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 Abstract— This paper investigates the risk-oriented multi-area economic dispatch (MAED) problem with high penetration of wind farms (WFs) combined with compressed air energy storage (CAES). The main objective is to help system operators to minimize the operational cost of thermal units and CAES units with an appropriate level of security through optimized WF power generation curtailment strategy and CAES charging/discharging control. In the obtained MAED model, several WFs integrated with CAES units are considered in different generation zones, and the probability to meet demand by available spinning reserve during 𝑵−𝟏 security contingency is characterized as a risk function. Furthermore, the contribution of CAES units in providing the system spinning reserve is taken into account in the MAED model. The proposed framework is demonstrated by a case study using the modified IEEE 40-generator system. The numerical results reveal that the proposed method brings a significant advantage to the efficient scheduling 
of thermal units’ power generation, WF power curtailment and CAES charging/discharging control in the power system.   Index Terms—Multi-Area Economic Dispatch, Compressed Air Energy Storage, Operational Risk, Wind Farm Power Curtailment.   NOMENCLATURE Indices  
𝑑 Demand discrete levels 𝜖{1, 2, … , 𝑁𝐷𝐿} 
𝑑′ Demand discrete levels 𝜖{1, 2, … , 𝑁𝐷𝐿′ } 
𝑖 Thermal units 𝜖{1, 2, … ,𝑁𝑇𝑈} 
𝑗 Wind power discrete levels 𝜖{1, 2, … ,𝑁𝐷𝑊} 
 𝑗′ Wind power discrete levels 𝜖{1, 2, … ,𝑁𝐷𝑊′ } 
𝑘 CAES units 𝜖{1, 2,… ,𝑁𝐶𝐴𝐸𝑆} 
𝑙 Tie-lines 𝜖{1, 2, … ,𝑁𝑇𝐿} 
𝑡 Hourly scheduling intervals 𝜖{1, 2, … , 24} 
𝑤 Wind farms 𝜖{1, 2,… ,𝑁𝑊𝐹} 
𝑛  Power system separated areas  
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𝑚 The auxiliary indices for merging 𝜖{1, 2,… ,𝑁𝐷𝐿 +
𝑁𝐷𝐿
′ − 1} 

𝑚′ The auxiliary indices for merging 𝜖{1, 2,… ,𝑁𝐷𝑊 +
𝑁𝐷𝑊
′ − 1} 

𝑚′′ The auxiliary indices for merging 𝜖{1, 2,… ,𝑁𝐷𝑊 +
𝑁𝐷𝐿 + 𝑁𝐷𝑊

′ + 𝑁𝐷𝐿
′ − 3} Vectors  

𝑪𝑤 The curtailment level of 𝑤𝑡ℎ WF for 24-hour timespan 
𝑷𝑇𝐿
𝑙  Set of amount of power flow of the 𝑙𝑡ℎ tie-line for 24-hour time scheduling 
𝑷𝑇𝑈
𝑖  Set of amount of power generation of 𝑖𝑡ℎ thermal unit for 24-hour time scheduling 
𝑷𝑐ℎ/𝑑𝑖𝑠
𝑘  Set of amount of charge/discharge power of the 𝑘𝑡ℎ CAES for 24-hour time scheduling 
𝑷𝐷𝑟
𝑡  The residual demand at 𝑡𝑡ℎ hour 
𝑷𝐷
𝑛,𝑡 The power consumption of 𝑛𝑡ℎ area at 𝑡𝑡ℎ hour 
𝑷𝐷
𝑡  The total power consumption of the system  
𝝅𝐷
𝑛,𝑡 The PDF of the demand at 𝑛𝑡ℎ area 
𝝅𝐷
𝑡  The PDF of the merged demand 
𝑷𝑊𝑇
𝑤,𝑡  The active power generation by 𝑤𝑡ℎ wind  
�̅�𝑊𝑇
𝑤,𝑡  The set of curtailed power generation of 𝑤𝑡ℎ wind farm at 𝑡𝑡ℎ hour   
�̅�𝑊𝑇
𝑤,𝑡  The PDF of curtailed power generation of 𝑤𝑡ℎ wind farm at 𝑡𝑡ℎ hour 
𝑿𝐶𝐴𝐸𝑆  CAES decision variables sub-vector 
𝑿𝑇𝐿 Tie-line decision variables sub-vector 
𝑿𝑇𝑈 Thermal unit decision variables sub-vector 
𝑿𝑊𝐹𝐶  WF power generation curtailment level unit decision variables sub-vector 
 Objective functions  

𝐹𝑇𝑒𝑐ℎ Technical function 
𝐹𝑂𝑝𝑟 Operational function 

𝐹𝑂𝑝�̂� Normalized operational function 

𝐹𝑅𝑖𝑠𝑘  Risk function 
𝐹𝑂𝑝𝑟
𝑀𝑎𝑥 Maximum operational cost 
𝐹𝑂𝑝𝑟
𝑀𝑖𝑛 Minimum operational cost 

 Flags 
 

𝑇𝑈𝑉𝑖𝑜𝑙𝑎𝑡𝑒
𝑖,𝑡  The violation flag for the 𝑖𝑡ℎ thermal unit  

𝑇𝐿𝑉𝑖𝑜𝑙𝑎𝑡𝑒
𝑙,𝑡  The violation flag for the 𝑙𝑡ℎ tie-lines limitation  

𝑃𝐵𝑉𝑖𝑜𝑙𝑎𝑡𝑒
𝑡  The violation flag for the power balance constraint  

𝐶𝐴𝐸𝑆𝑉𝑖𝑜𝑙𝑎𝑡𝑒
𝑘,𝑡  The violation flag for 𝑘𝑡ℎ CAES unit operation  

 
Coefficients  
𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 The cost coefficients of the 𝑖𝑡ℎ thermal unit 
𝜉𝑂&𝑀
𝑤  The operation & maintenance cost of the 𝑤𝑡ℎ WF  
𝛹𝑑𝑖𝑠,𝑘(𝛹𝑠,𝑘) The heat ratio of the 𝑘𝑡ℎ CAES for discharging (simple cycle) mode 
𝜑𝑁𝐺 The gas price of the CAES units 
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𝑉𝑐𝐸𝑥𝑝

𝑘 , (𝑉𝑐𝐶𝑜𝑚
𝑘 ) The variable operation and maintenance cost for expanding (compressing) modes of the 𝑘𝑡ℎ CAES 

𝜌𝑐ℎ,𝑘 , 𝜌𝑑𝑖𝑠,𝑘 The charge and discharge energy ratio for converting power to energy in 𝑘𝑡ℎ CAES cavern 
𝐹𝑂𝑅𝑇𝑈

𝑖  The forced outage rate of the 𝑖𝑡ℎ thermal unit 
𝛽 The weighting factor 
0 A large number (i.e 1010)   Parameters  
𝐶𝑤,𝑡 Curtailment level of 𝑤𝑡ℎ WF at 𝑡𝑡ℎ hour 𝜖𝑪𝑤  
𝑃𝑇𝑈
𝑖,𝑡  Active power generated by 𝑖𝑡ℎ thermal unit 
𝑃𝑐ℎ
𝑘,𝑡(𝑃𝑑𝑖𝑠

𝑘,𝑡) Charging (discharging) power of the 𝑘𝑡ℎ CAES unit 
𝑃𝑐
𝑘,𝑡 The power generation of the 𝑘𝑡ℎ CAES unit at 𝑡𝑡ℎ hour in the simple cycle mode 
𝜋𝑟𝑖𝑠𝑘
𝑡  The risk index at 𝑡𝑡ℎ hour 

𝑃𝑇𝑈𝑚𝑎𝑥
𝑖 (𝑃𝑇𝑈𝑚𝑖𝑛

𝑖 ) Maximum(minimum) capacity of 𝑖𝑡ℎ thermal unit 
𝑅𝑈𝑖 , 𝑅𝐿𝑖 Ramp-up and ramp-down rate of 𝑖𝑡ℎ thermal unit 
𝑃𝑇𝐿
𝑙,𝑡 Active power flow of 𝑙𝑡ℎ Tie-line at 𝑡𝑡ℎ hour 
𝑃𝑇𝐿𝑚𝑎𝑥
𝑙  Maximum capacity of 𝑙𝑡ℎ Tie-line 
𝐸𝐶𝐴𝐸𝑆
𝑘,𝑡  Amount of energy inside the 𝑘𝑡ℎ CAES unit 
𝐸𝐶𝐴𝐸𝑆𝑚𝑎𝑥
𝑘  

(𝐸𝐶𝐴𝐸𝑆𝑚𝑖𝑛
𝑘 ) 

Maximum(minimum) limit of the amount of energy inside the 𝑘𝑡ℎ CAES unit 
𝑃𝑐ℎ/𝑑𝑖𝑠𝑚𝑎𝑥
𝑘  Maximum permitted of charging/discharging rate for the 𝑘𝑡ℎ CAES unit 
𝜋𝑅𝑒𝑠𝑒𝑟𝑣𝑒
𝑡,𝑚′′

 The probability of difference between residual demand and the expected value lying between up and down spinning reserves 
𝑃𝐷𝑟
𝑒𝑥𝑝𝑡,𝑡

 Expected value of residual demand at 𝑡𝑡ℎ hour 
𝑆𝑅𝑈𝑝

𝑡 , 𝑆𝑅𝐷𝑛
𝑡  Up and down system spinning reserve 

𝜋𝐷
𝑛,𝑡,𝑑 Probability of demand of 𝑛𝑡ℎ area for 𝑑𝑡ℎ discrete level 
𝑃𝐷
𝑛,𝑡,𝑑 The demand of 𝑛𝑡ℎ area for 𝑑𝑡ℎ discrete level at 𝑡𝑡ℎ hour  𝜖𝑷𝐷𝑛,𝑡 
𝑃𝐷
𝑡,𝑚 Demand of network for 𝑚𝑡ℎ discrete level 
�̅�𝑊𝑇
𝑡,𝑚′

 Curtailed power generation of network at 𝑚′𝑡ℎ discrete 
�̅�𝑊𝑇
𝑤,𝑡,𝑗

 The curtailed power generation of 𝑤𝑡ℎ wind farm at 
𝑗𝑡ℎ discrete level at 𝑡𝑡ℎ hour  𝜖�̅�𝑊𝑇𝑤,𝑡  

𝜋𝑊𝑇
𝑤,𝑡,𝑗 The probability of power generation of 𝑤𝑡ℎ wind farm for 𝑗𝑡ℎ discrete level at 𝑡𝑡ℎ hour  
�̅�𝑊𝑇
𝑤,𝑡,𝑗 The probability of curtailed power generation of 𝑤𝑡ℎ wind farm for 𝑗𝑡ℎ discrete level at 𝑡𝑡ℎ hour 
�̅�𝑊𝑇
𝑡,𝑚′

 The probability of curtailed WF power generation of network for 𝑚′𝑡ℎ discrete level at 𝑡𝑡ℎ hour 
𝜋𝐷𝑟
𝑡,𝑚′′

 The probability of residual demand of network for 
𝑚′′𝑡ℎ discrete level at 𝑡𝑡ℎ hour 

I.  INTRODUCTION 
ind power generation has markedly increased over the past decade. However, its intermittent nature poses a serious obstacle to utilize its supplied energy in a reliable way. Accordingly, a lot of studies have been carried out to optimally manage wind energy, in which energy storages play a decisive role in the management of such a renewable energy source (RES). In a system with high penetration of wind energy, bulk energy storage enables a reliable power dispatch. In particular, compressed air energy storage (CAES) can be an effective solution at utility scales, which could have capacities of several hundred MW and be constructed within three years [1]. CAES has not only positive effects on power system performance [2], but also plays an active role in meeting the 

heating loads as a subsidiary benefit when it comes to selling of compression waste heat during waste heat recovery process, for instance, both adiabatic and distributed CAES can improve the efficiency associated with waste heat of the compressor [3].  
Integration of CAES and wind-thermal scheduling has been investigated for single area analysis. For example, references [4-6] develop a deterministic framework for scheduling where wind is not considered as a source of uncertainty. The authors of [4] have optimized the short-term generation of wind and conventional gas-fired units in the presence of CAES while considering technical limitations such as ramp rates and minimum on/off time. A market-based self-scheduling approach has been proposed in [5] where the thermodynamic characteristics of CAES has been taken into account. Furthermore, a new integration of CAES and combined cooling, heating and power (CCHP) system has been developed in [6] to meet electrical, cooling and heating loads in peak hours. Ghalelou et al. [7] have presented a stochastic model for scheduling of CAES coupled with RESs and thermal plants while an effective demand response program has been used to flatten the load curve, leading to lower operational cost. It is noteworthy that the above-mentioned publications have ignored the transmission and/or tie lines power flow limits, since a single-area economic dispatch (ED) model is applied there which cannot demonstrate the real vision and the economic solution for short-term scheduling for interconnected areas. To fill this gap, multi-area ED (MAED) has been well addressed through studies in [8-10].  
Furthermore, to consider capacity limits for all network lines, security-constrained unit commitment (SCUC) has been solved while wind power generation is included [11, 12]. In this regard, [11] proposes a new probabilistic SCUC for wind-thermal units to find the optimal solution with respect to the cost of energy and expected energy not supplied. Also, CAES is also included into the SCUC model in [12] to investigate the effect of this kind of storage on peak load shaving and locational market, while wind and demand load are considered as deterministic inputs. However, all these works provide a deterministic formulation, not considering the risk associated with load and wind generation uncertainties. 
Deployment of RESs as well as variation of demand and RESs require studies on the risk associated with these uncertain sources [13]. In an ordinary generation schedule where risks are not considered, the main attention is to achieve the minimum operational cost under technical constraints of units and other assets. While in a risk-oriented generation schedule, additional emphasis is on including operational risk of unit failures in addition to other uncertainties. Indeed, a risk-based scheduling strategy allows system operators to make a compromise between costs of generation and those of uncertainties [14]. In this regard, an optimal risk-based strategy for wind-thermal unit commitment (UC) has been proposed in [15] for market clearing. Reference [15] has considered the risks of loss of load, branch capacity and wind curtailment. In [16], a heuristic approach has been presented to solve multi-objective wind-thermal UC, in which one of the objectives is operational cost and the other 
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 3 
is the risks associated with generation outage and wind curtailment.  

To take advantage of bulk energy storages as a potential factor to mitigate wind fluctuations, a few studies have been concentrated on the risk evaluation in a wind integrated system coupled with CAES. For instance, [17] has developed an optimal scenario-based look-ahead scheduling in the wind integrated network with CAES, where the conditional value at risk (CVaR) index has been deployed to include the risk related to wind, demand and price. Apart from the risk of wind availability, similar risk due to market price has been investigated in [18] to present an optimal offering strategy in a wind integrated system with CAES. Though the presented robust strategy in [18] considers the uncertain price, wind generation is treated deterministically based on a fix prediction. In a power system with high penetration of wind generation, the issue of wind curtailment is a prevalent and practical solution of ED to the system operators, especially when the system technical constraints are on the verge of violation [19]. Regarding the valuable works reviewed above on the short-term scheduling of wind-thermal plants integrated with CAES, there is still a need for a comprehensive and optimal framework in which the risk of meeting demand due to wind and load uncertainties are taken into account, taking advantage of two effective tools, that are wind power generation curtailment and possibility of providing spinning reserve by CAES. 
Accordingly, this paper aims to bridge the gap mentioned by proposing an optimal comprehensive management model. The model should give operators a decision-making strategy in which the most ED can be achieved by proper wind power generation curtailment as well as optimal CAES charging and discharging control to provide the required spinning reserve with respect to outages of the single thermal unit. Eventually, the problem can be completed when the constraints related to the several generation zones are considered through a MAED problem. To address the above-mentioned problem, this paper presents a risk-oriented management scheme.  
Overall, the main contributions of this paper are summarized as follows: 
 Optimal MAED strategy in power systems with high penetration of wind and CAES under technical constraints associated with different generation zones; 
 A risk-based model to cope with the uncertainties of wind generation and load with respect to 𝑁 − 1 contingency;  
 A decision-making method for system operators with respect to the optimal solution of wind-thermal ED, intentional wind power generation curtailment and CAES deployment, while spinning reserve provided by thermal and CAES units is taken into account; 
 A method for working with different and independent probability distribution functions (PDFs) of wind and load corresponding to the different generation zones. It is worth mentioning that this issue makes the problem 

much more sophisticated compared with ordinary single area ED. 
The remainder of this paper is organized as follows. Section II presents the proposed mathematical formulation. Numerical studies are discussed in Section III, and conclusions are drawn in Section IV.   

II.  MATHEMATICAL MODELING 
This section provides a mathematical model for a 24-hour scheduling of thermal units, WF and CAES operation in multiple areas where some of the main assumptions of the proposed problem will be power system configuration, different load profiles and PDFs of wind for each generation area, cost coefficients of each generation units and forced outage rate (FOR) of thermal units. Also, the decision variable vector, objective function, uncertainty modeling and WF power generation curtailment are formulated. The problem is defined as a mix-integer non-linear programming (MINLP) problem as follows.  

Decision Variables:  
In this problem, the main decision variable vector consists of several sub-vectors including thermal unit power generation, power flow through the tie-lines, WF power generation curtailing level and CAES units’ charging/discharging schedule. 

𝑿 = [𝑿𝑇𝑈 𝑿𝑇𝐿 𝑿𝑊𝑐 𝑿𝐶𝐴𝐸𝑆] (1) 
𝑿𝑇𝑈 = [𝑷𝑇𝑈

1 𝑷𝑇𝑈
2 … 𝑷𝑇𝑈

𝑁𝑇𝑈],     𝑷𝑇𝑈
𝑖 ∈ ℝ1×24 (2) 

𝑿𝑇𝐿 = [𝑷𝑇𝐿
1 𝑷𝑇𝐿

2 … 𝑷𝑇𝐿
𝑁𝑇𝐿],      𝑷𝑇𝐿

𝑙 ∈ ℝ1×24 (3) 
𝑿𝑊𝐹𝐶 = [𝑪

1 𝑪2 … 𝑪𝑁𝑊𝐹] ,      𝑪𝑤 ∈ ℤ1×24 (4) 
𝑿𝐶𝐴𝐸𝑆 = [𝑷𝑐ℎ/𝑑𝑖𝑠

1   𝑷𝑐ℎ/𝑑𝑖𝑠
2  … 𝑷𝑐ℎ/𝑑𝑖𝑠

𝑁𝐶𝐴𝐸𝑆 ] , 𝑷𝑐ℎ/𝑑𝑖𝑠
𝑘 ∈ ℝ1×24 (5) 

  

 Fig. 1 (a) The original WF power generation PDF, (b) the post-curtailment WF power generation PDF 
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WF Curtailment:  

WF power generation curtailment is a mechanism to restrain the percentage of WF power generation uncertainty by controlling the blade pitch angle. This mechanism brings many advantages such as providing an appropriate wind-thermal economic dispatch with high penetration of WF and reducing the portion of uncertain WF power generation. The forecast WF power generation is assumed as a normal PDF and is discretized into 𝑁𝐷𝑊 levels with different standard deviation at each hour. By applying the specific level of WF power generation curtailment, the mentioned PDF is reshaped as follows (6).  [19]:  

�̅�𝑊𝑇
𝑤,𝑡,𝑗 =

{
 
 

 
    𝜋𝑊𝑇

𝑤,𝑡,𝑗                 1 ≤ 𝑗 < 𝑁𝐷𝑊 −𝐶
𝑤,𝑡

∑ 𝜋𝑊𝑇
𝑤,𝑡,𝑗

𝑁𝐷𝑊

𝑗=𝑁𝐷𝑊−𝐶
𝑤,𝑡

      𝑗 = 𝑁𝐷𝑊 −𝐶
𝑤,𝑡

    0                                𝑁𝐷𝑊 − 𝐶
𝑤,𝑡 < 𝑗

   

(6) 
 

As it is clear from (6), the higher curtailment level (𝐶𝑤,𝑡), the lower wind power generation, and vice versa. To better understand the curtailing procedure, a representative example is presented here. According to Fig. 1(a), if the original PDF associated with a WF power generation is discretized into nine levels, 
𝑁𝐷𝑊 = 9, the reshaped PDF considering a six-level curtailment (𝐶𝑤,𝑡 = 3) will be obtained as Fig. 1(b). 
Objective Function and Constraints:  

The objective function of the proposed problem is formulated as (7) including three terms to consider operational cost (8)-(9), operational risk (10) and technical constraints (11), respectively. Moreover, the weighted sum method is used in this objective function to make a trade-off between operational cost and risk function.  
𝑀𝑖𝑛 𝑂𝑏𝑗 = 𝛽. 𝐹𝑂𝑝�̂�(𝑿)+ (1− 𝛽).𝐹𝑅𝑖𝑠𝑘(𝑿) + 𝐹𝑇𝑒𝑐ℎ(𝑿) (7) 

The operational cost stated in the first term of the objective function is expanded in (8). 
𝐹𝑂𝑝𝑟(𝑿)= 

∑

(

 
 
 ∑(𝑎𝑖𝑃𝑇𝑈

𝑖,𝑡 2+𝑏𝑖𝑃𝑇𝑈
𝑖,𝑡+𝑐𝑖)

𝑁𝑇𝑈

𝑖=1

+∑(𝜉𝑂&𝑀
𝑤 𝑃𝑊𝑇

𝑤,𝑡)

𝑁𝑊𝐹

𝑤=1

+

∑ (
𝑃𝑑𝑖𝑠
𝑘,𝑡(𝛹𝑑𝑖𝑠,𝑘𝜑𝑁𝐺+𝑉𝑐𝐸𝑥𝑝

𝑘 )+

𝑃𝑠
𝑘,𝑡(𝛹𝑠,𝑘𝜑𝑁𝐺+𝑉𝑐𝐸𝑥𝑝

𝑘 +𝑉𝑐𝐶𝑜𝑚
𝑘 )+𝑃𝑐ℎ

𝑘,𝑡𝑉𝑐𝐶𝑜𝑚
𝑘

)

𝑁𝐶𝐴𝐸𝑆

𝑘=1 )

 
 
 24

𝑡=1

 

(8) 
Based on the proposed model, the cost comprises three main factors related to fuel cost of thermal units, operational and maintenance cost of wind farms and operational cost of CAES units that are respectively formulated in the first to the third terms of (8). In more detail, the major operational cost involved in CAES consists of the charging and discharging modes which, indeed, correspond to expanding and compressing processes. These considerations have been formulated through the third term of (8). The term "𝑃𝑐ℎ𝑘,𝑡𝑉𝑐𝐶𝑜𝑚𝑘 " in (8) relates to the technology of CAES that enables it to work as a gas turbine, named simple-cycle [18, 20, 21]. On the other hand, the proposed risk function (𝐹𝑅𝑖𝑠𝑘), lies between 

zero and one due to the concept of probability used, i.e. 
0 ≤ 𝐹𝑅𝑖𝑠𝑘 ≤ 1. Thus, the operational function (𝐹𝑂𝑝𝑟) is required to be normalized. In this regard, the fuzzy technique is implemented as in (9). It should be noted that 𝐹𝑂𝑝𝑟𝑀𝑎𝑥 is 
assumed to be equal to 10 × 𝐹𝑂𝑝𝑟𝑀𝑖𝑛. 
𝐹𝑂𝑝�̂�(𝑿) =

𝐹𝑂𝑝𝑟
𝑀𝑎𝑥 − 𝐹𝑂𝑝𝑟(𝑋)

𝐹𝑂𝑝𝑟
𝑀𝑎𝑥 − 𝐹𝑂𝑝𝑟

𝑀𝑖𝑛
 (9) 

The second term of the objective function discusses the risk associated with the problem as in (10) which will be addressed later through (17)–(20).  
𝐹𝑅𝑖𝑠𝑘(𝑿) =

1

24
∑𝜋𝑟𝑖𝑠𝑘

𝑡

24

𝑡=1

 (10) 
The problem constraints are mentioned in the third term of (7) are handled using penalty factor in the objective function through (11). To observe these constraints, (12)-(16) need to be deployed. 

𝐹𝑇𝑒𝑐ℎ(𝑿) =∑

(

 
 
 𝑃𝐵𝑉𝑖𝑜𝑙𝑎𝑡𝑒

𝑡 +∑𝑇𝑈𝑉𝑖𝑜𝑙𝑎𝑡𝑒
𝑖,𝑡

𝑁𝑇𝑈

𝑖=1

+∑𝑇𝐿𝑉𝑖𝑜𝑣𝑎𝑡𝑒
𝑙,𝑡

𝑁𝑇𝐿

𝑙=1

+ ∑ 𝐶𝐴𝐸𝑆𝑉𝑖𝑜𝑙𝑎𝑡𝑒
𝑘,𝑡

𝑁𝐶𝐴𝐸𝑆

𝑘=1 )

 
 
 24

𝑡=1

×ℳ 

(11) 
𝑇𝑈𝑉𝑖𝑜𝑙𝑎𝑡𝑒

𝑖,𝑡 = {
0

𝑃𝑇𝑈𝑚𝑖𝑛
𝑖 ≤ 𝑃𝑇𝑈

𝑖,𝑡 ≤ 𝑃𝑇𝑈𝑚𝑎𝑥
𝑖   & 

𝑅𝐿𝑖 ≤ 𝑃𝑇𝑈
𝑖,𝑡 −𝑃𝑇𝑈

𝑖,𝑡−1 ≤ 𝑅𝑈𝑖
, ∀𝑖, 𝑡  

1                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             

 

(12) 
𝑇𝐿𝑉𝑖𝑜𝑣𝑎𝑡𝑒

𝑙,𝑡 = {
0    |𝑃𝑇𝐿

𝑙,𝑡| ≤  𝑃𝑇𝐿𝑚𝑎𝑥
𝑙    

1           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
, ∀𝑙, 𝑡 (13) 

𝑃𝐵𝑉𝑖𝑜𝑙𝑎𝑡𝑒
𝑡 = 

{ 0     ∑𝑃𝑇𝑈
𝑖,𝑡

𝑁𝑇𝑈

𝑖=1

+∑ 𝑃𝑊𝑇
𝑤,𝑡

𝑁𝑊𝐹

𝑤=1

+ ∑ 𝑃𝑐ℎ/𝑑𝑖𝑠
𝑘,𝑡

𝑁𝐶𝐴𝐸𝑆

𝑘=1

= ∑ 𝑃𝐷
𝑛,𝑡

𝑁𝐴𝑟𝑒𝑎

𝑛=1

  , ∀𝑡 

1                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                               

 

(14) 
𝐶𝐴𝐸𝑆𝑉𝑖𝑜𝑙𝑎𝑡𝑒

𝑘,𝑡 = 

{
 
 

 
 
0

 𝐸𝐶𝐴𝐸𝑆𝑚𝑖𝑛
𝑘 ≤ 𝐸𝐶𝐴𝐸𝑆

𝑘,𝑡 ≤ 𝐸𝐶𝐴𝐸𝑆𝑚𝑎𝑥
𝑘     & 

|𝑃𝑐ℎ/𝑑𝑖𝑠
𝑘,𝑡 |  ≤ 𝑃𝑐ℎ/𝑑𝑖𝑠𝑚𝑎𝑥

𝑘                    &  

𝐸𝐶𝐴𝐸𝑆
𝑘,1 = 𝐸𝐶𝐴𝐸𝑆

𝑘,24                                     

     , ∀𝑘, 𝑡     

1                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 

 

(15) 
𝐸𝐶𝐴𝐸𝑆
𝑘,𝑡 = 𝐸𝐶𝐴𝐸𝑆

𝑘,𝑡−1 + 𝜌𝑐ℎ,𝑘𝑃𝑐ℎ
𝑘,𝑡 −

1

𝜌𝑑𝑖𝑠,𝑘
𝑃𝑑𝑖𝑠
𝑘,𝑡   , ∀𝑡, 𝑘   (16) 

In (12), min/max capacities of the thermal units as well as their up/down ramp rate constraints are taken into account. Constraint (13) guarantees that the tie-lines’ power flows are within permitted limits. Power balance constraint, regarding thermal units and wind power generation as well as CAES, is handled by (14). Eqs. (15)-(16) are the limitations due to CAES utilization [17].  
Constraint (15) implies that the rate of charge/discharge and the dynamics of the energy stored in the CAES at each hour should be within the permitted range. This amount can be obtained from (16) [18]. It is worth mentioning that the technical function (𝐹𝑇𝑒𝑐ℎ) can take two values, either zero 



 5 
providing all technical constraints are satisfied or ℳ when the penalty factor is applied. Obviously, the optimization trend pushes the technical function to be zero as a result of the applied large penalty factor for this constraint. Hence, there is no need to give this term a weighting factor in the objective function. Indeed, the used penalty factor technique integrated in the objective function is a straightforward way to handle the 
proposed problem’s constraints rather than utilizing hard constraints disallowing violations. By applying the penalty factor technique, satisfying the problem constraints would be the priority; once they are met, the first two remaining terms of objective function is minimized. Operational risk arising from the problem uncertainties, here wind power generation and demand, is formulated in (10). Indeed, the operational risk function in (10) aims at minimizing the risk index of each hour, (𝜋𝑟𝑖𝑠𝑘𝑡 ,) over the studied horizon which is defined as bellow in (17).  
𝜋𝑟𝑖𝑠𝑘
𝑡 = 1−∑∑𝐹𝑂𝑅𝑇𝑈

𝑖 × 𝜋𝑅𝑒𝑠𝑒𝑟𝑣𝑒
𝑡,𝑚′′

𝑚′′

𝑁𝑇𝑈

𝑖=1

        , ∀𝑡 (17) 
In the context of 𝑁 − 1 security criterion of thermal units, the hourly risk index is expressed as in (17) indicating the risk of not supplied demand that stems from the uncertainties of load and wind as well as thermal unit outages, which are not covered by spinning reserve of the system. In other words, the risk is defined as uncertain power generation or demand that is not covered by the reserves. Accordingly, the probability that shows the demand can be met by spinning reserve is calculated in (18). 

𝜋𝑅𝑒𝑠𝑒𝑟𝑣𝑒
𝑡,𝑚′′

={𝜋𝐷𝑟
𝑡,𝑚′′

  𝑆𝑅𝐷𝑛
𝑡 ≤𝑃𝐷𝑟

𝑡,𝑚′′

−𝑃𝐷𝑟
𝑒𝑥𝑝𝑡,𝑡≤𝑆𝑅𝑈𝑝

𝑡     ∀𝑡 ,𝑚′′

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                
  (18) 

In this study, the wind power is treated as a negative demand and therefore the difference of demand and power 
generation is known as residual demand (𝑃𝐷𝑟𝑡,𝑚′′). Eq. (18) demonstrates that the uncertainty coverage can be accomplished when the difference between residual demand and the expected value lies between up and down values of spinning reserves. The spinning reserve of the system in similar studies is provided only by means of thermal units. However, in this paper, the system up and down spinning reserves are affected by CAES along with thermal units. In this regard, up and down spinning reserve of the system are indicated in (19) and (20), respectively. 
𝑆𝑅𝑈𝑝

𝑡 =∑𝑚𝑖𝑛(𝑃𝑇𝑈𝑚𝑎𝑥
𝑖 −𝑃𝑇𝑈

𝑖,𝑡 , 10𝑅𝑈𝑖)

𝑁𝑇𝑈

𝑖=1

 

         +   ∑ 𝑚𝑖𝑛(
(𝐸𝐶𝐴𝐸𝑆

𝑘,𝑡−1 −𝐸𝐶𝐴𝐸𝑆𝑚𝑖𝑛
𝑘 )

𝐸𝑟𝑘
, 𝑃𝑐ℎ/𝑑𝑖𝑠𝑚𝑎𝑥

𝑘 )

𝑁𝐶𝐴𝐸𝑆

𝑘=1

    , ∀𝑡 (19) 
𝑆𝑅𝐷𝑛

𝑡 =∑𝑚𝑖𝑛(𝑃𝑇𝑈
𝑖,𝑡 −𝑃𝑇𝑈𝑚𝑖𝑛

𝑖 , 10𝑅𝐿𝑖)

𝑁𝑇𝑈

𝑖=1

 

          +    ∑ 𝑚𝑖𝑛(
(𝐸𝐶𝐴𝐸𝑆𝑚𝑎𝑥

𝑘 −𝐸𝐶𝐴𝐸𝑆
𝑘,𝑡−1)

𝐸𝑟𝑘
, 𝑃𝑐ℎ/𝑑𝑖𝑠𝑚𝑎𝑥

𝑘 )

𝑁𝐶𝐴𝐸𝑆

𝑘=1

   , ∀𝑡 (20) 

Dealing with Uncertainties in Different Generation Zones −the Discrete Convolution Technique  
 

Consideration of different generation zones imposes new challenges to the underlying optimization problem. Though the technical constraint associated with tie-line capacities has already been handled through (13), implementation of a more accurate model for PDFs is of great importance. In reality, it is possible for different zones to have independent PDFs of demand and wind. In the proposed model, it is assumed that different generation areas are far from each other and have independent demand and wind PDFs. Similarly, wind PDFs of different zones are most likely different. Hence, the residual demand and its expected value stated in (18) need to be defined and formulated to encompass the equivalent values for different zones, precisely. Therefore, one equivalent PDF for demand and one for wind are required. To serve this purpose, this paper utilizes the discrete convolution technique to merge the independent PDFs (PDF of each area) [22]. In the following, the detailed modeling of the uncertainties for different areas is presented. 
There are several load consumptions and WFs in different areas. The forecasted demand and WF power generation are modeled by normal PDFs discretized into 𝑁𝐷𝐿 and 𝑁𝐷𝑊 levels, respectively. In order to calculate the equivalent residual demand (𝑷𝐷𝑟𝑡 ), its probability (𝝅𝐷𝑟𝑡 ) and also its expected value (𝑃𝐷𝑟𝑒𝑥𝑝𝑡,𝑡) in (18), it is required to merge all load consumptions in all areas together and all curtailed WF power generation as well based on (21)-(27) as below [22]. 

𝑷𝐷
𝑡 = ∑ 𝑷𝐷

𝑛,𝑡

𝑁𝐴𝑟𝑒𝑎

𝑛=1

= (… ((𝑷𝐷
1,𝑡⊕𝑷𝐷

2,𝑡)⊕ …𝑷𝐷
𝑛,𝑡) ⊕ …𝑷𝐷

𝑁𝐴𝑟𝑒𝑎,𝑡) 

𝑠. 𝑡.

{
 
 

 
 𝑃𝐷

𝑡,𝑚 = 𝑃𝐷
𝑛−1,𝑡,𝑑 + 𝑃𝐷

𝑛,𝑡,𝑑′ , ∀𝑡,𝑚, 𝑑, 𝑑′    
𝑚 = 𝑁𝐷𝐿

′ + 𝑑 − 𝑑′

𝑃𝐷
𝑛−1,𝑡,𝑑𝜖 𝑷𝐷

𝑛−1,𝑡                , ∀𝑑   

𝑃𝐷
𝑛,𝑡,𝑑′𝜖 𝑷𝐷

𝑛,𝑡                                 , ∀𝑑′                 

𝑃𝐷
𝑡,𝑚𝜖{𝑷𝐷

𝑛−1,𝑡⊕𝑷𝐷
𝑛,𝑡}                , ∀𝑚                

 

(21) 
𝝅𝐷
𝑡 = ⋀ 𝝅𝐷

𝑛,𝑡

𝑁𝐴𝑟𝑒𝑎

𝑛=1

= (… ((𝝅𝐷
1,𝑡 ∗ 𝝅𝐷

2,𝑡) ∗ … 𝝅𝐷
𝑛,𝑡)  ∗ … 𝝅𝐷

𝑁𝐴𝑟𝑒𝑎−1,𝑡)

∗ 𝝅𝐷
𝑁𝐴𝑟𝑒𝑎,𝑡 

𝑠. 𝑡.

{
  
 

  
 𝜋𝐷

𝑡,𝑚 = ∑ 𝜋𝐷
𝑛−1,𝑡,𝑑𝜋𝐷

𝑛,𝑡,𝑑′

𝑚=𝑁𝐷𝐿
′ +𝑑−𝑑′

, ∀𝑡, 𝑑, 𝑑′

𝜋𝐷
𝑛−1,𝑡,𝑑𝜖 𝝅𝐷

𝑛−1,𝑡                                   , ∀𝑑        

𝜋𝐷
𝑛,𝑡,𝑑′𝜖 𝝅𝐷

𝑛,𝑡                                           , ∀𝑑′       

𝜋𝐷
𝑡,𝑚𝜖{𝝅𝐷

𝑛−1,𝑡 ∗ 𝝅𝐷
𝑛,𝑡}                         , ∀𝑚       

 

(22) 
Eqs. (21)-(22) show the process of merging all the demands together. For better understanding, the mathematical process of merging two demands (i.e. 𝑷𝐷𝑛−1,𝑡 and 𝑷𝐷𝑛,𝑡) from two different areas (i.e. areas 𝑛 − 1 and 𝑛) and their corresponding probabilities (i.e. 𝝅𝐷𝑛−1,𝑡 and 𝝅𝐷𝑛,𝑡) is expressed in these equations.  
The discrete convolution technique in (22) is used to calculate the equivalent PDF of the merged loads. Note that the operator (⊕) denotes the sum of two uncertainty variables and the convolution operator used in this equation is denoted by the star symbol (*). 
Similarly, Eqs. (23)-(24) are deployed for the uncertainties posed by wind power generation as follows. 
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�̅�𝑊𝑇
𝑡 = ∑ �̅�𝑊𝑇

𝑤,𝑡

𝑁𝑊𝐹

𝑤=1

= (… ((�̅�𝑊𝑇
1,𝑡 ⊕ �̅�𝑊𝑇

2,𝑡 ) ⊕ … �̅�𝑊𝑇
𝑤,𝑡)

⊕ … �̅�𝑊𝑇
𝑁𝑊𝐹,𝑡) 

𝑠. 𝑡.

{
  
 

  
 𝑃𝑊𝑇

𝑡,𝑚′
= 𝑃𝑊𝑇

𝑤−1,𝑡,𝑗
+ 𝑃𝑊𝑇

𝑤,𝑡,𝑗′ , ∀𝑡,𝑚′, 𝑗, 𝑗′        

𝑚′ = 𝑁𝐷𝐿
′ + 𝑗 − 𝑗′

𝑃𝑊𝑇
𝑤−1,𝑡,𝑗

𝜖 �̅�𝑊𝑇
𝑤−1,𝑡                 , ∀𝑗           

𝑃𝑊𝑇
𝑤,𝑡,𝑗′

𝜖 �̅�𝑊𝑇
𝑤,𝑡                                  , ∀𝑗′                   

𝑃𝑊𝑇
𝑡,𝑚′

𝜖{�̅�𝑊𝑇
𝑤−1,𝑡⊕ �̅�𝑊𝑇

𝑤,𝑡}             , ∀𝑚′                

 

 (23) 

�̅�𝑊𝑇
𝑡 = ⋀ �̅�𝑊𝑇

𝑤,𝑡

𝑁𝑊𝐹

𝑤=1

= (… ((�̅�𝑊𝑇
1,𝑡 ∗ �̅�𝑊𝑇

2,𝑡 ) ∗ … �̅�𝑊𝑇
𝑤,𝑡)  

∗ … �̅�𝑊𝑇
𝑁𝑊𝐹−1,𝑡) ∗ �̅�𝑊𝑇

𝑁𝑊𝐹,𝑡 

𝑠. 𝑡.

{
  
 

  
 �̅�𝑊𝑇

𝑡,𝑚′
= ∑ �̅�𝑊𝑇

𝑤−1,𝑡,𝑗
�̅�𝑊𝑇
𝑤,𝑡,𝑗′

𝑚′=𝑁𝑊𝑇
′ +𝑗−𝑗′

, ∀𝑡, 𝑗, 𝑗′

�̅�𝑊𝑇
𝑤−1,𝑡,𝑗

𝜖 �̅�𝑊𝑇
𝑤−1,𝑡                                     , ∀𝑗       

�̅�𝑊𝑇
𝑤,𝑡,𝑗′

𝜖 �̅�𝑊𝑇
𝑤,𝑡                                              , ∀𝑗′      

�̅�𝑊𝑇
𝑡,𝑚′

𝜖{�̅�𝑊𝑇
𝑤−1,𝑡 ∗ �̅�𝑊𝑇

𝑤,𝑡 }                         , ∀𝑚′    

 

           (24) 
Eventually, the final equivalent power generation (i.e. �̅�𝑊𝑇𝑡  with the PDF �̅�𝑊𝑇𝑡 ) is treated as the negative load consumption in (25) to achieve the residual demand 𝑷𝐷𝑟𝑡 . 

𝑷𝐷𝑟
𝑡 = 𝑷𝐷

𝑡 ⊖ �̅�𝑊𝑇
𝑡      , ∀𝑡  

𝑠. 𝑡.

{
 
 

 
 𝑃𝐷𝑟

𝑡,𝑚′′
= 𝑃𝐷

𝑡,𝑚 − 𝑃𝑊𝑇
𝑡,𝑚′ , ∀𝑡, 𝑚′′, 𝑚′, 𝑚   &  

𝑚′′ = 𝑁𝐷𝑊 + 𝑁𝐷𝑊
′ − 1 + 𝑚 −𝑚′

𝑃𝐷
𝑡,𝑚𝜖 𝑷𝐷

𝑡                       , ∀𝑚

𝑃𝑊𝑇
𝑡,𝑚′

𝜖 �̅�𝑊𝑇
𝑡                                               , ∀𝑚′                          

𝑃𝐷𝑟
𝑡,𝑚′′

𝜖𝑷𝐷𝑟
𝑡                                             , ∀𝑚′′                       

 

(25) 
Again, by applying the discrete convolution technique, the probability of PDF of the residual demand is obtained by (26). Note that the operator (⊖) denotes the difference of two uncertainty variables. 

𝝅𝐷𝑟
𝑡 = 𝝅𝐷

𝑡 ∗ �̅�𝑊𝑇
𝑡  

𝑠. 𝑡.  

{
  
 

  
 𝜋𝐷𝑟

𝑡,𝑚′′
= ∑𝜋𝐷

𝑡,𝑚�̅�𝑊𝑇
𝑡,𝑚′

𝑚′′

    , ∀𝑡,𝑚,𝑚′, 𝑚′′

𝜋𝐷
𝑡,𝑚𝜖 𝝅𝐷

𝑡                              , ∀𝑚

�̅�𝑊𝑇
𝑡,𝑚′

𝜖 �̅�𝑊𝑇
𝑡                                    , ∀𝑚′       

𝜋𝐷𝑟
𝑡,𝑚′′

𝜖𝝅𝐷𝑟
𝑡                                    , ∀𝑚′′    

 

(26) 
Obviously, the expected value of the residual demand (i.e. 

𝑃𝐷𝑟
𝑒𝑥𝑝𝑡,𝑡) can be formulated in (27). 

𝑃𝐷𝑟
𝑒𝑥𝑝𝑡,𝑡

=∑𝑃𝐷𝑟
𝑡,𝑚′′

𝜋𝐷𝑟
𝑡,𝑚′′

𝑚′′

     , ∀𝑡 (27) 
III.  SIMULATION AND NUMERICAL RESULTS 

In this section, the proposed framework is implemented on the modified IEEE 40-generator system to find out the optimal risk-oriented operation scheme for wind-thermal units integrated with CAES as well as WF power generation curtailing. Fig. 2 illustrates the modified test system, comprising 40 generators, four areas, and six transmission tie-lines. Other parameters of the test system and wind farms can be found in [10] and [23]. 

 
Fig. 2 The 40-generator IEEE test system integrated with WF & CAES 

The test system is modified by installing two wind farms in area 2 and 3 with the capacity of 25% and 20% of the total installed capacity of thermal units in each zone, respectively, as well as two CAESs with the capacity of 400 MWh in these areas. Also, some other parameters used in the simulation are listed in TABLE I. 
Furthermore, as the proposed strategy is a non-convex and non-linear problem with a large number of decision variables and constraints, an optimization approach using hybrid particle swarm optimization–shuffle frog leaping (PSO–SFL) algorithm is used [24]. All analyses are made in MATLAB software on a CORE i7 laptop machine with 2.4GHz 1GB RAM. The maximum number of iterations and populations are set to 100 and 200, respectively. In order to demonstrate the impact of CAES and WF integration on the MAED, the results for the base case (original IEEE 40-generator system), the WF case (IEEE 40-generator system integrated with WF) and the modified WF & CAES case (IEEE 40-generator system integrated with WF & 

CAES) for different amount of risk (β) are tabulated in Table II for the 25% and 20% penetration levels of WF and CAES, respectively. The obtained results from Table II reveal that the operational cost in the modified WF & CAES case decreases by 7.2% for β = 1 in comparison with that of the base case, where, the risk function value is approximately 0.14% when 
𝛽 = 1. Moreover, the risk and operational cost functions are approximately 0.07% and $2,456,077, respectively, in case of 
𝛽 = 0.  Furthermore, Table III presents different penetration levels of WF and CAES in the power system and their impacts on the operational cost, risk, and spinning reserves of thermal units and CAES. According to the results, the penetration increase of these units reduces the operational cost. However, there is no clear relationship between the WF and CAES penetration and operational risk. It can be deduced that the higher penetration of WF increases the operational risk due to 

TABLE  I CONSTANT PARAMETERS USED IN THE SIMULATIONS  
𝜌𝑐ℎ,𝑘 0.85 
𝜌𝑑𝑖𝑠,𝑘 0.90 
𝛹𝑑𝑖𝑠,𝑘 0.4185 
𝛹𝑠,𝑘 0.837 
𝜉𝑂&𝑀
𝑤  3.973 ($/MWh) 
𝑉𝑐𝐸𝑥𝑝

𝑘 , 𝑉𝑐𝐶𝑜𝑚
𝑘  0.87 ($/kWh) 

𝜑𝑁𝐺  3.5 ($/GJ) 
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TABLE  II RESULTS OBTAINED FOR THREE CASES & DIFFERENT β 

Cases Objective Low risk 
(β=0) Medium risk 

(β=0.5) High risk 
(β=1) 

Base Case Cost ($) N/A N/A 2,511,795 [10] 
WF: 25% Cost ($) 2,494,592 2,387,918 2,369,615 Risk (%) 0.103 0.156978 0.2843131 WF: 25% and 20%  CAES: 400 MWh 

Cost ($) 2,456,077      2,379,807      2,331,637 
Risk (%) 0.0706 0.0986 0.1434 

 TABLE III IMPACT OF DIFFERENT PENETRATION OF WF AND CAES  
Penetration Obj. $ SR Low risk 

(β=0) Medium risk 
(β=0.5) High risk 

(β=1) 
WF: 20% and 15% CAES: 300 MWh 

Cost ($) 2,471,911      2,408,637      2,365,783 Risk (%) 0.0796 0.1017 0.1972 
𝑆𝑅𝑇𝑈 (MWh) 129,940 125,450 125,260 
𝑆𝑅𝐶𝐴𝐸𝑆  (MWh) 6,438 6,356 6,344 

WF: 25% and 20%  CAES: 400 MWh 
Cost ($) 2,456,077      2,379,807      2,331,637 Risk (%) 0.0706 0.0986 0.1434 

𝑆𝑅𝑇𝑈 (MWh) 131,499 129,540 127,567 
𝑆𝑅𝐶𝐴𝐸𝑆  (MWh) 6,721 6,569 6,399 

WF: 30% and 25% CAES: 500 MWh 
Cost ($) 2,368,601      2,339,454      2,312,785 
Risk (%) 0.0575 0.0671 0.1338 

𝑆𝑅𝑇𝑈 (MWh) 135,439 132,711 132,139 
𝑆𝑅𝐶𝐴𝐸𝑆  (MWh) 7,499 7,509 7,198  

the intermittency of these units’ generation. On the other hand, the participation of CAES can handle a portion of the WF power generation uncertainty as well as increasing the system spinning reserve. To summarize, the penetration level of WF and CAES have the opposite impact on the operational risk, while both of them reduce the cost.  
Apparently, there is a conflict between these two objective functions. The value of objective functions for 𝛽 = 0.5 is reported in Tables II and III for different cases. Moreover, Fig. 3 depicts the value of the two functions, operational cost and risk, for different amounts of risk (𝛽 = 0, 05, 1). As it is clear from this figure, the monotonically decreasing trend shows the conflict between these two objectives. Moreover, it is obvious that the CAES has a positive influence on both operational cost and risk. It can be stated that the presence of CAES in the power network improves the spinning reserve margin, and consequently further residual demand uncertainty would be confined within the up/down spinning reserve. According to the results from Table II, it is obvious that the operational risk is reduced in all cases for different amount of risk. The total wind power generation curtailment for different 

amounts of risk (β=0, 0.5, 1) is listed in Table IV for two cases (the WF case and the modified WF & CAES case). 
According to the obtained results, it is clear that in the case 

of β=1, the total curtailment level is lower than the two other cases. It means that the WF power generation should be higher in order to decrease the operational cost because the operational cost of wind generations is negligible compared to costs associated with thermal units. Conversely, the higher level of WF curtailment in the case of 𝛽 = 0, the higher thermal unit generations, leading to the lower operational risk. The total value of curtailment level in the both cases (the WF 
case and the modified WF & CAES case) for β=0.5 lies between the total curtailment level for β=0 and β=1.  

In result, the power system decision maker is able to make an appropriate trade-off between the operational cost and 
operational risk via considering β=0.5. 

 Fig. 3 Operational cost and risk with respect to different β 
TABLE IV WF POWER CURTAILMENT LEVEL WITH RESPECT TO DIFFERENT β 

Case 
Low risk 

(β=0) Medium risk 
(β=0.5) High risk 

(β=1) 
Area2 
(𝐶1,𝑡) 

Area3 
(𝐶2,𝑡) 

Area2 
(𝐶1,𝑡) 

Area3 
(𝐶2,𝑡) 

Area2 
(𝐶1,𝑡) 

Area3 
(𝐶2,𝑡) 

WF 112 113 106 112 105 95 WF& CAES 96 76 81 72 49 44 
 
 

 Low risk (𝛽 = 0) 

 Medium risk (𝛽 = 0.5) 

 High risk (𝛽 = 1) 
Fig. 4 Share of power generations for different values of β 
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 Fig. 5 The power flow (MW) related to the tie-lines for 𝛽 = 0.5 
Moreover, according to the results from this table, the WF power generation curtailment level decreases in the presence of CAES in comparison to the case integrated with WF only. In other words, the CAES units are able to manage the uncertainty of WF generation with their ability of storing the extra WF power generation rather than curtailing them. To sum up, CAES units are able to reduce the operational cost in two ways, decreasing the curtailment level in order to increase the participation of WF in meeting demand, and being charged during off-peak as well as discharged in peak hours. The results from Tables II-IV supports these statements. 

The share of thermal units, WFs and CAESs in meeting the required demand is depicted in Fig. 4Fig. 4 for three different amount of risk. Accordingly, the total contributions of thermal units are 176,674 MWh, 176,436 MWh and 176,192 MWh for 
𝛽 = 0,  𝛽 = 0.5 and 𝛽 = 1, respectively; while the WF generation for these cases is 21,922 MWh, 22,103 MWh and 22,392 MWh, respectively. Clearly, the contribution of thermal units markedly decreases as the value of 𝛽 grows, while the situation for WF generations is the opposite. Moreover, the charging/discharging control of CAES is demonstrated as well. As expected, the CAES units charge during off-peak and discharge during peak demand for all three different cases. In addition, the concept of CAES utilization is to compensate the risk associated with WF. Therefore, in low risk situation, CAES utilization decreases. 

The power exchange between different areas and the tie-lines is one of the most important constraints for operators which should be satisfied [25]. Apparently, the power flow in tie-lines are different as 𝛽 changes, meaning that the energy transactions through area-connecting lines would change according to the importance weight of the risk function. Fig. 5 illustrates the power flow related to the tie-lines in the case of 
𝛽 = 0.5. According to this figure, it can be observed that the power flow through the tie-lines are confined within their permitted level.  

In addition, Fig. 6 and Fig. 7 give more information of the simulation for 𝛽 = 0.5. The proposed risk index as well as the hourly spinning reserve curve supplied by both thermal units and CAESs are shown in Fig. 6. The risk index increases during peak demand, and in some off-peak hours (i.e. hour#1, 24) as well, because of the increasing rate of CAES charging. However, during the shoulder period, the risk index is low. Also, it can be seen that the spinning reserve shows the opposite trend.  

 Fig. 6 Scheduled system up spinning reserve (SR) and the daily risk index for 𝛽 = 0.5 

 Fig. 7 Scheduled power system operational cost of thermal and CAES units for 𝛽=0.5 
By increasing the amount of spinning reserve, the risk index decreases, implying that the probability of expected residual demand (𝑃𝐷𝑟𝑒𝑥𝑝𝑡,𝑡) falls within the available up/down spinning reserve. Also, the costs associated with thermal units and the monetary profit obtained by CAESs are depicted in Fig. 7. Based on this figure, the thermal units’ cost tracks the demand variation, because of the high proportion of these units in power generation. The CAES operational cost in some peak hours is negative, which means the CAES units inject power to the system in order to meet the demand. While in some off-peak hours it is positive, it means these units are charged in these hours and buy power from the grid. The proposed method can be easily expanded for a longer period of time efficiently using the forward-backward approach presented in [26]. IV.  CONCLUSION 

In this paper, a probabilistic model for MAED is proposed in which CAES units are incorporated with wind-thermal units to satisfy the demand. The proposed model takes advantage of CAES and intentional wind generation curtailment to present an optimal strategy desirable for system operators in the presence of load and wind fluctuations. To serve this purpose, a risk-based model is developed to consider the possibility of providing spinning reserve by CAES next to conventional thermal units, in the context of single outage of thermal units. The model simultaneously deals with the operational cost and risk functions by adjusting their weight parameters (β) through the used weighted sum method. By conducting the proposed 



 9 
method on a large-scale case study, it is shown that incorporating CAES in the MAED can effectively improve the spinning reserve capacity, which, in turn, leads to lower operational cost. Furthermore, the obtained results demonstrate that using the proposed strategy for wind curtailment through controlling the blade pitch angle has a positive impact on the reduction of the presented risk concept. 
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