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Abstract

As the title suggests, the focus of this research is the development of a new
quadratic relaxation for binary problems, its formalization in theoretical results,
and the application of the new concepts in applications to the reliability of elec-
tric power networks, segmentation of nerve root images, and distance geometry
problems. Mathematical models with binary decision variables can be used to
find the best solutions for the decision-making process, usually leading to dif-
ficult combinatorial optimization problems. The solution to these problems in
practical applications requires a high computational effort; therefore, over the
past years, it has been the subject of research in the area of metaheuristics. The
ideas developed in this thesis open new perspectives for addressing these prob-
lems using nonlinear optimization approaches, an area that has been populated
by very efficient solvers.

The initial developments explore the formal aspects of the relaxation in the
context of a quadratic unconstrained binary optimization problem. The use
of the proposed relaxation allows to create three structures to deal with this
class of problems and explores the objective function convexity to improve the
computational performance. Case studies compare the proposed relaxation with
the previous relaxations proposed in the literature.

Three new applications were developed to explore the theoretical develop-
ments of this research. The first application concerns the improvement of the
reliability of electric power distribution networks. Specifically, it deals with the
problem of defining the best allocation for remote fault sensors, allowing to reduce
the consequence of the faults and to improve the resilience of the networks. The
second application explores the segmentation of medical images related to nerve
root structures. The proposed approach regards the segmentation problem as a
binary optimization problem, where measuring each axon is equivalent to find-
ing a Hamiltonian cycle for a particular case of the traveling salesman problem;
the solution to these problems provides the descriptive statistics of the axon set,
including the number of axons, their diameters, and the area used by each axon.



The last application designs a mathematical model for the unassigned distance
geometry problem, an incipient research area with many open problems. The
relaxation developed in this research allowed to solve instances with more than
twenty thousand binary variables. These results can be seen as good indicators
of the benefits attainable with the theoretical aspects of the research and opens
new perspectives for applications, which include innovations in nanotechnology
and bio-engineering.

Key-words: Quadratic relaxation, quadratic unconstrained binary optimization,
quadratic functions, reliability of power distribution networks, segmentation of
nerve root images, distance geometry problems.



Resumo

Como o título sugere, o foco desta pesquisa é o desenvolvimento de uma nova
relaxação quadrática para problemas binários, sua formalização em resultados
teóricos, e a aplicação dos novos conceitos em aplicações a confiabilidade de redes
de energia elétrica, a segmentação de imagens médicas de nervos e a problemas
de geometria de distâncias. Modelos matemáticos contendo va-riáveis de decisões
binárias podem ser usados para encontrar as melhores soluções em processos de
tomada de decisões, normalmente caracterizando problemas de otimização com-
binatória difíceis. A solução desses problemas em aplicações de interesse prático
requer um grande esforço computacional; por isso, ao longo dos últimos anos, têm
sido objeto de pesquisas na área de metaheurísticas. As ideias aqui desenvolvi-
das abrem novas perspectivas para a abordagem desses problemas apoiando-se em
métodos de otimização não-lineares, área que vem sendo povoada por "solvers"
muito eficientes.

Inicialmente, explorando aspectos formais, a relaxação desenvolvida é parti-
cularizada para um problema de otimização quadrática binária irrestrita. O re-
laxamento permite o desenvolvimento de três estruturas para abordar esta classe
de problemas, e explora a convexidade da função objetivo para obter melhorias
computacionais. Estudos de casos compararam o relaxamento proposto com os
relaxamentos similares apresentados na literatura.

Foram desenvolvidas três aplicações para os desenvolvimentos teóricos da
pesquisa. A primeira aplicação envolve a melhoria da confiabilidade de redes
de energia elétrica. Especificamente, aborda o problema de definir a melhor al-
ternativa para a alocação de sensores na rede, o que permite reduzir os efeitos de
ocorrências indesejáveis e ampliar a resiliência das redes. A segunda aplicação en-
volve o problema de segmentação de imagens médicas associadas a estruturas de
nervos. A abordagem proposta interpreta o problema de segmentação como um
problema de otimização binária, onde medir cada axônio significa encontrar um
ciclo Hamiltoniano, um caso do problema do caixeiro viajante; a solução desses
problemas fornece a estatística descritiva para um conjunto de axônios, incluindo



o número (de axônios), os diâmetros e as áreas ocupadas. A última aplicação
elabora um modelo matemático para o problema de geometria de distâncias sem
designação, área ainda pouco estudada e com muitos aspectos em aberto. A re-
laxação desenvolvida na pesquisa permitiu resolver instâncias com mais de vinte
mil variáveis binárias. Esses resultados são bons indicadores dos benefícios al-
cançáveis com os aspectos teóricos da pesquisa, e abrem novas perspectivas para
as aplicações, que incluem inovações em nanotecnologia e bioengenharia.

Palavras-chave: Relaxação binária, otimização quadrática binária irrestrita, funções
quadráticas, confiabilidade de redes de energia elétrica, interpretação de imagens
médicas, problema de geometria de distâncias.
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CHAPTER 1

Introduction

The core of this thesis is the proposal of a new quadratic relaxation for binary variables.

A set of theoretical results gives support for the proposed methodology, which is applied to

innovative formulations for problems in the reliability of power distribution systems, medical

image interpretation, and distance geometry problems.

The text is organized into three parts. The first part contains the main concepts of integer

and quadratic programming that give the foundation of this research and the theoretical

aspects of the relaxation. The second part contains applications of the relaxation for the

placement of fault sensors, medical image segmentation, and geometry distance problems.

The third part contains general discussions and conclusions.

The first part starts with an overview of the theoretical aspects of binary programming

and quadratic programming in Chapter 2. The Lagrangian duality theory for quadratic

programming and necessary and sufficient properties for global solutions of quadratic pro-

gramming are presented. The chapter ends with theoretical aspects of the quadratically

constrained quadratic program. Chapter 3 presents the proposed relaxation for binary vari-

ables. The first theoretical result proves that the constraint set used in the relaxation adds

integrality property to the problem. The second result shows that a single constraint can

replace the constraint set without entailing the loss of generality. The convexity properties

of the single constraint are explored in the final part of the chapter.

Chapter 4 extends the theoretical results to the quadratic unconstrained binary optimiza-

tion (QUBO) and uses the QUBOmodel to evaluate the quality of the proposed methodology.

The first part of the chapter presents the theoretical results from the interaction between the

17
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QUBO model formulation and the proposed relaxation. Next, numerical studies compare

the proposed relaxation with previous relaxations on the literature. The chapter ends with

evaluations of the relaxation robustness related to the initial point solution and the existence

of elements in the diagonal of the objective function matrix.

Part II provides three applications split into three chapters. Chapter 5 takes advantage

of the results from Chapter 4 to model and solve the problem of placing fault sensors in a

distribution network. The problem is modeled as an integer linear programming problem

where the objective function minimizes the detection time of the faults by the recloser. Since

the faults have a stochastic behavior, a local search uses a Monte Carlo simulation to evaluate

and improve the quality of the solutions provided by the optimization model. A case study

explores the benefits and limitations of the proposed methodology.

Chapter 6 introduces a medical image segmentation application interpreted as a combi-

natorial optimization problem. This application was modeled using the Hamiltonian Cycle

problem to avoid segmentation methods based on pattern recognition, such as machine learn-

ing techniques. The idea of using binary relaxation aims to overcome the NP-completeness

nature of the Hamiltonian Cycle problem. However, even with the relaxation of the binary

variables, this strategy requires a series of resizing steps, which may introduce noises that

alter the quality of the image segmentation. The alternative to tackle the problem is the

proposal of a flood-fill algorithm that requires a lighter image processing phase to handle

this medical image segmentation problem.

Chapter 7 explores the unassigned distance geometry problem, one of the branches of the

distance geometry field. This chapter offers a new mathematical formulation for problems

using binary and continuous variables in a combination of linear and nonlinear constraint sets.

The use of the proposed relaxation allows to tackle high-dimension instances. Computational

studies explore the quality of the proposed model and the advantages of relaxing the binary

variables.

In the final part of this thesis, Chapter 8 presents the main conclusions about the proposed

methodology and the main contributions in each one of the applications.

18



Part I

Theoretical results
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CHAPTER 2

Selected concepts in integer and quadratic optimizations

This chapter summarizes some of the classical results in optimization that provides the

basis for the theoretical contributions in this thesis. It contains concepts about binary and

quadratic programming, such as definitions, computational complexity, and solution ap-

proaches. Section 2.2 brings the concepts related to binary programming, including solution

techniques using linearization and relaxation for binary variables. Section 2.3 summarizes

concepts related to the formulation of quadratic programming problems, Lagrangian duality,

penalty methods, and quadratically constrained quadratic programming.

2.1 Introduction

Considering the following optimization problem

min f(x)

s.t. x ∈ Ω,

where f : Rn → R, x ∈ Rn, and Ω ⊆ Rn.

In the case where f is convex, the components of the vector x are continuous, and the

constraint set Ω is a convex set, the optimization problem can usually be solved in polynomial

time, using techniques such as the interior-point methods (Bazaraa & Shetty 2012).

However, problems with integer variables are non-convex, the search space is discrete,

and the direct use of the methods developed for continuous optimization does not guaran-

tee the achievement of global optimal solutions or even feasible solutions. In such cases,

20
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global optimal solutions can be achieved with the combination of methods for continuous

optimization and enumeration techniques (Morrison et al. 2016). Some of these approaches

are the cutting plane technique and the branch-and-bound technique, but none of them is

a polynomial-time algorithm (Wolsey & Nemhauser 1999). If the integer variables are in

a binary domain such as {0, 1} or {−1, 1}, the problem is characterized as a binary opti-

mization problem, which in general is NP-hard (Garey & Johnson 1979). These aspects are

discussed in the following section.

2.2 Binary programming

An optimization problem belongs to the integer programming class if the optimization

variables x are defined in an integer domain. In the general case, integer programming

problems are NP-hard; however, special cases are solvable in polynomial time, such as the

matching problem and some knapsack problems, shortest path, max-flow (Garey & Johnson

1979). A subclass of integer programming is the binary problem, which can contain {0, 1} or

{−1, 1} variables. Binary variables are employed to model decision, assignment, and location

problems and they are frequently employed in engineering problems, such as optimization of

the design of structures (Stolpe & Sandal 2018) and the modeling of distances in molecular

structures (Liberti et al. 2011).

The nature of the objective function and the constraint set are the essential information

for the decision about a suitable solution method for a binary optimization problem. When

considering a linear objective function and linear constraints, the solution methods are fre-

quently based on implicit enumeration techniques, where systematic evaluations create a

solution tree to guide the search for the optimal solution. Another idea is the cutting-plane

methods that proposes an equivalent continuous problem to replace the integer program-

ming problem, by adding a suitable set of constraints to the continuous formulations. Each

constraint added to the problem works as a valid inequality cutting the convex hull and

improving the description of the polyhedron around the optimum. The combination of im-

plicit enumeration and the cutting-plane strategies is frequent used in optimization solvers,

because it improves the computational effort and the numerical stability.

The general case of nonlinear binary optimization problems is NP-hard due to both the

nature of the constraint set and the binary variables. For the cases where the constraint

set is composed by the product of variables there are linearization techniques to convert the

product of two binary variables into a single new binary variable, creating a new optimization
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problem with a linear constraint set and binary variables (Liberti 2007, Anthony et al. 2017,

Mallach 2018).

An example of these strategies is the McCormick envelopes (McCormick 1976). The

McCormick envelopes technique creates a new set of linear constraints to replace the product

xixj by using the bounds of xi (xi, xi) and xj (xj, xj). The product is computed by a new

variable yij = xixj, and the following set of constraints is added to the problem.

yij ≥ xixj + xixj − xixj

yij ≥ xixj + xixj − xixj

yij ≤ xixj + xixj − xixj

yij ≤ xixj + xixj − xjxj.

The number of new variables depends on the number of quadratic terms; each multipli-

cation pair entails a new variable and four additional constraints. The reformulation results

in a linear problem with binary variables.

Another idea to deal with the complexity introduced by the binary variables is the relax-

ation of the binary variables into a continuous interval. This strategy allows to tackle the

problem with optimization techniques for continuous variables. The relaxation techniques

may include additional constraints to ensure the integrality of the solution. Three quadratic

relaxation procedures to tackle binary optimization problems are next reported (Kochen-

berger et al. 2014). In the first one, the binary variables xi ∈ {0, 1} are relaxed as xi ∈ [0, 1],

with the addition of quadratic constraints xi(xi − 1) = 0 — one constraint for each binary

variable in the original model.

In the second procedure, binary variables yi ∈ {−1, 1} replace the binary variables xi ∈

{0, 1}, using the transformation yi = 2xi − 1. Following, the variables yi are relaxed as

yi ∈ [−1, 1] with the addition of the constraints y2i = 1. Both transformations map the

original combinatorial optimization problems into nonconvex and nonlinear optimization

problems. Note that the first and second relaxation approaches are equivalent because

y2i = 1 ⇐⇒ (2xi − 1)2 = 1; therefore, 4xi(xi − 1) = 0 and xi(xi − 1) = 0.

The third idea to relax binary variables is to include in the objective function a penal-

ization term known as the artificial power law, or solid isotropic material with penalization

(SIMP). The binary variables xi are replaced by (xi)
p in the objective function, where p ≥ 1

and xi ∈ [0, 1]. The SIMP approach was proposed by Bendsøe (1989) and improved by

Martinez (2005). Martinez (2005) proved that a binary solution is assured for the SIMP
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methodology if a constraint limiting the maximum number of binary variables equal to one

is included in the formulation. This strategy does not entail extra variables in the formula-

tion; however, the requirement that the number of binary variables equal to one is known a

priori restrains the domain of applications of the SIMP approach.

2.3 Quadratic programming

An optimization problem can be called a quadratic programming problem when the ob-

jective function f is quadratic and the constraint set is linear — the quadratic programming

area also includes problems with linear objective function and quadratic constraint sets.

The solution methods for quadratic programming include interior-point methods, conjugate

gradient method, gradient projection method, trust-region method and some extensions of

the simplex algorithm (Bertsekas 1997). Necessary and sufficient optimality conditions for

quadratic problems are based on Lagrangian duality whose main concepts are presented

next.

2.3.1 Lagrangian duality and penalty methods

Consider the following optimization problem with equality and inequality constraint sets,

min f(x)

s.t. g(x) = 0, (2.1)

h(x) ≤ 0,

x ∈ Ω,

where f : Rn → R, g = (g1, . . . , gk), and h = (h1, . . . , hm) are convex functions, with

gi(x) : Rn → R, i = 1, . . . , k and hj : Rn → R, j = 1, . . . ,m. All the functions are supposed

to be differentiable, i.e., they are in C1.

The Lagrangian function of problem (2.1) is defined as (2.2),

L(x, λ, µ) = f(x) + λTg(x) + µTh(x), (2.2)

where λ = (λ1, . . . , λk) and µ = (µ1, . . . , µn).

The Lagrangian function (2.2) is a key concept to obtain the optimality conditions for

the Problem (2.1), expressed, for instance in the Karush-Kuhn-Tucker (KKT) conditions

(Luenberger & Ye 2003). Also, the Lagrangian function can be used to design optimization
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approaches to obtain the optimal solutions to the problem (2.1) (Lasdon 2011).

In this research, the Lagrangian ideas are revisited with the perspective of the penalty

methods, as follows.

Consider again the problem

min f(x) (2.3)

s.t. x ∈ Ω

Now consider the problem (2.4) that expresses the minimization of a Lagrangian function

associated to the Problem (2.3),

min
x

L(x, β) = f(x) + βg(x). (2.4)

For the problems studied in the thesis, the Lagrangian multiplier β is interpreted as a penalty

parameter, the function f is linear or quadratic, and the function g is a single quadratic

function, g : Rn → R.

Using the perspective of the penalty methods (Luenberger & Ye 2003), there is a multi-

plier β for which an optimal solution x∗ to the problem (2.4) is an optimal solution to the

problem (2.3) if f is continuous and g(x) satisfy three following conditions:

1. g(x) is continuous;

2. g(x) ≥ 0 ∀x ∈ Rn;

3. g(x) = 0 ⇐⇒ x ∈ Ω.

2.3.2 Quadratically constrained quadratic program

An extension of the quadratic programming is the quadratically constrained quadratic

programming problem (QPQC), which is NP-hard in the general case (Köppe 2012, Burer &

Letchford 2012). The QPQC is frequently used to model statistical problems (Albers et al.

2011); in this research, it is used to model the unconstrained distance geometry problem

presented in Chapter 7.

The QPQC is a mixed-integer nonlinear programming problems for which the objective

function f is quadratic and the constraint set is composed by linear and quadratic constraints,

24



with at least one quadratic constraint.The following model summarizes the QPQC.

min f(x)

s.t. g(x) = 0, i = 1, . . . , k

h(x) = 0, j = 1, . . . ,m

x ∈ Ω,

where f(x) = xTQx + cTx, g = (g1, . . . , gk), and h = (h1, . . . , hn), with gi(x) = Aix − b for

i = 1, . . . , k , and hj(x) = xTMjx+ dTx− a for j = 1, . . . , n.

For the cases where the matrix of the objective function Q and the matrix of the

quadratic constraints M are positive semi-definite, the QCQP can be solved in polynomial

time (Anstreicher 2012).

If the objective function is nonconvex, there are algorithms able to tackle the QPQC

by using consecutive linearization techniques (Audet et al. 2000, Linderoth 2005), convex

approximations (Anstreicher 2012), semidefinite programming (SDP) (Nesterov et al. 2000),

or decomposition based on difference of convex (DC) functions (Horst & Thoai 1999, Zheng

et al. 2011).
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CHAPTER 3

A new quadratic reformulation for binary problems

This chapter presents the main new concepts proposed to convert a binary optimization

problem into an equivalent continuous optimization problem. A set of constraints is included

in the original binary optimization problem, allowing its reformulation as an equivalent

continuous optimization problem. Formal results show that the set of new constraints can

be packed into a single quadratic constraint, and the equivalence between the original and

the relaxed problems is demonstrated. A matrix representation of the constraint is also

explored; the insights provided by the eigenvalues of the matrix allows unveiling attractive

properties for the Lagrangian function of the continuous equivalent problem.

3.1 Introduction

Mathematical models with binary decision variables can be used to find the best solu-

tions for decision-making processes, usually leading to difficult combinatorial optimization

problems. In general, the exact solutions to these problems require high computational ef-

forts (Garey & Johnson 1979), precluding the solution of large-scale problems. A strategy to

tackle the computational burden is to relax the binary variables and devises constraints that

should induce the value of the relaxed variables to a binary domain. An ideal relaxation

technique would be able to obtain binary solutions with easily handling constraints that

allow reducing the overall computation effort.
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Consider the following standard binary optimization problem

min f(x) (3.1)

s.t. x ∈ Ω,

where f : {0, 1}n → R, x ∈ {0, 1}n, and Ω ⊆ Rn. The proposed relaxation maps the original

binary problem presented in (3.1) into an equivalent continuous problem with relaxed vari-

ables, using additional continuous variables and a single additional constraint; this relaxed

formulation is represented in (3.2)

min f(x)

s.t. g(x) = 0 (3.2)

x ∈ Ω,

where x is a vector of continuous variables and Ω ⊆ Rn.

3.2 The proposed quadratic relaxation

This thesis explores the benefits of a new quadratic relaxation for {0, 1} binary variables.

The idea is to relax all binary variables (x ∈ {0, 1}) for the continuous interval [0, 1]. How-

ever, it is necessary to devise additional constraints to the problem; otherwise, the binary

feasibility could not be guaranteed.

The ideas proposed here introduces a set of auxiliary variables y, each y associated to a

single binary variable x, with y ∈ [0, 1]. All variables x of the original problem are allowed

to vary in the interval [0, 1] (i.e. x ∈ [0, 1]). A set of constraints (x − y)2 = 1, one for each

pair of variables (x, y), is also introduced in the problem to assure the binary feasibility of

the new formulation.

As the proposed strategy requires the set of new variables yi ∈ [0, 1], one for for each

xi ∈ {0, 1}, the formulation using continuous variables doubles the number of variables

when compared with the original binary model. However, the addition set of constraints

(xi − yi)
2 = 1 can be represented by the single constraint

n∑
i=1

(xi − yi)
2 = n, which packs

all the terms (xi − yi)2 = 1; in other words, only a single quadratic constraint is added to

the original constraint set — this idea can also be applied to the relaxations mentioned in

Chapter 2.

The constraint (x − y)2 = 1 restricts the possible solutions to two options, x = 1 and
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y = 0, or x = 0 and y = 1 — the solution is binary whatever the case. Lemma 1 formalizes

this result.

Lemma 1. The binary variables xi in problem P can be relaxed to xi ∈ [0, 1], by adding a

set of continuous variables yi ∈ [0, 1] and a set of constraints (xi − yi)2 = 1 (i = 1, . . . , n).

Proof. Indeed, the only solutions of (xi − yi)2 = 1 for xi ∈ [0, 1] and yi ∈ [0, 1] are xi = 0

and yi = 1, or xi = 1 and yi = 0; whichever case, the solutions are binary. �

The n quadratic constraints required to keep the integrality property of the model could

make the solution of the relaxed formulation as challenging as the original binary formulation.

However, because it is possible to convert the set of n constraints (xi − yi)
2 = 1 into the

single quadratic constraint
n∑

i=1

(xi − yi)2 = n, representing all the (xi − yi)2 = 1 terms, only

one constraint is added to the original formulation. Lemma 2 presents these ideas as a formal

result.

Lemma 2. Assume that the binary variables xi ∈ {0, 1}, (i = 1, . . . , n) are relaxed as

described in Lemma 1. The set of n quadratic constraints (xi − yi)2 = 1 is equivalent to the

single constraint
n∑

i=1

(xi − yi)2 = n.

Proof. Note that the maximal value of (xi − yi)2 for xi ∈ [0, 1] and yi ∈ [0, 1] is equal to 1.

Therefore, the maximal value of
n∑

i=1

(xi − yi)2 for xi ∈ [0, 1] and yi ∈ [0, 1] is equal to n. In

other words, the constraint
n∑

i=1

(xi − yi)2 = n is satisfied when each term (xi − yi)2 reaches

the maximum value. By Lemma 1, the solution is binary. �

Now, consider again the binary optimization problem P .

(P ) min f(x)

s.t. x ∈ Ω

where f : {0, 1}n → R, x ∈ {0, 1}n, and Ω ⊆ Rn.

The constraint set x ∈ {0, 1}n can be replaced, using the results of Lemma 2. Therefore,

the problem P is converted into an equivalent continuous optimization problem PC .

(PC) min f(x)

s.t.
n∑

i=1

(xi − yi)2 = n

x ∈ Ω, x ∈ [0, 1]n, y ∈ [0, 1]n,
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where Ω ⊆ Rn.The equivalence between the problems P and PC is demonstrated by Theo-

rem 1.

Theorem 1. PC and P are equivalent formulations in the sense that PC ⊆ P and P ⊆ PC.

Proof. Lemma 1 and Lemma 2 prove that any feasible solution for the problem PC is binary.

This theorem should demonstrate the additional result that there is an unique transformation

that maps a feasible solution for P into a feasible solution for PC with the same value for

the objective function f(x), and conversely.

Assume that x̂ is a feasible solution for P . It is possible to build a feasible solution (x̃, ỹ),

for PC , with the rule x̃i = x̂i and ỹi = 1 − x̂i (i = 1, . . . , n), with the same value for the

objective function, f(x̂).

Conversely, suppose that (x̂, ŷ) is a feasible solution for PC . From Lemma 1 and Lemma 2,

(x̃, ỹ) is binary. Therefore, x̃ is a feasible solution for P , with the same value for the objective

function, f(x̃). �

As mentioned in Chapter 2, the properties of the quadratic constraint set are essential

to define a solution strategy. The next subsection relies on a matrix representation of the

quadratic constraint set
n∑

i=1

(xi − yi)2 = n that allows to unveil useful properties for solving

the continuous reformulation PC in Chapter 4.

3.2.1 Matrix representation of the quadratic constraint

The matrix representation of the
n∑

i=1

(xi − yi)
2 = n can be expressed by Equation 3.3

considering the vectors x = [xi, . . . , xn] and y = [y1, . . . , yn]

zAz = n, (3.3)

where z = [x y] and A =

[
I −I
−I I

]
. During the text, the notation zAz simplifies notation

using the transpose vector zTAz.

The singular value decomposition (SVD) presents the spectral properties of A,[
I −I
−I I

]
=

[ √
2
2
I

√
2
2
I

−
√
2
2
I
√
2
2
I

][
2I 0̄

0̄ 0I

][√
2
2
I −

√
2
2
I

√
2
2
I

√
2
2
I

]
, (3.4)

where 0̄ is a n× n zero matrix, and I is a identity matrix of dimension n.

Note that A is symmetric positive semidefinite, with n eigenvalues equal 0 and n eigen-

values equal 2. Since (3.3) is an equality constraint, the positive semi-definiteness property
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cannot be explored; however, a Lagrangian approach allows to circumvent this difficulty.

Taking the constraint zAz = n as the function g(z) = n − zAz, it is possible to define

the problem PL, using the Lagrangian function associated to the problem PC (Anstreicher

& Wolkowicz 2000),

(PL) min f(z) + βg(z)

s.t. z ∈ Ω, z ∈ [0, 1]2n, β ≥ 0,

where Ω ⊂ R2n.

Using the results discussed in Subsection 2.3.1, there is a multiplier β for which an optimal

solution x∗ to the problem PL is also an optimal solution to the problem PC if f is continuous

and g(z) satisfy the three following conditions: g(z) is continuous; g(z) ≥ 0 ∀x ∈ Rn; and

g(z) = 0 ⇐⇒ z = [x y] meets the constraint
n∑

i=1

(xi − yi)2 = n (Luenberger & Ye 2003).

Theorem 2. The Problem PL is equivalent to the Problem P for a suitable value of β and

f continuous.

Proof. Considering the results from Theorem 1, that proved that the Problem PC is equiv-

alent to problem P , it is enough to prove that there is a value of β for which the Problem

PL is equivalent to the Problem PC ; so by transitivity, the Problem PL is equivalent to the

Problem P .

The proof that there is a value of β for which the Problem PL is equivalent to Problem PC

uses the penalty function approach, which requires the three properties of g stated above. It

is immediate to see that g(z) is continuous, because it is a quadratic function of continuous

variables. The term zAz is a sum of the square of real values, for which the maximum is the

positive value n, and the minimum is zero. Therefore, the maximal value of g(z) = n− zAz

is the positive value n, and the minimal value is zero; whichever case, g(z) ≥ 0.

The last condition is that g(z) = 0 ⇐⇒ z = [x y] meets the constraint
n∑

i=1

(xi−yi)2 = n.

Of course, if z = [x y] meets the constraint
n∑

i=1

(xi − yi)
2 = n, then g(z) = n −

n∑
i=1

(xi −

yi)
2 = 0. Conversely, if g(z) = 0, it follows trivially that n −

n∑
i=1

(xi − yi)2 = 0; therefore,
n∑

i=1

(xi − yi)2 = n.

The assumption of the continuity of the function f allows to conclude the demonstration

that the Problem PL is equivalent to the Problem PC for a suitable value of β; consequently,

PL is also equivalent to P for such β value.

�
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3.3 Discussion

This chapter presented the theoretical concepts concerning the proposed relaxation for

binary optimization problems. Lemma 1 proved that the proposed relaxation delivers only

binary solutions. Lemma 2 proved that a single quadratic constraint can summarize the

constraint set introduced by the relaxation. Theorem 1 showed the equivalence between

the original formulation and the relaxed formulation for binary optimization problems; it

proved that a single quadratic constraint can assure the integrality property for the relaxed

formulation. Theorem 2 extended the binary properties for a Lagrangian reformulation,

which will allow to handle nonconvex aspects in the application discussed in Chapter 4.

The ideas developed in this chapter open new perspectives for addressing binary problems

using nonlinear continuous optimization approaches, an area that has been populated by very

efficient solvers. Some innovative applications will be discussed in the Part II of the thesis.
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CHAPTER 4

Quadratic unconstrained binary optimization problem

This chapter explores the benefits of the new formulation in the context of quadratic

unconstrained binary optimization problems (QUBO). It is worth noticing that, by applying

the relaxation proposed here to the QUBO problem, we trade the complexity in dealing with

a binary quadratic problem for the difficulties in dealing with a continuous nonlinear and

non-convex problem. In order to tackle these difficulties, this research offers an equivalent

unconstrained convex formulation using Lagrangian relaxation. The computational studies

present comparisons between the proposed relaxation and the previous methodologies in the

literature and present computational evidence of the benefits of the proposed formulation.

4.1 Introduction

The QUBO problem is an unconstrained optimization problem for which the optimization

variables are binary and the objective function is quadratic. This NP-complete problem was

proposed by Hammer & Shlifer (1971) to model service station location; it can be formulated

as PQ
1,

(PQ) max xQx;

s.t. x ∈ {0, 1}n.

The solution techniques to address the QUBO problem include exact approaches, meta-
1The QUBO problem is formulated as a maximization problem to follow the characteristics of the instances

considered in the computational studies.
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heuristics, and quantum computation (Calude et al. 2017, Chapuis et al. 2019). However,

due to the NP-complete nature of the QUBO (Glover et al. 2018), the computational cost

for approaching the problem using exact methods is high. This feature has been precluding

the exact solution of large instances of the problem, while heuristic approaches can tackle

instances of up to fifteen thousand variables. Examples of heuristic approaches for the

problem are local search methodologies, such as path relinking (Wang et al. 2012), tabu

search (Glover et al. 1998, Palubeckis 2004, Kochenberger et al. 2013), global equilibrium

search (Pardalos et al. 2008), and specialized local search methods (Boros et al. 2007, Wang

et al. 2014). Bio-inspired methods such as genetic algorithms (Merz & Freisleben 1999) and

memetic algorithms (Merz & Katayama 2004) have also been applied and they can handle

instances of up to 2500 variables.

Exact approaches used to approach the QUBO problem include semidefinite programming

(Helmberg & Rendl 1998) and valid inequalities (Glover et al. 2018). Billionnet & Elloumi

(2007) uses branch-and-cut methods to solve instances of up to 80 variables. Lagrangian

decomposition (Mauri & Lorena 2012) can tackle problems with up to 500 variables and find

optimal solutions for instances with up to 100 variables. Another idea extensively explored

is the use of relaxation techniques. Examples of these studies are Liberti (2007), Sherali &

Smith (2007), Hansen & Meyer (2009), and Gueye & Michelon (2009). Approaches using

preprocessing and reformulations techniques to reduce the overall complexity of the QUBO

problem were explored by Pörn et al. (2017), Rodriguez Heck & Crama (2018), Crama &

Rodríguez-Heck (2017), and Lewis & Glover (2017).

The solution of the QUBO problem via exact approaches faces two main difficulties. The

first concerns the convexity of the objective function, which is related to the definiteness of

the matrix Q. The second aspect comes from the binary nature of the optimization variables.

The approach proposed here converts the binary formulation into a continuous formula-

tion by applying the relaxation and the penalization ideas presented in Section 3.2.1. This

approach allows to increase the size of the QUBO instances tackled by exact methods.

Consider the problem PQ relaxed as problem PCQ, which uses the matrix representation

discussed in Section 3.2.1.

(PCQ) max zQ̃z

s.t. zAz = n (4.1)

z ∈ [0, 1]2n
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where Q̃ =

[
Q 0

0 0

]
and z = [x y].

A Lagrangian relaxation applied to the problem PCQ allows to deal with the nonconvexity

that comes from the equality constraint (4.1). These aspects are discussed in the next section.

4.2 Lagrangian relaxation

Considering the Lagrangian relaxation of the problem PCQ given by (4.2).

PLQ max zQ̃z − β(n− zAz) (4.2)

s.t. z ∈ [0, 1]2n

The objective function in the problem PLQ can be restated as the sum of three quadratic

terms: zQ̃z, zAz, and zIz. The term zIz comes from the fact that z have n entries equal

to one and n entries equal to zero, implying that zT z = n.

From Theorem 2 in Section 3.2.1, Problem PLQ is equivalent to Problem PQ (and PCQ)

for a suitable value of β. Going further, Proposition 1 proves that it is possible to choose a

β value for which the formulation PLQ is concave whenever Q is negative semi-definite (in

other words, the relaxation does not jeopardizes the good features of the problem Q in the

formulation PQ).

Proposition 1. For a suitable choice of β, whenever Q̃ is negative semi-definite, the problem

PLQ has a concave objective function.

Proof. The objective function of problem PLQ can be rewritten as

PLQ max z(Q̃+ βA− βI)z (4.3)

s.t. z ∈ [0, 1]2n

The condition for the objective function of PLQ to be concave is that all the eigenvalues

of (Q̃ + βA − βI) are non-positive, implying that (Q̃ + βA − βI) is negative semi-definite;

i.e., λmin(Q̃+ βA− βI) ≤ 0 and λmax(Q̃+ βA− βI) ≤ 0.

Let λmin(Q̃), λmin(A), and λmin(I) be the minimum eigenvalues of Q̃, A, and I, respectively.

The minimum eigenvalue of the matrix (Q̃+βA−βI) is lower than the sum of the minimum

eigenvalue of each term (Merikoski & Kumar 2004),

λmin(Q̃+ βA− βI) ≤ λmin(Q̃) + λmin(βA)− λmin(βI).
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From Equation (3.4), λmin(A) = 0, then λmin(βA) = 0. Considering λmin(βI) = βλminI = β,

λmin(Q̃+ βA− βI) ≤ λminQ̃− β. Since λmin(Q̃+ βA− βI) ≤ (λmin(Q̃)− β), if β ≥ λmin(Q̃).

Therefore, λmin(Q̃+ βA− βI) ≤ 0.

Now, let λmax(Q̃), λmax(A), and λmax(I) be the maximum eigenvalues of Q̃, A, and I,

respectively. For the maximum eigenvalue λmax(Q̃ + 2β − βI) ≤ (λmax(Q̃) + β), because

λmax(βA) = 2β. Therefore, (λmax(Q̃) + β) ≤ 0 and β ≤ −λmax(Q̃).

Considering both conditions, (β ≤ −λmax(Q̃)) and (β ≥ λmin(Q̃)), whenever Q̃ is negative

semi-definite, there is a suitable choice of β for which the relaxed formulation is concave. �

The reformulation of the QUBO problem as PLQ and the Proposition 1 are explored in

the computational studies presented in the next section.

4.3 Computational studies

Computational studies investigate the quality of the proposed relaxation in comparison

with the quadratic relaxations from the literature. They also investigate the influence of the

parameter β for the convergence of the problems.

Two sets of computational studies are performed. The first set comprises instances avail-

able in the literature for which the definiteness of matrix Q is not known a priori. For this

set, the formulations expressed in problems PCQ (4.1), PLQ (4.3) are compared with the

previous relaxation approaches from the literature.

The second set of computational studies is composed of a collection of designed instances

with semi-definite Q (consequently, Q̃ is also semi-definite). These instances allow compar-

isons between a diagonal perturbation, which will be expressed in Problem (4.5), with the

alternative for setting a sufficiently large value for β (given by Proposition 1).

The computational tests start with an evaluation of the most suitable choice of the pe-

nalization parameter β. Table 4.1, Table 4.2, and Tables 4.3 present the gap ((4.4)) between

the value of the objective function for the best solution in the literature (best_solution) and

the value of the objective function for the equivalent formulations using the binary relaxation

(relaxation_solution).

gap% = 100× best_solution− relaxation_solution
best_solution

(4.4)

The computational test are performed using 135 instances from three QUBO problems

libraries Beasley (1998), Billionnet & Elloumi (2007), and Glover et al. (1998). Solutions
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were obtained with the solver fmincon of Matlab R2016a in an Ubuntu 18.04 environment,

with 16 GB of memory, Intel Core i7, CPU 3.20 GHz×12.

Table 4.1, Table 4.2, and Table 4.3 present the results for each library; the best results are

highlighted. The columns Instances present the number of instances per class, the columns

n provide the dimension of the instance, the columns Density provide the average density

of the class (nonzero entries of the instance divided by the total number of entries). The

rows Optimal and Time(s) present the number of optimal solutions per class and the total

computational times (in seconds), respectively. The columns β and QCQP present the

average gap for each class, respectively.

Table 4.1: Comparison between the average gap per class 100, 250, 500, 1000, and 2500
from Beasley (1998).

β
Classes Instances n Density 10 50 100 250 QCQP
2500 10 2500 10% ** 0.62 0.46 0.92 1.86
1000 10 1000 10% 0.81 0.91 0.24 0.91 1.56
500 10 500 10% 2.07 1.27 1.07 1.28 3.58
250 10 250 10% 1.32 0.46 0.63 1.91 0.81
100 10 100 10% 0.20 3.59 0.94 1.10 6.81
Optimal 0 0 0 0 0
Time(s) ** 1506 16870 9255 777

** there is an instance without feasible solution

Table 4.2: Comparison between the average gap for classes a, c, d, e, and f from (Glover
et al. 1998).

β
Classes Instances n Density 10 50 100 250 QCQP
a 8 50-100 10-50% 0.62 0.68 0.54 0.30 7.46
c 7 40-100 10-80% 1.09 1.16 1.04 1,34 5.26
d 10 100 10-100% 1.94 2.45 1.87 1.51 9.79
e 5 200 10-50% 1.22 1.42 1.14 1.18 8.15
f 5 500 10-100% 6.33 6.07 5.77 5.95 15.55
Optimal 0 5 5 3 1
Time(s) 72 120 980 740 70

4.3.1 Influence of the initial solution

Since the relaxed formulations can be nonconvex due to the properties do matrix Q, the

choice of an initial point is crucial to achieve a global solution. This analysis considers three

instance, all of them with same dimension (n = 100) and with the same sparsity (10%). The

entries of beas100a are integer numbers in the interval [-100;100]; for the instance gka7c, the
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Table 4.3: Comparison between the average gap for classes 100, 120.3, 120.8, 150.3, and
150.8 from (Billionnet & Elloumi 2007).

β
Classes Instances n Density 10 50 100 250 QCQP
100 10 100 100% 1.59 2.22 1.69 1.12 11.15
120.3 10 120 30% 1.66 1.93 1.59 1.39 10.65
120.8 10 120 80% 2.83 1.89 1.61 2.25 8.54
150.3 10 150 30% 1.42 2.05 1.94 1.43 12.08
150.8 10 150 80% 0.90 1.30 1.42 1.01 6.87
Optimal 2 2 1 6 0
Time(s) 90 93 89 81 12

entries outside of the matrix diagonal are integer numbers in the interval [-50;50], and the

diagonal entries are integer numbers in the interval [-100;100]; for the instance gka1d, entries

outside of the matrix diagonal are in the interval [-50;50] and the diagonal entries are in the

interval [-75;75]. Each instance was executed 200 times, using random initial points in the

interval [0, 1]n.
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Figure 4.1: Gap-to-target plot for instances beas100a, gka7c, and gka1d, respectively.

Figure 4.1 helps to understand the behavior of the relaxations with respect to the initial

point using gap-to-target plots. The gap-to-target plot is an adaptation of the ideas from

the time-to-target plot proposed by Aiex et al. (2007). The idea behind of the time-to-

target plot is to measure the robustness of the solution approach considering the random

parameters. The idea behind the gap-to-target plot is to measure the robustness of the

relaxed approach with respect to random initial points. In another words, the analysis

regarding the execution times was replaced by the analysis of the gap between the solution

achieved for each initial point and the best objective function value reported in the literature,

considering the maximum execution time as 3600 seconds (one hour).

We noted that instance gka7c and gka1d, when using the Lagrangian relaxation, present

gaps smaller than 5%, while beas100a has 30% in the best case. For the QCQP approach,

the worst performance for gka7c and gka1d is 55% of gap and for beas100a is 75%. A
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difference between the instances occur in the sparsity pattern of the matrix Q, as illustrated

in Figure 4.2. It is worth observing that the instance gka7c and gka1d that achieved the best

performance are the instances with nonzero diagonal elements. This observation matches

with the well known result that the diagonal values are related to the definiteness of the

matrix (Sing 1976, Thompson 1977); this feature can help or disturb the convergence of

exact solution approaches.
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Figure 4.2: Nonzeros entries of the instances beas100a (left), gka7c (center) e gak1d (right),
where nz is the total number of nonzero entries.

Therefore, the presence of nonzero diagonal elements can be the reason for the better

performance of the QCQP relaxation for the instances gka7c and gka1d (with respect to

beas100a). When considering the Lagrangian approach (β), the sum of the diagonal entries

of Q with the β values helps to approach the convexity of the objective function, improving

the convergence (see Proposition 1). In order to improve the performance of instances with

zero entries in the matrix diagonal, such as the instance beas100a, a diagonal perturbation

δ is proposed, as described in Equation (4.5). To implement such a perturbation preserving

the value of the objective function, positive and negative perturbation values nδ (nδ ∈ R)

are added to the objective function. The idea of improving the matrix diagonal is based on

the concepts of diagonal regularization from the interior point optimization (Gondzio 2012).

PLQP max zQ̃z + nδ − nδ (4.5)

Using the results from Section 3.2, it is immediate to see that the number of entries equal

to one in z is n. Therefore, nδ can be written as δzT z, and Equation 4.5 can be expressed
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as Equation (4.6) and Equation (4.7).

max zQ̃z + δzIz − nδ (4.6)

max z(Q̃+ δI)z − nδ (4.7)

Additional computational studies evaluate the benefits of using the perturbation δ for

solving the instance beas100a, considering the Lagrangian approach (with β = 50) and the

QCQP approach. The gap-to-target on Figure 4.3 compare the use of positive and negative

perturbation δ with the case without perturbation δ = 0. Note that, for both cases, a

suitable choice of δ improved the solution performance in more than 20% for the PLC and

40% for the QCQP.
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Figure 4.3: Gap-to-target plot for PLC with β = 50 (left) and QCQP (right) for instance
beas100a.

4.3.2 Studies with positive semi-definite matrix

These studies were designed to evaluate the benefits of the convex properties given by

Proposition 1. Four set of instances were generated, each set with 10 instances with density

of 10% and entries in the range [−100, 100] 2.

The β values provided by Proposition 1 (P1) were given by β = −max(eig(H))
n

− 100,

where max(eig(H)) is the largest eigenvalue of matrix H. For the approach without the use

of Proposition (1), δ = 250 and β = 100. The metric used to evaluate the quality of these β

are the value of the objective function.

The maximal execution time required by the largest instances was 150 seconds. The

results presented in Figure 4.4 show that the tailored values for β given by Proposition 1
2https://github.com/petrabartmeyer/QUBO_instance
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improve the solution quality for all instances. Furthermore, the benefits of applying these

results increase as the size of the instances increases.

Figure 4.4: Values of the objective function, in logarithmic scale, with and without the
parameter β calculated by Proposition (1) (With P1 and Without P1, respectively)

4.3.3 Lower bound quality — comparison with previous relaxations

in the literature

This study presents a comparison between the proposed relaxation and the relaxations

x(x − 1) = 0, and x2 = 1. The results are shown in Figure 4.5, using a performance profile

chart. The performance profile was proposed by Dolan & Moré (2002); it represents the

percentage of instances solved in less than a given gap — all solutions are optimal if the gap

is equal to zero. The x-axis in Figure 4.5 represents the gap calculated by Equation (4.4);

the y-axis represents the percentage of problems solved with less than a given gap.

The computational tests for the relaxations x2 = 1 and x(x − 1) = 0 considered the

Lagrangian represented in Equation (4.9). No diagonal perturbation δ was used for these

tests, because, as shown in Equation (4.8) and Equation (4.9), these relaxations already entail

diagonal perturbations — it is worth reminding that approaches x2 = 1 and x(x − 1) = 0

are similar (see Section 2.2).

max xQx− β(xIx− x) (4.8)

max x(Q− βI)x− βx (4.9)
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Figure 4.5: Performance profile of the gap for the instance of the test sets from Beasley
(1998), Billionnet & Elloumi (2007), and Glover et al. (1998).

With exception of the relaxation x2 = 1, the others approaches have similar performance

for about 60% of the instances; however, for the other 40% of the instances there is a major

difference. The approaches PLQ and x(x− 1) = 0 have the worst performances.

The approaches PCQ and PLQP have a more robust performance; PCQ achieved less than

25% of gap, considering the whole instance set. The approach PLQP achieved the best

performance, with less than 5% of gap in the worst case.

The results in Figure 4.5 allows the conclusion that the quadratic relaxations provide

good lower-bounds for the QUBO problem. Furthermore, the proposed approach using

Lagrangian ideas and diagonal perturbation provides the best overall results.

4.4 Discussion

This chapter explored the benefits of the relaxation proposed in Section 3.2 when ap-

proaching the quadratic unconstrained binary optimization problem (QUBO). This NP-

complete problem with nonlinear objective function and binary variables has attracted much

interest over the latter years because of new applications, such as network reliability (dis-
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cussed in the next section), and the recent developments of heuristic and exact approaches

to address the problem. This research activeness and the intrinsic difficulty of the QUBO

problem make it a severe testbed for the relaxation ideas proposed in this thesis.

The theoretical results in this chapter proved that whenever the matrix of the objective

function has definiteness properties the proposed approach is able to keep these properties.

Furthermore, studies concerning the Lagrangian parameter (β) and a diagonal perturbation

(δ) allowed to achieve formulations with better numerical properties.

The case studies put these results under perspective, providing comparisons with pre-

vious relaxation approaches. The results show that the benefits are consistent, with clear

improvements for all the instance studied and the best overall performance when compared

with the previous relaxation approaches in the literature.
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CHAPTER 5

Fault sensor placement for temporary faults identification

This chapter presents an optimization approach for the placement of fault sensors to re-

duce the detection time of temporary faults in distribution networks. This idea was inspired

by the paper Perdomo-Ortiz et al. (2014), where it is proposed a mathematical model to

diagnose electrical faults in an aircraft embedded system considering the presence of fault

indicators. It is possible to interpret an embedded system as a distribution system; however,

the components in the network are different and the assumption of an unlimited budget can-

not hold. In this sense, this chapter explores the problem of locating fault sensors considering

a maximum number of fault indicators and the reduction in the short-circuit detection time.

The chapter starts with an overview of the use of fault sensors for distribution systems,

followed by a mathematical formulation for the problem. The final part of this chapter eval-

uates the proposed mathematical model using a Monte Carlo simulation. Computational

experiments show the benefits of the proposed methodology.

5.1 Introduction

Electrical network reliability is a broad field comprising measurements and analysis of

frequency, duration, and extent of power outages (Brown 2017). Efforts to improve relia-

bility indicators include the allocation of network components such as voltage and current

indicators, switches, fuses, energy storage units, and fault indicators (Chowdhury & Koval

2011, Brown 2017). The study presented in this chapter focused on the use of fault indicators

to detect temporary faults in distribution networks.
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The fault indicators aim to improve the network information about short-circuit current,

providing feedback about the steady-state of the network for permanent and temporary

faults. The identification of the existence of a permanent fault can be made by different

techniques, such as measuring voltage and current at each end of the network, use customer

notifications, or conduct inspections along the cables (Saha et al. 2009). The measurement

of voltage and current can provide the first sign that there is a permanent failure, costumer

notifications can provide information on the non-distributed energy points, but none of them

is able to provide the exact fault location, which has to be found by a ground-search team.

The sensor technology can provide more detailed information about the energy distribution

considering the network topology. The fault indicator devices, also known as fault sensors,

are equipment placed in the network that is connected with the recloser.

There are different types of fault sensors, and all of them identify the faults by checking

if the network properties satisfy the steady-state network parameters. The differentiation of

the devices occurs depending on information delivered during the feedback, such as current,

voltage, or even visual indication, which helps ground teams. Indeed, fault sensors can

comprise more than one feature and provide multiples feedback, which allows a more detailed

description of the network state. The use of fault sensors to locate permanent fault has been

investigated (Mahapatro & Khilar 2013), and it enables to compute quality indices such as

system average interruption duration index (SAIDI), system average interruption frequency

index (SAIFI) and customer average interruption duration index (CAIDI). Examples of

these explorations are the immune algorithm of Ho et al. (2010), the mixed-integer linear

programming model proposed by Farajollahi et al. (2016), and the multi-objective approach

of Acosta et al. (2018).

In distribution networks, reclosers are able to perform automation schemes for power

restoration, which allows them to remove short-circuit currents in the network. As soon as

the recloser identifies the fault, it starts an operation protocol to remove the short-circuit

current; if the current error remains after the protocol attempts, the network is de-energized.

However, the recloser only starts the removing process when the current error backs to the

recloser. During this spam time, the current error is traveling in the network, possibly

causing damages. In this sense, sensors provide feedback for the recloser as soon as a current

error is identified, allowing the recloser to perform protocol before the short-circuit travels

to the recloser. It is worthwhile to highlight that the recloser protocol is not affected by the

sensors.

Figure 5.1 illustrates a distribution network with fault sensors. The fault indicators,
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Figure 5.1: Iteration between sensor faults and the substation.

called sensors in the illustration, are placed in some bars of the network. The sensors devices

first establish communication with the signal receptor, which communicate with the reclosers.

The information collected by the sensors is transmitted to a recloser in a time spam shorter

than the time required to trigger a recloser by a short-circuit current. This characteristic

allows the use of fault sensors to reduce the detection time of temporary faults, improving

the reliability of the system.

In an ideal scenario a fault sensor could be placed in each edge of the network, as pro-

posed by Perdomo-Ortiz et al. (2014) for embedded systems in an airspace bus. However,

the assumption of large budgets for improving the reliability of spacecrafts is usually not

true for improving the reliability of a distribution network. Therefore, to achieve the best

improvement in reliability with the allocation of fault sensors in distribution networks, it is

necessary to identify the maximum number of devices that fits a given budget and to unveil

the optimal use of these devices.

This chapter proposes an integer programming model to identify the optimal placement

of fault sensors in a distribution network, considering the benefits of reducing the short-

circuit detection time for temporary faults. The technical assumptions considered here are

the following

• Reclosers can interrupt the normal operation to remove temporary faults;

• The fault sensors are able to communicate with the reclosers using a specific commu-
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nication device;

• The communication time between each possible sensor position and a recloser is known

a priori;

• There is a maximum number of sensors in the network protected by a recloser (upstream

a recloser);

• Each node of the network is assigned to a sensor with the shortest communication

time;

• The faults studied can occur with a single-phase or with the three-phases.

The following sections present the main contributions of the research developed in this

chapter – the design of a strategy that allows the reduction of the propagation of temporary

failures in distribution networks, a mathematical model for the problem, and the proposal

of a solution strategy combining integer programming and Monte Carlo simulation. The

next section presents an interpretation of the placement of indicator faults in distribution

networks from a binary programming perspective. A deterministic mathematical model is

proposed for the problem. Following, random aspects of the problem are considered in a

local search, which uses a Monte Carlo simulation to improve the solutions. Section 5.3

presents a case study where computational experiments illustrate the tradeoff between the

number of fault sensors and the reduction in the detection times.

5.2 Mathematical model

The proposed mathematical model minimizes the fault detection time considering the

best fault sensor placement for a given topology of the distribution network. Considering

the technical assumptions made above, the maximum number of indicators is represented

by S, and for the recloser as sr, D gives the maximum allowed distance between the recloser

and an indicator; F represents the possible faults types. The parameter Tik is the time before

the recloser be performed, for a fault of the type k in the node i. The model comprises by

single-phase and three-phase faults, and their respective recloser trip times (slow or quick).

The TSij is the recloser activation time for a fault in the downstream node j and an

indicator in node i. The topology of the network is described by the binary matrix Mij,

where Mij = 1 if i and j are in the same branch and i proceed j, zero otherwise. For each
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recloser r, there is a set of the nodes assigned to it; this set of nodes is called the protection

zone of the recloser r.

The distance between each node i and the assigned recloser is given by di. The variables xi

and Lij are binary; xi = 1 if there is an indicator located in the node i, zero otherwise; Lij = 1

if the indicator located in i monitors node j.

min
n∑

i=1

n∑
j=1

F∑
k=1

Tik(1− Lij) +
n∑

i=1

n∑
j=1

TSijLij (5.1)

s.t.
n∑

i=1

xi ≤ S (5.2)∑
i∈Rr

xi ≤ sr,∀r (5.3)

Lij ≤Mij, ∀i, j (5.4)

Lij ≤ xj,∀i, j (5.5)
n∑

i=1

Lij ≤ 1, ∀j (5.6)

diLij ≤ D, ∀i ∀j (5.7)

Lij ∈ {0, 1}, xi ∈ {0, 1} ∀i, j (5.8)

The objective function (5.1) minimizes the detection time for all the nodes, considering

the nodes with and without sensors. Constraint (5.2) establishes the maximum number of

fault sensor for the network. Constraint set (5.3) sets the maximum number of fault sensor

for recloser. For constraint set (5.4), the matrix M represents the topology of the network,

and it limits the values of L. Constraint set (5.5) relates the sensor position variables xi and

the protection variables Lij. Constraint set (5.6) limits to one the number of sensors assigned

to a node, the idea is to avoid that a fault node to be double-counted in the objective function

since it can be detected by more than one sensor. The maximum distance radius between

recloser and sensor is computed by constraint set (5.7). Constraint set (5.8) establishes the

variables domain.

The formulation (5.1)-(5.7) is a binary linear problem, which can be approached by

commercial solvers for integer programming, such as Cplex (Cplex 2009) and Gurobi (Bixby

2014). However, for large instances, solution approaches by integer programming may not be

the suitable strategy to address the problem. In such cases, the results from Chapter 3 and

Chapter 4 can be a better alternative to handle the problem. These ideas can be applied in

two ways. The first consider the direct application of the ideas from Chapter 3, considering

the Lagrangian relaxation of the problem.
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The formulation considering the Lagrangian relaxation proposed in Section 3.2 can be

stated as follows.

min
n∑

i=1

n∑
j=1

F∑
k=1

Tik(1− Lij) +
n∑

i=1

n∑
j=1

TSijLij + . . .

· · ·+ β(n2 −
n∑

i=1

n∑
j=1

(Lij −Wij)
2) + γ(n−

n∑
i=1

(xi − yi)2)

s.t.
n∑

i=1

xi ≤ S∑
i∈Rr

xi ≤ sr,∀r

Lij ≤Mij, ∀i, j

Lij ≤ xj,∀i, j
n∑

i=1

Lij ≤ 1, ∀j

diLij ≤ D, ∀i ∀j

Lij ∈ [0, 1],W ∈ [0, 1], xi ∈ [0, 1], yi ∈ [0, 1] ∀i, j

whereW and y are the additional variables required by the proposed relaxation (Section 3.2),

and the parameters β and γ are the penalty parameter required by the Lagrangian relaxation.

This formulation has a quadratic objective function and continuous variables. Therefore,

nonlinear continuous optimization solvers, such as Knitro (Waltz & Plantenga 2011) and

Ipopt (Wächter & Biegler 2009), can be used to tackle the problem.

The second idea comes from the paper Perdomo-Ortiz et al. (2014), where the linear

model proposed is rewritten as a quadratic unconstrained binary optimization problem

(QUBO) – Perdomo-Ortiz et al. (2014) were motivated to use the QUBO formulation be-

cause they considered it better suited to solve the problem via quantum computing. The

idea used to convert model (5.1)-(5.8) into a QUBO formulation is presented as follow; a

matrix representation of the problem (5.1)-(5.8) is adopted.

min cT z

s.t. Az = b

z ∈ {0, 1},

where the matrix A represents the constraint sets, b is the right-hand, and c is the cost
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vector. The matrix A is a block-matrix composed by the constraints of (5.2)-(5.8). A

necessary condition for the inequality constraint into an equality representation is the use of

a slack- variable (sj) for each constraint in the formulation. The cost of the slack-variables

are null. The variable z is the composition of the variables set xi in a vector x, the variables

set L in a vector representation L = [L1, . . . ,Ln], where Li are all the entries of the i-th row

of the matrix L, and the slack-variables si in a vector representation x, i.e., z = [x L s].

The notations 1k and 0k represent the unitary and the null vectors with k entries. The

notations 1̄k,n and 0̄k,n represent the unitary and the null matrix with dimension k×n. The

identity matrix of dimension n× n is given by In. The first constraint block (B1) is related

to (5.2) and (5.3) are given by

B1 = [1n 0n2 1 0k−1].

The block representation of (5.5) is given by (B2)

B2 = [Ōn2,n 1̄n2,n2 In2 ].

Block B3 is composed by n parcels to represent the constraint set (5.5)

B3i = [−In 1̄n,n In], i = 1, . . . , n.

Block B4 represents the constraint set (5.6)

B4 = [Ōn2,n 1̄n2,n2 In2 ]

The last block (B5) summarizes the constraint set (5.7)

B5 = [0̄n2,n2 In2 In].

The right-hand side vector of the constraint set (b) is represented by

b = [S M 0n 1n2 Dn]. (5.9)

where M is the vector representation of the matrix M , in the same way that L represents

the matrix L.

The matrix formulation allows rewriting Problem (5.1)-(5.8) as a quadratic unconstrained

50



binary optimization (QUBO) problem as follows:

min cT z − β(Az − b)T (Az − b)

s.t. z ∈ {0, 1}n

where β is a penalty value. This formulation can also be addressed with the results from

Chapter 3 and Chapter 4.

Whichever the optimization model and solution strategy adopted to handle the problem,

the local search with a Monte Carlo simulation described in the next section is used to

improve the sensor allocation by considering the stochastic aspects of the problem.

5.2.1 Local search with a Monte Carlo simulation

The local search strategy uses a Monte Carlo simulation (Billinton & Allan 1992) to

evaluate the quality of the solutions provided by the deterministic formulations discussed in

the previous section.

In order to improve the quality of the results provided by the deterministic mathematical

model, a local search heuristic is applied to the solutions provided by the model (5.1)-(5.8)

— the computational effort required to address the instance in the case study did not require

the relaxation approach. The more significant improvements obtained by the local search

heuristic occurs for the topologies with a small number of fault sensors. Indeed, this result

should be expected, because as the number of indicators increases, the difference between

the stochastic and deterministic model decreases. The next pseudocode summarizes these

ideas.

Data: TS, T , NC
Result: best change per configuration
for 1...NC do

t1 ← Find the smallest contribution time among the sensors in the configuration
remove the sensor with the smallest contribution
for edge ∈ feeder do

edge ← test_sensor
t2 ← Run the Monte Carlo simulation
if t2 > t1 then

remove test_sensor
end

end
end

Algorithm 1: Local search procedure.

The idea presented in Algorithm 1 is to change the position of the indicator with the
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smallest benefit for the detection time. Note that just a single indicator is changed in each

configuration. The decision for a single indicator analysis comes from the high computational

effort entailed by the Monte Carlo simulation each time that a new configuration is tested.

The Monte Carlo simulation is used to evaluate the quality of the changes proposed by

the local search. Each Monte Carlo iteration considers a different recloser protocol, which

given by the combination of two quick operations and an odd number of slow operations.

The detection time for each node time with faults indicators (T ) and without fault indicators

(TS) are estimated using the faster and slower recloser operation times for single-phase and

three-phase; it was generated four different fault values (F = 4) for each node. The fault

indicator (T ) was calculated as T = tdtc + tTx1 + tTx2 + tprs, where tdtc is the time required

by the sensor to detect the fault; tTx1 is the transmission rate between sensor and recloser;

tTx2 is the transmission rate between receptor and recloser; tprs is the data processing rate.

The simulation starts with the choice of a faulty node using a uniform distribution; the

closest upstream indicator is identified. This identification procedure selects the shortest

operating time of the indicator avoiding double-counting for the same node; in the mathe-

matical model, Lij plays this role.

Data: TS, T , NC, NS
Result: total time per node
while iter ≤ max_iter do

Randomly choose the number of fast operations {0, 1, 2};
Randomly choose the number of slow operations {0, 1};
Randomly choose a node to simulate the fault;
Calculate the recloser trip time;
for 1...NC do

for 1...NS do
Find the indicators assigned for the node;
Choose the indicators with the smallest time;

end
Update the total time;

end
iter ← iter + 1

end
Algorithm 2: Monte Carlo simulation.

Algorithm (2) summarizes the Monte Carlo simulation process. The parameters of the

algorithm are the number of indicators in each configuration (NS), the detection time for a

given indicator configuration (TS), the detection time for the recloser (T ), and the maximum

number of Monte Carlo iterations (max_iter). Parameter NC represents the number of

scenarios to be evaluated. The idea is to use the same set of faults to compare all the
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scenarios.

The next section explores the mathematical model and the local search procedure pro-

posed here in a case study based on a network available in the literature.

5.3 Case study

The case study was designed to explore the benefits of fault sensors in twelve scenarios

for the same instance; the scenarios are characterized by the number of fault sensors per

recloser. The computational experiments also test the quality of the proposed model in

representing the stochastic problem.

The instance considered was the test feeder IEEE-1231 considering the configuration

proposed by Alam et al. (2018). This configuration presents two reclosers and fourteen

downstream fuse-saving coordination. The number of edges able to receive a fault indicator

is n = 119; these are all the edges downstream of the reclosers. Figure 5.2 represents the

network topology and the device configuration.

Figure 5.2: Topology and device configuration for the IEEE123 buses network. Image
adapted from Alam et al. (2018).

The maximum number of indicators per recloser is equal to twelve, with a transmission

rate time equal to 2ms, and a maximum Euclidean distance between recloser and fault sensor

as 6.5km. These parameters are technical limitations of the device used as a reference 2.

The mathematical model (5.1)-(5.8) was implemented in the AMPL (Fourer. et al. 2003)

and solved using CPLEX (Cplex 2009). The Monte Carlo simulation was coded in Python
1http://sites.ieee.org/pes-testfeeders/resources/
2https://selinc.com/pt/products-section/fault-indicators-sensors/
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3.7. Both processes run in a desktop PC under Ubuntu 18.04 with a Core i7 processor and

16 GB of RAM. The software OpenDSS (Dugan 2012) calculates the admittance matrix.

The uniform distribution selects the nodes during the evaluation. It was considered ten

million faults to evaluate the quality of the model (5.1)-(5.8), the average selection per node

was 10 000 with standard deviation of 329.68.

The computational studies focus on detection times, and they are summarized in Fig-

ure 5.3. The dotted red line illustrates the ideal configuration where there are indicators on

all feeder edges. The solid curve interpolated the detection time for the scenarios from one

up to twelve fault sensors per recloser.

The solid curve shows that the deterministic models can minimize the stochastic problem.

However, the picks for S = 3 and S = 12 bring the evidence that the linear programming

model loss quality in some scenarios, which emphasizes the advantages of using the Monte

Carlo simulation to check failures and a local-search procedure to improve the solution

quality.

The configurations with three and four devices per recloser highlighted the relationship

between the installation site and the contribution of the indicators. The lower the number

of sensors, the higher the impact caused by a change in the sensor location. Figure 5.3 shows

that the maximum decrease occurs for the scenario with two fault sensors per recloser. This

scenario is illustrated in Topology A in Figure 5.4. Topology B in Figure 5.4 present the

scenario with three fault sensors per recloser. The difference of the topology occurs for

fault sensors in the protection zone of R2; these changes are responsible for increasing the

detection time when compared with Topology A.

The detection time remains in decline until the configuration with eight fault indicators.

This topology is represented by Topology C in Figure 5.4. The detection time backs to

increase in the last configuration (Topology D). Note that benefits close to the scenario of

maximum observability can be achieved with a reduced number of fault indicators. As shown

in Figure 5.3, scenarios with more sensors present solutions closer to the optimal scenario,

represented by the dashed red line.

The light blue line presents the results after the local search procedure. Note that the

local search is able to overcome the difficulties related to the scenarios S = 3 and S = 12

generating a continuous decreasing curve from the scenario S = 1 to the scenario S = 12.

A multiobjective perspective can also be used to interpret the results presented above

(Miettinen 2012). The curve generated by the scenarios can be seen as a tradeoff between the

number of fault indicators and the maximum reduction in the detection time. In this sense,
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Figure 5.3: Total improvement of the detection-time. The image comprises the number of
indicators per recloser on the x-axis and the detection time on the y-axis. Image from Santos
et al. (2019).

Recloser Node Fault Indicator
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Feeder
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R2

Substation

Topology A
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Substation
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Substation
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R2
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Figure 5.4: Position of the indicators for scenarios with two, three, eight, and twelve fault
sensors per recloser. Image from Santos et al. (2019).
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it is a bi-objective problem where the first objective is to minimize the detection time, and

the second objective is the reduction in the number of fault indicators. The solution strategy

adopted can be interpreted as an ε-constrained method, where the number of fault indicators

was added to the constraint set, and the ε value is discrete, because it represents the number

of fault indicators. The conflict between these two objectives is observed in Figure 5.3. Note

that, with this interpretation, scenarios with more than six fault indicators per recloser are

dominated solution, since the extra number of fault indicators did not improve the reduction

in the detection time.

5.4 Discussion

This chapter presented a new approach to the allocation of fault sensors in adaptive

protection systems. The contributions of the research are the design of the optimization

model for the reduction of the propagation of temporary failures in distribution networks,

and the solutions strategies, including the development of the local search with a Monte

Carlo simulation to consider random aspects of the problem.

The computational studies showed that the proposed mathematical model works as an

approximation for the stochastic problem and successfully handles the allocation of fault

sensors without dealing with the stochastic variables. The local search strategy allowed to

improve the solutions with the additional capability of dealing with the random aspects of

the problem; in other words it improves the adherence of the approach to the real-world

problems.

The methodology presented competitive results when compared with a ideal scenario

where all the edges carry a faulty sensor. The computational studies indicated that the

allocation of fault sensors to around 5% of the edges can provide a reduction in the detection

time that is very close to the maximum reduction.
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CHAPTER 6

Automatic segmentation for myelinated axons

This chapter addresses the problem of segment myelinated axon in microscope images.

The approach of this problem using combinatorial optimization and with a coloring algorithm

are innovative aspects of this chapter. They are alternatives for the current approaches in

the literature based on pattern recognition.

The interpretation of this application as a binary optimization problem originate from

the idea that an image can be mapped in a graph. This interpretation allows to consider

each Hamiltonian cycle in the graph as a myelinated axon. The investigation of the existence

of Hamiltonian cycles can be modeled as an optimization problem with binary variables and

linear constraints. Computational studies illustrate the benefits and limitations of using the

relaxation proposed in Chapter 3 to address the automatic segmentation for myelinated axon

images with a combinatorial optimization perspective.

The alternative for the combinatorial optimization approach explored in this chapter is

based on the flood-fill graph coloring algorithm, enhanced with myelin sheath information.

The benefits and limitations of the two ideas are discussed; the quality of this approach is

evaluated with a large set of statistical tests.

These investigations were mainly developed during a six month research period at the

"Brain Research Institute" of the "University of California—Los Angeles", under the super-

vision of Prof. Leif Havton.
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6.1 Introduction

The computer vision area has significant applications in medical image analysis. Appli-

cations go from the segmentation of bones and organs (Minnema et al. 2018), to diagnosis

support using machine learning techniques (Lee et al. 2017, Leo et al. 2017). Essentially, the

computer vision has been applied to reduce the human efforts in high time-consuming tasks

as measurements and counting of structures in medical images. An example of these tasks

is the measurement of axons from nerve roots images, which is the object of this research.

To better understand the characteristics of these applications, Figure 6.1, on the left-

hand side, illustrates how the nerve roots connect to the spinal cord. Each branch arriving

on the spinal cord is a nerve root composed of hundreds or thousands of axons, as illustrated

on the right-hand side of Figure 6.1.

Figure 6.1: Representation of a nerve root connect to a spinal cord (left) and a cross section
of a nerve root highlighting the axons in the structure (right).

The neurons connect to the spinal cord using dendrites and to the muscles by axons

terminals. The left-hand side of Figure 6.2 represents these situation. The information

travels between the two extreme points through axons, whose caliber, length, and myelin

thickness affect the information transmission rate. Figure 6.2 illustrates the presence of

myelin sheath covering the axon. The myelin sheaths are generated by Schwann cells that

wrap the axon in layers of myelin sheaths. The existence of myelinated sheaths improves

the information transmission; the more myelin sheaths, the faster the information transfer.

In microscope images, the myelin sheaths are identified by dark closed shapes, and the area

inside of these closed contours are the axons.

In the context of this research, the information to be obtained from nerve root images

are area, diameter, number of axons, myelin thickness, and spatial distribution of the axons.

Retrieving these data from an image is usually a time consuming procedure. The imaging

process starts with the harvesting of the nerve roots, followed by chemical processing and
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Figure 6.2: A motoneuron with the myelin sheath (left) and an axon structure covered by
myelin sheath, which can be recognized by as a dark contour presented on scope images
(right).

embedding techniques. In this last step, the samples are cut perpendicular to the nerve root

orientation then placed on slides for further scope analysis. All these processes can reduce

the quality of the sample, turning the measurements more difficult.

The next section discusses the necessary information about nerve root image acquisition

and presents the expected outcome of the axon indication in the images after the laboratory

processing steps.

6.2 Nerve root images

There are different imaging techniques able to handle nerve roots. Non-invasive tech-

niques, such as MRI and X-ray, provide in vivo images but are not able to identify small

structures. On the other hand, microscopy techniques such as TEM (transmission electron

microscopy) and LM (light microscopy) provide better image quality, but it requires a se-

quence of preprocessing steps before obtaining the desired imaging. Figure 6.3 gives examples

of images from TEM and LM scopes; it illustrates the range of shapes and structures that

the segmentation process looks for. The axons are inside the dark closed shape generated

by the myelin sheath.

The images analyzed in this research are from LM scopes. The image quality varies due

to the technical preparation, the scope, and the quality of the material. These variations

are a challenge for segmentation techniques based on pattern recognition, such as proposed

by Zaimi et al. (2016, 2018).

Microscopy images present different sizes depending on the magnification used during the

process. The higher the magnification, and the larger the number of individual images, the

more time-consuming is the image processing. The image size also depends on the animal
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Figure 6.3: The images on the left, in grayscale, were took using TEM microscope. The
images on the right, in blue, are images from LM. Images adapted from Gerber et al. (2019)
and Garcia et al. (2003) , respectively.

species, on the spinal cord level, and on the natural differences between animals. Another

important factor is the magnification used to take the pictures; whichever the magnification,

the quality of the images obtained also depends on the type and on the brand of scope

used to obtain it. For instance, the image processing of a macaque nerve root with an 100×

magnification can require more than 200 individual images, each one requiring around 17MB.

The next step is a tilling process to join the individual images, obtaining a complete image

that usually requires over 300MB of storage space. The final step is the image analysis and

quantification of the attributes, which is the subject of the methodologies developed in this

chapter.

Two approaches are proposed for the segmentation of the images. Both strategies were

developed to avoid the dependence on the images shapes, because such a dependence is the

main reason for the difficulties with the techniques that rely on pattern recognition. The

guiding principle is to regard the myelinated axons as a solid structure with a closed contour;

the proposed strategies strive to identify the contours with a combinatorial optimization per-

spective and with a graph search technique. These strategies are addressed in the following

sections.

6.3 Strategies for myelinated axon segmentation

The usual approach to measure the myelinated axons in a nerve root image is manually

identifying the contours of each axon. Following, it is necessary to count the number of

axons (the area inside of each dark contour) in each image, to evaluate the area of the axon

and the area of the myelin sheath (the dark contours around the axons), to estimate the

thickness of each myelin sheath and the diameter of each axon. A complementary analysis

appraises the spatial distribution of the axons in the nerve root by identifying the position
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of each axon with respect to the complete image. It goes without saying that the whole

process is very time-consuming (the analysis of a large nerve root may take more than 40

man-hours of a specialized researcher).

Figure 6.4 illustrates the desired segmentation of a myelinated axon image. The axons

were segmented using the ImageJ software (Schneider et al. 2012), where the contours were

obtained manually. The yellow curves in Figure 6.4 represent the segmentation lines; the

outer contours represent the external limit of the myelin sheaths and the inner contours

represent the limit of axon areas, which are also the internal limits of the myelin sheaths.

The numbers inside each structure are the labels of the structures; this information allows

to locate and to identify each myelin sheath and each axon.

Figure 6.4: A manually segmentation of myelinated axons using ImageJ.

Some strategies for automatic identification and measurement of the myelinated axons

have been proposed in the literature (Zaimi et al. 2016, 2018). These strategies are based on

pattern recognition techniques that can provide different results, depending on the quality of

the images and the method applied to obtain them. The main drawback of these approaches

is that the quality of the images have a large variability depending on the species of the

tissues, the sizes of the images, and the lab protocols. The main motivation of this research

is to achieve a segmentation methodology that do not depend as much on these variable

aspects of image processing steps and laboratory equipment.

The next sections propose two alternatives to measure and quantify the attributes of
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nerve root images; both of them rely on the assumption that a myelin sheath is as a closed

shape. The first approach combines a graph representation of the image with combinatorial

optimization techniques. The identification process maps the closed shape element in the

original image into a Hamiltonian cycle in the graph representation.

The second segmentation procedure also rely on the myelin sheath as the key informa-

tion in the segmentation process. In this procedure, the myelin sheath limits the advance

of a flood-fill algorithm (a graph search algorithm). The simplicity of the flood-fill algo-

rithm reduces the computational effort with respect to the approach based on combinatorial

optimization, allowing it to deal with larger images.

6.4 Approach One – A combinatorial optimization ap-

proach

The main goal of the approach presented here is to convert the image analysis problem

discussed in the previous sections into a problem of identifying Hamiltonian cycles (an in-

stance of the traveling salesman optimization problem), where myelinated pixels are vertices

in the graph connected by the edges to "neighboring" myelinated pixels. These graphs are

composed by subgraphs, which can be labeled as an axon if it contains a Hamiltonian cycle.

The identification of the Hamiltonian cycles is an NP-complete problem (Garey & John-

son 1979). The use of the relaxation proposed in Chapter 3 can bring innovative aspects

to the Hamiltonian cycle formulations, allowing to increase the size of instances solvable by

quadratic optimization solvers, such as Ipopt (Wächter & Biegler 2009) and Knitro (Waltz

& Plantenga 2011).

6.4.1 Hamiltonian cycle

The problem of finding a Hamiltonian cycle is an instance of the traveling salesman

problem where the distance cij between two cities i, j is one if they are directly connected

and infinity otherwise. If the optimal value of the objective function is equal to the number

of cities (n), there is a Hamiltonian cycle in the graph; however it may include undesirable

sub-tours.

The model (6.1)-(6.4) presents a integer linear programming formulation for the Hamil-
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tonian cycle, in which sub-tours are not avoided.

min
n∑

i=1

n∑
j 6=i,j=1

xij (6.1)

s.t.
n∑

i=1,i 6=j

xij = 1; j = 1, . . . , n (6.2)

n∑
j=1,j 6=i

xij = 1; i = 1, . . . , n (6.3)

xij ∈ {0, 1}; i, j = 1, . . . , n (6.4)

where xij = 1 if the arc i j is part of the Hamiltonian cycle, zero otherwise. Equation

(6.1) calculate the objective function. Constraint sets (6.2) and (6.3) assure that each arc

participates only once in the composition of the Hamiltonian cycle. However, these two

constraint sets are not able to avoid sub-tours in the solution. The sub-tours can be avoided

with the additional constraints (6.5)-(6.7), called Miller–Tucker–Zemlin (MTZ) constraints

(Miller et al. 1960).

ui − uj + nxij ≤ n− 1; i = 2, . . . , n , j = 2, . . . , n (6.5)

0 ≤ ui ≤ n− 1; i = 1, . . . , n (6.6)

ui ≥ 0; i = 1, . . . , n (6.7)

Although the MTZ constraints introduce a new set of integer variable ui, this is counter-

balanced because the number of constraints introduced by (6.5)-(6.7) to control the sub-tour

increases only as a polynomial with the number of nodes in the graph. The polynomial num-

ber of constraints is a positive side of the MTZ approach that can be associated with the

relaxation results presented in Chapter 3. This hybrid strategy can provide an alternative to

other sub-tour elimination techniques that require an exponential number of constraint (Bek-

taş & Gouveia 2014, Applegate et al. 2006).

Therefore, the mathematical model (6.1)-(6.7) was relaxed by adding the proposed penalty

term in the objective function

min
n∑

i=1

n∑
j 6=i,j=1

xij + β
n∑

i=1

n∑
j 6=i,j=1

(xij − yij)2,

considering xij ∈ [0, 1], yij ∈ [0, 1], and β is a positive constant large enough to guarantee

the binary feasibility (as discussed in Chapter 3).

The Hamiltonian cycle problem is part of the segmentation procedure described in the
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following section, where it identifies the myelin sheath. The idea behind this application

is to consider as a myelin sheath the graphs with closed cycles, that represents the closed

shapes in the original images.

6.4.2 Steps for the image segmentation using Hamiltonian cycles

The segmentation procedure described in this section considers the image interpreted as

a graph. The myelinated pixels in the original image become nodes of the graph, and the

neighbor pixels form the edges of the graph if they are also myelinated pixels. For a graph

to be considered as an axon representation, the graph has to contain a Hamiltonian cycle,

i.e., there is a path that visits each vertex exactly once and the starting and ending point

are the same.

The computational effort required by the segmentation approach is related to the number

of pixels in the image; for this reason, the first step to identify Hamiltonian cycles in the

image is a preprocessing procedure to reduce the image dimension. The resizing procedure

is followed by a re-scaling process to preserve the original scale. Since there are axons from

0.1µm up to 40µm in the same image, the choice of a single resizing parameter can lead to

poor image conversion. For this reason, the resizing procedure uses a sequence of resizing

parameter rk based on the myelin thickness. The value rk is set to the number of pixels in

the largest sequence of myelinated pixels in the image – considering sequences in the vertical

or horizontal orientation of the image.

The proposed identification algorithm runs one iteration for each (k), from the thicker to

the thinner myelin sheath. Each time that a myelin structure is identified, it is removed from

the original image, and it will not be part of the next resizing and segmentation process. The

idea of this protocol is to avoid double-counting and improve the segmentation algorithm

performance.

The axon identification process stops when the resized image does not present myelinated

pixels; following, a new segmentation process is achieved for the next resized image. The

overall process stops after running the segmentation procedure for the last rk parameter.

The descriptive statistic for each axon is computed with a pixel counting, considering each

rk value; this measurement process provides the area, the diameter, and the myelin thickness

of the axon. Additional information such as the inner area of the myelin sheath, and the

total axon area are also computed. The whole segmentation process using the Hamiltonian

cycle computation is summarized in the Algorithm 3.
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Result: List of the axons
for dimension of r do

resize the image using the reduction factor
create the complete graph using the resized image
candidates ← list of subgraphs
while candidate_list 6= ∅ do

perform a Hamiltonian cycle verification
if candidate is a Hamiltonian cycle then

axon_list ← candidate;
remove candidate of the candidate_list

end
remove candidate pixels from the original image;
remove candidate pixels from the resized image;

end
end
Algorithm 3: Approach One – axon identification based on Hamiltonian cycle.

The next subsection presents the computational studies with the proposed relaxation for

the Hamiltonian cycle problem proposed in Section 6.4.1, followed by studies of the applica-

tion of this idea to the segmentation of nerve root images. The first part of the subsection

presents a comparison between the original and relaxed formulation of the Hamiltonian cy-

cle problem; the second part presents the results of the image segmentation considering

Approach One.

6.4.3 Computational studies

The first part of the section analyzes the benefits of the proposed relaxation for the

Hamiltonian cycle problem. It starts with the description of instance set used during the

evaluation, followed by the computational experiments comparing the integer and the relaxed

formulation of the Hamiltonian cycle problem. The second part of the section illustrates the

performance of Approach One. It is discussed the resizing process applied in Approach One

and the quality of the segmentation, as well as, the computational effort required by the

segmentation process.

Hamiltonian cycle explorations

The instances considered during the computational experiments for the Hamiltonian cycle

come from the Knight Tour problem. The choice for the Knight tour problem instances is

due to the similarities between the number of feasible moves for a Knight in a chessboard

and the number of possible neighbors of a myelinated pixel. In both cases the maximum

number of edges starting in a node is eight, with the exception of the borders (for both the
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chessboard and the image).

The Knight tour problem is an NP-hard problem in the general case — there are

polynomial-time algorithms for some particular cases (Pohl 1967). The challenge is to find

a move sequence that allows visiting all the square of a chessboard only once. If the se-

quence starts and ends in the same square of the chessboard, it is called Closed Knight tour;

otherwise, the sequence is an Open Knight Tour. The Closed Knight tour problem can be

interpreted as a Hamiltonian cycle problem (Pohl 1967), while the Open Knight Tour is a

Hamiltonian Path problem (Conrad et al. 1994). Figure 6.5 illustrates both cases for a 8× 8

chessboard; images adapted from the American Federation of Chess website 1.

Figure 6.5: Illustration of a Closed Knight tour (left) and an Open Knight tour (right), for
a 8× 8 chessboard.

One of the first mentions of a systematic solution study for the Closed Knight Tour

problem goes back to Leonard Euler in 1759 (Takefuji 1992). During the last decades,

different solution strategies were proposed for the problem, such as evolutionary algorithm

(Gordon & Slocum 2004), ant colony (Delei et al. 2009), and neural networks (Takefuji

1992). Further studies addressed the feasibility of the problem for rectangular (Schwenk

1991), irregular shapes, and 3D chessboards (Bai et al. 2010).

In the following computational studies for the Closed Knight Tour is interpreted as a

graph problem, where each square of the chessboard is represented by a node in a graph.

The edges that emanates from a given node are the feasible moves for the Knight from the

position represented by the node.

The instances generated for these studies consider rectangular chessboards and Closed

Knight Tour problem. Schwenk (1991) proved that for any m×n chessboard with m ≤ n, a

closed tour is always possible for these cases unless one of the following conditions is satisfied:
1https://new.uschess.org/home/
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• m and n are both odd;

• m = 1, 2, or 4;

• m = 3 and n = 4, 6, or 8.

Avoiding the above conditions, square instances were generated with the following at-

tributes: m = n, n ≥ 6, and n an even number. The computational experiments evaluate

the benefits of applying the relaxation proposed in Section 6.4.1 to identify Hamiltonian cy-

cles represented by these Closed Knight Tour instances. The computational experiments use

the mathematical modeling language JuMP (Dunning et al. 2017) to codify the model; solu-

tion were obtained with the solver Knitro (Waltz & Plantenga 2011). The studies compare

the computational times required by the solution of the problem formulated in (6.1)-(6.7),

which uses binary variables, and the formulation with the relaxation approach.

Table 6.1 presents the results for nine instances of the Closed Knight Tour problem,

generated as described above. Column "n" gives the dimension of the chessboard, columns

"Nodes" and "Edges" give, respectively, the number of nodes and the number of edges in

the graph for each instance. Columns "Time(s)" give the total execution time in seconds.

The information using binary variables is given in the column "Integer" and the times with

the relaxed formulation are given in the column "Relaxed".

Time(s)
n Nodes Edges Integer Relaxed
6 36 160 0.47 1.29
8 64 336 1.85 3.24
10 100 576 3.73 7.58
12 144 880 9.28 17.65
16 256 1680 ** 46.15
20 400 2736 ** 173.63
22 484 3360 ** 551.23
24 625 4048 ** 1679.84
30 900 6496 ** **

** The instances without a solution within 3600 seconds.

Table 6.1: Computational times for the Hamiltonian cycle identification.

Note from Table 6.1 that for small instances the performance of the formulation with

binary variables performs better than the formulation with relaxed variables. However, the

formulation with binary variables is not able to solve instances with n larger than twelve

(within the allowed 3600 seconds). In other words, the approach with binary variables was
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able to solve instances with up to 144 nodes and the relaxed approach allowed to solve

instances with up to 625 nodes.

Image segmentation using Hamiltonian cycles

The analysis of image segmentation with Hamiltonian cycles requires the sequential use

of a resizing process. Figure 6.6 illustrates this resizing process.

Figure 6.6: Image reduction – left 84.134 bytes and right 836 bytes.

Note that both images present axon structures that are very close to each other, or even

touching each other. Both cases can lead to errors during the Hamiltonian cycle verification,

and the probability of having these errors increases due to the resizing process, which forces

the structures to appear even closer in the resized images. Structures touching each other

can create a node in the graph that may not exist in the original image, which entail errors

in the segmentation process.

Computational experiments show that Algorithm 3 is able to identify the myelin sheath

correctly. The segmentation procedure correctly avoids the incomplete structures in the

border of the image. It was also able to remove pixels in the inner axon area that could be

mistaken by myelinated axons pixels. Figure 6.7 presents the axons identified by Algorithm 3

requiring 2432 seconds to complete the process. In a rough estimation, the computational

time required by the Hamiltonian cycle verification used two-thirds of the total processing

time.

A word of cautions is necessary concerning the required resizing process. The successive

resizing can also suppress pixels from small structures, causing some loss of quality in the

approach.

In a rough estimation, the computational time required by the Hamiltonian cycle verifi-

cation comprehended two-thirds of this amount. This high computational cost limited the
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Figure 6.7: Results for the image segmentation using Algorithm 3. The processing time
required was about 40 minutes.

use of this approach in full-size images, requesting a new solution approach.

The segmentation idea discussed in the next section is based in a graph search tech-

nique that is less demanding in computational effort. This saving will allow to address the

myelinated axon segmentation problem without the resizing process.

6.5 Approach Two – A flood-fill approach

As mentioned above, the flood-fill approach was developed to handle full-size images,

allowing to avoid the information losses entailed by the resizing process. In this approach,

the segmentation ideas uses the bounders of the axon areas (the contours defined by the

myelin sheath) to limit the node coloring process of the flood-fill algorithm. Similarly to

Approach One, it is also able to avoid the problems related to pattern recognition techniques.

The flood-fill approach is composed of two main steps. The first step is the image

preprocessing, where the initial color image is converted into a black-and-white image. The

second step is the application of a flood-fill algorithm to perform the segmentation of the

myelinated axons. The next sections discuss these steps.

6.5.1 Image preprocessing

This preprocessing step converts the original images into black-and-white images, in

order to avoid problems due to difference in colors that appear in the images provided by

different types of scopes. Consequently, the preprocessing allows to handle color, grayscale,

and black-and-white input images.

Indeed, the only requirement to assure the quality of the preprocessing step is that in
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Figure 6.8: The left image provide the deficient conversion of the original image, where
background pixels were labeled as a myelin. One the right image, there structures identified
as an axon are presented in gray.

the original image, before the preprocessing, the myelin sheath appears darker than the

background. However, the conversion of the original image into a black-and-white image is

based on a single parameter µ. This parameter defines a threshold, above which a pixel is

converted into a black; otherwise, the pixel is converted into white.

The choice of the parameter µ is essential to obtain a successful segmentation approach.

The choice of a good value for this parameter is a trial and error procedure that is fundamen-

tal for the success of the whole approach. Indeed, low-quality results in the segmentation

process are usually a consequence of the loss of information in converting color images to

black-and-white, because a wrong choice of the parameter µ creates distortions in the image

in the black-and-white images (by adding extra white or black pixels).

Figure 6.8 gives an example of these distortions. The left-hand side of figure shows a

black-and-white picture with fake white pixels; these fake white pixels lead to the identifi-

cation of false closed structures by the flood-fill algorithm, illustrated in the right-hand side

of the figure. These errors entail wrong axon counting and wrong measurements.

Figure 6.9 illustrates another wrong choice of the parameter µ, allowing myelinated pixels

to be converted into black pixels. The gaps in the myelin sheath can create fake structures,

as illustrated in the right-hand figure. These errors also lead to other wrong measurements,

such as evaluating internal areas larger than the real ones.

6.5.2 Flood-fill algorithm

The flood-fill algorithm is a well-established breadth-first search for image segmentation

(Pavlidis 1979) with computational complexity O(n), where n is the number of pixels to be

colored (Clifford et al. 2012). The algorithm represents the pixels of the image as a graph,

with neighbors pixels leading to connected nodes. This application considers eight neighbors

70



Figure 6.9: The left image provide the deficient conversion of the original image, where pixels
of the myelin were not in white. One the right image, there structures identified as an axon
are presented in gray.

for each myelinated pixel, as illustrated in Figure 6.10.

Figure 6.10: Neighbor for the flood-fill algorithm considering eight neighbors.

The flood-fill process for the myelinated axon segmentation starts in a black pixel of the

image and explores the neighborhood of this pixel. Each neighbor pixel is converted into

a gray pixel, and the process is started from each new gray pixel. The process stops when

there is no other black neighbor to be colored.

The algorithm explored in this research uses two stop-criteria for the flood-fill algorithm.

The first criterion identifies that there are no feasible neighbors. This case occurs due to one

of the three following reasons: (1) the flood-fill process started inside of a closed shape, (2)

all the feasible neighbors were already explored, (3) or the process started in a background

pixel. Although the absence of feasible neighbors could also occur because all the possible

pixels of the image were explored, the additional stopping criteria try to avoid reaching such

a scenario that would entail a high computation effort (due to a large number of pixels to

be visited). The additional stopping criterion halts the flood-fill process when a pixel in the

border of the image is visited — the rationale of this stop-criteria is to try to provide an

early identification for the cases where the initial pixel is inside an open structure, or it is

outside an axon.

The following subsection presents the whole segmentation procedure with the Approach
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Two.

6.5.3 Image segmentation using the flood-sill algorithm

The flood-fill algorithm in the image segmentation approach starts with a list of pixels

(candidate) with the same color of the background. Picking a pixel in the list of candidate

the algorithm verifies if the pixel is connected to a border pixel. If it is connected to a border

pixel the variable touch_border is true; otherwise, touch_border is false. The idea of the

touch_border variable is to identify incomplete axons, which can occur in the cases where

the myelin structure is incomplete (because it is in a border of the image) or in the cases

where the laboratory processing caused distortions in the myelin sheath. The candidate

pixels for which touch_border is false are inserted in the axon_list; starting from each axon

in axon_list, the algorithm seeks to identify all the pixels belonging to the myelin sheath of

this axon. The identification algorithm stops when the candidate list is empty. The whole

identification process with the flood-fill algorithm is summarized in the Algorithm 4.

Result: Measurement of axons and myelin sheath
while background_list 6= ∅ do

candidate, touch_border ← flood-fill algorithm
if touch_border = false then

axon_list ← flood-fill(candidate);
myelin ← Myelin sheath detection;
execute measurements;

end
remove candidate from the background_list

end
Algorithm 4: Approach Two – axon identification based on flood-fill algorithm.

A positive side of the flood-fill algorithm to the application in nerve root image segmen-

tation is that it has a linear complexity (Clifford et al. 2012), O(n), where n is the number of

pixels to be colored. This property allows the Algorithm 4 to handle images with thousand

of axons, and avoids the application of the resizing techniques required by the Approach

One.

Figure 6.11 presents a segmentation plotted above the original image. Comparing Fig-

ure 6.7 and Figure 6.11, it is possible to note a better segmentation quality on the image

provided by the Algorithm 4. For instance, Figure 6.11 presents less distortion on the axons

shape, mainly on the borders, and the relationship between the axon area and the myelin
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Figure 6.11: Axons identified by the Algorithm 4, in less than 50 seconds.

thickness are close to reality. However, a word of caution is necessary because the approach

is sensitive to fake pixels inside the axon area and noises that appear as discontinuities in

the myelin sheath.

Implementation

The Algorithm 4 was implemented in Julia language (Bezanson et al. 2017). Because

the segmentation process can sometimes present inaccuracies, a human guided correction

process was also implemented as a component of the whole process. Essentially, the correc-

tion step allows a specialist to correct the labels provided by the program, completing and

removing structures. After this human step, the measurements are updated, running again

the Algorithm 4.

The computational tests were performed in a PC desktop running in a Ubuntu 16.08

environment, using an i7 processor and 16GB of memory. Because the main objective of

the computational studies is to analyze the quality of the automatic segmentation tool, the

following results do not apply the correction step.

6.5.4 Computational studies

The strategy devised to evaluate the quality of the myelinated axon segmentation deliv-

ered by the Algorithm 4 compares the results with reference images provided by an specialist

in the manual myelinated axon segmentation process (ground truth images). The parameter

µ discussed in Subsection 6.5.1 was set to µ = 0.4 for all images; this choice was defined

by exploratory trial and error experiments. The computational tests use 39 images, with a
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total number of pixels above 108 — these real images were obtained in studies performed at

the "Brain Research Institute" of the "University of California - Los Angeles".

The specialist images (used as yardsticks) were also obtained at the "Brain Research

Institute" of the "University of California-Los Angeles", under the supervision of Prof. Leif

Havton. An extensive description of these images is presented in the paper mentioned in the

Appendix A, currently in preparation.

The prediction quality was evaluated under five metrics proposed in the literature for

image comparisons (Crum et al. 2006). Namely, these metrics are the Accuracy, the True

Positive Rate (TPR), the Positive Predictive Value (PPV), the Sørensen–Dice coefficient

(DSC), and the Jaccard index (Jaccard). The parameters used to compute the values of these

metrics, given by the equations (6.8) – (6.12), are the number of pixels correctly identified

(TP), the number of pixels incorrectly identified (FP), the number of pixels correctly rejected

(TN), and the number of pixels incorrectly rejected (FN).

Accuracy =
TP + TN

TP + TN + FP + FN
(6.8)

Accuracy summarizes the percentage of total items correctly classified; the higher the

accuracy value, the better the classification. However, the accuracy value can be misleading

whenever the number of background pixels is much larger than number of myelinated pixels

in the image; the symmetric case, when the number of myelinated pixels is much larger than

the number of background pixels, can also causes misleading values for the accuracy.

TPR =
TP

TP + FN
(6.9)

The True Positive Rate (TPR) is also known as recall or sensitivity metric. It measures

the number of pixels correctly identified as positive, out of the total true positive pixels.

PPV =
TP

TP + FP
(6.10)

The Positive Predictive Value (PPV) is also known as precision metric. The PPV is the

percentage of pixels correctly identified as positive out of the total number of pixels identified

as positive. The higher the TPR, the lower the number of false-positive identifications. This

metrics measures the number of false-positive results, i.e., pixels identified as an axon when

they are background pixels, or vice-versa.

DSC =
2TP

2TP + FP + FN
(6.11)
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The Sørensen–Dice coefficient (DSC) is also known as F-1 score. The DSC is the harmonic

mean between the TRP and the PPV. In the same way that TRP and PPV, the higher the

DSC value, the better the result. It means that there is a small number of false-negative

and false-positive classifications.

Jaccard =
TP

TP + FP + FN
(6.12)

The Jaccard index is a measure of similarity between the ground truth image and the

predict image, in a zero to one range. The higher the index, the more similar are the two

images.

Table 6.2 presents on the rows "Average" and "Standard Deviation" the average indices

values in and standard deviation for the set 39 images. The maximum and minimum value

observed for each index is presented on the rows "Maximum" and "Minimum".

Accuracy TRP PPV DSC Jaccard
Average 0.906 0.854 0.826 0.830 0.728

Standard Deviation 0.053 0.060 0.170 0.140 0.161
Maximum 0.989 0.982 0.974 0.978 0.958
Minimum 0.756 0.739 0.147 0.246 0.140

Table 6.2: Comparison values of the measurements to analyze the quality of the segmentation
Algorithm 4.

The analysis of Table 6.2 shows that all the metrics present high average value, indicating

a good overall performance of the Approach Two. Especially, the metrics Accuracy and TRP

present robust results, with high average value, small standard deviation, and with the worst

classification case close to 0.75.

The PPV metric presents the largest standard deviation among all the metrics tested,

which indicate that the number of false-positive classification can be higher in some instances.

This is an expected behavior for the cases where the preprocessing phase entails loss of

information, as illustrated in Figure 6.8. An ad hoc choice of the parameter µ could handle

these cases.

When analyzing the Jaccard index, the results from the segmentation approach presents

more than 70% of similarity with the ground truth image on the average. Performing an

individual analysis of the images with lower value of Jaccard index, these cases occurred for

images where the choice of the value µ entails distortions, as illustrated in Figure 6.9. Again,

an ad hoc choice of the parameter µ could improve the results.
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6.6 Discussion

The myelinated axon segmentation process that have been adopted in neuro research

area is a time-consuming and human-dependent task that requires skilled professionals. This

chapter proposed two different strategies to automate these processes.

The first strategy is based on combinatorial optimization. It used graphs to represent the

nerve root image and Hamiltonian cycles to identify the closed shapes created by the myelin

sheaths. Computational tests showed the advantages of using the proposed relaxation in

the formulation of the Hamiltonian Cycle problem; the quadratic relaxation allowed to solve

instances larger than the instances handled by the formulation considering binary variables.

The first tool was able to segment test images created by parts of the original nerve root

image; however, the use of this approach in real cases of the myelinated axon segmentation

processes required a repeated resizing steps, which may cause undesirable noises in the

information.

The second strategy uses a preprocessing phase to convert the input image into a black-

and-white image, followed by the application of a flood-fill algorithm to identify and segment

axon structures. This strategy was able to handle real-size images without requiring resizing

steps, however the success of the preprocessing phase depends on the choice of a parameter

µ, defined by trial end error procedures.

The outputs of the second strategies were compared with references images provided

by specialists, using five well-established metrics for image comparisons. The case studies

showed that the automate segmentation provides good quality results in most of the cases.

For the cases with a low quality segmentation, the results can be improved by using ad

hoc values for the parameter µ. Furthermore, the results can be improved by applying

human correction steps; indeed, the inclusion of the correction steps allows to achieve one

hundred percent accuracy, but they were not used in the case studies to better evaluate the

contribution for the automation of the process.

As a final remark, it should be observed that methodologies described in this chapter

provided automatic alternative to handle the segmentation of myelinated axon in nerve root

image, based on combinatorial optimization and graph search algorithms. Considering the

cases studies developed to evaluate the methodologies, the second approach seems more

promising from a computational effort perspective, because it avoids a time consuming re-

sizing process required by the first approach, in order to handle real images.

However, both alternatives should still be regarded as on-going researches. A more
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extensive evaluation of the positive aspects and limitations of the methodologies should be

performed by neuro scientists, considering the total number of hours required for the analysis

and the quality of the final results.
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CHAPTER 7

Unassigned distance geometry problem

This chapter proposes an optimization model for the unassigned distance geometry prob-

lem (uDGP) — some of the ideas discussed in the chapter appeared in the paper "A new

quadratic relaxation for binary variables applied to the distance geometry problem" (Bart-

meyer & Lyra 2020). The uDGP is a problem in the distance geometry area that seeks for

the best assignment of each vertex of a molecule to a three-dimensional Euclidean space; the

information available is the number of vertices in a graph and a list of distances between the

vertices. In a broader perspective, the uDGP aims to reconstruct the structure of molecules

and proteins by defining the spatial position of each atom (vertex) of these structures.

The model includes binary and continuous variables, in addition to linear and quadratic

constraints. The intrinsic difficulty of the uDGP makes it a severe testbed to evaluate the

ideas presented in Chapter 3. Computational studies illustrate how the relaxation is able to

increase the size of solvable instances for the uDGP using the proposed formulation. They

also explored the influence of the Lagrangian relaxation parameter in the binary feasibility

of the problem.

The literature about the uDGP is still incipient, making it an open area of research

(Liberti & Lavor 2018). Improvements in solutions strategies for the problem can bring

benefits to applications that are arising in the different areas, such as robotics (Porta et al.

2018, Rojas & Thomas 2013), design of structures, nano-technology, and bio-engineering

(Liberti & Lavor 2018).
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7.1 Introduction

The distance geometry problem (DGP) seeks for the spatial position of the n vertices of

the graph in the Euclidean space Rk given a list of distance (D) between the vertices. A

solution to the DGP provides the spatial position for the vertices of a given graph.

The DGP is usually classified into two categories. The first category refers to the assigned

distance geometry problem (aDGP), for which the Euclidean distance between each pair of

vertices is known a priori. The second category deals with the cases for which the relation

between each pair of vertices and the distance between them are not known a priori; this

information should also be provided by the solution of the uDGP.

Figure 7.1 illustrates the aDGP and the uDGP. Each entry dij of the matrix on the

left-hand side of the figure represents the Euclidean distance between the vertex i and the

vertex j. A solution for the aDGP should give the spatial position of the vertices for which

the distances between them are represented in the matrix. For instance, a feasible solution

(S) for the example are the positions S = {(0, 1); (1, 1); (0, 0); (1, 0)}.

The list of values represented on the right-hand side of Figure 7.1 illustrates the informa-

tion available for the solution of the uDGP. A solution to the problem should obtain the best

match of the values in the list to the distance between each pair of vertices, and also give the

spatial position of the vertices; for instance, providing the matrix of distances between ver-

tices (as represented on the left-hand side) and the solution S = {(0, 1); (1, 1); (0, 0); (1, 0)}.

Figure 7.1: Image adapted from the thesis of S.R. Gujarathi

A formal definition for the aDGP can be given, as in Billinge et al. (2016). Given a graph

G = (E, V ), a set of edges (i, j) ∈ E, a set of vertices i ∈ V , a solution to the aDGP provides

the spatial position of the vertices; each solution to the problem is called a realization.

The aDGP can be stated as an optimization problem, that should minimize the objective
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function represented in Equation (7.1).

min
n∑

i=1

n∑
j=1

(d2ij − ‖xi − xj‖2)2 (7.1)

where dij is the distance assigned to the edge (i, j) ∈ E, xi and xj are the position of the

nodes i ∈ V and j ∈ V in the Euclidean space Rk. For this formulation, an optimal solution

is achieved if, and only if, the objective function value is equal to zero.

The first formulation for the uDGP was proposed in the paper "A new quadratic re-

laxation for binary variables applied to the distance geometry problem" (Bartmeyer & Lyra

2020), and it will be discussed in the next sections. Indeed, the uDGP is has been considered

an open-problem in the field of geometry distance (Liberti & Lavor 2018).

Before going on to discuss the uDGP, a word about applications is in order. Both the

aDGP and the uDGP problems find applications in protein conformation (Moré & Wu 1999,

Liberti et al. 2011), nanoparticle structures (Billinge et al. 2016), and sensor location for

wireless networks (Cao et al. 2006, Biswas & Ye 2006).

7.2 The unassigned distance geometry problem

The pieces of information provided for addressing the uDGP are the list of distances D,

the number of vertices n, and the dimension of the Euclidean space k. A solution for the

uDGP should provide the assignment of each vertex i, j ∈ V to a single edge (i, j) ∈ E of

length da ∈ D, and the positions of the vertices in the Euclidean space Rk.

An exact solution to the uDGP has to respect the condition that each Euclidean distance

between the vertices, ‖xi − xj‖, is assigned to one of the entries da in the distance list D.

For the cases where there is imprecise information in the distance list, it is possible to soften

the previous condition as da ≤ ‖xi − xj‖ ≤ d̄a, where da and ≤ d̄a are the lower and upper

bounds for the difference between the distance of vertices xi, xj and the assigned distance

da.

Previous approaches for the uDGP are two hybrid heuristics, both using building-up

ideas (Duxbury et al. 2016). The TRIBOND approach (Gujarathi et al. 2014) starts with a

set of cliques of size k+ 2 satisfying the distance list. For each clique in the set, named core,

the vertices are added one by one, always considering the feasibility. The build-up process

stopped when all the vertices were added or if there is no feasible choice for the next vertices;

for the second case, the process restarts from a new clique of the core set.

The heuristic LIGA (Juhás et al. 2006) is a stochastic algorithm able to handle imprecise

80



or incomplete information on the list of distance. It is a hybrid approach that starts with a

core, and uses cost functions and optimization to select the next vertex.

Although the heuristic approaches have promising results for the uDGP, the design of

exact methods has been investigated during the last two decades. Some of the ideas explored

are the spatial branch-and-bound (Liberti & Maculan 2006), neighborhood search (Hansen

& Mladenović 2001), successive smoothing (Moré & Wu 1999), and an stochastic approach

proposed by Huang & Dokmanić (2020).

7.3 Mathematical model

The proposed mathematical model to address the uDGP search to unveil the best as-

signment of the distances to the edges of the graph, and to define the position of each vertex

of the graph in the Rk space. The variables used in the model can be split into three sets.

The first set comprises the location variables xi ∈ Rk that provide the spatial position of the

vertices. The second set of variables contains the variables yaij ∈ {0, 1} that assigns each

edge (ij) of the graph to a distance da in the list D. The third set contains the variables

pij ∈ R+ and nij ∈ R+, which are, respectively, the positive and negative difference between

the distance da and the Euclidean distance of the vertices xi, xj. The distance list may

contain repeated values; therefore, the model includes a parameter za that defines the multi-

plicity of each distance da — the use of this parameter is not mandatory for the uDGP, but

it conveys information that can enhance computation strategies. The benefits of exploring

the multiplicity in the distance list are evaluated in the computational experiments.

The mathematical model is stated in the Equations (7.2)-(7.6).

min
n∑

i=1

n∑
j=1

(pij + nij) (7.2)

s.t.
n∑

i=1

n∑
j=1

(pij − nij + ‖xi − xj‖ − da)yaij = 0, ∀a = 1, . . . ,m (7.3)

m∑
a=1

yaij = 1, ∀i, j = 1, . . . , n (7.4)

n∑
i=1

n∑
j=1

yaij = za, ∀a = 1, . . . ,m (7.5)

nij ≥ 0, pij ≥ 0, xi ≥ 0, yaij ∈ {0, 1}, nij ∈ R, pij ∈ R, xi ∈ Rk (7.6)

The objective function (7.2) represents the total deviation, computed as the sum of the

variables pij and nij. The constraint set (7.3) define the value of the deviation pij and nij;
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the number of constraints in this set is given by the number of distinct distances (m), and

not by the total number of distances. The constraint set (7.4) guarantee the assignment of

each pair of vertices to a single distance. The constraint set (7.5) assign za vertices to the

distance da distance, where za is the multiplicity of the distance da.

The mathematical model (7.2)-(7.6) is a nonlinear nonconvex mixed-integer optimization

problem. Due to the nonconvexity of the problem, optimal global solutions can only be

achieved with global solvers, that usually can not handle large instances of the problem.

Also, the binary variables entail high computational effort. However, the binary variables

can be relaxed using the ideas presented in Chapter 3.

The relaxation is achieved by adding the term
m∑
a=1

n∑
i=1

n∑
j=1

(yaij − waij)
2 = mn2 to the

objective function, and using the penalty parameter β to control the binary feasibility of the

solution. The formulation (7.7)-(7.11) contains a nonlinear convex objective function and a

nonlinear and nonconvex constraint set. A positive aspect of this model is the absence of

binary variables; however, as mentioned above, optimal global solutions can only be assured

with a global solver.

min
n∑

i=1

n∑
j=1

(pij + nij) + β(mn2 −
m∑
a=1

n∑
i=1

n∑
j=1

(yaij − waij)
2) (7.7)

s.t.
n∑

i=1

n∑
j=1

(pij − nij + ‖xi − xj‖ − da)yaij = 0, ∀a = 1, . . . ,m+ 1 (7.8)

m∑
a=1

yaij ≤ 1, ∀i, j = 1, . . . , n (7.9)

n∑
i=1

n∑
j=1

yaij = za, ∀a = 1, . . . ,m (7.10)

nij ≥ 0, pij ≥ 0, xi ≥ 0, yaij ∈ [0, 1], waij ∈ [0, 1], nij ∈ R, pij ∈ R, xi ∈ Rk (7.11)

The performance of the formulation (7.7)-(7.11) was evaluated with the computational

studies described in the next section.

7.4 Computational studies

The computational studies evaluate the behavior of the relaxed formulation with respect

to the parameter β, and the improvements in the computational performance provided by

the information about the multiplicity of the distances. These evaluations consider a single

instance from the literature, and a set of instances generated with the procedure described

in Lavor (2006). Computational tests were performed in a desktop PC (Ubuntu 18.04 op-
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erational system, i7 and 32GB of memory) using the AMPL language (Fourer. et al. 2003)

with the solver Knitro version 7.0 (Waltz & Plantenga 2011).

The quality of solutions are evaluated with respect to the total deviation and to the

average deviation, defined, respectively, by Equation 7.12 and by Equation 7.13.

Total =
n−1∑
i=1

n∑
j=i

(pij + nij) (7.12)

Average =

n−1∑
i=1

n∑
j=i

(pij + nij)

(n− 1)× n
(7.13)

Note that a sufficient condition for a solution to be a global optimal is that the value of

Total is equal to zero.

7.4.1 Influence of the penalty parameter β

The following computational experiments aim to evaluate the influence of the distance

multiplicity on the behavior of the solution. The main aspect to be evaluated is the effect of

the value β for the binary feasibility of the solution; it is expected that the bigger the value

β, the closer to {0, 1} is the solution. However, large penalty parameters entail numerical in-

stabilities during the solution approach. For this reason, successive approximations methods

can be more stable and provide more accurate results (Mehanna et al. 2014).

The evaluation of the parameter β uses the instance presented on Figure 7.2. This is a

nanostructure instance that contains 60 vertices and 21 different distances, with multiplicity

(za) between 30 and 120. The histogram with the frequency of the distance (y-axis) and the

length of the distance (x-axis) is on the left-hand side. The 3D structure of the problem is

represented on the left-hand side.

Figure 7.2: Image adapted from Gujarathi et al. (2014).
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Table 7.1 describes the value of the parameter β used in each test and the worst feasibility

value, calculated as Feas = max
y

(min(|y − 1|, |y|)); the column "Time(s)" contains the

computational time in seconds; column "Total" gives the sum of all deviations; column

"Average" contains the average deviation for each edge; and column "Std Deviation" contains

the standard deviation of the values pij and nij.

Deviation (pij, nij)
β Feas. Total Average Std Deviation Time (s)
5 102 ** ** ** **
10 10−7 8.1× 10−4 4.7× 10−7 1.04× 10−3 327
102 10−8 0.001 6.0× 10−7 7.1× 10−10 648
104 10−5 0.10 5.7× 10−5 6.6× 10−15 619
106 10−7 0.23 1.3× 10−6 3.4× 10−5 511
108 10−7 0.19 1.1× 10−6 1.1× 10−5 608

Table 7.1: Influence of the penalty parameter β in the convergence of the solution approach.

7.4.2 Influence of the multiplicity

These computational studies explored the same instance used in the previous section.

Four randomly generated instances were also used, for which there are no repetitions in the

distance list; for these instances, the proposed model cannot take advantage of the repetitions

to reduce the number of constraints in the set (7.3).

Table 7.2 presents the results for the randomly generated instances — these instances are

available online1. The column "Vertex" gives the number of vertices for each instance; "Dist."

gives the number of entries in the distance list; the columns "Total" and "Average" in the

field "Distance" give, respectively, the total sum of the distances and the average distance

value for each instance. The instances were generated to have a similar average distance

between the vertices. The penalty value β was set to 100, based on the results of the previous

experiments. This choice aims to provide feasibility values under 10−8 (Feas ≤ 10−8), and

without entailing numerical instability.

Number of Distance Deviation (pij, nij)
Vertex Dist. Total Average Feas. Total Average Std Deviation Time (s)

4 7 34.47 5.74 10−5 2.54 0.42 0.64 0.1
6 15 76.19 5.07 10−9 0.07 0.01 0.001 2.3
8 28 179.99 6.42 10−8 1.50 0.05 0.06 5.4
20 190 1181.53 6.21 10−9 1.88 0.01 0.01 870

Table 7.2: Computational results for the randomly generated instances.
1https://github.com/petrabartmeyer/SBPO2019

84

https://github.com/petrabartmeyer/SBPO2019


The desired feasibility condition was achieved for almost all the instances, with a single

exception for the instances with four vertices. The four vertices instance also presented the

most significant deviations; these difficulties in the optimization were probably due to a poor

choice of the initial point — because the solver used is not a global optimization solver, the

convergence of the solution depends on the initial point.

Note that the number of distances in the instances is given by the combination of the

number of vertices in the instance. Therefore, the number of distances quadratically increases

as the number of vertices increases, and the computational effort should increase similarly.

The largest instance solved in this computational experiments has 20 vertices and 190

distances, leading to 190 quadratic nonconvex constraints (because there are no duplicated

entries in the distance list), and to a total solution time around 800 seconds. To give a

perspective of the benefits provided by the repetitions of distances the nanostructure instance

has 60 vertices and 1770 distances, and the number of quadratic nonconvex constraints is

only 21, due to the distance multiplicity; this characteristic allows solving the instance in

less than 700 seconds, with β = 100.

7.4.3 Protein conformation

The protein conformation is the problem of defining the 3D structure, or backbone, of

a protein. In general, this problem is interpreted as an assigned distance geometry prob-

lem, since the connection between two consecutive atoms is known. However, without this

chemical information, the general case of the problem protein conformation problems is an

unassigned distance geometry problem.

Figure 7.3 illustrates the protein conformation solutions for instances with 100 vertices,

on the left-hand side, and with 20 vertices, on the right-hand side. The backbone instances

present the same distance between two consecutive vertices; however, the distance list con-

tains a range of values larger than the previously generated instances.

For these computational studies, a third group of instances using the proposal of La-

vor (2006) was generated; these instances simulate protein backbones in a 3D space. The

instances can present multiplicity, but not as much as in the instance represented in Fig-

ure 7.2. Four classes of instances were generated, using different number of vertices; each

class contains 10 instances, for 5, 7, 10, and 20 vertices.

The model was coded with the AMPL language (Fourer. et al. 2003) and solved with

Knitro (Waltz & Plantenga 2011). The maximum execution time was set as 3600 seconds.
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Figure 7.3: Example of two protein conformation instances with 20 vertices (right) and 100
vertices (left), generated using the procedure described in (Lavor 2006).

The instances in Table 7.3 are also available online2.

The computational studies compare the mathematical models for the uDGP, using the

formulation with binary variables and the formulation with the relaxation of binary variables,

given by (7.7)-(7.11). Table 7.3 presents the computational results for the model with binary

variables, (7.2)-(7.6), named "Integer", and for the model (7.7)-(7.11), called "Relaxed". The

column "Bin Var" presents the number of binary variables for the "Integer" formulation;

column "|Solved|" is the cardinally of the set of instances solved within 3600 seconds; the

column "Dev Total" presents the total sum of deviation, for all the instances solved in each

class. The computation of the "Dev Total" is presented in Equation 7.14.

Dev Total =
∑

a∈Solved

n−1∑
i=1

n∑
j=i

(pij + nij) (7.14)

where Solved is the set of instance solved for each class of instance. An instance is considered

solved if it achieves an optimal solution within 3600, and with Feas ≤ 10−8.

Number of Integer Relaxed
Vertex Distances Bin Var |Solved| Dev Total |Solved| Dev Total

5 10 70 0 – 10 7.5
7 21 315 1 1.57 10 38.7
10 45 1440 0 – 8 59.7
20 190 25270 0 – 3 443.3

Table 7.3: Data about instances and solutions. Table from Bartmeyer & Lyra (2020).

The results in Table 7.3 show that the proposed relaxation allow to solve all the instances

within the maximum execution time; however, some of the instances fail to achieve Feas ≤ 10−8.
2https://github.com/petrabartmeyer/uDGP
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7.5 Discussion

This chapter proposed a new mathematical formulation for the unassigned distance ge-

ometry problem (uDGP) and presented computational tests to evaluate the quality of the

proposed modeling and the benefits of using the binary relaxation developed in Chapter 3.

The model is nonlinear, nonconvex, and includes binary variables. Therefore, it is a severe

testbed for the binary relaxation proposed in this research.

The computational tests showed that the binary relaxation allowed to solve more in-

stances and with higher dimensions when compared to the formulation using binary vari-

ables. The penalty parameter β did not need to be set to high values in order to provide

binary feasibility; indeed, the computational tests showed that β = 10 was enough to provide

good approximations for the binary variables. This is a positive aspect because large values

for β could lead to numerical instabilities.

The constraint set (7.3), designed to explore the distance multiplicity, proved to be

effective; the high multiplicity instance with 60 vertices was solved in less computational

time than the instance with 20 vertices and low multiplicity. This feature can be helpful to

applications in nanostructure because these applications present a more symmetric structure,

which entails more distance multiplicity.

The explorations of the protein conformation problem showed that the distance multiplic-

ity is low, making the constraint set (7.3) less efficient when compared with the nanostructure

applications. However, the use of the proposed relaxation allowed solving instances with up

to 20 vertices and more than 25 thousand binary variables.
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CHAPTER 8

Conclusions

The core of this thesis is a proposal of a new quadratic relaxation for binary variables.

A set of theoretical results proved that the original binary problem can be converted into

a new quadratic continuous optimization problem without losing the integrality properties

of the problem. The theoretical aspects were extended to the quadratic unconstrained bi-

nary optimization problem, and the computational benefits of the proposed relaxation were

explored in three applications. The first application addressed the reliability of electrical

distribution networks. The second application explored strategies to automate the image

segmentation process for myelinated axon measurements in nerve root images. The third

application addressed the unassigned distance geometry problem.

The theoretical results for the quadratic unconstrained binary optimization problem

proved that the proposed relaxation is able to provide a convex objective function, using

a suitable value for a Lagrangian multiplier. Computational experiments showed that the

proposed relaxation presented the best overall performance when compared with the previous

relaxation approaches in the literature.

The first application considered the placement of fault sensors to reduce the effect of

temporary faults in power distribution networks. A mathematical model was proposed to find

the best locations for fault sensors in distribution networks, with the objective of reducing

the detection time of reclosers. The best solutions of this deterministic location problem

are inputs to a local search strategy that inserts stochastic aspects into the model, and

further improves the sensor locations guided by Monte Carlo simulations. Computational

studies showed that the hybrid optimization-simulation approach can reduce the amount of

89

89



time that short-circuit currents travel in the network, even when using a small number of

sensors. The next step in this study is the analysis of the benefits of fault sensors placement

in order to avoid that the temporary faults lead to permanent interruptions — permanent

interruptions occur when the recloser operations are not fast enough to save fuses. Another

exploration is the impact of distributed generation in the sensor placement problem.

The second application developed strategies for the automation of myelinated axons

measurements in nerve root images. A first approach relied on combinatorial optimization

concepts that interpret the image as a graph, and the myelinated axons as Hamiltonian cycles

in the sub-graphs. The computational studies for the Hamiltonian cycle provided evidence

that the proposed relaxation increases the size of the instances solvable via mathematical

programming — it also indicates that the proposed relaxation can be useful to other formu-

lations of the traveling salesman problem. The second approach uses a graph search based

on the flood-fill algorithm. This algorithm is a simple coloring strategy with linear computa-

tional complexity, a property that allows to address the segmentation problem without the

resizing of the original images; however, it requires a preprocessing phase that may introduce

noises that interfere in the segmentation process. The computational studies showed that

the approach was able to automate the segmentation process with good overall accuracy of

results. Both alternatives for the automation of the nerve root image segmentation should

still be regarded as on-going researches; a more extensive evaluation of the positive aspects

and limitations of the methodologies should be performed by neuroscientists.

The third application addressed the unassigned Distance Geometry Problem (uDGP).

The uDGP is a class of distance geometry problems with a wide spectrum of applications,

including the design of structures, nanotechnology, and bio-engineering. The research devel-

oped a mathematical model for the uDGP, which is an incipient area of research. The model

relied on quadratic constraints to represent the Euclidean distance between vertices and

used binary variables for the assignment of distances to edges of 3D graphs. The proposed

relaxation enhanced the optimization process allowing to solve instances of the uDGP with

up to twenty thousand binary variables. The next step in this research is the development of

solution strategies based on meta-heuristics in order to provide a framework for comparisons

with the mathematical programming approach developed here.

To conclude, the binary relaxation ideas developed in this research motivated innovations

in the quadratic unconstrained optimization problem and contributions in three new appli-

cations in combinatorial optimization. The innovative aspects in the first application are

the mathematical model and the solution strategy composed of two phases: a deterministic
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solution using the proposed mathematical model, and a local search that improves the deter-

ministic solutions with the evaluation of the stochastic aspects of the problem. The second

application presents two new methodologies for the automation of nerve root segmentation

measurements. Innovative aspects of both methodologies are a graph interpretation of the

image measurement problems that avoids the use of segmentation methods based on pattern

recognition; other innovative aspects are the development of a combinatorial optimization

approach and a graph search strategy for the automation of the myelin sheath measurements.

The third application addresses the unassigned distance geometry problem; the innovations

are the proposition of the mathematical model for the problem and the solution strategy

based on the proposed relaxation.

The appendix describes the talks and papers that exposed the ideas developed in this

thesis.
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APPENDIX A

Talks and papers

A.1 Conferences participation

Part of this research has been presented in conferences, workshops and journal papers,

such as the Brazilian Symposium on Operation Research (SBPO) in 2018 and 2019; the

Brazilian Workshop on Cutting Stock and related problems (ONPCE) in 2017 and 2019;

and the Regional Workshop in Operation Research (ERPO) in 2018.

It was also presented in two international events during the year of 2018, the Interna-

tional Symposium on Mathematical Programming (ISMP) in Bordeaux - France and the

International Workshop in Lot Sizing (IWLS) in Ubatuba - Brazil.

A.2 Abstracts

• Santos, Caio; Cavalheiro, Ellen; Bartmeyer, Petra; Lima, Rodrigo; Lyra, Christiano.

"A Lot Sizing Perspective for the Battery Storage Coordination in Power Distribution

Systems". International Workshop in Lot Sizing (IWLS) 2018.

• Bartmeyer, Petra; Lyra, Christiano. "A new approach to relax the binary variables on

quadratic unconstrained binary problems". International Symposium on Mathematical

Programming (ISMP) 2018.

• Biscola, Natalia; Bartmeyer, Petra; Zhang, Nianhui; Havton, Leif. “Strategies for

Autonomic Nervous System Mapping of Fiber Composition and Neural Circuitry Using
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Transmission Electron Microscopy in Support of SPARC Projects". Experimental

Biology Meeting, 2020. San Diego, USA (Biscola et al. 2020).

A.3 Conference papers

• Bartmeyer, Petra; Lyra, Christiano. "A quadratic reformulation of binary variables ap-

plied to unconstrained binary quadratic problem". Brazilian Symposium on Operation

Research (SBPO), 2018. Rio de Janeiro, Brazil.

• Bartmeyer, Petra; Lyra, Christiano. "A new mixed-integer nonlinear optimization

model for the unassigned distance geometry problem considering inaccuracy in the

distance list". Presented in the Brazilian Symposium on Operation Research (SBPO),

2019. Limeira, Brazil.

• Santos, Caio; Bartmeyer, Petra; Lyra, Christiano. "Allocation of Fault Indicators for

Adaptive Protection Schemes". IEEE Innovative Smart Grid Technologies (ISGT-LA),

2019. Gramado, Brazil (Santos et al. 2019).

• Santos, Caio; Bartmeyer, Petra; Cavelheiro, Ellen; Lyra, Christiano. "An MINLP

Model to Optimize Battery Placement and Operation in Smart Grids". Innovative

Smart Grid Technologies (ISGT-NA), 2020. Washington DC, USA (dos Santos et al.

2020).

A.4 Journal papers - published

• Bartmeyer, P.M., Lyra, C. "A new quadratic relaxation for binary variables applied to

the distance geometry problem" Structural and Multidisciplinary Optimization (2020).

https://doi.org/10.1007/s00158-020-02567-7

The article summarizes the theoretical results concerning the proposed relaxation and

the mathematical model developed for the protein conformation problem.

• Bartmeyer, P; Bocanegra, S; Oliveira, A "Switching preconditioners using a hybrid ap-

proach for linear systems arising from interior point methods for linear programming"

Numerical Algorithm (2020). https://doi.org/10.1007/s11075-020-00893-x

The results of this paper were mainly developed during my master thesis in collab-

oration with my supervisor Silvana Bocanegra and the co-supervisor Aurelio R. L.

Oliveira.
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• Amorim, F; Lopes, D; Bartmeyer, P; Ospina, M. "Productivity and profitability of

the sugarcane production in the State of São Paulo, Brazil". Sugar Tech (2020).

https://doi.org/10.1007/s12355-020-00813-2

This paper proposed a mixed-integer optimization model to analyze aspects related to

sugarcane production and costs. The research was developed in partnership with Prof

Marco Ospina and Fernando Amorim from the School of Agricultural Engineering,

University of Campinas (UNICAMP), and Prof David Lopes from the Department of

Rural Economy, São Paulo State University (UNESP).

A.5 Journal papers submitted and in preparation

• Jones, D; Treloar, R; Ouelhadj, D; Glampedakis A, Bartmeyer, P. “Incorporation of

Poverty Principles into Goal Programming”. Submitted to the European Journal of

Operations Research.

This research were developed during a short-term visit to the Centre of Operation

Research at the University of Portsmouth - UK. The article explores the aspects of

goal programming to find the best budget distribution considering aspects related to

fairness. The theoretical developments are applied to a dataset of public schools in the

UK.

• Bartmeyer, P; Biscola, N; Havton, L. “A new mathematical approach for axon popu-

lations detection in L6-S4 spinal cord levels of Rhesus macaques”. In preparation.

This article is result of a sandwich-period at the Brain Research Institute (BRI) of

the University of California - Los Angeles (UCLA). Under the supervision of Prof Leif

Havton, it was proposed a new mathematical tool to analyze general nerve root images.

The theoretical results in Chapter 6 gave support for the ideas in the paper.

A.6 Talks

• Regional Workshop in Operation Research (ERPO) 2018 – "A mathematical program-

ming approach to model the tradeoff between cost and productivity in sugarcane plan-

tation".

• International Symposium on Mathematical Programming (ISMP) 2018 – "A new ap-

proach to relax the binary variables on quadratic unconstrained binary problems".
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• Brazilian Symposium on Operation Research (SBPO) 2018 – "A quadratic reformula-

tion of binary variables applied to unconstrained binary quadratic problem".

• Brazilian Symposium on Operation Research (SBPO) 2019 – "A new mixed-integer

nonlinear optimization model for the unassigned distance geometry problem consider-

ing inaccuracy in the distance list".

102


	Introduction
	I Theoretical results 
	Selected concepts in integer and quadratic optimizations 
	Introduction
	Binary programming
	Quadratic programming
	Lagrangian duality and penalty methods 
	Quadratically constrained quadratic program


	A new quadratic reformulation for binary problems
	Introduction
	The proposed quadratic relaxation
	Matrix representation of the quadratic constraint

	Discussion

	Quadratic unconstrained binary optimization problem
	Introduction
	Lagrangian relaxation
	Computational studies
	Influence of the initial solution
	Studies with positive semi-definite matrix
	Lower bound quality — comparison with previous relaxations in the literature

	Discussion


	II Applications
	Fault sensor placement for temporary faults identification
	Introduction
	Mathematical model
	Local search with a Monte Carlo simulation

	Case study
	Discussion

	 Automatic segmentation for myelinated axons
	Introduction
	Nerve root images
	Strategies for myelinated axon segmentation
	Approach One – A combinatorial optimization approach
	Hamiltonian cycle
	Steps for the image segmentation using Hamiltonian cycles
	Computational studies

	Approach Two – A flood-fill approach 
	Image preprocessing
	Flood-fill algorithm
	Image segmentation using the flood-sill algorithm
	Computational studies

	Discussion

	Unassigned distance geometry problem
	Introduction
	The unassigned distance geometry problem
	Mathematical model
	Computational studies
	Influence of the penalty parameter 
	Influence of the multiplicity
	Protein conformation

	Discussion


	III Conclusion and Future works
	Conclusions
	Bibliography
	Talks and papers
	Conferences participation
	Abstracts
	Conference papers
	Journal papers - published
	Journal papers submitted and in preparation
	Talks






