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Channel estimation for massive MIMO
TDD systems assuming pilot contamination
and flat fading
Felipe A. P. de Figueiredo1* , Fabbryccio A. C. M. Cardoso2, Ingrid Moerman1 and Gustavo Fraidenraich3

Abstract

Channel estimation is crucial for massive massive multiple-input multiple-output (MIMO) systems to scale up
multi-user (MU) MIMO, providing great improvement in spectral and energy efficiency. This paper presents a simple
and practical channel estimator for multi-cell MU massive MIMO time division duplex (TDD) systems with pilot
contamination in flat Rayleigh fading channels, i.e., the gains of the channels follow the Rayleigh distribution. We also
assume uncorrelated antennas. The proposed estimator addresses performance under moderate to strong pilot
contamination without previous knowledge of the cross-cell large-scale channel coefficients. This estimator performs
asymptotically as well as the minimummean square error (MMSE) estimator with respect to the number of antennas.
An approximate analytical mean square error (MSE) expression is also derived for the proposed estimator.

Keywords: Massive MU-MIMO, Channel estimation, Flat fading, Pilot contamination, Maximum likelihood

1 Introduction
Massive multiple-input multiple-output (MIMO) antenna
systems potentially allow base stations (BSs) to operate
with huge improvements in spectral and radiated energy
efficiency, using relatively low-complexity linear process-
ing. The higher spectral efficiency is attained by serving
several terminals in the same time-frequency resource
through spatial multiplexing, and the increase in energy
efficiency is mostly due to the array gain provided by the
large set of antennas [1].
The expected massive MIMO improvements assume

that accurate channel estimations are available at both
the receiver and transmitter for detection and precod-
ing, respectively. Additionally, the reuse of frequencies
and pilot reference sequences in cellular communica-
tion systems causes interferences in channel estimation,
degrading its performance. Since both the time-frequency
resources allocated for pilot transmission and the chan-
nel coherence time are limited, the number of possi-
ble orthogonal pilot sequences is also limited, and as a
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consequence, the pilot sequences have to be reused in
neighbor cells of cellular systems. Therefore, channel esti-
mates obtained in a given cell get contaminated by the
pilots transmitted by the users in other cells [2]. This
coherent interference is known in the literature as pilot
contamination, i.e., the channel estimate at the base sta-
tion in one cell becomes contaminated by the pilots of
the users from other cells [3]. The contamination not only
reduces the quality of the channel estimates, i.e., increases
theMSE, but alsomakes the channel estimates statistically
dependent, even though the true channels are statisti-
cally independent. Moreover, pilot contamination does
not disappear with the addition of more antennas [4].
Massive MIMO systems operating in TDD assume

channel reciprocity between uplink and downlink in order
to minimize pilot overhead, transmitting pilot reference
signals only in the uplink. In this scenario, pilot over-
head cost is proportional to the number of terminals
and improved estimation quality can be achieved due to
the large number of antennas [5, 6]. Base stations esti-
mate channels usually based on least squares (LS) [3] or
minimum mean square error (MMSE) [7–9] methods.
Besides, inter and intra-cell large-scale fading coefficients
are assumed to be perfectly known when applying the
MMSE method in the great majority of works [5, 9–13].
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In a real-world network deployment, although chang-
ing slowly, the large-scale fading coefficients must be
estimated and updated from time to time. Additionally,
the estimation error of the large-scale fading coefficients
impacts significantly on the performance of uplink data
decoding and downlink transmission (e.g., precoding and
beamforming) [14–16]. Approaches on how to estimate
the large-scale fading coefficients are presented in the
following pieces of work [10, 14, 17].
The most commonly used analytical massive MIMO

channel is the spatially i.i.d. frequency non-selective (flat)
fading channel model. Flat fading channels are also known
as amplitude varying channels and narrowband channels
as the signal’s bandwidth is narrow compared to channel’s
bandwidth [18]. In this narrowband channel model, the
channel gain between any pair of transmit-receive anten-
nas is modeled as a complex Gaussian random variable.
This model relies on two assumptions: (i) the antenna ele-
ments in the transmitter and receiver being spatially well
separated once the more widely spaced (in wavelengths)
the antenna elements, the smaller the spatial channel cor-
relation [19, 20], and (ii) the presence of a large number of
temporally but narrowly separated multipaths (common
in a rich-scattering environment), whose combined gain,
by the central-limit theorem, can be approximated by a
Gaussian random variable [20].
Flat fading channels present a channel response that

exhibits flat gain and linear phase over a bandwidth
(coherence bandwidth) that is greater than the signal’s
bandwidth. Therefore, all frequency components of the
signal will experience the same magnitude of fading,
resulting in a scalar channel response. The gain applied
to the signal varies over time according to a fading dis-
tribution. In this work, we consider that the gain applied
to the signal passing through this channel will vary ran-
domly, according to a Rayleigh distribution. We addition-
ally assume that the antenna spacing is sufficiently large
so that the antennas are uncorrelated.
In this paper, we deal with the channel estimation

and pilot contamination problems associated with uplink
training in flat Rayleigh fading channels and understand
its impact on the operation of multi-cell MU massive
MIMO TDD cellular systems. We propose and evaluate
an efficient and practical channel estimator that does not
require previous knowledge of inter/intra-cell large-scale
fading coefficients (i.e., interference) and noise power. Dif-
ferently from [21], we employ the maximum likelihood
(ML) method to find an estimator for the interference
plus noise power term in the MMSE channel estimator.
We show that this estimator is not only unbiased but also
achieves the Crámer-Rao lower bound. We replace this
estimator back into the MMSE estimator and prove that
the performance of the new channel estimator asymptoti-
cally approaches that of the MMSE estimator. Simulation

results confirm that the performance of the proposed
channel estimator approaches that of the ideal MMSE
estimator asymptotically with the number M of anten-
nas, i.e., M → ∞. Additionally, in contrast with [21], we
derive an approximate analytical MSE expression for the
proposed channel estimator that is more mathematically
tractable and not susceptible to numerical issues.

1.1 Related work
In this section, we survey previous work on channel esti-
mation and pilot contamination mitigation.
A TDD cellular system employing BSs equipped with

large numbers of antennas that communicate simulta-
neously with smaller numbers of cheap, single-antenna
terminals through MU MIMO techniques is proposed in
[3]. The author employs LS channel estimation in order
to study and evaluate the problems caused by pilot con-
tamination to such systems. He concludes that even when
different sets of orthogonal pilots are used in different
cells, it makes little difference to the resulting signal-
to-interference ratio (SIR). This work is the first one to
present themassiveMIMO concept and identify its intrin-
sic issues, however, it fails to suggest ways to mitigate the
pilot contamination problem.
The impact of pilot contamination on multi-cell sys-

tems is studied in [5]. The authors adopt MMSE channel
estimation for the analysis of pilot contamination and the
achievable rates in amassiveMIMO system suffering from
such problem. They propose a multi-cell MMSE-based
precoding method that mitigates the pilot contamina-
tion problem by considering the set of training sequences
assigned to the users in the solution of an optimization
problem that minimizes the error seen by users in the
serving cell and the interference seen by the users in all
other cells. Simulation results show that the proposed
approach has significant gains over certain single-cell pre-
coding methods such as zero-forcing. In summary, the
authors address the pilot contamination problem through
a precoding technique and assume that the large-scale
fading coefficients are known to all BSs.
MMSE channel estimation is used in [7] to derive

approximations of the achievable uplink and downlink
rates with several linear precoders and detectors for real-
istic system dimensions, i.e., systems where the number of
antennas is not extremely large compared to the number
of users. Simulation results show that the approximations
are asymptotically tight, but accurate for realistic systems.
The authors do not propose any approach to mitigate
the pilot contamination problem, however, they study and
evaluate its impact on the achievable rates.
The impact of pilot contamination effect on the achiev-

able uplink ergodic rate when using linear detection in
multi-cell MU massive MIMO systems under a more
realistic physical channel model is assessed in [8]. The
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authors assume that the channel vectors for different users
are correlated, or not asymptotically orthogonal due to
the antennas not being sufficiently well separated and/or
the propagation environment not offering rich enough
scattering. Moreover, they assume that the BS performs
MMSE channel estimation based on training sequences
received on the uplink and a priori knowledge of the
large-scale fading coefficients.
In [9], the polynomial expansion (PE) technique is

applied to channel estimation of massive MIMO sys-
tems in order to approximate the MMSE estima-
tor and thereby obtain a new set of low-complexity
channel estimators. Conventional MMSE estimators
present cubic complexity due to an inversion opera-
tion while the estimator proposed in [9] reduces this
to square complexity by approximating the inverse by
a L-degree matrix polynomial. The proposed estima-
tor achieves near-optimal MSE with low polynomial
degrees. However, statistical knowledge of channel and
disturbance parameters at the receiver is assumed in
this paper.
Outer multi-cellular precoding is employed in [10] to

devise a method used to eliminate pilot contamination
in massive MIMO systems. Each BS performs two lev-
els of precoding, firstly it estimates and shares only the
large-scale fading coefficients with a central entity (net-
work controller) which computes the precoding matrices
and sends them back to the BSs, i.e, outer precoding.
Next, each BS performs local precoding using estimates
of the fast-fading vectors, i.e., inner precoding. The pro-
posed approach is shown to completely mitigate the pilot
contamination problem, making it possible to construct
interference and noise free multi-cell massive MIMO sys-
tems with frequency reuse one and infinite downlink and
uplink signal-to-interference-plus-noise ratios (SINRs).
The proposed method employs MMSE channel estima-
tion, however, the effectiveness of this method lies in
the estimation accuracy of the shared large-scale fading
coefficients from each BS. The authors also propose a
method to estimate the large-scale fading coefficients. As
this approach needs to share the large-scale coefficients
with the network controller for outer precoding computa-
tion, it presents a higher computational complexity than
non-cooperative approaches.
The authors in [11], adopt a massive MIMO system

model that is based on spatially correlated channels. They
devise a covariance aided channel estimation method
which exploits the covariance information of both desired
and interfering user channels. The Bayesian method is
used to derive two different channel estimators (it is
also shown that the Bayesian estimators coincide with
the MMSE estimators), one for all channels from users
in all cells to the target cell and the other one for
the channels from users within the target cell. Results

show that in the ideal case, where the desired and the
interference covariance matrices span distinct subspaces,
the pilot contamination effect tends to vanish in the large
antenna array case. As a consequence, users with mutu-
ally non-overlapping angle of arrival (AoA) hardly con-
taminate each other. Based on the results, the authors
propose a coordinated pilot assignment strategy which
assigns carefully selected groups of users to identical pilot
sequences.
A semi-blind iterative space-alternating generalized

expectation maximization (SAGE) based channel estima-
tion algorithm for massive MIMO systems with pilot
contamination is proposed in [13]. The proposed method
does not assume a priori knowledge on the large-scale
fading coefficients of the interfering cells, employing an
estimate obtained from the received signal. The method
updates the pilot based MMSE channel estimates iter-
atively with the help of the SAGE algorithm, which
improves the initial estimate with the help of pilot
symbols and soft information of the transmitted data.
However, as it refines the channel estimates over some
iterations starting from an initial MMSE channel esti-
mation, it presents a computational complexity that is
higher than the one presented by pure blind and linear
estimators.
After surveying the literature on channel estimation and

pilot contamination mentioned above, it is clear that, for
clarity, in the great majority of studies the authors always
assume complete knowledge on large-scale fading coeffi-
cients, i.e., path-loss and shadow fading, of the interfering
cells, which is not the case in practical deployments ofMU
Massive MIMO systems. Furthermore, several studies
propose solutions that present additional computational
complexity in order to mitigate the pilot contamination
problem.
The main contribution of our work is the proposal and

assessment of a simple and practical channel estimator
used to mitigate the pilot contamination problem. The
proposed estimator does not assume a priori knowledge of
the large-scale fading coefficients of the interfering cells.
Moreover, it does not require the heavy overhead created
by their estimation once it obtains them from the received
signal.

1.2 Organization
The remainder of this work is divided into four parts:
First, we present the problem structure, signal model
adopted for this study and briefly discuss two well-known
channel estimators, namely, LS and MMSE linear estima-
tors. Then, we introduce the proposed channel estimator
for flat Rayleigh fading channels. Later, some numerical
results are presented in order to support the effectiveness
of the proposed estimator against the well-known linear
estimators. Finally, we present our conclusions.
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2 Problem structure
Let us assume as illustrated in Fig. 1 a multi-cell system
with L cells, where each cell has a BS at its center with
M co-located antenna elements and K randomly located
single antenna users. Let us also assume Rayleigh fading
channels being independent across users and antennas.
Let gilkm represent the complex gain of the channel from
the kth user in the lth cell to the mth BS antenna in the
ith cell. We can write gilkm = √

βilkhilkm where
√

βilk is
the large-scale coefficient encompassing both path loss
and log-normal shadowing. We assume the same large-
scale coefficient value for all BS co-located antennas, and
hilkm is the small-scale coefficient with a circularly sym-
metric complex normal distribution CN (0, 1). We assume
that the large-scale fading coefficients do not depend
on the frequency as well as on the antenna index m
of a given BS because typically, the distance between a
user and a BS is significantly larger than the distance
between the BS antennas [10]. Therefore, between a BS
and a user, there is only one large-scale fading coeffi-
cient. Moreover, these coefficients only change when a
user considerably change its geographical location. The
wireless channels are considered static during the channel
coherence time (i.e., channel estimates are effective only
in this time interval) and independent across users and
antennas.
The M × 1 channel vector from the kth user in the lth

cell to the M antennas at the ith BS is defined by gilk =
[
gilk1, gilk2, · · · , gilkM

]T . The overallM×K channel matrix
Gil is obtained by column concatenating vectors gilk for
all cell users, that is, Gil = [

gil1, gil2 · · · gilK
]
. For detec-

tion and precoding, BS i needs to know the channels of
the users in cell i, namely {giik ,∀k}. The same way as in
the literature, we treat {βilk} as being deterministic during
the channel estimation [1, 6, 8, 13]. As described, the over-
all channel matrix Gil can also be defined directly by the
channel coefficients,

Fig. 1 Problem definition

Downlink Data

Coherence Time

Uplink Training

Uplink Data

Fig. 2 TDD transmission protocol

Gil =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

gil11 gil21 · · · gilK1
gil12 gil22 · · · gilK2
gil13 gil23 · · · gilK3
...

...
. . .

...
gil1M gil2M · · · gilKM

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (1)

Based on the assumption of channel reciprocity, we
adopt the TDD protocol depicted in Fig. 2 and proposed
in [22]. Due to the reciprocity principle, only the uplink
channels need to be estimated while the downlink chan-
nels are equal to the transpose of the uplink channels. It
is important to note that the length of the TDD frames is
limited by the channel coherence time [22, 23]. Accord-
ing to the TDD protocol, first, all users in all cells send
their uplink training sequences synchronously. After that,
the BSs use the training sequences to estimate the uplink
channels. Next, the users send uplink data signals. Then,
the BSs use the estimated channels to detect uplink data
and generate precoding matrices used to transmit down-
link data.

2.1 Uplink training
Each user transmits an uplink training sequence so that
the user serving BS can estimate the channels per antenna
and subsequently detect the transmitted user data. We
assume that users in different cells transmit data at the
same time-frequency resource (a typical scenario in mas-
sive MIMO) and that the pilot reuse factor is one, the
worst possible use case scenario [3]. As all BSs reuse the
same set of pilots and transmit at the same time-frequency
resource, the pilot contamination problem arises, conse-
quently, all the other BSs will also receive the pilots sent
by users being served by other BSs, limiting the quality of
the channel estimation [24].
The pilot signals of K users are represented by a N × K

matrix S of the form S = [s1, s2, · · · , sK ], where N is the
length of the pilot sequences. Each pilot sequence is of

the form sk =
[
s0k , s

1
k , · · · , sN−1

k

]T
. The pilot matrix, S,

exhibits orthogonal property SHS = NIK .
The pilots are created by applying cyclic shifts to

Zadoff-Chu (ZC) root sequences with length N, where N
is a prime number. These sequences exhibit some useful
properties: (i) cyclically shifted versions of themselves are
orthogonal to each other, (ii) constant amplitude, (iii) zero



Figueiredo et al. EURASIP Journal onWireless Communications and Networking  (2018) 2018:14 Page 5 of 10

auto-correlation, (iv) flat frequency domain response, and
(v) cross-correlation between two ZC sequences is low
[25]. Some of the reasons why they are adopted in com-
munication systems like long-term evolution (LTE) are
(i) channel estimation at receiver is made simpler due to
their small variation in frequency, (ii) inter-cell interfer-
ence is reduced as they present low cross-correlation, (iii)
high peak to average power ratio (PAPR) is reduced due to
their small variation in time. ZC sequences are used in this
work due to the properties mentioned above [25]; how-
ever, any other sequences could be used as long as they
exhibit the required orthogonal property. Additionally, we
assume that N ≥ K in order to avoid underdetermined
systems.
The received uplink training sequences at the ith BS can

be represented as aM × N matrix defined as

Yi = √q
L∑

l=1
GilSH + Ni, (2)

where q is the uplink power or transmit signal to noise
ratio (TX SNR) and Ni is aM×N noise matrix with inde-
pendent and identically distributed elements following
CN (0, 1).
Equation (2) can also be written as showed below,

which clearly highlights the coherent inter-cell interfer-
ence caused by users employing the same pilot sequences
in other BSs.

Yi = √qGiiSH︸ ︷︷ ︸
Desired pilot signals

+ √q
L∑

l=1,l �=i
GilSH

︸ ︷︷ ︸
Undesired pilot signals

+ Ni︸︷︷︸
Noise

. (3)

2.2 LS channel estimator
For estimation of the channel gilk at BS i, a sufficient
statistic [26–28] is given by

zik = 1√qN
Yisk =

L∑

l=1
gilk + Nisk√qN

= giik︸︷︷︸
Desired channel

+
L∑

l=1,l �=i
gilk

︸ ︷︷ ︸
Inter-cell interference

+ Nisk√qN
︸ ︷︷ ︸
Noise

.
(4)

where zik is a column vector with a CN (0M, ζikIM) distri-
bution and

ζik =
L∑

l=1
βilk + 1

qN
. (5)

Additionally, the term corresponding to noise in (4) has
a CN

(
0M, 1

qN IM
)
distribution.

Therefore, the least square estimator is given by [26]

ĝLSiik = zik . (6)

The MSE per antenna of the LS estimator is given by

ηLSik = 1
M

E

[∥
∥∥ĝLSiik − giik

∥
∥∥
2
]

= ζik − βiik . (7)

As known, the LS estimator has larger MSE than the
MMSE estimator; however, it does not need prior knowl-
edge of the large-scale fading coefficients, {βilk}.

Remark 1 Due to pilot contamination, as q → ∞,
ηLSik →∑L

l=1,l �=i βilk .

2.3 MMSE channel estimator
A great number of massive MIMO works adopt the
MMSE estimation method to obtain channel knowledge
[5, 8]. Those works assume that all large-scale fading coef-
ficients, i.e., {βilk , i ≥ 1, l ≤ L, 1 ≤ k ≤ K}, are
perfectly known. In practice, this assumption might not
be reasonable. In case we consider the coefficients {βilk}
perfectly known at the BS, the ideal MMSE estimator is
given by [26]

ĝMMSE
iik = βiik

ζik
zik , (8)

where ĝMMSE
iik ∼ CN

(
0M, β2

iik
ζik

IM
)
and the MSE of MMSE

estimator is given by

ηMMSE
ik = 1

M
E

[∥
∥
∥ĝMMSE

iik − giik
∥
∥
∥
2
]

= βiik

(
1 − βiik

ζik

)
. (9)

Remark 2 Due to pilot contamination, as q → ∞,

ηmmse
ik → βiik

(
1 − βiik∑L

l=1 βilk

)
.

3 Proposed channel estimator
In this work, we employ the ML method to estimate
the parameter ζik [26]. Applying the ML method to
f (zik ; ζik) ∼ CN (0M, ζikIM), we find the following estima-
tor for ζik given the observation zik

ˆζik = ‖zik‖2
M

. (10)

This estimator has E
[ ˆζik
]

= ζik , which shows that the

ML estimator is unbiased, and var
{ ˆζik
}

= ζ 2
ik/M. In order

to assess the efficiency of the estimator we derive the
Cramér-Rao bound as [26]

var
( ˆζik
)

≥ ζ 2
ik
M

. (11)

Therefore, the ML estimator derived for ζik is the min-
imum variance unbiased estimator (MVUE), i.e., it is
an unbiased estimator that has lower variance than any
other unbiased estimator for all possible values of the
parameter [26].
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This simple and effective estimator is derived based
on the observation that the MMSE estimator does not
need to know the individual large-scale fading coeffi-
cients, {βilk}, as assumed in the existing literature, but
just ζik suffices. The proposed estimator for ζik makes
the acquisition of inter-cell large-scale fading coefficients
unnecessary. The task of gaining knowledge of those coef-
ficients may be unjustifiable in practice due to the exces-
sive, e.g., in case there are L cells serving K users in each
one of them, each BS needs to acquire (L − 1)K inter-cell
large-scale coefficients.
Swapping ζik with ˆζik in (8) produces the proposed

channel estimator, which is defined by

ĝpropiik = Mβiik
zik

‖zik‖2 . (12)

This estimator approaches the ideal MMSE estima-
tor asymptotically with respect to M. The estimator has
E
[
ĝpropiik

] = 0M and variance given by

Var
[
ĝpropiik

] = E

[
ĝpropiik

(
ĝpropiik

)H] =
(

M2

M − 1
β2
iik

ζik

)

IM.

(13)

As can be seen by analyzing equation (13), as M →
∞, Var

[
ĝpropiik

] → β2
iik

ζik
. An approximation to the MSE per

antenna of this estimator is given by

η
prop
ik = 1

M
E
[‖ĝpropiik − giik‖2

] ≈ βiik

[
1 − (M − 2)βiik

(M − 1)ζik

]
.

(14)

The approximate MSE in (14) for the proposed esti-
mator decreases with increasing transmitting power q,
increasing M or decreasing βiik , which means smaller
interference level from other cells, i.e., smaller pilot
contamination.

Remark 3 Due to pilot contamination, as q → ∞ and

M → ∞, ηpropik → βiik

(
1 − βiik∑L

l=1 βilk

)
.

Remark 3 clearly shows that the MSE of the proposed
estimator tends to that of the MMSE estimator when both
q and M → ∞. The proof for the approximation of the
MSE is given in Appendix A.
For the sake of clarity, we reproduce below the closed-

form MSE equation (9) presented in [21].

η
prop(closed-form)
ik = M

M − 1
β2
iik

ζik
+ βiik − 2βiikθik (15)

where

θik =
∫ 1

0

∫ 1

−1

k2ik(1 − t) + kikw
√
t(1 − t)

k2ik(1 − t) + 2kikw
√
t(1 − t) + t

.fT (t)fW (w)dwdt
(16)

with kik =
√

βiik
ζik−βiik

, and fT (t) and fW (w) are given by

fT (t) = �(2M)

(�(M))2
(t(1 − t))M−1, 0 < t < 1 (17)

fW (w) = M
π
B
(
1
2
,M
)

(1 − w2)M− 1
2 , |w| < 1. (18)

The difference between the closed-form, given by Eq. (9)
in [21], and the approximated MSE expressions are
defined by

η
prop (closed-form)
ik −η

prop (approx.)
ik = 2βiik

{
βiik
ζik

− θik

}
, (19)

where θik is defined in [21].

Remark 4 As both q and M → ∞, θik → βiik
ζik

and then,
η
prop(closed−form)

ik − η
prop(approx.)
ik → 0.

We find Remark 4 by using Remark 3 and equaling
the closed-form and approximatedMSE expressions. This
remark shows that the difference between the closed-form
and the approximated MSE expressions decreases, tend-
ing to 0, as both uplink power, q, and number of receiving
antennas,M, increase.

Remark 5 The average normalized squared Euclidean
distance between ĝpropiik and ĝMMSE

iik is given by

1
M

E

[∥
∥
∥ĝpropiik − ĝMMSE

iik

∥
∥
∥
2
]

= 1
M − 1

β2
iik

ζik
. (20)

The proof of (20) is given in Appendix B. From (5)
and (20), it is easily noticeable that the average distance
decreases with increasing M, decreasing q, increasing
βilk , i �= l, and decreasing βiik .

4 Numerical results and discussion
In this section, we compare the performance of the pro-
posed channel estimator with that of the MMSE and LS
estimators. We adopt a typical multi-cell structure as the
one shown in Fig. 1 with L = 7 cells (one central cell
surrounded by 6 other cells), K = 10 users in each cell,
frequency reuse factor of 1 and N = K pilot symbols. We
consider two different types of setups for {βilk}, one with
fixed values and other with random values. For the fixed
case, we set βiik = 1 and βilk = a,∀ l �= i, where a repre-
sents the cross-cell interference level. The value selected
for a in the fixed case is 0.05, and it is chosen so that there
is moderate cross-cell interference level from users being
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served by other BSs, i.e., not being served by the central
cell. For the random case, users in each cell are uniformly
distributed within a ring with radii d0 = 100 m and d1 =
1000 m respectively. The large-scale fading coefficients
{βilk} are independently generated by βilk = ψ/

(
dilk
d0

)v
,

where v = 3.8, 10 log10(ψ) ∼ N
(
0, σ 2

shadow, dB

)
with

σshadow, dB = 8, and dilk is the distance of the kth user in
the lth cell to the ith BS. Both, the path loss exponent, v,
and the standard deviation of the log-normal shadow-
ing, σshadow, dB, are common values for outdoor shadowed
urban cellular radio environments [18, 29].
The results in Fig. 3 show MSE versus SNR (uplink

pilot power q) performances for a = 0.05 and M = 70.
As can be seen, analytical, approximated, and simula-
tion MSEs match for all estimators. With the increase of
SNR, MSEs of all the estimation methods decrease. There
are MSE floors for all the three estimators due to pilot
contamination (see Remarks 1, 2, and 3). At low SNR, the
MSE of the proposed estimator is very close to that of
the ideal MMSE estimator. On the other hand, as can be
noticed, with the increase of the SNR, the gap between
the idealMMSE estimator and the proposed one increases
(see Remark 5).
In Fig. 4, we compare MSE versus the number of BS

antennas M under the setting of a = 0.05 and TX SNR
q = 10 dB. With the increase of M, the MSE of the
proposed estimator approaches that of the ideal MMSE,
while the MSE of LS estimator does not change. Due to
numerical issues, the closed-form MSE expression pre-
sented in [21] does not produce values forM > 85. During
our simulations, comparing the closed-form expression
given by equation (15) and the approximatedMSE expres-
sion given by (14), we noticed that the �(2M) function
in the numerator of equation (16) grows without bound,
reaching values that are greater than the largest possible

-10 -5 0 5 10 15 20 25 30

SNR [dB]

100

M
S

E

M = 70, a = 0.05

MMSE (analytical)
MMSE (simulated)
LS (analytical)
LS (simulated)
Prop. (approximated)
Prop. (simulated)

Fig. 3 Channel estimation MSE versus uplink pilot power

Fig. 4MSE performance versus number of BS collocated antennas,M

finite floating-point number represented by the IEEE dou-
ble precision format, i.e., 1.7977e+308 [30], for values of
M greater than 85. A double precision variable goes to
+Inf after the largest possible number [30]. On the other
hand, as can be seen in Fig. 4, the approximate ana-
lytical MSE expression (14) does not present the same
problem and, therefore, can be used to evaluate the MSE
for any number of antennas, M without any numerical
issue.
In Fig. 5, we compare MSE performance with respect to

various levels of cross-cell interference, a, with q = 10 dB
and two different number of antennas, M = 30 and
M = 90. We can see that when a increases (the effect
of pilot contamination increases), the estimation perfor-
mance degrades. At a low cross-cell interference level,
LS presents a slightly better MSE when compared to
the proposed estimator. This difference disappears as M
increases, as can be noticed in the plot with M = 90. As

Fig. 5 Channel estimation MSE versus cross-cell interference level
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the interference level increases, the proposedmethod out-
performs the LS estimator substantially and approaches
the ideal MMSE performance (see Remark 5).
In Fig. 6, we evaluate the MSE performance under ran-

dom large-scale fading coefficients {βilk} with M = 30.
The results are obtained by averaging MSEs over 10000
realizations of {βilk}. As can be observed, simulation MSE
matches with the analytical MSE. Additionally, the sensi-
tivity of the proposed estimator against inaccuracy of βiik
by using an estimate βiik = βiik

(
1 + N

(
0, σ 2)) is inves-

tigated. The performance degradation for σ 2 = 0.1 is
noticeable at high SNR but for σ 2 = 0.01, it is insignif-
icant. The proposed estimator still outperforms the LS
estimator significantly.
In Fig. 7, we compare the distance between the proposed

and MMSE channel estimators for different number of
antennas, M, with a = 0.05. As the Remark 5 states, the
distance is small at low SNR, increasing with SNR until a
ceiling is reached. As can be also noticed, the ceiling value
decreases with the number of antennas,M.
In Fig. 8, we compare the absolute distance between

the approximated MSE expression presented in (13) and
the analytical (closed form) MSE expression presented in
[21] for various SNR and M values with a = 0.05.
The distance between the MSE expressions is small at
low SNR, increasing with SNR until a ceiling value is
reached. As can be noticed, the ceiling value decreases
with the number of antennas, M. For M = 50, the
ceiling distance is smaller than 1e − 4, showing that
the approximated MSE expression can replace the one
presented in [21].

5 Conclusions
In this work, we have introduced a simple and practi-
cal channel estimator for massive MIMO TDD systems

Fig. 6 Average channel estimation MSE under random {βilk}

Fig. 7 Distance between proposed and MMSE estimators (Remark 5)

with pilot contamination in a flat channel environment.
The proposed estimator replaces the combined interfer-
ence plus noise power term in the ideal MMSE estimator
with amaximum likelihood estimator for that term.More-
over, the proposed estimator presentsMSE results that are
very close to that of the ideal MMSE estimator without
requiring previous knowledge of noise and interference
statistics. Additionally, we have derived an approximate
analytical MSE expression for the proposed estimator
which can be useful in system design and performance
evaluation. We have also shown that the MSE expres-
sion presented here asymptotically approaches that of the
MMSE estimator. Finally, the simpler approximate analyt-
ical MSE expression presented here can be used instead of
the more complex and susceptible to numerical issues one
presented in [21].
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Fig. 8 Absolute distance between closed form and approximated
MSE expressions
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Appendix A
For the proof of the approximate MSE of the proposed
estimator, we need to present a few Lemmas.

Lemma1 If Xm ∼ CN
(
0, σ 2) ∀mare independent, then

∑M
m=1 ‖Xm‖2 ∼ �

(
M, σ 2).

Lemma 2 If X ∼ �(k, θ) and 1
X ∼ �−1(k, θ), i.e., the

inverse-gamma distribution, then E
{ 1
X
} = 1

θ(k−1) .

Lemma 3 LetμX and μY be the expectations of X and Y,
σ 2
Y be the variance of Y, and σXY be their covariance. Then,

the expectation, E{X/Y }, can be approximated by

E

{
X
Y

}
≈ μX

μY
− σXY

μ2
Y

+ μX

μ3
Y

σ 2
Y . (21)

Proof For a function that depends on two variables,
x and y, the second order Taylor expansion series about
the point (a, b) is given by

g(x, y) = g(a, b) + gx(a, b)(x − a) + gy(a, b)(y − b)
+ 1

2!
(
gxx(a, b)(x − a)2+ 2gxy(a, b)(x − a)(y − b)

+gyy(a, b)(y − b)2
)
,

(22)

where the subscripts denote the respective partial deriva-
tives. The partial derivatives are defined by gy = −X/Y 2,
gyy = 2X/Y 3, gx = 1/Y , gxx = 0, and gxy = −1/Y 2.
Applying the derivatives into (22), the second order Tay-
lor expansion of g(X,Y ) = X/Y around the mean point
(μX ,μY ), the following is obtained

X
Y ≈ μx

μy
− μx

μ2
y
(Y − μy) + 1

μy
(X − μx)

+ 1
2!

(
2μx
μ3
y
(Y − μy)2 − 2

μ2
y
(Y − μy)(X − μx)

)
.

(23)

Finally, applying the expectation operator, E {.}, to (23)
concludes the proof.

Proof of the approximate MSE, ηpropik
For the proof of the approximate MSE, we expand it as

η
prop
ik = 1

M
E
[‖ĝpropiik ‖2]+ 1

M
E
[‖giik‖2

]

− 2
M

E

[
R

[(
ĝpropiik

)H giik
]]

,
(24)

and find these three expectations.
From (12), the first expectation can be written as

1
M

E
[‖ĝpropiik ‖2] = Mβ2

iikE

{ ‖zik‖2
[ ‖zik‖2]2

}

= Mβ2
iikE

{
1

‖zik‖2
}
.

(25)

From Lemma 1, we know that ‖zik‖2 ∼ �(MP, ζik).
Then, applying Lemma 2 to (25), we figure out that
E
{
1/‖zik‖2

} = 1/ζik(M − 1) and consequently, the first
expectation term is defined as

1
M

E
[‖ĝpropiik ‖2] = Mβ2

iik
ζik(M − 1)

. (26)

The second expectation term is defined as

1
M

E
[‖giik‖2

] = 1
M

M∑

m=1
E
[‖giikm‖2] = βiik . (27)

Finally, in order to find the expected value of the third
term, first, we use (4) and (12) to rewrite it as

−2βiikE

{
R

[
zHikgiik
‖zik‖2

]}
= −2βiik

{
E

[
R

[∑L
l=1 g

H
ilkgiik

‖zik‖2
]]

+E

[
R

[
wH
ikgiik

‖zik‖2
]]}

(28)

where wik = Nisk/
√qN ∼ CN

(
0M, 1

qN IM
)
.

In order to avoid the numerical issues mentioned ear-
lier in this work and find a simpler and more tractable
equation for the MSE of the proposed channel estimator,
we find approximations to the two ratios of random vari-
ables in (28). It is possible to approximate the moments
of a function g(X,Y ) using Taylor series expansions, pro-
vided g is sufficiently differentiable and that the moments
of X and Y are finite. Therefore, applying Lemma 3 sep-
arately to each one of the terms in the second and third
lines of (28), we are able to find an approximation to the
third expectation, which is defined as

− 2
ME

[
R

[(
ĝpropiik

)Hgiik
]]

≈ −2βiik

{[
βiik
ζik

(
1−

∑L
l=1 βilk
Mζik

+ 1
M

)]

+
[

−βiik
Mζ 2ikqN

]}
= − 2β2

iik
ζik

.

(29)

After finding the three expectations, (26), (27), and (29),
by substituting them back in the expansion of η

prop
ik , we

complete the proof.

Appendix B
Here, we present proof for (20). First, we expand the nor-
malized Euclidean distance between ĝpropiik and ĝMMSE

iik as

1
ME

[∥
∥ĝpropiik

∥
∥2
]

+ 1
ME

[∥
∥ĝMMSE

iik
∥
∥2
]

− 2
ME

[
R

[(
ĝpropiik

)H ĝMMSE
iik

]]
.

(30)

Then, we compute these three different expectations.
The first one is given by (26), 1

ME

[∥
∥ĝpropiik

∥
∥2
]

=
Mβ2

iik/ζik(M − 1). Next, by recalling that ĝMMSE
iik ∼
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CN
(
0M, β2

iik
ζik

IM
)
, we have that 1

ME

[∥
∥ĝMMSE

iik
∥
∥2
]

=
β2
iik/ζik . For the last expectation term, using (8) and (12),

we can write it as

− 2
ME

[
R

[(
ĝpropiik

)H ĝMMSE
iik

]]
= − 2β2

iik
ζik

E

{
R

[ ‖zik‖2
‖zik‖2

]}

= − 2β2
iik

ζik
.

(31)

Finally, by substituting these results back into the expan-
sion, we arrive at (20).
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