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Resumo

A produção de reservatórios pode levar a uma diminuição na pressão do fluido durante
a vida útil da produção. O decaimento da pressão dos poros pode alterar a distribuição
das tensões in situ e causar um aumento nas tensões efetivas. A deformação associada
às tensões efetivas pode levar à compactação do reservatório, perda de permeabilidade e
subsidência da terra. Para lidar com tais problemas, é necessário a geomecânica acoplada
com simulação de reservatórios. Existem quatro objetivos principais nesta tese: 1) Propor
um esquema sequencial aprimorado para desenvolver um simulador acoplado de escoamento
e geomecânica não-linear, 2) Implementar modelos elastoplásticos para geomecânica e aplicar
modelos de permeabilidade para reservatório, 3) Analisar a permeabilidade dependente de
deformação, colapso de poros e compactação aprimorada por cisalhamento em reservatórios,
4) Calibrar os parâmetros de materiais em modelos elastoplásticos.

Para apresentar a geomecânica acoplada com simulação de reservatórios, propõe-se pela
primeira vez um algoritmo sequencial aprimorado e implícito (ESFI), com um esquema de
divisão de tensão fixa. O algoritmo sequencial totalmente implícito (SFI) é um método
popular para aproximar um sistema acoplado, mas ocasionalmente sofre de convergência
lenta ou mesmo falha de convergência. Para melhorar o desempenho do algoritmo SFI, uma
nova técnica de aceleração não linear é proposta empregando transformações de Shanks para
aprimorar a convergência do loop externo, com um método Quasi-Newton considerando o
método Thomas modificado para o loop interno. No algoritmo ESFI, a formulação de fluidos
é definida pela lei de Darcy, incluindo modelos de permeabilidade não linear. A deformação
da rocha inclui uma parte linear sendo analisada com base na teoria de Biot e uma parte
não linear sendo estabelecida através de modelos elastoplásticos. As derivadas temporais
são aproximadas por um método implícito de Euler e discretizações espaciais são adotadas
usando elementos finitos em duas formulações diferentes.

Para analisar a permeabilidade dependente de deformação em reservatórios, usam-se mod-
elos de permeabilidade não-lineares baseados em porosidade. Para expressar a deformação,
são implementados modelos elastoplásticos. Para indicar o início do colapso dos poros e da
compactação aprimorada por cisalhamento e seu impacto na porosidade, permeabilidade e
fluxo, são aplicados os modelos de limite de plasticidade e permeabilidade acopladas.

Para calibrar os parâmetros de materiais em modelos elastoplásticos, propõe-se uma es-
tratégia que minimiza a diferença entre resultados experimentais e numéricos, aplicando os
métodos de otimização iterativa. Para calibrar os parâmetros do modelo de maneira ade-
quada e rápida, foram desenvolvidas equações analíticas para fornecer dados iniciais para
cada parâmetro.

Palavras-chave: Elementos Finitos; Geomecânica Não-linear Acoplada com Simulação
de Reservatórios; Poro-Elastoplasticidade; Permeabilidade Dependente de Deformação; Co-
lapso de Poros; Modelos Elastoplásticos Baseados em Física.



Abstract

Production from hydrocarbon reservoirs can lead to a decrease in the fluid pressure over
the lifetime of production. The pore pressure depletion can change the in-situ stresses distri-
bution and cause an increase in effective stresses. Deformation associated with the effective
stresses may lead to reservoir compaction, permeability loss and land subsidence. In order to
tackle these problems, the coupled geomechanics and reservoir fluid flow is required. There
are four main goals in this thesis: 1) To propose an enhanced sequential scheme to develop
a coupled nonlinear geomechanics and reservoir simulation, 2) To implement elastoplastic
models for geomechanics and apply permeability models for reservoir, 3) To analyze strain-
dependent permeability, pore collapse and shear-enhanced compaction in reservoirs, 4) To
calibrate the physics-based elastoplastic models.

To present coupled geomechanics and reservoir simulation, we propose for the first time
an enhanced sequential fully implicit (ESFI) algorithm with a fixed stress split scheme. The
sequential fully implicit algorithm (SFI) is a popular method to approximate a coupled
system, but it occasionally suffers from slow convergence or even convergence failure. In
order to improve the performance of SFI algorithm, a new nonlinear acceleration technique
is proposed by employing Shanks transformations to enhance the outer loop convergence, with
a Quasi-Newton method considering the modified Thomas method for the internal loop. In
this ESFI algorithm, the fluid formulation is defined by Darcy’s law including nonlinear
permeability models. The rock deformation includes a linear part being analyzed based on
Biot’s theory and a nonlinear part being established using elastoplastic models. Temporal
derivatives are approximated by an implicit Euler method and spatial discretizations are
adopted using finite element in two different formulations: the first one uses a continuous
Galerkin for poro-elastoplasticity and Darcy’s flow; the second one uses a continuous Galerkin
for poro-elastoplasticity and a mixed finite element for Darcy’s flow.

To analyze the strain-dependent permeability in reservoirs, we use nonlinear permeability
models based on porosity such as, Costa, Petunin, Nelson, and Davies. To express the de-
formation, we implement elastoplastic models, e.g., Mohr-Coulomb, DiMaggio-Sandler, and
modified Cam-Clay. To indicate the onset of pore collapse and shear-enhanced compaction
and their impact on porosity, permeability, and flux, we apply the coupled cap plasticity and
permeability models.

To calibrate the physics-based elastoplastic models, we propose a strategy that minimizes
the difference between experimental and numerical results by applying the iterative optimiza-
tion methods. To calibrate the model parameters properly and fast, we develop analytical
equations to provide initial data for each parameter.

Keywords: Finite Elements; Coupled Nonlinear Geomechanics & Reservoir Simulation;
Poro-Elastoplastic; Strain-Dependent Permeability; Pore Collapse; Physics-Based Elastoplas-
tic Models.
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Chapter 1

Introduction

1.1 Motivation
In the petroleum industry, understanding the coupling of reservoir flow and geomechanics

is important for a variety of problems to the reservoir engineering community. Examples of
such problems consist of reservoir compaction, wellbore instability, surface subsidence, sand
production, and hydraulic fracturing. Historically, there are many well recognized cases with
regard to these problems. For example, such well-known subsidences are Ekofisk oil fields in
North Sea, Wilmington in California, and Lagunillas fields in Venezuela. For instance, the
oil depletion caused the subsidence of Willmington field reaching to a maximum of 9 meters.
Moreover, the measurement of Ekofisk platform in 1984 showed that the sea floor sank more
than 3.5 m, and a cost for jacking up was U.S 1 billion.

The study of problems similar to the above cases demands the coupling of geomechanics
and reservoir fluid flow for an accurate and efficient reservoir modelling. This coupling is
crucial in a hydrocarbon production forecast, drilling strategy and avert operational risks.
Conventional reservoir simulations simplify the effect of rock compaction on pore pressure,
but recently, several researchers have begun to have an interest about the importance of
coupling fluid flow and rock deformation. For this reason, developing of a coupled nonlinear
geomechanics with reservoir simulator is a motivated study to have an accurate and efficient
reservoir simulation. A combination of numerical and experimental studies associated with
coupled geomechanics and fluid flow can help to take decisions and actions to decrease the
reservoir compaction, surface subsidence, and wellbore collapse in hydrocarbon reservoirs.

1.2 Problem Statement
Several problems are caused by withdrawal from reservoirs, such as land subsidence, well-

bore instability, sand production, and casing deformation that can have an impact on the
hydrocarbon recovery. Every year the industry spends millions of dollars in research and
repair these types of problems. However, the industry uses the rigorous methods for prevent-
ing these problems, there is a common idea that the industrial methods are not sufficient.
Moreover, even though there is a series of studies to consider the geomechanical problems
that arise during production of reservoir, they are not adequate, due to the complexity of



38

problems.
For example, the coupled fluid flow and rock deformation plays a crucial role in the pro-

duction for reservoir compaction, land subsidence, caprock integrity, wellbore stability, and
stress-dependent permeability of the reservoir rock. However, in the conventional reservoir
simulation, it has traditionally emphasized flow modeling and ignored or simplified using
rock compressibility. Consequently, porosity is often considered as a linear function of fluid
pressure and permeability is almost taken as constant. In some cases, such as unconsolidated
and weakly consolidated reservoirs, stress-sensitive reservoirs, and abnormal high-pressure
formation, constant rock compressibility cannot accurately represent compaction of reser-
voirs in production, where the results deviate from the actual status. Furthermore, porosity
and permeability have a hysteresis behavior and they may decrease with increasing net stress
in both consolidated and unconsolidated formations and increases with decreasing the net
stress.

Another example is pore collapse and shear-enhanced compaction in hydrocarbon reser-
voir which they can change the strain state of reservoir and then, cause to reduce porosity
and permeability. Reduction of porosity and permeability may lead to reduce oil produc-
tion that can have a considerable influence on the further recovery of hydrocarbons. Their
mechanism in the rock matrix is associated with grain crushing and breakage of cementation
between grains. Although these phenomena have been studied in the literature and such
researchers have analyzed them experimentally and numerically, they are not considered in
the conventional reservoir simulation.

Since the advent of high-speed computers, the researchers can solve simultaneously some
problems, such as thermo-poromechanics, chemo-poromechanics, hydro-poromechanics with
single phase or multiphase flow, and poro-elastoplastic. The analysis can be performed in
a fully coupled, loosely coupled and sequential coupled scheme. Many challenges still exist
in three dimensional coupled problems with considering nonlinear equations, because they
generally require large computer memory storage and computational time. For instance,
the approximate solution for the fully coupled model has a high computational cost, mainly
because of the assembly and linear solve of a large Jacobian matrix. It leads to an excessive
consumption of computational time and memory. Moreover, the loosely coupled scheme is
only conditionally stable and the sequential coupled scheme demands a modular programming
which may suffer of slow convergence.

In summary, the three-dimensional nonlinear coupled analysis involves a large linear sys-
tem with millions of unknowns that can be computed sequentially, but it needs an acceleration
technique to enhance convergence and stability of the scheme. In such circumstances, the
validity of nonlinear numerical model is based on the experimental test results. Furthermore,
such nonlinear models are complex, including a considerable number of parameters which are
generally assessed based on the laboratory test results. In addition, the determination of a
large number of parameters, often is difficult and it requires a strategy for the calibration of
physics-based model that satisfies the experimental test data.

This research proposes an enhanced sequential fully implicit algorithm with the fixed
stress split to develop coupled nonlinear geomechanics with reservoir fluid flow. The nonlin-
ear geomechanics is presented by poro-elastoplasticity and the reservoir simulation is modeled
using Darcy’s law with considering nonlinear permeability. This study attempts for the first
time to consider nonlinear acceleration techniques for the external loop and also for both in-
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ternal loops, namely reservoir and geomechanics solvers within the context of sequential fully
implicit for poro-elastoplastic and permeability variation. To present poro-elastoplasticity,
various elastoplastic constitutive models are implemented. To evaluate strain-dependent per-
meability in the reservoir, some elastoplastic and nonlinear permeability models are applied.
To indicate the onset of pore collapse and shear-enhanced compaction in reservoir, cap plas-
ticity models are used. To verify the nonlinear numerical simulations, a reference solution
is developed by applying an explicit Runge-Kutta solver. To use sophisticated elastoplastic
models in numerical modeling, optimization techniques are used for calibration of the model
parameters to adjust to test data.

1.3 Objectives
In this work, a numerical and an experimental study of coupled nonlinear geomechanics

and fluid flow in reservoir simulation are presented. This research includes the following
goals:

1. To rewrite the poro-elastoplastic equations in an appropriate mathematical kernel for
sequential methods.

2. To develop an enhanced sequential fully implicit scheme for coupling nonlinear geome-
chanic with reservoir simulator by using finite element method.

3. To verify the enhanced sequential fully implicit scheme by implementing a fully coupled
scheme and developing a reference solution by using the explicit Runge-Kutta solver.

4. To describe the behavior of reservoir rock by using the elastoplastic constitutive models
and implementing some of them, e.g., Mohr-Coulomb, DiMaggio-Sandler, and modified
Cam-Clay.

5. To develop an innovative numerical technique to improve integration algorithm for
elastoplastic constitutive models by considering linear & nonlinear elasticity.

6. To analyze the strain-dependent permeability in reservoir by using different elastoplastic
and permeability models.

7. To analyze the pore collapse and shear-enhanced compaction by applying cap plasticity
models, e.g., DiMaggio-Sandler and modified Cam-Clay.

8. To calibrate automatically the material parameters of elastoplastic models by using an
iterative optimization algorithm.
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1.4 Thesis contributions
The major contributions of this thesis are:

1. An enhanced sequential fully implicit ESFI scheme for coupling nonlinear geomechanics
and fluid flow by using finite element method in Neopz is developed. The capability
of the scheme is investigated through coupled poro-elastoplasticity and permeability
models. It combines several nonlinear acceleration techniques at the level of external
and internal loops to obtain an accelerated convergence. Important characteristics
are, ESFI can be applied to generate approximations of several linear and nonlinear
constitutive models, it makes use of a reduced number of iterations to approximate
several challenging problems forthcoming reservoir geomechanics applications.

2. A Runge-Kutta axisymmetric solver for poro-elastoplasticity in NeoPZ is proposed as
a manner to verify the implementation of coupled poro-elastoplastic and permeability.

3. An innovative numerical technique to improve integration algorithm for elastoplastic
models by considering linear & nonlinear elasticity in Neopz is developed. This tech-
nique is applied for DiMaggio-Sandler, and modified Cam-Clay elastoplastic models.
The advantage of the new technique is to implement the models with more accuracy
and efficiency.

4. A new strategy to calibrate automatically the material parameters of elastoplasticity
models by using an iterative optimization algorithm in NeoPZ is proposed. This algo-
rithm includes analytical equations to provide initial data for each parameter in order
to find the physics-based elastoplastic using iterative optimization appropriately.

1.5 Outline of the thesis
This document includes four main axioms, such as the mathematical model and its dis-

cretization, the enhanced sequential coupled scheme, the use numerical tools in several reser-
voir geomechanics simulation cases, and finally the experimental data adjustment.

In this research, the following chapters are established:
• Chapter 2: Presents the literature review.

• Chapter 3: Describes the mathematical model for poro-elastoplastic coupled with per-
meability. The chapter presents several elastoplastic models, such as Mohr-Coulomb,
DiMaggio-Sandler, and modified Cam-Clay. It also provides a summary of the poro-
elastoplastic model for single fluid phase.

• Chapter 4: Presents the finite element approximation based on two weak formulations,
the first one using continuous Galerkin for poro-elastoplastic and fluid flow; the second
one using continuous Galerkin for poro-elastoplastic and mixed finite element for fluid
flow. The chapter describes an enhanced sequential fully implicit scheme with a fixed
stress split for coupled nonlinear geomechanics and reservoir fluid flow. The chapter
also provides a short description of different acceleration techniques for both external
and internal loops to enhance the sequential fully implicit algorithm.
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• Chapter 5: Describes an innovative numerical scheme in a rotated Haigh-Westergaard
space to improve integration algorithm for elastoplastic models by considering linear
and nonlinear elasticity. The chapter also provides the validity of the numerical scheme
for implementing plasticity models, e.g., Mohr-Coulomb, DiMaggio-Sandler, and mod-
ified Cam-Clay by comparing the numerical results with analytical solutions and ex-
perimental data.

• Chapter 6: Provides the verification of an enhanced sequential fully implicit scheme
in linear and nonlinear configurations. The verification is done by comparing the nu-
merical results with analytical solutions for linear configuration and comparing the
numerical results with a reference solution for nonlinear configuration. The chapter ex-
plains the reference solution developed by using the Runge-Kutta method. The chapter
presents numerical examples of poro-elastoplastic model to evaluate the efficiency of the
nonlinear acceleration techniques applied to sequential fully implicit algorithm. The
chapter demonstrates the potential of the proposed enhanced sequential fully implicit
scheme in 1D, 2D and 3D linear and nonlinear configurations through a home-made
simulator, called PMRS.

• Chapter 7: Describes that the permeability of reservoir behaves as the strain-dependent
permeability and gives several permeability equations. The chapter provides a numer-
ical model of an uniaxial compression test to see the strain-dependent permeability.
The chapter presents the effect of strain-dependent permeability on the both vertical
wellbore drilling and production of reservoir in 2D and 3D configurations through a
home-made PMRS simulator.

• Chapter 8: Presents the pore collapse and shear-enhanced compaction phenomena.
The chapter provides a numerical model of hydrostatic and triaxial compression test
to indicate the onset of pore collapse and shear-enhanced compaction. In addition, the
chapter describes the impact of pore collapse and shear-enhanced compaction on the
both horizontal wellbore drilling and production in 2D configurations through a home-
made PMRS simulator. It also includes a 3D configuration of reservoir to show the
both longitudinal and transverse surface subsidence during the production of reservoir.

• Chapter 9: Gives a description of optimization methods, especially iterative optimiza-
tion method, that has the greatest potential for the calibration of physics-based elasto-
plastic models. The chapter provides the optimization procedure in NeoPZ to calibrate
the material parameters of elastoplastic models that are linear & nonlinear elasticity,
Mohr-Coulomb, DiMaggio-Sandler, and modified Cam-Clay. It also compares the nu-
merical solution with the material parameters calculated with NLopt’s optimization
methods. In addition, the chapter provides some analytical equations to determine
the initial guess for optimization techniques. Finally, a home-made simulator, called
plastic-adjust is used to evaluate the robustness of the proposed material identification.

• Chapter 10: Gives a short discussion on the conclusions and several points for future
research.
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Chapter 2

Literature review

2.1 Theory and governing equations
The coupled flow and deformation in porous media was first described by Terzaghi,

1925. He proposed the concept of effective stress for incompressible solid grains. His one-
dimensional consolidation theory has hitherto used in subsidence problems. Later, the exten-
sion of the Terzaghi’s work to three-dimensional model was formulated by (Maurice A. Biot,
1941b; Maurice A. Biot, 1941a) in a framework consistent with the basic principles of contin-
uum mechanics. Subsequently, They established the poroelasticity theory to anisotropic and
nonlinear materials (M. A. Biot, 1955; M. Biot and Willis, 1957; M. A. Biot, 1962; M. A.
Biot, 1973). Furthermore, the development of consolidation theories of complex models deal-
ing with nonlinear problems and thermal effect was done by (Small, Booker, and E. Davis,
1976; O. Coussy, 1989; R. Lewis and Schrefler, 1998). Moreover, the extension of poroelas-
ticity to poro-elastoplastic was given by (O. Coussy, 1995). In addition, several researches
have been presented to re-interpretation of Biot’s consolidation theory by (Geertsma, 1957;
Ghaboussi and Wilson, 1973; J. R. Rice and Cleary, 1976; Detournay and Cheng, 1993;
Zienkiewicz, Chan, Pastor, Schrefler, and Shiomi, 1999). Also, the extension of Biot’s law
for multiphase flow was established by (Tortike and Ali, 1987; R. W. Lewis and Sukirman,
1994).

2.2 Coupled geomechanics and reservoir fluid flow
In reservoir engineering, studies of some problems, such as land subsidence, wellbore sta-

bility, sand production, and hydraulic fracturing require a comprehensive understanding of
coupled geomechanics and fluid flow (Silbernagel, 2007). For instance, the interaction be-
tween geomechanics and reservoir fluid flow causes change in stress states that can influence
on the permeability and porosity, and thus leads to changes in hydrocarbon production. In
order to have an efficient reservoir simulator, consolidation theories have been widely ap-
plied in reservoir engineering. For example, L. Chin and Boade, 1990 described the seafloor
subsidence over the Ekofisk oil field by using a reservoir simulator and a compaction model.
Koutsabeloulis and Hope, 1998; Minkoff, C. M. Stone, Arguello, Bryant, Eaton, Peszyn-
ska, and M. Wheeler, 1999 presented an explicitly coupled scheme for the multiphase flow
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with and without considering the thermal effect. R. W. Lewis and Sukirman, 1994 devel-
oped a three-dimensional three-phase flow in a deforming hydrocarbon reservoir to obtain
simultaneous solutions of displacement and fluid pressure using finite element method. Later,
Gutierrex and R. Lewis, 1998 described a fully coupled geomechanics and reservoir simulation
to emphasize the importance of geomechanics in reservoir simulation.

In recent years, several researches have been published in the literature to find coupled
geomechanics and reservoir flow, such as Antonin Settari and Mourits, 1998 developed an
iterative coupling approach between reservoir simulation and a three-dimensional stress code,
and then the results were compared to an uncoupled solution showed coupling has a more
realistic answer. D. Yale, Lyons, and Qin, 2000 indicated the remarkable differences in reser-
voir response during production between uncoupled reservoir simulation and the coupled
reservoir fluid flow with elastic deformation. A. Settari and Walters, 2001 introduced differ-
ent methods for coupled poroelasticity and multiphase flow in reservoir. Thomas, L. Chin,
Pierson, and Sylte, 2002 presented an iterative procedure to develop coupled geomechanics
and reservoir simulation for analyzing the impact of stress on field productivity. Phillips
and M. F. Wheeler, 2007 formulated a coupling of mixed and continuous Galerkin finite
element method for approximating the coupled fluid and mechanics in Biot’s consolidation
model of poroelasticity. Dung, 2007 developed a fully coupled fluid flow and rock deforma-
tion, to analyze the effect of reservoir compaction on porosity variations. Wei and D. Zhang,
2010 presented a coupled fluid-flow and geomechanics for analyzing the porosity/permeabil-
ity changes in coalbed methane recovery. Sanei, Duran, and P. R. Devloo, 2017 developed
a coupling between fluid flow and nonlinear poromechanics deformation in porous media to
show the effect of the nonlinear deformation on porosity variation compared to the linear
response. Jiang and Yang, 2018 presented a numerically fully-coupled fluid flow using a
mimetic finite difference and geomechanics model by a Galerkin finite element to precisely
characterize the production behaviors of fractured shale gas reservoirs.

2.3 Coupling schemes
The interaction between geomechanics and fluid flow have been developed using differ-

ent coupled schemes (Prevost, 1997; Antonin Settari and Mourits, 1998; Thomas, L. Chin,
Pierson, and Sylte, 2002; Tran, Nghiem, and Buchanan, 2005; Jha and Ruben Juanes, 2007).
There are typically four approaches: fully coupled, loosely coupled, sequentially coupled, and
explicitly coupled (A. Settari and Walters, 2001; R. H. Dean, Gai, C. M. Stone, and Minkoff,
2006). In brief, the characteristics of coupled schemes are:

1. Fully Coupled : In the fully coupled scheme, the governing equations of flow and
deformation are solved simultaneously at every time step. The fully coupled method
requires careful implementation, sophisticated linear solvers, preconditioners, and it is
also computationally expensive (Gutierrez and Roland W. Lewis, 2002; Xikui Li, Z.
Liu, and R. W. Lewis, 2005; Jha and Ruben Juanes, 2007; Pan, Sepehrnoori, and L. Y.
Chin, 2009).

2. Sequentially Coupled : In the sequentially coupled scheme, several types of them are
devised considering which variables are kept constant and the order for the sequential
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stages. For instance, by fixing the variation of total volumetric stress for reservoir
equations and the fluid pressure for geomechanics, one possibility is to solve the flow
problem first, and using the computed pressure approximation to solve the deformation
problem (F. Armero and Simo, 1992; Tran, Nghiem, and Buchanan, 2005; R. H. Dean,
Gai, C. M. Stone, and Minkoff, 2006; M. F. Wheeler and Gai, 2007; Dana, Ganis, and
M. F. Wheeler, 2018). The sequential method is iterated until the solution converges
to the desired tolerance. This approach is more efficient than the fully coupled solution
process either for linear and nonlinear poromechanics problems.

3. Explicitly Coupled : The explicitly coupled scheme is a special case of the sequential
coupled method, where only one iteration is taken (Park, 1983; F. Armero and Simo,
1992; F. Armero, 1999).

4. Loosely Coupled : In a loosely coupled scheme, the coupling between flow and deforma-
tion is solved only after a certain number of flow time steps (Bevillon and Masson, 2000;
Minkoff, C. Stone, Bryant, Peszynska, and M. F. Wheeler, 2003; Samier, Onaisi, and
Gennaro, 2008). The loosely coupled scheme is only conditionally stable and requires
to estimate of when to update the deformation response.

Due to the high computational cost of the fully coupled scheme, it is desirable to develop
sequential solution schemes that can be competitive with the fully coupled approach. More-
over, sequential schemes suggest wide flexibility from a software engineering prospect. J. Kim,
H. Tchelepi, and R. Juanes, 2011a; J. Kim, H. Tchelepi, and R. Juanes, 2011b proposed four
types of sequential coupled procedures, such as drained split, undrained split, fixed strain
split, and fixed stress split. Jihoon Kim, H. A. Tchelepi, and Ruben Juanes, 2011 concluded
that among sequential schemes the fixed stress split strategy is unconditionally stable and
has better convergence properties. Later, Mikelić and M. F. Wheeler, 2012 demonstrated
the convergence of the fixed stress split from a theoretical point of view using a contraction
map with respect to an appropriately chosen metrics. The fixed stress split scheme consists
of solving first the flow problem while freezing the volumetric mean total stress, and thus the
mechanical part is solved from the values computed at the previous flow step. However, as
nonlinearities are considered in the equations, the fixed stress split scheme can suffer from
slow convergence or even convergence failure.

In (Jiang and H. A. Tchelepi, 2018) the sequential fully implicit was extended with several
nonlinear acceleration techniques to enhance the convergence and the stability of sequential
schemes. The authors present an approach which extends the sequential fully implicit (SFI )
scheme with several nonlinear acceleration techniques to enhance the convergence and the sta-
bility of sequential schemes. They propose several acceleration techniques applied to the SFI
in the context of the multiphase flow in porous media; Anderson acceleration, Quasi-Newton
and Aitken’s technique (Aitken, 1937). Recently, acceleration methods have been used to de-
velop advanced numerical methods, such as domain decomposition (Garbey, 2005), multigrid
(Jemcov, Maruszewski, and Jasak, 2007), fluid-structure interaction (Degroote, Bathe, and
Vierendeels, 2009), thermomechanics (Erbts and Düster, 2012). The acceleration method of
a single variable (scalar) was presented for the first time by Aitken, 1926. Later, Aitken,
1937 applied the method for a multivariable function with interdependence between vari-
ables. Later, Plancq, Thouvenin, Ricaud, Struzik, Helfer, Bentejac, Thévenin, and Masson,
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2004 expressed several acceleration methods for vector sequences where most of them are
generated based on the Aitken scalar acceleration algorithm. Jennings, 1971 presented two
acceleration vector sequences named as first difference modulation (FDM ) or Aitken’s mod-
ification and second difference modulation (SDM ) or Anderson acceleration. In addition, in
numerical analysis, transformations and extrapolations are mostly applied to slowly conver-
gent sequences either from iterative processes or the partial summation of infinite series to
decrease the number of function evaluations, such as Richardson extrapolation (Richardson,
1911) and Shanks transformation (Shanks, 1955).

2.4 Theory of poro-elastoplasticity
Poro-elastoplasticity refers to the ability of porous materials to undergo irreversible de-

formation and permanent changes in porosity and, as a consequence, permanent changes in
fluid mass content (Olivier Coussy, 2004). In recent years, several studies have been devel-
oped to describe the elastoplastic behavior of porous materials, such as different elastoplastic
constitutive models are used for investigating the effect of plasticity on porosity and con-
sequently collapse of pores (J. Shao and Henry, 1991; Zohdi, Kachanov, and Sevostianov,
2002; Aubertin and Li Li, 2004; Seifert and Schmidt, 2009; S. Xie and J. Shao, 2012). Other
examples have been studied for crack and void growth, strain localization, and viscous de-
formation in porous media (Radi, Bigoni, and Loret, 2002; HSU, LEE, and MEAR, 2009;
Mroginski, Etse, and Vrech, 2011). In addition, several researches have been developed for the
wellbore stability, fracture propagation, and cavity generation (Kirupakaran, Muraleetharan,
and Abousleiman, 2012; Sarris and P. Papanastasiou, 2012; H. Wang, Marongiu-Porcu, and
Economides, 2016; R. Dean, 2003).

The poro-elastoplasticity is expressed through the elastoplasticity constitutive models.
The implementation of the elastoplasticity models in finite element demand the use of nu-
merical integration algorithms for presenting the incremental evolution of stresses and hard-
ening parameters (R. I. Borja and Lee, 1990). Within the last decade, various integration
algorithms have been proposed and categorized within two techniques: explicit and implicit.
The implicit algorithms have become predominant because of their efficiency and robustness.

The numerical integration scheme of elastoplastic constitutive models is described in the
reference book (Souza Neto, Peri, and D. R. J. Owen, 2008) where the numerical approach is
based on the two main steps: the elastic trial step and a subsequent return-mapping scheme.
The convergence rate of the iterative method for solving nonlinear elastoplastic equations
is strongly dependent on the choice of variables to represent the residual vector. It can
be enhanced by representing the elastoplastic equations in terms of the principal stresses
(Cecílio, P. R. Devloo, Sônia M. Gomes, E. R. d. Santos, and Shauer, 2015).

2.5 Permeability behavior in reservoir
The reduction of fluid pressure during reservoir production changes the initial stress

state within the reservoir, which results in increased effective stress on reservoir and the
surrounding rock (Holt, 1990; Ruistuen, L. Teufel, and D. Rhett, 1999). The effective stress
can cause strain and compaction of reservoir, if it is sufficient to overcome the strength of
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rock. The strain can have a large impact on the microstructures and alters the petrophysical
properties of the reservoir rock. The most common petrophysical properties are porosity
and permeability, which are affected by the change in effective stress (Jeremie Dautriat,
N. F. Gland, Youssef, Rosenberg, and Bekri, 2007). Many researches have been done to
show the impact of effective stress on the porosity and permeability of the reservoirs. In
most researches, with increase of effective stress, the permeability reduces because of rock
compaction (Christian David, T.-F. Wong, Zhu, and Jiaxiang Zhang, 1994; Jiaxiang Zhang,
T.-F. Wong, and D. M. Davis, 1990). However, in some cases with an increase the effective
stress, permeability increases because of the stress paths (D.W. Rhett and L. Teufel, 1992).

Permeability is one of the fundamental physical properties of rocks which uses to transport
hydrocarbons (Lim and Jungwhan Kim, 2004). This property can indicate different behav-
iors, such as permeability hysteresis behavior (Teklu, Z. Zhou, Xiaopeng Li, and Abass,
2016), stress-dependent permeability (Jeremie Dautriat, N. F. Gland, Youssef, Rosenberg,
and Bekri, 2007), and strain-dependent permeability (Shin, K. Y. Kim, and Pande, 2014)
which can play a key role in the productivity of wells during the depletion of the reservoir.

Teklu, Z. Zhou, Xiaopeng Li, and Abass, 2016 expressed that permeability shows hys-
teresis behavior, which permeability decreases with increasing net stress in both consolidated
and unconsolidated porous media and increases with decreasing net stress. Permeability
hysteresis has an important role in production of reservoirs, especially in very low permeabil-
ity reservoirs, such as tight sandstone, tight carbonate, and shale formations (Elhaj, Barri,
Hashan, and Hossain, 2018).

Stress-dependent permeability has been noticed by production engineers in oil indus-
try, which the pressure depletion can alter the effective stress that can cause the change
of permeability (D. P. Yale and Crawford, 1998). G. Han and Dusseault, 2003 expressed
that during reservoir drawdown, reduction in permeability can decrease the production of a
stress-sensitive reservoir.

Moreover, Shin, K. Y. Kim, and Pande, 2014 presented that permeability behaves as
the strain-dependent permeability, which the quantity of permeability can be changed by the
variation of strain. Furthermore, pressure depletion of reservoir can cause plastic deformation
of rocks that leads to serious problems, such as subsidence, well failures, permeability dam-
age, production rate, and reservoir impairment (Nguyen, N. Gland, J. Dautriat, C. David,
Wassermann, and Guélard, 2014).

2.6 Pore collapse and shear-enhanced compaction
The reduction of fluid pressure during reservoir production changes in the effective stress

distribution within the reservoir that leads to the rock compaction. Such compaction in
porous media is due to pore collapse or shear-enhanced compaction, which causes the re-
duction of porosity and permeability (Brace, 1978). Reduction of porosity and permeability
has a great effect on well productivity and further recovery of hydrocarbons (Xiong, H. Xu,
Y. Wang, W. Zhou, C. Liu, and L. Wang, 2018).

Pore collapse has been studied widely in the literature, such studies have shown macro-
scopically the pore collapse phenomena in the laboratory, e.g., (Blanton, 1981; J. Johnson,
D.W. Rhett, and Siemers, 1988) and such researchers have indicated the microscopic changes



48

because of pore collapse in reservoir rocks (Addis, 1987; Abdulraheem, Zaman, and Roegiers,
1994). Heiland, 2003 expressed that with an increase of hydrostatic stress, the porosity and
permeability reduces continuously until the initiation of pore collapse which the permeability
reduction undergoes a sharp decline. Moreover, Coelho, A. Soares, Ebecken, Alves, and Lan-
dau, 2003 indicated that a cap plasticity model is able to clearly indicate the pore collapse
of porous rocks.

In addition, shear-enhanced compaction has been studied by several researchers, such as
Schock, Heard, and Stephens, 1973; Curran and M. M. Carroll, 1979 who presented that
the shear-enhanced compaction can be induced by the application of a nonhydrostatic stress.
Tembe, Baud, and T.-f. Wong, 2008 indicated the onset of shear-enhanced compaction by
using acoustic emission. Baud, Vajdova, and T.-f. Wong, 2006 expressed that the onset of
shear-enhanced compaction can be described using cap plasticity model. Also, Jongerius,
2016 expressed that a large reduction in porosity and permeability is observed once the
shear-enhanced compaction is started.

2.7 Optimization procedure for calibration
Prediction of geomechanical properties has always played a very important role in nearly

all stages of the oil industry for petroleum engineering. Making the best decision among
all possible predictions is a responsibility of geomechanical engineers in order to maximize
economy and safety (Shuku, A. Murakami, Nishimura, Fujisawa, and Nakamura, 2012). Ge-
omechanical properties are normally calculated based on laboratory tests on cores. Mechan-
ical properties of reservoir rock may behave quite differently under loading and unloading
conditions. To describe the behavior of rock, the elastoplastic constitutive models are used.
Such constitutive models may tend to become extremely complicated, comprising a consider-
able number of parameters (Cekerevac, Girardin, Klubertanz, and Laloui, 2006). In practice,
obtaining accurate parameters for constitutive models is a difficult task because of the many
sources of uncertainty in geomechanical analyses and quite often depends on the engineering’s
experience (Cekerevac, Girardin, Klubertanz, and Laloui, 2006; Graham, 2006).

Generally, to overcome the uncertainties while calibrating the model parameters, math-
ematical optimization procedure can be used. The optimization method basically consists
of two parts, the formulation of an objective function and the selection of an optimization
strategy (Mattsson, Klisinski, and Kennet Axelsson, 2001). The optimization procedures
that have been applied to many geotechnical and geomechanical problems are:

Iterative optimization method : It requires the search for the minimum value of an ob-
jective function over the entire domain according to whether it evaluates Hessians, gradient,
or only function values. There are many researches applied iterative optimization method
for computing the model parameters, such as identification of model parameters in soil plas-
ticity (Mattsson, Klisinski, and Kennet Axelsson, 2001), calibration of soil parameters for
an elastoplastic model (Cekerevac, Girardin, Klubertanz, and Laloui, 2006), and evaluat-
ing modified Cam-Clay parameters (Navarro, Candel, Barenca, Yustres, and García, 2007;
Doherty, Alguire, and Wood, 2012).

Inverse analysis : It can calibrate the models by iteratively changing input values until
the simulated output values match with the observed data (Calvello and Richard J Finno,
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2004). Inverse analysis has been used in geotechnical practice, e.g., tunnel excavations in rock
(Karakus and Fowell, 2005), groundwater modeling (Poeter and Hill, 1997), determination
of soil parameter for numerical analysis of deep excavation (Ou and Y.-G. Tang, 1994),
excavations with support systems (Richard J. Finno and Calvello, 2005; Rechea, Levasseur,
and R. Finno, 2008), and parameter identification for Cam-Clay model (Shuku, A. Murakami,
Nishimura, Fujisawa, and Nakamura, 2012).

Genetic algorithm : It is a probabilistic approach to find the optimum value of fitness
function based on inheritance mechanisms. Genetic algorithm has been applied in geotech-
nics, such as evaluation of liquefaction (Javadi, Rezania, and Nezhad, 2006), calibration of soil
constitutive model (Macari, Samarajiva, and Wathugala, 2005) and calibration of modified
Cam-Clay model parameters (Kowalska, 2007).

Artificial neural network : It is a series of algorithms that inspired from the human brain
and is particularly well-suited to modeling, control, and analysis of nonlinear problem. Arti-
ficial neural network has been widely used by researchers for modeling of material behavior
(Ghaboussi, Garrett, and X. Wu, 1991), modeling of the drained and undrained behavior of
sand (Ghaboussi and Sidarta, 1998), extracting the material constitutive behavior from non-
uniform tests (Sidarta and Ghaboussi, 1998), and calibration of constitutive models (Obrzud,
Vulliet, and Truty, 2009).

Previous studies emphasize the capability of the iterative optimization method to derive
the appropriate model parameters (Mattsson, Klisinski, and Kennet Axelsson, 2001; Cek-
erevac, Girardin, Klubertanz, and Laloui, 2006; Doherty, Alguire, and Wood, 2012). They
employed iterative optimization method to calibrate soil elastoplastic constitutive models
for geotechnical problems. However, its performance is highly dependent on the type of
problems. There is in fact a lack of researches on calibration physics-based elastoplastic con-
stitutive models by using iterative optimization method for porous rock, especially reservoir
rock.

2.8 Conclusions
From this bibliographic review, it is possible to conclude that:

* Conventional reservoir simulations ignore or simplify the coupled geomechanics and reser-
voir fluid flow, but recently several researchers have indicated the importance of this cou-
pling, then investigation of coupled nonlinear geomechanics with reservoir fluid flow is a
motivated study to develop an efficient reservoir simulator.

* Generally the coupling between geomechanics and fluid flow is approximated using the
sequential fully implicit algorithm SFI which occasionally suffers from slow convergence
or even convergence failure. To improve the convergence associated with SFI, acceleration
techniques are required.

* There are no references found for acceleration technique applied to coupled fluid flow and
geomechanics. Therefore, proposing a new nonlinear acceleration technique to enhance the
SFI algorithm, is a motivation of this study.
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* To present the nonlinear geomechanics by using poro-elastoplasticity, the elastoplastic
constitutive models are required. The implementation of the elastoplastic models in fi-
nite element demand the use of numerical integration algorithms. Thus, proposing an
innovative procedure to improve integration algorithm of linear and nonlinear elastoplastic
models is an another motivation for doing this study.

∙ By investigating the coupled poro-elastoplastic and permeability, especially the develop-
ment of cap plasticity models, it is possible to evaluate various phenomena and consider
their impact on reservoir simulation.

∙ These phenomena can be strain-dependent permeability, pore collapse, and shear-enhanced
compaction which are still not completely explored their effects on the reservoir rock.

⋆ Numerical simulations are generally used to solve complex problems, which may require
sophisticated constitutive models with a large number of parameters. Determination of
these parameters on the basis experimental data, is a challenging task which requires highly
experienced professionals to calibrate the models properly.

⋆ Then, developing a methodology to calibrate physics-based elastoplastic models is a moti-
vated research to analyze reservoir geomechanics problems accurately.
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Chapter 3

Mathematical models

This chapter presents a mathematical model for coupling between nonlinear geomechan-
ics and reservoir fluid flow simulation. The nonlinear geomechanics is presented by poro-
elastoplasticity and the reservoir simulation is modeled using Darcy’s law with considering
nonlinear permeability. The chapter is also included the strong form of mathematical equa-
tions.

3.1 Background
The governing equations for coupled geomechanics and fluid flow are composed by a

set of conservation laws and constitutive laws. The conservation equations are related to
momentum and mass. At the macroscopic scale, two main approaches can be found depending
on the Eulerian and Lagrangian descriptions: the pioneering research of Terzaghi and Biot
(Terzaghi, 1925; Terzaghi, 1943; Maurice A. Biot, 1941b; M. A. Biot, 1955) provides a
concise explanation for the Eulerian case; and the work of (Olivier Coussy, 2004) develops
the Lagrangian case.

3.2 Governing equations

3.2.1 Main assumptions
The governing equations for coupled geomechanics and reservoir fluid flow are defined

based upon the following assumptions (Gai, 2004; O. Durán, 2013):

• The solid phase is considered to contain a porous skeleton surrounded by a single phase
flow;

• The solid material is isotropic corresponding to rock mechanical properties;

• A quasi-static deformation process is assumed and inertial effects are neglected;

• The small-strain deformation regime is considered;

• The rock formation is compressible;
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• An isothermal flow condition is used;

• The flow is governed by diffusive mass flux to incorporate the effect of transient fluid
flow through porous media;

• The permeability tensor is diagonal;

• Fluid flow is characterized by Darcy’s law which has some assumptions as follows:

* Fluid phase is considered to be homogeneous and Newtonian;
* There is not occurred any chemical reaction, precipitation or adsorption;
* There is no electrokinetic effect.

3.2.2 Momentum conservation
The conservation of momentum under the quasi-static assumption is expressed as (J. W.

Rudnicki, 1986):

𝑑𝑖𝑣 (𝜎𝑡 − 𝜎∘
𝑡) = 0 (3.2.1)

where 𝑑𝑖𝑣(·)
[︁
m−1

]︁
is the divergence operator, 𝜎∘

𝑡 and 𝜎𝑡 [MPa] are the initial and the current
Cauchy total stress tensor, respectively. The momentum conservation in equation (3.2.1) is
defined in terms of Cauchy effective stress tensor as:

𝑑𝑖𝑣 (𝜎 − 𝜎∘ − 𝛼 (𝑝− 𝑝∘) I) = 0 (3.2.2)
where 𝜎∘ and 𝜎 are the initial and current Cauchy effective stress [MPa], 𝛼 is the Biot’s
coefficient, I is the second rank identity tensor, 𝑝∘ and 𝑝 are the initial and current fluid
pressure [MPa], respectively. The effective stress increment �̇� is determined by linear stress-
strain relationship, as:

�̇� = 2𝜇𝜖𝑒 (u̇) + 𝜆𝑡𝑟 (𝜖𝑒 (u̇)) I (3.2.3)
where 𝜖𝑒 is the elastic strain increment. The parameters 𝜇 and 𝜆 are the Lamé constants
[MPa]. The corresponding initial (referred with the superscript (·)∘) and boundary conditions
as follows:

𝐼.𝐶. =
⎧⎨⎩𝑝 = 𝑝∘ 𝑜𝑛 Ω

u = u∘ 𝑜𝑛 Ω
𝐵.𝐶. =

⎧⎨⎩𝜎𝑡 · n = t 𝑜𝑛 𝜕Ω𝑁
𝜎𝑡

u = u𝐷 𝑜𝑛 𝜕Ω𝐷
u

(3.2.4)

3.2.3 Mass conservation
For a slightly compressible fluid, the mass conservation is defined by (J. W. Rudnicki,

1986) as follows:

𝜕 (𝑚𝑓 )
𝜕𝑡

+ 𝑑𝑖𝑣 (q) = 0 (3.2.5)
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where 𝑚𝑓 is the fluid content
[︁
kg m−3

]︁
, q = 𝜌𝑓v𝑓 is flux

[︁
kg s−1 m−2

]︁
, and v𝑓

[︁
m s−1

]︁
is the

fluid velocity. The fluid velocity is described by the Darcy’s law:

v𝑓 = −K
𝜂

∇𝑝 (3.2.6)

where 𝜂 is the fluid dynamic viscosity [Pa s], K is the absolute permeability tensor
[︁
m−2

]︁
.

The absolute permeability in equation (3.2.6) is an inherent property of porous media that
is dependent on pore size and interconnection of microscopic porous (X. Zhou, Zeng, and H.
Liu, 2011). In this research the absolute permeability is considered isotropic and expressed
in terms of a scalar value 𝜅:

K = 𝜅 I (3.2.7)
During production, the effective stress can change because of the reduction of fluid pres-

sure, or changes in other loading conditions. The way to simulate strain-dependent perme-
ability is through an integrated constitutive model which is stress-strain dependent (A. C.
Soares, 2007).

Permeability is controlled by the pore space and it is dependent on the pore throat size
and tortuosity. The reduction in porosity has a direct effect on absolute permeability (E.
Santos, Borba, and F. Ferreira, 2014). Therefore, the relationship of permeability with the
volumetric strain (alteration of porosity) leads to an implicit relation to stress-dependent
permeability. A functional relationship for permeability only related to porosity which is
written as follows:

𝜅 = 𝑓 (𝜑) (3.2.8)
The total fluid content in equation (3.2.5) is expressed as follows:

𝑚𝑓 = 𝑓 (u, 𝑝) = 𝜑𝜌𝑓 (3.2.9)
The equation (3.2.9) can be linearized using the expression for the Lagrangian porosity.

The changes in porosity can be modeled by either the linearized poroelastic case (Detournay
and Cheng, 1993) or the linearized poro-elastoplastic case (J. Kim, H. Tchelepi, and R.
Juanes, 2011b; Jihoon Kim, H. A. Tchelepi, and Ruben Juanes, 2011; Olivier Coussy, 2004).
Without loss of generality the porosity change 𝛿𝜑 = 𝜑 − 𝜑∘ can be expressed by a linear
combination of two main effects, the deformation of matrix and the deformation of pores:

𝛿𝜑 = 𝛿𝜑𝑚𝑎𝑡𝑟𝑖𝑥 + 𝛿𝜑𝑝𝑜𝑟𝑒 (3.2.10)

Introducing the pore compressibility as 𝑆
[︁
MPa−1

]︁
:

𝑆 =
(︃

(1 − 𝛼) (𝛼− 𝜑∘)
𝐾𝑑𝑟

)︃
(3.2.11)

where 𝛼 is the Biot’s coefficient, 𝜑∘ is the initial porosity, and 𝐾𝑑𝑟 [MPa] is the elastic rock
bulk modulus in drained conditions.
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The terms 𝛿𝜑𝑚𝑎𝑡𝑟𝑖𝑥 and 𝛿𝜑𝑝𝑜𝑟𝑒 in expression (3.2.10) are functions of:

• The volumetric elastic strain 𝜖𝑒𝑣 = 𝜖𝑣 − 𝜖𝑝𝑣;

• The plastic porosity 𝜑𝑝;

• The pore pressure 𝑝.

The following expressions are suggested by J. Kim, H. Tchelepi, and R. Juanes, 2011b;
Olivier Coussy, 2004: ⎧⎨⎩𝛿𝜑𝑚𝑎𝑡𝑟𝑖𝑥 = 𝛼 (𝜖𝑒𝑣 − 𝜖∘

𝑒𝑣) + 𝜑𝑝 − 𝜑∘
𝑝

𝛿𝜑𝑝𝑜𝑟𝑒 = 𝑆 (𝑝− 𝑝∘)
(3.2.12)

Combining equations 3.2.10, 3.2.11, and 3.2.12 one obtains:

𝜑 = 𝜑∘ + 𝛼 (𝜖𝑒𝑣 − 𝜖∘
𝑒𝑣) + 𝜑𝑝 − 𝜑∘

𝑝 +
(︃

(1 − 𝛼) (𝛼− 𝜑∘)
𝐾𝑑𝑟

)︃
(𝑝− 𝑝∘) (3.2.13)

It is generally difficult to evaluate the plastic porosity and in order to define it, a heuristic
assumption is considered. A linear dependency of 𝜑𝑝 on 𝜖𝑝𝑣 is written as:

𝜑𝑝 = 𝛼𝑝𝜖𝑝𝑣 (3.2.14)

where the parameter 𝛼𝑝 shares the same restrictions of 𝛼, i.e. 𝜑∘ ≤ 𝛼𝑝 ≤ 1 (Olivier Coussy,
2004; T. A. Bui, H. Wong, Deleruyelle, A. Zhou, and Lei, 2016). This parameter is identified
as the plastic effective stress coefficient (H. Zhou, Jia, and J. Shao, 2008; T. A. Bui, H.
Wong, Deleruyelle, A. Zhou, and Lei, 2016) or nonlinear Biot parameter (Silva, Murad, and
Obregon, 2018).

There are experimental results that support the fact that 𝛼 ̸= 𝛼𝑝. Olivier Coussy, 2004
suggest that for a limestone under drained conditions 𝛼𝑝 ≈ 1 while 𝛼 = 0.9. For chalks S. Y.
Xie and J. F. Shao, 2015 have shown that 𝛼𝑝 ≈ 1. However, other researchers (H. Zhou, Jia,
and J. Shao, 2008; J. Kim, H. Tchelepi, and R. Juanes, 2011b; Jihoon Kim, H. A. Tchelepi,
and Ruben Juanes, 2011) assume that 𝛼 = 𝛼𝑝. For simplicity 𝛼 = 𝛼𝑝 is considered in this
research.

The fluid density 𝜌𝑓

[︁
kg m−3

]︁
for a slightly compressible fluid is (Ertekin, 2001):

𝜌𝑓 = 𝜌∘
𝑓 (1 + 𝑐𝑓 (𝑝− 𝑝∘)) (3.2.15)

Defining 𝑆𝑒 = 1
𝑀𝐵

as the inverse of Biot’s modulus 𝑀𝐵 [MPa], it can be written as:

𝑆𝑒 = 𝑆 + 𝜑∘𝑐𝑓 (3.2.16)
Consequently, the linearized total fluid content can be expressed as in (J. Kim, H. Tchelepi,

and R. Juanes, 2011b; Olivier Coussy, 2004; Silva, Murad, and Obregon, 2018):

𝜑𝜌𝑓 = 𝜌∘
𝑓

(︁
𝜑∘ + 𝛼 (𝜖𝑒𝑣 − 𝜖∘

𝑒𝑣) + 𝜑𝑝 − 𝜑∘
𝑝 + 𝑆𝑒 (𝑝− 𝑝∘)

)︁
(3.2.17)
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The volumetric elastic strain 𝜖𝑒𝑣 can be related to volumetric total stress 𝜎𝑡𝑣 = 𝑡𝑟 (𝜎𝑡) /3
as follows:

(𝜎𝑡𝑣 − 𝜎∘
𝑡𝑣) + 𝛼 (𝑝− 𝑝∘) = 𝐾𝑑𝑟 (𝜖𝑒𝑣 − 𝜖∘

𝑒𝑣) (3.2.18)
Following the ideas in (Jihoon Kim, Sonnenthal, and Rutqvist, 2012), the elastoplastic

tangent bulk modulus 𝐾𝑑𝑟𝑒𝑝 can be related to the volumetric effective stress variation 𝛿𝜎𝑣 =
𝑡𝑟 (𝛿𝜎) /3, considering that 𝛿𝜎𝑣 = 𝛿𝜎𝑡𝑣 + 𝛼𝛿𝑝:

𝛿𝜎𝑣 = 𝐾𝑑𝑟𝑒𝑝𝛿𝜖𝑣 (3.2.19)
The Figure 3.1 shows a schematic hydrostatic test and how the material data 𝐾𝑑𝑟 and

𝐾𝑑𝑟𝑒𝑝 are defined in terms of volumetric stress variation, volumetric total strain, and volu-
metric elastic strain. Jihoon Kim, Sonnenthal, and Rutqvist, 2012 state that Biot parameter
𝛼 is related to the elastoplastic tangent bulk modulus 𝐾𝑑𝑟𝑒𝑝 as follows:

𝛼 = 1 −
𝐾𝑑𝑟𝑒𝑝

𝐾𝑠

(3.2.20)

where 𝐾𝑠 [MPa] is the solid bulk modulus. The expressions (3.2.19) and (3.2.20) are used to
update 𝛼.

Figure 3.1: Schematic hydrostatic test.

By inserting equation (3.2.18) into equation (3.2.17), an alternative expression for total
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fluid content is obtained as documented in (Jihoon Kim, Sonnenthal, and Rutqvist, 2012):

𝜑𝜌𝑓 = 𝜌∘
𝑓

(︃
𝜑∘ + 𝛼

𝐾𝑑𝑟

(𝜎𝑡𝑣 − 𝜎∘
𝑡𝑣) + 𝜑𝑝 − 𝜑∘

𝑝 +
(︃
𝑆𝑒 + 𝛼2

𝐾𝑑𝑟

)︃
(𝑝− 𝑝∘)

)︃
(3.2.21)

where 𝜎∘
𝑡𝑣 and 𝜎𝑡𝑣 are the initial and current volumetric total stress [MPa].

In the same way, by inserting equation (3.2.18) into equation (3.2.12), an alternative
expression for 𝛿𝜑𝑚𝑎𝑡𝑟𝑖𝑥 is obtained:

𝛿𝜑𝑚𝑎𝑡𝑟𝑖𝑥 = 𝛼

𝐾𝑑𝑟

(𝜎𝑡𝑣 − 𝜎∘
𝑡𝑣) + 𝛼2

𝐾𝑑𝑟

(𝑝− 𝑝∘) + 𝜑𝑝 − 𝜑∘
𝑝 (3.2.22)

The mass balance equation can be rewritten by using the expression (3.2.21) as a consti-
tutive relationship, as:

𝜕 (𝜑𝜌𝑓 )
𝜕𝑡

+ div (q) = 0 (3.2.23)

The corresponding initial and boundary conditions as follows:

I.C. =
{︁
𝑝 = 𝑝∘ 𝑜𝑛 Ω B.C. =

⎧⎨⎩q · n = 𝑞𝑛 on 𝜕Ω𝑁
q

𝑝 = 𝑝𝐷 on 𝜕Ω𝐷
𝑝

(3.2.24)

3.2.4 Elastoplastic constitutive models
In short, a nonlinear elastoplastic constitutive model is described by the theory of elasto-

plasticity, when a material undergoes an irreversible deformations after some specific loading
conditions. The total strain tensor 𝜖 is decomposed into two parts as follows (Souza Neto,
Peri, and D. R. J. Owen, 2008):

𝜖 = 𝜖𝑒 + 𝜖𝑝 (3.2.25)
where 𝜖𝑒 is the elastic strain component and 𝜖𝑝 is the plastic strain component. The elastic
part is reversible and the plastic part represents a permanent deformation, and it is related
to the history of irreversible deformations (Souza Neto, Peri, and D. R. J. Owen, 2008). Once
a displacement increment ·

𝑢 is determined, the relationship between strain and displacement
under the infinitesimal strain theory is defined as:

·
𝜖 = 1

2
(︁
∇ ·
𝑢+ ∇𝑇 ·

𝑢
)︁

(3.2.26)

The elastoplastic deformation can be as a result of various microstructural changes and
it can be described by the set of internal damage variables (Hayakawa, S. Murakami, and
Y. Liu, 1998):

𝜒𝑖; 𝑖 = 1, 2, ... (3.2.27)
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where internal damage 𝜒𝑖 may be scalars, vectors, or higher rank tensors. With reference to
the internal variables, the Helmholtz free energy is defined as in (Lemaitre and Chaboche,
1990):

F = F (𝜖𝑒,𝜒𝑖) (3.2.28)
From the point of view of thermodynamics, the free energy can be decomposed into elastic

free energy F𝑒 (𝜖𝑒) and plastic free energy F𝑝 (𝜒𝑖) part. By differentiating the elastic part of
free energy F𝑒 and substituting the result into the Clausius-Duhem inequality, the expression
of stress is written as (Hayakawa, S. Murakami, and Y. Liu, 1998):

𝜎 = 𝜌
𝜕F𝑒

𝜕𝜖𝑒

(3.2.29)

where 𝜌 and 𝜎 are the mass density and the stress tensor, respectively. Moreover, the
thermodynamic conjugate force A𝑖 is represented by:

A𝑖 = 𝜌
𝜕F𝑝

𝜕𝜒𝑖

(3.2.30)

The elastoplastic deformation is mathematically described by four fundamental axioms
as follows (Souza Neto, Peri, and D. R. J. Owen, 2008):

Elastic law. The elastic law can be presented by two types of constitutive behaviors: linear
and nonlinear elasticity. The linear elasticity is described by using the linear stress-
strain relationship expressed by equation (3.2.3). The nonlinear elasticity presents
a nonlinear stress-strain relationship and its definition will be presented in the next
section.

Yield criterion. Describes the elastic limit and the plastic part through a plasticity yield
function Φ = Φ (𝜎,A), where A = 𝜌𝜕F𝑝/𝜕𝜒 is the hardening thermodynamic force
and 𝜒 is the internal damage variable. The plasticity function assumes negative values
in the elastic part and null values in the plastic part (Kossa, 2011).

Flow rule. Assumes the existence of a plastic potential function Ψ = Ψ (𝜎,A), which spec-
ifies how the plastic deformation tensor 𝜖𝑝 evolves in the plasticity process .

𝜖𝑝 = .
𝛾N,

in which N (𝜎,A) = 𝜕Ψ/𝜕𝜎 is the flow direction and .
𝛾 is the plastic multiplier. The

flow rule is called associative if the plastic potential function equals to yield function,
namely Ψ = Φ. For the associative case, the direction of strain rate is the outward
normal to yield surface, whereas for non-associative flow rule it is the gradient of plastic
potential surface (R. O. Davis and Selvadurai, 2002).

Hardening law. Specifies how the internal damage variable .
𝜒 = .

𝛾𝐻 evolves, in which,
𝐻 (𝜎,A) = −𝜕Ψ/𝜕A is the hardening modulus.

In this study, three different elastoplasticity models are implemented in order to de-
velop the coupled poro-elastoplastic and permeability. These models are Mohr-Coulomb,
DiMaggio-Sandler, and modified Cam-Clay.
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Mohr-Coulomb elastoplasticity model

The Mohr-Coulomb elastoplasticity model was presented as a pressure-sensitive model in
(Coulomb, 1773; Mohr, 1900). This model is appropriate for materials such as soil, rock,
and concrete, which behavior is generally dependent on the hydrostatic pressure. The Mohr-
Coulomb model comprises three key ingredients: (i) an elastic law, (ii) a yield function, and
(iii) a flow rule.

Elastic law of Mohr-Coulomb

The elastic law of the Mohr-Coulomb model is expressed using linear elastic stress-strain
relationship defined in the equation (3.2.3).

Yield function of Mohr-Coulomb

The Mohr-Coulomb (MC) plasticity model is a hydrostatic pressure sensitivity model that
the plastic yield begins when the shear strength, 𝜏𝑚 [MPa] and the normal stress 𝜎𝑛 [MPa],
reach a critical combination as (Coulomb, 1773):

𝜏𝑚 = 𝑐− 𝜎𝑛 tan(𝑓𝑟) (3.2.31)
where 𝑐 is the cohesion [MPa], and 𝑓𝑟 is the friction angle [°]. The Mohr-Coulomb yield locus
can be conveniently visualized in the Mohr plane as shown in Figure 3.2 (left).

Figure 3.2: (left) Mohr plane representation of Mohr-Coulomb criterion, (right) Mohr-
Coulomb flow rule (Souza Neto, Peri, and D. R. J. Owen, 2008).

From Figure 3.2 (left) the yield condition in term of principal stresses is defined as (Souza
Neto, Peri, and D. R. J. Owen, 2008):

(𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛) + (𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛) sin(𝑓𝑟) = 2𝑐 cos(𝑓𝑟) (3.2.32)
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Then, yield function of Mohr-Coulomb in terms of principal stress can be expressed as:

Φ (𝜎, 𝑐) = (𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛) + (𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛) sin(𝑓𝑟) − 2𝑐 cos(𝑓𝑟) (3.2.33)
Finally, the Mohr-Coulomb criterion is expressed by means of six yield functions in the

principal stress space as follows:

Φ1 (𝜎, 𝑐) = 𝜎1 − 𝜎3 + (𝜎1 + 𝜎3) sin(𝑓𝑟) − 2𝑐 cos(𝑓𝑟),

Φ2 (𝜎, 𝑐) = 𝜎2 − 𝜎3 + (𝜎2 + 𝜎3) sin(𝑓𝑟) − 2𝑐 cos(𝑓𝑟),

Φ3 (𝜎, 𝑐) = 𝜎2 − 𝜎1 + (𝜎2 + 𝜎1) sin(𝑓𝑟) − 2𝑐 cos(𝑓𝑟),

Φ4 (𝜎, 𝑐) = 𝜎3 − 𝜎1 + (𝜎3 + 𝜎1) sin(𝑓𝑟) − 2𝑐 cos(𝑓𝑟),

Φ5 (𝜎, 𝑐) = 𝜎3 − 𝜎2 + (𝜎3 + 𝜎2) sin(𝑓𝑟) − 2𝑐 cos(𝑓𝑟),

Φ6 (𝜎, 𝑐) = 𝜎1 − 𝜎2 + (𝜎1 + 𝜎2) sin(𝑓𝑟) − 2𝑐 cos(𝑓𝑟).

(3.2.34)

Flow rule of Mohr-Coulomb

In an associative Mohr-Coulomb, the yield Φ, is taken as the flow potential, i.e. Ψ and
the evolution of the plastic strain .

𝜖𝑝 is given by:

.
𝜖𝑝 = .

𝛾𝑁 = .
𝛾
𝜕Φ
𝜕𝜎

(3.2.35)

To express the flow rules of Mohr-Coulomb at faces and edges, it is convenient to assume
that the principal stresses are ordered as 𝜎1 ≥ 𝜎2 ≥ 𝜎3 (Souza Neto, Peri, and D. R. J. Owen,
2008), as shown in Figure 3.2 (right).

DiMaggio-Sandler elastoplasticity model

The original DiMaggio-Sandler elastoplasticity model was presented in (DiMaggio and
I. Sandler, 1971). It was initially applied for granular soils, and currently is used in the
oil industry to present the behavior of rocks at depth. The DiMaggio-Sandler (DS) model
consists four key ingredients: (i) an elastic law, (ii) a yield function, (iii) a flow rule, and (iv)
a hardening law.

Elastic law of DiMaggio-Sandler

The elastic law of the DiMaggio-Sandler model is expressed using linear elastic stress-
strain relation defined in the equation (3.2.3).
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Yield function of DiMaggio-Sandler

The yield function Φ of DiMaggio-Sandler model is defined by a failure function 𝐹𝑓 (𝐼1,
√︁
𝐽2, 𝛽),

and a cap function 𝐹𝑐(𝐼1,
√︁
𝐽2, 𝐿, 𝛽), as follows:

Φ =
⎧⎨⎩ 𝐹𝑓 (𝐼1,

√︁
𝐽2, 𝛽),

𝐹𝑐(𝐼1,
√︁
𝐽2, 𝐿, 𝛽),

𝐼1 > 𝐿

𝐿 > 𝐼1 > 𝑋
(3.2.36)

where 𝛽 is Lode angle [°], 𝐿(𝜛) is the cap position parameter [MPa], 𝑋(𝜛) is the current cap
surface position [MPa], 𝐼1 is the first invariant of the stress tensor [MPa], and 𝐽2 is the second
deviatoric stress tensor

[︁
MPa2

]︁
. A typical 2D profile of DiMaggio-Sandler yield surface is

plotted in Figure 3.3 (left).

𝐹𝑓 (𝐼1,
√︁
𝐽2, 𝛽) =

√︁
𝐽2 − 𝐹𝑠(𝐼1)

Γ(𝛽) (3.2.37)

𝐹𝑐(𝐼1,
√︁
𝐽2, 𝐿, 𝛽) = ( 𝐼1 − 𝐿

𝑅𝐹𝑠(𝐿))2 + (
√
𝐽2Γ(𝛽)
𝐹𝑠(𝐿) )2 − 1 (3.2.38)

with,

𝐿 (𝜛) =
⎧⎨⎩ 𝜛

0
𝑖𝑓 𝜛 < 0
𝑖𝑓 𝜛 ≥

(3.2.39)

𝐹𝑠 (𝜄) = 𝐴− 𝐶 exp (𝐵 𝜄) (3.2.40)

𝑋 = 𝐿−𝑅𝐹𝑠(𝐿) (3.2.41)

where 𝐴 [MPa], 𝐵
[︁
MPa−1

]︁
, 𝐶 [MPa] are material property constants and 𝑅 is the ratio of

principal ellipse radii of the cap surface, and the factor Γ(𝛽) is given by:

Γ(𝛽) = 1
2[(1 + sin (3𝛽)) + 1

𝜓
(1 − sin (3𝛽))] (3.2.42)

where, 𝜓 has the range from 7/9 to 9/7, as shown in Figure 3.3 (right). The original
DiMaggio-Sandler model refers to 𝜓 = 1, such that Γ(𝛽) = 1.
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Figure 3.3: (left) DiMaggio-Sandler plastic yield profile in the (𝐼1,
√︁
𝐽2) plane (I. S. Sandler

and Rubin, 1979), (right) yield surface cross section of DiMaggio-Sandler model for 𝜓 = 7/9,
𝜓 = 1, 𝜓 = 9/7 (Cecílio, P. R. Devloo, Sônia M. Gomes, E. R. d. Santos, and Shauer, 2015).

Flow rule of DiMaggio-Sandler

The DiMaggio-Sandler model is an associative model where the yield function Φ is taken
as flow potential Ψ, with Ψ = Φ. The flow rule of DiMaggio-Sandler is used to define the
plastic deformation 𝜖𝑝 and internal damage variable 𝜒 as:

.
𝜖𝑝 = .

𝛾
𝜕Φ
𝜕𝜎

(3.2.43)

.
𝜒 =

.
−𝛾 𝜕Φ

𝜕A
(3.2.44)

Moreover, the hardening modulus and flow direction are related by:

𝐻 = 𝑡𝑟 (𝑁 ) (3.2.45)
Using the above property and the definition of incremental plastic deformation .

𝜖𝑝 = .
𝛾N,

the equation for damage variable at the plastic correction step is expressed by:

.
𝜒 = .

𝛾𝑡𝑟 (𝑁 ) = 𝑡𝑟 ( .
𝜖𝑝) = .

𝜖𝑝𝑣 (3.2.46)
Then, the incremental plastic volumetric strain while applying the implicit Euler method

can be represented by:

Δ𝜖𝑝𝑣 = Δ𝐼1

3𝐾 (3.2.47)

where 𝐾 [MPa] is the Bulk modulus.
This derivation will permit the elimination of .

𝛾 as a variable in return-mapping step.
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Hardening law of DiMaggio-Sandler

The hardening parameter 𝜛 of DiMaggio-Sandler cap model is defined through a func-
tional of 𝑋(𝜛) and volumetric plastic strain 𝜖𝑝𝑣 caused only by cap action and it is expressed
by Fossum, Senseny, Pfeifle, and Mellegard, 1995 as:

𝜖𝑝𝑣 = 𝑊 (exp[𝐷 (𝑋 −𝑋∘)] − 1) (3.2.48)

where 𝑋∘ is the initial cap position [MPa]. 𝐷
[︁
MPa−1

]︁
and 𝑊 are the material properties

constants which obtained from laboratory tests.

Modified Cam-Clay elastoplasticity model

The modified Cam-Clay MCC includes four key ingredients: (i) the elastic law, (ii) the
yield function, (iii) the flow rule, and (iv) the hardening (softening) law. These four compo-
nents are defined using the following stress invariants (Krabbenhoft and Lyamin, 2012):

𝑃 = −1
3 (𝜎1 + 𝜎2 + 𝜎3) (3.2.49)

𝑄 =
[︂1
2 (𝜎1 − 𝜎2)2 + 1

2 (𝜎2 − 𝜎3)2 + 1
2 (𝜎3 − 𝜎1)2

]︂ 1
2

(3.2.50)

where 𝑃 is the effective mean stress [MPa], 𝑄 is the von Mises equivalent stress [MPa],
and 𝜎1, 𝜎2, and 𝜎3 are the principal of effective stresses [MPa]. Note that 𝑃 is positive in
compression while the general sign conventions are maintained for the Cauchy stress.

Elastic law of modified Cam-Clay

In soil mechanics, the MCC model is based on the nonlinear elasticity law that can be
linearized (as expressed in the equation (3.2.3)) whenever the change of mean effective stress
is sufficiently small (Souza Neto, Peri, and D. R. J. Owen, 2008). The elastic law of MCC
establishes a nonlinear relation between the hydrostatic stress (i.e. P) and the volumetric
deformation. For the shear stress, two flavours of constitutive relations are commonly used
(Systémes, 2012): First, by establishing a constant shear modulus 𝐺 [MPa] and Second, by
establishing the Poisson’s ratio 𝜈 as a constant (in this case 𝐺 depends on the bulk modulus).

• First. The nonlinear elastic law for the constant shear modulus is:

𝜎 − 𝜎∘ = 2𝐺 (𝜖𝑒𝑑 − 𝜖∘
𝑒𝑑) − (𝑃𝑐𝑐(𝜖𝑒𝑣) − 𝑃 𝑜) I (3.2.51)

• Second. The nonlinear elastic law for the constant Poisson’s ratio is:

𝜎 − 𝜎∘ = 2𝐺 (𝑃𝑐𝑐(𝜖𝑒𝑣)) (𝜖𝑒𝑑 − 𝜖∘
𝑒𝑑) − (𝑃𝑐𝑐(𝜖𝑒𝑣) − 𝑃 𝑜) I (3.2.52)

where the shear modulus for the constant Poisson’s ratio is:

𝐺 (𝑃𝑐𝑐(𝜖𝑒𝑣)) = 3𝐾(𝑃𝑐𝑐(𝜖𝑒𝑣)) (1 − 2𝜈)
2 (1 + 𝜈) (3.2.53)
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where 𝜎∘ and 𝜎 are the initial and current effective stress tensor, respectively [MPa].
𝑃 ∘ is the initial effective mean stress [MPa]. 𝜖∘

𝑒𝑑 and 𝜖𝑒𝑑 are the initial and current
elastic deviatoric strain, respectively. The elastic volumetric strain 𝜖𝑒𝑣 is:

𝜖𝑒𝑣 = 𝑡𝑟 (𝜖𝑒) (3.2.54)

The elastic deviatoric strain tensor 𝜖𝑒𝑑 is given by:

𝜖𝑒𝑑 = 𝜖𝑒 − 1
3𝑡𝑟 (𝜖𝑒) I (3.2.55)

The constitutive law for the modified Cam-Clay effective mean stress 𝑃𝑐𝑐(𝜖𝑒𝑣) is (D.
Ferreira, 2019):

𝑃𝑐𝑐(𝜖𝑒𝑣) = −𝑝𝑡 + (𝑃 ∘ + 𝑝𝑡) exp
[︂
−1 + 𝑒∘

𝐶𝑒
(𝜖𝑒𝑣 − 𝜖∘

𝑒𝑣)
]︂

(3.2.56)

where 𝑒∘ is the initial void ratio, 𝐶𝑒 is the recompression index, 𝜖∘
𝑒𝑣 is the initial elastic

volumetric strain, and 𝑝𝑡 is the tensile strength [MPa]. The initial mean effective stress
𝑃 ∘ is represented based on the initial conditions. For a zero tensile strength 𝑃 ∘ > 0
is required because the MCC constitutive model is generally applied to problems with
non-zero initial stresses (Systémes, 2012).
The Bulk modulus 𝐾(𝑃𝑐𝑐(𝜖𝑒𝑣)) [MPa] in equation (3.2.52) is computed as:

𝐾(𝑃𝑐𝑐(𝜖𝑒𝑣)) = −𝑑𝑃𝑐𝑐(𝜖𝑒𝑣)
𝑑𝜖𝑒𝑣

(3.2.57)

leading to

𝐾(𝜖𝑒𝑣) = 𝐾(𝑃𝑐𝑐(𝜖𝑒𝑣)) = 1 + 𝑒∘

𝐶𝑒
(𝑃𝑐𝑐(𝜖𝑒𝑣) + 𝑝𝑡) (3.2.58)

In order to implement the MCC model, it is required to present the elastic tangent
operator. The elastic tangent operator 𝐶 is derived from the derivative of the effective stress
tensor in equation (3.2.3) with respect to elastic strain tensor. Here, an elastic tangent
operator is presented separately for constant shear modulus and constant Poisson’s ratio, as:

• The elastic tangent operator for constant shear modulus is:

𝐶 = ∇𝜖𝑒𝜎 = 2𝐺 I4 +
(︂
𝐾(𝜖𝑒𝑣) − 2

3𝐺
)︂

I ⊗ I (3.2.59)

• The elastic tangent operator for constant Poisson’s ratio is:

𝐶 = ∇𝜖𝑒𝜎 = 2𝐺 (𝑃𝑐𝑐(𝜖𝑒𝑣)) I4 +
(︃

3𝐾(𝜖𝑒𝑣) 𝜈
1 + 𝜈

)︃
I ⊗ I (3.2.60)

where ⊗ is the tensor product operator, I is the second-order identity tensor, and I4 is
the 4th-order identity tensor.
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• Comparing the elastic tangent operator with the tangent for linear elasticity:

𝐶 = ∇𝜖𝑒𝜎 = 2𝐺 I4 + 𝜆 I ⊗ I (3.2.61)

One can easily identify the equivalent elasticity parameters for a given state of stress
or strain.

Yield function of modified Cam-Clay

The yield function of the MCC model (Figure 3.4) is defined as (Souza Neto, Peri, and
D. R. J. Owen, 2008):

Φ (𝑃,𝑄, 𝑎) =
[︂
𝑃 − 𝑝𝑡 + 𝑎

𝑏 𝑎

]︂2
+
[︂
𝑄

𝑀 𝑎

]︂2
− 1 (3.2.62)

where 𝑀 is the ratio between the two radii of the MCC ellipse, 𝑎 is the radius of the ellipse
along the effective mean stress axis [MPa]. The parameter 𝑏 is:

𝑏 =
⎧⎨⎩ 1
𝜁

𝑖𝑓 𝑃 ≥ 𝑝𝑡 − 𝑎

𝑖𝑓 𝑃 < 𝑝𝑡 − 𝑎
(3.2.63)

where 𝜁 is the material constant which modifies the radius of the second half of the ellipse
on the compressive side of hydrostatic axis. If 𝜁 = 1, the yield locus becomes an ellipse with
radii 𝑎 and 𝑀𝑎, respectively, along 𝑃 and 𝑄. The dashed line in Figure 3.4 is named the
critical state line. The parameter 𝑀 is the slope of the critical state line and the area to
its right is the supercritical region (dry, softening) and the area to its left is the subcritical
region (wet, hardening). The critical state line is given by:

𝑄 = 𝑀𝑃 (3.2.64)

Figure 3.4: Modified Cam-Clay MCC model, yield surface (Souza Neto, Peri, and D. R. J.
Owen, 2008).
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Flow rule of modified Cam-Clay

The plastic flow rule is described by postulating associativity, (Krabbenhoft and Lyamin,
2012) as:

.
𝜖𝑝 = .

𝛾
𝜕Φ
𝜕𝜎

(3.2.65)

Hardening law of modified Cam-Clay

The hardening law of MCC model is classified as hardening when the yield surface expands
(𝑄 < 𝑀𝑃 ), and softening when the surface shrinks (𝑄 > 𝑀𝑃 ) and it undergoes no further
changes when 𝑄 = 𝑀𝑃 (R. I. Borja and Tamagnini, 1998).

The hardening law is expressed by writing the yield surface parameter (𝑎) as a function of
hardening variable (𝜒). For many plasticity compressible materials, the hardening variable
𝜒 is corresponds to the plastic volumetric strain 𝜖𝑝𝑣, namely 𝜒 ≡ −𝜖𝑝𝑣, in which 𝜖𝑝𝑣 =
𝑡𝑟 (𝜖𝑝). The hardening law can be defined by a piecewise linear form or an exponential form
(Systémes, 2012). The linear form of hardening law is given in terms of preconsolidation
pressure 𝑝𝑐 [MPa], as follows (Souza Neto, Peri, and D. R. J. Owen, 2008):

𝑝𝑐 (𝜒) ≡ (1 + 𝜁) 𝑎 (𝜒) − 𝑝𝑡 (3.2.66)
The exponential form of the hardening law is written by replacing 𝑎 (𝜒) in equation

(3.2.66), as follows (D. Ferreira, 2019):

𝑎 (𝜒) ≡ 𝑎 (−𝜖𝑝𝑣) = 𝑎∘ exp
[︃
− (1 + 𝑒∘)
𝐶𝑝 − 𝐶𝑒

(︁
𝜖𝑝𝑣 − 𝜖∘

𝑝𝑣

)︁]︃
(3.2.67)

where 𝑎∘ is the initial value of the hardening parameter, 𝐶𝑝 is the compression index. 𝜖∘
𝑝𝑣

and 𝜖𝑝𝑣 are the initial and current plastic volumetric strain, respectively.
In the MCC model, the sample is slowly compressed under isotopic stress conditions

and the relationship between specific volume and mean effective stress includes a normal
compression line and a set of straight swelling lines. The normal compression line in the
elastoplastic range as shown in Figure 3.5, is defined as (Callari, Auricchio, and Sacco, 1998;
Rocscience, 2015):

𝑣𝑐 = 𝑣∘
𝑐 − 𝐶𝑝 ln

(︃
𝑝𝑐

𝑝∘
𝑐

)︃
(3.2.68)

where 𝑣∘
𝑐 and 𝑣𝑐 are specific volume with respect to mean effective stress 𝑝∘

𝑐 and 𝑝𝑐 [MPa],
respectively (see Figure 3.5). The swelling line is (Callari, Auricchio, and Sacco, 1998):

𝑣𝑠 = 𝑣∘
𝑠 − 𝐶𝑒 ln

(︂
𝑃𝑠

𝑃 ∘

)︂
(3.2.69)

where 𝑣∘
𝑠 and 𝑣𝑠 are the specific volume with respect to mean effective stress 𝑃 ∘ and 𝑃𝑠 [MPa],

respectively (as shown in Figure 3.5).
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Figure 3.5: Typical behavior of consolidation for modified Cam-Clay MCC model (Callari,
Auricchio, and Sacco, 1998).

Yield function of generalized modified Cam-Clay

The MCC model is generally implemented by a numerical integration of two invariant
(Perić, 2006). Inspired by the articles (Alawaji, Runesson, Sture, and K. Axelsson, 1992;
Foster, Regueiro, Fossum, and R. Borja, 2005), to control the plastic surface format, we
consider a generalized modified Cam-Clay (GMCC ) model by introducing an additional
dependence on the Lode angle 𝛽. To convert the MCC model in equation (3.2.62) from
𝑃 −𝑄 space to Haigh-Westergaard space, the invariant stress’s are expressed as:

𝑃 = −𝐼1

3 𝑄 =
√︁

3 𝐽2 (3.2.70)

The GMCC model is defined by considering the invariant stress’s in equation (3.2.70)
and applying the Lode’s angle 𝛽 as follows:

Φ
(︂
𝐼1,
√︁
𝐽2, 𝑎, 𝛽

)︂
=
[︃

− 𝐼1
3 − 𝑝𝑡 + 𝑎

𝑏 𝑎

]︃2

+
[︃√

3 Γ(𝛽)
√
𝐽2

𝑀 𝑎

]︃2

− 1 (3.2.71)

Here the factor Γ(𝛽) is given by:

Γ(𝛽) = 1
2[(1 + sin (3𝛽)) + 1

𝜓
(1 − sin (3𝛽))] (3.2.72)

where, 𝜓 has the range from 7/9 to 9/7. The MCC model refers to 𝜓 = 1, such that,
Γ(𝛽) = 1.

Hardening law associated with generalized modified Cam-Clay

The MCC model is an associative plasticity model where the hardening modulus and flow
direction can be related as:

𝐻 = −𝑡𝑟 (𝑁 ) (3.2.73)
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by considering the above property and the definition of incremental plastic deformation
.
𝜖𝑝 = .

𝛾N, the relationship for the hardening variable at the plastic correction step can be
expressed as:

·
𝜒 = ·

𝛾 𝐻 = − ·
𝛾 𝑡𝑟 (𝑁 ) = −𝑡𝑟

(︁ ·
𝜖𝑝

)︁
= − ·

𝜖𝑝𝑣 (3.2.74)
Then, the incremental plastic volumetric strain while applying the implicit Euler method

can be represented by:

Δ𝜖𝑝𝑣 = Δ𝐼1

3𝐾(𝜖𝑒𝑣) (3.2.75)

where the evaluation of plastic volumetric strain is defined through equations (3.2.67), as
follow:

𝜖𝑝𝑣 (𝑎) = 𝜖∘
𝑝𝑣 + 𝐶𝑒 − 𝐶𝑝

1 + 𝑒∘ ln
(︂
𝑎

𝑎∘

)︂
(3.2.76)

This derivation will permit the elimination of Δ𝛾 as a variable in return-mapping step.

3.2.5 Summary of mathematical model
We summarize the strong form for the coupled poro-elastoplastic and permeability in two

sets of equations, one for the mathematical description for poro-elastoplastic deformation
(Geomechanics) and another for Darcy’s flow (Reservoir), in Tables 3.1 and 3.2, respectively:

Conservation law
Momentum div (𝜎 − 𝜎∘ − 𝛼 (𝑝− 𝑝∘) I) = 0

Constitutive laws
Cauchy effective stress tensor 𝜎 = 2𝜇𝜖𝑒 (u) + 𝜆𝑡𝑟 (𝜖𝑒 (u)) I

Total strain 𝜖 = 𝜖𝑒 + 𝜖𝑝

Total volumetric strain 𝜖𝑣 = 𝜖𝑒𝑣 + 𝜖𝑝𝑣

Table 3.1: Equations for poro-elastoplastic (Geomechanics).
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Conservation law

Mass 𝜕 (𝜑𝜌𝑓 )
𝜕𝑡

+ div (q) = 0
Constitutive laws

Darcy’s law q = −𝜌𝑓
𝜅 (𝜑) 𝐼
𝜂

∇𝑝

Lagrangian porosity 𝜑 = 𝜑∘ + 𝛼 (𝜖𝑒𝑣 − 𝜖∘
𝑒𝑣) + 𝜑𝑝 − 𝜑∘

𝑝 + 𝑆 (𝑝− 𝑝∘)

Fluid content

𝜑𝜌𝑓

𝜌∘
𝑓

= 𝜑∘ + 𝛼

𝐾𝑑𝑟

(𝜎𝑡𝑣 − 𝜎∘
𝑡𝑣) + 𝜑𝑝 − 𝜑∘

𝑝

+
(︃
𝑆𝑒 + 𝛼2

𝐾𝑑𝑟

)︃
(𝑝− 𝑝∘)

Permeability model 𝜅 = 𝑓 (𝜑)

Table 3.2: Equations for Darcy’s flow (Reservoir).

The strong form is composed by equations in Tables 3.1 and 3.2. And it is completed
by applying the Dirichlet and Neumann boundary conditions in the equations (3.2.4) and
(3.2.24).

3.3 Conclusions
In this chapter,

∙ The mathematical model for coupled nonlinear geomechanics (poro-elastoplastic) and reser-
voir simulation (Darcy’s flow) was presented, in which the governing equations include the
conservation of mass and momentum.

∙ The fluid flow formulation was defined by Darcy’s law with considering nonlinear per-
meability. The rock deformation was composed from a linear part being analyzed based
on Biot’s theory and a nonlinear part being established using elastoplastic constitutive
models.

∙ The elastoplastic constitutive models were Mohr-Coulomb, DiMaggio-Sandler, and modi-
fied Cam-Clay.
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Chapter 4

Finite element methods & numerical
coupled schemes

4.1 Introduction
To simulate the coupled geomechanics and reservoir simulation, different spatial dis-

cretization methods have been applied, such as finite difference method (FDM ) (Osorio,
H.-Y. Chen, L. W. Teufel, and Schaffer, 1998; T. Stone, Bowen, Panos Papanastasiou, and
Fuller, 2000), finite volume method (FVM ) (Demirdžić and Martinović, 1993; Prevost, 2014),
and finite element method (FEM ) (R. Lewis and Schrefler, 1998; M. F. Wheeler and Gai,
2007). Generally, it is recognized that the FEM method provides the most robust and efficient
solution for geomechanical problems.

The whole numerical parts of this study are developed using the FEM method that
applies variational methods from mathematics, by converting the differential equation to a
weak formulation and approximating the solution using a discretization form. The FEM
provides a flexible and robust implementation for different domains, once the approximation
solution is searched in a space of piecewise polynomial functions.

The structure for this chapter is disposed of as follows. Firstly, a short description of
FEM method and some functional spaces are presented, and also discretized in space and
time are given. Then, the linearization schemes used, the internal loop acceleration method
and Shanks transformations for the external loop are provided.

Some functional spaces
L2 (Ω) space

The L2 (Ω) Hilbert space is the most simple finite element space and expressed as:

L2 (Ω) =
{︂
𝑓 |

∫︁
Ω
𝑓 2 𝑑Ω < inf

}︂
(4.1.1)
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H1 (Ω) space

H1 (Ω)𝑑 =
{︂
𝑓 ∈ 𝐿2 (Ω) | ∇𝑓 ∈

[︁
𝐿2 (Ω)

]︁𝑑}︂
(4.1.2)

and for scalar fields:

H1 (Ω) =
{︁
𝑓 ∈ 𝐿2 (Ω)|∇𝑓 ∈ L2 (Ω)

}︁
(4.1.3)

H (𝑑𝑖𝑣,Ω)-conforming approximation space

H (𝑑𝑖𝑣,Ω) =
{︂
𝑓 ∈

[︁
𝐿2 (Ω)

]︁𝑑
| ∇ · 𝑓 ∈ 𝐿2 (Ω)

}︂
(4.1.4)

More details about these functional spaces, can be found in (Brezzi and Fortin, 1991).

Galerkin finite element method
By considering a variational problem: find 𝑢 ∈ 𝑉 , such that 𝑎(𝑢, 𝑣) = 𝑓(𝑣), ∀ 𝑣 ∈ 𝑉 , in

which a bilinear form 𝑎 (·, ·) is defined by a transformation 𝑉 ×𝑉 → R and a linear form 𝑓 (·)
is defined by 𝑉 → R, where 𝑉 is the functional spaces which can be defined by equations
(4.1.1), (4.1.2), (4.1.3) or (4.1.4). The Galerkin method is an approximation method which
converts the problem into an algebraic problem associated with a finite dimensional space,
that is:

Find 𝑢ℎ ∈ Vℎ (Ω) | 𝑎 (𝑢ℎ, 𝑣ℎ) = 𝑓 (𝑣ℎ) ∀ 𝑣ℎ ∈ Vℎ (Ω) (4.1.5)
where Vℎ (Ω) is a discrete subspace of 𝑉 . The 𝑢ℎ is a linear combination of basis functions
{𝜑𝑖}1≤𝑖≤𝑛𝜑

in Vℎ:

𝑢ℎ =
𝑛𝜑∑︁

𝑗=1
𝑢𝑗

ℎ𝜑𝑗 with Vℎ (Ω) = ⟨𝜑𝑖⟩
𝑛𝜑

𝑖=1 (4.1.6)

From the implementation point of view, the variational form in equation (4.1.5) can be
read as a matrixial form 𝐴ℎ𝛼ℎ = 𝐵ℎ, where the tangent matrix 𝐴ℎ ∈ R𝑛𝜑×𝑛𝜑 is obtained
using the discretization of the 𝑎 (𝑢ℎ, 𝑣ℎ). 𝐵ℎ is associated to vector 𝑓 (𝑣ℎ) and 𝛼ℎ is referred
to as the degrees of freedom of the approximation.

There are many different ways to define a finite dimensional subspace 𝑉ℎ in particular,
can be found in (P. R. B. Devloo, Bravo, and Rylo, 2009; De Siqueira, P. Devloo, and S.
Gomes, 2013).
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4.2 Spatial and temporal discretization of equations
The temporal derivatives are approximated by the implicit Euler method. The index

(·)|𝑛−1 stands for terms evaluated at the last instant n-1, and the index (·)|𝑛 stands for terms
evaluated at the current instant n. In spatial variables, a finite element discretization is
adopted. The second-order derivatives of conservation laws presented in Tables 3.1 and 3.2
are reduced to first-order derivatives by the use of Gauss divergence theorem. Two possible
numerical approximations are considered:

1. H1 approximations are used for modeling poro-elastoplasticity and Darcy’s flow

2. H1 approximations are used for modeling poro-elastoplasticity and a mixed approxima-
tion using H(div) approximations are used to approximate Darcy’s flow.

Recently, the second approach has received interest for its higher precision in terms of fluid
flux (Both, Kumar, Nordbotten, and Radu, 2019; Silva, Murad, and Obregon, 2018; Xikui
Li, Z. Liu, and R. W. Lewis, 2005; M. F. Wheeler and Gai, 2007).

Before introducing the spatial discretization, consider a partition Ω𝑒 of the domain Ω by
convex elements. The boundary of each element is denoted 𝜕Ω𝑒 and its external unit normal
vector n. The symbol ℎ indicates the maximum diameter of the elements Ω𝑒 and the notation
𝑑 stands for problem dimension. In brief, the inner products that come from the Galerkin’s
method are expressed as (·, ·)Ω𝑒

for volumetric integrals and (·, ·)𝜕Ω𝐷/𝑁
for boundary integrals

with Dirichlet or Neumann data. The strong form is written in the continuous case and then
it is converted to its discrete version by using a finite-dimensional functional approximation
spaces. The first step is avoided for briefness and the expressions are provided just for the
discrete forms.

4.2.1 Discrete weak statement I
In this weak statement, the displacement field uℎ is used as a state variable for the

poro-elastoplastic problem and the pressure field 𝑝ℎ is used for Darcy’s flow problem. The
finite-dimensional subspace V𝑑

ℎ ⊂ V𝑑 ⊂ H1 (Ω)𝑑 is used for approximating continuous vector
fields:

V𝑑
ℎ =

{︁
v ∈ H1 (Ω)𝑑 |v = 0 on 𝜕Ω𝐷

}︁
and V𝑑

ℎ ⊂ V𝑑 (4.2.1)

The finite-dimensional subspace 𝑈ℎ ⊂ 𝑈 ⊂ H1 (Ω) is used for approximating continuous
scalar fields:

𝑈ℎ =
{︁
𝑢 ∈ H1 (Ω) |𝑢 = 0 on 𝜕Ω𝐷

}︁
and 𝑈ℎ ⊂ 𝑈 (4.2.2)

The approximation space Vℎ and 𝑈ℎ, respectively are used for displacements uℎ and
pressure 𝑝ℎ. Using admissible members of Vℎ and 𝑈ℎ as a test and trial functions in the
sense of Galerkin’s method, the discrete formulation is expressed as the solution of two
subproblems:
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• For poro-elastoplasticity. Given the prescribed field 𝑝𝑛
ℎ ∈ 𝑈ℎ and the initial data,

find u𝑛
ℎ ∈ V𝑑

ℎ such that:

∑︁
Ω𝑒

(𝜎𝑛
ℎ − 𝜎∘

ℎ − 𝛼 (𝑝𝑛
ℎ − 𝑝∘

ℎ) I, 𝜖 (𝜑𝑢))Ω𝑒
−
∑︁
𝜕Ω𝑁

(t𝑛 − t∘,𝜑𝑢)𝜕Ω𝑁
= 0 (4.2.3)

holds for all 𝜑𝑢 ∈ V𝑑
ℎ.

The expression above is completed with the corresponding boundary conditions:

𝐼.𝐶. =
⎧⎨⎩𝑝 = 𝑝∘ 𝑜𝑛 Ω

u = u∘ 𝑜𝑛 Ω
𝐵.𝐶. =

⎧⎨⎩𝜎𝑡 · n = t 𝑜𝑛 𝜕Ω𝑁
𝜎𝑡

u = u𝐷 𝑜𝑛 𝜕Ω𝐷
u

(4.2.4)

• For Darcy’s flow. Given the prescribed field u𝑛
ℎ ∈ V𝑑

ℎ, the last state and the initial
data, find 𝑝𝑛

ℎ ∈ 𝑈ℎ such that:

∑︁
Ω𝑒

(︃
𝜌𝑛

𝑓

𝜅𝑛 I
𝜂

∇𝑝𝑛
ℎ,∇𝜑𝑝

)︃
Ω𝑒

−
∑︁
𝜕Ω𝑁

(𝑞𝑛, 𝜑𝑝)𝜕Ω𝑁

+
∑︁
Ω𝑒

(︃
𝜑𝜌𝑓 |𝑛 − 𝜑𝜌𝑓 |𝑛−1

𝛿𝑡
, 𝜑𝑝

)︃
Ω𝑒

= 0
(4.2.5)

holds for all 𝜑𝑝 ∈ 𝑈ℎ.
The expression above is completed with the corresponding boundary conditions:

I.C. =
{︁
𝑝 = 𝑝∘ 𝑜𝑛 Ω B.C. =

⎧⎨⎩q · n = 𝑞𝑛 on 𝜕Ω𝑁
q

𝑝 = 𝑝𝐷 on 𝜕Ω𝐷
𝑝

(4.2.6)

4.2.2 Discrete weak statement II
In this weak statement, as same as the first form in subsection 4.2.1, the displacement

field uℎ is used as the state variable for the poro-elastoplastic problem, but two fields, the
flux qℎ and pressure 𝑝ℎ are used as state variables for the Darcy’s flow problem. Additional
approximation spaces are required for the variables 𝑝ℎ ∈ 𝐿2 (Ω) and qℎ ∈ Qℎ. The finite-
dimensional subspace Qℎ ⊂ Q ⊂ H (div,Ω) is:

Q = {q ∈ H (div,Ω) | q · n = 0 on 𝜕Ω𝑁} and Qℎ ⊂ Q (4.2.7)
The approximation subspace V𝑑

ℎ is used for uℎ. Using admissible members of Qℎ ×𝐿2 (Ω)
as a test and trial functions in the sense of Galerkin’s method. The discrete formulation can
be expressed as follows:

• For poro-elastoplasticity: Identical to the case provided in subsection 4.2.1.
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• For Darcy’s flow. The problem is expressed in a mixed form (Boffi, Brezzi, and
Fortin, 2013), as: Given the prescribed field u𝑛

ℎ ∈ V𝑑
ℎ, the last state and the initial

data, find (qℎ, 𝑝ℎ)𝑛 ∈ Qℎ × 𝐿2 (Ω) such that:

∑︁
Ω𝑒

⎛⎝(︃𝜌𝑛
𝑓

𝜅𝑛 I
𝜂

)︃−1

q𝑛
ℎ ,𝜑𝑞

⎞⎠
Ω𝑒

+
∑︁
𝜕Ω𝐷

(𝑝𝑛
ℎ,𝜑𝑞 · n)𝜕Ω𝐷

−
∑︁
Ω𝑒

(𝑝𝑛
ℎ, div (𝜑𝑞))Ω𝑒

= 0
(4.2.8)

∑︁
Ω𝑒

(div (q𝑛
ℎ) , 𝜑𝑝)Ω𝑒

+
∑︁
Ω𝑒

(︃
𝜑𝜌𝑓 |𝑛 − 𝜑𝜌𝑓 |𝑛−1

𝛿𝑡
, 𝜑𝑝

)︃
Ω𝑒

= 0 (4.2.9)

holds for all (𝜑𝑞, 𝜑𝑝) ∈ Qℎ × 𝐿2 (Ω).
The expression above is completed with the corresponding boundary conditions:

I.C. =
{︁
𝑝 = 𝑝∘ 𝑜𝑛 Ω B.C. =

⎧⎨⎩q · n = 𝑞𝑛 on 𝜕Ω𝑁
q

𝑝 = 𝑝𝐷 on 𝜕Ω𝐷
𝑝

(4.2.10)

4.3 Linearization schemes
The most classical and straight forward linearization scheme corresponds to the fully

coupled monolithic solver, which is intrinsically expensive for either the weak statements
detailed in subsections 4.2.1 or 4.2.2. For the case of the monolithic solver applied to the
first weak statement in subsection 4.2.1, there are iterative methods that can be applied
to obtain cost-effective approximations for the monophase (Castelletto, Klevtsov, Hajibeygi,
and H. A. Tchelepi, 2019), and multiphase cases (White, Castelletto, Klevtsov, Q. M. Bui,
Osei-Kuffuor, and H. A. Tchelepi, 2019). However, these approximations do not provide a
locally conservative approximation for the fluid flux. On the other hand, the monolithic
solver applied to weak statement in subsection 4.2.2 provides a precise locally conservative
flux approximations but is not recommended, because the linear solver needs to decompose
non-symmetric system of equations with saddle-point structure as a consequence of the mixed
formulation.

Sequential schemes provide the possibility of breaking the solution of the coupled problem
into subproblems. Their efficiency depends on the development of efficient split operators and
efficient solvers for each subproblem. In consequence, the weak statement in subsection 4.2.2
can be handled efficiently by the use of an appropriated sequential scheme. Hence, the section
is dedicated to describe several ingredients related to the ideas behind the construction for
the proposed enhanced sequential fully implicit algorithm. The provided descriptions are:

(i) The notation adopted for the residual expressions;

(ii) A monolithic solver based on a classical Newton method used to verify the correctness
of the implementations;

(iii) A concise description of several sequential split operators;
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(i) The description for the selected fixed stress split operator;
(ii) The ideas behind the sequential fully implicit algorithm with a fixed stress split. It

can be seen as a sequential scheme based on physical principles that approximates
the nonlinear solution through a series of nonlinear approximations;

(iii) Information transfer between modules. It represents the manner of how the infor-
mation is transferred between the separate modules;

(iv) Nonlinear acceleration techniques;

(i) The accelerated convergence for the internal loops. The internal nonlinear solvers
consider a Quasi-Newton method with an extra evaluation for the residual expres-
sions;

(ii) Nonlinear acceleration for external loop. The acceleration is provided by a novel
Shank augmented acceleration for FDM/SDM transformations;

(v) Enhanced SFI algorithm.

The purpose of the first three descriptions is to provide the fundamental ideas about the
sequential fully implicit algorithm SFI. It is important to point out that SFI is performed
as a sequence of two internal loops nested into a third external loop.

The main contribution of this study is to introduce the main ideas for the accelera-
tion of the internal loops, as well as new Shank augmented acceleration considering the
sequence transformations FDM and SDM for the external loop (Jennings, 1971). Finally,
the Enhanced SFI algorithm ESFI is composed applying internal and external nonlinear
accelerations techniques over the standard SFI algorithm.

4.3.1 Notation adopted for residual expressions
The incremental form of the weak statements introduced above lead to the definition of

the following residual expressions:

• For discrete weak statement in subsection 4.2.1:

𝑟𝑢 (uℎ, 𝑝ℎ)𝑛 =
∑︁
Ω𝑒

(𝜎𝑛
ℎ − 𝜎∘

ℎ − 𝛼 (𝑝𝑛
ℎ − 𝑝∘

ℎ) I, 𝜖 (𝜑𝑢))Ω𝑒

−
∑︁
𝜕Ω𝑁

(t𝑛 − t∘,𝜑𝑢)𝜕Ω𝑁

(4.3.1)

𝑟𝑝 (𝑝ℎ,uℎ)𝑛 =
∑︁
Ω𝑒

(︃
𝜌𝑛

𝑓

𝜅𝑛 I
𝜂

∇𝑝𝑛
ℎ,∇𝜑𝑝

)︃
Ω𝑒

−
∑︁
𝜕Ω𝑁

(𝑞𝑛
ℎ , 𝜑𝑝)𝜕Ω𝑁

+
∑︁
Ω𝑒

(︃
𝜑𝜌𝑓 |𝑛 − 𝜑𝜌𝑓 |𝑛−1

𝛿𝑡
, 𝜑𝑝

)︃
Ω𝑒

(4.3.2)
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• For discrete weak statement in subsection 4.2.2:

𝑟𝑝 (qℎ, 𝑝ℎ,uℎ)𝑛 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︁
Ω𝑒

⎛⎝(︃𝜌𝑛
𝑓

𝜅𝑛 I
𝜂

)︃−1

q𝑛
ℎ ,𝜑𝑞

⎞⎠
Ω𝑒

+
∑︁
𝜕Ω𝐷

(𝑝𝑛
ℎ,𝜑𝑞 · n)𝜕Ω𝐷

−
∑︁
Ω𝑒

(𝑝𝑛
ℎ, div (𝜑𝑞ℎ))Ω𝑒

;

∑︁
Ω𝑒

(div (q𝑛
ℎ) , 𝜑𝑝)Ω𝑒

+
∑︁
Ω𝑒

(︃
𝜑𝜌𝑓 |𝑛 − 𝜑𝜌𝑓 |𝑛−1

𝛿𝑡
, 𝜑𝑝

)︃
Ω𝑒

(4.3.3)

For simplicity, all the explanations provided in this section are associated with the weak
statement in subsection 4.2.2. Given the data at instant (qℎ, 𝑝ℎ,uℎ)𝑛−1 ∈ Qℎ × 𝐿2 (Ω) × Vℎ

, the residuals are approximated at some instant (qℎ, 𝑝ℎ,uℎ)𝑛 ∈ Qℎ × 𝐿2 (Ω) × Vℎ.
In brief, the residual expressions are associated with an iteration index 𝑖 and they can be

denoted as:

𝑟𝑖
𝑢|𝑛 := 𝑟𝑢

(︁
u𝑖

ℎ, 𝑝
𝑖
ℎ

)︁𝑛

𝑟𝑖
𝑝|𝑛 :=

⎧⎨⎩𝑟𝑝 (ph,uℎ)𝑛 Discrete weak statement I
𝑟𝑝 (qℎ, 𝑝ℎ,uℎ)𝑛 Discrete weak statement II

(4.3.4)

4.3.2 A monolithic solver
A classical monolithic solver is obtained by linearizing the residuals expressions 𝑟𝑖

𝑢|𝑛 and
𝑟𝑖

𝑝|𝑛, computing the consistent tangent matrices and solving the equations simultaneously.
In this research, the monolithic solver is applied to the residuals 𝑟𝑖

𝑢|𝑛 and 𝑟𝑖
𝑝|𝑛 defined by the

weak statement in subsection 4.2.1. The fully coupled solver is computationally expensive. It
is used in this study for comparison purpose only. The schematic of the fully coupled solver
is shown in Figure 4.1 (left).

Figure 4.1: Schematics of the (left) fully coupled, (right) sequential coupled scheme (Jihoon
Kim, 2010).

4.3.3 Fixed stress split as a sequential fully implicit algorithm
A sequential scheme can provide a cost-effective approximated solution for the fully cou-

pled problem. From the implementation point of view, sequential schemes possess the natural
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advantage of modular programming and facilitate the use of specialized numerical methods:
one to solve the fluid flow and a different scheme for converging the mechanical deformation
problems (Antonin Settari and Mourits, 1998; M. F. Wheeler and Gai, 2007; J. Kim, H.
Tchelepi, and R. Juanes, 2011a; Jiang and H. A. Tchelepi, 2018).

J. Kim, H. Tchelepi, and R. Juanes, 2011a; J. Kim, H. Tchelepi, and R. Juanes, 2011b doc-
ument four types of sequential procedures, including Drained split, Undrained split, Fixed-
strain split, and Fixed-stress split. The last two procedures were originally proposed by
Antonin Settari and Mourits, 1998. The schematic of the sequential coupled solver is shown
in Figure 4.1 (right).

The different procedures are related to the fluid content in equation (3.2.17) or equation
(3.2.21) presented in the temporal derivate of the equation (3.2.23). For the sake of clarity,
the subscript (𝜉)ℎ is removed from the discrete variables. A concise description of their
physical meaning is provided as follows:

Drained: In this scheme, the temporal variation of the quantity 𝑝 is ignored when solving
the solid mechanics problem, i.e. 𝛿𝑝 = 0. The split is useful when the coupling between
fluid flow and rock deformation is weak or decoupled, i.e. the pressure changes slowly
in relation to the deformation process.

Undrained: In this scheme, the temporal variation of the quantity 𝜑𝜌𝑓 is neglected, i.e.
𝛿𝜑𝜌𝑓 = 0. This split is suitable to approximate the undrained response of poroelastic
bodies surrounded by impervious boundaries, e.g. the initial condition of a reservoir
when the total stress and the fluid pressure must be in equilibrium.

Fixed-strain: In this scheme, the fluid mass content is expressed as a function of pressure
and total strain as in equation (3.2.17). The temporal variation of total volumetric
strain 𝜖𝑣 is kept constant, i.e. 𝛿𝜖𝑣 = 0. The split is employed when the pressure changes
rapidly in relation to the deformation process, e.g. the pressure changes due to reservoir
depletion.

Fixed-stress: In this scheme, the fluid mass content is expressed as a function of pressure
and total stress as in equation (3.2.21). The temporal variation of volumetric total
stress 𝜎𝑡𝑣 is frozen, i.e. 𝛿𝜎𝑡𝑣 = 0. The split introduces an extra compressibility term
for the pressure variable, making the temporal scales for 𝑝 and 𝜎𝑡𝑣 more separated in
relation to the Fixed-strain case. It is useful when the pressure changes rapidly in
relation to the deformation process, e.g. the pressure changes due to a producer well.
The solution procedures by the fixed-stress splits is illustrated in the Figure 4.2.
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Figure 4.2: Sequential coupled scheme with fixed-stress split (Jihoon Kim, 2010).

Jihoon Kim, H. A. Tchelepi, and Ruben Juanes, 2011 state that the Fixed-stress split
strategy is unconditionally stable and has better convergence properties compared to the
other schemes. The better performance of the fixed stress scheme is because the variation of
the total stress is slow compared with the other variables. Also, Mikelić and M. F. Wheeler,
2012 demonstrated that the convergence of the fixed stress split scheme using a contraction
map with respect to an appropriately chosen metric. Several other authors explain and use
the Fixed-stress split sequential scheme as documented in (Antonin Settari and Mourits,
1998; Jihoon Kim, H. A. Tchelepi, and Ruben Juanes, 2011; Mikelić and M. F. Wheeler,
2012; Silva, Murad, and Obregon, 2018). For this reason, the Fixed-stress split scheme is
chosen as the sequentially coupled scheme in this work.

4.3.4 A Fixed-stress split (FSS) for poro-elastoplastic
Regarding the equation (3.2.12) for porosity changes, the implementation for the Fixed

Stress split can be established utilizing two main stages:

1. The approximation for the reservoir pressure considering implicitly 𝛿𝜑𝑝𝑜𝑟𝑒 and explicitly
𝛿𝜑𝑚𝑎𝑡𝑟𝑖𝑥;

2. The approximation of the geomechanics response considering implicitly 𝛿𝜑𝑚𝑎𝑡𝑟𝑖𝑥.

As in (Antonin Settari and Mourits, 1998; Mikelić and M. F. Wheeler, 2012), an auxiliary
variable called porosity correction 𝛿𝜑* is introduced to perform the coupling between the
subproblems. This variable accounts for the implicit porosity correction of the geomechanic
response. The Figure 4.3 shows how the stages are performed during a given time step Δ𝑡.
Starting with the external iteration index 𝑚 → 1, the first step is to set 𝛿𝜑* 𝑚−1 → 0 and

to add (𝛼𝑛−1)2

𝐾𝑑𝑟

to 𝑆 in the reservoir module, leading to a modified compressibility term

𝑆* = 𝑆 + (𝛼𝑛−1)2

𝐾𝑑𝑟

. Consecutively, the reservoir equations are solved as follows:

Solving the reservoir equations: For a given 𝛿𝜑* 𝑚−1, the porosity 𝜑𝑛,𝑚 is approximated
as 𝜑𝑛,𝑚 ≈ 𝜑∘ + 𝛿𝜑* 𝑚−1 + 𝑆* (𝑝𝑛,𝑚 − 𝑝∘), allowing to compute implicitly 𝑝𝑛,𝑚 because
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the approximated porosity depends only on pressure data. In other words the total
volumetric stress and the plastic porosity do not change during solving the reservoir
iterations, i.e. 𝜎𝑛,𝑚

𝑡𝑣 ≈ 𝜎𝑛−1
𝑡𝑣 and 𝜑𝑛,𝑚

𝑝 ≈ 𝜑𝑛−1
𝑝 . It means that the term 𝛿𝜑𝑛,𝑚

𝑚𝑎𝑡𝑟𝑖𝑥 is
explicitly approximated by an expression that only depends on pressure data, as follows:

𝛿𝜑𝑛,𝑚
𝑚𝑎𝑡𝑟𝑖𝑥 ≈ 𝛿𝜑* 𝑚−1 + (𝛼𝑛−1,𝑚−1)2

𝐾𝑑𝑟

(𝑝𝑛,𝑚 − 𝑝∘) (4.3.5)

Consecutively, the pressure is transferred to the geomechanic module and the equations
are solved as follows:

Solving the geomechanic equations: Once the pressure 𝑝𝑛,𝑚 is determined, the term
𝛿𝜑* 𝑚 is computed implicitly using the expression:

𝛿𝜑* 𝑚 = (𝛼𝑛−1)2

𝐾𝑑𝑟

(𝜎𝑛,𝑚
𝑡𝑣 − 𝜎∘

𝑡𝑣) + 𝜑𝑛,𝑚
𝑝 − 𝜑∘

𝑝 (4.3.6)

The Fixed-stress split consists of approximating solutions for reservoir and geomechanic
equations in a sequential manner. The information being transferred between both modules
𝑝𝑛,𝑚 and 𝛿𝜑* 𝑚. This strategy has the advantage of a couple of different simulators in a
very simple manner. For the geomechanical problem, only the pressure field is inserted as a
volume force. For the reservoir problem, it is applied 𝛿𝜑* as a porosity correction and 𝑆* as
modified compressibility term.

Remark 1: The expression that computes the Biot coefficient as a function of the ratio
of the elastoplastic and elastic bulk modulus of the grains in equation (3.2.20) is the
main difference between the approaches provided by (Jihoon Kim, H. A. Tchelepi, and
Ruben Juanes, 2011) and (Silva, Murad, and Obregon, 2018), where 𝛼 is computed as
a function of the elastoplastic deformation as a separate consitutive law. Jihoon Kim,
Sonnenthal, and Rutqvist, 2012 suggest the computation for the elastoplastic bulk
modulus 𝐾𝑑𝑟𝑒𝑝 using the equation (3.2.19). It is opted to maintain the plastic porosity
and Biot coefficient constant during a timestep iteration. Only between timesteps 𝜑𝑝

and 𝛼 are updated. In particular, the coefficient 𝛼 is updated using the equation
(3.2.20). A similar approach is used in the references (J. Kim, H. Tchelepi, and R.
Juanes, 2011b; Jihoon Kim, H. A. Tchelepi, and Ruben Juanes, 2011; Jihoon Kim,
Sonnenthal, and Rutqvist, 2012).
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Figure 4.3: Elastoplastic fixed-stress split flowchart.

4.3.5 Sequential fully implicit algorithm (SFI )
The sequential fully implicit (SFI ) algorithm is a common approach to handle coupled

flow and transport equations for multiphase flow in porous media (Jiang and H. A. Tchelepi,
2018). The SFI algorithm is applied with the fixed stress split as a robust procedure to
approximate solutions of non-linear equations. It is considered, poro-elastoplastic material
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behavior and the dependence of the permeability on the porosity. The algorithm 4.1 computes
a new state (u,q, 𝑝)𝑚 in a time step of size Δ𝑡, by applying an external loop with counter 𝑚
and the maximum number of iterations 𝑚𝑓𝑠𝑠 to execute a sequence of two nonlinear solvers
(a reservoir module and a geomechanics module). Information transfer between both solvers

is performed using integration points transfer operations. The state of (𝛼𝑛−1)2

𝐾𝑑𝑟

and the field

𝛿𝜑*𝑚−1 is transferred to the reservoir module. Later, the first nonlinear solver computes the
new state of the pair (q, 𝑝)𝑚 considering 𝛿𝜎𝑡𝑣 = 0. For the second solver, the pressure is
transferred to the geomechanics module and 𝛿𝜑*𝑚 is computed. The sequence is repeated
until a desired stopping criteria is reached as a function of the variation of both sets of
variables.

Algorithm 4.1 SFI using Fixed Stress Split.
Require: 𝑚𝑓𝑠𝑠, 𝜀𝑢 and 𝜀𝑝

Ensure: (u,q, 𝑝)𝑚 over a pseudo time step Δ𝑡
At given last state (u,q, 𝑝)𝑛

Set 𝑚 → 1
Set (u,q, 𝑝)𝑚 → (u,q, 𝑝)𝑛

External loop for fixed stress split
for 𝑚 ∈ {1, . . . ,𝑚𝑓𝑠𝑠} do

Transfer 𝛿𝜑*𝑚−1 to reservoir module
First Newton process to obtain (q, 𝑝)𝑚

Transfer 𝑝𝑚 to geomechanics module
Second Newton process to obtain u𝑚 and 𝛿𝜑*𝑚

if
⃦⃦⃦
𝛿u𝑚 − 𝛿u𝑚−1

⃦⃦⃦
≤ 𝜀𝑢 and

⃦⃦⃦
𝑝𝑚 − 𝑝𝑚−1

⃦⃦⃦
≤ 𝜀𝑝 then

Stop fixed stress iteration
Return (u,q, 𝑝)𝑚

end if
Set (u,q, 𝑝)𝑚−1 → (u,q, 𝑝)𝑚

end for
Set (u,q, 𝑝) → (u,q, 𝑝)𝑚

return (u,q, 𝑝).
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4.3.6 Information transfer between modules
The implementation of the SFI method offers modular programming and allows to select

a proper numerical approach for generating approximations for both the reservoir and ge-
omechanics modules. However, the SFI algorithm requires two information transfers between
the modules at each iteration. There is a vast literature on sequential schemes, but in the
best of our knowledge, there is a lack of explanation in how the modules are integrated. For
completeness, it is provided some comments about a transfer interface being adopted.

The performance for the SFI procedure depends on the efficiency of each module in-
dependently an on the efficiency of the transfer of information. A simple shared memory
management interface is applied to perform the transfer of information. The finite element
discretizations adopted in subsections 4.2.1 and 4.2.2 store the information of the stress,
deformation, pressure, and flux in computational memory objects associated with the inte-
gration point. Figure 4.4 provides a schematic representation for the transfer process in a
finite element during the execution of the SFI procedure. The integration point transfer
depends on the following rules:

• The geometric partition is the same for both the reservoir and geomechanics problems;

• The numerical integration of the finite elements should have the same integration point
indexation, between the reservoir and geomechanics modules;

• The reservoir and geomechanics modules can have arbitrary polynomial approximation
order as long as they share the same order of numerical integration.

The steps for implementing the shared memory management interface are:

• For each finite element, the order of integration is the maximum required order of
integration between the corresponding reservoir and geomechanics element;

• The integration points are indexed;

• A memory object is associated with every integration point (see Figure 4.4) where the
necessary information for the geomechanical and fluid flow problem is stored;

• During the execution for the SFI, the geomechanics computation uses the information
of the fluid and updates the information of the geomechanical computation (e.g. 𝜎𝑣,
∇𝑢, 𝜑𝑝) (blue arrow in Figure 4.4);

• The reservoir solution process uses the information of the geomechanics and updates
the information of the fluid flow problem (e.g. 𝑝) (blue arrow in Figure 4.4);

• The convergence of SFI can be checked by taking the maximum change of state variables
stored in the memory objects.
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Figure 4.4: Schematic transfers operations during an SFI iteration.

4.3.7 Nonlinear acceleration techniques
The resolution for each problem considered in the SFI process uses Newton’s method. A

contribution of this research is the acceleration of the external loop of algorithm 4.1 in order
to reduce the number of iterations associated with a time step. The Newton iterations are
replaced by the modified Thomas method (Sloan, Sheng, and Abbo, 2000) that has better
convergence properties.



83

The accelerated convergence for the internal loop

Consider a nonlinear system of equations 𝐹 (x) : 𝐷 ⊆ R𝑛 → R𝑛 that is a continuously dif-
ferentiable multivariable function. 𝐹 (x) = 0 represents a nonlinear system with 𝑛 equations
and 𝑛 unknowns.

Denoting 𝛿x as a correction and x0 as initial state variable. A Newton’s correction is
given as follows: ⎧⎨⎩𝛿x

(︁
x𝑘−1

)︁
= −∇𝐹

(︁
x𝑘−1

)︁−1
𝐹
(︁
x𝑘−1

)︁
x𝑘 = x𝑘−1 + 𝛿x

(︁
x𝑘−1

)︁ (4.3.7)

Cordero, Hueso, Martínez, and Torregrosa, 2012 introduced an accelerated convergence
for the Newton method employing a two-step iterative method. In that iterative method,
a first step is to perform second-order Newton step to evaluate the iteration function of a
subsequent state 𝐹

(︁
x𝑘
)︁
. The second step is to perform another Newton step that combines

the information of a subsequent state and the value of the iterative function 𝐹
(︁
x𝑘
)︁

leading
to better convergence. Xiao and H.-W. Yin, 2018 extend the method to construct a family
of convergent high-order methods.

In this research, the ideas of (Cordero, Hueso, Martínez, and Torregrosa, 2012; Xiao and
H.-W. Yin, 2018) and (Sloan, Sheng, and Abbo, 2000) are combined to define a form of the
function 𝐹

(︁
x𝑘
)︁

leading the classical Newton method M1, and the modified Thomas method
M𝑇 . Details of them are provided concisely.

Method M1 A new state y𝑘 is provided by the iteration function:

y𝑘 = 𝐹
(︁
x𝑘−1

)︁
= x𝑘−1 + 𝛿x

(︁
x𝑘−1

)︁
(4.3.8)

The Newton’s method is clearly:

x𝑘 = y𝑘 (4.3.9)
This method requires one assembly, linear solve, and one function evaluation per update.

Method M𝑇 This method defines the iteration function as follows:

y𝑘 = 𝐹
(︁
x𝑘−1

)︁
= x𝑘−1 + 𝜔𝑘−1 𝛿x

(︁
x𝑘−1

)︁
(4.3.10)

With the new update state defined as follows:

x𝑘 = y𝑘 + 𝜔𝑘−1 𝛿x
(︁
y𝑘
)︁

(4.3.11)

where the factor 𝜔 is so-called acceleration factor (Sloan, Sheng, and Abbo, 2000), defined
as:

𝜔𝑘 = 𝜔𝑘−1 +
𝛿x
(︁
x𝑘−1

)︁
· 𝛿x

(︁
y𝑘
)︁

𝛿x (x𝑘−1) · 𝛿x (x𝑘−1) (4.3.12)
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The initial acceleration factor is 𝜔0 is set to 1.0 at the beginning of the iterative process.
This method provides a better convergence, but requires two assemblies, two linear solves
and two function evaluation per updates, i.e. two Newton corrections. Different high order
methods are provided by Xiao and H.-W. Yin, 2018 with varying extra evaluations of the
function and system inversions. Most higher order methods have the inconvenience of requir-
ing the computation of several updates. In 3D simulations, the inversion of a large Jacobian
matrix can be restrictive.

Quasi-Newton methods result in lower convergence rates but have lower cost of execution.
There are several options when Quasi-Newton approaches are adopted, as documented in
(Degroote, Haelterman, Annerel, Bruggeman, and Vierendeels, 2010; Bogaers, Kok, Reddy,
and Franz, 2016; T. Liu, Bouaziz, and Kavan, 2017). It is employed a Quasi-Newton strategy
forthcoming from the ideas provided by Sloan, Sheng, and Abbo, 2000. The subproblems are
solved using a single assembly for the global operator. In general, the correction is defined
as: ⎧⎨⎩𝛿x𝑄𝑁

(︁
x𝑘−1

)︁
= −∇𝐹 (x𝑠)−1 𝐹

(︁
x𝑘−1

)︁
x𝑘 = x𝑘−1 + 𝛿x𝑄𝑁

(︁
x𝑘−1

)︁ (4.3.13)

The Quasi-Newton method denoted QNM𝑇 is built using the structure of M𝑇 has the same
structure considering equation (4.3.13) instead of equation (4.3.7). Where x𝑠 is the unknown
variable at some frozen state, for instance, the initial state of any time step. Details for such
path are provided for each subproblem as follows:

Solving the reservoir equation 𝑟𝑖
𝑝|𝑛 : Considering the nonlinearities for the per-

meability introduced in previous sections the Quasi-Newton strategy adopted here for the
reservoir equations is described as:

(i) Apply the Newton method during the first two iterations, one for capture the main
variation for the pressure field, and the second one to capture the main permeabil-
ity variations over a time step. Next, the last (inverted) Jacobian is frozen for the
subsequent Quasi-Newton iterations;

(ii) Converge the solution as a series of Quasi-Newton updates using QNM1 or QNM𝑇

technique.

Solving the geomechanics problem 𝑟𝑖
𝑢|𝑛 : Probably the most natural strategy for a

Quasi-Newton method for elastoplasticity is:

(i) Assemble the linear elastic global operator and decompose the Jacobian matrix;

(ii) Converge the solution as a series of Quasi-Newton updates without updating the Ja-
cobian matrix and apply QNM1 or QNM𝑇 acceleration. This approach is known as a
secant method or initial stiffness scheme for elastoplasticity (Sloan, Sheng, and Abbo,
2000).

The acceleration properties for the scheme QNM𝑇 will be documented in terms of number
of iterations and normalized variables and compared to the unmodified scheme QNM1.
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Nonlinear acceleration for external loop

The acceleration for the external loop is supported on the existing of a nonlinear function
Ψ (x), that provides a new value of x. In the sense of a convergent fixed-point iteration a
new updated variable x𝑖 is obtained from a previous information x𝑖−1 as follows:

x𝑖 = Ψ
(︁
x𝑖−1

)︁
(4.3.14)

where 𝑖 = {0, 1, . . . , 𝑛}. After 𝑛 iterations for the solution process it is obtained a sequence
of states 𝑠 =

{︁
x0,x1 . . . ,x𝑛

}︁
. For instance the function Ψ

(︁
x𝑖−1

)︁
can be represented by

iterative processes like the Quasi-Newton methods introduced previously. Thus, the iterative
process represented by equation (4.3.14) makes use of plenty of external iterations, especially
for the Quasi-Newton case. There are several techniques for accelerate sequences provided
by an arbitrary convergent process in equation (4.3.14), that point to decrease the number
of total iterations necessary to reach certain stop criterion.

Macleod, 1986 reviewed nine different algorithms for the acceleration of vector sequences,
among which just Aitken’s and Anderson’s process were implemented. These algorithms are
also identified as the First Difference Modulation (FDM ) and Second Difference Modulation
(SDM ), respectively. Their acceleration properties were analyzed by Jennings, 1971.

First Difference Modulation FDM : Jennings, 1971; Macleod, 1986 define the trans-
formation sequence as:

x𝑖 = Ψ
(︁
x𝑖−1

)︁
𝜔 = (x𝑖 − x𝑖−1) · (x𝑖−1 − x𝑖−2)

(x𝑖−1 − x𝑖−2) · (x𝑖 − 2x𝑖−1 + x𝑖−2) (4.3.15)

x̄𝑖 = FDM
(︁
x𝑖−2,x𝑖−1,x𝑖

)︁
= x𝑖 − 𝜔

(︁
x𝑖 − x𝑖−1

)︁
(4.3.16)

x𝑖 = x̄𝑖

Second Difference Modulation SDM : Anderson, 1965; Jennings, 1971; Macleod,
1986 present the following alternative:

x𝑖 = Ψ
(︁
x𝑖−1

)︁
𝜔 = 𝛿x𝑖 · (𝛿x𝑖 − 𝛿x𝑖−1)

‖𝛿x𝑖 − 𝛿x𝑖−1‖2 (4.3.17)

x̄𝑖 = SDM
(︁
x𝑖−2,x𝑖−1,x𝑖

)︁
= x𝑖 + 𝜔

(︁
x𝑖−1 − x𝑖

)︁
(4.3.18)

x𝑖 = x̄𝑖

where 𝛿x𝑖 = x𝑖 − x𝑖−1.
Given a squence

{︁
x𝑖−2,x𝑖−1,x𝑖

}︁
, scalar 𝜔, and two transformations u and v:

u = x𝑖−1 + 𝜔
(︁
x𝑖−2 − x𝑖−1

)︁
(4.3.19)
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v = x𝑖 + 𝜔
(︁
x𝑖−1 − x𝑖

)︁
(4.3.20)

The corresponding 𝜔 value is chosen to minimize ‖u − v‖2.
It is important to point out that FDM and SDM require three previous states.
A remarkable transformation of this kind is the so-called Shank transformation (Shanks,

1955; Brezinski, Redivo-Zaglia, and Saad, 2018) that is an all-purpose method for the accel-
eration of convergent sequences.

The modified iterative process considering indistinctly FDM, SDM or another kind of
sequence transformation/acceleration of the external loop can be presented in the following
script:

1. Get initial guest x0 and set 𝑖 = 1;

2. Compute x𝑖 = Ψ
(︁
x𝑖−1

)︁
;

3. If 𝑖 ≥ 𝑛𝑎𝑐𝑐𝑒𝑙, then apply the transformation with 𝑛𝑎𝑐𝑐𝑒𝑙 states available to obtain the
modified state x̄𝑖;

4. Set x𝑖 = x̄𝑖;

5. Set 𝑖 → 𝑖+ 1;

6. Repeat step 2 to 5 till convergence is reached.

Shank augmented acceleration for FDM/SDM : Shank defines a recursive tech-
nique for improving the acceleration of divergent or slowly convergent sequences. The pro-
posed augmented acceleration is inspired by the example provided in (Shanks, 1955), when
a slowly convergent series to approximate number 𝜋 is accelerated by means of a recur-
sive procedure. During the execution for the nonlinear process Ψ

(︁
x𝑖−1

)︁
a series of states{︁

x1,x2 . . . ,x𝑖, . . .x𝑛
}︁

are generated as the operations occur. The transformations FDM and
SDM are applied recursively as more states are available to construct a better modified state
x̄𝑖. For brevity let denote the transformation 𝑇 that requires three states and provided a new
modified state x̄𝑖,𝑖−1,𝑖−2 as x̄𝑖,𝑖−1,𝑖−2 = T

(︁
x𝑖−2,x𝑖−1,x𝑖

)︁
. A new two Shank transformations

x̄2 and x̄3 that account for extra available states is introduced as:

x̄2
𝑖,𝑖−1,𝑖−2 = T (x̄𝑖,𝑖−1,𝑖−2, x̄𝑖−1,𝑖−2,𝑖−3, x̄𝑖−2,𝑖−3,𝑖−4) (4.3.21)

and

x̄3
𝑖,𝑖−1,𝑖−2 = T

(︁
x̄2

𝑖,𝑖−1,𝑖−2, x̄2
𝑖−1,𝑖−2,𝑖−3, x̄2

𝑖−2,𝑖−3,𝑖−4

)︁
(4.3.22)
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𝑖 Ψ
(︁
x𝑖
)︁

x̄ x̄2 x̄3

1 x1 = Ψ
(︁
x0
)︁

N/A N/A N/A
2 x2 = Ψ

(︁
x1
)︁

N/A N/A N/A
3 x3 = Ψ

(︁
x2
)︁

x̄3,2,1 N/A N/A
4 x4 = Ψ (x̄3,2,1) x̄4,3,2 N/A N/A
5 x5 = Ψ (x̄4,3,2) x̄5,4,3 x̄2

5,4,3 N/A
6 x6 = Ψ

(︁
x̄2

5,4,3

)︁
x̄6,5,4 x̄2

6,5,4 N/A
7 x7 = Ψ

(︁
x̄2

6,5,4

)︁
x̄7,6,5 x̄2

7,6,5 x̄3
7,6,5

8 x8 = Ψ
(︁
x̄3

7,6,5

)︁
x̄8,7,6 x̄2

8,7,6 x̄3
8,7,6

... ... ... ... ...
𝑖 x𝑖 = Ψ

(︁
x̄3

𝑖,𝑖−1,𝑖−2

)︁
x̄𝑖,𝑖−1,𝑖−2 x̄2

𝑖,𝑖−1,𝑖−2 x̄3
𝑖,𝑖−1,𝑖−2

Table 4.1: Proposed Shank’s transformations x̄2 and x̄3 sequences.

The Table 4.1 shows that Shank transformations x̄2 and x̄3 require, 5 and 7 aditional
states. These transformations enhance the acceleration of T = {FDM, SDM}. The improved
convegence is shown later through several numerical examples.

4.3.8 Enhanced SFI algorithm
The SFI algorithm sometimes suffers from slow convergence or eventually the failure, as

an alternative to this issue an acceleration technique that enhanced the convergence and the
stability is desired. The internal Newton process can be accelerated applying an appropri-
ated Quasi-Newton method that constructs approximations for the inverse of Jacobian, or
Secant method that use a linearized part of non-linear operator as an approximation for the
Jacobian, in order to perform several iterations before the reconstruction of a new Jacobian
approximation. Quasi-Newton and Secant methods avoid the assembly at each iteration
performed by the conventional Newton method ending in a better performance.

Few methods were documented to improve the performance of the external loop for ob-
taining poro-elastoplastic approximated solutions. Jiang and H. A. Tchelepi, 2018 presented
several acceleration techniques applied to the SFI in the context of the multiphase flow in
porous media where they applied Anderson acceleration, Quasi-Newton, and Aitken’s tech-
nique. Jiang and H. A. Tchelepi, 2018 simulated several 2D reservoir cases and demonstrated
that Aitken’s technique results in better performance and convergence. In (Both, Kumar,
Nordbotten, and Radu, 2019) a robust linearization technique was incorporated in the Fixed
stress split method using the Richards equation coupled with the linear elastic equation. It
is an original contribution of this research to implement and compare two acceleration tech-
niques to enhance the performance for the SFI with fixed stress iterations in the context
of poro-elastoplasticity using nonlinear acceleration techniques presented by Jennings, 1971.
The outer loop of the SFI algorithm is accelerated with Shanks transformations. equations
The enhanced ESFI process use the equations (4.3.16), (4.3.18), and their Shank’s versions
in equations (4.3.21), and (4.3.22), leading to a substantial reduction of the number of iter-
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ations. The implementation of the enhanced sequential fully implicit (ESFI ) represents an
improvement of the SFI by adding additional statements as is presented in the algorithm
4.2.

Algorithm 4.2 ESFI using Fixed Stress Split.
Require: 𝑚𝑓𝑠𝑠, 𝜀𝑢 and 𝜀𝑝

Ensure: (u,q, 𝑝)𝑚 over a time step Δ𝑡
At given last state (u,q, 𝑝)𝑛

Set 𝑚 → 1
Set (u,q, 𝑝)𝑚 → (u,q, 𝑝)𝑛

External loop for fixed stress split
for 𝑚 ∈ {1, . . . ,𝑚𝑓𝑠𝑠} do

Transfer 𝛿𝜑*𝑚−1 to reservoir module
First QNM𝑇 process to obtain (q, 𝑝)𝑚

Transfer 𝑝𝑚 to geomechanics module
Second QNM𝑇 process to obtain u𝑚 and 𝛿𝜑*𝑚

if
⃦⃦⃦
u𝑚 − u𝑚−1

⃦⃦⃦
≤ 𝜀𝑢 and

⃦⃦⃦
𝑝𝑚 − 𝑝𝑚−1

⃦⃦⃦
≤ 𝜀𝑝 then

Stop fixed stress iteration
Return (u,q, 𝑝)𝑚

end if
if 𝑚 == Number of required states then

Apply a transformation to obtain (ū, q̄, 𝑝)𝑚

Set (u,q, 𝑝)𝑚 → (ū, q̄, 𝑝)𝑚

end if
Set (u,q, 𝑝)𝑚−1 → (u,q, 𝑝)𝑚

end for
Set (u,q, 𝑝) → (u,q, 𝑝)𝑚

return (u,q, 𝑝).

4.4 Conclusions
In this chapter,

∙ The finite element method was presented as the basis of all numerical modelling in this
research. Temporal derivatives were approximated by an implicit Euler method and spatial
discretizations were adopted using finite element in two different formulations.

∙ The approximation schemes, i.e., fully and sequentially coupled were presented in detail
for coupling between nonlinear geomechanics and reservoir simulator.

∙ To improve the slow convergence of the sequential fully implicit SFI algorithm which is a
popular method to approximate a coupled system, this study proposed for the first time
an enhanced sequential fully implicit ESFI algorithm with a fixed stress split scheme.

∙ The ESFI was defined by applying a new nonlinear acceleration technique for the SFI
scheme which has been proposed by means of Shanks transformations with considering
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FDM and SDM to enhance the outer loop convergence and a Quasi-Newton method with
considering the modified Thomas method for the internal loop. The advantage of a novel
scheme is to approximate accurately and efficiently several challenging problems forthcom-
ing reservoir geomechanics applications, with reducing the number of iterations.



90

Chapter 5

Numerical algorithm & verification of
elastoplastic models

5.1 Introduction
The implementation of the elastoplastic models in finite element demands the use of

numerical integration algorithms for presenting the incremental evolution of stresses and
hardening parameters (R. I. Borja and Lee, 1990). Within the last decade, various integration
algorithms have been proposed and categorized within two techniques: explicit and implicit.
The implicit algorithms have become predominant because of their efficiency and robustness.

The structure for this chapter is disposed of as follows. Firstly, a short description of
numerical integartion algorithm for elastoplastic models is expressed. Secondly, it describes
an innovative numerical scheme in a rotated Haigh-Westergaard space to improve integration
algorithm for implementing the elastoplastic constitutive models by considering linear &
nonlinear elasticity. Thirdly, it provides the verification of numerical integration scheme
to implement the elastoplastic constitutive models using various numerical examples. For
the case of Mohr-Coulomb, the implementation is compared with Abaqus. For the case of
DiMaggio-Sandler, the numerical results are compared with two different experimental test
data. For the case of modified Cam-Clay, the implementation is verified by comparing the
numerical results with analytical solutions.

The implementation this study is performed in the scientific computation environment
named NeoPZ1. This environment consists of finite element libraries, using knowledge of
object oriented programming. It includes, L2 discontinuous spaces, H1-conforming, Hdiv-
conforming, multiphysics approximation spaces, and integration of elastoplastic constitutive
models. A detail of methods can be found in (P. R. B. Devloo, Bravo, and Rylo, 2009;
De Siqueira, P. Devloo, and S. Gomes, 2013; A. Farias, 2014; Cecílio, P. R. Devloo, Sônia M.
Gomes, E. R. d. Santos, and Shauer, 2015; Castro, P. R. Devloo, A. M. Farias, Sonia M.
Gomes, and O. Y. Durán, 2016; O. Durán, 2017).

1https://github.com/labmec/neopz
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5.2 Numerical integration algorithm for elastoplastic
model

Generally, the use of numerical integration algorithms is essential because the elastoplastic
constitutive models are complex and nonlinear (Souza Neto, Peri, and D. R. J. Owen, 2008).
The numerical integration is divided into two main steps: the elastic trial step and the plastic
corrector step (or return-mapping algorithm). If the elastic trial state lies within the elastic
domain or on the yield surface, the solution is accepted. Otherwise, if the trial stress in the
first step fails to verify the plastic admissible condition, it is projected onto the yield surface
by the return-mapping algorithm (Souza Neto, Peri, and D. R. J. Owen, 2008).

5.2.1 Incremental elastoplastic constitutive problem
The incremental constitutive model is presented by applying an implicit Euler method. It

is formed by giving the elastic strain 𝜖𝑛−1
𝑒 , the plastic strain 𝜖𝑛−1

𝑝 , and the hardening variable
𝜒𝑛−1 at a (pseudo) time step 𝑡𝑛−1, and also given a prescribed incremental strain tensor Δ𝜖

for the time interval
[︁
𝑡𝑛−1, 𝑡𝑛

]︁
in order to find the following system of algebraic equations at

a time-step 𝑡𝑛 (Oñate and R. Owen, 2007; Souza Neto, Peri, and D. R. J. Owen, 2008):

𝜖𝑛
𝑒 = 𝜖𝑛−1

𝑒 + Δ𝜖 − Δ𝛾𝑁 (𝜎𝑛, 𝐴𝑛)
𝜒𝑛 = 𝜒𝑛−1 + Δ𝛾 𝐻 (𝜎𝑛, 𝐴𝑛) (5.2.1)

for the unknowns 𝜖𝑛
𝑒 , 𝜒𝑛 and incremental of plastic multiplier Δ𝛾, it is restricted to the

Kuhn-Tucker conditions (R. I. Borja, 2013), as:

Δ𝛾 ≥ 0, Φ (𝜎𝑛, 𝐴𝑛) ≤ 0, Δ𝛾 Φ (𝜎𝑛, 𝐴𝑛) = 0 (5.2.2)
where

𝜎𝑛 = 𝜌
𝜕F𝑒

𝜕𝜖𝑒

|𝑛 𝐴𝑛 = 𝐴𝑛(𝜒𝑛) = 𝜌
𝜕F𝑝

𝜕𝜒
|𝑛 (5.2.3)

and

N (𝜎𝑛, 𝐴𝑛) = 𝜕Ψ
𝜕𝜎

|𝑛 𝐻 (𝜎𝑛, 𝐴𝑛) = −𝜕Ψ
𝜕𝐴

|𝑛 (5.2.4)

For solving the elastoplastic problem in two steps. It begins with a purely elastic pre-
dictor, where Δ𝛾 = 0 and obtains the trial elastic strain 𝜖𝑛

𝑒𝑡𝑟𝑖𝑎𝑙
= 𝜖𝑛−1

𝑒 + Δ𝜖 and internal
variables 𝜒𝑛

𝑡𝑟𝑖𝑎𝑙 = 𝜒𝑛−1. Next, 𝜎𝑛
𝑡𝑟𝑖𝑎𝑙 and Φ (𝜎𝑛

𝑡𝑟𝑖𝑎𝑙, 𝐴
𝑛
𝑡𝑟𝑖𝑎𝑙) are computed according to 𝜖𝑛

𝑒𝑡𝑟𝑖𝑎𝑙
. If

Φ (𝜎𝑛
𝑡𝑟𝑖𝑎𝑙, 𝐴

𝑛
𝑡𝑟𝑖𝑎𝑙) ≤ 0, it is already a valid solution to the algebraic system and the variables

are updated by the trial ones (· )𝑛 := (· )𝑛
𝑡𝑟𝑖𝑎𝑙. Otherwise, the return-mapping algorithm is

applied and the algebraic system is rewritten as (Souza Neto, Peri, and D. R. J. Owen, 2008):

𝜖𝑛
𝑒 = 𝜖𝑛

𝑒𝑡𝑟𝑖𝑎𝑙
− Δ𝛾𝑁 (𝜎𝑛, 𝐴𝑛)

𝜒𝑛 = 𝜒𝑛
𝑡𝑟𝑖𝑎𝑙 + Δ𝛾 𝐻 (𝜎𝑛, 𝐴𝑛)

Δ𝛾 > 0, Φ (𝜎𝑛, 𝐴𝑛) = 0
(5.2.5)
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Once the solution 𝜖𝑛
𝑒 has been calculated, the plastic strain at a time-step 𝑡𝑛 can be

computed by:

𝜖𝑛
𝑝 = 𝜖𝑛−1

𝑝 + Δ𝜖 − Δ𝜖𝑒 (5.2.6)
For some plasticity models, the return-mapping scheme can be expressed analytically.

Fore instance, Mohr-Coulomb criterion (projection on a plane) or the von Mises criterion
(projection on a plane), for these cases, the return-mapping scheme is reduced to a single
nonlinear equation (Cecílio, P. R. Devloo, Sônia M. Gomes, E. R. d. Santos, and Shauer,
2015). The detailed of return-mapping scheme for Mohr-Coulomb can be found in (Souza
Neto, Peri, and D. R. J. Owen, 2008). In this research, the return-mapping in the rotated
principal stress is used to implement DiMaggio-Sandler and modified Cam-Clay elastoplastic
model.

5.2.2 Plastic return-mapping in rotated principal stress
In order to present a simplified procedure to improve integration scheme for DiMaggio-

Sandler and modified Cam-Clay models, a numerical integration algorithm provided by
(Cecílio, P. R. Devloo, Sônia M. Gomes, E. R. d. Santos, and Shauer, 2015) for DiMag-
gio and I. Sandler, 1971 elastoplastic model is used. The proposed scheme is implemented by
using the closest point projection in the rotated principal stresses. In this algorithm, instead
of using the six stress components for the representation of the stress state at a point, an
alternative representation of the stress is used composed the principal stresses together with
a rotation tensor. The principal stresses are then rotated to the Haigh–Westergaard stress
space. 𝜎* = [𝜎*

1, 𝜎
*
2, 𝜎

*
3]T is used for the stress representation in the Haigh–Westergaard stress

space. 𝜎 = [𝜎1, 𝜎2, 𝜎3]T represents the principal stresses. The definition of the constitutive
model in the rotated principal variables is simpler and computationally efficient to imple-
ment. The coordinate system of rotated principal variables is similar to the decomposition
expressed in (R. I. Borja, 2013; Lainé, Vallée, and Fortuné, 1999).

Haigh–Westergaard stress space

The tensor of stress 𝜎 [MPa] can be written in terms of three principal stresses sorted in
descending order 𝜎1 > 𝜎2 > 𝜎3 (W.-F. Chen and D.-J. Han, 2007), as:

𝜎 =

⎡⎢⎣ 𝜎1
𝜎2
𝜎3

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
3
𝜉 +

√︃
2
3𝜌 cos (𝛽)

1√
3
𝜉 +

√︃
2
3𝜌 cos

(︂
𝛽 − 2𝜋

3

)︂
1√
3
𝜉 +

√︃
2
3𝜌 cos

(︂
𝛽 + 2𝜋

3

)︂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.2.7)

where 𝜉, 𝜌, 𝛽 are the hydrostatic, deviatoric components, and the Lode’s angle, respectively.

𝜉 = 𝐼1√
3

𝜌 =
√︁

2𝐽2 𝛽 = 1
3 cos−1

(︃
3
√

2
2

𝐽3

𝐽
3/2
2

)︃
(5.2.8)



93

The above expression is valid for the 𝛽 ∈
[︂
0, 𝜋3

]︂
. 𝐼1, 𝐽2, and 𝐽3 are the first invariant of

the stress tensor, the second and third deviatoric stress tensor, respectively. 𝐼1, 𝐽2, and 𝛽
are defined as:

𝐼1 = 𝜎1 + 𝜎2 + 𝜎3

𝐽2 = 1
3
[︁
𝜎2

1 + 𝜎2
2 − 𝜎2𝜎3 + 𝜎2

3 − 𝜎1 (𝜎2 + 𝜎3)
]︁

𝛽 = 1
3 arccos

(︃
(2𝜎1 − 𝜎2 − 𝜎3) (𝜎 − 2𝜎2 + 𝜎3) (𝜎1 + 𝜎2 − 2𝜎3)

2[𝜎2
1 + 𝜎2

2 − 𝜎2𝜎3 + 𝜎2
3 − 𝜎1 (𝜎2 + 𝜎3)]3/2

)︃ (5.2.9)

The relationship between principal stresses and principal strains is expressed as:

𝜖 =

⎡⎢⎣ 𝜖1
𝜖2
𝜖3

⎤⎥⎦ = (𝐷𝐻𝑊 )−1

⎡⎢⎣ 𝜎1
𝜎2
𝜎3

⎤⎥⎦ (5.2.10)

where

𝐷𝐻𝑊 =

⎡⎢⎢⎢⎢⎢⎢⎣

(︂
𝐾 + 4𝐺

3

)︂ (︂
𝐾 − 2𝐺

3

)︂ (︂
𝐾 − 2𝐺

3

)︂
(︂
𝐾 − 2𝐺

3

)︂ (︂
𝐾 + 4𝐺

3

)︂ (︂
𝐾 − 2𝐺

3

)︂
(︂
𝐾 − 2𝐺

3

)︂ (︂
𝐾 − 2𝐺

3

)︂ (︂
𝐾 + 4𝐺

3

)︂

⎤⎥⎥⎥⎥⎥⎥⎦ (5.2.11)

where 𝐾 [MPa] and 𝐺 [MPa] are the Bulk and the shear modulus, respectively.

Rotated Haigh-Westergaard space

The tensor of stress 𝜎 [MPa] can be represented in terms of a rotated Haigh-Westergaard
(RHW). The RHW of stress 𝜎* = [𝜎*

1, 𝜎
*
2, 𝜎

*
3]𝑇 is defined as:⎡⎢⎣ 𝜎*

1
𝜎*

2
𝜎*

3

⎤⎥⎦ = 𝑅

⎡⎢⎣ 𝜎1
𝜎2
𝜎3

⎤⎥⎦ (5.2.12)

where

𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
3

1√
3

1√
3√︃

2
3 − 1√

6
− 1√

6
0 1√

2
− 1√

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.2.13)

The invariant stresses 𝐼1 and 𝐽2 and Lode’s angle 𝛽 in the rotated space are given as:

𝐼1 =
√

3𝜎*
1 𝐽2 = 𝜎*2

2 + 𝜎*2
3

2
𝛽 = arctan (𝜎*

3/𝜎
*
2) (5.2.14)
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Figure 5.1: Transformation of the principal stresses (HW) to the rotated Haigh-Westergaard
stresses (RHW).

The relationship between stress and strain in the rotated Haigh–Westergaard space is:⎡⎢⎣ 𝛿𝜖*
1

𝛿𝜖*
2

𝛿𝜖*
3

⎤⎥⎦ = (𝐷𝑅𝐻𝑊 )−1

⎡⎢⎣ 𝛿𝜎*
1

𝛿𝜎*
2

𝛿𝜎*
3

⎤⎥⎦ (5.2.15)

where

𝐷𝑅𝐻𝑊 =

⎡⎢⎣ 3𝐾 0 0
0 2𝐺 0
0 0 2𝐺

⎤⎥⎦ (5.2.16)

where 𝐾 and/or 𝐺 for nonlinear elasticity are a function of 𝜖𝑒𝑣.

5.2.3 Incremental elastoplastic constitutive problem in RHW space
The incremental associative elastoplastic problem can be interpreted using a distance

minimization of the trial stress to the admissibility surface in the RHW space (Francisco
Armero and Agusti Perez-Foguet, 2001; A. Perez-Foguet and F. Armero, 2001). The admis-
sibility surface for a given variable 𝜒 is 𝑆* (𝜒) = {𝜎* : Φ* (𝜎*, 𝐴 (𝜒) = 0)}, where Φ* (𝜎*, 𝐴)
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is the yield function. The incremental problem in equation (5.2.5) is presented in the RHW
space, as:

𝜖*,𝑛
𝑒𝑡𝑟𝑖𝑎𝑙

− 𝜖*,𝑛
𝑒 = Δ𝛾𝑁 *,𝑛

𝜒𝑛
𝑡𝑟𝑖𝑎𝑙 − 𝜒𝑛 = −Δ𝛾 𝐻*,𝑛 (5.2.17)

where the flow direction 𝑁 * is:

𝑁 *,𝑛 = 𝜕Φ* (𝜎*,𝑛, 𝐴 (𝜒𝑛))
𝜕𝜎* (5.2.18)

and the hardening modulus 𝐻* is:

𝐻*,𝑛 = −𝜕Φ* (𝜎*,𝑛, 𝐴 (𝜒𝑛))
𝜕𝐴

(5.2.19)

For all possible variations 𝛿𝜎* in the tangent plane at 𝜎*,𝑛 ∈ 𝑆* (𝜒𝑛), it is:

0 = (𝛿𝜎*, 𝜖*,𝑛
𝑡𝑟𝑖𝑎𝑙 − 𝜖*,𝑛) =

(︁
𝛿𝜎*,𝐷−1

𝑅𝐻𝑊 (𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙 − 𝜎*,𝑛)

)︁
=

⟨𝛿𝜎*,𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙 − 𝜎*,𝑛⟩𝑅𝐻𝑊

(5.2.20)

where 𝜎*,𝑛 is the projected point in 𝑆* (𝜒𝑛). The internal product for vectors a* and b* in
the RHW space is:

⟨a*,b*⟩𝑅𝐻𝑊 =
(︁
a*,𝐷−1

𝑅𝐻𝑊 b*
)︁

(5.2.21)

The equation (5.2.20) is a distance function which shows minimizing the distance induced
by the RHW internal product of the trial stress to the admissibility surface. The distance
function for nonlinear elasticity can be written as:

𝑑 (a*,b*) :=
{︃

(a*
1 − b*

1)
2

3𝐾(𝜖𝑒𝑣) + (a*
2 − b*

2)
2

2𝐺(𝜖𝑒𝑣) + (a*
3 − b*

3)
2

𝐾(𝜖𝑒𝑣)

}︃1/2

(5.2.22)

where the function 𝐾(𝜖𝑒𝑣) depends on the elastic volumetric strain and the function 𝐺(𝜖𝑒𝑣)
depends on the flavour of the elastic constitutive law (i.e. nonlinear with 𝐺 constant or 𝜈
constant). It means:

𝐺(𝜖𝑒𝑣) =
⎧⎨⎩ G constant :
𝜈 constant :

𝐺

𝐺 (𝑃𝑐𝑐(𝜖𝑒𝑣))
(5.2.23)

The minimization of aforementioned distance function means:

𝑑 (a*,b*) :=
√︁

⟨a* − b*, a* − b*⟩𝑅𝐻𝑊 (5.2.24)

As a consequence, 𝑑 (𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙,𝜎

*,𝑛) = min𝜎*,𝑛∈𝑆*(𝜒𝑛)𝑑 (𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙,𝜎

*,𝑛).
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5.2.4 Solution of the incremental return-mapping step
The incremental return-mapping step in the equation (5.2.5) can be represented in RHW

space for perfectly plastic material and plastic material with hardening as follows:

• Perfectly plastic material. The yield surface for perfectly plastic is not dependent
to 𝜒𝑛 and it is parameterized by two parameters as:

𝑆* = {𝜎*,𝑛 (𝑟1, 𝑟2) : (𝑟1, 𝑟2) ∈ ℐ} (5.2.25)

Then, the square distance of a given 𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙, to a point on the surface 𝜎*,𝑛 (𝑟1, 𝑟2) ∈ 𝑆*

can be defined by:

𝑑2 (𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙,𝜎

*) = 𝛿 (𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙, 𝑟1, 𝑟2) (5.2.26)

It means, by giving the trial elastic strain 𝜖*,𝑛
𝑡𝑟𝑖𝑎𝑙, the quantity of 𝜎*

𝑡𝑟𝑖𝑎𝑙 = 𝐷𝑅𝐻𝑊 𝜖*
𝑡𝑟𝑖𝑎𝑙is

computed. Next, the elastoplastic problem is solved in two steps, as follows:

1. Projection: The stress 𝜎*,𝑛 (𝑟1, 𝑟2) ∈ 𝑆* at a time-step 𝑡𝑛 is computed by mini-
mizing the distance of 𝜎*,𝑛

𝑡𝑟𝑖𝑎𝑙 to the admissibility surface 𝑆*, as follows:

𝜕𝛿 (𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙, 𝑟1, 𝑟2)
𝜕𝑟1

= 0
𝜕𝛿 (𝜎*,𝑛

𝑡𝑟𝑖𝑎𝑙, 𝑟1, 𝑟2)
𝜕𝑟2

= 0
(5.2.27)

2. If the incremental plastic multiplier Δ𝛾 is required, it can be obtained as:

𝜖*,𝑛
𝑒𝑡𝑟𝑖𝑎𝑙

− 𝜖*,𝑛
𝑒 = Δ𝛾𝑁 * (𝑟1, 𝑟2) (5.2.28)

• Plastic material with hardening.
In the RHW space, a stress point on the yield surface depends on three parameters as:

𝑆* (𝜒𝑛) = {𝜎*,𝑛 (𝑟1, 𝑟2, 𝜒
𝑛) : (𝑟1, 𝑟2, 𝜒

𝑛) ∈ ℐ} (5.2.29)
where it is included the internal damage parameter 𝜒𝑛 to define the position of the
surface and the other two parameters 𝑟1 and 𝑟2 which display a point on the surface.
Then, the square distance of a given 𝜎*,𝑛

𝑡𝑟𝑖𝑎𝑙, to a point on the surface 𝜎*,𝑛 (𝑟1, 𝑟2, 𝜒
𝑛) ∈

𝑆* (𝜒𝑛) can be defined by:

𝛿 (𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙; 𝑟1, 𝑟2, 𝜒

𝑛) = 𝑑2 (𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙,𝜎

*,𝑛 (𝑟1, 𝑟2, 𝜒
𝑛)) (5.2.30)

where 𝑑 is defined in equation (5.2.29).
It means, given the trial elastic strain 𝜖*,𝑛

𝑡𝑟𝑖𝑎𝑙 and internal variable 𝜒𝑛
𝑡𝑟𝑖𝑎𝑙 = 𝜒𝑛−1, the

quantity of 𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙 is computed, as follows:

𝜎𝑛
𝑡𝑟𝑖𝑎𝑙 = 𝜎𝑛−1

𝑡𝑟𝑖𝑎𝑙 + 2𝐺(𝜖𝑛
𝑒𝑣) 𝜖𝑛

𝑒𝑑𝑡𝑟𝑖𝑎𝑙
− 2𝐺(𝜖𝑛−1

𝑒𝑣 ) 𝜖𝑛−1
𝑒𝑑𝑡𝑟𝑖𝑎𝑙

− (𝑃𝑐𝑐(𝜖𝑛
𝑒𝑣) − 𝑃𝑐𝑐(𝜖𝑛−1

𝑒𝑣 )) I (5.2.31)
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Here, it is required to express that the relationship between stress increment and strain
increment related to nonlinear elasticity in the rotated Haigh–Westergaard space pro-
vided by equation (5.2.16) is represented as:
The expression of 𝐷𝑅𝐻𝑊 for nonlinear elasticity is:

𝐷𝑅𝐻𝑊 (𝜖𝑒𝑣) =

⎡⎢⎣ 3𝐾(𝜖𝑒𝑣) 0 0
0 2𝐺(𝜖𝑒𝑣) 0
0 0 2𝐺(𝜖𝑒𝑣)

⎤⎥⎦ (5.2.32)

where the expression for 𝐺(𝜖𝑒𝑣) depends on the flavour of the nonlinear elastic law.
It is essential to mention that the expression of 𝐷𝑅𝐻𝑊 for linear elasticity is presented
in equation (5.2.16).
After computing the quantity of 𝜎*,𝑛

𝑡𝑟𝑖𝑎𝑙, the elastoplastic problem is solved in two steps,
as follows:

1. Projection: The stress 𝜎*,𝑛 (𝑟1, 𝑟2, 𝜒
𝑛) ∈ 𝑆* (𝜒𝑛) at a time-step 𝑡𝑛 is computed by

minimizing the distance of 𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙 to the admissibility surface 𝑆* (𝜒𝑛) as follows:

𝜕𝛿 (𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙; 𝑟1, 𝑟2, 𝜒

𝑛)
𝜕𝑟1

= 0
𝜕𝛿 (𝜎*,𝑛

𝑡𝑟𝑖𝑎𝑙; 𝑟1, 𝑟2, 𝜒
𝑛)

𝜕𝑟2
= 0

𝜒𝑛 − 𝜒𝑛
𝑡𝑟𝑖𝑎𝑙 − Δ𝛾𝐻* (𝑟1, 𝑟2, 𝜒

𝑛) = 0

(5.2.33)

where 𝐻* (𝑟1, 𝑟2, 𝜒
𝑛) is the hardening modulus expressed in the RHW space.

2. The incremental plastic multiplier Δ𝛾 is obtained by:

𝜖*,𝑛
𝑒𝑡𝑟𝑖𝑎𝑙

− 𝜖*,𝑛
𝑒 = Δ𝛾𝑁 * (𝑟1, 𝑟2, 𝜒

𝑛) (5.2.34)

For the particular case of modified Cam-clay model, the equations (5.2.33) and (5.2.34)
are represented as follows:

𝜕𝛿 (𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙; 𝑟1, 𝑟2, 𝜒

𝑛)
𝜕𝑟1

= 0
𝜕𝛿 (𝜎*,𝑛

𝑡𝑟𝑖𝑎𝑙; 𝑟1, 𝑟2, 𝜒
𝑛)

𝜕𝑟2
= 0

𝜒𝑛 − 𝜒𝑛−1 + 𝜖𝑛
𝑝𝑣 − 𝜖𝑛−1

𝑝𝑣 = 0

(5.2.35)

5.2.5 Numerical integration of DiMaggio-Sandler model
The DiMaggio-Sandler model is an associative plasticity, then it can be implemented

using the return-mapping in the rotated principal stresses (Cecílio, P. R. Devloo, Sônia M.
Gomes, E. R. d. Santos, and Shauer, 2015).



98

The DiMaggio-Sandler model in the RHW space

The DiMaggio-Sandler surface in the RHW space as shown in Figure 5.2 is combined of
two surfaces: perfectly plastic part 𝑆*

𝑓 (Green color), where 𝐹𝑓 = 0 and cap hardening part
𝑆*

𝑐 (𝐿) (Red color), where 𝐹𝑐 = 0.

Figure 5.2: The DiMaggio-Sandler yield surface represented in the RHW stress space: perfect
plastic part 𝑆*

𝑓 with green color and cap part 𝑆*
𝑐 (𝐿) with red color.

The stresses on the failure surface 𝑆*
𝑓 are presented using 𝑟1 = 𝐼1 and 𝑟2 = 𝛽 as:

⎡⎢⎣ 𝜎*
1
𝜎*

2
𝜎*

3

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼1√
3

cos (𝛽)
√

2𝐹𝑠 (𝐼1)
𝛤 (𝛽)

sin (𝛽)
√

2𝐹𝑠 (𝐼1)
𝛤 (𝛽)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.2.36)

Similarly, the stresses on the cap surface 𝑆*
𝑐 (𝐿) are defined using 𝑟1 = 𝜃 and 𝑟2 = 𝛽, as:

⎡⎢⎣ 𝜎*
1
𝜎*

2
𝜎*

3

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐿−𝑅𝐹𝑠 (𝐿) cos (𝜃)√
3

cos (𝛽)
√

2𝐹𝑠 (𝐿) sin (𝜃)
𝛤 (𝛽)

sin (𝛽)
√

2𝐹𝑠 (𝐿) sin (𝜃)
𝛤 (𝛽)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.2.37)
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Return-mapping in RHW space for DiMaggio-Sandler model

The plastic return-mapping for DiMaggio-Sandler model is described separately for failure
and cap surface. The RHW square distance from a given 𝜎*

𝑡𝑟𝑖𝑎𝑙 to a point 𝜎* on failure surface
𝑆*

𝑓 is:

𝑑2 (𝜎*
𝑡𝑟𝑖𝑎𝑙,𝜎

*) =

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,1 − 𝐼1√
3

)︁2

3𝐾 +

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,2 − cos (𝛽)
√

2𝐹𝑠(𝐼1)
𝛤 (𝛽)

)︁2

2𝐺 +

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,3 − sin (𝛽)
√

2𝐹𝑠(𝐼1)
𝛤 (𝛽)

)︁2

2𝐺 := 𝛿𝑓 (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝐼1, 𝛽)

(5.2.38)

Then, 𝜎*
𝑝𝑟𝑜𝑗 (𝐼1, 𝛽) ∈ 𝑆*

𝑓 is obtained by minimizing the distance to 𝜎*
𝑡𝑟𝑖𝑎𝑙, as:

𝑅𝑓 =

⎡⎢⎢⎢⎣
𝜕𝛿𝑓 (𝜎*

𝑡𝑟𝑖𝑎𝑙; 𝐼1, 𝛽)
𝜕𝐼1

𝜕𝛿𝑓 (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝐼1, 𝛽)
𝜕𝛽

⎤⎥⎥⎥⎦ =
[︃

0
0

]︃
(5.2.39)

The RHW square distance from a given 𝜎*
𝑡𝑟𝑖𝑎𝑙 to the cap surface 𝑆*

𝑐 (𝐿) is defined as:

𝑑2 (𝜎*
𝑡𝑟𝑖𝑎𝑙,𝜎

*) =

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,1 − 𝐿−𝑅𝐹𝑠(𝐿) cos(𝜃)√
3

)︁2

3𝐾 +

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,2 − cos (𝛽)
√

2𝐹𝑠(𝐿) sin(𝜃)
𝛤 (𝛽)

)︁2

2𝐺 +

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,3 − sin (𝛽)
√

2𝐹𝑠(𝐿) sin(𝜃)
𝛤 (𝛽)

)︁2

2𝐺 := 𝛿𝑐 (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝐿)

(5.2.40)

Moreover, the equation (3.2.47) is rewritten as follows:

𝐼1 (𝜎*
𝑡𝑟𝑖𝑎𝑙) − 𝐼1 (𝜎*) = 3𝐾 [𝜖𝑝𝑣 (𝐿𝑡𝑟𝑖𝑎𝑙) − 𝜖𝑝𝑣 (𝐿)] (5.2.41)

The equation (5.2.41) is applied to update simultaneously the position of the yield surface
which is defined by the variable 𝐿. In the RHW space, the invariant 𝐼1 (𝜎*) is expressed by:

𝐼1 (𝜎*) = 𝐼1 (𝜃, 𝐿) = 𝐿−𝑅𝐹𝑠 (𝐿) cos (𝜃) (5.2.42)
Finally, by giving 𝐿𝑡𝑟𝑖𝑎𝑙 and 𝜎*

𝑡𝑟𝑖𝑎𝑙, the procedure is to compute 𝐿 and 𝜎*
𝑝𝑟𝑜𝑗 ∈ 𝑆*

𝑐 (𝐿)
which minimizes the RHW distance to 𝜎*

𝑡𝑟𝑖𝑎𝑙. In order to apply the proposed scheme, it is
required the Newton’s method to find the values of 𝜃, 𝛽, and 𝐿 such that:

𝑅𝑐 =

⎡⎢⎢⎢⎢⎢⎣
𝜕𝛿𝑐 (𝜎*

𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝐿)
𝜕𝜃

𝜕𝛿𝑐 (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝐿)
𝜕𝛽

𝑟𝑒𝑠 (𝜃, 𝐿)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎣ 0
0
0

⎤⎥⎦ (5.2.43)
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where

𝑟𝑒𝑠 (𝜃, 𝐿) = [𝐼1 (𝜎*
𝑡𝑟𝑖𝑎𝑙) − 𝐼1 (𝜃, 𝐿)] − 3𝐾 [𝜀𝑝𝑣 (𝐿𝑡𝑟𝑖𝑎𝑙) − 𝜀𝑝𝑣 (𝐿)] = 0 (5.2.44)

The detailed of elastoplastic tangent operator for DiMaggio-Sandler model can be found
in (Cecílio, P. R. Devloo, Sônia M. Gomes, E. R. d. Santos, and Shauer, 2015).

5.2.6 Numerical integration of generalized modified Cam-Clay
The generalized modified Cam-Clay GMCC model is an associative plasticity, thus it can

be implemented using the return-mapping in the rotated principal stresses.

The generalized modified Cam-Clay in the RHW space

The GMCC surface in the RHW space as shown in Figure 5.3 is formed by two parts.
There is one softening part 𝑆*

𝑠 (Green color) and one hardening part 𝑆*
ℎ (Red color). The

implementation of these two surfaces is the same and the only difference is related to the
quantity of 𝑏, where it is 1.0 for softening part and is equal 𝜁 for hardening part. Therefore,
only the hardening part of GMCC in the RHW space is presented.

Figure 5.3: Yield surface represented in the RHW stress space: softening part 𝑆*
𝑠 with green

color and hardening part 𝑆*
ℎ with red color.

The RHW representation of any point on the hardening surface 𝑆*
ℎ of the GMCC model
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can be represented in term of three parameters 𝑟1 = 𝜃, 𝑟2 = 𝛽, and 𝑟3 = 𝑎. That is:

⎡⎢⎣ 𝜎*
1
𝜎*

2
𝜎*

3

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 (𝑎+ 𝑎 𝑏 cos (𝜃))√
3

cos (𝛽)
√

2𝐹 (𝑎) sin (𝜃)
Γ(𝛽)

sin (𝛽)
√

2𝐹 (𝑎) sin (𝜃)
Γ(𝛽)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.2.45)

where 𝐹 (𝑎) is defined by the following expression:

𝐹 (𝑎) =
𝑀
√︁

−𝑝𝑡(2 𝑎 𝑏+ 𝑝𝑡)√
3 𝑏Γ (𝛽)

(5.2.46)

Numerical integration algorithm for generalized modified Cam-Clay

The minimization of RHW square distance from 𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙 to a point 𝜎*,𝑛 ∈ 𝑆*

ℎ (𝑎) for GMCC
model is presented for linear and nonlinear elasticity. For the simplicity of notation, it is
considered 𝜎*

𝑡𝑟𝑖𝑎𝑙 = 𝜎*,𝑛
𝑡𝑟𝑖𝑎𝑙 and 𝜎*,𝑛 = 𝜎*. The RHW square distance for nonlinear elasticity

is:

𝑑2 (𝜎*
𝑡𝑟𝑖𝑎𝑙,𝜎

*) =

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,1 − 3(𝑎+𝑎 𝑏 cos(𝜃))√
3

)︁2

3𝐾(𝜖𝑒𝑣) +

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,2 − cos (𝛽)
√

2𝐹 (𝑎) sin(𝜃)
𝛤 (𝛽)

)︁2

2𝐺(𝜖𝑒𝑣) +

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,3 − sin (𝛽)
√

2𝐹 (𝑎) sin(𝜃)
𝛤 (𝛽)

)︁2

2𝐺(𝜖𝑒𝑣) := 𝛿ℎ (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝑎)

(5.2.47)

where the expression for 𝐺(𝜖𝑒𝑣) depends on the flavour of the nonlinear elastic law.
The RHW square distance for linear elasticity is:

𝑑2 (𝜎*
𝑡𝑟𝑖𝑎𝑙,𝜎

*) =

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,1 − 3(𝑎+𝑎 𝑏 cos(𝜃))√
3

)︁2

3𝐾 +

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,2 − cos (𝛽)
√

2𝐹 (𝑎) sin(𝜃)
𝛤 (𝛽)

)︁2

2𝐺 +

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,3 − sin (𝛽)
√

2𝐹 (𝑎) sin(𝜃)
𝛤 (𝛽)

)︁2

2𝐺 := 𝛿ℎ (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝑎)

(5.2.48)

Moreover, the third relation of equation (5.2.35) by considering the equation (3.2.75) can
be written as:

𝐼1 (𝜎*
𝑡𝑟𝑖𝑎𝑙) − 𝐼1 (𝜎*) = 3𝐾(𝜖𝑒𝑣) [𝜖𝑝𝑣 (𝑎𝑡𝑟𝑖𝑎𝑙) − 𝜖𝑝𝑣 (𝑎)] (5.2.49)

The equation (5.2.49) is applied to update simultaneously the position of the yield surface
which is defined by the variable 𝑎. In the RHW space, the invariant 𝐼1 (𝜎*) is expressed by:

𝐼1 (𝜎*) = 𝐼1 (𝜃, 𝑎) = 3 (𝑎+ 𝑎 𝑏 cos (𝜃)) (5.2.50)
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In short, by giving 𝑎𝑡𝑟𝑖𝑎𝑙 and 𝜎*
𝑡𝑟𝑖𝑎𝑙, the procedure is to compute 𝑎 and 𝜎*

𝑝𝑟𝑜𝑗 ∈ 𝑆*
ℎ (𝑎)

which minimizes the RHW distance to 𝜎*
𝑡𝑟𝑖𝑎𝑙. In order to apply the proposed scheme, it is

required the Newton’s method to find the values of 𝜃, 𝛽, and 𝑎 such that:

𝑅ℎ =

⎡⎢⎢⎢⎢⎢⎣
𝜕𝛿ℎ (𝜎*

𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝑎)
𝜕𝜃

𝜕𝛿ℎ (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝑎)
𝜕𝛽

𝑟𝑒𝑠 (𝜃, 𝑎)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎣ 0
0
0

⎤⎥⎦ (5.2.51)

where

𝑟𝑒𝑠 (𝜃, 𝑎) = [𝐼1 (𝜎*
𝑡𝑟𝑖𝑎𝑙) − 𝐼1 (𝜃, 𝑎)] − 3𝐾(𝜖𝑒𝑣) [𝜀𝑝𝑣 (𝑎𝑡𝑟𝑖𝑎𝑙) − 𝜀𝑝𝑣 (𝑎)] = 0 (5.2.52)

The procedure to solve the system of equations, derivative of the project stresses, and the
derivation of elastoplastic tangent operator for the above implementation of GMCC model
is included in the Appendix A.

5.3 Verification of elastoplasticity models
The verification of numerical integration scheme to implement the elastoplastic consti-

tutive models, e.g., Mohr-Coulomb, DiMaggio-Sandler, and modified Cam-Clay is done as
follows:

5.3.1 Verification of Mohr-Coulomb elastoplasticity model
The Mohr-Coulomb elastoplasticity model is implemented using the plastic return-mapping

scheme provided in the book (Souza Neto, Peri, and D. R. J. Owen, 2008) and it is presented
in Figure 5.4 (left). The Mohr-Coulomb implementation is verified by comparing with Abaqus
(Systémes, 2012). The material parameters are presented in Table 5.1.

Parameter Variable [unit] Value
Young’s modulus 𝐸 MPa 43365.4

Poisson’s ratio 𝜈 0.358489
Mohr-Coulomb cohesion 𝑐 MPa 30.0
Mohr-Coulomb friction 𝑓𝑟 ° 10.0

Table 5.1: Parameters employed for verification of Mohr-Coulomb plasticity model.

Figure 5.4 (middle) and (right) present a comparison between the Mohr-Coulomb imple-
mentation and the results calculated with Abaqus, displaying the verification of the imple-
mentation.
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Figure 5.4: (right) Mohr-Coulomb yield criterion, in which the points represent an arbitrary
stress path. The red points are the trial stresses, and the green points are the projected stress.
The arrows represent the return mapping. A comparison between the numerical results and
the results from Abaqus (Systémes, 2012): (middle) axial strain vs. axial stress, and (right)
volumetric strain vs. volumetric stress.

5.3.2 Verification of DiMaggio-Sandler elastoplasticity model
The implementation of DiMaggio-Sandler elastoplasticity model has been done using the

plastic return-mapping in the rotated principal stresses (Cecílio, P. R. Devloo, Sônia M.
Gomes, E. R. d. Santos, and Shauer, 2015) and it is presented in Figure 5.5 (left). The
numerical integration scheme for DiMaggio-Sandler is verified by comparing the numerical
results with two different experimental test data. The test results are included a uniaxial
compressive loading on the McCormic sand sample provided by (I. S. Sandler and Rubin,
1979) and a triaxial loading on a salem limestone sample provided by (Fossum, Senseny,
Pfeifle, and Mellegard, 1995). The material parameters of these two tests are presented in
Table 5.2.

Test data 𝐸 𝜈 𝐴 𝐵 𝐶 𝐷 𝑊 𝑋∘ 𝑅

Sandler 1979 100.0 0.25 0.25 0.67 0.18 0.67 0.066 0.0 2.5
Unit [unit] ksi ksi ksi−1 ksi ksi−1 ksi

Fossum 1995 23456.9 0.266709 209.61 1.787 × 10−3 198.49 3.909 × 10−4 0.189 −442.56 5.63
Unit [unit] MPa MPa MPa−1 MPa MPa−1 MPa

Table 5.2: Parameters employed for verification of DiMaggio-Sandler plasticity model.

Figure 5.5 presents a comparison between the DiMaggio-Sandler implementation and the
experimental results from articles (I. S. Sandler and Rubin, 1979) and (Fossum, Senseny,
Pfeifle, and Mellegard, 1995) displaying the verification of the implementation.
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Figure 5.5: (left) DiMaggio-Sandler plasticity yield criterion in which failure function part
is with a green color and cap function is with a red color, (middle) a comparison between
numerical model of DiMaggio-Sandler with the experimental data reported by (I. S. Sandler
and Rubin, 1979); the arrow with a blue color in the left shows the evolution of elastoplastic
model which is represented here by a point with a red color, and (right) a comparison between
numerical model of DiMaggio-Sandler with the experimental data provided by (Fossum,
Senseny, Pfeifle, and Mellegard, 1995) for the specimen SL1255.

5.3.3 Verification of modified Cam-Clay elastoplasticity model
Due to the complexity of the modified Cam-Clay MCC elastoplasticity model, there are

few analytical solutions that can apply to verify the accuracy and convergence of implemen-
tation.

Analytical solution for modified Cam-Clay model

To verify the implementation of generalized modified Cam-Clay GMCC model, the ana-
lytical solution provided by Perić, 2006 for infinitesimal strain assumption is adopted. The
solution is presented separately for volumetric and deviatoric behavior of the material.

The volumetric behavior

The rate of volumetric strain is obtained from its nonlinear elasticity and hardening rule.
Then, by integrating the rate over a finite time increment, the analytical expressions for
volumetric elastic strain and plastic strain are derived as:

𝜖𝑒𝑣 = 𝜖∘
𝑒𝑣 + 1

1 + 𝑒∘ ln
[︃(︂

𝑃

𝑃 ∘

)︂−𝐶𝑒]︃
(5.3.1)

𝜖𝑝𝑣 = 𝜖∘
𝑝𝑣 + 1

1 + 𝑒∘ ln
⎡⎣(︃(︂ 𝑃

𝑃 ∘

)︂(︃
𝑀2 + 𝜂2

𝑀2 + (𝜂∘)2

)︃)︃𝐶𝑒−𝐶𝑝⎤⎦ (5.3.2)
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where 𝜂 is the modified stress ratio and defines as:

𝜂 = 𝜂𝑟 𝑔 𝜂𝑟 = 𝑄

𝑃
(5.3.3)

In the case of a conventional triaxial compression, the function 𝑔 is equal to 1. The
superscript (∘) refers to the initial condition herein.

A total volumetric strain is:

𝜖𝑣 = 𝜖∘
𝑣 + 1

1 + 𝑒∘ ln
⎡⎣(︂ 𝑃
𝑃 ∘

)︂−𝐶𝑝 (︃
𝑀2 + 𝜂2

𝑀2 + (𝜂∘)2

)︃𝐶𝑒−𝐶𝑝⎤⎦ (5.3.4)

By considering a stress path in 𝑃 − 𝑄 space, with a slope 𝑘 = 𝑘 𝑔, in which 𝑘 = 𝑄/𝑃 ,
the total volumetric strain is expressed as:

𝜖𝑣 = 𝜖∘
𝑣 + 1

1 + 𝑒∘ ln
⎡⎣(︃𝑘 − 𝜂∘

𝑘 − 𝜂

)︃−𝐶𝑝 (︃
𝑀2 + 𝜂2

𝑀2 + (𝜂∘)2

)︃𝐶𝑒−𝐶𝑝⎤⎦ (5.3.5)

Note that in the case of conventional triaxial test 𝑘 = 3.

The deviatoric behavior

By integrating the rate of deviatoric strain over a finite time increment, the analytical
expressions for generalized shear elastic strain and plastic strain are obtained as:

𝜖𝑒𝑞 = 𝜖∘
𝑒𝑞 + 1

1 + 𝑒∘ ln

⎡⎢⎣(︃ 𝑘 − 𝜂

𝑘 − 𝜂∘

)︃− 𝐶𝑒�̄�
3 𝜔 𝑔

⎤⎥⎦ (5.3.6)

𝜖𝑝𝑞 = 𝜖∘
𝑝𝑞 − 2𝐶𝑖

𝑀 (1 + 𝑒∘)

[︂
arctan

(︂
𝜂

𝑀

)︂
− arctan

(︂
𝜂∘

𝑀

)︂]︂
+

1
1 + 𝑒∘ ln

⎡⎢⎣(︃ 𝑀 − 𝜂

𝑀 − 𝜂∘

)︃ 𝐶𝑖�̄�

𝑀(𝑀−�̄�)
(︃
𝑀 + 𝜂

𝑀 + 𝜂∘

)︃ 𝐶𝑖�̄�

𝑀(𝑀+�̄�)
(︃
𝑘 − 𝜂

𝑘 − 𝜂∘

)︃ 2𝐶𝑖�̄�

�̄�2−𝑀2

⎤⎥⎦
(5.3.7)

where

𝐶𝑖 = (𝐶𝑝 − 𝐶𝑒) 𝑔 𝜔 = 3 (1 − 2𝜈)
2 (1 + 𝜈) (5.3.8)

A total generalized shear strain is:

𝜖𝑞 = 𝜖∘
𝑞 − 2𝐶𝑖

𝑀 (1 + 𝑒∘)

[︂
arctan

(︂
𝜂

𝑀

)︂
− arctan

(︂
𝜂∘

𝑀

)︂]︂
+

1
1 + 𝑒∘ ln

⎡⎢⎣(︃ 𝑀 − 𝜂

𝑀 − 𝜂∘

)︃ 𝐶𝑖�̄�

𝑀(𝑀−�̄�)
(︃
𝑀 + 𝜂

𝑀 + 𝜂∘

)︃ 𝐶𝑖�̄�

𝑀(𝑀+�̄�)
(︃
𝑘 − 𝜂

𝑘 − 𝜂∘

)︃ 2𝐶𝑖�̄�

�̄�2−𝑀2 − 𝐶𝑒�̄�
3 𝜔 𝑔

⎤⎥⎦
(5.3.9)
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The axial and radial strains in a triaxial test can be calculated from volumetric and
generalized shear strains as follows:

𝜖𝑎 = 1
3𝜖𝑣 + 𝜖𝑞 𝜖𝑟 = 1

3𝜖𝑣 − 1
2𝜖𝑞 (5.3.10)

Verification of generalized modified Cam-Clay implementation

The consolidated-drained triaxial test documented in (Rocscience, 2015) is reproduced.
In this test, the sample is first consolidated under hydrostatic pressure and thus sheared by
applying additional axial load. The material parameters that were used in this test are listed
in Table 5.3. The test is on a normally consolidated clay sample which involves elastoplastic
loading, a behavior that considers hardening. The stress paths, initial and final yield surfaces
for softening and hardening part of this test is shown in Figure 5.6. The performance of this
test is done in two examples. First by giving the constant shear modulus and second by
considering the constant Poisson’s ratio.

Parameter Value
𝐺 (Shear modulus) 20 𝑀𝑃𝑎
𝜈 (Poisson’s ratio) 0.3

𝑀 1.2
𝐶𝑒 0.0077
𝐶𝑝 0.066
𝑒∘ 0.438
𝜓 1
𝑃 ∘ 0.2 𝑀𝑃𝑎
𝑝∘

𝑐 0.2 𝑀𝑃𝑎
𝑄∘ 0.0 𝑀𝑃𝑎

Table 5.3: Material parameters for clay (Rocscience, 2015).
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Figure 5.6: The normally consolidated-drained triaxial test: stress paths, initial and final
yield surfaces for softening and hardening part in the 𝑃 −𝑄 space.

Verification for constant shear modulus

For the following triaxial test, all the subfigures in the Figure 5.7 presents a comparison
for the GMCC model implementation with the results calculated from analytical solution
(see in the Appendix B), displaying the verification of the implementation for constant shear
modulus.
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Figure 5.7: Comparison between the numerical results of the GMCC model for constant shear
modulus with the analytical solution provided by Perić, 2006. (top-left) relation between
axial strain and von Mises stress, (top-right) relation between volumetric strain and effective
mean stress, (middle-left) relation between volumetric plastic strain and preconsolidation
pressure, (middle-right) relation between effective mean stress and Bulk modulus, (bottom-
left) relation between effective mean stress and von Mises stress, and (bottom-right) relation
between axial strain and volumetric strain.
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Figure 5.8 (left) shows the evolution of the residual normal when solving the nonlinear
system of equations to project 𝜎*

𝑡𝑟𝑖𝑎𝑙 on 𝑆*
ℎ (𝑎) for the GMCC model with constant shear

modulus, illustrating that the number of iterations required for convergence is less than 5.
A typical 3D profile of the GMCC model for constant shear modulus is shown in Figure 5.8
(right).

Figure 5.8: (left) Residual norm per iteration for each load step for the GMCC model with
constant shear modulus; (right) the generalized modified Cam-Clay plasticity yield function
for constant shear modulus in which the arrow with a blue color shows the evolution of
elastoplastic model.

Verification for constant Poisson’s ratio

All the subfigures in the Figure 5.9 illustrates a comparison for the GMCC model im-
plementation with the results calculated from analytical solution (see in the Appendix B),
demonstrating the verification of the implementation for constant Poisson’s ratio.

Figure 5.10 (left) displays that the evolution of the residual normal when solving the
nonlinear system of equations to project 𝜎*

𝑡𝑟𝑖𝑎𝑙 on 𝑆*
ℎ (𝑎) for the GMCC model with constant

Poisson’s ratio, showing that the number of iterations required for convergence is less than
5. A typical 3D profile of the GMCC model for constant Poisson’s ratio is shown in Figure
5.10 (right).
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Figure 5.9: Comparison between the numerical results of the GMCC model for constant
Poisson’s ratio with the analytical solution provided by Perić, 2006. (top-left) relation be-
tween axial strain and von Mises stress, (top-right) relation between volumetric strain and
effective mean stress, (middle-left) relation between volumetric plastic strain and precon-
solidation pressure, (middle-right) relation between effective mean stress and Bulk modulus,
(bottom-left) relation between effective mean stress and von Mises stress, and (bottom-right)
relation between axial strain and volumetric strain.
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Figure 5.10: (left) Residual norm per iteration for each load step for the GMCC model with
constant Poisson’s ratio; (right) the generalized modified Cam-Clay plasticity yield function
for constant Poisson’s ratio in which the arrow with a blue color shows the evolution of
elastoplastic model.

5.4 Conclusions
In this chapter,

∙ The numerical integration algorithm for solving the incremental elastoplastic models with
considering both linear and nonlinear elasticity was described. An efficient implementation
was developed for DiMaggio-Sandler and modified Cam-Clay elastoplasticity model. It was
done by introducing an additional dependence for original DiMaggio-Sandler and modified
Cam-Clay on the Lode’s angle. Then, the elastoplastic constitutive models were reformu-
lated into the rotated Haigh-Westergaard space and applied the plastic return-mapping.
The closest point projection was done in terms of the invariants of the rotated principal
stress to minimize a distance function to the admissibility surface.

∙ The implementation of Mohr-Coulomb, DiMaggio-Sandler, and modified Cam-Clay elasto-
plasticity were done. The comparison between the Mohr-Coulomb implementation and
the results calculated using Abaqus demonstrated the verification of the implementation.
Moreover, the comparison of the DiMaggio-Sandler implementation and the experimental
data provided by (I. S. Sandler and Rubin, 1979; Fossum, Senseny, Pfeifle, and Mellegard,
1995) proofed the verification of the numerical integration scheme. In addition, the compar-
ison between the modified Cam-Clay implementation into the rotated Haigh-Westergaard
space and the analytical solutions provided by (Perić, 2006) displayed the verification of
the numerical implementation.

∙ The advantage of the new scheme for the DiMaggio-Sandler and modified Cam-Clay was
to implement with more accuracy and efficiency. Furthermore, the Newton method was
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applied to a smaller system of equations which leads to increase the rate of convergence
and improves the implementation. The results for modified Cam-Clay indicated that the
new scheme causes to decrease the number of iterations required for convergence, which
were less than 5 iterations.
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Chapter 6

Verification of enhanced sequential
fully implicit scheme

6.1 Introduction
In this chapter, the verification of the enhanced sequential fully implicit ESFI to improve

the convergence of coupling between nonlinear geomechanics and reservoir simulator is pre-
sented. In terms of verification of ESFI several numerical examples with different physical
and constitutive modeling are provided. The objective is to demonstrate the correctness,
robustness, and efficiency for the ESFI implementation. Two cases with analytical solutions
under the assumption of linear constitutive modeling are considered; a one-dimensional Terza-
ghi’s consolidation problem and the two-dimensional vertical wellbore problem are simulated
to display the fidelity of the approximations. For the case of nonlinear constitutive model-
ing, an elastoplastic Mohr-Coulomb model is used to model the nonlinear rock deformation,
and for the reservoir, a nonlinear permeability Petunin model is contemplated. The physical
situation is a vertical producer wellbore under plane strain assumption. To corroborate the
correctness in this nonlinear case, a Runge-Kutta approximation is performed on a set of
equations written into the frame of cylindrical coordinates system and under axisymmetric
conditions. In addition, a three-dimensional problem is presented to show the capability
of the FEM implementation in dealing with geometrical 3D representations. For both, the
SFI and ESFI methods, the results are presented in terms of the number of iterations per
time step of the inner loops (nonlinear problems) and number of iterations of the outer loop.
Furthermore, a brief error analysis is provided for the Terzaghi’s consolidation problem and
the vertical wellbore to show the convergence properties of the selected schemes for time and
space discretizations, respectively.

6.2 One-dimensional Terzaghi’s consolidation
Terzaghi’s classical consolidation problem is a simple one-dimensional problem with the

known analytical solution. A concise description of the one-dimensional consolidation prob-
lem is provided in (Olivier Coussy, 2004). The physical process consider two stages: the first
one is related the vertical loading to of a fully saturated soil/rock with impervious boundaries
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overpressurizing the fluid that dwell inside (undrained response); the second stage represents
the expulsion of the fluid through a boundary that suddenly became permeable leading to
consolidation of the column, because the loading is progressively transferred to the matrix
(drained response). In the context of drilling operations a similar situation occurs when a
drilling tool abruptly release an overpressurized cross-bedded layer or formation.

The boundary conditions for the consolidation problem are given in terms of pore pressure
change 𝑝 respect to a hydrostatic condition and total stress. The vertical total stress 𝜎𝑛 = t·n
(Load BC) and pressure change (Seepage BC) are prescribed over the top of the column. The
other part of the boundary is zero normal displacements and zero normal flux (Impervious
BC) as is shown in the Figure 6.1. For the initial stage, the undrained response of the column
is given by:

Figure 6.1: Domain and boundary conditions for
one-dimensional consolidation.

𝑝
(︁
𝑦, 𝑡 = 0+

)︁
= 𝛼𝜎𝑛(︁

𝐾𝑢 + 4
3𝜇
)︁
𝑆𝑒

𝜖𝑦

(︁
𝑦, 𝑡 = 0+

)︁
= − 𝜎𝑛(︁

𝐾𝑢 + 4
3𝜇
)︁

Where the 𝐾𝑢 = 𝐾 + 𝛼2

𝑆𝑒

represents the undrained bulk modulus. For the second stage,
the solution for a finite column of height ℎ is expressed in terms of infinite series:

For the dimensionless pore pressure change:

𝑝
(︁
𝑦, 𝑡
)︁

=
𝑛=∞∑︁
𝑛=0

(︃
4

𝜋 (2𝑛+ 1)
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(︃
(2𝑛+ 1) 𝜋

2 𝑦
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4 𝑡

)︃
(6.2.1)

For the dimensionless vertical displacement:

𝑢𝑦
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𝑦, 𝑡
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(︃
(2𝑛+ 1) 𝜋

2 𝑦

)︃
exp

(︃
−(2𝑛+ 1)2 𝜋2

4 𝑡

)︃
(6.2.2)
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where the dimensionless groups are composed as follows:

𝑝 = 𝛼𝜎𝑛(︁
𝐾𝑢 + 4

3𝜇
)︁
𝑆𝑒

𝑝 𝑦 = ℎ𝑦 𝑡 = ℎ2

𝑐ℎ

𝑡 𝑢𝑦 = ℎ�̄�𝑦 (6.2.3)

Remembering that the fluid diffusivity coefficient 𝑐ℎ

[︁
m2 s−1

]︁
is (Olivier Coussy, 2004):

𝑐ℎ = 𝜅

𝜂 𝑆𝑒

𝐾 + 4
3𝜇

𝐾𝑢 + 4
3𝜇

(6.2.4)

6.2.1 Time discretization convergence rates
Above all the selected sheme for the time dicretization is the Euler method. To show

the correctness for the Euler scheme in time for both, the fully coupled solver (FC ) and
SFI solver, it was selected a high-order approximation in space, i.e. 20 quadrilateral finite
elements with cubic and quadratic polynomial order for displacements and pressure, respec-
tively. The material parameters are presented in Table 6.1. The linear convergence rate for
the Euler scheme is obtained by setting Δ𝑡 to be {0.1, 0.05, 0.025, 0.0125, 0.00625} [s] (see
Figure 6.2). The final time 𝑡𝑓 = 1.0 [s] is used for all the simulations.

Parameter Variable [unit] Value
Young’s modulus 𝐸 MPa 1000.0

Poisson’s ratio 𝜈 0.2
Biot coefficient 𝛼 1

Fluid compressibility 𝑐𝑓 MPa−1 0
Fluid dynamic viscosity 𝜂 Pa s 1 × 10−3

Initial porosity 𝜑∘ 0.1
Initial Abs. permeability 𝜅∘ m2 1 × 10−13

Vertical total stress 𝜎𝑛 MPa 1.0
Initial pressure excess 𝑝∘ MPa 1.0

Tolerance for stop criterion 𝜀𝑢 = 𝜀𝑝 1 × 10−6

Table 6.1: Parameters employed for Terzaghi consolidation test.
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Figure 6.2: (top-left) History of convergence in time, (top-right) plot of displacement,
(bottom-left) pressure, and (bottom-right) flux.

Figure 6.2 displays several solver configurations labeled as FC fully coupled, SFI with
discrete weak statement I in subsection 4.2.1 CG-SFI, and SFI with discrete weak statement
II in subsection 4.2.2 MF-SFI. The Figure 6.2 shows a good match between the different
operators and verify the correctness for the implementation of the SFI procedure in a linear
setting.
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6.2.2 One-dimensional comparison in a linear setting
Let define the performance ratio 𝑟𝑝 as:

𝑟𝑝 = 𝑡𝐸𝑆𝐹 𝐼

𝑡𝑆𝐹 𝐼

(6.2.5)

where 𝑡𝐸𝑆𝐹 𝐼 and 𝑡𝑆𝐹 𝐼 are respectively, the computational CPU time during the performance
of the ESFI and SFI methods. Thus, to compare the SFI and ESFI procedures it was
considered the following directives:

• The simulation time corresponds to the execution of both SFI and ESFI. The reported
average time value is computed as the mean of ten simulations;

• The quantity 𝑟𝑝 is computed as a ratio of the average time for each ESFI execution
over the average time for each SFI ;

• The reported iterations are associated with the external loop, and not for the internal
loops because they are linear and they converge with a single Newton iteration;

• The external loop reaches the convergence when the relative variation of each state
variable is less than the tolerance 𝜀 (see algorithm 4.2). The tolerance for geomechanics
and reservoir modules are 𝜀𝑢 and 𝜀𝑝, respectively.

Figure 6.3: Number of iterations and performance ratio 𝑟𝑝 against simulation time.

The time step is regular and with Δ𝑡 = 0.0125 [s]. Figure 6.3 shows that for a linear
operator the number of iterations used by the conventional SFI procedure (CG-SFI and MF-
SFI) is decreased. The usage of FDM, and SDM for the linear case accelerate the solution
process ending with the same number of iterations for any case. Their corresponing Shanks
transformations FDM2, FDM3, SDM2 and SDM3 end into a reduced number of iterations.
Figure 6.3 does not show the curves for FDM2, and FDM3 because they demand the same
number of iterations of SDM2 and SDM3. Respect to the 𝑟𝑝, the Figure 6.3 shows that due
to the reduction of external iterations the execution for ESFI is faster than SFI leading to
𝑟𝑝 < 1.
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6.3 Drilling of a borehole in linear case
Drilling is an inherent part of the exploration and reservoir production process. A sim-

plified approach to model the drilling of a vertical borehole is to consider an instantaneous
material removal, the weight of the overburden rocks and the stress state of the side burden
rocks are accounted through an initial stress field, that some times are approximated as a
hydrostatic stress field. Two physical situations that discern on being linear or not are pre-
sented. The boundary conditions for two dimensional numerical of drilling of a borehole is
shown in Figure 6.4.

Figure 6.4: Boundary conditions for two dimensional numerical of drilling of a borehole.

6.3.1 Spatial discretization convergence rates
For show the spatial approximation rates (𝐿2error) of the selected finite element scheme,

two uncoupled problems with the data in Table 6.2 are presented in terms of the corresponding
function space configuration:

For the geomechanics problem, it is selected the following analytical displacement expres-
sion:

u (𝑟) = 𝜎𝑤𝑏 + 𝜎∘

2𝜇
𝑟2

𝑤

𝑟
(6.3.1)

For the reservoir problem, it is selected the following analytical pressure expression:

𝑝 (𝑟) = 𝑝𝑤𝑏 + 𝑝∘ − 𝑝𝑤𝑏

ln
(︁

𝑟𝑒

𝑟𝑤

)︁ ln
(︂
𝑟

𝑟𝑤

)︂
(6.3.2)

Let ℒ and Q stand for linear, and quadratic approximation orders, and let the subscripts
H1 and H (div) stand for continuous Galerking and for mixed finite element approximation. In
figures 6.5 and 6.6 𝒬H1ℒH1 represents the approximation space configuration with quadratic
H1 elements for displacements and linear H1 elements for pore pressure; 𝒬H1ℒH(div) stands
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for quadratic H1 elements for displacements and linear mixed finite elements for fluid velocity
and pore pressure.

Figure 6.5: History of convergence in space, displacement and pressure.

Figure 6.5 shows that the approximation rates for u and 𝑝 are 𝑘 + 1, where 𝑘 represents
polynomial order for the state variable. In particular the displacement approximation is the
same for both, 𝒬H1ℒ𝐻1 and 𝒬H1ℒH(div) because the approximation order is equal, in other
words the lines of Figure 6.5 on the right are parallele in the asymptotic case H → 0.

Figure 6.6 shows the approximation rate and a plot over line for the flux variable q.
For the case 𝒬H1ℒH1 the approximation order is 𝑘, but with 𝒬H1ℒH(div) the approximation
order is 𝑘 + 1 (see Figure 6.6 on the left). It is important to point out that for 𝒬H1ℒH1 the
approximation is linear and then the flux is constant piecewise, but for 𝒬H1ℒH(div) the flux
approximation is local conservative and clearly more accurate. Figure 6.6 on the right shows
graphically this characteristic. As can be expected based on their accurate flux approximation
and pointing for future developments in the sense of multiphase flow, a particular attention
is invested for results with mixed formulation more than continuous formulation for Darcy
flow.

In addition Figures 6.5 and 6.6 report the characteristic of the finite element approxima-
tions with two different polynomials orders that are attached to the LBB inf-sup condition,
i.e. the polynomial order for displacement should be one order higher than the pressure ap-
proximation. Under these circumstances and results it was confirmed the correctness of the
implementation for the spatial approximation scheme presented in sections 4.2.1 and 4.2.2.
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Figure 6.6: History of convergence in space, flux and radial flux plot over red line.

Parameter Variable [unit] Value
Young’s modulus 𝐸 MPa 1000.0

Poisson’s ratio 𝜈 0.2
Biot coefficient 𝛼 0

Fluid compressibility 𝑐𝑓 MPa−1 0
Fluid dynamic viscosity 𝜂 Pa s 1 × 10−3

Initial porosity 𝜑∘ 0.1
Initial Abs. permeability 𝜅∘ m2 1 × 10−13

Initial hydrostatic total stress 𝜎∘ MPa -50
Initial pressure excess 𝑝∘ MPa 30

Mud pressure 𝑝𝑤𝑏 MPa 20
Internal BC normal stress 𝜎𝑤𝑏 -20
Tolerance for stop criterion 𝜀𝑢 = 𝜀𝑝 1 × 10−7

Table 6.2: Parameters employed for computing approximation spatial rates.
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6.3.2 Transient linear case
Considering a circular geometry and symmetry in cylindrical coordinates x (𝑟, 𝜃, 𝑧), it can

be obtained an analytical solution that only depend on the radius 𝑟. In this subsection is
briefly described the analytical solution presented in (Olivier Coussy, 2004).

The initial pore pressure is constant 𝑝∘ and the initial stress state is hydrostatic as follows:

𝜎 (𝑟, 𝑡 = 0) = 𝜎∘I (6.3.3)
After the drilling and with a mud cake form on the borehole newly created walls, the

drilling fluid pressure inside the wellbore 𝑝𝑤𝑏 is applied on wellbore walls.
For the initial time 𝑡 = 0, there is no variation of reservoir fluid pressure, nor volume

change. It implies that the instantaneous response due to the application of 𝑝𝑤𝑏 is undrained
and then corresponds to a standard elastic solution:

u
(︁
𝑟, 𝑡 = 0+

)︁
= 𝑝𝑤𝑏 + 𝜎∘

2𝜇
𝑟2

𝑤

𝑟
(6.3.4)

Thus, the analytical expression represents the evolution of pore pressure and displace-
ment fields beyond the undrained response till the corresponding drained limit. The general
expressions for pore pressure and displacements are:

𝑝 (𝑟, 𝑡) = 𝑝∘ + (𝑝𝑤𝑏 − 𝑝∘) 𝑝 (𝑟, 𝑡) (6.3.5)

u (𝑟, 𝑡) = 𝑝𝑤𝑏 + 𝜎∘

2𝜇
𝑟2

𝑤

𝑟
+ 𝑟𝑤

𝛼 (𝑝𝑤𝑏 − 𝑝∘)
𝐾 + 4

3𝜇
ū (𝑟, 𝑡) (6.3.6)

The full formulas for 𝑝 (𝑟, 𝑡) and ū (𝑟, 𝑡) are based on integral expression of bessel functions
of the first and second kind. These integral expressions are provided in (Olivier Coussy, 2004).

The early time solution 𝑡 ≪ 𝑟2
𝑤

𝑐ℎ

, i.e. 𝑐ℎ
𝑡

𝑟2
𝑤

→ 0 allows a simplification of the expresions

𝑝 (𝑟, 𝑡) and ū (𝑟, 𝑡), by invoking the asymptotic expansions of Bessel functions, it can be
obtained two simplified formulas:

𝑝 (𝑟, 𝑡) =
√︂
𝑟𝑤

𝑟

{︃
erfc (𝜏) − 𝑟 − 𝑟𝑤

16 𝑟

(︃
2√
𝜋

√
𝑐ℎ𝑡

𝑟𝑤

exp
(︁
−𝜏 2

)︁
− 𝑟 − 𝑟𝑤

𝑟𝑤

erfc (𝜏)
)︃}︃

(6.3.7)

ū (𝑟, 𝑡) = 2√
𝜋

√
𝑐ℎ𝑡

𝑟
+
√︂
𝑟𝑤

𝑟

(︃
𝑟 − 𝑟𝑤

𝑟𝑤

erfc (𝜏) − 2√
𝜋

√
𝑐ℎ𝑡

𝑟𝑤

exp
(︁
−𝜏 2

)︁)︃
(6.3.8)

where 𝜏 = 𝑟 − 𝑟𝑤

2
√
𝑐ℎ𝑡

.

Two-dimensional comparison in a linear setting

To compare the SFI and ESFI procedures it was considered the same directives for the
one-dimensional setting in conjunction with data presented in Table 6.3.
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Parameter Variable [unit] Value
Young’s modulus 𝐸 MPa 10000.0

Poisson’s ratio 𝜈 0.2
Biot coefficient 𝛼 1

Fluid compressibility 𝑐𝑓 MPa−1 0
Fluid dynamic viscosity 𝜂 Pa s 1 × 10−3

Initial porosity 𝜑∘ 0.1
Initial Abs. permeability 𝜅∘ m2 1 × 10−13

Initial hydrostatic total stress 𝜎∘ MPa -40
Initial pressure excess 𝑝∘ MPa 30

Mud pressure 𝑝𝑤𝑏 MPa 25
Internal BC normal stress 𝜎𝑤𝑏 -25

Time step size Δ𝑡 s 0.0001
Final time 𝑡𝑒𝑛𝑑 s 0.01

Tolerance for stop criterion 𝜀𝑢 = 𝜀𝑝 1 × 10−6

Table 6.3: Parameters employed for vertical borehole test.

Figure 6.7 (left and middle) shows a correct match between the early time solutions and
the approximations for radial displacements and pressure along radius. It is important to
point out that the early time solutions are accurate for 𝑡 ≪ 𝑟2

𝑤

𝑐ℎ

, and they should be seen
as approximations for the strong solution, because that, it is opted to perform a qualitative
comparison. Figure 6.7 (right) shows a similar effect forthcoming form the usage of ESFI
for FDM, SDM, SDM2 and SDM3 in conjunction with the mixed operator. The number
of iterations per time step was decreased. The approximated solutions upcoming from SFI
algorithm with low tolerances (see Table 6.3) demand on average 14 iterations, while the
ESFI algorithm 8 iterations over the simulation time.

Figure 6.7: Plot over line: (left) for displacements, (middle) pressure at two different times
𝑡1 < 𝑡2, and (right) number of iterations against simulation time for a linear two-dimensional
case.
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6.4 Drilling of a borehole in steady state nonlinear case
For the remaining sections, the capability of the proposed novel strategy in computing

approximated solutions for very challenging nonlinear problems is explored.

6.4.1 Development a Runge-Kutta solver for poro-elastoplastic
The linear poroelastic case

In this study, we develop a reference solution by reducing an axisymmetric boundary
value problem (BVP) to an initial value problem (IVP) by Runge-Kutta solver. To construct
a Runge-Kutta approximation it is required to review the poroelastic equations and find a
way to recast the equations as initial value problem, as the Runge-Kutta method structure:

𝑑y
𝑑x

= f (y) (6.4.1)

There are three main considerations for this case:
1. The equations are presented in terms of the Cylindrical coordinate system.

2. The approximation is axisymmetric, leading to a displacement u and pressure 𝑝 fields
that depends only of the radius , i.e. u = Φ(𝑟) and 𝑝 = Φ(𝑟).

3. Assume steady state conditions, the initial value problem is described in terms of one
independent variable 𝑟.

Recalling the linear elastic constitutive law:

𝜎 = 2𝜇 (𝜖 − 𝜖∘) + 𝜆 tr (𝜖 − 𝜖∘) I − 𝜎∘I and 𝜖 = 1
2
(︁
∇u + ∇𝑇 u

)︁
(6.4.2)

Using the considerations above u = 𝑢𝑟r̂ and an initial 𝜖∘ = 0 the effective stress tensor
becomes:

𝜎 = (𝜇𝑟 + 𝜆𝑟) r̂ ⊗ r̂ + (𝜇𝑟 + 𝜆𝑟) 𝜃 ⊗ 𝜃 + (𝜆𝑟) ẑ ⊗ ẑ (6.4.3)

where 𝜇𝑟 = 2𝜇𝑑𝑢𝑟

𝑑𝑟
and 𝜆𝑟 = 𝜆

(︃
𝑢𝑟

𝑟
+ 𝑑𝑢𝑟

𝑑𝑟

)︃
. Taking the trace of the expression above can be

obtained the following expression for 𝑑𝑢𝑟

𝑑𝑟
:

𝑑𝑢𝑟

𝑑𝑟
= 𝑟𝜎𝑟𝑟 − 𝜆𝑢𝑟

𝑟 (𝜆+ 2𝜇) (6.4.4)

Evoke the total stress 𝜎𝑡 equilibrium and using the Biot decomposition of the total stress:

div (𝜎 − 𝜎∘I − 𝛼(𝑝− 𝑝∘)I) = 0 (6.4.5)

The expression for 𝑑𝜎𝑟𝑟

𝑑𝑟
is obtained from the momentum conservation directly:

𝑑𝜎𝑟𝑟

𝑑𝑟
=

−𝜎𝑟𝑟 +
(︁

2𝜇𝑢𝑟

𝑟
+ 𝜆

(︁
𝑢𝑟

𝑟
+ 𝑟𝜎𝑟𝑟−𝜆𝑢𝑟

𝑟(𝜆+2𝜇)

)︁)︁
𝑟

− 𝛼
𝜂

𝑘
𝑞𝑟 (6.4.6)
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Also, the quantities 𝜎𝜃𝜃 and 𝜎𝑧𝑧 are:

𝜎𝜃𝜃 = 2𝜇𝑢𝑟

𝑟
+ 𝜆

(︃
𝑢𝑟

𝑟
+ 𝑟𝜎𝑟𝑟 − 𝜆𝑢𝑟

𝑟 (𝜆+ 2𝜇)

)︃
(6.4.7)

𝜎𝑧𝑧 = 𝜆 (𝜆 (𝜎𝑟𝑟 + 𝜎𝜃𝜃) + 2𝜇 (𝜎𝑟𝑟 + 𝜎𝜃𝜃))
2 (𝜆+ 𝜇) (𝜆+ 2𝜇) (6.4.8)

Reinstate that Darcy constitutive expression provides the expression for 𝑑𝑝
𝑑𝑟

:

𝑑𝑝

𝑑𝑟
= −𝜂

𝜅
𝑞𝑟 (6.4.9)

The mass conservation equation affords the expression for 𝑑𝑞𝑟

𝑑𝑟
:

𝑑𝑞𝑟

𝑑𝑟
= −𝑞𝑟

𝑟
(6.4.10)

Regarding to the initial value problem the spatial derivative for variable y is clearly:

𝑑y
𝑑x

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑢𝑟

𝑑𝑟
𝑑𝜎𝑟𝑟

𝑑𝑟
𝑑𝑝

𝑑𝑟
𝑑𝑞𝑟

𝑑𝑟

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and f (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑟𝜎𝑟𝑟 − 𝜆𝑢𝑟

𝑟 (𝜆+ 2𝜇)
−𝜎𝑟𝑟 +

(︁
2𝜇𝑢𝑟

𝑟
+ 𝜆

(︁
𝑢𝑟

𝑟
+ 𝑟𝜎𝑟𝑟−𝜆𝑢𝑟

𝑟(𝜆+2𝜇)

)︁)︁
𝑟

− 𝛼
𝜂

𝑘
𝑞𝑟

−𝜂

𝜅
𝑞𝑟

−𝑞𝑟

𝑟

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.4.11)

For the completeness of the initial value problem the data y∘ is evaluated at the perme-
ability reservoir radius 𝑟𝑒. It is important to point that the permeability can be one function
of the state variable y in a nonlinear sense.

The poro-elastoplastic case
The expression (6.4.11) can be rewritten in terms of strain and stress data:

𝑑y
𝑑x

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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𝑑𝑟
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𝑑𝑟
𝑑𝑝

𝑑𝑟
𝑑𝑞𝑟

𝑑𝑟
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and f (y) =
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−𝜎𝑟𝑟 + 𝜎𝜃𝜃

𝑟
− 𝛼

𝜂

𝑘
𝑞𝑟

−𝜂

𝜅
𝑞𝑟

−𝑞𝑟

𝑟

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(6.4.12)

Thus, the approximation above can be recasted as elastoplastic problem by delaying
𝛼, 𝐾𝑑𝑟, and the elastoplastic strain between two consecutive points in order to consider
the nonlinear effects of plasticity during the RK process. The pay off is a very similar
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implementation for the RK solver with the need of additional discrete points to reach a
reasonable approximation.

For the completeness of the initial value problem the data y∘ is evaluated at the perme-
ability reservoir radius 𝑟𝑒 where it is assumed to be linear poroelastic data. For that reason,
it is expected that as the number of discrete points is incremented the poro-elastoplastic
approximation became more precise. It makes the RK solver a suitable approximation for
comparison and/or verification purposes.

6.4.2 Two-dimensional comparison in a non-linear setting
The physical situation considered in this subsection is similar to the linear setting, but

in this case the nonlinearities arising from associative Mohr-Coulomb plasticity and Petunin
permeability function (reported in Table 7.4) are introduced to show the robustness for the
adopted approach. The Table 6.4 presents all the parameters used to perform the following
simulations.

Parameter Variable [unit] Value
Young’s modulus 𝐸 MPa 5000.0

Poisson’s ratio 𝜈 0.2
Biot coefficient 𝛼 1

Mohr-Coulomb cohesion 𝑐 MPa 8.75
Mohr-Coulomb friction 𝑓𝑟 ° 30
Fluid compressibility 𝑐𝑓 MPa−1 0

Fluid dynamic viscosity 𝜂 Pa s 1 × 10−3

Initial porosity 𝜑∘ 0.1
Initial Abs. permeability 𝜅∘ m2 1 × 10−13

Petunin 𝒵 coefficient 𝒵 {0, 10, 20, 30}
Initial hydrostatic total stress 𝜎∘ MPa -40

Initial pressure excess 𝑝∘ MPa 30
Mud pressure 𝑝𝑤𝑏 MPa 20

Internal BC normal stress 𝜎𝑤𝑏 -20
Time step size Δ𝑡 s 2

Final time 𝑡𝑒𝑛𝑑 s 100
Tolerance for stop criterion 𝜀𝑢 = 𝜀𝑝 1 × 10−6

Table 6.4: Parameters employed for vertical borehole test with nonlinearities.

All the subfigures in the Figure 6.8 presents a comparison for the sequential approx-
imation with an axisymmetric Runge-Kutta solver (RK ), showing the verification for the
implementation on the nonlinear case.

Figure 6.8 (bottom-right), presents the variation on permeability by increasing the Petunin
coefficient 𝒵 in multiples of ten. All the quantities are reported along the red line presented
by the miniature Figure in effective stress plot (top-right).
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Figure 6.8: Nonlinear two-dimensional case: steady state approximation for several values of
𝒵 = {0, 10, 20, 30}. (top-left) displacement, (top-right) effective stress, (middle-left) pressure,
(middle-right) flux, (bottom-left) total strain, and (bottom-right) absolute permeability.

Considering plane strain conditions, near to the wellbore can be appreciated an increment
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on permeability due to the positive radial total strain with is bigger than the azimuthal total
strain (see Figure 6.8 (bottom-left)). These two values have different sign and magnitude
near to the wellbore leading to a positive total volumetric strain. Because of pressure data is
prescribed on boundaries, the pressure distribution (middle-left) along the radius is almost the
same, thus the change in permeability leads to a change in the flux magnitude, consequently,
the quantity of mass extracted from the system is decreased leading to subtle changes in the
other quantities effective stress (top-right) and displacement (top-left), presented in Figure
6.8.

6.4.3 Verification for the ESFI under poro-elastoplastic deforma-
tion

To compare the ESFI and FC procedures it was considered the same directives for the
two-dimensional case in a nonlinear setting in conjunction with data presented in Table 6.5.

Parameter Variable [unit] Value
Young’s modulus 𝐸 MPa 5000.0

Poisson’s ratio 𝜈 0.2
Biot coefficient 𝛼 0.815

Mohr-Coulomb cohesion 𝑐 MPa 6.75
Mohr-Coulomb friction 𝑓𝑟 ° 25
Fluid compressibility 𝑐𝑓 MPa−1 0

Fluid dynamic viscosity 𝜂 Pa s 1 × 10−3

Initial porosity 𝜑∘ 0.1
Initial Abs. permeability 𝜅∘ m2 1 × 10−13

Petunin 𝒵 coefficient 𝒵 20
Initial hydrostatic total stress 𝜎∘ MPa -40

Initial pressure excess 𝑝∘ MPa 30
Mud pressure 𝑝𝑤𝑏 MPa 20

Internal BC normal stress 𝜎𝑤𝑏 -20
Time step size Δ𝑡 s 2

Final time 𝑡𝑒𝑛𝑑 s 100
Tolerance for stop criterion 𝜀𝑢 = 𝜀𝑝 1 × 10−6

Table 6.5: Parameters employed for vertical borehole ESFI verification with nonlinearities.

Figure 6.9 (top-left) shows the variation of volumetric plastic strain near wellbore rendered
as vertical warp by scalar at time value 30.0 [s]. Figure 6.9 (top-right) displays the variation
of the modified Biot coefficient around the wellbore. It was rendered as vertical warp by
scalar, and it documents the discountinous behaviour of the modified Biot coefficient. Silva,
Murad, and Obregon, 2018 state that as volumetric plastic strain increase, the modified
Biot coefficient 𝛼 trends to 1.0. Figure 6.9 (top-right) verifies this fact showing a change
from 0.815 to 0.849 near to the wellbore at time value 30.0 [s]. Figure 6.9 (bottom-left
and bottom-right) presents a correct match for the approximations for pressure and radial
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effective stress along radius, at two different time values. Figure 6.9 documents the validity
of the proposed ESFI scheme during approximating a poro-elastoplastic solution.

Figure 6.9: Nonlinear two-dimensional case: Transient approximation for 𝒵 = 20. (top-left)
volumetric plastic strain rendered as warp by scalar, (top-right) modified Biot coefficient
rendered as warp by scalar, (bottom-left) pressure, and (bottom-right) radial effective stress.

6.4.4 Transient non-linear case
In this subsection a transient nonlinear simulation was performed considering 𝒵 = 20 and

the parameters presented in Table 6.4. The physical conditions are similar to the steady-state
described previously.



129

Figure 6.10: Nonlinear two-dimensional case: (top-left) number of iterations against simula-
tion times, (top-right) displacement evolution at 𝑡 = {10, 20, 30, 40} for 𝒵 = 20, (bottom-left)
internal iterations per sequential process for reservoir equations, and (bottom-right) geome-
chanic equations.

The Figure 6.10 presents several features that are going to be commented as follows:

1. On the left the number of iterations for the SFI and ESFI are obtained for several
versions of accelerations separated by the terms FDM and SDM, and by the number
of recursions in the sense of Shanks transformations. As is documented by several
experiments in Macleod, 1986 there is not any kind of supremacy related to FDM and
SDM, and their number of iterations is equal for all the cases. It was observed also for
linear cases. The effect for the recursion formula, in any case, shows that there is a
gain in efficiency respect to the SFI. In average the number for iterations was reduced
by 25% when 3 states are accessible. There is an extra reduction to 33.33% when the
recursion is used and there are 5 states available. For an extra recursion, there is a small
gain with using 7 states or more. It implies that when the stop criterion is less tight,
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i.e. larger tolerances, the most suitable method corresponds to do not using recursion,
but when the number of iterations are convenient, the use of the recursion provides the
a most efficient approximation;

2. On the right, the radial displacement evolution is shown for several time values 𝑡 =
{10, 20, 30,
40} [s]. In terms of number of iterations, the best gain in reduction is attributed to the
first time values 𝑡 = {10, 20, 30} [s] when the solution change dramatically, and the
effect for the recursions are more evident. From the time value 𝑡 = 40 [s] to final one
𝑡𝑒𝑛𝑑 = 100 [s], the changes in the state variables are more sutle, and as a consequence
the number of iterations became constant;

3. The figures at the bottom shows a comparison when the internal acceleration applied to
each subproblem. The number of iterations required to attain the stop criteria during
the nonlinear solver are reduced, when the internal acceleration QNM𝑇 is applied for
each subproblem, instead of the unmodified approach QNM1.

6.5 Drilling of a borehole in a three-dimensional reser-
voir

In this subsection the simulation of a 3D wellbore region with similar physical setting to
the nonlinear 2D is presented. The parameters are presented in Table 6.6 and two different
vertical total stress 𝜎∘

𝑧𝑧 values standing for hydrostatic initial data (Case 1) and compaction
scenario (Case 2).

All the plots presented in Figure 6.11 are reported for two different time values 𝑡 =
{10, 100} [s]. The Figure at middle-right position presents the permeability change due to
pressure drop while vertical total stress 𝜎∘

𝑧𝑧 is kept constant along the simulation time. In
the previous 2D case under plane strain, there was observed an increase of permeability due
to the fact that vertical compaction is not venerated, it can be probably controlled by plane
stress assumption but it is out of the scope of this research. Considering the third dimension
allows easily to venerate the vertical compaction and the permeability always decreases over
the entire wellbore wall. This characteristic is observed when the permeability variation
of the hydrostatic compaction (Case 1) is compared to the vertical compaction (Case 2).
The Figure at top-right position shows the radial flux for both cases. The pressure data is
prescribed at internal and external boundaries, as a consequence the radial flux decrease as
the permeability decrease. The Figure at middle-left position documents the effect for the
augmented Shank acceleration proposed in this research allowing us to obtain 3D dimensional
approximations more efficiently when is used only SFI as a sequential solver. The Figure at
top-left position displays the effect of the verticall compaction on the subsidence trigered by
the reservoir pressure change. The plot is rendered at the reservoir top. As it is expected the
vertical compaction case shows large subsidence values in comparison with the hydrostatic
compaction case. The Figure at bottom-left position presents the geometrical partition used
for the simulations, it is composed as a structured mesh with second-order hexahera for
better geometrical representation. The Figure at bottom-right shows the critical region
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where the permeability suffers at least a reduction of 20 %. It can be observed that from
only geomechanical effects the wellbore region deteriorates the productivity index associated
with the case when is considered a constant permeability and no geomechanic effects.

Parameter Variable [unit] Value
Reservoir thickness h𝑟𝑒𝑠 m 5.0
Young’s modulus 𝐸 MPa 5000.0

Poisson’s ratio 𝜈 0.2
Biot coefficient 𝛼 1

Mohr-Coulomb cohesion 𝑐 MPa 6.75
Mohr-Coulomb friction 𝑓𝑟 ° 25
Fluid compressibility 𝑐𝑓 MPa−1 0

Fluid dynamic viscosity 𝜂 Pa s 1 × 10−3

Initial porosity 𝜑∘ 0.1
Initial Abs. permeability 𝜅∘ m2 1 × 10−13

Petunin 𝒵 coefficient 𝒵 20
Initial horizontal total stress 𝜎∘

𝑟𝑟 = 𝜎∘
𝜃𝜃 MPa -40

Case 1: Initial vertical total stress 𝜎∘
𝑧𝑧 MPa -40

Case 2: Initial vertical total stress 𝜎∘
𝑧𝑧 MPa -80

Initial pressure excess 𝑝∘ MPa 30
Fluid pressure 𝑝𝑤𝑏 MPa 20

Internal BC normal stress 𝜎𝑤𝑏 -20
Time step size Δ𝑡 s 2

Final time 𝑡𝑒𝑛𝑑 s 100
Tolerance for stop criterion 𝜀𝑢 = 𝜀𝑝 1 × 10−6

Table 6.6: Parameters employed for vertical borehole 3D with nonlinearities.
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Figure 6.11: Nonlinear three-dimensional case: Transient approximation for 𝒵 = 20. (top-
left) vertical displacement at wellbore top, (top-right) radial flux, (middle-left) number of
iterations, (middle-right) permeability, (bottom-left) geometry hexahedral partition with
quadratic elements, and (bottom-right) region with at least 20% of reduction permeability.
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6.6 Conclusions
The main conclusions of this chapter are:

∙ It is shown in term of temporal convergence rate the sequential fully implicit SFI, with
considering firstly 𝐻1 for both displacement and pressure and second 𝐻1 for displacement
and mixed finite element using H (div) for Darcy’s flow, could be equivalent to solve the
problem completely coupled FC.

∙ The comparison of SFI and different ESFI schemes were done using the performance ratio
𝑟𝑝 and number of iterations. The numerical results of a one dimensional in a linear setting
showed that ESFI with considering FDM and SDM decrease the number of iterations
comparing to SFI. In addition, by applying the Shanks transformations, e.g., FDM2, FDM3,
SDM2, and SDM3, ESFI ended into a reduced number of iterations.

∙ The results of a two dimensional borehole drilling problem in a linear setting demonstrated
the spatial convergence rates of displacement, pressure and flux, with considering firstly
𝐻1 for both displacement and pressure and second 𝐻1 for displacement and mixed fi-
nite element using H (div) for Darcy’s flow. Moreover, the results of mixed finite element
presented that the flux approximation is a local conservative and more accurate. In addi-
tion, the results of a borehole drilling in a transient linear setting showed a correct match
between early time solution and ESFI approximation schemes.

∙ To evaluate the capability of the ESFI to approximate solution for very challenging nonlin-
ear problems, a reference solution of a boundary value problem was developed by an initial
value problem using the Runge-Kutta method. Moreover, the verification of the ESFI in
the nonlinear case with considering Mohr-Coulomb plasticity and nonlinear Petunin per-
meability was done by comparing the results with an axisymmetric Runge-Kutta approx-
imation (RK ). In addition, the verification of the ESFI scheme under poro-elastoplastic
deformation was done by comparing the results with FC procedure.

∙ The comparison between SFI and ESFI with applying the terms FDM or SDM for a tran-
sient nonlinear setting were done. The numerical results showed that ESFI with consid-
ering FDM and SDM decreases the number of iterations comparing to SFI. Furthermore,
by applying the Shanks transformations, e.g., FDM2, FDM3, SDM2, and SDM3, ESFI
ended into a reduced number of iterations. The effect of the recursion formula, in any
case, showed that there is a gain in efficiency respect to the SFI. In addition, the internal
acceleration QNM𝑇 applied to each subproblem reduced more the number of iterations
required to attain the stop criteria comparing to the QNM1 approach.

∙ The numerical results of a two dimensional drilling of borehole in the steady state nonlinear
case showed that by reducing the pore pressure, the effective stress increases, consequently
the quantity of porosity and permeability decrease. The reduction of porosity and perme-
ability was because of the negative elastoplastic deformation. Near to the wellbore, the
quantity of permeability suddenly increased, which was because of the positive volumetric
effective stress.
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∙ The simulation of a 3D wellbore region with similar physical setting to the nonlinear 2D for
two different vertical total stress, including hydrostatic case and compaction case, was done.
The three dimensional modelling allowed easily to venerate the vertical compaction and
the permeability always decreased over the entire wellbore wall. In addition, the proposed
augmented Shank acceleration ESFI in this research allowed to obtain 3D dimensional
approximations more efficiently comparing to SFI solver.

∙ The enhanced version for a sequential fully implicit ESFI has been proposed. It combined
several nonlinear acceleration techniques at the level of external and internal loops to
obtain an accelerated convergence. A systematic procedure for the construction of the
acceleration of the external loop was developed considering the recursivity of well-known
transformation formulas in the sense of Shanks transformation. Important characteristics
were, ESFI can be applied to generate approximations of several linear and nonlinear
constitutive models in 1D,2D, and 3D simulations, it made use of a reduced number of
iterations to approximate several challenging problems forthcoming reservoir geomechanics
applications, and it can be extended to several multiphysics solvers that make use of split
operators and execute them in a sequential manner.
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Chapter 7

Strain-dependent permeability

7.1 Introduction
The reduction of fluid pressure during reservoir production changes the initial stress

state within the reservoir, which results in increased effective stress on reservoir and the
surrounding rock (Holt, 1990; Ruistuen, L. Teufel, and D. Rhett, 1999). The effective stress
can cause strain and compaction of reservoir, if it is sufficient to overcome the strength of
rock. The strain can have a large impact on the microstructures and alters the petrophysical
properties of the reservoir rock. The most common petrophysical properties are porosity and
permeability, which are affected by the change in effective stress (Jeremie Dautriat, N. F.
Gland, Youssef, Rosenberg, and Bekri, 2007).

Permeability is one of the fundamental physical properties of rocks which uses to transport
hydrocarbons (Lim and Jungwhan Kim, 2004). This property can indicate different behav-
iors, such as permeability hysteresis behavior (Teklu, Z. Zhou, Xiaopeng Li, and Abass,
2016), stress-dependent permeability (Jeremie Dautriat, N. F. Gland, Youssef, Rosenberg,
and Bekri, 2007), and strain-dependent permeability (Shin, K. Y. Kim, and Pande, 2014)
which can play a key role in the productivity of wells during the depletion of the reservoir.

Previous studies show that permeability in the reservoir, maybe behave as the strain-
dependent permeability, which the quantity of permeability can be changed by the variation
of strain (Shin, K. Y. Kim, and Pande, 2014). Moreover, pressure depletion of reservoir can
cause plastic deformation of rocks that leads to serious problems, such as subsidence, well
failures, permeability damage, production rate, and reservoir impairment (Nguyen, N. Gland,
J. Dautriat, C. David, Wassermann, and Guélard, 2014).

Therefore, due to the importance of permeability in hydrocarbon reservoirs, in this chap-
ter, the strain-dependent permeability and its effect on production are analyzed.

7.2 Permeability evolution models
Permeability evolution models have been studied by several researchers in terms of poros-

ity, stress, strain, temperature, chemical process, damage and failure models (Zhu and T.-f.
Wong, 1997; Morris, Lomov, and Glenn, 2003; Ma, 2015). Generally, there are three main
types of permeability evolution models under mechanical condition in porous media, i.e.
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based on (i) porosity, (ii) stress, and (iii) strain, that can be applied to specific conditions.
The purpose of this section is to review the permeability models and choose the suitable
ones, in order to show the strain-dependent permeability in hydrocarbon reservoirs.

7.2.1 Permeability evolution models based on porosity
Several semi-empirical equations have been proposed to estimate rock permeability 𝜅

based on the porosity 𝜑. The Table 7.1 summarizes some permeability-porosity models
found in the literature.

Model Formulation Comments

Kozeny-Carman 𝜅 = 𝜑3

𝐵𝑐𝜏 2
𝑐 𝑆𝑐

2 𝑆𝑐

[︁
m−1

]︁
is the specific surface area, 𝜏𝑐 is the

tortuosity, 𝐵𝑐 is the pore shape coefficient.

Costa 𝜅 = 𝜚𝑐
𝜑𝒵𝑐

1 − 𝜑
𝜚𝑐 and 𝒵𝑐 are the constant coefficient.

Petunin 𝜅

𝜅∘ =
(︃
𝜑

𝜑∘

)︃𝒵𝑔

𝒵𝑔 is the constant coefficient.

Nelson log10 (𝜅) = 𝒵𝑛𝜑+ 𝜚𝑛 𝒵𝑛 and 𝜚𝑛 are the constant coefficient.

Davies 𝜅 = 𝜅∘ exp
(︃

𝒵𝑑

(︃
𝜑

𝜑∘ − 1
)︃)︃

𝒵𝑑 is the constant coefficient.

Table 7.1: Permeability-porosity models (Kozeny, 1927; Carman, 1937; Walsh and Brace,
1984; Costa, 2006; Petunin, Tutuncu, Prasad, Kazemi, and X. Yin, 2011; E. Santos, Borba,
and F. Ferreira, 2014; Nelson, 1994; J. Davies and D. Davies, 1999).

7.2.2 Permeability evolution models based on stress
Many studies have been done to investigate a relationship between permeability 𝜅 and

stress 𝜎 in porous media. The Table 7.2 summarizes some permeability-stress models found
in the literature.

Model Formulation Comments
Ghabezloo 𝜅 = 𝑎𝑔𝜎

𝑏𝑔
𝑎 𝜎𝑎 is the axial effective stress, 𝑎𝑔 and 𝑏𝑔 are

the constant coefficient.
Zhou 𝜅 = 𝑎𝑧 − 𝑏𝑧 ln (𝜎𝑎) 𝑎𝑧 and 𝑏𝑧 are the constant coefficient.
David or Xu 𝜅 = 𝜅∘ exp (𝑎𝑑 (𝜎𝑎 − 𝜎∘

𝑎)) 𝑎𝑑 is the constant coefficient.
Raghavan 𝜅 = 𝜅∘ exp (𝑎𝑟 (𝜎𝑚)) 𝜎𝑚 is the effective mean stress, 𝑎𝑟 is the con-

stant coefficient.

Table 7.2: Permeability-stress models (Ghabezloo, Sulem, Guédon, and Martineau, 2009; X.
Zhou, Zeng, and H. Liu, 2011; Christian David, T.-F. Wong, Zhu, and Jiaxiang Zhang, 1994;
T. Xu, C. Tang, and L.C. Li, 2008; Raghavan and L. Chin, 2004).
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7.2.3 Permeability evolution models based on strain
Few researches have been published to show the relation between permeability 𝜅 and

strain 𝜖 in porous media. The Table 7.3 summarizes some permeability-strain models found
in the literature.

Model Formulation Comments
Main 𝜅 = 𝜅0 exp [𝑎𝑚𝑛 (𝜖𝑎 − 𝜖∘

𝑎)] 𝜖∘
𝑎 and 𝜖𝑎 are the initial and current axial

strain, 𝑎𝑚𝑛 is the constant coefficient.
Minkoff or Ni 𝜅 = 𝑎𝑚 exp (𝑏𝑚 (𝜖𝑣)) 𝜖𝑣 is the volumetric strain, 𝑎𝑚 and 𝑏𝑚 are the

constant coefficient.

Table 7.3: Permeability-strain models (Main, Kwon, Ngwenya, and Elphick, 2000; Minkoff,
C. Stone, Bryant, Peszynska, and M. F. Wheeler, 2003; Ni, Z. Chen, P. Wang, J. Wu, Y. Wu,
and Gong, 2018).

7.3 Strain-dependent permeability models
During the depletion of hydrocarbon reservoirs, porosity and permeability may change

in response to an increase of the effective stress, which can alter the pore geometry of the
reservoir rock (Zimmerman, 1991; Schatz, Ahmed, and M. Carroll, 1982). The variation of
pore volume due to increase effective stress has an impact on both porosity and permeability
(E. Santos, Borba, and F. Ferreira, 2014). In addition, previous studies such as Shin, K. Y.
Kim, and Pande, 2014 showed that permeability is indirectly related to the porosity, pore
size distribution, and pore architecture of the porous media. These parameters can be in-
duced when a strain field is imposed on the porous media. Then, due to the strain-dependent
porosity and the direct relation of porosity with both deformation and pore pressure, the per-
meability evolution model based on porosity is selected in order to present strain-dependent
permeability. In this study, various permeability-porosity models (reported in Table 7.1) are
used and modified to consider the initial permeability 𝜅∘ and porosity 𝜑∘ which are given in
Table 7.4.

Model Formulation Comments

Costa 𝜅

𝜅∘ = 𝜚

(︃
1 − 𝜑∘

1 − 𝜑

)︃(︃
𝜑

𝜑∘

)︃𝒵

𝜚 and 𝒵 are the constant coefficient.

Petunin 𝜅

𝜅∘ =
(︃
𝜑

𝜑∘

)︃𝒵

𝒵 is the constant coefficient.

Nelson log10

(︂
𝜅

𝜅∘

)︂
= 𝒵 (𝜑− 𝜑∘)+𝜚 𝒵 and 𝜚 are the constant coefficient.

Davies 𝜅 = 𝜅∘ exp
(︃

𝒵
(︃
𝜑

𝜑∘ − 1
)︃)︃

𝒵 is the constant coefficient.

Table 7.4: The modified permeability-porosity models (Costa, 2006; Petunin, Tutuncu,
Prasad, Kazemi, and X. Yin, 2011; Nelson, 1994; J. Davies and D. Davies, 1999).
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7.4 Verification of strain-dependent permeability
In this section, the strain-dependent permeability is verified using a reference solution of

axisymmetric Runge-Kutta (RK ). This model represents for steady state to verify coupled
DiMaggio-Sandler elastoplastic model and permeability evolution models given in Table 7.4.
The parameters employed to perform the simulations are presented in Table 7.5.

Parameter Variable [unit] Value
Young’s modulus 𝐸 MPa 8000.0

Poisson’s ratio 𝜈 0.2
Biot’s coefficient 𝛼 1

Fluid compressibility 𝑐𝑓 MPa−1 0
Fluid dynamic viscosity 𝜂 Pa s 1 × 10−3

Initial porosity 𝜑∘ 0.12
Initial Abs. permeability 𝜅∘ m2 4 × 10−13

Permeability coefficient 𝒵 10
𝐴 MPa 40.5
𝐵 MPa−1 0.00028
𝐶 MPa 18.0
𝐷 MPa−1 0.00001
𝑅 2.0
𝑊 0.00001
𝑋∘ MPa −40.0

Initial hydrostatic total stress 𝜎∘ MPa −40.0
Initial pressure excess 𝑝∘ MPa 30.0

Wellbore pressure 𝑝𝑤 MPa 20.0
Internal BC normal stress 𝜎𝑤 −20.0

Final time 𝑡𝑒𝑛𝑑 s 100000000

Table 7.5: Parameters employed for axisymmetric Runge-Kutta and vertical wellbore.

All the subfigures in the Figures 7.1, 7.2, 7.3, and 7.4 present a comparison for the
sequential approximation with the Runge-Kutta approximation, showing verification of the
models. The Figure 7.1 (left) presents the variation of pore pressure, and (right) the variation
of radial effective stress using a Costa permeability model with the coefficient 𝜚 = 1 and
𝒵 = 10.
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Figure 7.1: Nonlinear 2D case: steady state approximation for coupled DiMaggio-Sandler
and Costa permeability model. (left) pressure, and (right) effective stress.

The Figure 7.2 (left) presents the variation of pore pressure, and (right) the variation of
radial effective stress using Petunin permeability model with the coefficient 𝒵 = 10.

Figure 7.2: Nonlinear 2D case: steady state approximation for coupled DiMaggio-Sandler
and Petunin permeability model with the coefficient 𝒵 = 10. (left) pressure, and (right)
effective stress.

The Figure 7.3 (left) presents the variation of pore pressure, and (right) the variation of
radial effective stress using the Nelson permeability model with the coefficient 𝜚 = 0 and
𝒵 = 10.



140

Figure 7.3: Nonlinear 2D case: steady state approximation for coupled DiMaggio-Sandler
and Nelson permeability model with the coefficient 𝜚 = 0 and 𝒵 = 10. (left) pressure, and
(right) effective stress.

The Figure 7.4 (left) presents the variation of pore pressure, and (right) the variation of
radial effective stress using a Davies permeability model with the coefficient 𝒵 = 10.

Figure 7.4: Nonlinear 2D case: steady state approximation for coupled DiMaggio-Sandler
and Davies permeability model with the coefficient 𝒵 = 10. (left) pressure, and (right)
effective stress.

7.5 Analysis of strain-dependent permeability
The strain-dependent permeability (SDP) and its impact on production are analyzed us-

ing coupled poro-elastoplastic and permeability. The strain is represented using DiMaggio-
Sandler elastoplastic model and permeability is defined using the nonlinear permeability
models provided in Table 7.4. The following numerical tests are implemented, such as: (1)
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uniaxial compression test to analyze strain-dependent permeability, (2) strain-dependent per-
meability in a 2D hydrocarbon reservoir and its impact on productivity, (3) strain-dependent
permeability in a 3D vertical reservoir during the decrease and increase of wellbore pressure.

7.5.1 Uniaxial compression test
The strain-dependent permeability is analyzed by a 2D uniaxial compression test. For

numerical modelling, the specimen has a width of 50mm and the height to width ratio
is equal to 2. The uniaxial test is modeled in a stress-rate control for a rectangular ge-
ometry. The two-dimensional numerical mesh is performed by quadrilateral elements with
quadratic-linear polynomial orders for displacement and pore pressure. Mechanical boundary
conditions are set as follows: The vertical stress on the top of the specimen is increased from
(-1 MPa to -20 MPa). The bottom and lateral displacement are restricted to zero displace-
ment. Hydraulic boundary conditions are set as follows: the initial pore pressure boundary
and a constant pressure 𝑝 = 1MPa are applied on the top of specimen and the impermeable
boundaries on the bottom and lateral boundaries of specimen. The material properties for
the uniaxial test are given in Table 7.6.

Parameter Variable [unit] Value
Young’s modulus 𝐸 MPa 3800.0

Poisson’s ratio 𝜈 0.2
Biot’s coefficient 𝛼 1

Fluid compressibility 𝑐𝑓 MPa−1 0
Fluid dynamic viscosity 𝜂 Pa s 1 × 10−3

Initial porosity 𝜑∘ 0.12
Initial Abs. permeability 𝜅∘ m2 1 × 10−13

Petunin coefficient 𝒵 20
𝐴 MPa 40.0
𝐵 MPa−1 0.02
𝐶 MPa 35.0
𝐷 MPa−1 0.006
𝑅 3.0
𝑊 0.025
𝑋∘ MPa −45.0

Initial vertical total stress 𝜎∘
𝑣 MPa −1.0

Initial pressure excess 𝑝∘ MPa 1.0
Vertical total stress 𝜎𝑣 MPa −1.0 to −20.0

Time step size Δ𝑡 s 0.05
Final time 𝑡𝑒𝑛𝑑 s 1.0

Table 7.6: Parameters employed for uniaxial test to analyze strain-dependent permeability.

To represent the strain-dependent permeability using coupled DiMaggio-Sandler plasticity
and Petunin permeability model, the average value of data along the red line are selected. The
results of the uniaxial compression test to analyze strain-dependent permeability is shown in
Figure 7.5.
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Figure 7.5: 2D model of uniaxial test to see strain-dependent permeability using a Petunin
model with 𝒵 = 20: (top-left) relation between porosity and total strain, (top-right) re-
lation between porosity and plastic strain, (middle-left) relation between permeability and
total strain, (middle-right) relation between permeability and plastic strain, (bottom-left)
distribution of porosity, and (bottom-right) distribution of permeability.
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The results in Figure 7.5 illustrate that the strain-dependent permeability can be de-
scribed using coupled poro-elastoplastic with permeability. The results demonstrate that
porosity and permeability decrease with increasing the strain.

7.5.2 Effect of strain-dependent permeability on reservoir produc-
tivity

Generally, the use of open-hole completions in the design of production wells is a specially
appealing choice for oil companies because its profitable compared to the standard cased hole
(Capasso, Musso, and Mantica, 2008). To analyze the impact of strain-dependent permeabil-
ity on reservoir productivity, a 2D numerical model is implemented. The model of cylindrical
reservoir includes a vertical well with the radius 𝑟𝑤 = 0.1m in open hole completion and the
outer boundary of reservoir, extending to 𝑟𝑜 = 10.0m. The simulation is conducted as follows.
First, the initial state of the reservoir is calculated based on a pore pressure of 50.0 [MPa]
and an external stress of 60 [MPa] is imposed on both inner and outer boundaries of the
reservoir. Next, the stress around wellbore is changed to a reservoir pressure of 50.0 [MPa]
to simulate the open-hole completion. Finally, a series of decreasing fluid pressure with the
same length of time for a total time span of 10 days is applied at the inner boundary of the
wellbore, as given in Table 7.7.

Time [d] 1 2 3 4 5 6 7 8 9 10
Well pressure MPa 50 47 44 41 38 35 32 29 26 23

Table 7.7: A series of decreasing fluid pressure for a 2D cylindrical reservoir.

The numerical model is implemented using coupled DiMaggio-Sandler elastoplastic model
and four types of permeability models, including Costa, Petunin, Nelson, and Davies. To
evaluate the impact of strain-dependent permeability on the various reservoir rocks, two
different quantities of coefficient 𝒵, namely 20, 40 are used. The model parameters are given
in Table 7.8.
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Parameter Variable [unit] Value
Young’s modulus 𝐸 MPa 8000.0

Poisson’s ratio 𝜈 0.2
Biot’s coefficient 𝛼 1

Fluid compressibility 𝑐𝑓 MPa−1 0
Fluid dynamic viscosity 𝜂 Pa s 1 × 10−3

Initial porosity 𝜑∘ 0.12
Initial Abs. permeability 𝜅∘ m2 4 × 10−13

Permeability coefficient 𝒵 20 and 40
𝐴 MPa 40.5
𝐵 MPa−1 0.00028
𝐶 MPa 18.0
𝐷 MPa−1 0.00001
𝑅 2.0
𝑊 0.00001
𝑋∘ MPa −40.0

Initial hydrostatic total stress 𝜎∘ MPa −60.0
Initial pressure excess 𝑝∘ MPa 50.0

Time step size Δ𝑡 d 1.0
Final time 𝑡𝑒𝑛𝑑 d 10.0

Table 7.8: Parameters employed for strain-dependent permeability on a 2D reservoir pro-
ductivity.

SDP on a 2D reservoir production using Costa permeability model

To analyze the field variable profiles due to drawdown in open hole completion, the 2D
numerical test of coupled poro-elastoplastic and Costa permeability in the cylindrical reservoir
is implemented. The quantity of coefficient 𝜚 is 1 and coefficient 𝒵 is 20 and 40. The impact
of strain-dependent permeability on reservoir productivity using a Costa model is shown in
Figure 7.6, in which the results belong to time 𝑡 = 2, 6, 10 [d].

All the subfigures in the Figure 7.6 present a comparison of the variables due to the
various quantities of 𝒵. Near to the wellbore, it can be observed less increments of radial
flux and more reduction of porosity and permeability because of the increase the 𝒵 value
from 20 to 40. In addition, the Figure 7.6 at middle-right and bottom-left illustrate that the
porosity and permeability are decreased by reducing the fluid pressure. The Figure 7.6 at
bottom-right shows the variation of radial flux near the wellbore. It can be seen that from
only geomechanical effects the wellbore region deteriorates the productivity index associated
with the case when is considered a constant permeability and no geomechanical effects.
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Figure 7.6: 2D model of the cylindrical reservoir to analyze the effect of strain-dependent
permeability on productivity using the Costa model. (top-left) fluid pressure, (top-right)
effective stress in 𝑥 direction, (middle-left) strain in 𝑥 direction, (middle-right) porosity,
(bottom-left) absolute permeability, and (bottom-right) flux.
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SDP on a 2D reservoir production using Petunin permeability model

Implement the same model for the last subsection with considering Petunin permeability
model. The quantity of coefficient 𝒵 is 20 and 40. The impact of strain-dependent perme-
ability on reservoir productivity using a Petunin model is presented in Figure 7.7, in which
the results belong to time 𝑡 = 2, 6, 10 [d].

All the subfigures in the Figure 7.7 display a comparison of the variables because of the
various quantities of 𝒵. Near to the wellbore, it can be seen less increments of radial flux
and more reduction of porosity and permeability due to the increase the 𝒵 value from 20
to 40. In addition, the Figure 7.7 at middle-right and bottom-left indicate that the porosity
and permeability are decreased by reducing the fluid pressure. The Figure 7.7 at bottom-
right shows the variation of radial flux near the wellbore. It can be observed that from only
geomechanical effects the wellbore region deteriorates the productivity index associated with
the case when is considered a constant permeability and no geomechanical effects.

SDP on a 2D reservoir production using Nelson permeability model

Implement the same model for the last subsection with considering Nelson permeability
model. The quantity of coefficient 𝜚 is 0 and coefficient 𝒵 is 20 and 40. The impact of
strain-dependent permeability on reservoir productivity using a Nelson model with 𝒵 = 20
is illustrated in Figure 7.8, and with 𝒵 = 40 is shown in Figure 7.8.

All the subfigures in the Figure 7.8 present a comparison of the variables because of the
various quantities of 𝒵. Near to the wellbore, it can be observed less increments of radial
flux and more reduction of porosity and permeability due to the increase the 𝒵 value from
20 to 40. In addition, the Figure 7.8 at middle-right and bottom-left show that the porosity
and permeability are decreased by reducing the fluid pressure. The Figure 7.8 at bottom-
right illustrates the change of radial flux near the wellbore. It can be seen that from only
geomechanical effects the wellbore region deteriorates the productivity index associated with
the case when is considered a constant permeability and no geomechanical effects.

SDP on a 2D reservoir production using Davies permeability model

Implement the same model for the last subsection with considering Davies permeability
model. The quantity of coefficient 𝒵 is 20 and 40. The effect of strain-dependent permeability
on reservoir productivity using a Davies model with 𝒵 = 20 is shown in Figure 7.9, and with
𝒵 = 40 is displayed in Figure 7.9.
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Figure 7.7: 2D model of the cylindrical reservoir to analyze the effect of strain-dependent
permeability on productivity using the Petunin model. (top-left) fluid pressure, (top-right)
effective stress in 𝑥 direction, (middle-left) strain in 𝑥 direction, (middle-right) porosity,
(bottom-left) absolute permeability, and (bottom-right) flux.
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Figure 7.8: 2D model of the cylindrical reservoir to analyze the effect of strain-dependent
permeability on productivity using the Nelson model. (top-left) fluid pressure, (top-right)
effective stress in 𝑥 direction, (middle-left) strain in 𝑥 direction, (middle-right) porosity,
(bottom-left) absolute permeability, and (bottom-right) flux.
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Figure 7.9: 2D model of the cylindrical reservoir to analyze the effect of strain-dependent
permeability on productivity using the Davies model. (top-left) fluid pressure, (top-right)
effective stress in 𝑥 direction, (middle-left) strain in 𝑥 direction, (middle-right) porosity,
(bottom-left) absolute permeability, and (bottom-right) flux.
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All the subfigures in the Figure 7.9 indicate a comparison of the variables because of the
various quantities of 𝒵. Near to the wellbore, it can be observed less increments of radial
flux and more reduction of porosity and permeability due to the increase the 𝒵 value from
20 to 40. In addition, the Figure 7.9 at middle-right and bottom-left illustrate that the
porosity and permeability are decreased by reducing the fluid pressure. The Figure 7.9 at
bottom-right shows the variation of radial flux near the wellbore. It can be seen that from
only geomechanical effects the wellbore region deteriorates the productivity index associated
with the case when is considered a constant permeability and no geomechanical effects.

7.5.3 Strain-dependent permeability in a 3D vertical reservoir
The petroleum industry uses a large number of well production and injection to produce

and enhance hydrocarbon recovery. Consequently, the purpose of this section is to describe
the effect of strain-dependent permeability on the field variables when the wellbore in reservoir
receives both the decrease and increase of fluid pressure.

The implementation of the numerical test is similar to last section with considering a
vertical wellbore with the radius 𝑟𝑤 = 0.1m and extending the outer boundary of reservoir
to 𝑟𝑜 = 10.0m. The model parameters are given in Table 7.9.

Parameter Value Variable [unit]
Young’s modulus 5000.0 𝐸 MPa

Poisson’s ratio 0.2 𝜈
Biot’s coefficient 1 𝛼

Fluid compressibility 0 𝑐𝑓 MPa−1

Fluid dynamic viscosity 1 × 10−3 𝜂 Pa s
Initial porosity 0.12 𝜑∘

Initial Abs. permeability 1 × 10−13 𝜅∘ m2

Permeability coefficient 10.0 and 25.0 𝒵
𝐴 50.0 MPa
𝐵 0.027 MPa−1

𝐶 40.0 MPa
𝐷 0.0005 MPa−1

𝑊 0.0012
𝑅 3.0
𝑋∘ -74.0 MPa

Table 7.9: Material parameters employed for strain-dependent permeability in a 3D reservoir.

The simulation is conducted as follows. First, the initial state of the reservoir is computed
based on a pore pressure of 50.0 [MPa] and an external stress of 60 [MPa] is imposed on both
inner and outer boundaries of the reservoir. Then, the stress around wellbore is changed to
a reservoir pressure of 50.0 [MPa] to simulate the open-hole completion. Afterwards, a series
of decreasing fluid pressure with the same length of time for a total time span of 10 days
is applied at the inner boundary of the wellbore, as given in Table 7.10. Finally, a series
of increasing fluid pressure with the same length of time for a total time span of 10 days is
applied at the inner boundary of the wellbore, as given in Table 7.10.



151

Time [d] 1 2 3 4 5 6 7 8 9 10
Decrease fluid pressure MPa 50 47 44 41 38 35 32 29 26 23

Time [d] 11 12 13 14 15 16 17 18 19 20
Increase fluid pressure MPa 23 26 29 32 35 38 41 44 47 50

Table 7.10: A series of decreasing and increasing fluid pressure for a vertical well.

The Figure 7.10 (top), presents the variation of fluid pressure versus radial distance from
wellbore, in which the fluid pressure decreases from 50 [MPa] to 23 [MPa] for a total time
of 10 [d]. Then, the fluid pressure increases from 23 [MPa] to 50 [MPa] for a total time
of 10 [d]. The reduction of fluid pressure leads to increase effective stress and total strain,
as shown in Figure 7.10 (middle) and (bottom). The Figure 7.10 at top-right, middle-right
and bottom-right illustrate that although the pressure drop is reached zero, the quantity of
effective stress and total strain are not equal to their initial value. All the subfigures in the
Figure 7.10 indicate a comparison of the variables due to the various quantities of 𝒵, namely
10.0 and 25.0.

The Figure 7.11 at top and middle positions show that the variation of porosity and
permeability because of the change of fluid pressure. The Figure 7.11 at bottom position
presents the variation of radial flux near the wellbore. The results of Figure 7.11 at top-
right and middle-right positions provide an important reason to consider strain-dependent
permeability in reservoir simulation, where the lost some percent of porosity and permeability
are due to the increment of effective stress and deformation (see in Figure 7.10 (middle-right)
and (bottom-right)). The Figure 7.11 can be observed that from only geomechanical effects
the wellbore region deteriorates the productivity index associated with the case when is
considered a constant permeability and no geomechanical effects. In addition, the distribution
of variables near to the wellbore are presented in Figure 7.12.
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Figure 7.10: 3D model of the vertical reservoir to analyze the effect of strain-dependent
permeability on productivity using the Petunin model. (top-left) variation of fluid pressure
after 10 days production, (top-right) variation of fluid pressure after 20 days, (middle-left)
variation of effective stress in 𝑧 direction after 10 days production, (middle-right) variation
of effective stress in 𝑧 direction after 20 days, (bottom-left) variation of strain in 𝑧 direction
after 10 days production, (bottom-right) variation of strain in 𝑧 direction after 20 days.
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Figure 7.11: 3D model of the vertical reservoir to analyze the effect of strain-dependent
permeability on productivity using the Petunin model. (top-left) variation of porosity after
10 days production, (top-right) variation of porosity after 20 days, (middle-left) variation
of permeability after 10 days production, (middle-right) variation of permeability after 20
days, (bottom-left) variation of flux in 𝑧 direction after 10 days production, (bottom-right)
variation of flux in 𝑧 direction after 20 days.
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Figure 7.12: Distribution of variables in a 3D cylindrical reservoir after 10 days. (top-
left) fluid pressure, (top-right) effective stress, (middle-left) strain, (middle-right) porosity,
(bottom-left) permeability, and (bottom-right) flux.
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7.6 Conclusions
This chapter presents,

∙ The strain-dependent permeability could be analyzed by using the nonlinear permeability
models based on the porosity, because of the strain-dependent porosity and the direct
relation of porosity with both deformation and pore pressure.

∙ To analyze the strain-dependent permeability, the coupled poro-elastoplastic and perme-
ability was implemented by using the DiMaggio-Sandler plasticity model and four nonlinear
permeability models, e.g., Costa, Petunin, Nelson, and Davies.

∙ The verification of numerical models was done by comparing the results with a reference
solution of Runge-Kutta.

∙ The numerical results of a uniaxial compression test, demonstrated that the strain-dependent
permeability can be described using coupled poro-elastoplastic with permeability. This re-
sult also expressed that the porosity and permeability decrease by increasing elastoplastic
strain.

∙ The impact of strain-dependent permeability on the productivity of reservoirs was analyzed
in order to emphasize its importance in reservoir simulation. The results showed that by
decreasing fluid pressure, the effective stress increases, and then the quantity of porosity
and permeability decrease. The results also indicated that by increasing the permeability
coefficient 𝒵, less increments of radial flux and more reduction of porosity and permeability
near to the wellbore can be observed.

∙ The strain-dependent permeability in a 3D cylindrical reservoir that receives a decrease and
increase of wellbore pressure was analyzed. The results emphasized that the wellbore lost
some percent of porosity and permeability by decreasing and increasing of fluid pressure
because of elastoplastic deformation.

∙ The results of strain-dependent permeability illustrated that from only geomechanical ef-
fects the wellbore region deteriorates the productivity index associated with the case when
is considered a constant permeability and no geomechanical effects.
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Chapter 8

Pore collapse and shear-enhanced
compaction

8.1 Introduction
During production of hydrocarbon from both the unconsolidated and weakly consolidated

reservoir rocks, it is well known that they undergo irreversible deformation (compaction).
Such compaction is generally the results of pore collapse and shear-enhanced compaction at
the microscopic level, within the rock mass. This phenomenon is more common in weakly
cemented, poorly-consolidated, overpressured reservoirs, high porosity and low permeability
rock (Hoek, 2016). Compaction can occur as the effects of mechanical and chemical process.
The chemical compaction commonly becomes the dominant process at higher depths and
mechanical compaction governs the response at lower depths (Poulet and Veveakis, 2016).
In the mechanical regime, pore collapse and shear-enhanced compaction has been crucially
influenced by the increase in effective stress. The onset of pore collapse and shear-enhanced
compaction typically depend on the properties of the reservoir, such as depth and thickness
of the reservoir, initial stress state, pore pressure, and the reservoir stress path (Zoback,
2007).

Pore collapse and shear-enhanced compaction can be considered as potential problems
in the reservoirs. To overcome these problems, it is required to evaluate the probability of
pore collapse and shear-enhanced compaction. Then, in this chapter, firstly the theoretical
framework for pore collapse and shear-enhanced compaction are presented. Next, by using the
coupled poroelasto-plastic and permeability, the onset of pore collapse and shear-enhanced
compaction and their effects on reservoir are analyzed.

8.2 Constitutive models
Theory of plasticity provides a constitutive framework for the analysis of compaction

in a granular material, such as soil (W.F. Chen, 1984), porous sandstone (T.-F. Wong,
Christian David, and Zhu, 1997), porous diatomites (A.F. and J.T., 2000), and carbonate
rocks (Vajdova, Baud, and T.-f. Wong, 2004). Generally, two types of plasticity models have
been applied: the cap model which was formulated by DiMaggio and I. Sandler, 1971 that
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extensively applied for both soil and porous rock, and the critical state model (A. Schofield,
1968) which has been widely used in soil mechanics.

DiMaggio-Sandler cap plasticity model

The original DiMaggio-Sandler cap plasticity model in equation (3.2.38) is written as
follows (DiMaggio and I. Sandler, 1971):

Φ𝑑𝑠 =
(︃
𝐼1 − 𝐿

𝑅𝐹𝑠 (𝐿)

)︃2

+
(︃ √

𝐽2

𝐹𝑠 (𝐿)

)︃2

− 1 (8.2.1)

It corresponds to an ellipse centered at (𝐿, 0) with major and minor semiaxes of 𝑅𝐹𝑠 (𝐿)
and 𝐹𝑠 (𝐿). Moreover, the first stress invariant 𝐼1 can be related to the effective mean stress
𝑃 by 𝐼1 = 3𝑃 and the second invariant 𝐽2 to the von Mises stress 𝑄 by 3𝐽2 = 𝑄2. The
DiMaggio-Sandler model can be defined on the ellipse with semiaxes 𝑅𝐼 = (𝑅𝐹𝑠 (𝐿)) /3,
𝑅𝐼𝐼 =

√
3𝐹𝑠 (𝐿), and center at (𝐶𝑡 = 𝐿/3), which is rewritten as follows (Baud, Vajdova,

and T.-f. Wong, 2006):

Φ𝑑𝑠 = (𝑃 − 𝐶𝑡)
𝑅2

𝐼

2

+ 𝑄2

𝑅2
𝐼𝐼

− 1 (8.2.2)

Modified Cam-Clay plasticity model

The yield function of modified Cam-Clay in equation (3.2.62) is rewritten as follows
(K.H. Roscoe, 1968):

Φ𝑐𝑐 = 𝑄2 −𝑀2 𝑃 (𝑝𝑐 − 𝑃 ) (8.2.3)
where 𝑝𝑐 is the preconsolidation pressure (or compaction pressure).

8.3 Theoretical model
According to the previous study of the mechanical behavior of porous materials, there

exist three plastic flow mechanisms; pore collapse, shear-enhanced compaction, and shear-
induced dilation.

8.3.1 Pore collapse
Under the hydrostatic stress condition, the transition from elastic (pre-pore collapse) to

plastic is named pore collapse (Addis and Jones, 1990), and the post-pore collapse region
can be characterized by a plastic hardening model. The critical effective stress for the onset
of pore collapse is denoted by 𝑃 * and shown in Figure 8.1 (Addis and Jones, 1990). The
onset of plastic collapse is picked as the endpoint of the linear evolution of the volumetric
strain (Nguyen, N. Gland, J. Dautriat, C. David, Wassermann, and Guélard, 2014). Previous
studies have been presented that, the onset of pore collapse 𝑃 * can be determined using two
methods: firstly, an experimental model of Jiaxiang Zhang, T.-F. Wong, and D. M. Davis,
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1990 and second, applying plasticity cap models (Coelho, A. Soares, Ebecken, Alves, and
Landau, 2003; Baud, Vajdova, and T.-f. Wong, 2006) e.g., DiMaggio-Sandler and modified
Cam-Clay plasticity model.

• Firstly. The experimental model of Jiaxiang Zhang, T.-F. Wong, and D. M. Davis,
1990 which was presented based on the Hertzian contact theory and the crack prop-
agation mechanics. This model is a power law that describes the dependency of the
critical pressure 𝑃 * with micro-structural attributes, as follows:

𝑃 * ∝ (𝜑𝑅𝑔)𝑛 (8.3.1)
where 𝜑 is the porosity, 𝑅𝑔 is the mean grain radius, and 𝑛 = −1.5. This model has been
validated on glass beads, consolidated porous sandstones, and quartz sand by T.-F. Wong,
Christian David, and Zhu, 1997; Karner, J. S. Chester, F. M. Chester, Kronenberg, and
Hajash, 2005.

• Second. Using DiMaggio-Sandler and Cam-Clay plasticity model to indicate the onset
of pore collapse 𝑃 * , as follows:

The DiMaggio-Sandler cap plasticity model in equation (8.2.2) is represented in terms of
the stresses normalized by using the critical pressure 𝑃 * as follows (T.-F. Wong, Christian
David, and Zhu, 1997):

Φ𝑑𝑠 = (𝑃/𝑃 * − 𝜉)2

(1 − 𝜉)2 + (𝑄/𝑃 *)
𝛿2 − 1 (8.3.2)

where, 𝜉 = 𝐶𝑡/𝑃 *, 1 − 𝜉 = 𝑅𝐼 , and 𝛿 = 𝑅𝐼𝐼/𝑃
*.

The modified Cam-Clay plasticity model in equation (8.2.3) is represented by using the
critical pressure 𝑃 * as follows (Nguyen, N. Gland, J. Dautriat, C. David, Wassermann, and
Guélard, 2014):

Φ𝑐𝑐 = 𝑄2 −𝑀2𝑃 (𝑃 * − 𝑃 ) (8.3.3)
Finally, the pore collapse can be described using plasticity models, as follows:

Φ𝑝𝑐 =

⎧⎪⎪⎨⎪⎪⎩
Φ𝑐𝑐

𝑜𝑟

Φ𝑑𝑠

(8.3.4)

8.3.2 Shear-enhanced compaction
Under nonhydrostatic or deviatoric stress, the onset of inelastic permanent deformation in

porous rock is generally associated with the onset of either permanent dilation or compaction
(Rutter and Glover, 2012). The shear-enhanced compaction regime is where the nonhydro-
static stress part assists the hydrostatic part in overcoming the resistance of pore collapse
(Curran and M. M. Carroll, 1979). Shear-enhanced compaction refers to a permanent de-
formation of porous rock, characterized by the loss of porosity owing to the pore collapse
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as confining pressure and/or shear stress increases beyond the yield value (Zoback, 2007).
Post-yield deformation related to shear-enhanced compaction is often ductile, which leads to
spread deformation throughout the rock mass (Underhill and Woodcock, 1987; Rutter and
Glover, 2012).

Under nonhydrostatic stress condition in the cataclastic flow regime, it is observed the
porosity firstly decreases and continuing up to a critical effective stress state (as indicated
by 𝐶* in Figure 8.1), the reduction of porosity is accelerated, which is referred to the shear-
enhanced compaction (Curran and M. M. Carroll, 1979; T.-F. Wong, Szeto, and Jiaxiang
Zhang, 1992). The 𝐶* is the critical stress for the onset of shear-enhanced compaction and
shear hardening under triaxial loading.

Figure 8.1: Schematic behavior of pore collapse and shear-enhanced compaction in saturated
sandstone (Baud, Vajdova, and T.-f. Wong, 2006).

Previous studies have been indicated that, the onset of shear-enhanced compaction 𝐶*

can be determined using three methods: firstly, a model expressed by T.-F. Wong, Christian
David, and Zhu, 1997, second, a shear bands provided by J. Rudnicki and J. Rice, 1975, and
third, using plasticity cap models which are usually the DiMaggio-Sandler cap model and
the modified Cam-Clay critical state.

• Firstly. The model of T.-F. Wong, Christian David, and Zhu, 1997 presented based
on constitutive plasticity parameters that expressed by J. Rudnicki and J. Rice, 1975.
These parameters are the internal friction parameter 𝜇𝑝 and the dilatancy factor 𝛽𝑝

which can be extracted from triaxial compression test data. The dilatancy factor 𝛽𝑝

in the article (J. Rudnicki and J. Rice, 1975) is presented for the inelastic compaction
(T.-F. Wong, Christian David, and Zhu, 1997), as follows:

𝛽𝑝 = −
√

3 Δ𝜑𝑝/Δ𝜖𝑝

(3 − Δ𝜑𝑝/Δ𝜖𝑝) (8.3.5)



160

where Δ𝜖𝑝 is the axial plastic strain and Δ𝜑𝑝 is the porosity change that is assumed to be
equal to the volumetric plastic strain Δ𝜖𝑝

𝑣. The parameter 𝛽𝑝 is computed from the results
of Δ𝜑𝑝/Δ𝜖𝑝, provided by the laboratory test data. The difference in sign of 𝛽𝑝 can indicate
the dilatancy or compaction. The negative value of 𝛽𝑝 shows the shear-enhanced compaction
and the positive value of 𝛽𝑝 indicates the dilation regime (Baud, Vajdova, and T.-f. Wong,
2006).

• Second. The shear and compaction bands of J. Rudnicki and J. Rice, 1975 can be
applied to define the critical conditions for dilation, shear or compaction bands. The
bands are described using the parameters 𝛽𝑝 and 𝜇𝑝 as follows (T.-F. Wong, Christian
David, and Zhu, 1997): Shear bands are occurred, if:

−
√

3 ≤ 𝜇𝑝 + 𝛽𝑝 ≤
√

3 (2 − 𝜈)
(1 + 𝜈) (8.3.6)

Dilation bands are characterized, if:

𝜇𝑝 + 𝛽𝑝 >

√
3 (2 − 𝜈)
(1 + 𝜈) (8.3.7)

Compaction bands are happened, if:

𝜇𝑝 + 𝛽𝑝 < −
√

3 (8.3.8)

where 𝜇𝑝 is the friction parameter and it can be evaluated as
√

3/3 times of the local
slope of yield envelope in P-Q space (Baud, Vajdova, and T.-f. Wong, 2006).

• Third. Using DiMaggio-Sandler and modified Cam-Clay plasticity model to indicate
the onset of shear-enhanced compaction 𝐶*. The onset of shear-enhanced compaction
can be obtained, similar to the plasticity models in equations (8.3.2), (8.3.3) by con-
sidering 𝐶* as the critical mean stress, as follows:

Φ𝑑𝑠 = (𝑃/𝐶* − 𝜉)2

(1 − 𝜉)2 + (𝑄/𝐶*)
𝛿2 − 1 (8.3.9)

where, 𝜉 = 𝐶𝑡/𝐶*, 1 − 𝜉 = 𝑅𝐼 and 𝛿 = 𝑅𝐼𝐼/𝐶
*.

In addition,

Φ𝑐𝑐 = 𝑄2 −𝑀2𝑃 (𝐶* − 𝑃 ) (8.3.10)
Finally, the shear-enhanced compaction can be presented using constitutive plasticity

models, as follows:

Φ𝑠𝑐 =

⎧⎪⎪⎨⎪⎪⎩
Φ𝑐𝑐

𝑜𝑟

Φ𝑑𝑠

(8.3.11)
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8.3.3 Shear-induced dilation
The shear stresses in porous rocks can cause either compaction or dilation in the form

of shear-enhanced compaction or shear-induced dilation. In the shear-enhanced compaction
mode, porosity decreases with increasing effective stress, but in shear-induced dilation, poros-
ity increases with increasing the effective stress (Bernard, Eichhubl, and Aydin, 2002). The
shear induced dilation can be represented by the equation (8.3.7) and also a nonassociated
plasticity model Φ𝑠𝑑 (J. Rudnicki and J. Rice, 1975), but a discussion of this topic is beyond
the scope of this thesis and will be dealt with in a forthcoming contribution.

8.3.4 Activation of plastic mechanisms
During a general loading history, three plastic deformation mechanisms can be activated

with four distinct constitutive domains, as follows:

1. If Φ𝑝𝑐 < 0, Φ𝑠𝑐 < 0, and Φ𝑠𝑑 < 0 , the applied stress state is fully inside the elastic
domain or leads to an elastic unloading. No plastic flow occurs and we have: .

𝛾𝑝𝑐 = 0,
.
𝛾𝑠𝑐 = 0, .

𝛾𝑠𝑑 = 0.

2. If Φ𝑝𝑐 = 0, the pore collapse mechanism is activated. The plastic multiplier is .
𝛾𝑝𝑐 > 0.

3. If Φ𝑠𝑐 = 0, the plastic shear-enhanced compaction mechanism is activated. The plastic
multiplier is .

𝛾𝑠𝑐 > 0.

4. If Φ𝑠𝑑 = 0, the plastic shear-induced dilation mechanism is activated. The plastic
multiplier is .

𝛾𝑠𝑑 > 0.

In this study the above activation of plastic mechanisms is used to present the onset of
pore collapse Φ𝑝𝑐 = 0 and shear-enhanced compaction Φ𝑠𝑐 = 0.

8.3.5 Experimental procedures
Previous studies indicate that the laboratory test can detect the onset of the pore collapse

and shear-enhanced compaction. The onset of pore collapse can be determined using the
hydrostatic compression test (T.-F. Wong, Christian David, and Zhu, 1997). Moreover,
the onset of shear-enhanced compaction can be obtained using the oedometric and triaxial
compression tests (Zaman, Roegiers, Abdulraheem, and Azeemuddin, 1994).

8.4 Analysis of pore collapse, shear-enhanced compaction
Analysis of pore collapse and shear-enhanced compaction is complex owing to the non-

linear behavior of reservoir rocks (Smits, Waal, and Kooten, 1988; Boade, L. Chin, and
Siemers, 1989). To analyze these phenomena, the poro-elastoplastic coupling with consider-
ing the nonlinear Davies permeability model is proposed. The following numerical models
are developed, such as: (1) hydrostatic and triaxial compression test to indicate the onset
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of pore collapse and shear-enhanced compaction, (2) the impact of pore collapse and shear-
enhanced compaction on the productivity of horizontal well (two-dimensional), (3) the im-
pact of pore collapse and shear-enhanced compaction during the horizontal wellbore drilling
(two-dimensional), (4) the impact of compaction and land subsidence on the productivity of
reservoir (three-dimensional).

8.4.1 Hydrostatic and triaxial compression test
The pore collapse and shear-enhanced compaction are analyzed in 2D compression test.

For the numerical modelling, the symmetry of the specimen is allowed to use a quarter of the
physical domain as a computational domain (see Figure 8.2). The quarter of specimen has a
width of 25mm and the height to width ratio is equal to 2. The material properties for the
hydrostatic and triaxial test are given in Table 8.1.

Figure 8.2: Quarter domain of: (left) hydrostatic test, and (right) triaxial test.
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• The hydrostatic test is modeled in a stress-rate control for a rectangular geometry
where a confining stress 𝜎𝑐 is applied over the top of sample in y direction (vertical)
and the right side of sample in x direction (horizontal) and zero normal displacement
wall on two other boundaries. The stress ratio 𝑘𝑠, which is the ratio of horizontal stress
to vertical stress, is equal 1.0. Moreover, a fixed pressure (1 MPa) is applied above the
top of sample in y direction and the right side of sample in x direction and impermeable
wall on two other sides. The boundary conditions of the hydrostatic test are shown in
Figure 8.2 (left). The total stresses above top of sample and right side of sample are
given in Table 8.2.

• The triaxial test is modeled in a stress-rate control for a rectangular geometry where
an axial total stress 𝜎𝑎 is applied over the top of sample in y direction and a constant
confinement stress 𝜎𝑐 is applied on the right side of sample in x direction (horizontal)
and zero normal displacement wall on two other boundaries. The stress ratio 𝑘𝑠 for
triaxial test is equal to 0.5, where 𝑘𝑠 = 𝜎𝑐/𝜎𝑎 = 0.5. Moreover, a fixed pressure (1
MPa) is applied above the top of sample in y direction and the right side of sample
in x direction and impermeable wall on two other sides. The boundary conditions of
the triaxial test are displayed in Figure 8.2 (right). The axial and lateral total stresses
applied to the sample are reported in Table 8.2.

Parameter Variable [unit] Value
Young’s modulus 𝐸 MPa 2800.0

Poisson’s ratio 𝜈 0.2
Biot coefficient 𝛼 1

Fluid compressibility 𝑐𝑓 MPa−1 0
Fluid dynamic viscosity 𝜂 Pa s 1 × 10−3

Initial porosity 𝜑∘ 0.1
Initial Abs. permeability 𝜅∘ m2 1 × 10−13

Permeability coefficient 𝒵 30.0
𝐴 MPa 18.0
𝐵 MPa−1 0.01
𝐶 MPa 14.0
𝐷 MPa−1 0.0065
𝑊 0.025
𝑅 3.0
𝑋∘ MPa -25.0

Table 8.1: Material parameters employed for the hydrostatic and triaxial test.
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Num. step Time 𝜎𝑎 𝜎𝑐 in hydrostatic 𝜎𝑐 in triaxial
s MPa MPa MPa

0 0.0 −1.0 −1.0 -1.0
1 0.05 −1.0 −1.0 -1.0
2 0.1 −2.0 −2.0 -1.0
3 0.15 −3.0 −3.0 -1.5
4 0.20 −4.0 −4.0 -2.0
5 0.25 −5.0 −5.0 -2.5
6 0.30 −6.0 −6.0 -3.0
7 0.35 −7.0 −7.0 -3.5
8 0.40 −8.0 −8.0 -4.0
9 0.45 −9.0 −9.0 -4.5
10 0.50 −10.0 −10.0 -5.0
11 0.55 −11.0 −11.0 -5.5
12 0.60 −12.0 −12.0 -6.0
13 0.65 −13.0 −13.0 -6.5
14 0.70 −14.0 −14.0 -7.0
15 0.75 −15.0 −15.0 -7.5
16 0.80 −16.0 −16.0 -8.0
17 0.85 −17.0 −17.0 -8.5
18 0.90 −18.0 −18.0 -9.0
19 0.95 −19.0 −19.0 -9.5
20 1.0 −20.0 −20.0 -10.0

Table 8.2: The axial and lateral stresses applied to the sample for hydrostatic and triaxial
test.

The 2D numerical mesh for hydrostatic and triaxial test is performed by quadrilateral
elements with quadratic-linear polynomial orders for displacement and pore pressure. To
analyze the results, the average value of data along the red line in Figure 8.2 is selected.
The onset of pore collapse 𝑃 * at the point (𝑃,𝑄) |𝑃 *= (4.964MPa, 0.0095MPa) and shear-
enhanced compaction 𝐶* at the point (𝑃,𝑄) |𝐶*= (4.378MPa, 2.948MPa) using DiMaggio-
Sandler plasticity model is illustrated in Figure 8.3 (top-left). The relation between mean
effective stress and plastic volumetric strain is shown in Figure 8.3 (top-right) in which the
onset of pore collapse and shear-enhanced compaction is clear where the plastic volumetric
strain begins. The capability of DiMaggio-Sandler cap function to capture pore collapse 𝑃 *

and shear-enhanced compaction 𝐶* is displayed in Figure 8.3 (middle-left), in which the cap
surface under hydrostatic condition presents the onset of pore collapse and under triaxial
condition indicates the shear-enhanced compaction. Figure 8.3 (middle-right) demonstrates
clearly the shear-enhanced compaction by expressing the quantities of 𝛽𝑝 and the sign of them
are negative (according to the Wong model). This process is repeated for pore collapse and
the results are presented in Figure 8.3 (middle-right). Moreover, the shear bands provided by
J. Rudnicki and J. Rice, 1975 in equation (8.3.6) is developed and the results are illustrated
in Figure 8.3 (middle-right). In addition, the displacement in y direction from triaxial and
hydrostatic tests are displayed in 8.3 (bottom-left) and (bottom-right), respectively.
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Figure 8.3: Numerical results of hydrostatic and triaxial test: (top-left) the onset of pore col-
lapse 𝑃 * and shear-enhanced compaction 𝐶*, (top-right) the relation between mean effective
stress and plastic volumetric strain, (middle-left) capability of DiMaggio-Sandler cap func-
tion to capture pore collapse and shear-enhanced compaction, (middle-right) shear-enhanced
compaction and shear bands, (bottom-left) displacement in y direction from triaxial test, and
(bottom-right) displacement in y direction from hydrostatic test.
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The results of Figure 8.3 present that the numerical modeling of hydrostatic test can
indicate the onset of pore collapse and the numerical modeling of triaxial test can illustrate
the onset of shear-enhanced compaction. In addition, the numerical results show that the
post-pore collapse and post-shear enhanced compaction can be characterized by the hardening
function of DiMaggio-Sandler model.

In this subsection, the effect of pore collapse and shear-enhanced compaction on porosity
and permeability are analyzed. The relation between porosity and effective mean stress
is shown in Figure 8.4 (top-left) and the relation between permeability and effective mean
stress is displayed in Figure 8.4 (top-right). The distribution of porosity and permeability
under hydrostatic condition is illustrated in Figure 8.4 (bottom-left), and (bottom-right),
respectively.

Figure 8.4: Numerical modeling of hydrostatic and triaxial test to see the effect of pore col-
lapse and shear-enhanced compaction on: (top-left) porosity, and (top-right) permeability.
The distribution of: (bottom-left) porosity, and (bottom-right) permeability under hydro-
static condition.

The results of Figure 8.4 propose that the coupled poro-elastoplastic and permeability
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can describe the effect of pore collapse and shear-enhanced compaction on the change of
porosity and permeability.

8.4.2 Pore collapse, shear-enhanced compaction on production well
Most horizontal wells have open-hole completions, then open-hole stability analysis is

required for the safe and economic production (Jincai Zhang, Bai, and Roegiers, 2006). To
consider the impact of pore collapse and shear-enhanced compaction on well production,
a 2D numerical model of a horizontal well in open-hole completion is implemented (see in
Figure 8.5), in which the in-situ vertical stress is 60.0 MPa, and the in-situ horizontal stress
under hydrostatic condition is 60.0 MPa, and under triaxial condition is 48.0 MPa. The
model measures 20 × 20 [m] in the ℎ and 𝑣 directions, respectively, and the radius of well is
𝑟𝑤 = 0.1m. The simulation is conducted as follows. First, the initial state of the reservoir
is computed based on the pore pressure of 40.0 MPa and the in-situ stress is imposed on
both inner and outer boundaries of the model. Next, the stress around wellbore is changed
to the reservoir pressure of 40.0 MPa to simulate the open-hole completion. Finally, a series
of decreasing wellbore pressure with the same length of time for a total time span of 10 [d]
is applied at the inner boundary of the wellbore, as given in Table 8.3. The numerical model
is implemented using coupled DiMaggio-Sandler plasticity and Davies permeability model.
The model parameters are given in Table 8.4.

Num. step Time d Well pressure MPa
0 0.0 40.0
1 1.0 40.0
2 2.0 38.0
3 3.0 36.0
4 4.0 34.0
5 5.0 32.0
6 6.0 30.0
7 7.0 28.0
8 8.0 26.0
9 9.0 24.0
10 10.0 22.0

Table 8.3: A series of decreasing wellbore pressure for horizontal well production.
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Figure 8.5: States of in-situ stress for horizontal well.

Parameter Value Variable [unit]
Young’s modulus 4000.0 𝐸 MPa

Poisson’s ratio 0.2 𝜈
Biot’s coefficient 1 𝛼

Fluid compressibility 0 𝑐𝑓 MPa−1

Fluid dynamic viscosity 1 × 10−3 𝜂 Pa s
Initial porosity 0.1 𝜑∘

Initial Abs. permeability 1 × 10−13 𝜅∘ m2

Permeability coefficient 30.0 𝒵
𝐴 50.0 MPa
𝐵 0.028 MPa−1

𝐶 40.0 MPa
𝐷 0.001 MPa−1

𝑊 0.002
𝑅 3.0
𝑋∘ -65.0 MPa

Table 8.4: Material parameters employed to evaluate the impact of pore collapse and shear-
enhanced compaction on horizontal well production.

The onset of pore collapse and shear-enhanced compaction in horizontal well are analyzed
using two different in-situ stress ratios in order to establish the hydrostatic condition 𝜎𝑣 = 𝜎ℎ

when 𝑘𝑠 = 1.0 and triaxial condition 𝜎𝑣 > 𝜎ℎ when 𝑘𝑠 = 0.8. The two-dimensional numerical
mesh is performed by quadrilateral elements with quadratic-linear polynomial orders for
displacement and pore pressure. To analyze the numerical results, the data point around
the wellbore region, namely 𝑝𝑡𝑤 = (𝑥 = 0.085m, 𝑦 = 0.085m) is selected in order to see the
hydrostatic condition when 𝜎𝑣 = 𝜎ℎ.

The relation between mean effective stress and plastic volumetric strain is displayed in
Figure 8.6 (left) in which the onset of pore collapse and shear-enhanced compaction is clear,
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where the slope is changed. The numerical results show that the onset of pore collapse
is (𝑃,𝑄) |𝑃 *= (20.829MPa, 0.0407MPa) and the shear-enhanced compaction is (𝑃,𝑄) |𝐶*=
(14.787MPa, 9.412 MPa). The capability of DiMaggio-Sandler cap function to capture pore
collapse 𝑃 * and shear-enhanced compaction 𝐶* is illustrated in Figure 8.6 (middle). Ac-
cording to the Wong’s model, the pore collapse and shear-enhanced compaction are occurred
in horizontal well due to the negative quantities of 𝛽𝑝 (see in Figure 8.6 (right)) which are
calculated using equation (8.3.5) . Moreover, the shear bands expressed by J. Rudnicki and
J. Rice, 1975 in equation (8.3.6) are presented in Figure 8.6 (right).

Figure 8.6: The numerical results of horizontal well production: (left) the relation between
mean effective stress and plastic volumetric strain, (middle) capability of DiMaggio-Sandler
cap function to capture pore collapse and shear-enhanced compaction, and (right) shear
bands region.

Figure 8.6 shows the pore collapse and shear-enhanced compaction can observe in well
production. Previous study, emphasize that the onset of and post-pore collapse and shear-
enhanced compaction have an influence on petrophysical properties such as porosity and
permeability.

Therefore, the effect of them on porosity, permeability, and radial flux are analyzed. Fig-
ure 8.7 (top-left) presents the relation between wellbore pressure and effective mean stress.
The relation between porosity reduction and effective mean stress is shown in Figure 8.7
(top-right), in which the results display that the porosity is decreased by increasing the ef-
fective mean stress. Figure 8.7 (middle-left) illustrates the relation between permeability
reduction and effective mean stress, in which the results show that the permeability is re-
duced by increasing the effective mean stress. The relation between flux and effective mean
stress is indicated in Figure 8.7 (middle-right), in which the results display that the flux is
decreased by increasing of effective mean stress. Thus, the change of flux leads to change the
quantity of mass extracted from the system. The distribution of porosity and permeability
under hydrostatic condition are illustrated in Figure 8.7 (bottom-left), and (bottom-right),
respectively.
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Figure 8.7: Numerical modeling of horizontal well production to see the effect of pore col-
lapse and shear-enhanced compaction. (top-left) the relation between wellbore pressure and
effective mean stress, (top-right) porosity reduction, (middle-left) permeability reduction,
(middle-right) the relation between flux and effective mean stress, (bottom-left) distribu-
tion of porosity under hydrostatic condition, and (bottom-right) distribution of permeability
under hydrostatic condition.
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8.4.3 Pore collapse, shear-enhanced compaction during wellbore
drilling

The studied of pore collapse and shear-enhanced compaction during wellbore drilling is
conducted, where the in-situ vertical stress is the maximum principal stress, namely 𝜎𝑣 = 60
MPa and the in-situ horizontal stress under hydrostatic condition is 𝜎ℎ = 𝜎𝐻 = 60 MPa
and under triaxial condition is 𝜎ℎ = 𝜎𝐻 = 51 MPa. The initial or far-field pore pressure
is 𝑝∘ = 50 MPa. To analyze the impact of pore collapse and shear-enhanced compaction
on horizontal wellbore drilling, a 2D numerical model is implemented (see in Figure 8.5).
The model measures 20 × 20 [m] in the ℎ and 𝑣 directions, respectively, and the radius of
horizontal well drilled is 𝑟𝑤 = 0.1m.

The numerical simulation is performed as follows. First, the initial state of the reservoir is
computed based on the initial pore pressure and the in-situ stress, which is imposed on both
inner and outer boundaries of the model. Next, the loads on the wellbore (or mud pressure),
namely 𝑝𝑤 = 45.0 MPa are applied instantaneously. Finally, the simulation with the same
length of time, namely 1 [s] for a total time span of 10 [s] is conducted. The numerical
model is implemented by using coupled DiMaggio-Sandler plasticity and Davies permeability
model. The model parameters are given in Table 8.5.

Parameter Value Variable [unit]
Young’s modulus 3800.0 𝐸 MPa

Poisson’s ratio 0.2 𝜈
Biot’s coefficient 1.0 𝛼

Fluid compressibility 0 𝑐𝑓 MPa−1

Fluid dynamic viscosity 1 × 10−3 𝜂 Pa s
Initial porosity 0.1 𝜑∘

Initial Abs. permeability 1 × 10−13 𝜅∘ m2

Permeability coefficient 30.0 𝒵
𝐴 50.0 MPa
𝐵 0.028 MPa−1

𝐶 40.0 MPa
𝐷 0.001 MPa−1

𝑊 0.002
𝑅 3.0
𝑋∘ -72.0 MPa

Table 8.5: Material parameters employed to evaluate the impact of pore collapse and shear-
enhanced compaction on horizontal wellbore drilling.

The onset of pore collapse and shear-enhanced compaction on wellbore drilling are ana-
lyzed using two different in-situ stress ratios in order to establish the hydrostatic condition
𝜎𝑣 = 𝜎ℎ when 𝑘𝑠 = 1.0 and triaxial condition 𝜎𝑣 > 𝜎ℎ when 𝑘𝑠 = 0.85. The 2D numeri-
cal mesh is performed by quadrilateral elements with quadratic-linear polynomial orders for
displacement and pore pressure. To analyze the numerical results, the data point around
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the wellbore region, namely 𝑝𝑡𝑤 = (𝑥 = 0.085m, 𝑦 = 0.085m) is selected in order to see the
hydrostatic condition when 𝜎𝑣 = 𝜎ℎ.

The relation between mean effective stress and plastic volumetric strain is shown in Figure
8.8 (left), in which the onset of pore collapse and shear-enhanced compaction is, where
the slope along the plastic volumetric strain and effective mean stress is changed. The
capability of DiMaggio-Sandler cap function to capture pore collapse 𝑃 * and shear-enhanced
compaction 𝐶* is illustrated in Figure 8.8 (middle). The numerical results show that the onset
of pore collapse is (𝑃,𝑄) |𝑃 *= (13.49MPa, 0.021MPa) and the shear-enhanced compaction is
(𝑃,𝑄) |𝐶*= (8.92MPa, 7.05MPa). It is required to mention that the drilling leads to increase
effective stress from the initial state (when wellbore pressure is 𝑝∘ = 50 MPa) until the
time that the instantaneous mud pressure is applied (when it is 𝑝𝑤 = 45 MPa). Then, the
variation of plastic volumetric strain before pore collapse and shear-enhanced compaction is
more sharp comparing to post.

According to the Wong’s model, the pore collapse and shear-enhanced compaction are
occurred during horizontal wellbore drilling due to the negative quantities of 𝛽𝑝 (see in Figure
8.8 (right)) which are computed using equation (8.3.5). Moreover, the shear bands provided
by J. Rudnicki and J. Rice, 1975 in equation (8.3.6) are displayed in Figure 8.8 (right).

Figure 8.8: The numerical results of horizontal wellbore drilling: (left) the relation between
mean effective stress and plastic volumetric strain, (middle) capability of DiMaggio-Sandler
cap function to capture pore collapse and shear-enhanced compaction, (right) shear bands
region.

The results of Figure 8.8 display that the pore collapse and shear-enhanced compaction
can occur during horizontal wellbore drilling. The onset and post-pore collapse and shear-
enhanced compaction have an effect on petrophysical properties, such as porosity and per-
meability. Thus, the impact of pore collapse and shear-enhanced compaction on porosity,
permeability, and radial flux are numerically analyzed. Figure 8.9 (top-left) shows the rela-
tion between mud pressure and effective mean stress. The relation between porosity reduction
and effective mean stress is presented in Figure 8.9 (top-right), in which the results indicate
that the porosity is reduced by increasing the effective mean stress. Figure 8.9 (middle-left)
illustrates the relation between permeability reduction and effective mean stress, where the
permeability decreases with increasing the effective mean stress.
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Figure 8.9: Numerical modeling of horizontal wellbore drilling to see the impact of pore
collapse and shear-enhanced compaction. (top-left) the relation between mud pressure and
effective mean stress, (top-right) porosity reduction, (middle-left) permeability reduction,
(middle-right) the relation between flux and effective mean stress, (bottom-left) distribu-
tion of porosity under hydrostatic condition, and (bottom-right) distribution of permeability
under hydrostatic condition.

Figure 8.9 (middle-right) shows the relation between flux and effective mean stress, where
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the variation of effective mean stress changes the radial flux and consequently alters the
quantity of mass extracted from the system. The distribution of porosity and permeability
under hydrostatic condition is illustrated in Figure 8.9 (bottom-left), and (bottom-right),
respectively.

8.4.4 Compaction in a 3D reservoir with horizontal production
well

In this subsection, the numerical modelling of a 3D reservoir with a horizontal production
well in open-hole completion is implemented. The length, width and height of the model are
50m, 20m and 20m and the radius of well is 0.1m. The simulation is conducted similar
to the 2D production horizontal well. Moreover, the horizontal stress for parallel (𝜎𝑍) and
perpendicular (𝜎𝑋) to the direction of wellbore are the same, (𝜎ℎ = 𝜎𝑋 = 𝜎𝑍). The material
parameters are presented in Table 8.6. In addition, the simulation is conducted as the same
as 2D production horizontal well.

Parameter Value Variable [unit]
Young’s modulus 5000.0 𝐸 MPa

Poisson’s ratio 0.2 𝜈
Biot’s coefficient 1 𝛼

Fluid compressibility 0 𝑐𝑓 MPa−1

Fluid dynamic viscosity 1 × 10−3 𝜂 Pa s
Initial porosity 0.1 𝜑∘

Initial Abs. permeability 1 × 10−13 𝜅∘ m2

Permeability coefficient 30.0 𝒵
𝐴 55.0 MPa
𝐵 0.028 MPa−1

𝐶 50.0 MPa
𝐷 0.0001 MPa−1

𝑊 0.0002
𝑅 3.0
𝑋∘ -80.0 MPa

Table 8.6: Parameters employed for a 3D reservoir with a horizontal production well.

All the plots presented in Figure 8.10 and Figure 8.11 are reported for two different time
values 𝑡 = {1.0, 10.0} [d]. The Figure 8.10 at top-left position displays the longitudinal sub-
sidence (parallel to the direction of wellbore) and the Figure at top-right presents transverse
subsidence (perpendicular to the direction of wellbore). It can be seen that from Figure
8.10 the effect of vertical stress on the subsidence triggered by the reservoir pressure change.
The plot is rendered at the reservoir top. As it is expected that the maximum subsidence
is occurred when the in-situ stress ratio is greater. The Figure 8.10 at bottom-left position
presents the longitudinal porosity change and at bottom-right position presents the trans-
verse porosity change due to pressure drop. It can be seen, that the porosity decreases with
increasing the reservoir compaction.
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Figure 8.10: 3D reservoir with horizontal production well. (top-left) longitudinal displace-
ment, (top-right) transverse displacement, (bottom-left) longitudinal porosity, and (bottom-
right) transverse porosity.

The Figure 8.11 at top-left position presents the longitudinal permeability change and at
top-right position presents transverse permeability change due to pressure drop while vertical
total stress 𝜎𝑣 is kept constant along the simulation time. The Figure allows to understand
that the permeability decreases with increasing the reservoir compaction. The Figure 8.11
at bottom-left and bottom-right position show the variation of radial flux for both cases.
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Figure 8.11: 3D reservoir with horizontal production well under hydrostatic condition. (top-
left) longitudinal permeability, (top-right) transverse permeability, (bottom-left) longitudinal
radial flux, and (bottom-right) transverse radial flux.

The Figure 8.12 at top-left position presents the distribution of displacement under hy-
drostatic condition, in which the surface subsidence is occurred clearly. The Figure 8.12 at
top-right shows the distribution of porosity under hydrostatic condition where the porosity
reduction near to wellbore is because of pressure depletion. The Figure 8.12 at bottom-left
displays the permeability distribution under hydrostatic condition near the wellbore. The
Figure 8.12 at bottom-right shows the radial flux distribution under hydrostatic condition
near the wellbore. It can be observed that from only geomechanical effects the wellbore region
deteriorates the productivity index associated with the case when is considered a constant
permeability and no geomechanical effects.



177

Figure 8.12: 3D reservoir with horizontal production well. (top-left) displacement distribu-
tion in y direction, (top-right) porosity distribution, (bottom-left) permeability distribution,
and (bottom-right) radial flux distribution.

8.5 Conclusions
This chapter presents,

∙ The onset of pore collapse and shear-enhanced compaction was obtained using three meth-
ods: firstly using the plasticity cap model, second the model of Wong, and third the shear
bands of Rudnicki.

∙ In order to be able to analyze the effect of pore collapse and shear-enhanced compaction
on the reservoir, the coupled poro-elastoplastic and permeability was proposed, in which
the DiMaggio-Sandler and nonlinear Davies permeability model were used.

∙ The onset of pore collapse and shear-enhanced compaction was shown by implementing the
hydrostatic and triaxial compression test, respectively. The results demonstrated that the
onset of pore collapse and shear-enhanced compaction is clear, where the plastic volumetric
strain begins. The capability of DiMaggio-Sandler to see the onset & post-pore collapse
and shear-enhanced compaction was presented. The pore collapse and shear-enhanced
compaction were recognizable by using the method of Wong and Rudnicki. In addition,
the effect of pore collapse and shear-enhanced compaction on porosity and permeability
was analyzed, in which by increasing the effective stress, the reduction of porosity and
permeability increase. The results demonstrated that while the pore collapse and shear-
enhanced compaction are accrued, the change of variables would be irreversible. It means,



178

the deformation is irreversible and consequently the lost of porosity and permeability is
irreversible.

∙ The impact of pore collapse and shear-enhanced compaction on horizontal well production
was analyzed. The results showed that the pore collapse and shear-enhanced compaction
can occur in a horizontal well. The results indicated that the porosity and permeability
are decreased by increasing the effective mean stress. This change also was appeared for
radial flux. In addition, the numerical results emphasized the importance of in-situ stress
ratio 𝑘𝑠 on petrophysical properties during the well production.

∙ The importance of pore collapse and shear-enhanced compaction during horizontal wellbore
drilling was analyzed. The results showed that the pore collapse and shear-enhanced
compaction are occurred during wellbore drilling. The results expressed that the porosity
and permeability are reduced by increasing the effective mean stress. This change also was
appeared for radial flux.

∙ The three-dimensional modelling of reservoir with a horizontal production well was imple-
mented. The simulation was conducted as same as the two-dimensional horizontal well.
The results indicated that by increasing the effective stress, the subsidence (both longitu-
dinal and transverse) increases and consequently the quantity of porosity and permeability
decreases.



179

Chapter 9

Automatic calibration of
physics-based elastoplastic models

9.1 Introduction
In recent years, the evolution of computer provides the opportunity to analyze the com-

plex problems using numerical simulations. In spite of the many improvements, discrepan-
cies between observed data and predictions from numerical modelling are existed (Brand
and Premchitt, 1989). In addition, porous rock displays a very complex behavior, conse-
quently, high quality solutions of numerical modelling requires the realistic parameters for
the constitutive models (Fossum, Senseny, Pfeifle, and Mellegard, 1995).

Generally, to overcome the uncertainties while calibrating the model parameters, math-
ematical optimization procedure can be used. The optimization method basically consists
of two parts, the formulation of an objective function and the selection of an optimization
strategy (Mattsson, Klisinski, and Kennet Axelsson, 2001). The optimization procedures that
have been applied to many geotechnical and geomechanical problems are: Iterative optimiza-
tion method (Cekerevac, Girardin, Klubertanz, and Laloui, 2006; Navarro, Candel, Barenca,
Yustres, and García, 2007; Doherty, Alguire, and Wood, 2012), Inverse analysis (Calvello and
Richard J Finno, 2004; Karakus and Fowell, 2005; Shuku, A. Murakami, Nishimura, Fujisawa,
and Nakamura, 2012), Genetic algorithm (Macari, Samarajiva, and Wathugala, 2005; Javadi,
Rezania, and Nezhad, 2006), and Artificial neural network (Sidarta and Ghaboussi, 1998;
Obrzud, Vulliet, and Truty, 2009). Previous studies emphasize the capability of the iterative
optimization method to derive the appropriate elastoplastic model parameters (Mattsson,
Klisinski, and Kennet Axelsson, 2001; Cekerevac, Girardin, Klubertanz, and Laloui, 2006;
Doherty, Alguire, and Wood, 2012). Then, in this study, the calibration of elastoplastic
physics-based is done by using the iterative optimization method.

At the beginning of the following chapter, the mathematical aspect of iterative optimiza-
tion methods is presented. The optimization method is applied to calibrate elastoplastic
material parameters. The elastoplastic models that form the objective function for optimiza-
tion method are linear elasticity, Mohr-Coulomb, DiMaggio-Sandler, nonlinear elasticity,
and modified Cam-Clay plasticity model. The laboratory database are obtained from three
types of loading conditions, e.g., triaxial, oedometric, and hydrostatic. The calibration of
Mohr-Coulomb and DiMaggio-Sandler plasticity model parameters are also done by using
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the optimization methods provided by NLopt library. Finally, after calibration the physic-
based elastoplastic models, a home-made finite element simulator, called plastic-adjust is
used to evaluate the accuracy of the material parameters. The stress-strain relationship
of the porous rock sample is simulated by the home-made simulator with Mohr-Coulomb,
DiMaggio-Sandler, and modified Cam-Clay model, for which the elastoplastic parameters are
identified using the iterative optimization method.

9.2 Optimization procedure
Mathematical optimization is a principle that is applied for any problem consisting of

decision making, whether in engineering, mathematics, computer science, or others. The
purpose of decision-making is to select the "best" decision among available alternatives. The
measure of goodness of the various alternatives is defined by an objective function 𝐹 : R𝑛 →
R which is a real-valued function (Mattsson, Klisinski, and Kennet Axelsson, 2001; Chong
and Zak, 2001). The iterative methods are one kind of the optimization method that can solve
the nonlinear problems. Generally, there are two types of iterative optimization algorithms
for solving the problems, such as:

• Derivative-free optimization. It finds solutions only by using the objective function
and it doesn’t require a derivative information (Rios and Sahinidis, 2012).

• Gradient-based optimization. It finds solutions by using the objective function and
derivatives (Weitao Chen, Diest, Kao, Marthaler, Sweatlock, and Osher, 2013).

9.2.1 Objective function
The objective function for a given set of parameters, evaluates the discrepancy between

model prediction and experimental data as shown in Figure 9.1. The objective function is
(Cekerevac, Girardin, Klubertanz, and Laloui, 2006):

𝐹 (x) = 1
𝑡− 𝑡∘

∫︁
‖Y𝑛 − Y𝑚‖ 𝑑𝑡 (9.2.1)

where (𝑡 − 𝑡∘) is the duration of observation and ‖𝑌 𝑛 − 𝑌 𝑚‖ is the norm of the difference
between measurement data 𝑌 𝑚, and numerical results 𝑌 𝑛, for a given set of parameters.
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Figure 9.1: A schematic plot of the optimization procedure to minimize the difference
between measurement and numerical results.

The objective function must be positive definite and it should be constructed on the basis
of independent state variables such as: principal stresses 𝜎𝑖 (𝑖 = 1, 2, 3), principal strains
𝜖𝑖 (𝑖 = 1, 2, 3) and others (Cekerevac, Girardin, Klubertanz, and Laloui, 2006). The equation
(9.2.1) can be defined as a sum of individual norms of independent state variables at such
discrete points which are known for experimental and numerical result. For instance, the
objective function 𝑓 𝑡 (x) for one experimental test based on the principal stress state, is
defined as:

𝑓 𝑡 (x) = 1∑︀𝑛
𝑖=1

∑︀3
𝑗=1 𝑤𝑗𝑖

{︃
𝑛∑︁

𝑖=1

1
𝜎2

∘
(𝜎𝑛

𝑖 − 𝜎𝑚
𝑖 )2

}︃
(9.2.2)

where 𝜎𝑚
𝑖 and 𝜎𝑛

𝑖 are the measured and numerical stress, respectively. 𝑛 is the number of mea-
surement points, 𝑤𝑗 is the weighting matrix which can almost consider different types of errors
in the measurement of the state variable and 𝜎∘ is the scaling factor necessary to transform
the measurement variable into non-dimensional quantity which is 𝜎∘ = 𝑚𝑎𝑥 {𝜎𝑚

𝑖 } , 𝑖 = 1, 𝑛.
The final form of objective function comes from the sum of experimental test numbers

𝑛𝑡, as follows:
𝐹 (x) = 1∑︀𝑛𝑡

𝑡=1 𝑤
𝑡

𝑛𝑡∑︁
𝑡=1

𝑓 𝑡 (x) (9.2.3)

where 𝑤𝑡 is the weighting factor.
From mathematical point of view, optimization problem involves minimization of the

objective function, as 𝐹 (x) → 𝑚𝑖𝑛 (Mattsson, Klisinski, and Kennet Axelsson, 2001).
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9.2.2 Gradient-based optimization methods
In this study, the gradient based optimization methods such as, Newton and Gradient

descent method are used and implemented in NeoPZ to calibrate the elastoplastic physics-
based models.

• Newton method. Newton’s method is a root-finding algorithm which uses first and
second derivatives and produces a better approximation if the initial point is close to the
minimizer (Chong and Zak, 2001). The Newton method is defined using the derivative
∇𝐹 (x), and the inverse of the Hessian matrix, 𝐻𝐹 (x), as:

x𝑛+1 = x𝑛 − [𝐻𝐹 (x𝑛)]−1 ∇𝐹 (x𝑛) , 𝑛 ≥ 0 (9.2.4)

• Gradient descent method. Gradient descent is a first-order iterative optimization
algorithm for finding the minimum of the objective function 𝐹 (x). It seeks to minimize
the function in the gradient direction. The method is (Bazaraa, 2006):

x𝑛+1 = x𝑛 − 𝛾𝑛∇𝐹 (x𝑛) , 𝑛 ≥ 0 (9.2.5)

where x𝑛 is the solution at 𝑛 step and 𝛾𝑛∇𝐹 (x𝑛) is the search direction.

Generally, Newton’s method is preferable to calibrate the model parameters because of
its higher convergence rate. However, Newton method requires inversion of Hessian matrix
which may contain negative eigenvalues or be singular. In these circumstances, the gradient
descent method is used.

Remark 1: To produce accurate estimates by using gradient based optimization, we propose
an analytical equation based on the test results to compute a good initial guess 𝑥0 for
each parameter. From an implementation point of view, this initial guess is immediately
determined once measurement data are filtered.

9.2.3 Methodology to calibrate model parameters
The calibration of model parameters is carried out considering the following steps:

• Selection of a constitutive model for calibration that requires a minimum number of
test data;

• Filtering test data using engineering experience in order to choose the most relevant
data;

• Specifying the priority of parameters for the calibration of a constitutive model;

• Definition of the appropriate objective function associated with a specific set of param-
eters;

• Developing analytical equation for computing a good initial guess for each parameter;
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• Finding a local minimum of the objective function which depends on the allowable
tolerance value

⃦⃦⃦
x𝑛+1 − x𝑛

⃦⃦⃦
≤ 𝜀𝑡, number of iterations 𝑛𝑖𝑡, and a validity of solution

x𝑛+1;

• Evaluating the adequacy of a model calibration using a comparison between numerical
and experimental results.

The optimization procedure is summarized in the algorithm 9.1.

Algorithm 9.1 The iterative optimization procedure
Filtering experimental data
Defining objective function
Initializing model parameters using analytical equations
while ‖x* − x‖ < 𝜀𝑡 and number of iterations < max 𝑛𝑖𝑡 do
𝐹 (x*) → 𝜖𝑡

if 𝐹 (x*) ≤ 𝐹 (x) then
Stop optimization procedure
Return x*

end if
if x* is accepted using engineering point of view then

Return x* as the correct value of parameter
end if

end while
return x*

In this study, the calibration of plasticity model parameters is also done by the optimiza-
tion methods provided by NLopt library. It is done for Mohr-Coulomb and DiMaggio-Sandler.

The results of the optimization methods from current study and NLopt are compared
with experimental data in order to evaluate the accuracy of the material parameters.

9.2.4 NLopt optimization algorithms
NLopt is a free/open-source library for nonlinear optimization providing a collection of

different optimization algorithms (S. G. Johnson, 2010). The NLopt iterative optimization
algorithms which are applied in this study to calibrate plasticity model parameters are listed
in Table 9.1.
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Num. NLopt optimization algorithms Code
Derivative-free based

1 Unconstrained optimization via quadratic NLOPT_LN_NEWUOA

2 Bound-constrained optimization via quadratic NLOPT_LN_BOBYQA

Gradient based
3 Truncated Newton NLOPT_LD_TNEWTON

4 Sequential Quadratic Programming NLOPT_LD_SLSQP

Table 9.1: NLopt iterative algorithms (Kraft, 1994; Powell, 2008; Powell, 2009; Udit Kumar,
2016).

Among the NLopt’s algorithms, the most appropriate one is selected to calibrate model
parameters based on the allowable tolerance value and validity of the solution.

9.3 Elastoplastic constitutive model
The elastoplastic models that form the objective function for optimization method are

linear & nonlinear elasticity, Mohr-Coulomb, DiMaggio-Sandler, and modified Cam-Clay
plasticity model.

9.3.1 Linear elastic law
The linear elastic in equation (3.2.3) is rewritten as:

𝜎 = 2𝜇𝜖𝑒 + 𝜆𝑡𝑟 (𝜖𝑒) I (9.3.1)
where the parameters 𝜇 and 𝜆 are the elasticity material property [MPa] and 𝜎 [MPa] is the
effective stress. In this chapter, in the absence of pore pressure 𝑝 [MPa], the effective stresses
are equal to the total stresses 𝜎𝑡 [MPa], where 𝜎𝑡 = 𝜎 − 𝛼 𝑝 I.

9.3.2 Mohr-Coulomb plasticity model
The Mohr-Coulomb plasticity model in equation (3.2.31) is rewritten as:

𝜏𝑚 = 𝑐− 𝜎𝑛 tan(𝑓𝑟) (9.3.2)
where 𝑐 [MPa] and 𝑓𝑟 [°] are the material property constants.

9.3.3 DiMaggio-Sandler cap plasticity model
The original DiMaggio-Sandler plasticity model was presented by DiMaggio and I. San-

dler, 1971. The yield function Φ of DiMaggio-Sandler is defined by a failure function 𝐹𝑓 , and
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a cap function 𝐹𝑐, as follows:

Φ =

⎧⎪⎪⎨⎪⎪⎩
𝐹𝑓 =

√︁
𝐽2 − 𝐹𝑠(𝐼1),

𝐹𝑐 = ( 𝐼1 − 𝐿

𝑅𝐹𝑠(𝐿))2 + (
√
𝐽2

𝐹𝑠(𝐿))2 − 1,
𝐼1 > 𝐿

𝐿 > 𝐼1 > 𝑋
(9.3.3)

with,

𝐹𝑠 (𝜄) = 𝐴− 𝐶 exp (𝐵 𝜄) 𝑋 = 𝐿−𝑅𝐹𝑠(𝐿) (9.3.4)
and

𝜖𝑝𝑣 = 𝑊 (𝑒𝑥𝑝[𝐷 (𝑋 −𝑋∘)] − 1) (9.3.5)

where 𝐴 [MPa], 𝐵
[︁
MPa−1

]︁
, 𝐶 [MPa], 𝐷

[︁
MPa−1

]︁
, and 𝑊 are the material property con-

stants. 𝑅 is the ratio of principal ellipse radii of the cap surface, and 𝑋∘ is the initial cap
position [MPa].

9.3.4 Modified Cam-Clay plasticity model
The yield function of the modified Cam-Clay in equation (3.2.62) with considering the

nonlinear elasticity is rewritten as:

Φ =
[︂
𝑃 − 𝑝𝑡 + 𝑎

𝑏 𝑎

]︂2
+
[︂
𝑄

𝑀 𝑎

]︂2
− 1 (9.3.6)

where

𝑄 = 𝑀𝑃 𝑝𝑐 = (1 + 𝑏) 𝑎− 𝑝𝑡 (9.3.7)
and

𝑣𝑐 = 𝑣∘
𝑐 − 𝐶𝑝 ln

(︃
𝑝𝑐

𝑝∘
𝑐

)︃
𝑣𝑠 = 𝑣∘

𝑠 − 𝐶𝑒 ln
(︂
𝑃𝑠

𝑃 ∘

)︂
(9.3.8)

where 𝑃 ∘ [MPa], 𝑝𝑡 [MPa], 𝐶𝑒, 𝐶𝑝, and 𝑀 are the material property constants. 𝑏 is the ratio
of principal ellipse radii of the hardening surface, and 𝑝∘

𝑐 [MPa] is the initial preconsolidation
pressure [MPa].

9.4 Laboratory tests
The laboratory tests are conducted on a collection of samples of carbonate reservoir rocks.

The tests were run at Cenpes/Petrobras, Brazil. The database was obtained using three types
of loading conditions, e.g., triaxial, oedometer, and hydrostatic, as summarized in Table 9.2.
The data obtained are used as input for calibration of physics-based elastoplastic models.
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Name Control Triaxial Oedometer Hydrostatic

Axial stress rate
[︁
Pa s−1

]︁
.
𝜎𝑎

.
𝜎𝑎

.
𝜎𝑐

Confining stress rate
[︁
Pa s−1

]︁
.
𝜎𝑐

.
𝜎𝑐

.
𝜎𝑐

Axial strain rate
[︁
s−1
]︁

.
𝜖𝑎

.
𝜖𝑎

Lateral strain rate
[︁
s−1
]︁

.
𝜖𝑙 0

Table 9.2: The types of loading conditions.

• Triaxial compression loading: It is performed using a standard machine where a fixed
confining pressure is maintained while the differential stress is axially applied.

• Oedometer consolidation loading: It is performed using a standard machine where
prevents lateral displacement of a sample, but allows the sample to compress axially in
response to the changes of applied load.

• Hydrostatic compression loading: It is performed using a standard machine where the
confining pressure is applied equally in all directions.

9.5 Calibration of physics-based linear elasticity
The constitutive law of a material in linear elastic regime in the equation (9.3.1) is rewrit-

ten as:

𝜎𝑡 − 𝜎∘
𝑡 = 2𝜇 (𝜖𝑒 − 𝜖∘

𝑒) + 𝜆𝑡𝑟 (𝜖𝑒 − 𝜖∘
𝑒) 𝐼 (9.5.1)

where 𝜎∘
𝑡 [MPa] is the initial total stress tensor and 𝜖∘

𝑒 is the initial elastic strain tensor.
The material parameters of linear elasticity (𝜇 , 𝜆) are computed using both the unloading

and reloading parts of laboratory test results. The calibration of linear elasticity is carried
out separately for each loading condition e.g., triaxial, oedometer, and hydrostatic.

9.5.1 Calibration of linear elasticity using triaxial test
The objective function to calibrate the linear elasticity parameters from triaxial test data

is defined as follows:
𝑓𝑡𝑟𝑖 =

𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ : Δ (9.5.2)

where 𝑛𝑝𝑡𝑠 is the number of experimental data and Δ is:

Δ = 𝜎𝑡 − 𝜎∘
𝑡 − 𝐸

(1 + 𝜈) (𝜖𝑒 − 𝜖∘
𝑒) − 𝐸𝜈

(1 + 𝜈) (1 − 2𝜈)𝑡𝑟 (𝜖𝑒 − 𝜖∘
𝑒) 𝐼 (9.5.3)

where 𝐸 [MPa] is the Young’s modulus and 𝜈 is the Poisson’s ratio. The initial stress tensor
is defined as follows:

𝜎∘
𝑡 =

⎛⎜⎝ 𝜎∘
𝑎 0 0

0 𝜎∘
𝑐 0

0 0 𝜎∘
𝑐

⎞⎟⎠ (9.5.4)
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The initial elastic strain tensor 𝜖∘
𝑒 can adopt with the first point of data, i.e., 𝜖∘

𝑒 = 𝜖𝑖
𝑒; 𝑖 = 1.

It is also possible to define 𝜖∘
𝑒, as the same as 𝜎∘

𝑡 . However, the purpose is to compute
accurately the parameters 𝐸, 𝜈, and 𝜎∘

𝑡 with optimization method. The Hessian matrix
[𝐻𝑓𝑡𝑟𝑖]−1 and the gradient of objective function ∇𝑓𝑡𝑟𝑖 are defined as follows:

[𝐻𝑓𝑡𝑟𝑖] = 𝐽 (∇𝑓𝑡𝑟𝑖)T (9.5.5)

∇𝑓𝑡𝑟𝑖 =
(︃
𝜕𝑓𝑡𝑟𝑖

𝜕𝐸
,
𝜕𝑓𝑡𝑟𝑖

𝜕𝜈
,
𝜕𝑓𝑡𝑟𝑖

𝜕𝜎∘
𝑎

,
𝜕𝑓𝑡𝑟𝑖

𝜕𝜎∘
𝑐

)︃
(9.5.6)

where 𝐽 is the Jacobian matrix. In order to apply optimization methods in the equations
(9.2.4) and (9.2.5), the initial guess is considered as:(︁

𝐸0, 𝜈0, 𝜎0
𝑎, 𝜎

0
𝑐

)︁T
= (0, 0, 0, 0)T (9.5.7)

Calibration of 𝐸 and 𝜈 using triaxial test

The calibration of 𝐸 and 𝜈 are accomplished by using triaxial test data and the results
are given in Table 9.3. In addition, a comparison between experimental and numerical results
(𝜖𝑎 versus 𝜎𝑎) is shown graphically in Figure 9.2.

Parameter Numeric value
Young’s modulus, 𝐸 [MPa] 4110.72

Poisson’s ratio, 𝜈 0.295099

Table 9.3: Calibration of 𝐸 and 𝜈 by using triaxial test data.

Figure 9.2: Plot of axial strain vs. axial stress from triaxial test.
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9.5.2 Calibration of linear elasticity using oedometer test
The calibration of linear elasticity using oedometer test results is completed similar to

the triaxial test. The objective function is written as follows:

𝑓𝑜𝑒𝑑 =
𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ : Δ (9.5.8)

where

Δ = 𝜎𝑡 − 𝜎∘
𝑡 − 𝑀 (1 − 2𝜈)

(1 − 𝜈) (𝜖𝑒 − 𝜖∘
𝑒) − 𝑀𝜈

(1 − 𝜈)𝑡𝑟 (𝜖𝑒 − 𝜖∘
𝑒) 𝐼 (9.5.9)

where 𝑀 is the elastic uniaxial strain modulus (or oedometric moduli)[MPa]. In order to
calculate the parameters 𝑀 , 𝜈, and 𝜎∘

𝑡 using optimization methods in the equations (9.2.4)
and (9.2.5), the Hessian matrix [𝐻𝑓𝑜𝑒𝑑]−1 and the gradient of objective function ∇𝑓𝑜𝑒𝑑 are
expressed as follows:

[𝐻𝑓𝑜𝑒𝑑] = 𝐽 (∇𝑓𝑜𝑒𝑑)T (9.5.10)

∇𝑓𝑜𝑒𝑑 =
(︃
𝜕𝑓𝑜𝑒𝑑

𝜕𝑀
,
𝜕𝑓𝑜𝑒𝑑

𝜕𝜈
,
𝜕𝑓𝑜𝑒𝑑

𝜕𝜎∘
𝑎

,
𝜕𝑓𝑜𝑒𝑑

𝜕𝜎∘
𝑐

)︃
(9.5.11)

The initial guess is given as:(︁
𝑀

0
, 𝜈

0
, 𝜎

0

𝑎, 𝜎
0

𝑐

)︁T
= (0, 0, 0, 0)T (9.5.12)

Calibration of 𝑀 and 𝜈 using oedometer test

The calibration of 𝑀 and 𝜈 are done using oedometer test data and the results are
reported in Table 9.4. In addition, a comparison between experimental and numerical results
(𝜖𝑎 versus 𝜎𝑎) is displayed graphically in Figure 9.3.
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Figure 9.3: Plot of axial strain vs. axial stress from oedometer test.

Parameter Numeric value
Oedometric moduli, 𝑀 [MPa] 6225.68

Poisson’s ratio, 𝜈 0.235807

Table 9.4: Calibration of 𝑀 and 𝜈 by using oedometer test data.

9.5.3 Calibration of linear elasticity using hydrostatic test
To calibrate the linear elasticity using hydrostatic test data, the constitutive law in equa-

tion (9.5.1) is modified by applying the trace formula, as:

𝑡𝑟 (𝜎𝑡) − 𝑡𝑟 (𝜎∘
𝑡 ) = 2𝜇 𝑡𝑟 (𝜖𝑒 − 𝜖∘

𝑒) + 3𝜆𝑡𝑟 (𝜖𝑒 − 𝜖∘
𝑒) (9.5.13)

by considering 𝑡𝑟 (𝜎𝑡) = 𝜎𝑣, 𝑡𝑟 (𝜎∘
𝑡 ) = 𝜎∘

𝑣 , 𝑡𝑟 (𝜖∘
𝑒) = 𝜖∘

𝑣, 𝑡𝑟 (𝜖𝑒) = 𝜖𝑣, and Bulk modulus is
𝐾 = 𝜆+ 2

3𝜇, the objective function is represented as:

𝑓ℎ𝑦𝑑 =
𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ.Δ (9.5.14)

where

Δ = 1
3(𝜎𝑣 − 𝜎∘

𝑣) −𝐾 (𝜖𝑣 − 𝜖∘
𝑣) (9.5.15)

where the initial volumetric stress is 𝜎∘
𝑣 = 3𝜎∘

𝑐 . In order to estimate, the parameters 𝐾 and
𝜎∘

𝑐 using optimization methods in equations (9.2.4) and (9.2.5), the Hessian matrix [𝐻𝑓ℎ𝑦𝑑]−1



190

and the gradient of objective function ∇𝑓ℎ𝑦𝑑 are written as follows:

[𝐻𝑓ℎ𝑦𝑑] = 𝐽 (∇𝑓ℎ𝑦𝑑)T (9.5.16)

∇𝑓ℎ𝑦𝑑 =
(︃
𝜕𝑓ℎ𝑦𝑑

𝜕𝐾
,
𝜕𝑓ℎ𝑦𝑑

𝜕𝜎∘
𝑐

)︃
(9.5.17)

The initial guess is: (︁
𝐾0, 𝜎0

𝑐

)︁T
= (0, 0)T (9.5.18)

Calibration of 𝐾 using hydrostatic tests

The calibration of 𝐾 is performed using hydrostatic test data and the results are given
in Table 9.5. In addition, a comparison between experimental and numerical results (𝜖𝑣 vs
𝜎𝑐) is illustrated graphically in Figure 9.4.

Parameter Bulk modulus, 𝐾 [MPa]
Time period Numeric value
5003-6200 2828.62
9804-12203 2794.91
17004-20406 2803.25
26604-31403 2725.65
38604-44602 2571.55

Table 9.5: Calibration of 𝐾 by using hydrostatic test data.

Figure 9.4: Plot of volumetric strain vs. confining stress from hydrostatic test.
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9.6 Calibration of physics-based Mohr-Coulomb model
The objective function to calibrate the physics-based Mohr-Coulomb plasticity from fail-

ure points of triaxial test data is defined as follows:

𝑓𝑀𝐶 =
𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ.Δ (9.6.1)

where

Δ = 𝜏𝑚 − 𝜎𝑛 tan (𝑓𝑟) − 𝑐 (9.6.2)

𝜏𝑚 = 𝜎𝑎 − 𝜎𝑟

2 𝑎𝑛𝑑 𝜎𝑛 = 𝜎𝑎 + 𝜎𝑟

2 (9.6.3)

where 𝜏𝑚 and 𝜎𝑛 are the shear strength and the normal stress at failure points, respectively.
The Mohr-Coulomb material parameters, including 𝑐 [MPa] is the cohesion and 𝑓𝑟 [°] is the
friction angle. The both material parameters are computed using optimization methods in
equations (9.2.4) and (9.2.5). The Hessian matrix [𝐻𝑓𝑀𝐶 ]−1 and the gradient of objective
function ∇𝑓𝑀𝐶 are presented as follows:

[𝐻𝑓𝑀𝐶 ] = 𝐽 (∇𝑓𝑀𝐶)T (9.6.4)

∇𝑓𝑀𝐶 =
(︃
𝜕𝑓𝑀𝐶

𝜕𝑓𝑟

,
𝜕𝑓𝑀𝐶

𝜕𝑐

)︃
(9.6.5)

9.6.1 Estimation of initial guess for 𝑐 and 𝑓𝑟

The initial guess for parameters 𝑐 and 𝑓𝑟 are determined by analytical equations. The
proposed equations are developed using experimental data that are at least two points. The
points can be the extreme points, namely 𝑝𝑡1 = {𝜎𝑛1 , 𝜏𝑚1} and 𝑝𝑡2 = {𝜎𝑛2 , 𝜏𝑚2}, where
𝜎𝑛2 > 𝜎𝑛1 . The analytical equations are derived by taking the derivative of 𝜏𝑚 with respect
to 𝜎𝑛, as:

𝜏𝑚 = 𝜎𝑛 tan (𝑓𝑟) + 𝑐 ⇒ 𝑑𝜏𝑚

𝑑𝜎𝑛

= tan (𝑓𝑟) (9.6.6)

The parameter 𝑓𝑟 is estimated by:

𝑓𝑟 = arctan
(︃
𝑑𝜏𝑚

𝑑𝜎𝑛

)︃
⇒ 𝑓𝑟𝑒𝑠𝑡 = arctan

(︃
𝜏𝑚2 − 𝜏𝑚1

𝜎𝑛2 − 𝜎𝑛1

)︃
(9.6.7)

The parameter 𝑐 is computed by:

𝑐 = 𝜏𝑚 − 𝜎𝑛 tan (𝑓𝑟) ⇒ 𝑐𝑒𝑠𝑡 =
2∑︁

𝑧=1
(𝜏𝑚𝑧 − 𝜎𝑛𝑧 tan (𝑓𝑟)) (9.6.8)

The initial guesses for 𝑐 and 𝑓𝑟 are considered as:(︁
𝑓 0

𝑟 , 𝑐
0
)︁T

= (𝑓𝑟𝑒𝑠𝑡 , 𝑐𝑒𝑠𝑡)T (9.6.9)
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9.6.2 Calibration of 𝑐 and 𝑓𝑟 by using the failure points
The Mohr-Coulomb material parameters are calibrated using the failure points of four

triaxial tests. The parameters 𝑐 and 𝑓𝑟 are computed and presented in Table 9.6. Moreover, a
comparison between experimental and numerical results (𝜏𝑚 versus 𝜎𝑛) is shown graphically
in Figure 9.5. The results demonstrate clearly the capability of the optimization procedure.

Parameter Numeric value NLopt value
Young’s modulus, 𝐸 [MPa] 2693.74 2693.74

Poisson’s ratio, 𝜈 0.105264 0.105264
𝑐 [MPa] 3.47113 3.47114
𝑓𝑟 [°] 19.1662 19.1662

Table 9.6: Material parameters calibrated for Mohr-Coulomb with NLopt and current study.

Figure 9.5: The Mohr-Coulomb material parameters. (left) calibration based on the four
failure points data, and (right) proposed calibration with all triaxial test data.

9.6.3 A comparison of numerical and experimental for Mohr-Coulomb
The stress-strain relationship of the porous rock sample is simulated by the home-made

simulator with Mohr-Coulomb, for which the elastoplastic material parameters are identified
in Table 9.6 by using the iterative optimization methods. The validity of the proposed
material identification is investigated by comparing the numerical results with experimental
test data, as illustrated in Figure 9.6.

The results from Figure 9.6 almost verify the effectiveness of the optimization procedure
for physics-based identification of the Mohr-Coulomb elastoplastic model. However, the
differences between numerical and experimental are principally because the experimental
data are real data subjected to noise, systematic and spurious influences, but Mohr-Coulomb
was developed based on simplifications and assumptions that not entirely aligned with the
real behavior of materials.
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Figure 9.6: A comparison between numerical (NLopt, current study) and experimental
results. (left) axial strain vs. axial stress, (right) and shear strain vs. shear stress.

9.7 Calibration of physics-based DiMaggio-Sandler model
The calibration of physics-based DiMaggio-Sandler elastoplastic model is carried out sep-

arately for failure and cap functions using the laboratory test data.

9.7.1 Laboratory test data to calibrate DiMaggio-Sandler
The DiMaggio-Sandler material parameters are calculated using three types of loading

conditions as presented in Table 9.7.

Parameter Triaxial Oedometer Hydrostatic
𝐴 MPa X
𝐵 MPa−1 X
𝐶 MPa X
𝐷 MPa−1 X

𝑊 X
𝑅 X

𝑋∘ MPa X

Table 9.7: Type of load conditions to calibrate DiMaggio-Sandler model’s parameters.

9.7.2 Calibration of failure function parameters
The objective function to calibrate the physics-based of failure function of DiMaggio-

Sandler model from failure points of triaxial test is expressed as follows:

𝑓𝐹 𝐷𝑆 =
𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ.Δ (9.7.1)
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where

Δ =
√︁
𝐽2 − 𝐴+ 𝐶 exp (𝐵 𝐼1) (9.7.2)

The material parameters of failure function are 𝐴, 𝐵, and 𝐶, which are computed using
optimization methods in equations (9.2.4) and (9.2.5). The Hessian matrix [𝐻𝑓𝐹 𝐷𝑆]−1 and
the gradient of objective function ∇𝑓𝐹 𝐷𝑆 are defined as follows:

[𝐻𝑓𝐹 𝐷𝑆] = 𝐽 (∇𝑓𝐹 𝐷𝑆)T (9.7.3)

∇𝑓𝐹 𝐷𝑆 =
(︃
𝜕𝑓𝐹 𝐷𝑆

𝜕𝐴
,
𝜕𝑓𝐹 𝐷𝑆

𝜕𝐵
,
𝜕𝑓𝐹 𝐷𝑆

𝜕𝐶

)︃
(9.7.4)

Estimation of initial guess for 𝐴, 𝐵, and 𝐶

The initial guess for parameters 𝐴, 𝐵, and 𝐶 are estimated by analytical equations. The
proposed equations are developed using triaxial test data that are at least three points. The
points can be extremes and an intermediate point. The analytical equations are developed
by considering 𝜁 =

√︁
𝐽2 and 𝐼 = 𝐼1, and taking the derivative of 𝜁 with respect to 𝐼, as:

𝜁 = 𝐴− 𝐶 exp (𝐵 𝐼) ⇒ 𝜁
′ = 𝑑𝜁

𝑑𝐼
= −𝐶 𝐵 exp (𝐵 𝐼) (9.7.5)

The three selected points are called 𝑝𝑡1 = {𝐼1, 𝜁1}, 𝑝𝑡2 = {𝐼2, 𝜁2}, and 𝑝𝑡3 = {𝐼3, 𝜁3},
where 𝐼3 < 𝐼2 < 𝐼1.

Estimation of 𝐵

By taking two points 𝑝𝑡𝑧 and 𝑝𝑡𝑤, the derivative 𝜁 ′ for each point is obtained as:

𝜁
′

𝑧 = −𝐶 𝐵 exp (𝐵 𝐼𝑧)
𝜁

′

𝑤 = −𝐶 𝐵 exp (𝐵 𝐼𝑤) (9.7.6)

The parameter 𝐵 is computed by dividing 𝜁 ′

𝑧 by 𝜁 ′

𝑤:

𝜁
′
𝑧

𝜁 ′
𝑤

= exp (𝐵 𝐼𝑧)
exp (𝐵 𝐼𝑤) = exp (𝐵 (𝐼𝑧 − 𝐼𝑤))

ln
(︃
𝜁

′
𝑧

𝜁 ′
𝑤

)︃
= 𝐵 (𝐼𝑧 − 𝐼𝑤)

𝐵𝑒𝑠𝑡 =
ln
(︁
𝜁

′
𝑧/𝜁

′
𝑤

)︁
𝐼𝑧 − 𝐼𝑤

(9.7.7)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜁
′

𝑧
∼=
𝜁1 − 𝜁2

𝐼1 − 𝐼2

𝐼𝑧 = 𝐼1 + 𝐼2

2
𝜁

′

𝑤
∼=
𝜁3 − 𝜁2

𝐼3 − 𝐼2

𝐼𝑤 = 𝐼3 + 𝐼2

2

(9.7.8)

where the numbers 1, 2, 3 are index of three failure points.

Estimation 𝐶

By taking two points 𝑝𝑡𝑧 and 𝑝𝑡𝑤, the 𝜁 for each point is obtained as:

𝜁𝑧 = 𝐴− 𝐶 exp (𝐵 𝐼𝑧)
𝜁𝑤 = 𝐴− 𝐶 exp (𝐵 𝐼𝑤) (9.7.9)

The parameter 𝐶 is gotten by subtracting 𝜁𝑤 from 𝜁𝑧, as:

(𝜁𝑧 − 𝜁𝑤) = −𝐶 (exp (𝐵 𝐼𝑧) − exp (𝐵 𝐼𝑤))
𝐶 = − 𝜁𝑧 − 𝜁𝑤

exp (𝐵 𝐼𝑧) − exp (𝐵 𝐼𝑤)
(9.7.10)

By selecting any pairs of three points 𝑝𝑡1, 𝑝𝑡2, and 𝑝𝑡3, the parameter 𝐶 can be computed
using equation (9.7.10). Here, the parameter 𝐶 is obtained from two extreme points, as:

𝐶𝑒𝑠𝑡 = − 𝜁1 − 𝜁3

exp (𝐵 𝐼1) − exp (𝐵 𝐼3)
(9.7.11)

Estimation 𝐴

The parameter 𝐴 is estimated using the below expression:

𝜁 = 𝐴− 𝐶 exp (𝐵 𝐼) ⇒ 𝐴 = 𝜁 + 𝐶 exp (𝐵 𝐼) (9.7.12)

Then,

𝐴𝑒𝑠𝑡 =
3∑︁

𝑧=1
(𝜁𝑧 + 𝐶 exp (𝐵 𝐼𝑧)) (9.7.13)

The initial guess for 𝐴, 𝐵, and 𝐶 is:(︁
𝐵0, 𝐶0, 𝐴0

)︁T
= (𝐵𝑒𝑠𝑡, 𝐶𝑒𝑠𝑡, 𝐴𝑒𝑠𝑡)T (9.7.14)
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Calibration of 𝐴, 𝐵, and 𝐶 using the failure points

The material parameters of failure function are calibrated using the failure points of four
triaxial tests. The parameters 𝐴, 𝐵, and 𝐶 are computed using the optimization methods
in equations (9.2.4), (9.2.5) and given in Table 9.8. In addition, a comparison between
experimental and numerical results (𝐼1 versus

√︁
𝐽2) is presented graphically in Figure 9.7.

The results show clearly the capability of the optimization procedure.

Figure 9.7: The DiMaggio-Sandler material parameters of failure function. (left) calibration
based on the four failure points data, and (right) plot of proposed calibration with all triaxial
test data.

Name A [MPa] B
[︁
MPa−1

]︁
C [MPa]

Numeric 15.091 0.0284035 15.9158
NLopt 15.0913 0.028401 15.916

Table 9.8: The material parameters calibrated for failure function of DiMaggio-Sandler
model with NLopt and current study.

9.7.3 Calibration of cap function parameters

The cap function of DiMaggio-Sandler model 𝐹𝑐(𝐼1,
√︁
𝐽2, 𝐿) in equation (3.2.38) is rewrit-

ten as:

𝐹𝑐

(︂
𝐼1,
√︁
𝐽2, 𝐿

)︂
=
(︃

𝐼1 − 𝐿

𝑅 (𝐴− 𝐶 exp (𝐵 𝐿))

)︃2

+
(︃ √

𝐽2

𝐴− 𝐶 exp (𝐵 𝐿)

)︃2

− 1 (9.7.15)

The parameters 𝐴 [MPa], 𝐵
[︁
MPa−1

]︁
, and 𝐶 [MPa] are already computed when the

calibration of failure function was done (as given in Table 9.8).
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The transition from elastic to elastoplastic behavior in unconsolidated porous rock is
smooth and possibly not easily pick-able. Therefore, it is treated in the relative terms,
comparing one state to another. We propose the relation between 𝑋 and 𝜖𝑝𝑣 in equation
(3.2.48) is defined as:

𝜖𝑝𝑣 − 𝜖𝑝𝑣∘ = 𝑊 (exp [𝐷 (𝑋)] − 1) −𝑊 (exp [𝐷 (𝑋∘)] − 1) (9.7.16)
or

𝜖𝑝𝑣 = 𝑊 (exp [𝐷𝑋] − exp [𝐷𝑋∘]) + 𝜖𝑝𝑣∘ (9.7.17)
where 𝑋∘ and 𝜖𝑝𝑣∘ are the first point of the selected data. In this study, the calibration of
material properties of cap function is carried out separately for 𝐷 and 𝑊 using hydrostatic
test data and for 𝑅 and 𝑋∘ using oedometer test data.

Calibration of 𝐷 and 𝑊 of DiMaggio-Sandler cap function

To calibrate the hardening parameters 𝐷 and 𝑊 of DiMaggio-Sandler cap function, the
hydrostatic test data are used because the first invariant 𝐼1 and the current cap position
parameter 𝑋 are the same. Moreover, the hydrostatic test is a cyclic test where the specimen
is subjected to loading and unloading cycles. Then, after each loading and unloading cycle,
the plastic volumetric strain increment (𝜖𝑝𝑣 − 𝜖𝑝𝑣∘) can be easily determined.

The plastic volumetric strain 𝜖𝑝𝑣 is obtained by subtracting the quantity of elastic volu-
metric strain 𝜖𝑒𝑣 from total volumetric strain 𝜖𝑡𝑣 (experimental strain). Whereas, the elastic
volumetric strain is computed easily from hydrostatic test because it is only dependent on
the Bulk modulus parameter 𝐾, as:

𝜖𝑒𝑣 = 𝜎𝑐

𝐾
(9.7.18)

where 𝜎𝑐 [MPa] is the confining stress.
Hence, the objective function to calibrate the parameters 𝐷 and 𝑊 is defined as follows:

𝑓𝐶𝐷𝑆 =
𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ.Δ (9.7.19)

where

Δ = ln
(︁
𝜖𝑝′

𝑣

)︁
− 𝑤𝑐 −𝐷 𝐼1 (9.7.20)

⎧⎪⎪⎨⎪⎪⎩
𝜖𝑝′

𝑣
∼=

(𝜖𝑝𝑣)𝑖 − (𝜖𝑝𝑣)𝑖+1
(𝐼1)𝑖 − (𝐼1)𝑖+1

𝑖 = 1, ...(𝑛𝑝𝑡𝑠− 1)

𝑤𝑐 = ln (𝑊 𝐷)
(9.7.21)

The material parameters 𝐷 and 𝑊 of cap function are computed using optimization
methods in equations (9.2.4) and (9.2.5). The Hessian matrix [𝐻𝑓𝐶𝐷𝑆]−1 and the gradient
of objective function ∇𝑓𝐶𝐷𝑆 are expressed as follows:

[𝐻𝑓𝐶𝐷𝑆] = 𝐽 (∇𝑓𝐶𝐷𝑆)T (9.7.22)
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∇𝑓𝐶𝐷𝑆 =
(︃
𝜕𝑓𝐶𝐷𝑆

𝜕𝐷
,
𝜕𝑓𝐶𝐷𝑆

𝜕𝑤𝑐

)︃
(9.7.23)

Estimation of initial guess for 𝐷 and 𝑊

The initial guess for parameters 𝐷 and 𝑊 are estimated by analytical equations. The
proposed equations are developed using hydrostatic test data that are at least three points.
The points can be extremes and an intermediate point. The analytical equations are described
by considering 𝐼 = 𝐼1, and taking the derivative of 𝜖𝑝𝑣 with respect to 𝐼, as:

𝜖𝑝𝑣 = 𝑊 (exp [𝐷 𝐼] − exp [𝐷 𝐼∘]) + 𝜖𝑝𝑣∘ ⇒ 𝜖𝑝′

𝑣 = 𝑊 𝐷 exp [𝐷 𝐼] (9.7.24)
Then,

𝜖𝑝′
𝑣

𝑊 𝐷
= exp [𝐷 𝐼]

ln
(︃

𝜖𝑝′
𝑣

𝑊 𝐷

)︃
= 𝐷 𝐼

ln
(︁
𝜖𝑝′

𝑣

)︁
− ln (𝑊 𝐷) −𝐷 𝐼 = 0

(9.7.25)

by considering (𝑊 𝐷 = 𝑤𝑐), the equation (9.7.25) is rewritten as:

ln
(︁
𝜖𝑝′

𝑣

)︁
− ln (𝑤𝑐) −𝐷 𝐼 = 0 (9.7.26)

The analytical equations for 𝐷 and 𝑊 are derived using three selected points which are
called 𝑝𝑡1 =

{︁
𝐼1, 𝜖

𝑝′

𝑣1

}︁
, 𝑝𝑡2 =

{︁
𝐼2, 𝜖

𝑝′

𝑣2

}︁
, and 𝑝𝑡3 =

{︁
𝐼3, 𝜖

𝑝′

𝑣3

}︁
, where 𝐼3 < 𝐼2 < 𝐼1.

Estimation of 𝐷

The equation (9.7.26) is represented by taking two points 𝑝𝑡𝑧 and 𝑝𝑡𝑤, as:

ln
(︁
𝜖𝑝′

𝑣𝑧

)︁
− ln (𝑤𝑐) −𝐷 𝐼𝑧 = 0

ln
(︁
𝜖𝑝′

𝑣𝑤

)︁
− ln (𝑤𝑐) −𝐷 𝐼𝑤 = 0

(9.7.27)

by subtracting the above equations, as:

ln
(︁
𝜖𝑝′

𝑣𝑧

)︁
− ln

(︁
𝜖𝑝′

𝑣𝑤

)︁
−𝐷 (𝐼𝑧 − 𝐼𝑤) = 0

ln
(︃
𝜖𝑝′

𝑣𝑧

𝜖𝑝′
𝑣𝑤

)︃
−𝐷 (𝐼𝑧 − 𝐼𝑤) = 0

(9.7.28)

Then,

𝐷𝑒𝑠𝑡 =
ln
(︂

𝜖𝑝′
𝑣𝑧

𝜖𝑝′
𝑣𝑤

)︂
(𝐼𝑧 − 𝐼𝑤) (9.7.29)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜖𝑝′

𝑣𝑧
∼=
𝜖𝑝𝑣1 − 𝜖𝑝𝑣2

𝐼1 − 𝐼2

𝐼𝑧 = 𝐼1 + 𝐼2

2
𝜖𝑝′

𝑣𝑤
∼=
𝜖𝑝𝑣3 − 𝜖𝑝𝑣2

𝐼3 − 𝐼2

𝐼𝑤 = 𝐼3 + 𝐼2

2

(9.7.30)

where the numbers 1, 2, 3 are index of three experimental points.

Estimation of 𝑊

The parameter 𝑊 is obtained by the below expression:

𝜖𝑝′

𝑣 = 𝑊 𝐷 exp [𝐷 𝐼] ⇒ 𝑊 = 𝜖𝑝′
𝑣

𝐷 exp [𝐷 𝐼]
(9.7.31)

Then,

𝑊𝑒𝑠𝑡 =
3∑︁

𝑧=1

(︃
𝜖𝑝′

𝑣𝑧

𝐷 exp [𝐷 𝐼𝑧]

)︃
(9.7.32)

The initial guess for 𝐷 and 𝑊 is:(︁
𝐷0,𝑊 0

)︁T
= (𝐷𝑒𝑠𝑡,𝑊𝑒𝑠𝑡)T (9.7.33)

Calibration of 𝐷, 𝑊 using hydrostatic test data

The material parameters 𝐷 and 𝑊 are calibrated using the data of hydrostatic test CP12
at the end of the cyclic loading. The Bulk modulus of CP12 test is 𝐾 = 3191.68 [MPa]. The
parameters 𝐷 and 𝑊 are computed using the optimization methods in equations (9.2.4),
(9.2.5) and given in Table 9.9. Furthermore, a comparison between experimental and numer-
ical results (𝐼1 versus 𝜖𝑝𝑣) is displayed graphically in Figure 9.8. The results illustrate clearly
the capability of the optimization procedure.
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Figure 9.8: The material parameters of cap function. (left) hydrostatic test data with three
selected point data, and (right) calibration based on the three selected point data.

Name D
[︁
MPa−1

]︁
W

Numeric 0.0010227 0.153118
NLopt 0.0010227 0.153118

Table 9.9: The material parameters calibrated for cap function, 𝐷, 𝑊 with NLopt and
current study.

Calibration of parameters 𝑅 and 𝑋∘ of DiMaggio-Sandler cap function

To calibrate the material parameter 𝑅, the oedometer test is used. This test includes
three types of loading conditions, e.g., hydrostatic, triaxial, and oedometer. The parameter
𝑅 can be obtained by choosing at least two stress points where they touch the cap surface.
In this test, the hydrostatic and the oedometer loading parts are touched the cap.

In the oedometer test process, as shown in Figure 9.9 (left), a specimen is firstly loaded
under hydrostatic condition from point 1 to point 2. At point 2, it is hypothesized that the
specimen touches the cap. Second, the specimen is unloaded under hydrostatic condition
from point 2 to point 3. Third, the specimen undergoes a triaxial loading from point 3 to
point 4. Then, the specimen is loaded under oedometer loading to reach the point 5.

The definition of the first point is obvious because it is the last point of hydrostatic loading
(point 2). The choice of the second point which should touch the cap, allows to determine
the ellipse. The second point belongs to the part of oedometer loading, namely, from point
3 to point 4, where it touches the cap. In this part, finding the first point of touching the
cap, is difficult and requires an engineering point of view.

In this study, it assumes that the initial current cap position 𝑋∘ is equal to the quantity
of the first invariant stress 𝐼1 of the point 2, as displayed in Figure 9.9 (left), namely 𝑋∘ =
−60.91374. Moreover, we propose two methodologies to calibrate the 𝑅 parameter, as follows:

• Calibration of 𝑅 using trial stress
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In order to find the second point, the trial stress is computed using the elasticity
parameters (𝑀, 𝜈)T = (2664.77, 0.25141)T and the measured strain tensor 𝜖𝑡, as follows:

𝜎𝑡𝑡𝑟𝑎𝑖𝑙
= 𝜎∘

𝑡 + 𝑀 (1 − 2𝜈)
(1 − 𝜈) (𝜖𝑡 − 𝜖∘

𝑡 ) + 𝑀𝜈

(1 − 𝜈)𝑡𝑟 (𝜖𝑡 − 𝜖∘
𝑡 ) 𝐼 (9.7.34)

Then, the trail stress is compared with the measured stress to choose the second point.
Figure 9.9 (right) shows a comparison between numerical (trial) and experimental data
of 𝐼1 versus

√︁
𝐽2 in which the second point is indicated by point 2.

Figure 9.9: (left) The oedometer test process, and (right) selection of two points (Point 1
and Point 2) for computing 𝑅 from oedometer test data.

From the two selected points, parameter 𝑅 can be computed. The objective function
to calibrate parameters 𝐿 and 𝑅 is defined as follows:

𝑓𝑅𝐿𝐷𝑆 =
𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ.Δ (9.7.35)

where

Δ =
(︃

𝐼1 − 𝐿

𝑅 (𝐴− 𝐶 exp (𝐵 𝐿))

)︃2

+
(︃ √

𝐽2

𝐴− 𝐶 exp (𝐵 𝐿)

)︃2

− 1 (9.7.36)

The parameters 𝐿 and 𝑅 of cap function are computed using optimization methods
in equations (9.2.4) and (9.2.5). The Hessian matrix [𝐻𝑓𝑅𝐿𝐷𝑆]−1 and the gradient of
objective function ∇𝑓𝑅𝐿𝐷𝑆 are expressed as follows:

[𝐻𝑓𝑅𝐿𝐷𝑆] = 𝐽 (∇𝑓𝑅𝐿𝐷𝑆)T (9.7.37)
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∇𝑓𝑅𝐿𝐷𝑆 =
(︃
𝜕𝑓𝑅𝐿𝐷𝑆

𝜕𝐿
,
𝜕𝑓𝑅𝐿𝐷𝑆

𝜕𝑅

)︃
(9.7.38)

The initial guess for 𝐿0 is a minimum quantity of experimental first invariant stress
𝐼1𝑚𝑖𝑛

and for 𝑅 is 1.0:

(︁
𝐿0, 𝑅0

)︁T
= (𝐼1𝑚𝑖𝑛

, 1.0)T (9.7.39)

The calibration of 𝑅 and 𝑋∘ are done using these two point data, namely
(︂
𝐼1,
√︁
𝐽2

)︂
1

=

(−60.91374, 0.512394) and
(︂
𝐼1,
√︁
𝐽2

)︂
2

= (−55.00426, 6.075706). The quantity of pa-
rameter 𝑅 is computed and given in Table 9.10.

Name R
Numeric 2.65119
NLopt 2.65912

Table 9.10: The parameter 𝑅 of cap function of DiMaggio-Sandler model.

• Calibration of 𝑅 using a rotated High-Westergaard space
To calibrate 𝑅 using the rotated High-Westergaard space, it is required to represent the
DiMaggio-Sandler plasticity model from

(︂
𝐼1,
√︁
𝐽2

)︂
space to the rotated principal stress

space. The representation of invariant stresses 𝐼1, 𝐽2 in the two-dimensional rotated
principal stress 𝜎* = [𝜎*

1, 𝜎
*
2]T are:

𝐼1 =
√

3𝜎*
1 𝐽2 = 𝜎*2

2
2

(9.7.40)

The cap function of DiMaggio-Sandler in the RHW space is defined by using the rotated
principal stress 𝜎* = [𝜎*

1, 𝜎
*
2]T, as:

𝐹𝑐 (𝜎*
1, 𝜎

*
2, 𝐿) =

(︃ √
3𝜎*

1 − 𝐿

𝑅 (𝐴− 𝐶 exp (𝐵 𝐿))

)︃2

+
(︃

𝜎*
2√

2 (𝐴− 𝐶 exp (𝐵 𝐿))

)︃2

− 1 (9.7.41)

Then, the material parameter 𝑅 can be computed analytically using the following
relationship:

𝑅2 =
2
(︁
𝐿2 − 2

√
3𝐿𝜎*

1 + 3 (𝜎*
1)2
)︁

2𝐴2 − 4𝐴𝐶 exp (𝐵 𝐿) + 2𝐶2 exp (2𝐵 𝐿) − (𝜎*
2)2 (9.7.42)
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In order to calculate analytically the parameter 𝑅, it is required the material parameter
𝐿. To compute the parameter 𝐿, we consider a distance function in the rotated Haigh-
Westergaard space that should be minimized in order to compute 𝐿 from closed point
projection. The distance function is formed from the trial stress 𝜎*

𝑡𝑡𝑟𝑖𝑎𝑙
to the measured

stress 𝜎*
𝑡𝑚𝑒𝑠

. The trial stress is calculated using the equation (9.7.43) in the principal
stress 𝜎𝑡𝑡𝑟𝑖𝑎𝑙

= [𝜎1, 𝜎2]T and then converted to the rotated trial principal stress 𝜎*
𝑡𝑡𝑟𝑖𝑎𝑙

,
as:

𝜎𝑡𝑡𝑟𝑎𝑖𝑙
= 𝜎𝑛

𝑡𝑟𝑎𝑖𝑙 + 𝑀 (1 − 2𝜈)
(1 − 𝜈) (𝜖𝑡 − 𝜖𝑛

𝑡 ) + 𝑀𝜈

(1 − 𝜈)𝑡𝑟 (𝜖𝑡 − 𝜖𝑛
𝑡 ) 𝐼 (9.7.43)

where 𝜎𝑛
𝑡𝑟𝑎𝑖𝑙 and 𝜎𝑡𝑡𝑟𝑎𝑖𝑙

are the last and current trial stress. The objective function to
calibrate the parameter 𝐿 is expressed as follows:

𝑓𝑅𝐻𝑊 𝐷𝑆 =
𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ.Δ (9.7.44)

where

Δ = 𝜗𝑡𝑟𝑖𝑎𝑙 − 𝜗𝑚𝑒𝑠

𝜗𝑚𝑒𝑠 = arctan

⎛⎜⎜⎝
𝜕𝐹𝑐(𝜎*

1𝑚𝑒𝑠
,𝜎*

2𝑚𝑒𝑠,𝐿)
𝜕𝜎*

1𝑚𝑒𝑠

𝜕𝐹𝑐(𝜎*
1𝑚𝑒𝑠

,𝜎*
2𝑚𝑒𝑠

,𝐿)
𝜕𝜎*

2𝑚𝑒𝑠

⎞⎟⎟⎠
𝜗𝑡𝑟𝑖𝑎𝑙 = arctan

(︃
𝜎*

1𝑚𝑒𝑠
− 𝜎*

1𝑡𝑟𝑖𝑎𝑙

𝜎*
2𝑚𝑒𝑠

− 𝜎*
2𝑡𝑟𝑖𝑎𝑙

)︃ (9.7.45)

The parameter 𝐿 of cap function is computed using optimization methods in equations
(9.2.4) and (9.2.5). The Hessian matrix [𝐻𝑓𝑅𝐻𝑊 𝐷𝑆]−1 and the gradient of objective
function ∇𝑓𝑅𝐻𝑊 𝐷𝑆 are given as follows:

[𝐻𝑓𝑅𝐻𝑊 𝐷𝑆] = 𝐽 (∇𝑓𝑅𝐻𝑊 𝐷𝑆)T (9.7.46)

∇𝑓𝑅𝐻𝑊 𝐷𝑆 =
(︃
𝜕𝑓𝑅𝐻𝑊 𝐷𝑆

𝜕𝐿

)︃
(9.7.47)

The initial guess for 𝐿0 is a minimum quantity of experimental first invariant stress
𝐼1𝑚𝑖𝑛

:

𝐿0 = 𝐼1𝑚𝑖𝑛
(9.7.48)

After computing the 𝐿 value, the parameter 𝑅 is calculated using the equation (9.7.42).
The oedometer consolidation test allows the calibration of 𝑅 parameter. The parameter
𝑅 can be obtained when the material touches the cap. To find the suitable amount



204

of data (selected data), we offer to compute the angle of stress projection in High-
Westergaard space.
Computation the angle of stress projection in RHW space:
The angle of stress projection 𝜃𝑝 in RHW space is computed for each point of oe-
dometer loading data (from point 3 to point 4 in Figure 9.9 (left)) using the following
relationships:

𝛿𝜎𝑚𝑒𝑠 = 𝜎𝑛+1
𝑚𝑒𝑠 − 𝜎𝑛

𝑚𝑒𝑠 (9.7.49)

𝜎*
1 = 𝑡𝑟[𝛿𝜎𝑚𝑒𝑠]√

3

𝜎*
2 =

√
2
√︃

(𝛿𝜎𝑎𝑚𝑒𝑠 − 𝛿𝜎𝑟𝑚𝑒𝑠)
2

3
𝜃𝑝 = arctan

(︃
𝜎*

2
𝜎*

1

)︃ (9.7.50)

where 𝜎𝑛
𝑚𝑒𝑠 and 𝜎𝑛+1

𝑚𝑒𝑠 are the last and current experimental stress tensor, respectively.
𝛿𝜎𝑎𝑚𝑒𝑠 and 𝛿𝜎𝑟𝑚𝑒𝑠 are the incremental stress in axial and lateral direction of specimen,
respectively. The variety of 𝜃 versus identity number of selected data is displayed in
Figure 9.10.

Figure 9.10: The variation of 𝜃 versus the identity number of data from oedometer loading,
CP14. (left) from 2999 selected data, (middle) 500 selected data, and (right) 25 selected
data.

The results in Figure 9.10, particularly in left indicates that the direction of stress
loading (angle of stress projection) has oscillation and it can lead to the oscillation of 𝑅
parameter. But, the results of Figure 9.10 (right) illustrates, it is possible to apply the
distance minimization of rotated trial stress to the measured stress from these selected
data.
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Calculation of 𝑅 using the quantity of 𝐿:
The material parameter 𝐿 is computed using the distance function from 25 selected
data. Then, by using the 𝐿, the parameter 𝑅 is calculated analytically from the equa-
tion (9.7.42) for each point of these data. The variety of 𝑅 versus identity number of
experimental data is shown in Figure 9.11 (bottom).

Figure 9.11: (top-left) Schematic process of closed point projection, (top-right) the 25 se-
lected data from oedometer loading indicating with green color, (bottom-left) plot of 𝑅 value
versus identity number of selected data with considering: 𝑀 = 2664.77 [𝑀𝑃𝑎], 𝜈 = 0.25141,
and (bottom-right) plot of 𝑅 value with considering: 𝑀 = 6171.15 [𝑀𝑃𝑎], 𝜈 = 0.239828.

From the results of Figure 9.11, it is clear that the parameter 𝑅 has oscillated and the
variation of 𝑅 is dependent on the quantity of elasticity parameters. But the average
quantity of 𝑅 is almost as the same value as reported in Table 9.10.
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9.7.4 A comparison of numerical and experimental for DiMaggio-
Sandler

The stress-strain relationship of the porous rock sample is simulated by the home-made
simulator with DiMaggio-Sandler, for which the elastoplastic material parameters are identi-
fied in Table 9.11 by using the iterative optimization methods. The validity of the proposed
material identification is investigated by comparing the numerical results with experimental
test data, as illustrated in Figure 9.12.

Parameter Numeric value NLopt value
Young’s modulus, 𝐸 MPa 2214.77 2214.77

Poisson’s ratio, 𝜈 0.25141 0.25141
𝐴 MPa 15.091 15.0913
𝐵 MPa−1 0.0284035 0.028401
𝐶 MPa 15.9158 15.916
𝐷 MPa−1 0.0010227 0.0010227

𝑊 0.153118 0.153118
𝑅 2.65119 2.65912

𝑋∘ MPa -60.91374 -60.91374

Table 9.11: Material parameters calibrated for DiMaggio-Sandler with NLopt and current
study.

The results from Figure 9.12 verify the effectiveness of the optimization procedure for
physics-based identification of the DiMaggio-Sandler elastoplastic model. However, the dif-
ferences between numerical and experimental are principally because the experimental data
are real data subjected to noise and systematic influence, but DiMaggio-Sandler was de-
veloped based on simplifications and assumptions that not entirely aligned with the real
behavior of materials.
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Figure 9.12: A comparison between numerical (NLopt, current study) and experimental
results. (top-left) axial strain versus axial stress, (top-right) lateral strain versus lateral
stress, (bottom-left) volumetric strain versus volumetric stress, and (bottom-right) shear
strain versus von Mises stress.

9.8 Calibration of physics-based modified Cam-Clay model
The calibration of physics-based modified Cam-Clay elastoplastic model is separately

done for linear elasticity, nonlinear elasticity and cap surface function using the laboratory
test data.

9.8.1 Laboratory test data to calibrate modified Cam-Clay
The type of load cycles which is used to calibrate Cam-Clay model’s parameters are given

in Table 9.12.
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Parameter Triaxial Oedometer Hydrostatic
𝐺 MPa X X

𝜈 X X
𝑃 ∘ MPa X
𝑝𝑡 MPa X
𝐶𝑒 X X

𝑝∘
𝑐 MPa X
𝐶𝑝 X X
𝑀 X
𝑏 X

Table 9.12: Type of load cycles to calibrate modified Cam-Clay model’s parameters.

The material parameters 𝑃 ∘ and 𝑝𝑡 can be also calibrated from oedometer test data.
Moreover, the parameter 𝑏 that represents the curvature of the hardening part of yield surface
can be adjusted from triaxial tests at high confining pressures (Systémes, 2012).

9.8.2 Calibration of linear elasticity parameters, 𝐺, 𝜈
The calibration of physics-based linear elasticity such as, shear modulus 𝐺 and Poisson’s

ratio 𝜈 are performed as the same linear elasticity in subsection 9.5 by using the unloading
and reloading part of triaxial or oedometer test data.

Calibration of 𝐺

The objective function to calibrate 𝐺 parameter is defined as follows:

𝑓𝑡𝑟𝑖𝐺 =
𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ.Δ (9.8.1)

where

Δ = (𝑄−𝑄∘) − 3𝐺(𝜖𝑒𝑑 − 𝜖∘
𝑒𝑑) (9.8.2)

where 𝑄∘ and 𝑄 are the initial and current von Mises stress [MPa], respectively. 𝜖∘
𝑒𝑑 and 𝜖𝑒𝑑

are the initial and current shear strain, respectively. The initial shear strain 𝜖∘
𝑒𝑑 can adopt

with the first point of data, i.e., 𝜖∘
𝑒𝑑 = 𝜖𝑖

𝑒𝑑; 𝑖 = 1. It is also possible to define 𝜖∘
𝑒𝑑, as the

same as 𝑄∘. In order to compute, the parameters 𝐺 and 𝑄∘ using optimization methods in
equations (9.2.4) and (9.2.5), the Hessian matrix [𝐻𝑓𝑡𝑟𝑖𝐺]−1 and the gradient of objective
function ∇𝑓𝑡𝑟𝑖𝐺 are expressed as follows:

[𝐻𝑓𝑡𝑟𝑖𝐺] = 𝐽 (∇𝑓𝑡𝑟𝑖𝐺)T (9.8.3)

∇𝑓𝑡𝑟𝑖𝐺 =
(︃
𝜕𝑓𝑡𝑟𝑖𝐺

𝜕𝐺
,
𝜕𝑓𝑡𝑟𝑖𝐺

𝜕𝑄∘

)︃
(9.8.4)
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The initial guess is: (︁
𝐺0, 𝑄0

)︁T
= (0, 0)T (9.8.5)

The calibration of 𝐺 using triaxial and oedometer test data are done and the results are
given in Table 9.13. In addition, a comparison between experimental and numerical results
(𝜖𝑒𝑑 vs 𝑄) is shown graphically in Figure 9.13.

Figure 9.13: Plot of shear strain versus von Mises stress: (left) from triaxial, and (right)
from oedometer test data.

Parameter Type test Time period Numeric value

Shear modulus 𝐺 [MPa] Triaxial 2450-2650 1322.38
Oedometer 4400-5000 884.339

Table 9.13: Calibration of 𝐺 by using triaxial and oedometer test data.

Calibration of 𝜈

The objective function to calibrate Poisson’s ratio 𝜈 parameter is defined as follows:

𝑓𝑡𝑟𝑖𝑁𝑢 =
𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ.Δ (9.8.6)

where

Δ = (𝜖𝑙 − 𝜖∘
𝑙 ) + 𝜈(𝜖𝑎 − 𝜖∘

𝑎) (9.8.7)
In order to compute, the parameters 𝜈, 𝜖∘

𝑙 , and 𝜖∘
𝑎 using optimization methods in equations

(9.2.4) and (9.2.5), the Hessian matrix [𝐻𝑓𝑡𝑟𝑖𝑁𝑢]−1 and the gradient of objective function
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∇𝑓𝑡𝑟𝑖𝑁𝑢 are presented as follows:

[𝐻𝑓𝑡𝑟𝑖𝑁𝑢] = 𝐽 (∇𝑓𝑡𝑟𝑖𝑁𝑢)T (9.8.8)

∇𝑓𝑡𝑟𝑖𝑁𝑢 =
(︃
𝜕𝑓𝑡𝑟𝑖𝑁𝑢

𝜕𝜈
,
𝜕𝑓𝑡𝑟𝑖𝑁𝑢

𝜕𝜖∘
𝑙

,
𝜕𝑓𝑡𝑟𝑖𝑁𝑢

𝜕𝜖∘
𝑎

)︃
(9.8.9)

The initial guess is: (︁
𝜈0, 𝜖0

𝑙 , 𝜖
0
𝑎

)︁T
= (0, 0, 0)T (9.8.10)

The calibration of 𝜈 using triaxial and oedometer test data are done and the result are
reported in Table 9.14. In addition, a comparison between experimental and numerical results
(𝜖𝑎 vs 𝜖𝑙) is displayed graphically in Figure 9.14.

Parameter Type test Time period Numeric value

Poisson’s ratio 𝜈 Triaxial 2450-2650 0.237
Oedometer 4400-5000 0.2512

Table 9.14: Calibration of 𝜈 by using triaxial and oedometer test data.

Figure 9.14: Plot of axial strain versus lateral strain: (left) from triaxial, and (right) from
oedometer test data.

9.8.3 Calibration of nonlinear elasticity parameters, 𝑃 ∘, 𝑝𝑡

To calibrate 𝑃 ∘ and 𝑝𝑡 from nonlinear stress-strain relationship in equation (3.2.56), it is
hypothesized that the measured strain at the beginning of hydrostatic test is elastic strain
and with considering 𝑒𝐶 = (1 + 𝑒∘) /𝐶𝑒. It is represented as:

𝑃 = −𝑝𝑡 + (𝑃 ∘ + 𝑝𝑡) exp [−𝑒𝐶 𝜖𝑒𝑣)] (9.8.11)
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The objective function to calibrate the physics-based of nonlinear elasticity parameters
from hydrostatic test data is expressed as follows:

𝑓𝑁𝐿𝐸𝑃 =
𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ.Δ (9.8.12)

where

Δ = 𝑃 + 𝑝𝑡 − (𝑃 ∘ + 𝑝𝑡) exp [−𝑒𝐶 𝜖𝑒𝑣)] (9.8.13)
The material parameters 𝑃 ∘ and 𝑝𝑡 are computed using optimization methods in equations

(9.2.4) and (9.2.5). The Hessian matrix [𝐻𝑓𝑁𝐿𝐸𝑃 ]−1 and the gradient of objective function
∇𝑓𝑁𝐿𝐸𝑃 are defined as follows:

[𝐻𝑓𝑁𝐿𝐸𝑃 ] = 𝐽 (∇𝑓𝑁𝐿𝐸𝑃 )T (9.8.14)

∇𝑓𝑁𝐿𝐸𝑃 =
(︃
𝜕𝑓𝑁𝐿𝐸𝑃

𝜕𝑃 ∘ ,
𝜕𝑓𝑁𝐿𝐸𝑃

𝜕𝑝𝑡

,
𝜕𝑓𝑁𝐿𝐸𝑃

𝜕𝑒𝐶

)︃
(9.8.15)

Estimation of initial guess for 𝑃 ∘, 𝑝𝑡, and 𝑒𝐶

The initial guess for parameters 𝑃 ∘, 𝑝𝑡, and 𝑒𝐶 are estimated by analytical equations.
The proposed equations are developed using hydrostatic test data that are at least three
points. The points can be extremes and an intermediate point. The analytical equations are
developed similar to subsection 9.7.2, by considering 𝑝𝑧𝑡 = 𝑃 ∘ +𝑝𝑡. The three selected points
are called 𝑝𝑡1 = {𝜖𝑒𝑣1 , 𝑃1}, 𝑝𝑡2 = {𝜖𝑒𝑣2 , 𝑃2}, and 𝑝𝑡3 = {𝜖𝑒𝑣3 , 𝑃3}, where 𝜖𝑒𝑣3 < 𝜖𝑒𝑣2 < 𝜖𝑒𝑣1 .

Estimation of 𝑒𝐶

It is developed as:

𝑒𝐶𝑒𝑠𝑡 = −
ln
(︁
𝑃

′
𝑧/𝑃

′
𝑤

)︁
𝜖𝑒𝑣𝑧 − 𝜖𝑒𝑣𝑤

(9.8.16)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃
′

𝑧
∼=

𝑃1 − 𝑃2

𝜖𝑒𝑣1 − 𝜖𝑒𝑣2

𝜖𝑒𝑣𝑧 = 𝜖𝑒𝑣1 + 𝜖𝑒𝑣2

2
𝑃

′

𝑤
∼=

𝑃3 − 𝑃2

𝜖𝑒𝑣3 − 𝜖𝑒𝑣2

𝜖𝑒𝑣𝑤 = 𝜖𝑒𝑣3 + 𝜖𝑒𝑣2

2

(9.8.17)

where the numbers 1, 2, 3 are index of three hydrostatic points.
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Estimation 𝑝𝑧𝑡

The parameter 𝑝𝑧𝑡 is computed from two extreme points, as:

𝑝𝑧𝑡𝑒𝑠𝑡 = 𝑃1 − 𝑃3

exp (−𝑒𝐶 𝜖𝑒𝑣1) − exp (−𝑒𝐶 𝜖𝑒𝑣3) (9.8.18)

Estimation 𝑝𝑡

The parameter 𝑝𝑡 is estimated using the below expression:

𝑝𝑡𝑒𝑠𝑡 =
3∑︁

𝑧=1
(𝑝𝑧𝑡 exp (−𝑒𝐶 𝜖𝑒𝑣𝑧) − 𝑃𝑧) (9.8.19)

The initial guess for 𝑝𝑧𝑡, 𝑝𝑡, and 𝑒𝐶 is:(︁
𝑒𝐶0, 𝑝0

𝑧𝑡, 𝑝
0
𝑡

)︁T
= (𝑒𝐶𝑒𝑠𝑡, 𝑝𝑧𝑡𝑒𝑠𝑡 , 𝑝𝑡𝑒𝑠𝑡)

T (9.8.20)

Calibration of 𝑃 ∘ and 𝑝𝑡

The material parameters 𝑃 ∘ and 𝑝𝑡 are computed using the optimization methods in
equations (9.2.4), (9.2.5) and given in Table 9.15. In addition, a comparison between ex-
perimental and numerical results (𝑃 versus 𝜖𝑒𝑣) is presented graphically in Figure 9.15. The
results show clearly the capability of the optimization procedure.

Name 𝑃 ∘ [MPa] 𝑝𝑡 [MPa]
Numeric value 1.23571 4.07974

Table 9.15: The material parameters 𝑃 ∘ and 𝑝𝑡 calibrated from hydrostatic test data.
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Figure 9.15: Calibration of the material parameters 𝑃 ∘ and 𝑝𝑡.

9.8.4 Calibration of material parameters, 𝐶𝑒, 𝑝∘
𝑐, 𝐶𝑝

The calibration of 𝐶𝑒 and 𝐶𝑝 are performed using the hydrostatic and oedometer test
data and the 𝑝∘

𝑐 is calibrated using the oedometer test data, as follows:

Calibration of physics-based 𝐶𝑒

The objective function to calibrate the physics-based 𝐶𝑒 of modified Cam-Clay is ex-
pressed as follows:

𝑓𝑚𝑐𝑐𝐶𝑒 =
𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ.Δ (9.8.21)

where

Δ = 𝑣𝑠 − 𝑣∘
𝑠 + 𝐶𝑒 ln

(︂
𝑃𝑠

𝑃 ∘

)︂
or Δ = 𝑣 − 𝑣∘

𝑠 + 𝐶𝑒 ln
(︂
𝑃

𝑃 ∘

)︂
(9.8.22)

The quantity of 𝑃𝑠 and 𝑣𝑠 can be selected as a unit point, but it is dependent on the
engineering point of view. Then, the calibration of 𝐶𝑒 is done using the unloading and
reloading part of data. In order to compute, the parameter 𝐶𝑒 using optimization methods
in equations (9.2.4) and (9.2.5), the Hessian matrix [𝐻𝑓𝑚𝑐𝑐𝐶𝑒]−1 and the gradient of objective
function ∇𝑓𝑚𝑐𝑐𝐶𝑒 are expressed as follows:

[𝐻𝑓𝑚𝑐𝑐𝐶𝑒] = 𝐽 (∇𝑓𝑚𝑐𝑐𝐶𝑒)T (9.8.23)

∇𝑓𝑚𝑐𝑐𝐶𝑒 =
(︃
𝜕𝑓𝑚𝑐𝑐𝐶𝑒

𝜕𝐶𝑒

)︃
(9.8.24)
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Estimation of initial guess for 𝐶𝑒

The initial guess for parameter 𝐶𝑒 is determined by analytical equation. The proposed
equation is developed using experimental data that are two points. The points are 𝑝𝑡1 =
{𝑃 ∘, 𝑣∘

𝑠} that is known from last subsection and 𝑝𝑡2 = {𝑃𝑠, 𝑣𝑠} that is extreme point. The
parameter 𝐶𝑒 is computed by:

𝐶𝑒
𝑒𝑠𝑡 = 𝑣𝑠 − 𝑣∘

𝑠

ln
(︁

𝑃𝑠

𝑃 ∘

)︁ (9.8.25)

The initial guesses for 𝐶𝑒 is considered as:

𝐶𝑒0 = 𝐶𝑒
𝑒𝑠𝑡 (9.8.26)

Calibration of 𝐶𝑒

The material parameter 𝐶𝑒 is calculated using the optimization methods in equations
(9.2.4), (9.2.5) and given in Table 9.16. In addition, a comparison between experimental and
numerical results (ln (−𝑃 ) versus 𝑣) is shown graphically in Figure 9.16. The result shows
clearly the capability of the optimization procedure.

Parameter Type test Time period Numeric value

𝐶𝑒

Hydrostatic, unload
3804-4660 0.00960215
7399-9360 0.0124333

13460-15660 0.0142224

Hydrostatic, reload
5003-5560 0.00816486
9804-11110 0.0117254
17060-17660 0.0106195

Oedometer, unload 3800-4400 0.00280551
9618-9638 0.00301653

Table 9.16: Calibration of 𝐶𝑒.
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Figure 9.16: Calibration of the material parameter 𝐶𝑒 from: (left) unloading part of hy-
drostatic test, (middle) reloading part of hydrostatic test, and (right) unloading part of
oedometer test.

9.8.5 Calibration of hardening parameter 𝑝∘
𝑐

To calibrate the material parameter 𝑝∘
𝑐 , the oedometer test data are used. In this study,

it assumes that the initial preconsolidation pressure of modified Cam-Clay 𝑝∘
𝑐 , is equal to the

quantity of the first effective mean stress 𝑃 that touches the hardening surface which is the
point 2, as shown in Figure 9.17 (left), namely 𝑝∘

𝑐 = 20.3046.

Figure 9.17: (left) The oedometer test process to compute 𝑝∘
𝑐 , and (right) selection of two

points (Point 1 and Point 2) for computing 𝑏 from oedometer test data.
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Calibration of physics-based 𝐶𝑝

The objective function to calibrate the physics-based 𝐶𝑝 of modified Cam-Clay is defined
as follows:

𝑓𝑚𝑐𝑐𝐶𝑝 =
𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ.Δ (9.8.27)

where

Δ = 𝑣𝑐 − 𝑣∘
𝑐 + 𝐶𝑝 ln

(︃
𝑝𝑐

𝑝∘
𝑐

)︃
or Δ = 𝑣 − 𝑣∘

𝑐 + 𝐶𝑝 ln
(︃
𝑃

𝑝∘
𝑐

)︃
(9.8.28)

The quantity of 𝑝𝑐 and 𝑣𝑐 can be selected as a unit point, but it is dependent on the
engineering point of view. Then, the calibration of 𝐶𝑝 is done using the normal compression
line of data. In order to compute, the parameter 𝐶𝑝 by optimization methods in equations
(9.2.4) and (9.2.5), the Hessian matrix [𝐻𝑓𝑚𝑐𝑐𝐶𝑝]−1 and the gradient of objective function
∇𝑓𝑚𝑐𝑐𝐶𝑝 are presented as follows:

[𝐻𝑓𝑚𝑐𝑐𝐶𝑝] = 𝐽 (∇𝑓𝑚𝑐𝑐𝐶𝑝)T (9.8.29)

∇𝑓𝑚𝑐𝑐𝐶𝑝 =
(︃
𝜕𝑓𝑚𝑐𝑐𝐶𝑝

𝜕𝐶𝑝

)︃
(9.8.30)

Estimation of initial guess for 𝐶𝑝

The initial guess for parameter 𝐶𝑝 is determined by analytical equation. The proposed
equation is developed using experimental data that are two points. The points are 𝑝𝑡1 =
{𝑝∘

𝑐 , 𝑣
∘
𝑐 } that is known from the last subsection and 𝑝𝑡2 = {𝑝𝑐, 𝑣𝑐} that is extreme point. The

parameter 𝐶𝑝 is computed by:

𝐶𝑝
𝑒𝑠𝑡 = 𝑣𝑐 − 𝑣∘

𝑐

ln
(︁

𝑝𝑐

𝑝∘
𝑐

)︁ (9.8.31)

The initial guesses for 𝐶𝑝 is considered as:

𝐶𝑝0 = 𝐶𝑝
𝑒𝑠𝑡 (9.8.32)

Calibration of 𝐶𝑝

The material parameter 𝐶𝑝 is calculated using the optimization methods in equations
(9.2.4), (9.2.5) and given in Table 9.17. In addition, a comparison between experimental and
numerical results (ln (−𝑃 ) versus 𝑣) is shown graphically in Figure 9.18. The result shows
clearly the capability of the optimization procedure.
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Figure 9.18: Calibration of the material parameter 𝐶𝑝 from: (left) hydrostatic test, and
(right) oedometer test.

Parameter Type test Time period Numeric value

𝐶𝑝
Hydrostatic 2460-3460 0.0255765

Oedometer 1-60 0.00518294
5000-6100 0.00728634

Table 9.17: Calibration of 𝐶𝑝.

9.8.6 Calibration of hardening surface parameter, 𝑀
The objective function to calibrate the physics-based 𝑀 from failure points of triaxial

test data is defined as follows:

𝑓𝑀𝐶𝐶𝑀 =
𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ.Δ (9.8.33)

where

Δ = 𝑄−𝑀 𝑃 (9.8.34)
The material parameter 𝑀 is computed using optimization methods in equations (9.2.4)

and (9.2.5). The Hessian matrix [𝐻𝑓𝑀𝐶𝐶𝑀 ]−1 and the gradient of objective function ∇𝑓𝑀𝐶𝐶𝑀

are presented as follows:

[𝐻𝑓𝑀𝐶𝐶𝑀 ] = 𝐽 (∇𝑓𝑀𝐶𝐶𝑀)T (9.8.35)

∇𝑓𝑀𝐶𝐶𝑀 =
(︃
𝜕𝑓𝑀𝐶𝐶𝑀

𝜕𝑀

)︃
(9.8.36)
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Estimation of initial guess for 𝑀

The initial guess for parameter 𝑀 are calculated by analytical equation. The proposed
equation is developed using experimental data that are at least two points. The points can
be the extreme points, namely 𝑝𝑡1 = {𝑃1, 𝑄1} and 𝑝𝑡2 = {𝑃2, 𝑄2}, where 𝑃2 > 𝑃1. The
analytical equation is written as:

𝑀𝑒𝑠𝑡 =
(︂
𝑄2 −𝑄1

𝑃2 − 𝑃1

)︂
(9.8.37)

The initial guesses for 𝑀 is:

𝑀0 = 𝑀𝑒𝑠𝑡 (9.8.38)

9.8.7 Calibration of 𝑀 by using the failure points
The material parameter 𝑀 is calibrated using the failure point of triaxial tests. It is

done separately based on two, three, and four failure points. The parameters 𝑀 is computed
and presented in Table 9.18. Moreover, a comparison between experimental and numerical
results (𝑃 versus 𝑄) is displayed graphically in Figure 9.19. The results demonstrate clearly
the capability of the optimization procedure.

Parameter Type data Numeric value

M
Triaxial, 2 points 1.43402
Triaxial, 3 points 0.962638
Triaxial, 4 points 0.668974

Table 9.18: Material parameter 𝑀 calibrated from failure points.
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Figure 9.19: The Material parameter 𝑀 . Calibration based on the failure points data:
(top-left) two points, (top-right) three points, (bottom-left) four points, and (bottom-right)
proposed calibration with all triaxial test data.

9.8.8 Calibration of cap surface parameter, 𝑏
To calibrate the material parameter 𝑏, the oedometer test is applied. The parameter 𝑏 can

be obtained by selecting at least two stress points where they touch the hardening surface.
The hydrostatic and the oedometer loading parts that can touch the hardening surface. In
this test, (as presented in Figure 9.17 (left)), a specimen is firstly loaded under hydrostatic
condition from point 1 to point 2. At point 2, it is hypothesized that the specimen touches
the hardening surface. Second, the specimen is unloaded under hydrostatic condition from
point 2 to point 3. Third, the specimen undergoes a triaxial loading from point 3 to point 4.
Then, the specimen is loaded under oedometer loading to reach the point 5.

The definition of the first point is obvious because it is the last point of hydrostatic loading
(point 2). The choice of the second point that should touch the hardening surface, allows
to compute the ellipse. The second point belongs to the part of oedometer loading, namely,
from point 3 to point 4, where it touches the hardening surface. In this part, finding the first
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point of touching the hardening surface (from oedometer part), is difficult and requires an
engineering point of view. Then, we propose a methodology to calibrate the parameter 𝑏, as
follows:

Calibration of 𝑏 using trial stress

In order to find the second point, the trial stress is computed using the elasticity param-
eters (𝐺, 𝜈)T = (884.339, 0.251)T and the measured strain tensor 𝜖𝑡, as follows:

𝜎𝑡𝑡𝑟𝑎𝑖𝑙
= 𝜎∘

𝑡 +𝐺 (𝜖𝑡 − 𝜖∘
𝑡 ) + 2𝐺𝜈

(1 − 2𝜈)𝑡𝑟 (𝜖𝑡 − 𝜖∘
𝑡 ) 𝐼 (9.8.39)

The trail stress is compared with the measured stress to choose the second point. Figure
9.17 (right) presents a comparison between numerical (trial) and experimental data of 𝑃
versus 𝑄 in which the second point is displayed by point 2.

From the two selected points, parameter 𝑏 can be calculated. The objective function to
calibrate parameters 𝑏 and 𝑝𝑐 is defined as follows:

𝑓𝑀𝐶𝐶𝑏 =
𝑛𝑝𝑡𝑠∑︁
𝑖=1

Δ.Δ (9.8.40)

where

Δ =
⎡⎣𝑃 − 𝑝𝑡 +

(︁
𝑝𝑐+𝑝𝑡

1+𝑏

)︁
𝑏
(︁

𝑝𝑐+𝑝𝑡

1+𝑏

)︁
⎤⎦2

+
⎡⎣ 𝑄

𝑀
(︁

𝑝𝑐+𝑝𝑡

1+𝑏

)︁
⎤⎦2

− 1 (9.8.41)

The parameters 𝑝𝑐 and 𝑏 of hardening function are computed using optimization meth-
ods in equations (9.2.4) and (9.2.5). The Hessian matrix [𝐻𝑓𝑀𝐶𝐶𝑏]−1 and the gradient of
objective function ∇𝑓𝑀𝐶𝐶𝑏 are expressed as follows:

[𝐻𝑓𝑀𝐶𝐶𝑏] = 𝐽 (∇𝑓𝑀𝐶𝐶𝑏)T (9.8.42)

∇𝑓𝑀𝐶𝐶𝑏 =
(︃
𝜕𝑓𝑀𝐶𝐶𝑏

𝜕𝑝𝑐

,
𝜕𝑓𝑀𝐶𝐶𝑏

𝜕𝑏

)︃
(9.8.43)

The initial guess for 𝑝0
𝑐 is a minimum quantity of experimental preconsolidation pressure

𝑝𝑐𝑚𝑖𝑛
and for 𝑏 is 1.0: (︁

𝑝0
𝑐 , 𝑏

0
)︁T

= (𝑝𝑐𝑚𝑖𝑛
, 1.0)T (9.8.44)

The calibration of 𝑏 is done using the two point data, namely (𝑃,𝑄)1 = (20.3046, 0.8875)
and (𝑃,𝑄)2 = (18.3348, 10.5234). The quantity of parameter 𝑏 is computed and given in
Table 9.19.

Name b
Numeric value 0.87479

Table 9.19: The parameter 𝑏 of hardening function of modified Cam-Clay model.
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9.8.9 A comparison of numerical and experimental for Cam-Clay
The stress-strain relationship of the reservoir rock sample is simulated by the home-

made simulator with modified Cam-Clay, for which the elastoplastic material parameters
are identified in Table 9.20 by using the iterative optimization methods. The validity of
the proposed material identification is investigated by comparing the numerical results with
experimental test data, as shown in Figure 9.20.

Parameter Numeric value
𝐺 MPa 884.339

𝜈 0.2512
𝑃 ∘ MPa 1.235707
𝑝𝑡 MPa 4.07974
𝐶𝑒 0.002806

𝑝∘
𝑐 MPa 20.3046
𝐶𝑝 0.005183
𝑀 1.434
𝑏 0.87479
𝑒∘ 0.42857

Table 9.20: Material parameters calibrated for modified Cam-Clay.

Figure 9.20: A comparison between numerical and experimental results: (left) axial strain
versus von Mises stress, and (right) axial strain versus volumetric strain.

The results from Figure 9.20 verify the effectiveness of the optimization procedure for
physics-based identification of the modified Cam-Clay elastoplastic model. However, the
differences between numerical and experimental are because the experimental data are real
data subjected to noise and systematic influence, but modified Cam-Clay was developed



222

based on simplifications and assumptions that not entirely aligned with the real behavior of
materials.

9.9 Comparison between elastoplastic models
In order to compare the results of Mohr-Coulomb, DiMaggio-Sandler, and modified Cam-

Clay, it is required to represent the Mohr-Coulomb in
(︂
𝐼1,
√︁
𝐽2

)︂
space. It is expressed by

D. R. J. Owen, 1980; Crisfield, 1996 as:

Φ =
(︃

cos (𝛽) − 1√
3

sin (𝛽) sin (𝑓𝑟)
)︃√︁

𝐽2 + 𝑃 sin (𝑓𝑟) − 𝑐 cos (𝑓𝑟) (9.9.1)

where, 𝛽 is the Lode’s angle and here it is equal to 0. Moreover, the modified Cam-Clay is
represented in

(︂
𝐼1,
√︁
𝐽2

)︂
space by applying 𝑃 = −𝐼1/3 and 𝑄 =

√︁
3 𝐽2.

In this section, the results of all experimental tests are compared with the yield surface
of Mohr-Coulomb, DiMaggio-Sandler, and modified Cam-Clay plasticity model by using the
proposed plasticity material parameters, as illustrate in Figure 9.21. The experimental data
are included the failure point of triaxial tests and the final point of both oedometer and
hydrostatic test.

Figure 9.21: A comparison between all experimental data and plastic surface of Mohr-
Coulomb, DiMaggio-Sandler, and modified Cam-Clay model.
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The results of Figure 9.21 emphasize the necessity to implement DiMaggio-Sandler con-
stitutive model, which is comprised failure and cap function. The failure points of triaxial
tests are accurately modeled by DiMaggio-Sandler model comparing with Mohr-Coulomb.
In addition, the results indicated the necessity of DiMaggio-Sandler and modified Cam-Clay
to present appropriately the compaction and collapse of reservoir porous rock.

9.10 Conclusions
This chapter has indicated the effectiveness of the iterative optimization method for cal-

ibration of physics-based elastoplastic constitutive models for porous rock. First, we have
outlined the concepts and methods of optimization procedure, and the iterative optimization
method which has the greatest potential for reservoirs geomechanics problems. Then, we
have calibrated the physics-based elastoplastic models that are linear & nonlinear elastic-
ity, Mohr-Coulomb, DiMaggio-Sandler, and modified Cam-Clay model by using the iterative
optimization methods from experimental database. Finally, the home-made finite element
simulator has been used to evaluate the robustness of the proposed material identification.
The results have confirmed the accuracy of the proposed approaches to compute the physics-
based elastoplastic models.

The following remarks can be drawn from this chapter:

∙ The laboratory test data cannot appropriately describe by the elastoplastic constitutive
models. To calibrate the physics-based elastoplastic models, certain sections of the labo-
ratory experiment should be used.

∙ The proper choice of data allows to establish a strategy for identifying the material param-
eters of elastoplastic models. The proposed strategy was finding an appropriate objective
function to minimize the difference between measurement and numerical results in order
to calibrate the model parameters correctly.

∙ The gradient based optimization methods such as, Newton and Gradient descent method
can only find a local minimum of the objective function if the algorithm starts with the
appropriate initial data.

∙ The analytical equations developed in this study can provide an appropriate initial data
for each parameter in order to calibrate correctly and fast the physics-based elastoplastic
models.

∙ The results have emphasized the necessity to implement DiMaggio-Sandler constitutive
model which is included failure and cap function. The failure points of triaxial tests
have been accurately modeled by DiMaggio-Sandler model comparing with Mohr-Coulomb.
Moreover, the results indicated the necessity of DiMaggio-Sandler and modified Cam-Clay
to present appropriately the compaction and collapse of porous rock.
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Chapter 10

Conclusions and outlook

In this document, a numerical and experimental study of coupled nonlinear geomechanics
and reservoir simulator has been investigated. From numerical point of view, the geome-
chanical coupling within the reservoir is a strongly nonlinear problem, which requests sev-
eral computational tools to simulate. Then, an enhanced sequential fully implicit scheme
for reservoir geomechnaics problems has been proposed. From experimental point of view,
such constitutive elastoplastic models are extremely complicated, comprising a considerable
number of parameters and many sources of uncertainty. Thus, an automatic calibration of
physics-based elastoplastic models for reservoir rock has been proposed by using iterative
optimization algorithms. All the developments, from the approximation point of view, estab-
lished based on the capability of the finite elements, from the computational point of view,
on the Neopz library, and from calibration point of view, established based on the ability of
optimization methods.

10.1 Conclusions
Throughout the collecting and preparing the contents of this document, conclusions are

comprehensively stated in each chapter. They are briefly re-expressed and discussed as
follows:

On finite element implementations:
(i) In this study, two numerical approximations have been implemented using finite el-

ement method, in which it includes: firstly, 𝐻1 approximation for poro-elastoplastic
and Darcy’s flow, and second, 𝐻1 approximation for poro-elastoplastic and mixed ap-
proximation using 𝐻(𝑑𝑖𝑣) for Darcy’s flow. The results emphasized to apply mixed
formulation for Darcy’s flow, mainly because it is locally conservative. In addition,
several numerical simulations in NeoPZ were done in 1D, 2D and 3D with linear and
nonlinear configurations to demonstrate the capability of PMRS simulator.

(ii) The numerical integration of elastoplastic models has been done by using the closest
point projection in the rotated principal stresses. The results showed the plastic return-
mapping scheme reduces the nonlinear system of equations which leads to improve the
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convergence of an iterative procedure. The advantage of this scheme was to implement
elastoplastic models with more accuracy and efficiency.

On the approximation of coupled nonlinear geomechanics and reser-
voir:

(i) The coupled nonlinear geomechanics and reservoir simulator was done by two approx-
imation schemes, i.e., fully coupled monolithic solver FC and sequential fully implicit
SFI algorithm.

(ii) In terms of computational efficiency, the sequential fully implicit algorithm with fixed
stress split offered a robust procedure to approximate the solutions of nonlinear equa-
tions, associated with poro-elastoplastic and permeability dependency of porosity. In
addition, the implementation of the SFI method offered modular programming and
allowed to select a proper numerical approach for generating approximations for both
the reservoir and geomechanics modules.

(iii) The temporal convergence rate demonstrated that the sequential fully implicit by con-
sidering two different numerical approximations could be equivalent to solve the problem
completely coupled FC.

On the development of an enhanced sequential fully implicit algo-
rithm:

(i) The SFI is a popular algorithm to approximate solutions of a coupled system. Gen-
erally, the SFI consists of an outer loop to solve the coupled system, in which there
are two inner iterative loops for each equation to implicitly solve the equations. The
SFI algorithm occasionally suffers from slow convergence or even convergence failure.
In order to improve the slow convergence of the SFI, for the first time an enhanced
sequential fully implicit ESFI algorithm with a fixed stress split scheme has been pro-
posed. The ESFI has been defined by applying a new nonlinear acceleration technique
for the SFI scheme which suggested by employing Shanks transformations in vector-
valued variables to enhance the outer loop convergence and a Quasi-Newton method
with considering the modified Thomas method for the internal loop.

(ii) The numerical results of SFI and ESFI in a linear setting demonstrated the spatial
convergence rates of displacement, pressure and flux. The comparison of SFI and
different ESFI schemes were done using the performance ratio 𝑟𝑝 and the number of
iterations. The numerical results showed that ESFI with considering FDM or SDM
decrease the number of iterations comparing to SFI. In addition, by applying the Shanks
transformations, e.g., FDM2, FDM3, SDM2, and SDM3, ESFI ended into a reduced
number of iterations.

(iii) To evaluate the capability of the ESFI to approximate solution for very challenging non-
linear problems, a reference solution by using the Runge-Kutta method was developed.
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The verification of the ESFI in the nonlinear case was demonstrated by comparing the
results with an axisymmetric Runge-Kutta solver.

(iv) The numerical results for a nonlinear setting showed that ESFI with considering FDM
or SDM decrease the number of iterations comparing to SFI. In addition, by applying
the Shanks transformations, e.g., FDM2, FDM3, SDM2, and SDM3, ESFI ended into a
reduced number of iterations. The effect of the recursion formula, in any case, showed
that there is a gain in efficiency respect to the SFI.

(v) The enhanced version for a sequential fully implicit ESFI has been proposed. It com-
bined several nonlinear acceleration techniques at the level of external and internal
loops to obtain an accelerated convergence. A systematic procedure for the construc-
tion of the acceleration of the external loop was developed considering the recursivity
of well-known transformation formulas in the sense of Shanks transformation. Impor-
tant characteristics were, ESFI can be applied to generate approximations of several
linear and nonlinear constitutive models in 1D,2D, and 3D simulations, it made use of
a reduced number of iterations to approximate several challenging problems forthcom-
ing reservoir geomechanics applications, and it can be extended to several multiphysics
solvers that make use of split operators and execute them in a sequential manner.

On the numerical algorithm of elastoplastic models:
(i) The numerical integration algorithm for solving the incremental elastoplastic models

with considering both linear and nonlinear elasticity was described. An efficient imple-
mentation was developed for DiMaggio-Sandler and modified Cam-Clay elastoplasticity
model. It was done by introducing an additional dependence for original DiMaggio-
Sandler and modified Cam-Clay on the Lode’s angle. Then, the elastoplastic constitu-
tive models were reformulated into the rotated Haigh-Westergaard space and applied
the plastic return-mapping. The closest point projection was done in terms of the invari-
ants of the rotated principal stress to minimize a distance function to the admissibility
surface.

(ii) The advantage of the new scheme for the DiMaggio-Sandler and modified Cam-Clay
was to implement with more accuracy and efficiency. The Newton method was applied
to a smaller system of equations which leads to increase the rate of convergence and
improves the implementation.

On the analysis of strain-deponent permeability:
(i) In this study, due to the strain-dependent porosity and the direct relation of porosity

with both deformation and pore pressure, the permeability evolution model based on
porosity was selected in order to present strain-dependent permeability. To analyze
the strain-dependent permeability and its effect on the reservoirs, the coupled poro-
elastoplastic and permeability was proposed by using Mohr-Coulomb and DiMaggio-
Sandler plasticity models and four nonlinear permeability models, e.g., Costa, Petunin,
Nelson, and Davies.
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(ii) The results of the borehole drilling in 2D and 3D configurations, with considering Mohr-
Coulomb plasticity and Petunin permeability model werepresented that by reducing the
pore pressure, the effective stress increases, consequently, the quantity of porosity and
permeability decrease.

(iii) The impact of strain-dependent permeability on the productivity of cylindrical verti-
cal reservoirs in 2D and 3D configurations, was analyzed by using DiMaggio-Sandler
plasticity models and four nonlinear permeability models. The results showed by de-
creasing fluid pressure, the effective stress increase, and then the quantity of porosity
and permeability decrease. The results also indicated that by increasing the perme-
ability coefficient 𝒵, less increments of radial flux and more reduction of porosity and
permeability near to the wellbore can be observed.

(iv) The results of strain-dependent permeability illustrated that from only geomechanical
effects the wellbore region deteriorates the productivity index associated with the case
when is considered a constant permeability and no geomechanical effects.

On the analysis of pore collapse and shear-enhanced compaction:
(i) The onset of pore collapse and shear-enhanced compaction was obtained using three

methods: firstly using the plasticity cap model, second the model of Wong, and third
the shear bands of Rudnicki. In addition, in order to be able to analyze the effect of pore
collapse and shear-enhanced compaction on the reservoir, the coupled poro-elastoplastic
and permeability was proposed, in which the DiMaggio-Sandler and nonlinear Davies
permeability model were used.

(ii) The onset of pore collapse and shear enhanced compaction was indicated by implement-
ing the hydrostatic and triaxial compression test, respectively. The results demonstrated
that the onset of pore collapse and shear enhanced compaction is clear, where the plas-
tic volumetric strain begins. The capability of DiMaggio-Sandler cap plasticity model
to see the onset and post-pore collapse and shear-enhanced compaction was presented.
Also, the pore collapse and shear-enhanced compaction were recognizable by using the
method of Wong and Rudnicki.

(iii) The impact of pore collapse and shear-enhanced compaction on horizontal well pro-
duction was analyzed. The results showed that the pore collapse and shear-enhanced
compaction can occur in horizontal well. The results indicated that the porosity and
permeability are decreased by increasing the effective mean stress. This change also was
appeared for radial flux. In addition, the numerical results emphasized the importance
of in-situ stress ratio 𝑘𝑠 on petrophysical properties during the well production.

(iv) The importance of pore collapse and shear-enhanced compaction during horizontal
wellbore drilling was analyzed. The results showed that the pore collapse and shear-
enhanced compaction are occurred during wellbore drilling. The results expressed that
the porosity and permeability are reduced by increasing the effective mean stress. This
change also was appeared for radial flux.
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(v) The three-dimensional modelling of reservoir with horizontal production well was im-
plemented. The simulation was conducted as same as the two-dimensional horizontal
well. The results indicated that by increasing the effective stress, the subsidence (both
longitudinal and transverse) increases and consequently the quantity of porosity and
permeability decreases.

On the automatic calibration of physics-based elastoplastic models:
(i) The laboratory test data couldn’t appropriately described by the elastoplastic constitu-

tive models. To calibrate the physics-based elastoplastic models, certain sections of the
laboratory experiment should be used. The proper choice of data allowed to establish a
strategy for identifying the material parameters of elastoplastic models. The proposed
strategy was finding an appropriate objective function to minimize the difference be-
tween measurement and numerical results in order to calibrate the model parameters
correctly.

(ii) The gradient based optimization methods such as, Newton and Gradient descent method
could only find a local minimum of the objective function if the algorithm started with
the appropriate initial data. The analytical equations developed in this study could
provide an appropriate initial data for each parameter in order to calibrate correctly
and fast the physics-based elastoplastic models.

(iii) The results emphasized the necessity to implement DiMaggio-Sandler constitutive model
which is included failure and cap function. The failure points of triaxial tests were ac-
curately modeled by DiMaggio-Sandler model comparing with Mohr-Coulomb. More-
over, the results indicated the necessity of DiMaggio-Sandler and modified Cam-Clay
to present appropriately the compaction and collapse of porous rock.
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10.2 Outlook
In this step of conclusion, this project has several paths of extension that are outlined

briefly:

(i) The coupled poro-elastoplastic and permeability is allowed us to develop a numerical
scheme that is able to indicate changes in the productivity index of the well due to
the geomechanical effects. This scheme can be defined and distinguished the wellbore
storage from geomechanical effects.

(ii) The coupled poro-elastoplastic and permeability can be investigated by considering
the multiscale process for fluid flow formulation. This coupling can be applied for
the regions near the wellbore in order to introduce a permeability multiplier in the
reservoir. The well permeability multiplier can contribute to the reservoir simulation
and the subsequent development plan of an oil industry.

(iii) The coupled poro-elastoplastic and permeability is permitted us to analyze accurately
the geomechanics effects, e.g., pore collapse and shear enhanced compaction on the
productivity of reservoirs. To consider the geomechanics effects on the injectivity of
reservoirs, for instance, shear-induced dilation, the coupled of nonassociated plasticity
and nonlinear permeability model is proposed.

(iv) The enhanced sequential fully implicit ESFI algorithm with a fixed stress split scheme
makes use of a reduced number of iterations to approximated several challenging prob-
lems forthcoming reservoir geomechanics applications. In the ESFI algorithm, the fluid
flow is represented by a mass balance of single-phase flow, however, it is required to
investigate for two-phase flow, and multiphase flow in porous media.

(v) The ESFI algorithm is allowed us to obtain more efficiently the 3D dimensional approx-
imations of coupling poro-elastoplastic and nonlinear permeability. Therefore, the ca-
pability of ESFI algorithm is recommended in thermo-elastoplasticity that can execute
it in a sequential manner. For example, in steam injection simulations, the elastoplastic
response can be simulated efficiently.

(vi) Many geologic materials, e.g., cohesionless soil and rock salt show time-dependent re-
sponse under mechanical and thermal loading, that can involve elastic, creep and plastic
deformations. Time-dependent behavior of rock salts is highly important in the context
of underground storage of oil and gas. one approach to implement viscoplastic model is
to add a strain rate dependence to the yield stress and use the numerical integration of
elastoplastic models. Then, the closest point projection in the rotated principal stresses
can be applied as the numerical integration scheme.

(vii) The automatic calibration of physics-based elastoplastic models was done properly by
using iterative optimization method once the analytical equations provide an appro-
priate initial data. This automatic calibration strategy can be applied to predict the
reservoir properties, such as, petrophysics and reservoir fluid properties.
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Appendix A

Derivation of elastoplastic tangent
operator for modified Cam-Clay

Procedure to solve the system of equations
It is done by representing the RHW square distance separately for linear and nonlinear

elasticity:
The RHW square distance for nonlinear elasticity is:

𝛿ℎ (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝑎) =

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,1 − 3(𝑎+𝑎 𝑏 cos(𝜃))√
3

)︁2

3𝐾(𝜖𝑒𝑣) +

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,2 − cos (𝛽)
√

2𝐹 (𝑎) sin(𝜃)
𝛤 (𝛽)

)︁2

2𝐺(𝜖𝑒𝑣) +

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,3 − sin (𝛽)
√

2𝐹 (𝑎) sin(𝜃)
𝛤 (𝛽)

)︁2

2𝐺(𝜖𝑒𝑣)

(A.0.1)

where the expression for 𝐺(𝜖𝑒𝑣) depends on the flavour of the nonlinear elastic law.
The RHW square distance for linear elasticity is:

𝛿ℎ (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝑎) =

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,1 − 3(𝑎+𝑎 𝑏 cos(𝜃))√
3

)︁2

3𝐾 +

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,2 − cos (𝛽)
√

2𝐹 (𝑎) sin(𝜃)
𝛤 (𝛽)

)︁2

2𝐺 +

(︁
𝜎*

𝑡𝑟𝑖𝑎𝑙,3 − sin (𝛽)
√

2𝐹 (𝑎) sin(𝜃)
𝛤 (𝛽)

)︁2

2𝐺

(A.0.2)

and

𝑟𝑒𝑠 (𝜃, 𝑎) = [𝐼1 (𝜎*
𝑡𝑟𝑖𝑎𝑙) − 𝐼1 (𝜃, 𝑎)] − 3𝐾(𝜖𝑒𝑣) [𝜖𝑝𝑣 (𝑎𝑡𝑟𝑖𝑎𝑙) − 𝜖𝑝𝑣 (𝑎)] = 0 (A.0.3)
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𝑅ℎ =

⎡⎢⎢⎢⎢⎢⎣
𝜕𝛿ℎ (𝜎*

𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝑎)
𝜕𝜃

𝜕𝛿ℎ (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝑎)
𝜕𝛽

𝑟𝑒𝑠 (𝜃, 𝑎)

⎤⎥⎥⎥⎥⎥⎦ (A.0.4)

𝐽ℎ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕2𝛿ℎ (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝑎)
𝜕𝜃2

𝜕2𝛿ℎ (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝑎)
𝜕𝛽 𝜕𝜃

𝜕𝑟𝑒𝑠 (𝜃, 𝑎)
𝜕𝜃

𝜕2𝛿ℎ (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝑎)
𝜕𝜃 𝜕𝛽

𝜕2𝛿ℎ (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝑎)
𝜕𝛽2

𝜕𝑟𝑒𝑠 (𝜃, 𝑎)
𝜕𝛽

𝜕2𝛿ℎ (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝑎)
𝜕𝜃 𝜕𝑎

𝜕2𝛿ℎ (𝜎*
𝑡𝑟𝑖𝑎𝑙; 𝜃, 𝛽, 𝑎)
𝜕𝛽 𝜕𝑎

𝜕𝑟𝑒𝑠 (𝜃, 𝑎)
𝜕𝑎

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.0.5)

Derivative of project stresses with respect to trial stresses
The chain rule for the hardening surface 𝑆*

ℎ is:

𝜕𝜎𝑝𝑟𝑜𝑗

𝜕𝜎𝑡𝑟𝑖𝑎𝑙

= 𝜕𝜎𝑝𝑟𝑜𝑗

𝜕 (𝜃, 𝛽, 𝑎)
𝜕 (𝜃, 𝛽, 𝑎)
𝜕𝜎𝑡𝑟𝑖𝑎𝑙

(A.0.6)

By taking the derivative of the RHW square distance as:

𝑅ℎ = 0 (A.0.7)
And applying the Taylor expansion on it, which is:

𝜕𝑅ℎ

𝜕𝜎𝑡𝑟𝑖𝑎𝑙

𝛿𝜎𝑡𝑟𝑖𝑎𝑙 + 𝜕𝑅ℎ

𝜕 (𝜃, 𝛽, 𝑎)𝛿 (𝜃, 𝛽, 𝑎) +𝑂 (𝜎𝑡𝑟𝑖𝑎𝑙, 𝜃, 𝛽, 𝑎) = 0 (A.0.8)

By rearranging it:

𝜕 (𝜃, 𝛽, 𝑎)
𝜕𝜎𝑡𝑟𝑖𝑎𝑙

= −
(︃

𝜕𝑅ℎ

𝜕 (𝜃, 𝛽, 𝑎)

)︃−1
𝜕𝑅ℎ

𝜕𝜎𝑡𝑟𝑖𝑎𝑙

(A.0.9)

𝜕 (𝜃, 𝛽, 𝑎)
𝜕𝜎𝑡𝑟𝑖𝑎𝑙

= − (𝐽ℎ)−1 𝜕𝑅ℎ

𝜕𝜎𝑡𝑟𝑖𝑎𝑙

(A.0.10)

𝜕𝑅ℎ

𝜕𝜎𝑡𝑟𝑖𝑎𝑙

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕2𝛿ℎ

𝜕𝜃 𝜕𝜎1
𝜕2𝛿ℎ

𝜕𝛽 𝜕𝜎1
𝜕Δ𝑎
𝜕𝜎1

𝜕2𝛿ℎ

𝜕𝜃 𝜕𝜎2
𝜕2𝛿ℎ

𝜕𝛽 𝜕𝜎2
𝜕Δ𝑎
𝜕𝜎2

𝜕2𝛿ℎ

𝜕𝜃 𝜕𝜎3
𝜕2𝛿ℎ

𝜕𝛽 𝜕𝜎3
𝜕Δ𝑎
𝜕𝜎3

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (A.0.11)

𝜕𝜎𝑝𝑟𝑜𝑗

𝜕 (𝜃, 𝛽, 𝑎) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝜎1

𝜕𝜃
𝜕𝜎2

𝜕𝜃
𝜕𝜎3

𝜕𝜃

𝜕𝜎1

𝜕𝛽
𝜕𝜎2

𝜕𝛽
𝜕𝜎3

𝜕𝛽

𝜕𝜎1

𝜕𝑎
𝜕𝜎2

𝜕𝑎
𝜕𝜎3

𝜕𝑎

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (A.0.12)
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The variation of the eigenvectors between 𝜎𝑝𝑟𝑜𝑗 and 𝜎𝑡𝑟𝑖𝑎𝑙 is represented by a rotation
and its inclusion in the tangent matrix can be demonstrated. The detail of the rotation can
be found in (Cecílio, P. R. Devloo, Sônia M. Gomes, E. R. d. Santos, and Shauer, 2015).

Derivation of elastoplastic tangent operator
The elastoplastic tangent operator is derived from the derivative of the projected stress

tensor with respect to the elastic strain tensor and it is defined by the chain rule as follows:

D𝑒𝑝 = 𝜕𝜎𝑝𝑟𝑜𝑗

𝜕𝜖𝑒

= 𝜕𝜎𝑝𝑟𝑜𝑗

𝜕𝜎𝑡𝑟𝑖𝑎𝑙

𝜕𝜎𝑡𝑟𝑖𝑎𝑙

𝜕𝜖𝑒

(A.0.13)

By straightforward derivation, the elastoplastic tangent operator can be written as:

𝜕𝜎𝑝𝑟𝑜𝑗

𝜕𝜖𝑒

=
(︃∑︁ 𝜕𝜎𝑝𝑟𝑜𝑗, 𝑖

𝜕𝜎𝑡𝑟𝑖𝑎𝑙, 𝑗

(𝑥𝑖 ⊗ 𝑥𝑖) ⊗ (𝑥𝑗 ⊗ 𝑥𝑗)
)︃

𝐶 (A.0.14)

The matrix form of elastoplastic tangent operator is:

𝜕𝜎𝑝𝑟𝑜𝑗

𝜕𝜖𝑒

𝛿𝜖𝑒 =
(︃∑︁ 𝜕𝜎𝑝𝑟𝑜𝑗, 𝑖

𝜕𝜎𝑡𝑟𝑖𝑎𝑙, 𝑗

(𝑥𝑖 ⊗ 𝑥𝑖) ⊗ (𝑥𝑗 ⊗ 𝑥𝑗)
)︃

𝐶 𝛿𝜖𝑒 (A.0.15)

where 𝐶 is the elastic tangent operator. To compute elastic tangent operator for constant
Poisson’s ratio in equation (3.2.60), it is required to consider the following remark:

Remark 1: The Bulk modulus in equation (3.2.58) is a function of the elastic volumetric
deformation. Inspired by the article (R. I. Borja and Lee, 1990), to prevent a non-
conservative model for constant Poisson’s ratio in which energy may not be conserved,
we propose to maintain the Bulk modulus constant during the time interval

[︁
𝑡𝑛−1, 𝑡𝑛

]︁
and between timesteps is updated.



253

Appendix B

Triaxial test results

The triaxial test results are presented for effective mean stress, von Mises stress, elas-
tic volumetric strain, plastic volumetric strain, volumetric strain, generalized shear elastic
strain, generalized shear plastic strain, generalized shear strain, preconsolidation pressure,
and Bulk modulus, in order to verify the modified Cam-Clay model. The results are ex-
pressed separately for case of constant shear modulus and case of constant Poisson’s ratio,
as follows:

Triaxial test: results for case of constant shear modulus

No. 𝑃 𝑄 𝜖𝑒𝑣 𝜖𝑝𝑣 𝜖𝑣 𝜖𝑒𝑞 𝜖𝑝𝑞 𝜖𝑞 𝜖𝑎 𝜖𝑟 𝑝𝑐 𝐾
Unit [MPa] [MPa] [MPa] [MPa]

1 0.2 0. -0.00382 0. -0.00382 0. 0. 0. -0.00127 -0.00127 0.2 52.3
2 0.207 0.0204 -0.00395 -0.00169 -0.00564 0.00034 0.000123 0.000462 -0.00234 -0.00165 0.208 54.08
3 0.214 0.0407 -0.00408 -0.00381 -0.00789 0.000679 0.000563 0.00124 -0.00387 -0.00201 0.219 55.85
4 0.22 0.0611 -0.00419 -0.00627 -0.0105 0.00102 0.0014 0.00242 -0.00591 -0.00228 0.232 57.63
5 0.227 0.0815 -0.00431 -0.00896 -0.0133 0.00136 0.00268 0.00404 -0.00846 -0.0024 0.247 59.41
6 0.234 0.102 -0.00442 -0.0118 -0.0162 0.0017 0.00445 0.00615 -0.0116 -0.00233 0.265 61.18
7 0.241 0.122 -0.00453 -0.0147 -0.0193 0.00204 0.00672 0.00876 -0.0152 -0.00204 0.284 62.96
8 0.248 0.143 -0.00464 -0.0177 -0.0223 0.00238 0.00953 0.0119 -0.0194 -0.00149 0.305 64.73
9 0.254 0.163 -0.00474 -0.0207 -0.0254 0.00272 0.0129 0.0156 -0.0241 -0.000651 0.327 66.51

10 0.261 0.183 -0.00484 -0.0236 -0.0284 0.00306 0.0169 0.02 -0.0295 0.000506 0.351 68.29
11 0.268 0.204 -0.00494 -0.0265 -0.0314 0.0034 0.0216 0.025 -0.0355 0.00202 0.376 70.06
12 0.275 0.224 -0.00504 -0.0293 -0.0344 0.00374 0.0271 0.0308 -0.0423 0.00395 0.402 71.84
13 0.281 0.244 -0.00513 -0.0321 -0.0372 0.00407 0.0335 0.0375 -0.0499 0.00636 0.429 73.61
14 0.288 0.265 -0.00522 -0.0348 -0.04 0.00441 0.041 0.0454 -0.0587 0.00936 0.457 75.39
15 0.295 0.285 -0.00531 -0.0374 -0.0427 0.00475 0.0499 0.0547 -0.0689 0.0131 0.487 77.17
16 0.302 0.306 -0.0054 -0.0399 -0.0453 0.00509 0.0609 0.0659 -0.0811 0.0179 0.517 78.94
17 0.309 0.326 -0.00548 -0.0424 -0.0479 0.00543 0.0746 0.0801 -0.096 0.0241 0.548 80.72
18 0.315 0.346 -0.00557 -0.0448 -0.0503 0.00577 0.0931 0.0989 -0.116 0.0327 0.58 82.49
19 0.322 0.367 -0.00565 -0.047 -0.0527 0.00611 0.121 0.127 -0.144 0.0458 0.612 84.27
20 0.329 0.387 -0.00573 -0.0493 -0.055 0.00645 0.176 0.182 -0.201 0.0728 0.645 86.05

Table B.1: Triaxial results for case of constant shear modulus.
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Triaxial test: results for case of constant Poisson’s ratio

No. 𝑃 𝑄 𝜖𝑒𝑣 𝜖𝑝𝑣 𝜖𝑣 𝜖𝑒𝑞 𝜖𝑝𝑞 𝜖𝑞 𝜖𝑎 𝜖𝑟 𝑝𝑐 𝐾
Unit [MPa] [MPa] [MPa] [MPa]

1 0.2 0. -0.00382 0. -0.00382 0. 0. 0. -0.00127 -0.00127 0.2 52.3
2 0.207 0.0204 -0.00395 -0.00169 -0.00564 0.000277 0.000123 0.000399 -0.00228 -0.00168 0.208 54.08
3 0.214 0.0407 -0.00408 -0.00381 -0.00789 0.000544 0.000563 0.00111 -0.00374 -0.00208 0.219 55.85
4 0.22 0.0611 -0.00419 -0.00627 -0.0105 0.000804 0.0014 0.0022 -0.00569 -0.00239 0.232 57.63
5 0.227 0.0815 -0.00431 -0.00896 -0.0133 0.00106 0.00268 0.00374 -0.00816 -0.00255 0.247 59.41
6 0.234 0.102 -0.00442 -0.0118 -0.0162 0.0013 0.00445 0.00575 -0.0112 -0.00253 0.265 61.18
7 0.241 0.122 -0.00453 -0.0147 -0.0193 0.00154 0.00672 0.00826 -0.0147 -0.00229 0.284 62.96
8 0.248 0.143 -0.00464 -0.0177 -0.0223 0.00177 0.00953 0.0113 -0.0187 -0.00179 0.305 64.73
9 0.254 0.163 -0.00474 -0.0207 -0.0254 0.00199 0.0129 0.0149 -0.0234 -0.00101 0.327 66.51

10 0.261 0.183 -0.00484 -0.0236 -0.0284 0.00221 0.0169 0.0191 -0.0286 0.0000824 0.351 68.29
11 0.268 0.204 -0.00494 -0.0265 -0.0314 0.00242 0.0216 0.024 -0.0345 0.00153 0.376 70.06
12 0.275 0.224 -0.00504 -0.0293 -0.0344 0.00263 0.0271 0.0297 -0.0412 0.0034 0.402 71.84
13 0.281 0.244 -0.00513 -0.0321 -0.0372 0.00283 0.0335 0.0363 -0.0487 0.00574 0.429 73.61
14 0.288 0.265 -0.00522 -0.0348 -0.04 0.00303 0.041 0.044 -0.0573 0.00867 0.457 75.39
15 0.295 0.285 -0.00531 -0.0374 -0.0427 0.00322 0.0499 0.0532 -0.0674 0.0123 0.487 77.17
16 0.302 0.306 -0.0054 -0.0399 -0.0453 0.00341 0.0609 0.0643 -0.0794 0.017 0.517 78.94
17 0.309 0.326 -0.00548 -0.0424 -0.0479 0.0036 0.0746 0.0782 -0.0942 0.0232 0.548 80.72
18 0.315 0.346 -0.00557 -0.0448 -0.0503 0.00378 0.0931 0.0969 -0.114 0.0317 0.58 82.49
19 0.322 0.367 -0.00565 -0.047 -0.0527 0.00395 0.121 0.125 -0.142 0.0448 0.612 84.27
20 0.329 0.387 -0.00573 -0.0493 -0.055 0.00412 0.176 0.18 -0.198 0.0716 0.645 86.05

Table B.2: Triaxial results for case of constant Poisson’s ratio.
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