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Abstract—We comment on the paper ‘‘Cutset Bounds on the
Capacity of MIMO Relay Channels’’ by Jeong et al. and point
out that, unlike what appears from a remark and some other
contents by these authors, the matrix distribution for the sum of
two complex randomWishartmatrices has already been derived
by Kumar for the general case of arbitrary covariance matrices
and not only for the special case when one of them is assumed
proportional to the identity matrix. The latter assumption has
been made only for deriving the corresponding eigenvalue dis-
tribution. Furthermore, we draw attention to the result that
when all covariance matrices are chosen proportional to the
identity matrix, then it is possible to obtain exact and closed
form expressions for the sum of an arbitrary number ofWishart
matrices and not only for two as considered by Jeong et al.

Index Terms—Sum of Wishart matrices, eigenvalue statis-
tics, MIMO multiple access channels, MIMO relay channels,
Shannon transform.

In a recent article [1], the authors have used the sum of
Wishart matrices in the context of multiple-input-multiple-
output (MIMO) relay channels. The purpose of the present
comment article is to compare certain results presented in [1]
with those in [2]–[4]. In particular, we point out that the
matrix distribution of the sum of two complex centralWishart
matrices for the general case of arbitrary covariance matrices
has already been derived in [2], and not only for the special
case when one of the covariance matrices is relaxed to be
proportional to identity matrix. Furthermore, we also high-
light certain generalizations concerning the sum of arbitrary
number of Wishart matrices that have already been provided
in [3] and [4].

Sums of Wishart matrices play a key role in multivariate
statistics [5]–[9] and, among other things, find applications
in the analysis of several modern-day MIMO communica-
tion models [1], [3], [4], [10], [11]. While the investigation
of the sum of independent Wishart matrices dates back to
the work of Tan and Gupta [8], recent availability of exact
solutions concerning its eigenvalue statistics has revived the
interest in exploring such composite matrix models fur-
ther [2]–[4], [12], [13]. In [2] one of the present authors
has derived the matrix probability density for the sum of
two independent central complex Wishart matrices which

have different covariance matrices associated with them.
Moreover, in the case of one of the covariance matrices pro-
portional to the identity matrix, closed form expressions for
eigenvalue densities have also been obtained in [2] and [12].
Several other important results for the sum of two Wishart
matrices have been worked out in [13], such as an exact
expression for the arbitrary order eigenvalue density corre-
lation function. In [3] and [4], exact solvability has been
established for the sum of an arbitrary number of independent
Wishart matrices with covariance matrices proportional to
the identity matrix. This sum is evidently equivalent to the
scalar-weighted sum of independent uncorrelated-Wishart
matrices. It has been shown that this problem can be mapped
to that of a semicorrelated Wishart matrix, and therefore
the existing results [14]–[16] for the latter can be used. The
eigenvalue statistics derived therein has been applied to inves-
tigate the ergodic capacity of distributed antenna systems [3],
and the ergodic sum capacity of MIMO multiple access and
MIMO relay channels [4].

Jeong et al. [1] refer to the sum of n × n-dimensional
Wishart matrices Wl (l = 1, ...,L),

W =
L∑
l=1

Wl, (1)

as a Hyper Wishart matrix, and provide the corresponding
probability density function (PDF) in Theorem 1. Concerning
this, we would like to point out that this PDF has already
been published with a proof in [4], and another proof has
been provided in [13]. While Jeong et al. [1] do refer to [2],
and mention in the footnote that, ‘‘The distribution of the
sum of two complex Wishart matrices has been derived using
the Harish-Chandra-Itzykson-Zuber unitary group integral
when one of the covariance matrices is proportional to the
identity matrix while the second is arbitrary’’, we would like
to clarify that [2] already gives the matrix distribution when
both the covariance matrices are arbitrary; see [2, eq. (10)].
It is only for the corresponding eigenvalue density that one
of the covariance matrices has been considered proportional
to the identity matrix in [2]. We would also like to emphasize
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that [1, eq. (3)] can be readily obtained by considering the
eigenvalue decomposition of W, and does not lead to any
further information unless some assumption is made for the
covariance matrices.

In Corollary 1 [1], the authors provide the joint PDF of
eigenvalues for L = 2 casewhen both the covariancematrices
are proportional to the identity matrix. Actually, from the
works [3], [4] it is evident that if the covariance matrices are
taken proportional to the identity matrix, then it is possible to
obtain the joint PDF of eigenvalues for the sum of an arbitrary
number (L) of Wishart matrices, as discussed below. In fact,
the corresponding marginal density of a generic eigenvalue
has already been provided in [3] and [4].

Consider the covariance matrices associated with the
Wishart matrices in (1) to be

6l = σl In, l = 1, ...,L, (2)

where σl are positive scalars, and In is the n-dimensional
identity matrix. Moreover, suppose the degrees of freedom of
the Wishart matrices Wl in (1) are m1, ...,mL , respectively.
Then, as shown in [4], we can write W = G†G, where G is
an m × n matrix with m = m1 + · · ·mL and is described by
the PDF

P(G) ∝ e−trG
†6−1G, (3)

with 6 = diag(σ1Im1 , ..., σLImL ). Evidently, the
m× m-dimensional matrix W̃ = GG† is complex central
Wishart distributed, i.e., W̃ ∼ CWm(n,6). Consequently,
one can use the existing results for semicorrelated Wishart
matrices; see e.g. [14]–[16]. We can have the following two
possibilities:

A. m ≤ n
In this caseW and W̃ share the nonzero eigenvalues λ1, .., λm,
which are described by the joint PDF

P(λ1, . . . , λm)

=
(−1)m(m−1)/2

m!
1(λ)

m∏
i=1

λn−mi

0(n− m+ i)

×

L∏
l=1

σ
−nml
l ·

det
[
[(−λj)k−1 e−σ

−1
l λj ] j=1,..,m

k=1,..,ml

]
l=1,...,L

det
[
[
0(j) σ k−jl
0(j−k+1) ] j=1,..,m

k=1,..,ml

]
l=1,..,L

.

(4)

Here, 1(λ) =
∏

j>k (λj − λk ) is the Vandermonde
determinant, 0(·) is the Gamma function [17], and
det[[fj,k,l] j=1,..,m

k=1,..,ml
]l=1,...,L denotes

det[[fj,k,1] j=1,..,m
k=1,..,m1

· · · [fj,k,L] j=1,..,m
k=1,..,mL

].

In (4), as well as the equations below, 1/0(k) should be taken
as 0 if k happens to be a non-positive integer. In addition to the
eigenvalues λ1, .., λm, W possesses n − m zero eigenvalues,
and a full PDF incorporating these can be written by intro-
ducing Dirac delta functions in (4).

B. m > n
In this case there are n nonzero eigenvalues λ1, ..., λn eigen-
values, shared by both W and W̃. The corresponding joint
PDF is

P(λ1, . . . , λn)

= (−1)n(n−1)/21(λ)

∏L
l=1 σ

−nml
l∏n

i=1 0(i+ 1)

×

det

[(−λj)k−1 e−σ
−1
l λj ] j=1,..,n

k=1,..,ml

[
0(j) σ k−jl
0(j−k+1) ] j=1,..,m−nk=1,..,ml


l=1,..,L

det
[
[
0(j) σ k−jl
0(j−k+1) ] j=1,..,m

k=1,..,ml

]
l=1,..,L

. (5)

Additionally, W̃ possesses m− n zero eigenvalues.
In either case, i.e., for m ≤ n or m > n, the marginal PDF

describing a generic nonzero eigenvalue is given by [3], [4]

p(λ)

= −ν−1det−1
[[ 0(j) σ k−jl

0(j− k + 1)

]
j=1,..,m
k=1,..,ml

]
l=1,..,L

× det

 0
[
0(k)e−λ/σl

σ n−k+1l
L(n−k+1)
k−1 ( λ

σl
)
]
k=1,..,ml[

λn−j

0(n−j+1)

]
j=1,..,m

[ 0(j)
0(j−k+1)σ

k−j
l

]
j=1,..,m
k=1,..,ml


l=1,..,L

,

(6)

FIGURE 1. Comparison between the analytical marginal density (solid
line) and simulation result (histogram) for (a) n > m case:
n = 7, L = 3,m1 = 2,m2 = 1,m3 = 2, σ1 = 2, σ2 = 6/5, σ3 = 3/4, and
(b) for n < m case: n = 3, L = 2,m1 = 2,m2 = 2, σ1 = 1/2, σ2 = 7/6.

where ν = min(m, n), and L(k)
j (·) represent the associated

Laguerre polynomials [17]. With the aid of (4) and (5), one
can alsowrite downmarginal densities (correlation functions)
of higher orders. In Fig. 1, we show the comparison between
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the analytical marginal density of eigenvalues as predicted
by (6), and numerical simulation involving 50000 matrices
for two sets of parameter values, as indicated in the caption.
We can see an excellent agreement in both cases.

The knowledge of the marginal density enables us to com-
pute the Shannon transform, which is given by [18]

S(ρ) =
∫
∞

0
ln(1+ ρλ) p(λ) dλ. (7)

With the aid of result (6), we obtain the following closed form
expression for the Shannon transform:

S(ρ) = ν−1det−1
[[ 0(j) σ k−jl

0(j− k + 1)

]
j=1,..,m
k=1,..,ml

]
l=1,..,L

×

ν∑
µ=1

det
[
[ψ (µ)

j,k (σl)] j=1,..,m
k=1,..,ml

]
l=1,..,L

. (8)

Here, ψ (µ)
j,k (σ ) are given by

ψ
(µ)
j,k (σ )

=


σ k−1ρj−1

0(n− j+ 1)
G3,2
3,4

(
0,j−1; j

j−1,j−1,n; k−1

∣∣∣ 1
σρ

)
, j = µ

0(j) σ k−j

0(j− k + 1)
, j 6= µ,

(9)

FIGURE 2. Comparison between the analytical predictions (solid lines)
and simulation results (symbols) for the Shannon transform. Parameter
values used are n = 3,4,5 and L = 3, m1 = 1, m2 = 1, m3 = 2, σ1 = 3/2,
σ2 = 1, σ3 = 2/3.

with G3,2
3,4(·) being a Meijer G-function [19]. The derivation

involved is similar to that of the mean channel capacity,
as provided in [3] and [4]. We show a comparison of the
above analytical result with numerical simulation for three
n values in Fig. 2. The Shannon transform values depicted in
the figure have been obtained by averaging over the values

calculated for 50000 matrices used in the simulation. Once
again, the agreement is perfect.

Finally, we would like to point out that the application
of sum of Wishart matrices to the MIMO relay channel,
as discussed in [1], has also been considered in [4].
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