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Abstract: We consider the partial differential equation of a mathematical model proposed by Sharma
et al. [1] to describe the concentration of nutrients in blood, a factor which influences erythrocyte
sedimentation rate. Introducing in it a fractional derivative in the Caputo sense, we create a new, time-
fractional mathematical model which contains, as a particular case, the original model. We obtain
an analytic solution of this time-fractional partial differential equation in terms of Mittag-Leffler and
Wright functions and to show that our model is more realistic than the Sharma model.
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In 1897, Biernacki introduced a blood test, known as Erythrocyte Sedimentation Rate (ESR), which
helped in diagnosing the acute phase of inflammatory diseases and in following up the inflammatory
process itself [2, 3, 4]. The discovery was announced in two articles [5, 6]. At the beginning of nine-
teenth century, Fahraeus and Westergren, when performing pregnancy and tuberculosis tests, developed
a test similar to ESR known as the Fahraeus-Westergren test [7, 8, 9, 10].

Nowadays, due to the discovery of new and more accurate tests, ESR is little used despite its being
a quick and low cost test. Nevertheless, the test is still recommended for patients with suspected
giant cell arteritis, rheumatic polymyalgia and rheumatoid arthritis, among others [11]. However, as
ESR is not very specific, it is often necessary to conduct further tests in order to confirm the results
obtained by means of ESR, in order to avoid false-positive and false-negative results which are likely to
occur in the presence of factors whose influence on blood properties would affect the test’s results [12,
13, 14], such as age, anemia and pregnancy, resulting in increased ESR; polycythemia and increased
leukocyte counting, resulting in decreased ESR; and analytic factors such as an inclined tube and room
temperature, which would respectively increase and decrease ESR [15]. Other factors which affect the
results are the presence of external vibration and tube deformation [16].
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The concentration of nutrients in blood also plays a role in the analysis of ESR results [17]. More-
over, Nayha [18] noted that people who drink coffee and smoke present higher values of ESR. The use
of some types of anticoagulants such as sodium citrate, oxalate or K3 EDTA can also influence test
results [19, 20, 21, 22].

Whelan et al. [23] published a work in which they measured the concentration of red cells at dif-
ferent times in blood samples of 5 male donors. In the same year, Huang et al. [24] developed a
mathematical model to describe the behavior of the concentration of blood cells. Another notable
work in ESR context was written by Sartory [25], whose aim was to study the prediction of erythrocyte
sedimentation profiles. Moved by Huang’s 1971 work, in 1990 Reuben and Shannon [26] discussed
some problems in the mathematical modeling of the concentration of red blood cells. However, the
authors of those studies did not take into account the transfer of nutrients from capillaries to tissues.
Due to this fact, Sharma et al. [1] established a more precise mathematical model which takes into
acoount such transfers.

The ESR test can be studied as a particular type of transport phenomenon [27]. It is worth mention-
ing that there exist several transport phenomena whose fractional models provide better descriptions
than the corresponding classical models [28, 29, 30].

Our goal in studying the concentration of nutrients in blood is to show how fractional calculus em-
ploying a derivative in the Caputo sense provides a more realistic model in comparison to the classical
one, i.e., the model with an integer order derivative.

In this work we assume an average speed equal to zero, thus restricting ourselves to the diffusion
case. We use this model to introduce the basic concepts of fractional calculus and to present our
fractional mathematical model. We propose a model with fractional derivatives in the Caputo sense
with a time derivative of order 0 < µ ≤ 1.

The solution obtained for the fractional mathematical model is given in terms of the Mittag-Leffler
function and the Wright function. The solution has an extra degree of freedom in parameter µ (0 < µ ≤
1), which allows for a better fitting of experimental data on nutrient concentration in blood.

This paper is organized as follows: In section one we introduce the so-called fractional mathematical
model associated with ESR, a generalization of the model proposed by Sharma et al. [1], which will be
recovered through a limit process. Section two, our main result, is dedicated to obtaining the analytic
solution of our model, which is found using the Laplace transform method and is expressed in terms
of the Mittag-Leffler function and the Wright function. We also present a graphical analysis of the
solution. In section three we recover as a special case, through an adequate limit process, the solution
found by Sharma et al. [1]. Concluding remarks close the paper.

1. Time-fractional partial differential equation

The mathematical model proposed by Sharma et al. [1] describes the concentration of nutrients in
blood by means of a non-homogeneous linear convection-diffusion partial differential equation (PDE).
In this section we present a fractional version of that linear PDE. We assume that the average fluid
velocity is equal to zero, i.e., we restrict our study to the diffusion case [31]. Our model can be
considered a generalization of the Sharma et al. [1] model, in the sense that it recovers the latter as a
special case, as we shall see in section three.

In this model, the concentration of nutrients in blood is a function C(x, t) twice continuously differ-
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entiable that satisfies the following non-homogeneous time-fractional PDE,

DLD
2
xC (x, t) −Dµ

t C (x, t) = φ (x, t) , (1)

with 0 < µ ≤ 1, where DL is a positive constant and φ(x, t) is a twice continuously differentiable
function describing the nutrient transfer rate and which satisfies the PDE

DD2
xφ (x, t) − kφ (x, t) −Dtφ (x, t) = 0, (2)

with both D and k positive constants.
The initial and boundary conditions imposed are given by

φ(x, 0) = exp
(
−

√
k−a
D x

)
, k ≥ a,D > 0,

φ(0, t) = exp (−at) , t > 0,
φ(∞, t) = 0, t > 0.

The solutions of Eq.(2) can be written as

φ (x, t) = exp (− (at + bx)) ,

where b2 =
(k − a)

D
> 0 and a is a constant to be adequately chosen from a known value of φ (x, t).

We assume that the fractional derivative of order µ, 0 < µ ≤ 1 is considered in the Caputo sense
[32, 33, 34], defined as follows:

D
µ
t C (x, t) :=


1

Γ (n − µ)

∫ t

0
C(n) (τ, t) (t − τ)n−µ−1 dτ, n − 1 < µ < n

C(n) (x, t) , µ = n,

where Dµ
t ≡

∂µ

∂tµ
and C(n)(x, t) is the usual derivative of order n with respect to t, Cn(x, t) ∈ ACn[0, h],

where ACn[0, h] is the space of absolutely continuous functions and t > 0. Furthermore, we must
impose the following initial and boundary conditions for Eq.(1):

C(x, 0) = 0, x ≥ 0
C(0, t) = 1, t > 0
C(∞, t) = 0, t > 0,

(3)

with C(x, t) ∈ C2[0, h].
Thus, from these considerations, it follows that the time-fractional mathematical model to be ad-

dressed is composed of a non-homogeneous fractional PDE

DLD
2
xC (x, t) −Dµ

t C (x, t) = exp (− (at + bx)) , a, b ∈ R, (4)

with initial and boundary conditions given by Eq.(3).

ACn [a, b] =
{
f : [a, b]→ C and

(
Dn−1 f

)
(x) ∈ AC [a, b] where

(
D = d

dx

)}
.
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2. Analytic solution

In this section, we solve this problem, employing the methodology of Laplace transform to convert
the non-homogeneous fractional PDE into a non-homogeneous linear ordinary differential equation.

Then, applying the Laplace transform [35, 36] in the time variable t on both sides of Eq.(4), we
have

DL
d2

dx2 C (x, s) − sµC (x, s) + sµ−1C (x, 0) =
exp (−bx)

s + a
.

Using the initial condition C(x, 0) = 0 we can rewrite this equation as

DL
d2

dx2 C (x, s) − sµC (x, s) =
exp (−bx)

s + a
, (5)

where 0 < µ ≤ 1, DL > 0 and

C (x, s) = L {C (x, t)} = :
∫ ∞

0
e−stC (x, t) dt

is the Laplace transform of C(x, t) with parameter s, Re(s) > 0. We assume that C(x, t) is continuous
by parts on [0,∞] and of exponential order.

Using the methods of characteristic equation and undetermined coefficients in Eq.(5) we obtain the
general solution, given by

C (x, s) =

1
s

+
1

(s + a)
(
sµ − b2

α2

) exp
(
−αxsµ/2

)
+

exp (−bx)

(s + a)
(

b2

α2 − sµ
) , (6)

where α2 =
1

DL
and DL > 0.

In order to recover the solution in the time variable we take the inverse Laplace transform on both
sides of Eq.(6), obtaining

C (x, t) = L −1 {C (x, s)} = L −1
{

1
s

exp
(
−αxsµ/2

)}
+

+L −1

 1

(s + a)
(
sµ − b2

α2

) exp
(
−αxsµ/2

)
−L −1

 1

(s + a)
(
sµ − b2

α2

) exp (−bx)

 , (7)

where

C (x, t) = L −1 {C (x, s)} = :
1

2πi

∫ γ+i∞

γ−i∞
estC (x, s) ds

is the inverse Laplace transform and the integral is performed in the complex plane with the singulari-
ties C(x, s) on the left side of γ = Re(s) [31].
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Introducing the change β2 = b2DL, we rewrite Eq.(7) as

C (x, t) = C1 (x, t) + C2 (x, t) − exp(−bx)C3 (x, t) ,

with

C1 (x, t) = L −1

exp
(
−αxsµ/2

)
s

 ; (8)

C2 (x, t) = L −1

 exp
(
−αxsµ/2

)
(s + a)

(
sµ − β2)

 ; (9)

C3 (x, t) = lim
x→0

C2 (x, t) .

We then calculate each inverse Laplace transform separately. To calculate C1 (x, t) we introduce the
MacLaurin series associated with the exponential function; choosing f (k)(0) = 1 in the series, we have

1
s

exp
(
−αxsµ/2

)
=

∞∑
k=0

(−αx)k

k!
s
µk
2 −1. (10)

Applying the inverse Laplace transform on both sides of Eq.(10), and using the result

L −1 {
s−q} =

tq−1

Γ (q)
,

with Re(q) > 0, q = 1 − µk/2, we can rewrite Eq.(8) as follows:

C1 (x, t) =

∞∑
k=0

(
−αx/tµ/2

)k

k!Γ (1 − µk/2)
. (11)

Moreover, considering β = 1, α = −µ/2 and z = −
αx
tµ/2

we obtain

C1 (x, t) =W
(
−µ/2, 1;−

αx
tµ/2

)
. (12)

where

W (−µ/2, 1; z) =

∞∑
k=0

zk

k!Γ (−µk/2 + 1)
. (13)

is the Wright function [37].
We now evaluate the second inverse Laplace transform. As with C1(x, t), we also write the expo-

nential function in terms of its MacLaurin series. Once more, applying the inverse Laplace transform
we can write

L −1
{

1
(s + a)

(
sµ − β2) exp

(
−αxsµ/2

)}
=

∞∑
m=0

(−αx)m

m!
L −1

{
sµm/2

(s + a)
(
sµ − β2)} . (14)
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In order to evaluate this inverse Laplace transform, we consider the following expression [38]:

Ω =
sσ

sα + ãsδ + bsγ + csµ + d
,

with ã, b, c, d ∈ R and α, δ, γ, µ ∈ R such that ã , 0 and α > δ > γ > µ.

Assuming the condition
∣∣∣∣∣bsγ + csµ + d

sα + ãsδ

∣∣∣∣∣ < 1 and using the geometric series we have

∞∑
k=0

(−1)k sσ−δ−δk
(bsγ + csµ + d)k

(sα−δ + ã)k+1 =
sσ

sα + sδã

 1

1 +
bsγ + csµ + d

sα + ãsδ


=

sσ

bsγ + csµ + d + sα + ãsδ
. (15)

The binomial theorem and the definition of binomial coefficients [39] allow us to rewrite Eq.(15) as

Ω =

∞∑
k=0

(−1)k
k∑

l=0

(
k
l

)
dl (bsγ + csµ)k−l sσ−δ−δk

(sα−δ + ã)k+1

=

∞∑
k=0

(−1)k
k∑

l=0

k!
l! (k − l)!

dl
k−l∑
j=0

(k − l)!
j! (k − l − j)!

(bsγ)k−l− j (csµ) j sσ−δ−δk

(sα−δ + ã)k+1

=

∞∑
k=0

(−1)k bkk!
k∑

l=0

(d/b)l

l!

k−l∑
j=0

(c/b) j

j! (k − l − j)!
Λσ, (16)

where Λσ =
sσ−δ(1+k)+µ j+γ(k−l− j)

(sα−δ + ã)k+1 .

Taking the inverse Laplace transform on both sides of Eq.(16) and using the result

L −1 {Λσ} = L −1
{

sσ−δ(1+k)+µ j+γ(k−l− j)

(sα−δ + ã)k+1

}
= tξ−1Ek+1

α−δ,ξ

(
−ãtα−δ

)
, (17)

we get

L −1 {Ω} =

∞∑
k=0

(−1)k bkk!
k∑

l=0

(d/b)l

l!

k−l∑
j=0

(c/b) j

j! (k − l − j)!
tξ−1Ek+1

α−δ,ξ

(
−ãtα−δ

)
, (18)

with ξ = −σ + α + (α − γ) k + γl − (µ − γ) j and where Ek+1
α−δ,ξ (·) is the three-parameters Mittag-Leffler

function [38, 40].
In particular, considering c = 0 in Eq.(18), we have that j = 0 is the only term contributing to the

sum and we conclude that

L −1
{

sσ

sα + ãsδ + bsγ + d

}
=

∞∑
k=0

(−1)k bkk!
k∑

l=0

(d/b)l tξ−1

l! (k − l)!
Ek+1
α−δ,ξ

(
−ãtα−δ

)
, (19)

where ξ = −σ + α + (α − γ) k + γl and α > δ > γ.
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Then, putting σ = µm/2, d = −aβ2, α = µ + 1, γ = µ, δ = 1, b = a and ã = −β2 in Eq.(19) and
going back to Eq.(14), we can write

C2 (x, t) = tµ
∞∑

m=0

(
−αxt−µ/2

)m

m!

∞∑
k=0

(−at)k k!
k∑

l=0

(
−β2tµ

)l

l! (k − l)!
Ek+1
µ,θ

(
β2tµ

)
, (20)

where θ = −µm/2 + µ + 1 + k + µl.
In order to write the solution of the PDE in terms of the two-parameters Mittag-Leffler function, we

evaluated the sum on l appearing in the last expression in order to find a relationship between two- and
three-parameters Mittag-Leffler functions. Using the identity

Λ =

k∑
j=0

(z) j

j! (k − j)!
Eρλ,λ j+δ (−z) =

k∑
j=0

∞∑
l=0

(z) j

j! (k − j)!
(ρ)l (−z)l

l!Γ (λl + λ j + δ)
, (21)

where (ρ)l = ρ (ρ + 1) .... (ρ + l − 1), together with the definition and properties of the binomial coeffi-
cients in Eq.(21), we can write [38]

k∑
j=0

(z) j

j! (k − j)!
Eρλ,λ j+δ (−z) =

∞∑
i=0

(−z)i

Γ (λi + δ)
1
k!

k∑
j=0

(−1) j k!
j! (k − j)!

(
i − j + ρ − 1

ρ − 1

)

=

∞∑
i=0

(−z)i

Γ (λi + δ)
1
k!

(ρ − k)i

i!
=

1
k!
Eρ−k
λ,δ (−z) . (22)

Choosing z = −β2tµ, ρ = k + 1, λ = µ, j = l and δ = k + µ + 1 − µm/2 in Eq.(22) and substituting
the result into Eq.(20), we conclude that

C2 (x, t) = tµ
∞∑

m=0

(
−αxt−µ/2

)m

m!

∞∑
k=0

(−at)k Eµ,µ+k+1−µm/2

(
β2tµ

)
, (23)

where Eα,β (·) is the two-parameters Mittag-Leffler function, which is considered uniformely convergent
[40].

The last inverse Laplace transform, C3(x, t), is obtained by means of an adequate limit, i.e., we
consider x→ 0 in Eq.(23). The only term that contributes in this limit is m = 0, i.e., we get

C3 (x, t) = tµ
∞∑

k=0

(−at)k Eµ,µ+k+1

(
β2tµ

)
. (24)

Thus, from the results obtained in Eq.(12), Eq.(23) and Eq.(24), we get the solution of our initial
problem, i.e., a solution of Eq.(4) satisfying the conditions given by Eq.(3):

C (x, t) = tµ
∞∑

m=0

(
−αxt−µ/2

)m

m!

∞∑
k=0

(−at)k Eµ,µ+k+1−µm/2

(
β2tµ

)
+ (25)

+W
(
−µ/2, 1;−

αx
tµ/2

)
− exp (−bx) tµ

∞∑
k=0

(−at)k Eµ,µ+k+1

(
β2tµ

)
,
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where the parameters are given by α2 = 1/DL, β2 = b2DL and 0 < µ ≤ 1. The solution given by
Eq.(25) valid for t > 0 is ACn[0, h] and class C2[0, h]; then, substituting it into Eq.(4) we can easily
verify that it satisfies the IVP (Initial value problem) and BVP (Boundary value problem) [Eq.(2) and
Eq.(3)] [31].

Let us now perform a graphical analysis. For this sake, we have to choose values for some pa-
rameters appearing in the solution given by Eq.(25). We used the following values: axial dispersion
coefficient DL = 4.8 × 10−4cm2s−1 [41]; diffusivity coefficient of oxygen D = 9.8 × 10−5cm2s−1 [42];
nutrient transfer coefficient k = 1.5 × 10−4ms−1 [43]; a = −0.005 × 10−4ms−1 [43]. We also fix a time
t = 15s and we consider the interval x = [0, 4] (which can be extended).
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Figure 1. Analytic solution of fractional order PDE, Eq.(25).
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Figure 2. Analytic solution of integer order PDE.

In Figures 1 and 2, the horizontal axis x represents space and the vertical axis y is the normalized
concentration of nutrients in blood.
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The parameter values used to plot Figure 1 were also used to plot the solution of the integer order
PDE, Figure 2. The graphics were plotted using MATLAB 7:10 software (R2010a).

Remark that as x (space) increases, the value of C/C1 (concentration of nutrients) decreases, that is,
when we move towards the extremity of the artery (x , 0), the blood concentration of solute decreases.
A decrease in solute concentration means that cells are not enough efficient in getting their nutrition,
so we conclude that the efficiency of nutrient transport near the artery is greater than at its venous
extremity.

As we have already said, with the freedom provided by parameter µ (0 < µ ≤ 1), it is possible to
describe more accurately the information about the concentration of nutrients near the arterial extremity
because, as seen above, the fractionalization of the derivative refines the solution. Note that for µ =

0.10 the behavior of the analytic solution remains near the arterial (x = 0) for longer time. We can thus
see that as µ→ 1, the fractional solution converges to the solution of the integer order PDE.

We supposed that the space variable x lies within the range [0, 4]. We might as well have analyzed
variable x in the range [0, 12] or any other interval; however, the first representative interval is the one
we chose because for x ≥ 3.8 the level C/C1 remains below the x axis. So it is interesting, in this
context, to carry our analysis only on the [0, 4] range.

3. Particular case: µ→ 1

In this section, we analyze the solution of the fractional PDE in the limit µ→ 1, in order to recover
the result found by Sharma et al. [1].

Since the solution of the fractional PDE Eq.(4) is given by Eq.(25), taking the limit µ→ 1, it follows
that

C (x, t) = t
∞∑

m=0

(
−αxt−1/2

)m

m!

∞∑
k=0

(−at)k E1,k+2−m/2

(
β2t

)
+

+W
(
−1/2, 1;−

αx
t1/2

)
− exp (−bx) t

∞∑
k=0

(−at)k E1,k+2

(
β2t

)
. (26)

In the last two terms of the sum in Eq.(26), we can use the results involving the Wright function and
the complementary error function and the exponential function, to get [37]:

C (x, t) = t
∞∑

m=0

(
−αxt−1/2

)m

m!

∞∑
k=0

(−at)k E1,k+2−m/2

(
β2t

)
+

+1 + erf
(
−αx/2

√
t
)
− exp (−bx)

exp
(
β2t

)
− exp (−at)

a + β2 . (27)

We want to express Eq.(27) in terms of erfc(·) and exp(·). We then evaluate the inverse Laplace
transform in Eq.(9) using partial fractions.

Taking the limit µ→ 1 in Eq.(9), it follows that

C2 (x, t) = L −1

 exp
(
−αx
√

s
)

(s + a)
(
s − β2)

 . (28)
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Using partial fractions and taking the inverse Laplace transform, we have

2
(
β2 + a

)
L −1

 exp
(
−αx
√

s
)

(s + a)
(
s − β2)

 = −L −1

 exp
(
−αx
√

s
)

√
s
(√

s − i
√

a
)
 −L −1

 exp
(
−αx
√

s
)

√
s
(√

s + i
√

a
)
 +

+L −1

exp
(
−αx
√

s
)

√
s
(√

s − β
)
 + L −1

exp
(
−αx
√

s
)

√
s
(√

s + β
)
 . (29)

In evaluating the inverse Laplace transforms, we can use the following result [44]:

L −1

 exp
(
−k
√

s
)

√
s
(√

s + b
)
 = exp (bk) exp

(
b2t

)
erfc

(
b
√

t +
k

2
√

t

)
, (30)

with k ≥ 0, b ∈ C and where erfc (x) is the complementary error function.
Thus, applying Eq.(30) in each term of Eq.(29), we have

2
(
β2 + a

)
L −1

{
1

(s + a)
(
s − β2)} = exp

(
β2t

) (
erfc

(
β
√

t
)

+ erfc
(
−β
√

t
))
−

− exp (−at)
(
erfc

(
i
√

at
)

+ erfc
(
−i
√

at
))
.

(31)

Analyzing the error functions in Eq.(31), we conclude that

L −1
{

1
(s + a)

(
s − β2)} =

exp
(
β2t

)
− exp (−at)

β2 + a
. (32)

As we evaluated the inverse Laplace transform of C2(x, t) in Eq.(9) in the case µ = 1 using two
different procedures, involving respectively a Mittag-Leffler function and error functions, we can write,
as a by-product, the following interesting mathematical identity involving Mittag-Leffler functions:

2
(
a + β2

)
t
∞∑

m=0

(
−αxt−1/2

)
m!

∞∑
k=0

(−at)k E1,2+k−m/2

(
β2t

)
=

= eβαxeβ
2terfc

(
β
√

t +
αx

2
√

t

)
+ e−βαxeβ

2terfc
(
−β
√

t +
αx

2
√

t

)
−

−eiα
√

axe−aterfc
(
i
√

at +
αx

2
√

t

)
− e−iα

√
axe−aterfc

(
−i
√

at +
αx

2
√

t

)
.

(33)

Further, considering α = 0 in Eq.(33), which means that only m = 0 contributes to the first sum, we
obtain

t
∞∑

k=0

(−at)k E1,2+k

(
β2t

)
=

eβ
2t − e−at(
a + β2) . (34)
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Consequently, Eq.(33) can be interpreted as a generalization of Eq.(34). Also, considering a = 0 in the
previous equation, we have

β2tE1,2

(
β2t

)
= eβ

2t − 1,

which is a known identity involving the Mittag-Leffler function [40].
Finally, we can write the main relation we need to recover the solution proposed by Sharma et al.

[1]. According to Eq.(27) and Eq.(33):

C (x, t) = t
∞∑

m=0

(
−αxt−1/2

)m

m!

∞∑
k=0

(−at)k E1,k+2−m/2

(
β2t

)
+

+1 + erf
(
−αx/2

√
t
)
− exp (−bx)

exp
(
β2t

)
− exp (−at)

a + β2

= 1 − erf
(
αx/2

√
t
)
−

exp (−bx)
a + β2

(
exp

(
β2t

)
− exp (−at)

)
+

exp
(
β2t

)
2
(
a + β2)

 exp (βαx) erfc
(
β
√

t + αx
2
√

t

)
+ exp (−βαx) erfc

(
−β
√

t + αx
2
√

t

)  −
−

exp (−at)
2
(
a + β2)

 exp
(
iα
√

ax
)

erfc
(
i
√

at + αx
2
√

t

)
+ exp

(
−iα
√

ax
)

erfc
(
−i
√

at + αx
2
√

t

)  . (35)

We emphasize that parameters D and DL are positive constants and k ≥ a, as imposed in both

models. Moreover, returning to the original parameters β =

√
(k−a)

D DL, b =

√
k−a
D , from Eq.(35), we

conclude that

C (x, t) = erfc
(

x
2
√

DLt

)
−

exp
(
−

√
k−a
D x

)
k
(

DL
D

)
+ a

(
1 − DL

D

) (
exp

((
k − a

D

)
DLt

)
− exp (−at)

)
+

+
exp

((
k−a
D

)
DLt

)
2
[
k
(

DL
D

)
+ a

(
1 − DL

D

)]


exp
(√
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D x

)
erfc

(
x+2DLt

√
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D

2
√

DLt

)
+ exp

(
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√
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D x

)
erfc

(
x−2DLt

√
k−a
D

2
√

DLt

)
 −

−
exp (−at)
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[
k
(

DL
D

)
+ a

(
1 − DL

D

)]
 exp

(
i
√

ax
√

DL

)
erfc

(
x + 2it

√
DLa

2
√

DLt

)
+ exp

(
−

i
√

ax
√

DL

)
erfc

(
x−2it

√
DLa

2
√

DLt

)
 , (36)

which is exactly the result obtained in [1].

4. Concluding remarks

After a brief introduction to the study of the concentration of nutrients in blood, a factor that inter-
feres with ESR, we proposed a fractional mathematical model employing fractional derivatives in the
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Caputo sense. We obtained its analytic solution in terms of the Mittag-Leffler function and the Wright
function using the methodology of Laplace transform in the time variable. We should point out that
one of the greatest challenges of fractional calculus, in the study of differential equations, is to propose
a fractional differential equation whose corresponding analytic solution recovers the integer order case
in an adequate limit. Here, it was possible to recover the solution of the integer case applying the limit
µ→ 1 to the analytic solution, Eq.(25), of the fractional PDE, Eq.(4). As for what was expected about
the relation between the fractional mathematical model and the integer order model of [1], we can say
that our fractional model provides more accurate information about the concentration of nutrients in
blood, as one can also see in Figure 1.

A natural continuation of this work is to confront our fractional model with experimental data, in
order to be able to make predictions using ESR tests. Studies in this direction are being done and will
be published in a forthcoming paper.
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