
snil 256 (bits)
sb f 2048 (bits)
fmax 160 (features)
k 5 (sub-hashes)
rmin 6 (features)
p f 10−6

p 0.1
x 2 (binary)
α 0.95
b 4 (items/bucket)
p f ac 8
sname 10 (bytes)
Lid/LidP/LidS 160 (bits)
m 10 (nodes)
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APPENDIX B – Analysis results of the
t5-corpus data set

This appendix presents information and results about one of the data sets used along
this thesis: The t5-corpus. These information are pertinent to Chapter 5, where we use all these
data to perform our experiments.

In Table B.1, we present the objects that compose the Target data set, extracted
from the t5-corpus. The remaining objects of t5-corpus compose the Known data set. Both sets
were used to simulate real-world investigations, where we compared one set to the other to find
similarity among objects.

We also present in this appendix the results of a manual analysis performed in some
comparisons between t5-corpus objects that had some level of similarity pointed out by the AM
tools. We classified these matches according to their similarity classes, as defined in Sec. 5.3.
Table B.2 summarizes our results. Note that some matches compare objects of different types
(e.g., doc vs. html), which is due to similar content or common features.

Table B.1 – List of objects that compose the Target data set (extracted from t5-corpus)

000004.doc 000114.doc 000251.doc 000268.doc 000698.doc
000968.doc 001466.doc 001645.doc 001647.doc 002375.doc
002394.doc 002403.doc 002687.doc 003646.doc 004420.doc
004862.doc 004863.doc 002661.doc 003317.doc 003345.doc
000047.xls 000048.xls 000050.xls 000397.xls 000777.xls
001093.xls 001110.xls 001978.xls 002879.xls 004705.xls
000314.ppt 000558.ppt 000712.ppt 000985.ppt 000986.ppt
001891.ppt 001911.ppt 004113.ppt 004610.ppt 004968.ppt

000197.html 000189.html 000199.html 000214.html 000816.html
001329.html 002107.html 002120.html 002123.html 002245.html
002933.html 002950.html 003041.html 003485.html 003497.html
003751.html 003892.html 004338.html 004515.html 004915.html
000020.pdf 000159.pdf 000158.pdf 000168.pdf 000592.pdf
000738.pdf 001278.pdf 001301.pdf 001672.pdf 001675.pdf
002852.pdf 003047.pdf 003049.pdf 003189.pdf 003299.pdf
003668.pdf 003693.pdf 004336.pdf 004448.pdf 004682.pdf

Continued on next page
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Table B.1 – Continued from previous page

000863.text 000835.text 001818.text 002816.text 002817.text
003112.text 003547.text 003548.text 004222.text 004229.text
000543.gif 000545.gif 000534.gif 004270.gif 004542.gif
001239.jpg 002635.jpg 000906.jpg 004292.jpg 000505.jpg

Table B.2 – List of objects that compose the Known data set (extracted from t5-corpus)

Object 1 Object 2 Similarity class

000003.doc 000002.doc UGC
004317.doc 004357.html UGC
004410.doc 004499.html UGC
001466.doc 001467.doc UGC
004610.ppt 004558.doc UGC
004863.doc 004862.doc UGC
004863.doc 004944.html UGC
001639.doc 001649.doc UGC
001647.doc 001630.doc UGC
001637.doc 001638.doc UGC
001645.doc 001646.doc UGC
003043.doc 003044.doc UGC
002687.doc 002682.doc UGC
003358.ppt 003344.doc UGC
002154.doc 002145.doc UGC
000671.doc 000788.html UGC
000692.doc 000838.text UGC
003646.doc 003637.doc UGC
004420.doc 004413.doc TC
001619.doc 001621.doc TC
000274.doc 003617.doc TC
001264.doc 001263.doc TC
000699.doc 000697.doc TC
000005.doc 000004.doc TC
000005.doc 000696.doc TC
000005.doc 003345.doc TC
000005.doc 003331.doc TC

Continued on next page
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Table B.2 – Continued from previous page

Object 1 Object 2 Similarity class

000004.doc 000696.doc TC
000004.doc 003345.doc TC
000004.doc 003331.doc TC
003345.doc 003331.doc TC
000696.doc 003345.doc TC
000696.doc 003331.doc TC
000968.doc 002154.doc TC
000968.doc 002145.doc TC
000968.doc 003619.doc TC
000251.doc 000968.doc TC
000251.doc 002154.doc TC
000251.doc 002145.doc TC
000251.doc 003619.doc TC
002145.doc 003619.doc TC
002154.doc 003619.doc TC
001873.doc 003646.doc TC
001873.doc 003637.doc TC
000277.doc 003646.doc TC
000277.doc 003637.doc TC
001631.doc 001643.doc AGC
001871.doc 004053.doc AGC
000252.doc 001631.doc AGC
002661.doc 003634.doc AGC
002661.doc 004548.doc AGC
002381.doc 004066.doc AGC
004077.doc 004066.doc AGC
004081.doc 004066.doc AGC
004063.doc 004963.doc AGC
004419.doc 004411.doc AGC
001466.doc 002404.doc AGC
001466.doc 004066.doc AGC
004419.doc 004963.doc AGC
004548.doc 004561.doc AGC
004548.doc 004572.doc AGC
001465.doc 003634.doc AGC
001465.doc 003616.doc AGC

Continued on next page
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Table B.2 – Continued from previous page

Object 1 Object 2 Similarity class

001465.doc 004066.doc AGC
001465.doc 004548.doc AGC
003157.doc 003351.doc AGC
001463.doc 004548.doc AGC
001628.doc 001618.doc AGC
001467.doc 002404.doc AGC
001614.doc 004548.doc AGC
003320.doc 004063.doc AGC
003320.doc 004419.doc AGC
003325.doc 003351.doc AGC
003325.doc 004066.doc AGC
003325.doc 004063.doc AGC
003325.doc 004419.doc AGC
003338.doc 004066.doc AGC
003158.doc 003634.doc AGC
003158.doc 004548.doc AGC
003318.doc 004063.doc AGC
003310.doc 004063.doc AGC
003310.doc 004419.doc AGC
003319.doc 004063.doc AGC
003319.doc 004419.doc AGC
003329.doc 003351.doc AGC
003329.doc 004063.doc AGC
003329.doc 004419.doc AGC
003337.doc 004063.doc AGC
003337.doc 003351.doc AGC
003337.doc 004419.doc AGC
001882.doc 003325.doc AGC
001882.doc 003310.doc AGC
001882.doc 003319.doc AGC
001882.doc 003329.doc AGC
001882.doc 003337.doc AGC
001882.doc 003335.doc AGC
001882.doc 003618.doc AGC
001882.doc 004411.doc AGC
001882.doc 004963.doc AGC

Continued on next page
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Table B.2 – Continued from previous page

Object 1 Object 2 Similarity class

003335.doc 003351.doc AGC
003335.doc 004419.doc AGC
003618.doc 003351.doc AGC
003351.doc 004411.doc AGC
003351.doc 004963.doc AGC
000698.doc 000693.doc AGC
000698.doc 001882.doc AGC
000698.doc 003351.doc AGC
000698.doc 004063.doc AGC
000698.doc 004419.doc AGC
000256.doc 001853.doc AGC
000256.doc 001882.doc AGC
000256.doc 004419.doc AGC
000268.doc 000693.doc AGC
000268.doc 003351.doc AGC
000268.doc 004063.doc AGC
000268.doc 004419.doc AGC
000272.doc 000691.doc AGC
000272.doc 001882.doc AGC
000272.doc 003351.doc AGC
000272.doc 004419.doc AGC
003618.doc 004063.doc AGC
003618.doc 004419.doc AGC
003634.doc 004073.doc AGC
003634.doc 004561.doc AGC
003634.doc 004572.doc AGC
001618.doc 003634.doc AGC
001618.doc 004548.doc AGC
001853.doc 003320.doc AGC
001853.doc 003325.doc AGC
001626.doc 003634.doc AGC
000706.doc 004419.doc AGC
000694.doc 003634.doc AGC
000704.doc 004548.doc AGC
000691.doc 003335.doc AGC
000693.doc 003319.doc AGC

Continued on next page
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Table B.2 – Continued from previous page

Object 1 Object 2 Similarity class

000703.doc 001628.doc AGC
000703.doc 003629.doc AGC
000703.doc 003634.doc AGC
000703.doc 003616.doc AGC
000703.doc 004548.doc AGC
000955.doc 003623.doc AGC
000955.doc 003634.doc AGC
000955.doc 004548.doc AGC
000952.doc 004963.doc AGC
000978.doc 003634.doc AGC
000978.doc 004548.doc AGC
002142.doc 002404.doc AGC
002142.doc 004066.doc AGC
002142.doc 004578.doc AGC
000250.doc 003634.doc AGC
000263.doc 003634.doc AGC
000263.doc 004548.doc AGC
000266.doc 003634.doc AGC
000266.doc 004548.doc AGC
000279.doc 003634.doc AGC
000285.doc 003351.doc AGC
000285.doc 004419.doc AGC
002394.doc 002404.doc AGC
002394.doc 003632.doc AGC
002394.doc 004066.doc AGC
002375.doc 003632.doc AGC
002375.doc 004066.doc AGC
002387.doc 004066.doc AGC
002404.doc 003161.doc AGC
002404.doc 003338.doc AGC
000701.doc 004066.doc AGC
000289.ppt 001643.doc AGC
001281.pdf 001297.pdf UGC
003975.pdf 003979.pdf UGC
003049.pdf 003046.pdf UGC
004968.ppt 004974.pdf UGC

Continued on next page
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Table B.2 – Continued from previous page

Object 1 Object 2 Similarity class

004967.ppt 004974.pdf UGC
003300.pdf 003297.pdf UGC
003299.pdf 003296.pdf UGC
000148.pdf 000158.pdf UGC
002463.pdf 002453.pdf UGC
000348.pdf 000370.pdf UGC
000743.pdf 000740.pdf UGC
001363.pdf 001368.pdf UGC
001054.pdf 003693.pdf AGC
001301.pdf 004682.pdf AGC
001689.pdf 003972.pdf AGC
001939.pdf 003047.pdf AGC
001939.pdf 004118.pdf AGC
000167.pdf 001689.pdf AGC
000592.pdf 001301.pdf AGC
000592.pdf 003189.pdf AGC
000765.pdf 003173.pdf AGC
001675.pdf 001672.pdf AGC
001675.pdf 002203.pdf AGC
004683.pdf 004682.pdf AGC
002852.pdf 003189.pdf AGC
002852.pdf 004682.pdf AGC
003189.pdf 004683.pdf AGC
003189.pdf 004682.pdf AGC
001301.pdf 002852.pdf AGC
001301.pdf 003189.pdf AGC
001301.pdf 004683.pdf AGC
001672.pdf 002203.pdf AGC
000152.pdf 001672.pdf AGC
000152.pdf 002203.pdf AGC
000592.pdf 002852.pdf AGC
000592.pdf 004683.pdf AGC
000746.pdf 001675.pdf AGC
000746.pdf 001672.pdf AGC
000746.pdf 002203.pdf AGC
000152.pdf 000746.pdf AGC

Continued on next page
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Table B.2 – Continued from previous page

Object 1 Object 2 Similarity class

000152.pdf 001675.pdf AGC
002816.text 002817.text UGC
003925.text 003932.text UGC
004222.text 004229.text UGC
004760.text 004743.html UGC
004784.text 004805.text UGC
004790.text 004791.text UGC
002927.text 002918.html UGC
003027.text 003026.text UGC
001817.text 001818.text UGC
003264.text 003262.text UGC
000228.text 000227.text UGC
000228.text 000556.text UGC
003931.text 003929.text UGC
004026.text 004027.text UGC
003926.text 003930.text UGC
002285.text 002283.text UGC
000227.text 000556.text UGC
000835.text 000846.text UGC
000692.doc 000838.text UGC
000837.text 000836.text UGC
001160.text 001163.text UGC
003548.text 003547.text UGC
003092.html 003112.text UGC
003112.text 003111.text UGC
003012.text 003013.text UGC
000863.text 004957.text TC
000497.text 000496.text TC
004264.text 004419.doc AGC
004642.pdf 004219.text AGC

001399.html 001396.html UGC
003122.html 003123.html UGC
001795.html 001798.html UGC
000671.doc 000788.html UGC
001317.html 001316.html UGC
002927.text 002918.html UGC

Continued on next page
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Table B.2 – Continued from previous page

Object 1 Object 2 Similarity class

003745.html 003742.html UGC
002558.html 003602.html TC
002558.html 003600.html TC
001402.html 004341.html TC
001525.html 001529.html TC
003494.html 004198.html TC
003224.html 004198.html TC
002261.html 002226.html TC
001405.html 002343.html TC
001405.html 003095.html TC
004020.html 004514.html TC
001574.html 001573.html TC
001574.html 002023.html TC
001574.html 003745.html TC
001574.html 003742.html TC
001579.html 002955.html TC
001579.html 002954.html TC
004482.html 004480.html TC
001538.html 003993.html TC
001538.html 004020.html TC
001538.html 004514.html TC
001713.html 004340.html TC
001733.html 003249.html TC
000450.html 003095.html TC
001531.html 001771.html TC
001531.html 003506.html TC
001531.html 003901.html TC
001531.html 004920.html TC
003506.html 003901.html TC
003506.html 004920.html TC
001573.html 002023.html TC
001573.html 003745.html TC
001258.html 004181.html TC
000791.html 001708.html TC
000608.html 003254.html TC
000428.html 002360.html TC

Continued on next page
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Table B.2 – Continued from previous page

Object 1 Object 2 Similarity class

002536.html 002531.html TC
002030.html 003909.html TC
002034.html 002549.html TC
002119.html 002934.html TC
002008.html 003716.html TC
002107.html 002120.html TC
003715.html 004934.html TC
003732.html 003508.html TC
003474.html 003998.html TC
003467.html 003219.html TC
003106.html 004174.html TC
001797.html 002360.html TC
001743.html 004347.html TC
001402.html 003466.html TC
002757.html 004934.html TC
002773.html 003254.html TC
001419.html 003124.html TC
004934.html 004922.html TC
001527.html 002549.html TC
004757.html 004339.html TC
003901.html 004920.html TC
003716.html 004757.html TC
001317.html 001797.html TC
004347.html 003508.html TC
002535.html 002561.html TC
004210.html 003733.html TC
004343.html 004352.html TC
001718.html 001703.html TC
001728.html 002915.html TC
003257.html 003904.html TC
000059.html 000060.html TC
001725.html 001729.html TC
003466.html 003487.html TC
004021.html 004019.html TC
001740.html 004947.html TC
000412.html 000875.html TC

Continued on next page
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Table B.2 – Continued from previous page

Object 1 Object 2 Similarity class

000447.html 001334.html TC
000416.html 003237.html TC
000416.html 003902.html TC
000457.html 003088.html TC
001116.html 003992.html TC
001152.html 001155.html TC
001117.html 003992.html TC
004014.html 004495.html TC
004014.html 004503.html TC
003057.html 003055.html TC
002263.html 001712.html TC
002557.html 003487.html TC
003483.html 004003.html AGC
001410.html 004003.html AGC
004014.html 004910.html AGC
004495.html 004910.html AGC
004503.html 004910.html AGC
002627.jpg 004088.ppt UGC
000132.ppt 002627.jpg UGC
004296.jpg 004293.jpg UGC
000521.jpg 000510.jpg UGC
002627.jpg 002407.doc AGC
002627.jpg 002834.doc AGC
002627.jpg 003369.ppt AGC
002627.jpg 004105.ppt AGC
002627.jpg 004627.ppt AGC
002627.jpg 004967.ppt AGC
002627.jpg 004971.ppt AGC
002131.jpg 002627.jpg AGC
002313.ppt 002627.jpg AGC
002434.ppt 002627.jpg AGC
000316.ppt 001239.jpg AGC
000316.ppt 002627.jpg AGC
002303.jpg 002627.jpg AGC
002441.ppt 002627.jpg AGC
000309.ppt 001239.jpg AGC

Continued on next page
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Table B.2 – Continued from previous page

Object 1 Object 2 Similarity class

000309.ppt 002627.jpg AGC
001239.jpg 002407.doc AGC
001239.jpg 002627.jpg AGC
001239.jpg 004088.ppt AGC
001239.jpg 004105.ppt AGC
001239.jpg 004967.ppt AGC
001239.jpg 004971.ppt AGC
000050.xls 002638.jpg AGC
000034.xls 002635.jpg AGC
000883.jpg 001989.xls AGC
001239.jpg 002356.pdf AGC
000534.gif 002804.text AGC
000545.gif 002015.html AGC
000543.gif 001100.xls AGC
002407.doc 004292.jpg AGC
003278.jpg 003652.ppt AGC
000505.jpg 004292.jpg AGC
001239.jpg 002131.jpg AGC
000627.jpg 002836.doc AGC
002421.ppt 003285.jpg AGC
000132.ppt 002303.jpg AGC
003278.jpg 003286.jpg AGC
001354.jpg 003606.jpg AGC
003608.jpg 004040.jpg AGC
003286.jpg 003360.ppt AGC
000124.doc 002647.jpg AGC
002441.ppt 003278.jpg AGC
001239.jpg 002313.ppt AGC
000541.jpg 004595.ppt AGC
002092.jpg 003286.jpg AGC
003278.jpg 003383.ppt AGC
003583.jpg 004042.jpg AGC
002092.jpg 002117.jpg AGC
002647.jpg 003606.jpg AGC
002134.jpg 002659.jpg AGC
003360.ppt 003285.jpg AGC

Continued on next page
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Table B.2 – Continued from previous page

Object 1 Object 2 Similarity class

002647.jpg 004623.ppt AGC
003583.jpg 004432.ppt AGC
002655.jpg 002659.jpg AGC
003278.jpg 003584.jpg AGC
002421.ppt 002659.jpg AGC
001239.jpg 002441.ppt AGC
000872.jpg 002117.jpg AGC
004862.doc 004944.html UGC
002683.doc 002686.doc UGC
003646.doc 003637.doc UGC
001849.doc 001858.doc UGC
004360.html 004317.doc UGC
004424.doc 004422.doc UGC
004548.doc 004547.doc UGC
001877.doc 001875.doc UGC
004863.doc 004944.html UGC
001642.doc 004317.doc TC
000001.doc 000006.doc TC
000123.doc 000129.doc TC
000260.doc 000276.doc TC
000983.ppt 000966.doc TC
000254.doc 003612.doc TC
000957.doc 003612.doc TC
000984.ppt 000966.doc TC
000980.doc 003044.doc AGC
000952.doc 004566.doc AGC
000967.doc 004066.doc AGC
000693.doc 003325.doc AGC
000685.doc 001882.doc AGC
000691.doc 004553.doc AGC
000691.doc 000676.doc AGC
000690.doc 002404.doc AGC
000706.doc 001886.doc AGC
000675.doc 000706.doc AGC
002382.doc 003634.doc AGC
000265.doc 003632.doc AGC

Continued on next page
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Table B.2 – Continued from previous page

Object 1 Object 2 Similarity class

000254.doc 004046.doc AGC
002144.doc 003351.doc AGC
000130.doc 001882.doc AGC
001628.doc 003158.doc AGC
002985.doc 003351.doc AGC
002683.doc 004063.doc AGC
003391.ppt 004962.doc AGC
003361.ppt 004962.doc AGC

004504.html 004583.doc AGC
002963.text 004054.doc AGC
001869.doc 002985.doc AGC
003867.pdf 004569.doc AGC
000289.ppt 001631.doc AGC
002403.doc 003662.ppt AGC
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