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ABSTRACT
Given a control system on a compact manifold M, we study condi-
tions for the foliation defined by the accessible sets to be dense inM.
For this, we relate the control system to a stochastic differential equa-
tion and, by the support theorem, we give a characterization of the
density in terms of the infinitesimal generator of the diffusion and its
invariant measures.

1. Introduction

A set of reachable points (accessible sets) by trajectories of the family of ordinary dif-
ferential equations, parametrized by control parameters, have been studied not only in
the dynamic aspect, but also in geometric and probabilistic terms. The geometric objects
appear because accessible sets are intimately related to the group of transformations gener-
ated by the dynamical systems (see, for example, [1]), and probabilistic terms because there
is a ‘good approximation’ between stochastic differential equations and control systems (see,
for example, [2]).

Themain setup is the following: consider, over a compact Riemannianmanifold without
boundary (M, g), a family F = {X0, X1, …, Xk} of smooth vector fields over M and the
associated control system

ṗ = X0(p) +
k∑

i=1

ui(t )Xi(p), (1)

with smooth functions ui : R≥0 → R. Denote by pu(t) the solution of (1) for some

u = (u1, . . . , uk) ∈ C∞(R≥0, R
k),

and such that pu(0)= p. We call any such solution as a control path starting at p and denote
by CP p the set of all control paths starting at p.
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LetA(p) be the accessible set from p � M defined by

A(p) = {pu(t ) ∈ M, t ≥ 0 and u ∈ C∞(R≥0, R
k)}

(see [1] or [3] formore details). It is well known that the accessible sets determine a foliation
with singularities (see, for example, [4]).

Our interest in this article is to find conditions that guaranteeA(p) = M, for all p � M.
To do this, wewill use the stochasticmethod. Themotivation is the following. LetW(M) be
the space of continuous paths s: [0,�)→M andB(W(M)) be the sigma algebra generated
by the Borel cylinders sets. It is well known that associated to the control system (1), there
exists a diffusion overM with infinitesimal generator L given by

L f =
(
X0 + 1

2

k∑
i=1

X2
i

)
f

(see, for example, [5]). Also, associated to the operatorL, there is a unique stronglyMarko-
vian system of probability measures {Pp, p ∈ M} overW(M) defined by

Pp[s(t ) ∈ U ] = Pt (p,U ),

for all Borel setsU ofM. Here,Pt(p, ·) are the transition probabilities of the diffusion defined
by L. The measures Pp satisfy

(i) Pp[s ∈ W(M), s(0) = p] = 1;
(ii) for all f ∈ D(L) and p � M, we have that

f (s(t )) − f (0) −
∫ t

0
(L f )(s(r)) dr

is a (Pp, B(W(M)))-martingale.

For more details, see [5, pp. 190–194].
The relations between the control system (1) and the SDE (2) are then given by the sup-

port theorem (see, for example, [5, Theorem 8.1, p. 431]) that states

supp(Pp) = CP p,

where supp(Pp) is the smallest closed subset of W(M), with the condition s(0) = p, that
carries probability Pp equal to 1, and CP p is the closure of the set of all control paths start-
ing at p. Therefore, the study of subsets of the control paths can be seen by examining the
supports of transition probabilities, or, in the last instance, by supports of invariant mea-
sures given by the heat semigroup associated to these transition probabilities. Connections
between accessible sets and supports of invariant measures have also been studied in the
context of degenerate diffusion (see, for example, [6]).

With the above setup , the main purpose of our work is to determine when CP p = M
or, as we mentioned before, when all invariant measures are supported inM. In particular,
we will focus on control systems over homogeneous spaces. Using the approach introduced
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by Garnett [7] in the study of the harmonic measures for foliations (see also [8] and [9]),
we will prove a condition that guarantees the density of accessible sets (see Theorem 5.2).
We remark that the motive of working with foliations became natural because the control
paths produce a foliation on the manifold. Therefore, our problem can be seen as the study
of ergodicity of the foliation.

The article is organized as follows: In Section 2, we review the main tools of stochas-
tic differential equations (SDEs) that are used in this study. In Section 3, we consider a
diffusion, given by a Stratonovich SDE with the same smooth vector fields of (1), and char-
acterize the closure of accessible set by transition probabilities and invariant measures for
this SDE. In Section 4, we rewrite the previously mentioned result in the context of foliated
spaces and give some examples as applications. We then applied, in Section 5, our results
in a compact homogeneous manifolds under certain properties in the Lie algebras.

2. Invariant measures for the stochastic differential equations

The motivation of this section is to present an overview of the well-known facts from SDE
theory, which will be used as tools for our main subject.

Given a family F= {X0, X1, …, Xk} of smooth vector fields inM and a Brownian motion
B = (B1, …, Bk) in R

k based on a filtered probability space (�,F, P), we consider the
Stratonovich SDE

dpt = X0(pt ) dt +
k∑

i=1

Xi(pt ) ◦ dBi
t (2)

p0 = p.

A solution for this equation is an adapted stochastic process Y inM satisfying

f (Ys) − f (p) =
∫ t

0
X0 f (Ys) dt +

k∑
i=1

∫ t

0
Xi f (Ys) ◦ dBi

s

=
k∑

i=1

∫ t

0
Xi f (Ys) dBi

s +
∫ t

0

(
X0 + 1

2

k∑
i=1

X2
i

)
f (Ys) ds,

for all real-valued function f � C2(M). In the integrals above, dBi
s and ◦dBi

s are used to
denote Itô and Stratonovich integral, respectively.

When the manifold is compact, it is well known (see, for example, [10] or [5]) that there
is a solution flow, i.e. a map ϕ : R≥0 × M × � → M such that

(i) Yt = ϕ(t, p, ·) solves the SDE (2) with Y0 = p;
(ii) for all f in C�(M) and ω � �, we have that f(ϕ(t, ·, ω)) is a function in C�(M).

Associated to this solution flow, there are the transition probabilities {Pt(p, ·), p�M, t�
0}, given by the relation

Pt (p,U ) = E[χU (ϕ(t, p, ·)] = P[ϕ(t, p, ·) ∈ U ] = (ϕ(t, p, ·)∗P)[U ],
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where χU is the characteristic function

χU (p) =
{
1 if p ∈ U
0 if p �∈ U .

If B(M) is the σ -algebra of all Borel sets of M, then Pt : M × B(M) → R have the two
following conditions (see [5, pp. 190–194]):

(a) for every p � M, the map Pt (p, ·) : B(M) → R is a probability measure;
(b) for everyU ∈ B(M), the function Pt (·,U ) : M → R is Borel measurable.

Denote by ϕt(x) = ϕ(t, x, ·): � → M. The infinitesimal generator L is given by

L f (x) = lim
t→0

E( f (ϕt (x))) − f (x)
t

,

where E( f (ϕt (x))) is the expectation of the random variable f (ϕt (x)) : � → R with
respect to P. LetD(L) be the set of continuous functions f : M → R such that L f is con-
tinuous. It is well known that the relation between L and the coefficients of the SDE (2) is
given by

L f =
(
X0 + 1

2

k∑
i=1

X2
i

)
f .

Moreover, the transition probabilities generate a Markov semigroup Tt : D(L) → D(L)

(t � 0) given by Tt ( f )(x) = E( f (ϕt (x))), whose infinitesimal generator is precisely L. In
fact, the relation between Tt and Pt can be seen by the inducedmeasure theorem to themap
ϕt(x): � → M, more precisely

Tt ( f (x)) = E[ f (ϕt (x))]

=
∫

�

f (ϕt (x))dP

=
∫
M

f (y) d((ϕt (x))∗P)

=
∫
M

f (y)Pt (x, dy).

And, as an implication of Dynkin’s formula and Kolmogorov’s backward equation, we have
that

∂t (Tt f ) = Tt (L f ) = L(Tt f ). (3)

SinceM is compact, the space of measures onM is the dual of the space of continuous func-
tions onM. Therefore, ameasureμ inM is associated with the real-valued linear functional
onD(L), and is given by

f 	→
∫
M

f (x)dμ(x).
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Because of the preceding remark, it makes sense to define the map T∗
t on measure spaces

by

(T∗
t μ)( f ) =

∫
M

(Tt f )(x) μ(dx).

Therefore, we say that T∗
t preserves the measure μ (i.e. T ∗

t μ = μ) if and only if

∫
M
Tt f (x) μ(dx) =

∫
M

f (x) μ(dx), (4)

for all f ∈ D(L). In this case, we say that μ is an invariant measure for the SDE (2).
The following result characterizes invariant measures in terms of infinitesimal generator

L, and it can be seen, for example, in [5, p. 277].

Proposition 2.1: T ∗
t μ = μ if and only if

∫
M L f (x) μ(dx) = 0 for all f ∈ D(L).

Proof: For all f ∈ D(L), by Equation (3), we obtain that

d
dt

∣∣∣∣
t=0

∫
M

f (x) (T∗
t μ)(dx) = d

dt

∣∣∣∣
t=0

∫
M
Tt f (x) μ(dx)

=
∫
M
T0(L f )(x) μ(dx)

=
∫
M
L f (x) μ(dx).

�

An invariant measure μ is called ergodic if for any invariant set U, i.e. any set U�M
satisfying

P[ω ∈ � : φ(t, p, ω) ∈ U, ∀ t ≥ 0] = 1 for all p ∈ U,

we have that μ(U)μ(Uc) = 0.
An important result for invariant measures is the following ergodic theorem.

Theorem 2.2: Let μ be an invariant measure and f � L1(μ), then, there is a function f* �
L1(μ) such that

(i) f ∗ = limt→∞ 1
t

∫ t
0 Ts f ds μ – almost everywhere (a.e.);

(ii) �Mf*(x) μ(dx) = �Mf(x) μ(dx).

Also, when μ is ergodic and f � L1(μ), we have that

f ∗ =
∫
M

f (x)μ(dx) μ − a.e.

For more details about the above result and its proof, see, for example, [11, p. 379].
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3. Accessible sets and invariant measures

In this section, we will present some results which will allow us to characterize accessible
sets through transition probabilities, and later by invariant measures.

At first, we give a lemma that is a consequence of the support theorem.

Lemma 3.1: LetA(p) be the accessible set from p associated to the control system (1) and let
{Pt(p, ·), t � 0} be the transition probabilities defined by the SDE (2). Then,

A(p) ⊆
⋃
t≥0

supp(Pt (p, ·)) ⊆ A(p), ∀ p ∈ M.

Proof: To see the first inclusion, we consider a point q ∈ A(p). Then, by definition, there
will be a control path pu(s) such that pu(0)= p and pu(t)= q. Let Bq be an open neighbour-
hood of q and consider the open subset Ut(Bq) of the paths space defined by

Ut (Bq) = {s ∈ C([0, ∞),M), s(0) = p, s(t ) ∈ Bq}.

Since pu(s) � Ut(Bq), we get that Ut(Bq) has non-empty intersection with the set of all
control paths CP p starting at p, and therefore, by the support theorem, we have that
Pp[Ut (Bq)] > 0. So Pt(p, Bq) > 0, and by the arbitrariness of Bq, we get that q � supp(Pt(p,
·)).

For the second inclusion, we assume that q � supp(Pt(p, ·)). Then, for any open neigh-
bourhood Bq of q, we have that Pt(p, Bq) > 0. Defining Ut(Bq) as above, we get that
Pp[Ut (Bq)] > 0, and therefore by the support theorem, we get that Ut (Bq) ∩ CP p �= ∅.
Therefore, there is a control path pu such that pu(0)= p and pu(t)� Bq. By the arbitrariness
of the open neighbourhood Bq, we get a sequence of points inA(p) converging to q. Thus,
q ∈ A(p). �

From this, it follows another result between closure of accessible sets and transition prob-
abilities.

Theorem 3.2: Consider the control system (1). Then,A(p) = M for all p if and only if

∫ ∞

0
Pt (p,U ) dt > 0,

for all p � M and open subsets U of M.

Proof: We assume thatA(p) = M, for all p� M. Then, by Lemma 3.1, for any open setU,
we have that

(⋃
t≥0

supp(Pt (p, ·))
)

∩U �= ∅.
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Thus, since the Pt(p, ·) are continuous in t, we get that there will be a small interval I = (t0
− ϵ, t0 + ϵ) such that Pt(p, U) > 0, for any t � I. Therefore,

∫ ∞

0
Pt (p,U ) dt > 0,

for all p � M and open subsets U ofM.
Now suppose A(p) �= M for some p � M. Then, for the open set U = M \ A(p), we

have, by Lemma 3.1, that Pt(p, U) = 0 for all t � 0, and therefore
∫ ∞

0
Pt (p,U ) dt = 0.

�

Let S be the subset ofM given by

S =
⋃

μ∈M,ergodic
supp(μ) =

⋃
μ∈M

supp(μ),

whereM is the set of invariant measures under L.
Theorem 3.3: The following assertions are equivalent:

(i) A(p) = M for all p � M.
(ii) Every invariant measure μ of the diffusion given by Equation (2) satisfies supp(μ) =

M.

Moreover, if (i) or (ii) is satisfied, then

{ f ∈ C2(S ) ∩ D(L), L f = 0 inS} = { f = const.}.

Proof: (i) ⇒(ii) Assume thatA(p) = M for all p � M. If p � supp(μ), then

supp(Pt (p, ·) ⊆ supp(μ),

for all t � 0. In fact, if δp is the Dirac δ-measure supported at p, we have that
supp(δp)�supp(μ). Thus,

supp(T∗
t δp) ⊂ supp(T∗

t μ) = supp(μ).

We observe that Pt (p, ·) = T ∗
t δp. In fact, for every continuous function f

Tt f (p) =
∫
M
Tt f (y) δp(dy)

=
∫
M

f (y)T∗
t δp(dy).

Then,A(p) ⊆ supp(μ) by Lemma 3.1. Thus,M = supp(μ).
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(ii)⇒(i) For the converse, we assume that for any invariant measure μ, we have that
supp(μ) = M. Define the measures

μt = 1
t

∫ t

0
T ∗
r δp dr, t ≥ 0.

Clearly for each t, μt is a probability measure. We also observe that

T ∗
s μt = μt − s

t
μs + 1

t

∫ t+s

t
T ∗
r δp dr.

Since M is compact, there is a sequence tk↑� and a probability measure ν such that
μtk → ν. Therefore, ν is invariant since

T∗
s ν = lim

k→∞
T ∗
s μtk

= lim
k→∞

μtk = ν.

Thus,

M = supp(ν) ⊆
⋃
k

supp(Ptk (p, ·))

andM ⊂ A(p).
To prove the last statement, we assume that A(p) = M for all p ∈ S . It is clear that if f

is a constant function, thenC2(S ) ∩ D(L) and L f = 0. On the other side, if f ∈ C2(S ) ∩
D(L) is a function such that L f = 0, then,

f |S = f ∗ = lim
t→∞

1
t

∫ t

0
Ts f ds

and, given an ergodic measure μ, Theorem 2.2 implies that

f |supp(μ) =
∫
M

f (x)μ(dx) μ − a.e.

Since supp(μ) = A(p), for some p � M, we get supp(μ) = M. Therefore, the function f is
constant on the whole manifoldM. �
Remark 3.4: To conclude this section, we observe that it is not true that

{ f ∈ C2(S ) ∩ D(L), L f = 0 inS} = { f = const.}

implies that the leaves are dense. For example, consider the suspension of a linear Anosov
diffeomorphism φ on the two torus as a one-dimensional foliation, this isM= T2 × [0, 1]/
∼, where (x, 0) ∼ (φ(x), 1) with the foliation defined by the trajectory of the suspension
flow determined by �t. We observe that this foliation has no dense leaves; in fact, they are
compact. Any continuous function f such that

L f = 1
2
∂2
t f = 0,
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is constant on each of the leaves of the support of any invariantmeasure (sinceM is compact,
there are invariant measures). This implies that f([x, t])= k(x) for a continuous function k:
T2 → T2. But then,

k(x) = f ([x, 0]) = f ([φ(x), 1]) = k(φ(x)).

Since φ is Anosov, kmust be constant on T2. Therefore, f is constant inM.

4. Conditions in the context of foliation

Let F be a family of vector fields in M and let DLie(F ) the associated distribution to the Lie
algebra of F. We know thatDLie(F ) define a foliation inM with its integral manifolds deter-
mined by the orbits of F.

Using theNash embedding theorem, it is possible to prove that, forN large enough, there
is a family of vector fields H = {X1, …, XN} such that, if π(p) : TpM → DLie(F )(p) ⊂ TpM
is the orthogonal projection and f is a smooth function, then,

∇D f (p) := π(p)(∇ f (p)) =
N∑
i=1

(Xi f )(p)Xi(p),

and

〈∇D f (p), ∇D f (p)〉 =
N∑
i=1

(Xi f )2(p).

In fact, consider an isometric embedding of M in R
N , via Nash theorem, for N large

enough. Let {e1, …, eN} be an orthonormal basis of R
N and consider the vector fields

{X̃1, . . . , X̃N} overM defined by

X̃i(p) = ProjTpMei.

If π(p) : TpM → DLie(F )(p) ⊂ TpM is the orthogonal projection, we denote by Xi the vec-
tor fields given by

Xi(p) = π(p)X̃i(p).

Clearly, since {X̃1(p), . . . , X̃N (p)} spans TpM, we have that {X1(p), …, XN(p)} spans
DLie(F )(p). We observe that each orthonormal basis of R

N will induce a set of vector fields
like this. Moreover, if B1 = {e1, …, eN} and B2 = {v1, …, vN} are two orthonormal bases of
R

N and {X1, …, XN} and {Y1, …, YN} are the vector fields constructed as above for these
bases, the orthogonal matrix O for which transforms B1 into B2 will transform the set of
vector fields, this is

Yj =
N∑
i=1

OjiXi.

Then, for every smooth function f, there are smooth functions a1, …, aN such that

∇D f (p) = πp(∇ f (p)) =
N∑
i=1

ai(p)Xi(p).
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Now consider a basis B2 of R
N such that for k > n =dim(M) we have that vk is orthogonal

to TpM. Then,

Xj f (p) = < ∇D f (p),Xj(p) >

=
N∑
i=1

ai(p) < Xi(p),Xj(p) >

=
N∑

i,α,β=1

ai(p)OiαOjβ < Yα(p),Yβ (p) >

=
N∑

i,α=1

ai(p)(OOT )i j = a j(p).

Thus,

∇D f (p) = πp(∇ f (p)) =
N∑
i=1

(Xi f )(p)Xi(p).

Similarly,

〈∇D f (p), ∇D f (p)〉 =
N∑

i, j=1

(Xi f )(p)(Xj f )(p) < Xi(p),Xj(p) >

=
N∑

i, j,α,β=1

(Xi f )(p)(Xj f )(p)OiαOjβ < Yα(p),Yβ (p) >

=
N∑

i, j,α,β=1

(Xi f )(p)(Xj f )(p)(OOT )i j

=
N∑
i=1

(Xi f )2(p).

With the vector fields {Xi, …, XN} defined as above, we construct an SDE

dxt =
N∑
i=1

Xi(xt ) ◦ dBi
t , x0 = p, (5)

whose solution is a diffusion with infinitesimal generator given by

� = 1
2

N∑
i=1

X2
i .

Lemma4.1: The support of the transition probabilities associated to the SDE (5)are the leaves
of the foliation given byDLie(F ).

Proof: For a point p�M, consider the leaf Lp with the metric induced fromM. It is simple
to see that the Levi–Civita connection	D on Lp is related to the Levi–Civita connection	
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onM by

∇D
XY (p) = π(p)(∇XY )(p),

for every vector field X, Y ∈ DLie(F ). Now consider an orthonormal basis {v1, …, vk} of
(DLie(F ))p and extending, using again the argument of the isometric embedding, to an
orthonormal basis {v1, …, vN} of R

N . Let {e1, …, eN} be the basis that defines the vec-
tor fields X ′

i s and denote by Yi the ones induced by the v ′
i . Again, there is an orthogonal

matrix O such that

Yi =
N∑
i=1

OijXj.

Using a similar argument to the one given in the book ofHsu [12, pp. 77–78] for the Laplace
operator onM, we get

�Lp( f ) =
k∑

i=1

< ∇D
vi
∇D f , vi >

=
N∑
i=1

Y 2
i f (p)

=
N∑

i, j,l=1

OijOilXiXl f (p)

=
N∑
i=1

(X2
i f )(p).

Therefore, the diffusion defined by (5) is a Brownianmotion on the leaf of the associated
foliation. That is, if Wp is the solution starting at p, then Wp is a Brownian motion on Lp
and the transition probability measures Pt(p, ·) are absolutely continuous to the Lebesgue
measure of the leaf. In fact, they will have the form

Pt (p,U ) =
∫
U
qLpt (x, y) dy,

where qLpt (x, y) is the heat kernel on the leaf Lp. �

Once we have that the transition probabilities of the process defined by Equation (5)
are supported in the whole leaf, we can use this process to characterize the density of the
accessible sets. We do this in the following theorem, where we also give another proof of
Krener’s theorem [13].

Theorem 4.2: The following assertions are equivalent:

(i) The leavesA(p) of the foliation defined byDLie(F ) are dense in M.
(ii) Every invariant measure μ of the SDE (5) satisfies supp(μ) = M.
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Moreover, if (i) or (ii) is satisfied, then

{ f ∈ C2(S ) ∩ D(�), � f = 0 inS} = { f = const.}.
Proof: The assertions follow from Theorem 3.3 applied to the control system associated to
Equation (5). �
Corollary 4.3: If (DLie(F ))p = TpM, for all p in M, thenA(p) = M for all p � M.

Proof: Let (DLie(F ))p = TpM, for all p inM. The construction of the vector fields defining
Equation (5) implies that its solution is the Brownian motion of the manifold starting at p.1

Then, the support of the transition probabilities is the whole manifold. But, from Lemma
4.1, we get that the support of the transition function is the leaves of the associated foliation,
which is just one leaf equal toM. Therefore,A(p) = M for all p � M. �
Remark 4.4: Theorem 4.2 can be applied in the context of a foliated (M,F ) manifold if
we replaceDLie(F ) by the distribution that define the foliation F .

Example 4.5: Consider the torus given by T
2 = ([0, 1] × [0, 1])/ ∼ where (0, y) ∼ (1, y)

e (x, 0) ∼ (x, 1) and let X be the vector field defined by

X = ∂x + 3 · ∂y .

The associated SDE is given by

dpt = X (pt ) ◦ dBt ,

for Bt a one-dimensional Brownian motion. The infinitesimal generator for the above SDE
is

L = 1
2

(
∂2
x + 9 · ∂2

y + 6 · ∂xy

)
.

Therefore, the measure dμ on T
2 given by

dμ = ρ dm = sin2(2π(3x − y)) dxdy

is invariant. In fact, let L∗ the adjoint operator of L, namely, in the language of the theory
of partial differential equations, the operator defined by the identity∫

T2
(L f )ρ dm =

∫
T2

f (L∗ρ) dm,

for all function f on T
2. From this identity and Equation (3), we obtain∫

T2
f
(
∂tρ − L∗ρ

)
dm = 0,

and, therefore, the well-known Kolmogorov’s forward or the Fokker–Planck equation

∂tρ − L∗ρ = 0.
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Furthermore, by Green’s theorem, it could be shown that for this special infinitesimal gen-
erator L = 1

2X
2, we have L = L∗. Since

−1
2

(
∂2
x + 9 · ∂2

y + 6 · ∂xy

)
(ρ(x, y)) = 0,

we conclude thatμ is an invariant measure. Since it is possible to find a closed saturated set
with non-zero measure, it follows that the leaves are not dense.

Example 4.6: Consider again a compact Riemannian manifold M of dim(M)=3 with an
orthonormal basis {X, Y, H} of TM satisfying

[X,H] = X, [X,Y ] = −H, [H,Y ] = Y.

Let F be a foliation induced by E =span{X, H}. The diffusion obtained by Equation (5) is
the Brownianmotion on the leaves. It could be shown by Garnett (see [7, Proposition 5], or
[14, Section 3.4]) that this diffusion has just one invariant measure which is the Lebesgue
measure. Then, the leaves of this foliation are dense.

5. Application on compact homogeneousmanifold

In this section, let G be a Lie group and � be a closed subgroup of G with cofinite volume,
i.e.M 
 G/� is a compact homogeneous manifold (see, for example, [15]). Let h ⊂ g be a
Lie subalgebra and consider the distribution TFg = (Lg)∗h which defines a foliation F on
M.

Consider now a basis B = {X̃1, . . . , X̃k, Ỹ1, · · · , Ỹr} of g such that {X̃1, . . . , X̃k} is a
basis of h and {Ỹ1, · · · , Ỹr} are identified with a basis of g/h. Then, there are constants
{ali j, bli j, cli j, dl

i j, eli j} such that

[X̃i, X̃j] =
∑
l

ali jX̃l,

[X̃i, Ỹα] =
∑
l

bliαX̃l +
∑

β

cβiαỸβ,

[Ỹα, Ỹβ] =
∑
l

dl
αβX̃l +

∑
γ

eγαβỸγ .

Moreover, we can choose right invariant vector fields {X1, …, Xk, Y1, …, Yr} onM, associ-
ated to B, in such a way that TF = span{X1, . . . ,Xk}. We observe that the leaves of F are
the control paths associated to TF , and all of them are isometric.

Let 〈, 〉 denote the invariant metric onM such that the set of vector fields

{X̃1, . . . , X̃k, Ỹ1, · · · , Ỹr}

is an orthonormal set, and let �F be the Laplace operator on the leaves, given by

�F ( f ) = div(π(∇ f )),



532 D. S. LEDESMA AND F. B. DA SILVA

where π : TM → TF is the orthogonal projection and 	 is the Levi–Civita connection.
Then,

�F ( f ) = div(π(∇ f ))

=
k∑

i=1

〈∇Xi (π(∇ f )),Xi〉 +
r∑

j=1

〈∇Yj (π(∇ f )),Yj〉

=
k∑

i=1

X2
i f − π(∇XiXi) f

=
k∑

i=1

X2
i f +

k∑
i, j=1

aii jXj f .

We observe that the SDE

dgt = 2
k∑

i, j=1

aii jXj(gt )dt +
k∑

i=1

Xi(gt ) ◦ dBi
t

g0 = g

has�F as its infinitesimal generator. This process is known as the foliated Brownianmotion
(see [9,7]) and the transition probabilities satisfy supp(Pt (g, ·)) = Fg, the closure of the
leave through g.

We consider the differential forms χ and ν defined by

χ = X �
1 ∧ · · · ∧ X �

k , ν = Y �
1 ∧ · · · ∧Y �

r ,

where Z� denotes the 1-form Z�(W) = 〈Z,W〉 for every vector fieldW.
Since for the invariant vector fields associated to B we have

[Xi,Xj] =
∑
l

ali jXl,

[Xi,Yα] =
∑
l

bliαXl +
∑

β

cβiαYβ,

[Yα,Yβ] =
∑
l

dl
αβXl +

∑
γ

eγαβYγ ,

we get that

LXiX
�

l = −
∑
j

ali jX
�
j −

∑
α

bliαY
�
α ,

LXiY
�

β = −
∑

α

cβiαY
�
α .
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Therefore,

LXi (χ ∧ ν) = −Tr(ad(Xi))(χ ∧ ν).

Lemma 5.1: Assume that tr(ad(X)) = 0 for every X ∈ h, then, the measure μ induced by
χ�ν defines a harmonic probability measure. Moreover, the leafwise Laplacian is self-adjoint
with respect to μ.

Proof: By the computation,

∫
M

�F f dμ =
k∑

i=1

∫
M
X2
i fμ +

k∑
i, j=1

aii j

∫
M
Xj fμ

=
k∑

i=1

∫
M

f L2Xiμ +
k∑

i, j=1

aii j

∫
M

f LXjμ.

Thus, μ is invariant for �F . Doing a renormalization by a constant, we can assume that μ
is a harmonic probability measure with full support for the foliation F (see [9,7]).

The leafwise Laplacian �F is self-adjoint, since

∫
M

(h�F f − f�Fh)dμ = 1
2

k∑
i=1

∫
M
Xi(hXi f − f Xih)dμ = 0.

�

Now, assume that μ1 is another harmonic probability measure such that its support is a
closed saturated set K�M. The Radon–Nikodym derivative dμ1/dμ = f is a leafwise har-
monic function on each leaf L�K; in fact,

∫
M

(�F f )2dμ =
∫
M

(�2
F f ) f dμ

=
∫
M

(�2
F f )dμ1 = 0.

Therefore, f is constant onμ almost each L (Garnett [7, Thm. 1.b]). Let L0�K be a leaf such
that f |L0 �= 0. Let T be an open transversal section to L0 and consider the saturated set

BT =
⋃

L∈F,L∩T �=∅
L.

Each leaf through T will intercept T at a single point t. Denote by Lt to the leaf such that
TLt = {t}. Let gt � G be such that gt · Lt = L0; moreover, the map Lgt : M → M defined
by Lgt (x) = gt · x defines an isometry and therefore Lt and L0 are isometric.

Consider now the global function F : M → R defined by

F(x) =
{
f (gt · x) if x ∈ Lt ⊂ BT

0 if x �∈ BT .
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Since

�FF(x) = (�F f )(gt · x) = 0,

we get that F is leafwise harmonic. Thus, the function F is also constant almost every leaf.
So, if f = k > 0, we get

∫
BT

dμ1 =
∫
BT

f dμ

=
∫
T

(∫
Lt
F dχ

)
dν

= k vol (L0) ν (T ).

With the same assumptions at the beginning of this section, and as a consequence of the
discussion above, we obtain the following:

Theorem 5.2: Let h ⊂ g be a Lie subalgebra such that tr(ad(X)) = 0 for each X ∈ h and let
F be the induced foliation onM by h. If the leavesFg of M have infinite volume, then they are
dense in M.

Corollary 5.3: If h ⊂ g is an ideal, trhad : h → R is the trivial map and the leaves Fg have
infinite volume, then the leaves are dense in M.

Note

1. In fact, compare the construction of the process given with the construction of the Brownian
motion given, for example, in [12, pp. 77–78].
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