
TURUN YLIOPISTON JULKAISUJA –  ANNALES UNIVERSITATIS TURKUENSIS

SARJA - SER. D OSA  - TOM. 1527  | MEDICA – ODONTOLOGICA | TURKU 2019

ACUTE BIOCHEMICAL 
DIAGNOSTICS OF MILD 

TRAUMATIC BRAIN INJURY
 A clinical study 

Iftakher Hossain

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTUPub

https://core.ac.uk/display/355835368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




 
 

TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS 
SARJA - SER. D OSA – TOM. XXXX | MEDICA – ODONTOLOGICA | TURKU 2019 

 
 
 
 

Iftakher Hossain 

ACUTE BIOCHEMICAL 
DIAGNOSTICS OF MILD 

TRAUMATIC BRAIN INJURY 
A clinical study 



 
 

University of Turku 

Faculty of Medicine 
Department of Clinical Medicine 
Neurology, Division of Neurosurgery 
Doctoral Programme in Clinical Research 
Turku University Hospital 

Supervised by 

Adjunct Professor Jussi Posti 
Department of Neurosurgery, 
Turku Brain Injury Centre, 
Division of Clinical Neurosciences, 
Turku University Hospital and 
University of Turku 
Turku, Finland 

Professor Olli Tenovuo 
Turku Brain Injury Centre, 
Division of Clinical Neurosciences, 
Turku University Hospital and 
University of Turku 
Turku, Finland 
 

Reviewed by 

Adjunct Professor Jari Siironen 
Department of Neurosurgery, 
Helsinki University Hospital and 
University of Helsinki 
Helsinki, Finland 

Adjunct Professor Timo Koivisto 
Department of Neurosurgery, 
Kuopio University Hospital and 
University of Eastern Finland 
Kuopio, Finland 

Opponent 

Professor Mark Wilson 
Department of Neurosurgery 
Imperial College London 
London, United Kingdom  

 
The originality of this publication has been checked in accordance with the University 
of Turku quality assurance system using the Turnitin Originality Check service. 
 
ISBN 978-951-29-8315-5 (PRINT) 
ISBN 978-951-29-8316-2 (PDF) 
ISSN 0355-9483 (Print) 
ISSN 2343-3213 (Online) 
Punamusta Oy, Vantaa, Finland 2020 



 3 

 

 
Dedicated to  

my beloved parents  
and  

late Emeritus Professor Rashiduddin Ahmad  



 4 

UNIVERSITY OF TURKU 
Faculty of Medicine 
Neurology, Department of Clinical Neurosciences, Division of Neurosurgery 
IFTAKHER HOSSAIN: Acute biochemical diagnostics of mild traumatic 
brain injury 
Doctoral Dissertation, 125 pp. 
Doctoral Programme in Clinical Research 
December 2020 

ABSTRACT 

Traumatic brain injury (TBI) is a global health burden. Most cases diagnosed with 
TBI are mild traumatic brain injury (mTBI), however, no unanimous definition of 
mTBI exists. Although most of the patients with mTBI recover well, a group of 
patients develop persistent post-injury symptoms. Blood biomarkers could be used 
as the surrogate markers of injury and could assist in assessing the true severity and 
prognosis of the eventual brain damage.  

Three studies were conducted for this project. Firstly, blood levels of glial 
fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 
(UCH-L1) were analysed in patients with orthopedic trauma without any central 
nervous system (CNS) insults compared to patients with computed tomography 
(CT)-negative mTBI at multiple time points after admission and during follow-up 
visits. The second study correlated the admission levels (≤24 hours) of GFAP 
and neurofilament light (NF-L) with outcome in patients with mTBI to explore the 
prediction abilities of these blood biomarkers. In the last study, the prognostic value 
of the neurodegenerative biomarkers, total tau (T-tau) and β-amyloid isoforms 1–40 
(Aβ40), and 1–42 (Aβ42) were investigated using admission samples. Combinations 
of biomarkers panels were formed to study the sensitivity and specificity of these 
biomarkers for outcome prediction (studies II and III). A multiparameter panel 
including the clinical parameters and blood biomarkers was devised to study the best 
prediction model (study III). 

This project, focusing on the acute biochemical diagnostics of mTBI, reported 
that GFAP and UCH-L1 are not specific biomarkers for CT-negative mTBI. 
However, we found that the early levels of GFAP and NF-L are significantly 
correlated with the outcome in patients with mTBI. The admission level of NF-L has 
a significant predictive value for mTBI, also in a multi-variate model. Finally, the 
admission levels of T-tau were significantly correlated with the outcome in patients 
with mTBI.  

Keywords: traumatic brain injury, orthopedic injury, glial fibrillary acidic 
protein, ubiquitin carboxy-terminal hydrolase L1, neurofilament light, total tau, β-
amyloid 1–40, β-amyloid 1–42, outcome  
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TIIVISTELMÄ 

Tapaturmaiset aivovammat ovat maailmanlaajuinen terveysongelma. Suurin osa 
aivovammoista on lieviä. Suurin osa lievän aivovamman saaneista potilaista toipuu 
hyvin, mutta osalle jää vammasta kuitenkin pitkäaikaisia jälkioireita. Verestä 
mitattavia merkkiaineita, biomarkkereita, voidaan käyttää mahdollisesti apuna 
aivovamman vakavuuden, aivovaurion luonteen ja potilaan toipumisennusteen 
arvioinnissa. 

Tähän väitöskirjahankkeeseen kuuluu kolme kliinistä tutkimusta. 
Ensimmäisessä analysoitiin gliaalisen fibrillaarisen happaman proteiinin (GFAP) ja 
ubikitiini-karboksiterminaalisen hydrolaasi L1:n (UCH-L1) veripitoisuudet 
ortopedisen vamman saaneilla potilailta, joilla ei ollut taustallaan aivovammaa tai 
muuta aivotapahtumaa, ja vertasimme niitä lievän aivovamman saaneiden potilaiden 
vastaaviin veripitoisuuksiin. Näillä aivovammapotilailla ei ollut poikkeavia 
löydöksiä pään tietokonetomografiassa (TT) eli he olivat TT-negatiivisia. Toisessa 
tutkimuksessa analysoitiin lievän aivovamman saaneilta potilailta 24 tunnin kuluessa 
sairaalaan saapumisesta veren GFAP:n ja kevyen neurofilamentti -proteiinin (NF-L) 
pitoisuudet, ja tutkittiin niiden korrelaatiota potilaiden myöhempään toipumisen 
tasoon. Kolmannessa tutkimuksessa analysoitiin kokonais-taun, beeta-amyloidi 1–
40:n (Aβ40) ja beeta-amyloidi 1–42:n (Aβ42) veripitoisuudet lievän aivovamman 
saaneilta potilailta 24 tunnin kuluessa sairaalaan saapumisesta. Jälleen tutkittiin 
merkkiaineiden ennustearvoa myöhemmän toipumisen tason suhteen.  

Tämän lievien tapaturmaisten aivovammojen biokemiallista diagnostiikkaa 
tutkivan väitöskirjahankkeen tärkeimmät löydökset ovat: i) verestä mitattujen 
GFAP:n ja UCH-L1:n pitoisuudet eivät ole spesifejä lievälle TT-negatiiviselle 
aivovammalle, ii) sairaalaan saapumisvaiheessa mitatut GFAP:n ja NF-L:n 
veripitoisuudet korreloivat merkittävästi lievän aivovamman toipumisennusteen 
kanssa, ja iii) sairaalaan saapumisvaiheen kokonais-taun, Aβ40:n ja Aβ42:n 
veripitoisuuksilla ei kyetä ennustamaan lievän aivovamman saaneen potilaan 
toipumista. 

Avainsanat: tapaturmainen aivovamma, ortopedinen vamma, gliaalinen 
fibrillaarinen hapan proteiini, ubikitiini-karboksiterminaalinen hydrolaasi L1, kevyt 
neurofilamentti, kokonais-tau, beeta-amyloidi 1–40, beeta-amyloidi 1–42, 
toipumisennuste  
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1 Introduction 

Traumatic brain injury (TBI) is among key reasons behind mortality, morbidity and 
disability in the United States of America (USA) and European populations (Maas 
et al., 2017b). TBIs are mostly caused by traffic accidents, falls, violence, sports, and 
war (Asemota et al., 2013; Khan et al., 2015). With the medical cost of TBI, in the 
tens of billions for both Europe and USA, TBI is expected to become, globally, the 
third most important health burden by 2020, with increasing socioeconomic 
consequences (Mathers & Loncar, 2006). TBIs can be classified as mild, moderate, 
and severe (Maas et al., 2017b; Menon & Maas, 2015), but the diagnostic tools to 
predict the true severity and the outcome still remain quite old (Lingsma et al., 2015). 
Methods such as level of consciousness, conventional computed tomography (CT), 
magnetic resonance (MR) imaging, or newer MR methods, e.g. diffusion tensor 
imaging (DTI), functional MRI (fMRI), and susceptibility weighted imaging (SWI), 
can be helpful in evaluating the severity of the injury (Jagoda et al., 2008a; Shenton 
et al., 2012), but there is no single specific neuroimaging or any other test for 
accurate diagnosis and evaluation of TBI (Maas et al., 2017a; Wang et al., 2018b; 
Zetterberg & Blennow, 2016). In addition, sophisticated imaging tests are costly, not 
readily available and have an uncertain diagnostic value. 

In other fields of medicine, investigations of blood biomarkers are used in 
conjunction with other investigations for precise diagnosis and an effective treatment 
plan. Brain derived enzymes, proteins and protein degradation products have been 
tested in numerous studies (Diaz-Arrastia et al., 2014; Thelin et al., 2017; Yue et al., 
2019; Zetterberg et al., 2013b). So far, S100 calcium-binding protein B (S100B) in 
severe TBI (sTBI), and GFAP in mild TBI (mTBI), have consistently demonstrated 
the ability to predict injury and outcome in adults (Neselius et al., 2013; Ramos-
Cejudo et al., 2018a; Thelin et al., 2017), though they are not entirely brain specific 
(Zetterberg et al., 2013a; Zetterberg & Blennow, 2016), and the studies using well 
characterized cohorts and highly sensitive immunoassays for the blood biomarker 
analysis are scarce (Menon & Maas, 2015).  

Glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase 
L1 (UCH-L1) have shown great promise as blood biomarkers for TBI (Luoto et al., 
2017). Serum levels of GFAP have been found to significantly predict CT-positive 
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brain injury, with satisfactory sensitivity and specificity for acute TBI (Dadas et al., 
2018; Papa et al., 2012; Wang et al., 2018b). A recent multicenter observational trial 
reported negative predictive value (NPV) and high sensitivity of GFAP and UCH-
L1 for the prediction of acute TBI on head CT, therefore, could significantly reduce 
the use of head CT (Bazarian et al., 2018). Also, according to multiple studies, the 
levels of GFAP and UCH-L1 could be promising markers of the existence and 
severity of TBI, particularly for complicated mTBI, moderate TBI (moTBI), and 
sTBI (Metting et al., 2012; Papa et al., 2012; Posti et al., 2019). However, currently 
the specificity of GFAP and UCH-L1 for the diagnosis of mTBI is uncertain 
(Kiviniemi et al., 2015; Meyer-Schwesinger et al., 2009; Papa et al., 2016b; Viale et 
al., 1988). There are only few studies comparing the levels of GFAP and UCH-L1 
between patients with CT-negative mTBI and orthopedic trauma as controls.  

The standard tool to assess acute TBI, head CT, is not sensitive enough to detect 
microbleeds and diffuse axonal injury (DAI) (Topal et al., 2008). Even though most 
of the patients with mTBI have good recovery, unfortunately, there are patients who 
do not fully recover, and suffer from disabling symptoms, cumulatively known as 
post-concussion syndrome (PCS) (Maas et al., 2017b; Shahim et al., 2016). 
Regrettably, clinically validated models are still unavailable for predicting the 
outcome of mTBI (Lingsma et al., 2015; Ponsford et al., 2008). There are few studies 
that explored the prognostic abilities of the blood biomarkers, using the admission 
samples. If the admission samples could be used in the acute setting to predict the 
outcome of the patients with mTBI, it would greatly assist the clinicians to stratify 
the group of patients who might need observation, further treatment, follow-up and 
rehabilitation. A recent study showed that the levels of neurofilament light (NF-L) 
7–10 days after a bout in amateur boxers correlated with the number of head impacts 
during the match (Neselius et al., 2013). Moreover, there are promising studies, using 
cerebrospinal fluid (CSF) samples, reporting the utility of NF-L protein for the 
evaluation of concussion (Shahim et al., 2017; Shahim et al., 2016). From a clinical 
point of view, CSF sampling is invasive and, therefore, unrealistic for the assessment 
of patients with mTBI in the emergency department (ED). The efficacy of the 
admission samples of NF-L in blood, for the outcome prediction of mTBI, has not 
been studied earlier. 

Recently, the neurodegenerative axon terminal biomarkers, tau and β-amyloid 
isoforms 1–40 (Aβ40), and 1–42 (Aβ42), have been investigated to establish whether 
a correlation exists between neuronal damage and PCS, following repeated mTBI 
(Shahim et al., 2016b). Although CSF levels of these biomarkers have shown 
promising results, there are no studies reporting a correlation between the axon 
terminal biomarkers’ plasma levels at admission and outcome of mTBI. 

For all the reasons mentioned above, we carried out a prospective, observational 
clinical research project, including three studies. Firstly, we investigated the 
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diagnostic ability of GFAP and UCH-L1 levels in blood, to differentiate patients 
with orthopedic injury from CT-negative mTBI. We also explored the extracranial 
sources of these blood biomarkers to study their specificity for TBI. Secondly, we 
studied the early blood levels of GFAP and NF-L and whether they could predict the 
outcome of mTBI. Thirdly, we investigated if the levels of total tau (T-tau) and Aβ40 
and Aβ42, during the first 24 hours after admission, could correlate with outcome in 
patients with mTBI. Importantly, for the last two studies, ultrasensitive single 
molecule array (Simoa) technology was used to analyse the blood biomarker levels. 
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2 Review of the literature 

2.1 Traumatic brain injury 

2.1.1 Definition 
TBI could be defined as an alteration in brain function, or other evidence of brain 
pathology, caused by an external force (Menon et al., 2010). This external force 
could be a traumatic, direct or indirect, biomechanical force to the head. TBI is a 
heterogeneous disease (Lingsma et al., 2010). Although the term “head injury” (HI) 
has been synonymously used for TBI in literature, HI might be only confined to 
injury of the skull without causing any pathological abnormalities in the brain.  

Four clinical signs, listed below, are principally considered for the diagnosis of 
TBI (Giza et al., 2013; Menon et al., 2010; Signoretti et al., 2011): 

• loss of consciousness (LOC) 

• loss of memory i.e. post-traumatic amnesia (PTA) 

• alteration in mental status 

• and / or focal neurological deficits 

2.1.2 Epidemiology 
TBI, the silent epidemic, is one of the greatest public health problems worldwide. It 
has been reported that approximately 60 million new TBI cases occur annually 
around the world (Dewan et al., 2019). In the European Union (EU), a minimum of 
2.5 million new cases of TBI are reported each year. For the USA, it has been 
estimated that approximately 3.5 million new cases of TBI occurs yearly (Coronado 
et al., 2012). A study using standardised Eurostat data found that 1.5 million patients 
were discharged from the hospital and 57 000 patients died in 2012 due to TBI in the 
EU (Majdan et al., 2016). The US Centers for Disease Control and Prevention (CDC) 
reported that over 2 million patients with TBI are treated and discharged from an 
ED, anually, and almost 56 000 deaths as a result of TBI (Taylor et al., 2017). In 
Finland, the incidence of hospitalized TBI and the mortality rate, is approximately 
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100 / 100 000 and 18 / 100 000, respectively (Koskinen & Alaranta, 2008). By 
comparison, a systematic review of the epidemiology of TBI showed an overall 
incidence of 790 / 100 000 in New Zealand, 344 / 100 000 in Asia, 235 / 100 000 in 
Europe, 226 / 100 000 in Australia, 160 / 100 000 in India, and 103 / 100 000 in USA 
(Feigin et al., 2013; Tagliaferri et al., 2006). However, these contrasting figures 
possibly reveal national variations in healthcare and registration systems, rather than 
actual differences in incidence.  

TBI causes significant healthcare and societal costs, but an estimation of an 
accurate global cost of TBI is not available (Maas et al., 2017b). Studies from the 
Brain Injury Outcomes New Zealand In the Community (BIONIC), using estimation 
by extrapolation of new cases worldwide of mTBI (52–56 million) and moTBI – 
sTBI (2.2–3.6 million) per year, suggest that the global economic burden of TBI 
could range between US$362 billion–US$445 billion in 2017 (Ao et al., 2014). 
Unfortunately, low-income and middle-income countries (LMICs) are facing a 
greater burden of TBI than high-income countries. Due to lack of funded studies and 
lack of appropriate multicenter research efforts, evidence-based management of TBI 
is still not well established in LMICs (Kolias et al., 2019). 

Over 80%–90% of patients who sustain TBI are classified in the mild end of the 
spectrum, including those injuries labelled as concussions (Levin & Diaz-Arrastia, 
2015). A systematic review conducted by the World Health Organization (WHO) 
Collaborating Centre Task Force on mTBI reported that the annual incidence of 
mTBI was in the range of 100–600 / 100 000 (Donovan et al., 2014). The incidence 
is likely underestimated, since a large percentage of asymptomatic patients with 
mTBI are not presented to the ED. While most patients with a single mTBI fully 
recover, many do not, leading to prolonged suffering, impaired quality of life, and 
increased risk of post-traumatic sequelae (Carroll et al., 2014). Despite the fact that 
data from prospective hospital-based mTBI studies are limited, it is estimated that 
reduced and lost productivity after mTBI accounts for the largest component of the 
economic costs of brain trauma each year (Maas et al., 2017b). The most frequent 
causes of mTBI are falls, motor-vehicle accidents and sports-related concussions 
(Coronado et al., 2012). It is important to note that almost half of the patients with 
TBI are under the influence of alcohol at the time of the injury (Posti et al., 2019; 
Salim et al., 2009, Parry-Jones et al., 2006). Alcohol intoxication increases the 
probability of premature death. It has been reported that head injury, regardless of 
TBI, under the influence of alcohol decreases life expectancy by approximately 9 
years, and the risk of alcohol related death later in life is 14.7%, in case of moTBI 
and sTBI (Puljula et al., 2016). A significant amount of people affected by mTBI are 
teenagers, young adults, and the working class. However, due to the aging population 
of the developed countries and owing to the vulnerability to fall, the incidence of 
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mTBI is also high in elderly patients, which reflects a demographic shift of TBI 
(Roozenbeek et al., 2013). 

2.1.3 Pathophysiology 
Brain damage, due to trauma, could be divided into two main categories: focal injury 
and diffuse injury. Focal injury includes cortical or subcortical contusions and 
lacerations, in addition to intracranial hemorrhage. Focal injuries are generally found 
in severe cases of TBI due to a serious direct impact to the brain. On the other hand, 
stretching and tearing of the brain tissue cause diffuse injury, which is commonly 
seen in case of milder spectrum of TBI. Thus, it does not need any direct impact or 
crush injury to the surface of the brain to cause diffuse injury. DAI is the main form 
of diffuse injury (Johnson et al., 2013a; Vieira et al., 2016), which occurs due to 
acceleration / deceleration forces that lead to shearing of axons.  

TBI with acceleration or deceleration forces to the brain causes a neurometabolic 
cascade that affects the brain function (Blennow et al., 2012; Giza & Hovda, 2014). 
The initiating event of this cascade is stretching and disruption of neuronal and 
axonal cell membranes (Geddes et al., 2003). Such membrane defects trigger a 
deregulated flux of ions, including an influx of calcium and efflux of potassium 
(Prins et al., 2013). The enhanced release of excitatory neurotransmitters, 
specifically glutamate, is accelerated by the aforementioned events. Glutamate binds 
to N-methyl-D-aspartate (NMDA) receptors and this creates advancing 
depolarization, which eventually causes an influx of calcium ions (Giza & Hovda, 
2014). An imbalance in cellular ions distorts the normal glucose metabolism. This 
trauma-induced hypermetabolism reflects the effort of cells to restore normal ionic 
balance, which is disrupted by pathological ionic flows through ion channels. 
Neuronal glucose consumption increases, which in turn diminishes energy stores, 
and causes calcium influx into mitochondria. Impaired oxidative metabolism, 
anaerobic glycolysis, lactate production, and reactive oxygen species cause acidosis 
and edema (Blennow et al., 2012; Giza & Hovda, 2014). This all causes neuronal 
dysfunction that is thought to reflect to the acute symptoms of TBI. The disrupted 
state can last for days and the consequences of the neurometabolic cascades (Figure 
1) of TBI have been reported as an evolving phenomena (Ng & Lee, 2019). 
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Figure 1. Molecular Pathophysiology of mild traumatic brain injury. (NMDA = N-methyl-D-

aspartate) (Blennow et al., 2012). Reprinted with permission from Neuron. 

2.1.4 Classifications 
Different systems could be used for the classification of TBI. Most often TBI has 
been classified by one of four main systems (Gravesteijn et al., 2020; Maas et al., 
2017a):  

• clinical indices of severity 

• pathoanatomic type 

• physical mechanism 

• classification by pathophysiology  

Besides, classification by prognostic modelling has been also mentioned in the 
current literature (Saatman et al., 2008). 

2.1.4.1 Classification by injury severity 

There are several classical parameters, which are used to classify TBI severity in the 
acute phase based on its clinical presentation, i.e. GCS, PTA, and duration of LOC. 
Historically, TBI has been classified as mild, moderate or severe by using the GCS 
(Narayan et al., 2002), a system used to assess coma and impaired consciousness 
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(Teasdale & Jennett, 1974). TBI severity could be classified according to the GCS 
score as follows: 13–15, mild; 9–12, moderate; 3–8, severe (Teasdale & Jennett, 
1974). Another useful index of the severity of TBI is PTA, which is the interval 
between the initial injury and the complete orientation of the patient, when the 
patients can form new memories, and later recall these memories. PTA classification 
of TBI is mild (0–1 day), moderate (>1 to <7 days) and severe (>7 days) (Forslund 
et al., 2019a; Walker et al., 2018a). 

While the use of the GCS score has entered routine clinical practice, PTA is still 
rarely prospectively assessed in clinical settings. Perhaps unsurprisingly, there is 
often poor concordance between the GCS and PTA. Many patients with TBI who 
might, by the GCS criteria alone, be considered “mild”, have prolonged PTA 
durations indicating a more severe injury (Dikmen et al., 2001; Hart et al., 2016). 
These two tools provide complementary information about brain function and often 
lead to quite different estimates of clinical severity. Failure to assess either of these 
accurately and in a standardized fashion may be a major contributor to disparate and 
often inaccurate severity classification and prognosis after a TBI. Notably, both the 
features and duration of the GCS and PTA have been shown to be poorly aligned 
with pathophysiological substrates of TBI (King et al., 1997a; Zuercher et al., 2009). 
The assessment of TBI severity in the acute care setting is also often hindered by 
several confounders (Zuercher et al., 2009). Regrettably, the current concept of 
severity, especially for mTBI, is poorly defined and may be used in variable contexts. 
This issue will be elaboratively discussed in the further chapters of this book, since 
it focuses on the acute diagnostics of mTBI. 

2.1.4.2 Classification by pathoanatomic type 

As mentioned in the pathophysiology, TBI could be classified as focal and diffuse 
brain injury. Many TBI cases might have both aspects. Cerebral contusion, cerebral 
laceration, epidural hematoma (EDH), subdural hematoma (SDH), intracerebral 
hemorrhage (ICH) and intraventricular hemorrhage (IVH) are included in focal 
injuries. Diffuse injuries cover DAI, diffuse ischemic and vascular injury, and 
cerebral edema.  

2.1.4.3 Classification by physical mechanism 

TBI can be classified according to contact or “impact” loading and / or noncontact 
or “inertial” loading. The direction and degree of each type or combination of 
loading forces might foresee severity and type of injury (Cloots et al., 2008; Demann 
& Leisman, 1990).  
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2.1.4.4 Classification by pathophysiology 

According to the pathological mechanism, TBI is conventionally divided into two 
phases: primary and secondary brain injury. The primary injury refers to the 
mechanical damage to the brain parenchyma that occurs at the time of injury. The 
primary injury advances over time, reaching its ictus in the following hours, which 
induce pathophysiological changes in the brain, causing the secondary injury. The 
secondary brain injury, with early phases overlapping the primary injury, takes place 
in the subsequent hours and days. Secondary brain injury processes include – 
hypoxic-ischemic injury, cerebral edema, metabolic dysfunction, alterations in 
vascular permeability, diminished blood flow, DAI, vasospasm, hydrocephalus, and 
the consequences of intracranial hypertension (Haddad & Arabi, 2012; Rosenfeld et 
al., 2012). Further exacerbation of secondary injuries by systemic insults, such as: 
coagulopathy, hypertension, hypotension, hypoxemia, hyperthermia, 
hyperglycemia, hypoglycemia, hypercapnia, hypocapnia, anemia, hypernatremia, 
hyponatremia, and acid-base disorders (Chesnut et al., 1993; Unterberg et al., 2004). 
Therefore, the emphasis of TBI treatment is on preventing the consequences of 
primary brain injury and preventing or even reversing secondary brain injury. It is 
possible to treat the secondary injury, but the primary injury is only preventable 
(Maas et al., 2017b; Murray et al., 1999; Stallones et al., 2008). 

2.1.5 Outcome 
Variability in outcomes is partly caused by distinct mechanisms of injury, which are 
not captured by current global injury severity classification schemes. For instance, 
EDHs are life threatening as an acute presentation of sTBI, but rapid treatment often 
provides improved outcomes. In contrast, DAI might be underestimated in the acute 
setting, giving an impression of a mild injury, but is often associated with long-term 
disability. Although local visible traumatic lesions may produce recognizable 
symptoms, the overall outcome is mostly dependent on the extent and severity of the 
diffuse damage in the brain networks (van Eijck et al., 2018), which is largely 
invisible for routine clinical imaging (Amyot et al., 2015; Brandstack et al., 2013). 
Ideally, the uncertainty in predicting long-term outcomes that results from 
pathophysiological variability, should be reflected in the injury classification, so that 
inappropriate and potentially inaccurate or over optimistic clinical decision-making 
could be avoided.  

Although many patients have good recovery within weeks or months following 
mTBI, 5%–30% patients with mTBI suffer from neurologic, cognitive, and / or 
neuropsychiatric symptoms for one year post-injury or longer (Borg et al., 2004; 
Lingsma et al., 2010; Saatman et al., 2008; Sharp & Jenkins, 2015). All of these 
persisting symptoms or findings are known as PCS, which could be defined as a 
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collection of post-traumatic symptoms, and could be allocated into the three 
domains:  cognitive (poor concentration, forgetfulness, or slowed processing speed), 
somatic (headaches, dizziness, blurred or double vision, nausea, photophobia or 
phonophobia, disrupted sleep habits, or fatigue), or emotional (depression, 
restlessness, irritability, or frustration) (Ponsford et al., 2008; Ponsford et al., 2014). 
Be noted that PCS symptoms could be widely present among normal population 
(Polinder et al., 2018).  

The International Classification of Diseases, Tenth Revision (ICD-10) 
recommends that a diagnosis of PCS must include an HI, severe enough to result in 
LOC, and also three subjective symptoms present for at least four weeks. Significant 
clinical impairment needs to be caused by these symptoms. Since the current 
classification of TBI, based on the GCS, does not measure the degree of severity 
precisely, it is complex to identify the group of patients with mTBI who are prone to 
develop PCS (Sharp & Jenkins, 2015).  

The factors predicting PCS have been divided into three categories by the WHO, 
Collaborating Centre Task Force on Mild Traumatic Brain Injury (Caplain et al., 
2017; Carroll et al., 2004). 

• The individual: gender (female), marital status, educational level, age >40 
years, pre-existing disabilities, previous neurological disease, prior HI, 
psychiatric illness, and significant life stressors 

• Injury: road traffic accident 

• Consequences: GCS <15, LOC, PTA >20 min, presence of nausea or 
memory problems following the injury, polytraumas 

Recently, it has been studied that more acute symptoms, premorbid psychiatric 
problems, such as anxiety or poorer premorbid physical health, are associated with 
poor recovery following mTBI (Mooney et al., 2005; Rabinowitz et al., 2015). 
Additionally, seeking compensation has been identified as an important factor in 
patients with persisting symptoms, which is related to the medicolegal issues of 
mTBI (Ponsford et al., 2014; Willemse-van Son et al., 2007). Patients with mTBI 
having post-injury symptoms, causing poor quality of life, have a significantly higher 
risk of a negative vocational outcome than those with no complaints or better 
recovery (Bullinger et al., 2002; Colantonio et al., 2016; Walker et al., 2006). 
Unfortunately, in the setting of acute trauma care, it is not always feasible to gather 
all the risk factors for the early identification of patients who are likely to develop 
worse outcome. 

Since the assessment of TBI outcome is complex and multifactorial, therefore, 
the predictions could only be made by combining the above-mentioned variables in 
a multivariate model. This has led to the development of prognostic models and CT-
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based scoring systems. These concepts will be discussed in the following sections of 
this book. 

2.1.6 Diagnostic tools for traumatic brain injury 
According to the one of the studies by the CENTER-TBI group, TBI has been most 
of the times diagnosed by the ED physicians and neurosurgeons (Cnossen et al., 
2017). A careful as well as focused history taking and performing an accurate 
physical examination are the first and foremost steps for the assessment of patients 
with TBI. Several pre- and post-injury factors need to be considered during the initial 
evaluation of the patients with mTBI, considering the issues that the acute diagnostic 
features could be minimised or exaggerated by the other confounders, such as 
alcohol intoxication.  

2.1.6.1 Assessment of consciousness 

2.1.6.1.1 Glasgow Coma Scale 

The GCS was originally developed as a tool to assess the level of consciousness 
(Teasdale & Jennett, 1974). The three components of the GCS are eye opening, 
verbal response and motor response (Table 1). Each of these three parts are 
individually scored according to the best response and the resulting points give a 
patient score between 3 (indicating deep unconsciousness) and 15 (normal 
consciousness). Although the total score is generally presented, however, clinically 
it is important to provide the individual scores (particularly the motor score, since it 
is strongly associated with TBI outcome) (Teasdale et al., 2014).  A GCS score of 
13 to 15 points after 30 minutes from the injury is considered as mTBI (Borg et al., 
2004; Sharp & Jenkins, 2015). The GCS is a robust tool, which gives an 
approximation of the initial severity of TBI, and even in mTBI, the probability of a 
more severe injury increases as the GCS score decreases. In various studies the 
incidences of traumatic intracranial abnormalities stratified by the GCS score are as 
follows: 13 points: 28%–51%, 14 points: 12%–52%, 15 points: 6%–34% (Saboori 
et al., 2007; Thiruppathy & Muthukumar, 2004).  

The traditional approach to define mTBI by the GCS is not beyond questions and 
recent multicenter, large data-based studies have reported that the GCS is not in any 
way an absolute measure of TBI severity, and it has been also studied that a GCS of 
13 is in many ways closer to moTBI than mTBI (Majdan et al., 2015; Mena et al., 
2011; Perrin et al., 2015). Currently, a survey of 71 neurotrauma centers participating 
in the CENTER-TBI study analysed that 40 centers (59%) defined mTBI as a GCS 
score between 13 and 15 and 26 (38%) defined it as a GCS score between 14 and 15 
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(Cnossen et al., 2017). The GCS also correlates poorly with clinical outcome of TBI 
for various reasons. A GCS score of 5 some minutes after the injury has a different 
significance than one recorded hours or days after the injury. The GCS may be 
assessed at various standpoints after the injury, with variable delays from the 
incident, and in variable circumstances. Although the GCS has proven to be useful 
in the acute phase of sTBI, it performs sub optimally while the observation of the 
patient lasts over the most acute phase (e.g. in the intensive care unit) (Wijdicks et 
al., 2005). Additionally, the routine use of early intubation and sedation during 
transport further complicates interpretation of the GCS (Barker et al., 2014).  

Table 1. Glasgow Coma Scale (Teasdale & Jennett, 1974, 1976) 

Behaviour Response Score 
Best eye-opening response (E) Spontaneous 4 

 To verbal comment 3 
 To painful stimuli 2 
 None 1 

Best verbal response (V) Oriented 5 
 Confused 4 
 Inappropriate words 3 
 Incomprehensible sounds 2 
 None 1 

Best motor response (M) Obey commands 6 
 Localizes painful stimuli 5 
 Flexion withdrawal from pain 4 
 Abnormal flexion 3 
 Abnormal extension 2 
 None 1 

Total GCS score, E + V + M = 3 – 15, where 15 = fully concious and 3 = deeply unconcious 

2.1.6.1.2 Loss of consciousness 

The duration of unresponsive state due to TBI is defined as LOC (Blyth & Bazarian, 
2010). The period of LOC must be 30 minutes or less in case of mTBI (Carroll et al., 
2004). Notably, a GCS score of under nine is universally regarded as 
unconsciousness (Teasdale et al., 2014; Teasdale & Jennett, 1974). The mechanism 
of LOC caused by TBI is not completely known. It has been reported that temporal 
impairment in one or more parts of the ascending reticular activating system, which 
is located in the central pons, midbrain, hypothalamus, and thalamus is associated 
with the causal of LOC (Blyth & Bazarian, 2010; Olson & Graffagnino, 2005). It 
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has been also studied that LOC in patients with mTBI is associated with injury to 
white matter tracts (Levin et al., 2008). 

In the clinical practice, the retrospective assessment of LOC is challenging. 
Objective assessment is limited because in most cases LOC has resolved by the time 
the patient reaches the hospital, meaning direct assessment is not possible. In more 
severe cases, patients have often been sedated and intubated in the field, again 
making assessment of duration impossible. Retrospective assessment of LOC by 
patient report is also unreliable, as patients often report that they have lost 
consciousness, when in fact they have amnesia for the post-traumatic period (Sherer 
et al., 2015). Hence, there is often a lack of accuracy in the assessment of whether 
LOC occurred and how long it lasted. 

2.1.6.1.3 Post-traumatic amnesia 

There is no uniform definition for PTA in the literature. It is a transient state of 
disorientation, confusion and memory impairment caused by an HI (Friedland & 
Swash, 2016; Menon et al., 2010). The duration of PTA is assessed using tools such 
as the Galveston Orientation and Amnesia Test (GOAT) and Westmead PTA scale 
(Levin et al., 1979; Meares et al., 2011). The acute cognitive effects of TBI can be 
estimated by the presence and duration of PTA. Numerous studies have shown that 
PTA is the best clinical predictor of long-term cognitive outcome after TBI (Hart et 
al., 2016; Königs et al., 2012; Ponsford et al., 2016; Walker et al., 2018b). PTA is 
characterized by variable impairments of cognition, including memory and attention, 
confusion, excessive sleepiness, restlessness and agitation (Marshman et al., 2013). 
Its measurement can provide valuable additional prognostic information and its 
duration is more closely related to long-term outcome than the GCS (Dahdah et al., 
2016; Forslund et al., 2017; Perrin et al., 2015).  

The pathophysiological basis for PTA is surprisingly poorly understood, 
although recent work provides evidence that PTA is caused by a transient 
disconnection between parts of the limbic system involved in memory encoding, in 
particular a disruption in the functional connectivity between the medial temporal 
lobe and other parts of the default mode network that resolves with the emergence 
from PTA (De Simoni et al., 2016). Hence, PTA may be produced by impairments 
to the hippocampus and parahippocampus’ roles in supporting memory encoding and 
consolidation through a transient functional disconnection to other brain regions 
involved in memory process. The severity and location of DAI may be important in 
producing this disconnection, as white matter damage within the cingulum 
connections of the parahippocampal gyrus are associated with prolonged PTA 
duration (De Simoni et al., 2016). Dysfunction within the frontal lobes is also likely 
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to contribute to PTA, possibly reflecting a transient global disruption of functional 
connectivity (Metting et al., 2010).  

There are problems with the clinical assessment and interpretation of PTA 
(Dahdah et al., 2016; Sherer et al., 2015). The presence and duration of PTA are 
infrequently assessed properly in EDs, inpatient wards, or intensive care units (Cota 
et al., 2019). Various tools have been developed for the assessment of PTA, but none 
has been universally accepted for clinical use. Very few studies have compared the 
reliability and reproducibility of different tools to measure PTA. Clinical estimates 
of PTA are often done retrospectively, but these may be inaccurate due to recall bias 
(Friedland & Swash, 2016). These retrospective assessments may give both longer 
and shorter estimates for PTA than prospective evaluations (Roberts et al., 2016). In 
addition, there are different severity classifications also based on the length of PTA 
(Greenwood, 2002; Russell & Smith, 1961). 

Confounders for the use of GCS and PTA to assess injury severity 

The assessment of TBI severity in the acute care setting is often confounded by 
difficulties, for instance, collecting or interpreting the GCS or PTA. These include 
language issues, inexperienced evaluators, intoxication, drug effects on the level of 
consciousness, and retrospective bias among other things (Ala-Seppälä et al., 2016; 
Dikmen et al., 2001). These confounds often lead to skewed estimates of the TBI 
severity in either direction. For example, drowsiness, confusion, and amnesia might 
be attributed to intoxication leading to an underestimation of TBI severity, or vice 
versa. The potential importance of these confounders for long-term outcome may 
only become apparent after the acute period. However, how the confounders have 
possibly influenced the acute assessment is usually impossible to determine reliably 
afterwards. 

A patient who arrives unconscious and is diagnosed with sTBI may regain 
consciousness rapidly and recover quickly, especially in the setting of clinical 
confounders such as alcohol intoxication. A person who fell on the ground, hitting 
the head and convulsing immediately, may be deeply unconscious for a while but 
recover rapidly, if the lowered consciousness was actually post-ictal and not caused 
by the head trauma. Recognition of such confounders is not straightforward, and 
seldom are the initial severity assessments corrected to account for erroneous 
classification after the fact (Cloots et al., 2008; Sharp & Jenkins, 2015).  

2.1.6.2 Medical history 

Given that the abovementioned assessment tools are always not sensitive enough to 
diagnose mTBI, a proper medical history plays a vital role in the diagnosis. In 
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addition, the conventional neuroimaging methods could be negative for the 
assessment of the milder spectrum of TBI. The evaluation of these patients should 
include history of pre-existing diseases, e.g. psychiatric and neurological conditions, 
medications, previous TBI, any neurosurgical operation, and socioeconomic history, 
including alcohol abuse (Ponsford et al., 2008; Silverberg et al., 2020).  

Medication (e.g., antithrombotic agents), certain pre-existing medical conditions 
(e.g., coagulopathies) and previous neurosurgery (e.g., cerebral shunt) increase the 
risk of having an intracranial hemorrhage even after mTBI (Menon et al., 2010; 
Undén et al., 2015). Alcohol abuse has a strong correlation with the development of 
intracranial haemorrhage (Haydel et al., 2000). Acute alcohol intoxication is also 
correlated with lower GCS score and could mimic a presentation of TBI (Scheenen 
et al., 2016). The initial assessment of mTBI could be affected by various types of 
medication, such as sedatives (e.g., benzodiazepines), analgesics (e.g., opioids), and 
antiemetics (e.g., dopamine antagonists). In case of polytrauma patients it is well 
known that even without TBI such patients could suffer from the same types of 
symptoms (McDonald et al., 2016; Stulemeijer et al., 2006). Considering this, it is 
important to evaluate the extracranial injuries, otherwise, mTBI could be 
misdiagnosed.  

The acute symptoms of mTBI could be mimicked by different co-existing 
neurodegenerative diseases, e.g. Alzheimer’s disease (AD), and underlying mental 
health problems (Iverson, 2005; Ramos-Cejudo et al., 2018b). For these reasons, it 
is crucial to differentiate the acute post-mTBI symptoms from the aforesaid, which 
could have the similar presentations.  

2.1.6.3 Neurological and physical examination 

A thorough neurological examination needs to be done for the evaluation of the 
patients with TBI. This includes evaluation of the level of consciousness and mental 
status, assessing the motor and sensory functions, including the cranial nerve 
examination, and the evaluation of balance and coordination. Besides, focal 
neurological signs should be checked as these signs are correlated with increased 
risk of intracranial lesions in TBI (Hyam et al., 2009; Vos et al., 2012). Signs of skull 
base fractures include hemotympanum, periorbital ecchymosis (“raccoon eyes” or 
“panda eyes”), mastoid ecchymosis (Battle’s sign), CSF rhinorrhea and otorrhea 
should be checked (Haydel et al., 2000). Suspicion of skull fractures indicates the 
need of emergency head CT (Menon & Maas, 2015; Undén et al., 2015; Vos et al., 
2012). It is important to note that a normal neurological examination does not totally 
exclude the possibility of a TBI (Vilke et al., 2000). The indications for the 
neuroimaging for the evaluation of patients with mTBI will be discussed in the 
further sections of this book. 
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In addition to the neurological examination, an effective physical examination 
should be done, as patients with mTBI might have different extracranial injuries 
(Lingsma et al., 2015; Stulemeijer et al., 2006). Concomitant cervical spine injuries 
are not uncommon in TBI (Morin et al., 2016) and clinically relevant cervical spinal 
injuries can be excluded with a proper physical examination done according to the 
international guidelines (Stiell et al., 2001).  

2.1.6.4 Neuroimaging  

Head CT became the key component in the diagnosis and acute assessment of TBI 
shortly after the introduction of CT in 1974 (Haydel et al., 2000). MRI is also used, 
generally in the subacute phase. Some more sophisticated and advanced 
neuroimaging techniques, such as DTI and fMRI are increasingly promising 
techniques, which are currently primarily used for research purposes for mTBI 
(Jagoda et al., 2008b; Sugiyama et al., 2009). 

2.1.6.4.1 Traumatic intracranial lesions  

Lesions such as contusion, DAI, EDH, SDH, traumatic subarachnoid hemorrhage 
(tSAH), ICH, IVH, and secondarily brain ischemia and edema are all macroscopic 
changes in the brain that can be a result of TBI. However, microscopic changes, 
including microbleeds, are not uncommon. For mTBI patients, the majority and most 
important traumatic lesions include SDH, tSAH, and focal cerebral contusions 
(Haydel et al., 2000). The injury severity has a great incidence and clinical impact 
on the above-mentioned lesions (Demann & Leisman, 1990).  

2.1.6.4.2 Computed tomography 

Since cranial CT scan can promptly identify a small subset of patients that require 
immediate neurosurgery, this is the modality of choice in the ED for the assessment 
of TBI. According to the studies of mTBI, for acute CT-positive intracranial lesions, 
the incidence rate ranges from 4.7%–38.9% (Saboori et al., 2007; Silverberg et al., 
2020; Stiell et al., 2005; Thiruppathy & Muthukumar, 2004). To guide CT imaging 
decision making, and to predict the need for neurosurgical procedures, multiple 
guidelines have been validated and published, since 2000 (Ananthaharan et al., 2018; 
Haydel et al., 2000; Jagoda et al., 2008a; Vos et al., 2012). Guidelines improve the 
cost-effectiveness and optimization of hospital resources usage, by reducing the 
number of unnecessary head CT scans (Jagoda et al., 2008a; Morton & Korley, 
2012). For adult patients with TBI, the Scandinavian guidelines are the newest 
guidelines for the initial management of moderate, mild, and minimal head injuries 
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(Undén et al., 2013). If there are no signs of skull fracture or altered mental status, 
6–8 hours of hospital observation will be a sufficient, alternative to a CT scan 
(Norlund et al., 2006). The decision between observation and a head CT are 
influenced by worsening symptoms and risk factors. For patients with normal 

neurological examination, mental status, and an available companion, home 
observation is recommended (National Institute for Health and Clinical Excellence, 
2007)  
Figure 2. Selection criteria for adults for CT head scan according to National Institute for Health 

and Clinical Excellence (NICE): Guidance. Head Injury: Triage, Assessment, 
Investigation and Early Management of Head Injury in Children, Young People and 
Adults. Reprinted from National Institute for Health and Care Excellence (UK), 2014.  
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2.1.6.4.3 Delayed intracranial hemorrhage 

After CT-negative finding, the most unpredictable complication is a delayed 
intracranial hemorrhage. This complication of mTBI is almost non-existent 
(Isokuortti et al., 2014), but require neurosurgical care in some cases (Feigin et al., 
2013). It has been reported that patients with normal initial neurological examination 
and a GCS <15 are not free from risk of developing delayed intracranial injury 
(Nishijima et al., 2012, 2013).  

Firstly, to determine which patients are suffering from these complications, and 
secondly, the possibility of identifying them before hospital discharge, are the two 
most important issues. For the reduction of unnecessary hospital observation, timely 
identification could conserve ED resources and decrease cost of treatment. 
Unfortunately, there are no clinically validated objective tools currently available for 
such purposes. (Zetterberg & Blennow, 2016) Because of amnesia or a history of 
losing consciousness, a large percentage of mTBI patients were hospitalized in the 
past, discharged within a few days with a brain concussion diagnosis. Due to 
increased use of CT scan, this policy has been questioned within the last decades 
(Geijerstam et al., 2004).  

Delayed bleeding has multiple causes (Hamilton et al., 2010; Heino et al., 2019). 
The capacity of the brain to regulate cerebral blood flow (CBF) optimally, can be 
reduced through disturbed cerebral autoregulation. Bleeding may persist in minor 
contusions, due to disturbed autoregulation of CBF. Medication affecting the 
coagulation or blood coagulation disorders are also potential causes of delayed 
intracranial hemorrhage. Venous injuries are assumed to delay the signs of increased 
intracranial pressure (ICP) compared to arterial bleeding, since venous bleeding is 
naturally slower than arterial bleeding. It is still unclear if the use of anticoagulant 
medication after an initial normal CT scan in mTBI patients is a risk factor for 
delayed bleeding (Engelen et al., 2009). Although repeat imaging after an 
observation period is still part of the European guidelines (Vos et al., 2012), 
heterogeneous protocols for managing TBI patients have been developed globally in 
trauma centers (Maas et al., 2017b; Menon & Maas, 2015).  

2.1.6.4.4 Magnetic resonance imaging  

CT scan of head is the golden standard of the evaluation of acute TBI, but it has been 
reported that conventional MRI has superior sensitivity in the identification of 
certain acute lesions, including microhemorrage, DAI and small contusions, 
compared to CT. According to the current research, the ability of the conventional 
MRI in detecting a wide range of acute lesions are 0%–43% (Eierud et al., 2014; 
Hughes et al., 2004; Uchino et al., 2001; van der Horn et al., 2018; Yuh et al., 2013). 
Nevertheless, the use of conventional MRI has been limited, since positive MRI 
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findings did not always show sensible predictive value for long term outcome 
(Amyot et al., 2015; Z. Morris et al., 2009). In acute mTBI, routine brain MRI is 
uncommon, due to limited availability and high cost, despite the high sensitivity. In 
current clinical practice, MRI is mainly used at the subacute stage for the evaluation 
of patients with mTBI, who have persistent symptoms. MRI sequences in the TBI 
Common Data Elements (CDE) include: (i) 3D T1-weighted, (ii) 3D T2-weighted, 
(iii) T2-weighted fast spin echo, (iv) T2-weighted fluid-attenuated inversion-
recovery (FLAIR), (v) diffusion weighted echo planar imaging, (vi) 3D 
susceptibility weighted imaging (SWI), and (vii) 2D gradient-echo (Haacke et al., 
2010). The SWI sequence has been reported as the most sensitive tool for the 
detection of hemorrhagic lesions (Liu et al., 2014; Tao et al., 2015). Following the 
limitations of the current imaging methods, more advanced and promising 
neuroimaging techniques have been developed for the better assessment of mTBI 
(Jagoda et al., 2008b). DTI is sensitive to the direction and magnitude of non-random 
water diffusion in the brain and offers a non-invasive and quantitative measurement 
of brain white matter microstructural properties and connectivity (Alexander et al., 
2007). Unlike CT or conventional MRI, DTI is sensitive to microstructural axonal 
injury (Niogi & Mukherjee, 2010), the neuropathology that is thought to be most 
responsible for persistent cognitive and behavioral impairments that often occur after 
mTBI (Dadas et al., 2018; Shahim et al., 2016b; Zetterberg & Blennow, 2016). DTI 
produces two summary metrics, fractional anisotropy (FA) and mean diffusivity 
(MD), and two orthogonal metrics, axial diffusivity (AD) and radial diffusivity (RD) 
(Alexander et al., 2007; Sugiyama et al., 2009). FA and MD have been the main 
focus in the studies of DTI for mTBI and have shown promising results to evaluate 
DAI in patients with mTBI at sub-acute and chronic phases (Yin et al., 2019). 
However, DTI is still recognized as a research tool and not yet applicable in the 
clinical use. To conclude, there is a need for well characterized larger cohort mTBI 
studies for translating these advanced imaging methodologies into routine clinical 
practice. 

2.1.7 Prognostic tools for traumatic brain injury 

2.1.7.1 Outcome measures 

The current functional outcome measures, namely, the Glasgow outcome scale 
(GOS) (Zuercher et al., 2009) and the Glasgow outcome scale extended (GOSE) 
(Dams-OʼConnor et al., 2015) do not include cognitive, psychosocial, health-related 
quality-of-life, and other patient-reported outcomes. However, since there is no 
clinically validated prognostic models for the outcome prediction of mTBI, these 
outcome measures are still mostly used in the outcome evaluation. 
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2.1.7.1.1 Glasgow Outcome Scale 

The GOS is the most common tool for the assessment of functional outcome 
following TBI, developed by Bryan Jennett and Michael Bond in 1975 (McMillan 
et al., 2016). This grading consists of five levels where GOS 1 = death and GOS 5 = 
good recovery (Table 2). The appeal of using the GOS is related to its simplicity, 
reliability, validity, stability, flexibility of administration (face-to-face, over the 
telephone and by post), short administration time, cost-free availability, and ease of 
access (Corral et al., 2007; Dams-OʼConnor et al., 2015). Although the GOS is 
generally assessed at 6 months, further functional outcome trajectories have been 
reported beyond 12 months (Dams-O’Connor et al., 2015; Forslund et al., 2019b; 
Puffer et al., 2019).  

2.1.7.1.2 Glasgow Outcome Scale Extended 

GOS has been criticized for its wide-ranging use of “dependent” state (GOS = 3) and 
to improve this, the extended GOS (GOSE) was introduced in 1981 (Jennett et al., 
1981). It is an 8-levels ordinal scale that is divided into upper and lower levels of 
good recovery, moderate disability, severe disability, vegetative state, and death. The 
advantage of the GOSE is to better describe disabilities following TBI, compared to 
the GOS. 

Table 2. Glasgow Outcome Scale (GOS) (Jennett & Bond, 1975) 

Score Description 

5 Good recovery, normal life resumed, even with persistent disabilities 

4 Independent, disabilities cause to work in a sheltered environment, able to use public 
transport indepently and manage own personal hygiene 

3 Dependent, physical and / or mental disabilities demand daily support 

2 Vegetative state, unaware of self and surroundings 

1 Death 

 

Table 3: Glasgow Outcome Score Extended (GOSE) (Jennett et al., 1981) 

Score Description 

8 Upper good recovery Minor psychological or neurological deficits allowed, but normal 
life resumes with the capasity to work. Level 8: deficits are not 
disabling; Level 7: minor disabling deficits. 7 Lower good recovery 
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6 Upper moderate 
disability 

Some personality or memory deficits and / or disabilities, 
independent at home, dependent outside. Level 6: able to return 
to work, possible special arrangement; Level 5: not able to 
return to work. 5 Lower moderate 

disability 

4 Upper severe 
disability 

Patient is dependent and demand daily support. Level 4: Patient 
can be left alone >8 hours; Level 3: Patient needs assistence in 
an 8 hour timespan. 

3 Lower severe 
disability 

2 Vegetative state Unaware of self and surroudings, reflex responses only with 
spontaneous eye-opening periods 

1 Death 

2.1.7.1.3 Other tools 

RPCSQ/RPQ 

Rivermead Post-concussion Symptoms Questionnaire (RPCSQ) consists of 16 
items, which denote the most commonly reported symptoms after mTBI. The 
cognitive (RPCSQ cognitive), emotional (RPCSQ emotional), and physical (RPCSQ 
somatic) domains are covered by this instrument and has been reported to be 
effective for diagnosing post-TBI symptoms (King et al., 1995). To calculate the 
RPCSQ score, the patients are requested to rate the degree to which each item has 
become more of a problem during the former 24 hours compared to before the TBI. 
The responses are then rated on a 5-point Likert scale as follows: 0 = not experienced 
at all; 1 = no more of a problem; 2 = a mild problem; 3 = a moderate problem; and 4 
= a severe problem. The RPQ items are then summed to a total score, without ratings 
of 1. 

The Disability Rating Scale (DRS) (Rappaport et al., 1982), the Functional 
Independence Measure (FIM), supplement Functional Assessment Measure (FAM) 
(Corrigan et al., 1997) and Patient Health Questionnaire-9 (Fann et al., 2005) are 
other functional scales for the assessment of functional outcome after brain injury. 
These outcome scales consist of detail interviews and questions related to the 
patients’ quality of life after TBI. 

2.1.7.2 CT scoring systems 

To date, there are several different CT scoring systems, which could be used for the 
evaluation, as well as for the outcome assessment of patients with TBI. 
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2.1.7.2.1 Marshall CT score 

The leading scoring system used is the Marshall scoring system (Marshall et al., 
1992). It is generally divided into three basic levels, which include no visible injury, 
diffuse (3 steps, based on severity) and focal injury. This division is mainly linked 
to mortality and derived from patients from the Extensive Traumatic Coma Data 
Bank (TCDB) study (Thelin et al., 2017). Another parameter illustrated in the scale 
is “Evacuated mass lesion”. The authors perceived a rise in unfavorable outcome as 
diffuse swelling exacerbated, implying it as an indirect sign of increased ICP 
(Marshall et al., 1992). Later studies have shown a limited capacity of outcome of 
Marshall CT Score compared to Rotterdam, Stockholm, and Helsinki CT scoring 
systems (Nelson et al., 2010; Thelin et al., 2017; Yao et al., 2017). 

Table 4: Marshall CT classification (Marshall et al., 1992) 

Grade Description 

Diffuse injury I CT scan detects no visible intracranial pathology 

Diffuse injury II Cisterns with midline shift of 0–5 mm and / or lesion densities 
present; no mixed or high-density lesion >25 cm3 may include 
foreign bodies of bone fragments 

Diffuse injury III Cisterns with midline shift of 0–5 mm absent or compressed; no 
mixed or high-density lesion >25 cm3 

Diffuse injury IV Midline shift >5 mm; no mixed or high-density lesion >25 cm3 

Evacuated mass lesion (V) Any lesion surgically evacuated 

Non-evacuated mass lesion 
(VI) 

Mixed or high-density lesion >25 cm3; not surgically evacuated 

2.1.7.2.2 Rotterdam CT score 

Maas et al. introduced the Rotterdam CT Score by applying the variables of Marshall 
CT Score (Maas et al., 2005). This system re-evaluates the parameters and ranks 
them in a scale from 1 (best) to 6 (worst). In this system, tSAH, basal cistern 
compression and midline shift (>5 mm) are isolated as unfavorable parameters, while 
the presence of EDH is a more favorable parameter regarding correlation with 
outcome. EDH has displayed to be a more positive predictor of outcome in greater 
numbers of patients (Maas et al., 2007). This is due to the conjecture that, if treatment 
is provided rapidly in these patients, the brain parenchyma will remain 
comparatively unaffected. 
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2.1.7.2.3 Stockholm CT score 

The Stockholm CT-score was published in 2010 and, in contrast to the other systems, 
applies a continuous scale to grade severity (Nelson et al., 2010). This scoring system 
utilizes the magnitude of midline shift as the total of all focal and diffuse lesions. 
The presence of EDH is also a positive factor.  The system has its own categorization 
of tSAH. In addition to that, it is the only CT scoring system that takes the noticeable 
DAI on CT Scan into account, as a forecast of poor outcome (Nelson et al., 2010). 

2.1.7.2.4 Helsinki CT score 

Raj et al. proposed the Helsinki CT score in 2014 to predict the long-term outcome, 
including unfavorable functional outcome and mortality (Raj et al., 2014). The 
authors categorized the types of mass lesions (SDH, ICH, and EDH), emphasized 
the predictive value of IVH, and introduced the suprasellar cisterns (SSCs) status 
(divided into normal, compressed, or obliterated), into a CT scoring system for the 
first time (Raj et al., 2014; Thelin et al., 2017). It has been reported that the Helsinki 
CT score performed better than both the Marshall and Rotterdam CT scoring systems 
for predicting outcome (Yao et al., 2017; Thelin et al., 2017). 

The above-mentioned head CT scoring systems include features of radiologic 
CDE originally introduced in 2010 (Haacke et al., 2010), which includes controlled 
terms and standardized definitions to characterize the different types of 
pathoanatomic lesions encountered on imaging of patients with TBI. 

2.1.7.3 Prognostic models 

TBI is not a single event, but rather an evolving process and it affects multiple 
outcome domains (Lingsma et al., 2011, 2015; Maas et al., 2017b; Ponsford et al., 
2008; Shahim et al., 2016b; Zetterberg & Blennow, 2016). The outcome of TBI does 
not only necessarily depend on the quality of acute care, but also on patients and 
injury characteristics, for example, mechanism of injury, injury severity, presence 
and severity of extracranial injuries, patient’s age, underlying diseases, and 
socioeconomic condition (Willemse-van Son et al., 2007). Different prognostic 
models have been developed combining patient and injury characteristics at 
presentation for the long-term outcome prediction. Most of the prognostic models 
have been developed for moTBI and sTBI (Maas et al., 2017b). Unfortunately, 
current approaches to predict long-term outcome after TBI are also limited in their 
accuracy. There are a range of tools for predicting outcomes after TBI which use a 
multivariate approach to combine many factors that potentially influence outcomes, 
e.g. Corticosteroid Randomisation After Significant Head injury (CRASH) model 
and International Mission for Prognosis and Analysis of Clinical Trials in TBI 
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(IMPACT) calculator (Perel et al., 2008; Steyerberg et al., 2008). Variables assessed 
include age, pupillary reactivity, presence of secondary injuries, comorbidities, and 
brain imaging findings. By combining different predictors, emerging assessment 
tools have achieved superior predictive value in patients with moTBI or sTBI 
(Roozenbeek et al., 2012). The complexity of assessing TBI is highlighted by the 
fact that, even by using combination models, we are able to explain only 35% of the 
variance outcome after sTBI (Maas et al., 2015). Multivariate models derived from 
large study populations performed fairly well (80%–90 % accuracy) in predicting 
mortality or poor outcome (Roozenbeek et al., 2012), but outcomes are much more 
complex than being dead or severely disabled (Maas et al., 2017b; Menon & Maas, 
2015). Notably, death, complete, or incomplete recovery are inappropriate endpoints 
for the prognostic analysis in patients with mTBI. In the prognostic modelling of 
patients with mTBI, the utility of the GOS is not certain due to the fact that a 
considerable number of patients diagnosed with mTBI could have outcome score in 
the upper segment of the GOS categories, however, might live with disabilities and 
poor quality of life (Maas et al., 2017b). New clinical tools are needed for evaluation 
of injuries at both ends of the TBI spectrum. In case of mTBI (as well as TBI in 
general), factors such as pre-trauma cognitive achievement, personality traits, coping 
ability, resilience and availability of financial and social support systems have 
significant predictive value for outcome and quality of life (Lingsma et al., 2015; 
Ponsford et al., 2008; Ponsford et al., 2014). Research has shown that the current 
prediction algorithms for mTBI perform poorly in explaining the outcome, also 
compared to prediction models for more severe cases (Cnossen et al., 2018). A recent 
large prospective study, analysing the prognostic factors of mTBI, reported that 
psychological factors in combination with pre-injury mental health problems were 
the most significant predictors for recovery at 6 months following mTBI (van der 
Naalt et al., 2017). Another recent pilot study of the TRACK-TBI investigator group 
developed a prediction model, where the demographic and clinical variables at 
baseline could predict post-concussion symptoms six months following mTBI 
(Cnossen et al., 2017). Development and validation of such prognostic models in 
larger cohorts for mTBI, using sensitive endpoints and the variables involved in TBI 
pathophysiology, have been strongly recommended (Maas et al., 2017b). 

2.2 Blood biomarkers in the assessment of TBI 

2.2.1 Definition 
A biomarker is defined as “A characteristic that is objectively measured and 
evaluated as an indicator of normal biological processes, pathogenic processes, or 
pharmacologic responses to a therapeutic intervention” (Atkinson et al., 2001). 
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Biomarkers could be proteins, metabolites or other substances such genetic markers, 
which could act as surrogate markers of injury, and assist in diagnosis, prognosis and 
quantifying the risk of developing a disease. In other fields of medicine, biomarkers 
are already playing an important role in the managements of diseases. For example, 
the protein Troponin-T is used to diagnose myocardial infarction (Hamm et al., 
1997). 

In an ideal scenario, the following criteria should be met by a biomarker of brain 
injury (Diaz-Arrastia et al., 2014; Saatman et al., 2008; Shahim et al., 2016a; Wang 
et al., 2018a; Zetterberg et al., 2013a; Zetterberg & Blennow, 2016): 

• Have a high sensitivity and specificity for brain injury 

• Help to stratify patients by severity of injury 

• Have a fast appearance in obtainable body fluids 

• Could deliver valuable insights about complex injury mechanisms 

• A passive release from the central nervous system (CNS) without any 
stimulated active release 

• An infinite passage via the blood-brain barrier (BBB) 

• Have properly characterized bio-kinetic properties 

• Could assist in evaluating the progress of disease as well as in assessing 
the response to treatment 

• Might aid in the prediction of functional outcome 

To date, these aforementioned criteria have not been fulfilled by any TBI 
biomarkers, however, with the development of proteomics, several exist with a great 
promise to aid the clinicians in the assessment of TBI. 

2.2.2 Clinical needs 
TBI is a heterogeneous and complex disease. Although, the severity of TBI has been 
traditionally classified by the GCS, the milder end of “the most complex disease in 
the most complex organ” reflects a gradually evolving process that arises a 
diagnostic dilemma (Maas et al., 2017b; Zetterberg et al., 2013a). According to the 
current literature, a patient diagnosed with mTBI is not free from the risks of 
developing further intracranial lesions and a subgroup of these patients are prone to 
develop chronic symptoms (Chenoweth et al., 2018; Cnossen et al., 2018; Maas et 
al., 2005; McMahon et al., 2014). Inside the busy environment of an ED, the working 
physician usually discharge a patient with mTBI, who has a negative CT and no 
significant neurological symptoms (Menon & Maas, 2015; Saboori et al., 2007). 
Unfortunately, there is no concrete evidence that such a patient will not present with 
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disabling symptoms in the future but will have complete recovery. In an ideal setting, 
the patients with mTBI presenting with neurological symptoms require careful 
observation, imaging, and possibly further follow-ups. However, not all the centers 
treating a vast burden of TBI have enough resources, as well as manpower, to follow-
up the patients for an extended period of time (Kolias et al., 2019; Tropeano et al., 
2019). Besides the shortcomings of the current neuroimaging methods in clinical 
practice for the diagnosis of acute mTBI, disappointingly, there is no unanimous 
definition of mTBI and the performance of the tested model for the outcome 
prediction of mTBI is fairly poor (Lingsma et al., 2015; van der Naalt et al., 2017). 
Considering these issues, it is difficult to diagnose and to stratify the patients with 
milder range of TBI demanding proper rehabilitation. Concussion, often described 
synonymously as mTBI, (Sharp & Jenkins, 2015) is common in contact sports 
(Shahim et al., 2016a). Athletes participating in different contact sports are the 
vulnerable group to suffer from repeated TBI and there is no robust objective 
evidence ensuring a safe duration of time for return to play (Shahim et al., 2014). 
Not only for the acute diagnostics of mTBI, but also for the assessment of moderate 
to severe TBI, there is no clinically validated objective test that could mirror the 
multidimensional pathophysiology of TBI. Such a test, assessing TBI, might guide 
the treating physician to monitor the treatment efficacy and to perform further 
intervention as early as possible to prevent a permanent damage. Since the collection 
of CSF samples is invasive and not completely realistic in the case of mTBI, blood 
biomarkers are preferred. Application of a body fluid biomarker, with high 
sensitivity, adequate specificity and well-defined bio-kinetic properties would be 
able to aid the management of TBI in the following ways: 

• To better stratify the patients with TBI, which might lead to a precise 
classification 

• To develop an automated point of care device for the cost-effective 
assessment of TBI 

• To avoid unnecessary CT-imaging 

• To predict any intracranial lesions as a surrogate marker of imaging 

• To be used as a reliable discriminant of CT-positive and CT-negative 
brain injury in clinical practice 

• To identify patients with TBI in case of polytraumas 

• To decide the group of patients who might need advanced imaging e.g. 
MRI 

• To identify the patients with DAI in the acute setting – this group consists 
of the grey zone of TBI, given the fact that there are no exact criteria on 
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how to radiologically diagnose traumatic axonal injury, and 
neuropathological examination is the only exact method for diagnosing 
DAI at this moment 

• To construct a proper rehabilitation plan to prevent PCS and to ensure 
better quality of life 

• To explore the return to play duration for the contact sports and, thus, to 
hinder the process of neurodegenerative disease 

• To use as an advanced neuromonitoring tool to evaluate the treatment 
effects  

• To be included in a multifactorial prediction model to provide realistic 
prognosis information to the patients and their families 

• Serves as a cost-effective tool 

2.2.3 Current state – biomarkers assessing TBI and their 
association with neuroimaging 

 

Figure 3. Possible blood biomarkers of traumatic brain injury. (Zetterberg et al., 2013). Reprinted 
with permission from Nature Reviews Neurology. 



Review of the literature 

 39 

2.2.3.1 S100B 

S100B is a small protein that belongs to a family of intracellular, calcium-binding 
proteins (Donato, 2001), that predominantly presents in astrocytes in the CNS 
(Thelin et al., 2017). Historically, S100B is the most studied biomarker for the 
assessment of TBI. The latest published Scandinavian guidelines uses S100B for the 
screening of mTBI patients to select those who need cranial CT (Bogoslovsky et al., 
2016; Undén et al., 2013). It was recommended that adult patients after mTBI, with 
a GCS of 14 and no risk factors (anticoagulant therapy or coagulation disorders, post-
traumatic seizures, clinical signs of depressed or basal skull fracture, focal 
neurological deficits) or a GCS of 15 with loss of consciousness or repeated (≥2 
times) vomiting and no other risk factors, will be sampled for analysis of S100B if 
less than 6 hours have elapsed following trauma. The recommendations suggest that 
if S100B is less than 0.10 μg/L, the patient might be discharged without a CT 
(Ananthaharan et al., 2018). Despite having excellent NPV for CT, the clinical utility 
of S100B in TBI is limited due to less brain specificity (Dadas et al., 2018; Thelin et 
al., 2017). Interestingly, S100B released from extracerebral origin appears to have a 
faster clearance than S100B released from the CNS (Thelin et al., 2017). 

2.2.3.2 GFAP  

GFAP, a cytoskeletal monomeric filament protein (Eng et al., 1971), present in 
astrocytes located both in white and gray brain matter (Yoon et al., 2017), has 
performed as a more reliable biomarker for a focal than for a diffuse injury 
(Mondello et al., 2011; Papa et al., 2012). According to the previous studies, the 
admission blood levels of GFAP were correlated with both the initial GCS scores 
and brain imaging findings (Luoto et al., 2017). It has been also reported that serum 
levels of GFAP were increased in those patients with clinically diagnosed mTBI with 
abnormal CT compared with those patients with mTBI with normal CT (Diaz-
Arrastia et al., 2014; Wang et al., 2018a). Additionally, it has been found that the 
patients with axonal injury, identified by MRI, and the patients who required 
neurosurgical intervention followed by TBI, had significantly higher levels of GFAP 
(Diaz-Arrastia et al., 2014; Papa et al., 2012). Although GFAP is not entirely brain 
specific (Hainfellner et al., 2001; Jessen et al., 1984; Middeldorp & Hol, 2011), the 
levels of GFAP could discriminate both patients with mTBI and moTBI from healthy 
controls and from patients with orthopedic injury without TBI (Papa et al., 2012). It 
is shown that a slight increase in GFAP levels have better ability to diagnose TBI 
accurately compared to the levels of S100B, especially if patients have orthopedic 
injuries, since chondrocytes release S100B (Zetterberg & Blennow, 2016). Notably, 
GFAP has been reported as a significant predictor of CT-positive brain damage 
having a good sensitivity and specificity in acute TBI (Luoto et al., 2017). Current 
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ongoing large-scale initiatives, CENTER-TBI, and TRACK-TBI, are important in 
verifying the potential of GFAP as a marker in acute TBI triage. Recently, the 
TRACK-TBI investigators reported that the blood levels of GFAP within 24 hours 
of injury has the significant discriminative ability to identify MRI abnormalities in 
patients with normal CT findings (Yue et al., 2019). From a practical point of view, 
a rapid capillary blood-based GFAP screening test would be beneficial for patient 
management in a pre-hospital environment. 

2.2.3.3 UCH-L1 

UCH-L1 is involved in either adding or removing ubiquitin from proteins targeted 
for metabolism, abnormal proteins, and proteins damaged by oxidation (Liu et al., 
2002). Given that UCH-L1 is produced by a neighbouring cell type of astrocytes, 
namely neurons, it is considered a suitable counterpart for GFAP in TBI diagnostics 
(Diaz-Arrastia et al., 2014; Papa et al., 2016b). UCH-L1 is found to be more 
abundant after diffuse than after focal injury (Papa et al., 2012). The superior 
sensitivity and specificity for diagnosing TBI was obtained when GFAP was 
combined with UCH-L1, thus supporting the idea that a combination of biomarkers 
may be superior compared to using each alone for the diagnosis and prognosis of 
TBI (Bogoslovsky et al., 2016). Patients with mTBI had higher levels of serum 
UCH-L1 compared to non-brain-injured patients with orthopedic traumas and to 
healthy controls. It is important to note that UCH-L1 was able to discriminate 
between CT-positive and CT-negative mTBI and between healthy controls and 
patients with full spectrum of TBI (Dadas et al., 2018; Diaz-Arrastia et al., 2014; 
Papa et al., 2016b; Papa et al., 2012). However, several groups have presented 
contradictory results in which UCH-L1 levels were unable to distinguish healthy 
controls from patients with mTBI when different immunoassays were used (Dadas 
et al., 2018; Wang et al., 2018a). Another contributing factor for the variations of 
such results could be that there is no standard-general definition of mTBI, which 
most possibly create the methodological dissimilarities among the studies. 

2.2.3.4 Tau 

Tau, a microtubule-associated protein that is located in the axons of CNS neurons, 
serves as a structural element in the axonal cytoskeleton (Olivera et al., 2015; 
Rubenstein et al., 2015). Though tau could be mostly found in the brain, extracranial 
sources exist, for example, liver, kidney and testis (Morris et al., 2011). It is 
identified as a neurodegenerative biomarker, (Jack et al., 2019; Kim et al., 2018) and 
has been widely studied for the development of axonal pathology following TBI 
(Neselius et al., 2013). Phosphorylation of tau is a normal event in healthy neurons, 
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but hyperphosphorylation and aggregation into neurofibrillary tangles is a 
characteristic of AD and chronic traumatic encephalopathy (CTE) (Zetterberg & 
Blennow, 2016). However, it has been studied that many people with the 
neuropathology of CTE do not appear to have a progressive tauopathy (Iverson et 
al., 2018). In addition, it has been recently demonstrated that CTE pathology could 
be present in people who did not experience sub-concussive blows to the head, or 
multiple concussions (Iverson et al., 2019). It has been widely studied that the 
elevated levels of plasma T-tau are correlated with the outcome of repeated mTBI or 
concussion (Neselius et al., 2013; Shahim et al., 2014). In case of sTBI, serum tau 
and admission CSF tau levels were reported as significant outcome predictors 
(Liliang et al., 2010). Previous studies, using the traditional enzyme-linked 
immunosorbent assay (ELISA) method, reported that T-tau was unable to 
differentiate CT-positive and CT-negative mTBI groups (Zetterberg et al., 2013a). 
These findings are reasonable, since traditional immunoassay methods are not 
sensitive enough to analyse especially the low levels of tau in blood (Zetterberg & 
Blennow, 2016). Lately, using the ultrasensitive Simoa platform, (Kuhle et al., 2016) 
it has been studied that acute plasma hyperphosphorylated tau protein (P-tau) is a 
more sensitive biomarker compared to T-tau for the outcome prediction of TBI 
(Rubenstein et al., 2017). Furthermore, using this new assay method, it has been 
examined that the acute levels of plasma tau could differentiate patients with 
complicated mTBI from controls (Zetterberg & Blennow, 2016). Significantly 
elevated levels of plasma tau were also reported in case of ice hockey players 
compared to their pre-season levels (Shahim et al., 2014). However, to date, no 
recent large studies could find that admission levels of plasma T-tau were able to 
differentiate incomplete and complete recovery in case of single and uncomplicated 
mTBI. 

2.2.3.5 NF-L 

NF-L protein is a relatively new and less studied blood biomarker for traumatic 
axonal injury (Kuhle et al., 2016; Wilson et al., 2016). NF-L is mainly expressed in 
the long myelinated white matter axons (Shahim et al., 2014; Shahim et al., 2016; 
Zetterberg et al., 2013b) and a significant relationship between DTI of DAI 
following sTBI and the levels of NF-L in the CSF has been reported, indicating that 
the levels of NF-L could predict the degree of axonal injury as well as the outcome 
following TBI (Shahim et al., 2016). The elevated levels of plasma NF-L in case of 
mTBI have been reported for contact sports athletes, although such studies did not 
report the correlation between the levels of NF-L and white matter integrity due to 
the unavailability of DTI data (Shahim et al., 2017; Shahim et al., 2016a). Significant 
elevation in the serum levels of NF-L have been reported after TBI, where the levels 
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steadily increased up to 10–12 post-injury days. In addition, the admission levels as 
well as the levels of several time-points were correlated with the outcome of TBI 
(Skillbäck et al., 2014).  It has been shown that the levels of NF-L were significantly 
elevated for contact sports athletes, for example, professional hockey players 
suffering from symptoms following repetitive mTBI (Shahim et al., 2017). Two 
groups of contact sports players could be differentiated using the levels of CSF NF-
L, where one group had rapidly resolving symptoms and the other group continued 
to have prolonged concussion symptoms (Shahim et al., 2016a). 

2.2.3.6 Aβ40 and Aβ42 

Aβ40 (Tsitsopoulos & Marklund, 2013a) and Aβ42 (Johnson et al., 2010; 
Tsitsopoulos & Marklund, 2013b) have been studied as potential biomarkers of 
axonal damage in TBI (Johnson et al., 2013b; Marklund et al., 2014), since they 
reflect amyloidogenic amyloid precursor protein (APP) metabolism. A histologic 
hallmark of AD is Aβ pathology, primarily consisting of aggregated Aβ42 peptides, 
and TBI has been suggested to be one of the risk factors for AD (Ramos-Cejudo et 
al., 2018a). Studies have reported that Aβ pathology (amyloid plaques) was found in 
boxers having dementia pugilistica (Roberts et al., 1990) and in a proportion of other 
contact sport athletes having CTE (Blennow & Nellgård, 2004). Although 
ventricular CSF levels of Aβ40 and Aβ42 were elevated during the first week after 
sTBI (Olsson et al., 2004), no changes in Aβ40 or Aβ42 were reported in mTBI, 
where CSF samples were collected by lumbar puncture (Neselius et al., 2013). 
However, for repetitive mTBI, post-injury subjective symptoms were associated 
with the reduction of CSF levels of Aβ40 and Aβ42 (Olsson et al., 2004; 
Tsitsopoulos & Marklund, 2013b).  

2.2.3.7 Other biomarkers 

Besides the abovementioned body fluid biomarkers,  neuron-specific enolase (NSE), 
interleukin 10 (IL-10), heart-fatty acid binding protein (H-FABP) etc. have been also 
studied recently for the different severities of TBI and provided promising results 
(Dadas et al., 2018; Mondello et al., 2018; Wang et al., 2018a). However, most of 
those pilot study findings using small sample sizes need to be replicated in larger 
cohorts. 
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2.2.4 Kinetics 
Contradictory results have been reported on the kinetics of the blood biomarkers. 
The following table summarizes the half-life of the mostly studied biomarkers for 
mTBI. 
 

 
Figure 4. Kinetics of the blood biomarkers for traumatic brain injury (Thelin et al., 2017). Reprinted 

with permission from Frontiers in Neurology. 

 

Table 5. Kinetics of blood biomarkers (Thelin et al., 2017). 

Biomarker Suggested serum half-life (depending on TBI severity) 

S100B 2–24 hours (2–6 hours in case of mTBI) 

GFAP 24–48 hours 

UCH-L1 10 hours 

TAU 10 hours, second peak after 36 hours 

NF-L >7 days 

AΒ40 AND AΒ42 >24 hours 
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2.3 Blood-brain barrier and the glymphatic system 
 

The mechanism of the passage of the blood biomarkers from the brain to blood is 
still not completely understood. The BBB disruption and the currently discovered 
glymphatic system are the mostly studied routes. 

BBB 

BBB, abutting the vessels of the brain, composed of tightly connected endothelial 
cells and astrocytes, connected by tight junctions, becomes disintegrated in TBI 
(Dadas & Janigro, 2018). The BBB manages to create a tightly regulated 
environment in the CNS by controlling ingress of immune cells and blood-borne 
metabolites. On top of that it controls the cerebral environment by necessary influx 
of vital substrates and efflux of waste materials.  In BBB transportation, the 
astrocytic podocytes, along with microglial cells and basal cell membrane of the 
endothelium, are indispensable as it acts as a bridge between the brain parenchyma 
and micro vessels. Breakdown of functional integrity of the BBB due to injury leads 
to functional changes in the pericontusional area and raised permeability to high 
molecular weight protein such as albumin (Thelin et al., 2017). This is primarily due 
to functional changes. Rat models of TBI have shown an increased permeability 4–
6 hours after injury along with a secondary peak after 3 days. However, in humans, 
elevated albumin quota, the ratio CSF:serum, is observed up to a week following 
TBI. The disruption of BBB also results in edema development (Dadas & Janigro, 
2018). 

The glymphatic system 

The glymphatic system is a recently discovered route that connects the interstitial 
fluid of the brain, CSF, and venous outflow. It is so-named due to its link between 
the glial cells and aquaporin-4 dependant perivascular pathways. Thus, it is believed 
to act as a lymphatic drainage from the brain (Sullan et al., 2018). It has been 
proposed that this para-arterial influx of CSF through brain extracellular fluid to a 
paravenous outflow, is the principal path of efflux of cerebral protein debris, driven 
by arterial pulsations. TBI demonstrates a loss in perivascular polarization of 
aquaporin-4 up to a period of 28 days. This results in a reduced outflow of tau 
proteins in TBI (Plog et al., 2015). A recent study reveals the fact that the glymphatic 
system acts unaided from the BBB integrity following brain injury. It further shows 
that proteins of cerebral origin mainly drain through the glymphatic system from the 
injured brain (Piantino et al., 2019; Sullan et al., 2018). 



 
 

3 Aims of the study 

The specific aims of this study were: 

• To investigate the levels of GFAP and UCH-L1 in patients with acute 
orthopedic injuries without CNS involvement, and to relate them to the 
type of extracranial injury, head MRI findings, and the levels of GFAP 
and UCH-L1 in patients with CT-negative mTBI. Following this, our aim 
was to explore the performance of GFAP and UCH-L1 in discriminating 
patients with orthopedic trauma and CT-negative mTBI. 

• To correlate the levels of GFAP and NF-L during the first 24 hours after 
admission with outcome in patients with mTBI to find out their potential 
for clinical use in assessing mTBI. 

• To investigate if the admission levels of T-tau and Aβ40 and Aβ42 
correlate with outcome in patients with mTBI.



 
 

4 Materials and methods 

The studies described below were part of the EU-funded TBIcare project (Evidence-
based Diagnostic and Treatment Planning Solution for Traumatic Brain Injuries). 

4.1 Study population 

Study I 

This prospective two-center study was conducted at the Turku University Hospital 
(Finland) and the Addenbrooke’s Hospital Cambridge (United Kingdom). Patients 
with TBI of all severities as well as a control group of patients with acute orthopedic 
injuries were recruited in the project. 

In this study, all 73 patients with acute orthopedic trauma and those 93 patients 
with mTBI who had head CT with no pathological brain parenchymal findings, were 
analysed. The mTBI group included three patients with skull base fracture, but CT-
negative concomitant parenchymal findings. The orthopedic group’s inclusion 
criteria comprised of age ≥16 years, acute orthopedic nontrivial injury, or injuries 
with the absence of acute CNS involvement. Any suspected acute TBI (head injury 
signs, any suspected TBI signs at the time of injury, possible TBI symptoms), prior 
brain disease or TBI, polytrauma requiring intensive care, or trivial injuries not 
requiring emergency measures or follow-up, were excluded. In the case of sustained 
brain injury that fulfilled the American Congress of Rehabilitation Medicine criteria 
for TBI (Sharp & Jenkins, 2015) and that patient’s lowest recorded GCS was ≥13, 
mTBI was diagnosed. However, excluded from the mTBI group were patients with 
GCS of 13 and concomitant multi-trauma requiring intensive care or deteriorating 
patients with GCS of 13. Also, the patient was excluded if suspected that the signs 
of TBI could be caused by confounders (inebriation, medications). The patients did 
not receive anaesthetics before the initial sample was obtained, except for one patient 
who was sedated with propofol before the blood samples were obtained, because of 
an orthopedic operation following orthopedic injury. No patients with elevated 
GFAP and / or UCH-L1 levels went under general anaesthesia. 
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Head MR imaging for the control group 

As part of the TBIcare study protocol, within the first 4 weeks after the injury, 
majority of the patients with orthopedic trauma (n = 52 / 73) underwent head MRI, 
and again at the follow-up visit 3–10 months after the injury. If there were any doubt 
of clinical stability, safety, and contraindications (e.g. because of internal fixation), 
then a treating clinician outside the study personnel made the decision whether MRI 
could be performed or not. FLAIR, diffusion-weighted imaging (DWI), T2, T13D, 
DTI, and SWI were included in the 3T MRI sequences. 

Studies II and III 

For these studies, 107 patients with mTBI (GCS ≥13) with available blood samples 
within 24 hours upon arrival at the ED of Turku University Hospital, Finland, were 
recruited.  

Patients included in these studies fulfilled the following criteria: GCS ≥13, age 
≥18 years, clinically diagnosed TBI and acute head CT indications according to 
NICE criteria (National Institute for Health and Clinical Excellence, 2007) . Patients 
with age <18 years, chronic subdural hematoma, penetrating or blast-induced injury, 
suspected TBI or TBI not requiring head CT, pre-existing brain disease causing the 
inability to live independently, >2 weeks from injury, reasons preventing follow-up 
visits (not living in the district), inability to speak native language, or no received 
consent were excluded from the studies. 

Notably, patients with mTBI with available GFAP and NF-L were used for study 
II and the patients with mTBI with available T-tau, Aβ40, and Aβ42 were used for 
study III, all obtained within 24 hours after arrival to the ED. 

4.2 Analysis of the blood biomarkers 

4.2.1 Analysis of GFAP and UCH-L1 

Study I 

The first blood samples for GFAP and UCH-L1 were obtained after arrival to the 
ED. The following blood samples were collected on days 1, 2, 3, and when available 
on day 7 after being admitted. Similar samples were also collected 3–10 months after 
the injury on the follow-up visit. First samples were marked as day 1 samples if the 
patient was recruited more than 24 hours after admission, since patients were not 
recruited during the night. Admission due to prolonged symptoms in numerous 
patients with mTBI made it possible to obtain longitudinal samples from these 
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patients. After being centrifuged for 10 minutes at 10 000 rpm at 4ᵒC, the samples 
were frozen immediately for further analysis at –70ᵒC. 

Randox Laboratories Ltd (Crumlin, County Antrim, United Kingdom) 
conducted proteomic analysis with Randox Biochip technology. In this technology, 
an array of discrete test regions of immobilized antibodies specific to different 
cerebral immunoassays is contained in a solid-state device. The samples were 
individually prepared. A rise in the emitted chemiluminescent signal due to 
increasing binding of antibody labelled with horseradish peroxidase, because of 
higher levels in a specimen. Digital imaging technology was used to detect the light 
signal generated on a biochip from all the test regions which was compared to a 
stored calibration curve. The calibration curve was used to calculate the presence of 
concentration of analyst in the sample. Simultaneous quantitative testing for UCH-
L1 and GFAP was conducted through the Evidence Investigator Cerebral Custom 
Array IV (Randox Laboratories Ltd).  

The lower limit of quantification (LLoQ) for GFAP was 0.16 ng/mL and for 
UCH-L1 was 0.3 ng/mL. The upper limits were 100 ng/mL and 50 ng/mL for GFAP 
and UCH-L1, respectively. The coefficient of variation was 3%–4% for the GFAP 
assay and 6%–7% for the UCH-L1 assay. A value of zero were assigned to samples 
where biomarker levels were not detectable. 

4.2.2 Analysis of GFAP and NF-L 

Study II 

An HD-1 Simoa instrument with Human Neurology 4-Plex A assay (N4PA) were 
used to measure plasma GFAP and NF-L levels, according to manufacturer 
instructions (Quanterix, Lexington, MA). Board-certified laboratory technicians, 
blinded to clinical data, performed one round of experiments by means of one 
reagents batch. The coefficients of variations for GFAP were 3.1% at 113 pg/mL and 
3.8% at 86 pg/mL, and for NF-L were 4.4% at 13.9 pg/mL and 6.1% at 7.1 pg/mL, 
as a result of quality control (QC) sample analyses in each run. 

4.2.3 Analysis of T-tau, Aβ40, and Aβ42 

Study III 

Like the above-mentioned analysis, this analysis also used the Human N4PA on a 
Simoa instrument to analyse the plasma T-tau, again following manufacturer’s 
instructions (Quanterix, Lexington, MA). The analysis for T-tau showed that the 
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calibration range was 0.136 pg/mL to 112 pg/mL, the lower limit of detection 
(LLoD) was 0.024 pg/mL, whereas the LLoQ was 0.053 pg/mL. A duplex Simoa 
immunoassay (Quanterix, Lexington, MA, USA) was used to measure the 
concentrations of plasma Aβ40 and Aβ42. The analysis for Aβ40 has shown a 
calibration range between 0 pg/mL to 90.0 pg/mL, with LLoD of 0.045 pg/mL and 
LLoQ of 0.142 pg/mL. For Aβ42, a calibration range between 0 pg/mL to 11.0 
pg/mL, with LLoD of 0.142 pg/mL and LLoQ of 0.69 pg/ml, was shown. Blinded to 
clinical data, the board-certified laboratory technicians performed the measurements. 
Importantly, no samples were below the LLoDs and LLoQs. 

Time elapse (Studies II and III) 

The interval between the time of the injury and the time when the first sample was 
taken was defined as time elapse. Be noted that the samples were not always drawn 
within 24 hours from the injury, even though they were obtained within 24 hours of 
admission. In the multiparameter prognostic panel analysis, time elapse was used as 
a dichotomous variable, exceeding 24 hours and less than 24 hours. 

4.3 TBI severity and outcome grading  

Studies II and III 

The emergency physician assessed the patients’ lowest GCS scores in the ED, if not 
already assessed by paramedics during transport or at the accident scene. The lowest 
GCS score of each patient was used to grade the severity of TBI (Takala et al., 2016). 
It is important to note that the severity grading in this thesis is not based on the 
Finnish National Current Care Guidelines (Käypä hoito) or WHO guidelines – it is 
not a clinical diagnosis. This is due to the fact that in the biomarker literature, most 
of the studies have used only admission GCS for severity grading. The Injury 
Severity Score (ISS) (Baker et al., 1974) was used to assess the overall injury 
severity of the patients. The Rivermead method (King et al., 1997b) was used at the 
outcome visit to assess the duration of PTA. Marshall et al. proposed a descriptive 
system (Marshall et al., 1992), which was used for the analysis of CT scans, where 
normal CT corresponds to class I, diffuse injuries to classes II–IV, and mass lesions 
to classes V and VI. Patients were divided into CT-positive and CT-negative groups 
according to this classification. 
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4.4 Outcome 

Study II 

The GOSE was used to assess the outcome 6–12 months after the injury (Wilson et 
al., 1998). Outcomes were categorised into four categories: unfavorable outcome 
(GOSE 1–4), favorable outcome (GOSE 5–8), incomplete recovery (GOSE <8), and 
complete recovery (GOSE 8). The severity and presence of mTBI-related symptoms 
were assessed by using the RPCSQ (King et al., 1995). 

Study III 

Similar to study II, the GOSE was used to assess the outcome 6–12 months after the 
injury, but in this study only two outcome categories were specified: incomplete 
recovery (GOSE <8) and complete recovery (GOSE 8). The RPCSQ was also used 
to assess the severity of present mTBI symptoms.  
 
One specific experienced neurologist at the Turku Brain Injury Centre evaluated 
every patient. 

4.5 Ethics declarations 

Ethics approval and consent to participate 

For study I, the ethical review board of Cambridgeshire 2 Research Ethics, the 
Norfolk Research Ethics Committee, and Hospital District of South-West Finland 
approved the study protocol.  

For studies II and III, the study protocol was approved by the Hospital District 
of South-West Finland’s Ethical review board.  

For all the above-mentioned studies, verbal and written information were given 
to patients or their next of kin and written informed consent was obtained. 

4.6 Statistical analyses 

Study I 

Through visual inspection of histograms and by using the Kolmogorov-Smirnov test, 
the normality of GFAP, UCH-L1, age and injury severity score were assessed. 
Because these variables were not normally distributed, further analyses were 
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performed by using nonparametric methods. The 2 test for gender and the Mann-
Whitney U test for age and injury severity score were used to study background 
variables differences between patients with mTBI and orthopedic injury patients. 
The correlation between GFAP and UCH-L1 on different days in orthopedic injury 
patients, was assessed by Spearman correlation coefficient. Mann-Whitney U test 
for gender and Spearman correlation coefficients for age and injury severity score, 
were used to assess background variables and biomarkers’ association on arrival.  

Diagnostic thresholds were defined based on values obtained in extracranial 
orthopedic injury patients, rather than values from healthy subjects, to distinguish 
CT-negative mTBI from extracranial injury, given that the ability to distinguish of 
these protein biomarkers was explored. To provide a basis in the orthopedic injury 
population, undertaking more detailed exploratory analysis in subjects with high 
levels of GFAP and UCH-L1, an individual biomarker’s cut-off value was set at the 
95th percentile, which is theoretically determined based on a previous publication 
(Biberthaler et al., 2006).  

In the orthopedic injury population, MRI findings were also analysed. MRI 
findings were classified into three categories: normal MRI findings, abnormal MRI 
findings, and MRI not done. The Kruskal-Wallis test were used to study the 
differences in biomarkers among above-mentioned categories. The differences 
between the levels of GFAP and UCH-L1 in mTBI patients and othopedic injury 
patients were studied using the Mann-Whitney U test. The receiver operating 
characteristics curve (ROC) and the area under the ROC curve (AUC) was used to 
evaluate the differentiation ability of the biomarkers for these two patient groups. 
The Wilcoxon signed rank test was used to compare GFAP and UCH-L1 levels on 
day 1 and at the follow-up. The Kruskal-Wallis test was used to study the differences 
in biomarker levels among patients with CT-negative mTBI and concomitant 
orthopedic injuries, isolated CT-negative mTBI, and orthopedic injuries. 

Matlab R2012b (MathWorks, Natick, MA) and IBM SPSS Statistics 22 (IBM 
Corp, New York) were used for data analysis. 

Study II 

Subjects’ demographics are presented as mean ± standard deviation (SD). Visual 
inspection of data histograms and the Kolmogorov-Smirnov test were used to assess 
the normality of distribution of biomarkers levels. In the statistical analyses 
nonparametric tests were used, since the GFAP and NF-L levels were not normally 
distributed. Data are presented as interquartile range (IQR) and medians. The 
Spearman rank correlation coefficient was used to analyse correlations between 
outcomes and biomarkers levels. The correlation between biomarker levels with age 
and gender was evaluated by means of the Pearson’s correlation coefficient. The 
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comparison of biomarker levels between outcome groups was conducted by the 
Mann-Whitney U test. The prognostic ability of the biomarkers was studied through 
multi-variate logistic regression analysis, for dichotomized outcomes prediction.  

The following variables were included in the regression analysis: levels of GFAP 
and NF-L, lowest GCS score, pupillary reactivity, time elapse, age, PTA, ISS, and 
Marshall score. Categorical variables were pupil reactivity and Marshall score. In 
multi-variate logistic regression, the reference categories were reactive pupils and 
Marshall class I denoting CT-negative finding. In the multi-variate logistic 
regression models, GFAP and NF-L were used together in the same models and 
independently with other variables. The prognostic ability of the biomarkers was 
evaluated using AUC. AUC of 0.5–0.7 was considered poor, AUC of 0.7–0.8 was 
considered adequate, and AUC of 0.8–1.0 was considered very good (Zetterberg et 
al., 2013b). A p value <0.05 was considered statistically significant. For the 
prediction of dichotomized outcomes, by using the ROC curve at the sensitivity 
>90%, cut-off values were defined. In the whole study population, the correlation of 
GFAP and NF-L levels was assessed by Pearson’s correlation coefficient. 

Furthermore, the correlation of GFAP and NF-L in the four different outcome 
groups were measured. These groups, as previously defined, are unfavourable, 
favourable, incomplete, and complete outcome. MATLAB R2015b (Math Works, 
Natick, MA) and IBM SPSS Statistics 22 (IBM Corp, Armonk, NY) were used for 
data analysis. In addition, PanelomiX software (Robin et al., 2013) was used to 
generate panels of biomarkers, based on their best cut-off values. These panels of 
biomarkers were used to differentiate unfavourable and favourable outcome, as well 
as incomplete and complete recovery, through assessing the performance of 
combining the GFAP and NF-L biomarkers. To achieve a sensitivity of >90%, cut-
off values were selected. 

Study III 

Demographics data are presented as mean ± SD or percentages. The distribution 
normality was assessed through visual inspection of data histograms and by using 
the Kolmogorov-Smirnov test. Data are presented as medians and IQR. In the 
statistical analyses nonparametric tests were used, since the T-tau, Aβ40 and Aβ42 
levels were not normally distributed. The correlations between the outcomes and the 
levels of biomarkers were assessed by the Spearman rank correlation coefficient. 
Pearson’s and Spearman rank correlation were used for analysis of the correlations 
of age and gender with biomarker levels, respectively. The correlation between the 
amyloids and the levels of T-tau was also assessed by using the Spearman correlation 
coefficient, in the incomplete and complete recovery groups, as well as in the whole 
cohort. The biomarker levels between the different outcome groups were compared 
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using the Mann-Whitney U test. The investigation of a biomarker’s independent 
predictive power for outcome beyond the clinical predictors, either alone or in 
combination with other biomarkers, was performed using a multivariate logistic 
regression analysis. To examine whether a biomarker had better predictive ability in 
combination with other biomarkers, compared to any biomarker alone, a biomarker 
panel analysis was used. The following variables were included in the regression 
analysis: levels of T-tau, Aβ40 and Aβ42, time elapse, worse recorded GCS score, 
PTA duration, age, sex, educational level, ISS, and Marshall CT classification. 
Division of educational level was higher level professional and academic, lower 
level professional, and basic school education. The following variables were 
considered as categorical variables: time elapse, sex, educational level, and Marshall 
CT classification. In multivariate logistic regression, the reference categories were: 
time elapse >24 hours, female sex, basic school education, and Marshall class I 
(denoting CT-negative finding). In the analysis, all other variables were numerical 
variables. In the multivariate logistic regression models, T-tau, Aβ40, and Aβ42 
were used independently and together with other variables in the same models. AUC 
was also used to study the biomarkers’ prognostic ability. AUC of 0.5–0.7 was 
considered poor, AUC of 0.7–0.8 was considered adequate, and AUC of 0.8–1.0 was 
considered very good (Zetterberg et al., 2013b), and a p value of <0.05 was 
statistically significant. The ROC curve at clinically compatible sensitivity >90% 
was used to define cut-off values for dichotomized outcomes prediction. MATLAB 
R2016b (Math Works, Natick, Massachusetts) and IBM SPSS Statistics 22 (IBM 
Corp, Armonk, New York) were used for data analysis.  

As used in Study II, PanelomiX toolbox (Robin et al., 2013) was also used to 
form a multiparameter prognostic panel using clinical information and the levels of 
T-tau, Aβ40, and Aβ42 for the best prediction of incomplete recovery. The clinical 
information included GCS, GOSE, time elapse, age, sex, educational levels, duration 
of PTA, ISS, and CT findings. To ensure a sensitivity of >90%, cut-off values were 
selected. Focusing only on a portion of the ROC curve, the partial AUC (pAUC) was 
used for the prognostic panels as a local comparative approach (Turck et al., 2010). 

4.6.1 Panels of biomarkers analyses 

PanelomiX (Studies II and III) 

As mentioned in the statistical analysis sections of studies II and III, medical 
biomarkers can be combined into panels to increase their predictive power. However, 
the increased application of panels and their implementation into clinical practice are 
hampered, because of the lack of implementing rigorous validation standards and 
interpretable results generated by ready-to-use tools. 
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PanelomiX, the computational toolbox, uses a method called iterative 
combination of biomarkers and thresholds. Thresholds that provide optimal 
classification performance are selected to combine clinical scores and biomarkers in 
this method (Robin et al., 2013). PanelomiX uses the random forest method to select 
a subset of parameters and thresholds to accelerate the calculation for a big quantity 
of biomarkers. ROC analysis and cross-validation are used to analyse the 
performance and robustness of the panels (Turck et al., 2010). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Combination of biomarkers using PanelomiX toolbox. 

 
To conclude, the PanelomiX software integrate biomarkers and examines the 
performance of panels to improve patient stratification, compared to single markers 
or additional classifiers. 



 
 

5 Results 

5.1 GFAP and UCH-L1 in orthopedic injury 

5.1.1 Study subjects 
Table 6 illustrates the injury types, mechanisms of injuries, ISS, as well as the 
demographic features of the two study groups. In the orthopedic injury cohort (n = 
73), the average patient age was 46.7 ± 18.3 years (mean ± standard deviation) and 
the majority of the patients were female (55%). In this cohort, the most frequent 
injuries were ankle fractures, lower or upper extremity soft tissue contusions and 
bruises, and wrist fractures (29%, 14%, and 10%, respectively). In the CT-negative 
mTBI subgroup, the mean age of the patients was 42.1 ± 18.6 years, and the majority 
of the patients were male (63%). A total of 43 patients (47%) in the mTBI subgroup 
had concomitant orthopedic injury. 

Table 6. Demographics of the subjects and extracranial injuries (From the original publication 
I) 

 Orthopedic 
trauma 

mTBI p value 

N 73 93  
Age 46.7 ± 18.3 42.1 ± 18.6 0.084 
Gender   0.019 
Male 33 (45.2%) 59 (63.4%)  
Female 40 (54.8%) 34 (36.6%)  
Mechanism of injury    
Ground level fall 47 (64.4%) 34 (36.6%)  
Head against object 0   (0.0%) 39 (41.9%)  
Acceleration / deceleration 5   (6.8%) 21 (22.6%)  
Fall from height 3   (4.1%) 20 (21.5%)  
Direct impact blow to head 0   (0.0%) 10 (10.8%)  
Unknown/other 7   (9.6%) 2   (2.2%)  
Missing 6   (8.2%) 1   (1.1%)  
Crush 5   (6.8%) 0   (0.0%)  
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Violence 0   (0.0%) 5   (5.4%)  
Injury severity score 3.9 ± 3.4 7.1 ± 6.6 0.002 
Extracerebral injury    
No extracerebral trauma 0   (0.0%) 49 (52.7%)  
Other superficial injuries of upper or lower extremity 4   (5.5%) 8   (8.6%)  
Ankle fracture (complex, bi- or trimalleoli) 11 (15.1%) 0   (0.0%)  
Ankle fracture (simple) 10 (13.7%) 1   (1.1%)  
Upper or lower extremity contusion 10 (13.7%) 0   (0.0%)  
Superficial injury of head (scalp, ears) 0   (0.0%) 10 (10.8%)  
Spinal fracture (without spinal cord injury) 0   (0.0%) 9   (9.7%)  
Forearm fracture (elbow included) 5   (6.8%) 4   (4.3%)  
Wrist fracture (radial or ulnar bone) 7   (9.6%) 1   (1.1%)  
Humerus fracture 6   (8.2%) 0   (0.0%)  
Maxillary or orbital fracture 0   (0.0%) 6   (6.5%)  
Hand fracture (fingers included) 3   (4.1%) 2   (2.2%)  
Superficial injuries involving multiple body regions 5   (6.8%) 0   (0.0%)  
Rib fracture (one, multiple and flail chest) 1   (1.4%) 4   (4.3%)  
Open wound of head (scalp, ears) 0   (0.0%) 4   (4.3%)  
Clavicle fracture (all types) 1   (1.4%) 3   (3.2%)  
Injury of muscle and / or tendon of upper or lower 
extremity 

3   (4.1%) 1   (1.1%)  

Skull base or calvarial fracture 0   (0.0%) 3   (3.2%)  
Hip fracture 3   (4.1%) 0   (0.0%)  
Pelvic fracture (simple, one location) 1   (1.4%) 2   (2.2%)  
Shoulder or elbow luxation 2   (2.7%) 1   (1.1%)  
Knee fracture (femur, tibia, and fibula included) 2   (2.7%) 0   (0.0%)  
Crushing injury of wrist and hand 2   (2.7%) 0   (0.0%)  
Dislocation, sprain and strain of joints and ligaments at 
neck level (excl: rupture or displacement 
(nontraumatic) of cervical intervertebral disc) 

0   (0.0%) 2   (2.2%)  

Renal contusion or laceration 0   (0.0%) 2   (2.2%)  
Pelvic fracture (complex) 1   (1.4%) 1   (1.1%)  
Foot or toe fracture 1   (1.4%) 1   (1.1%)  
Pelvic, abdominal, or dorsal muscle injury 1   (1.4%) 0   (0.0%)  
Thoracic contusion 0   (0.0%) 1   (1.1%)  
Dislocation, sprain and strain of joints and ligaments of 
head 

0   (0.0%) 1   (1.1%)  

Fracture of shaft of femur 0   (0.0%) 1   (1.1%)  
Values are expressed as mean ± standard deviation or number of subjects (percentage of subjects); 
N: number of subjects; Percentages do not sum up to 100% because some subjects had several 
mechanisms or several extracerebral injuries. Orthopedic, patients with orthopedic injury; mTBI, 
patients with mild traumatic brain injury 
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5.1.2 Levels of GFAP and UCH-L1  

Figure 6. Levels of ubiquitin C-terminal hydrolase-L1 (UCH-L1) and glial fibrillary acidic protein 
(GFAP) on different days in patients with orthopedic trauma (y-axis zoomed). Box plots 
represent medians in nanograms per milliliter and interquartile ranges. (From the 
original publication I) 

Figure 7. Spearman correlations coefficients (q) between ubiquitin C-terminal hydrolase-L1 
(UCH-L1) and glial fibrillary acidic protein (GFAP) levels in patients with orthopedic 
trauma on different days. p, p value of rho; n, number of subjects. (From the original 
publication I) 
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The GFAP and UCH-L1 levels were available for most of the orthopedic injury 
patients on arrival, the following day as well as at the follow-up visit (Figure 5).  

Spearman correlation coefficients between GFAP and UCH-L1 and scatter plots 
of these biomarkers in the same subjects are shown in Figure 6. In this figure, the 
number of plotted dots seems to be less than the number of subjects in the panels, 
since the levels of GFAP and UCH-L1 were identical in multiple subjects. On arrival 
(Spearman ρ = 0.739, p <0.001), day 1 (Spearman ρ = 0.544, p = 0.004), and at the 
follow-up visit (Spearman ρ = 0.382, p = 0.007), significant correlations were found 
between GFAP and UCH-L1 levels. Regarding orthopedic injuries, female patients 
had significantly higher levels of UCH-L1 than male patients (p = 0.036). This was 
the only association between biomarker values and demographic features. 

Orthopedic injury patients who presented with GFAP or UCH-L1 levels in the 
95th percentile (n = 6, 8%, GFAP >3.61 ng/mL or UCH-L1 >2.74 ng/mL) are shown 
in Table 7, along with their demographic features, previous and current injuries, 
comorbidities, and MRI findings. All patients with raised GFAP or UCH-L1 levels 
in the 95th percentile were female, of which four out of six patients (67%) showed 
raised  levels for both these biomarkers, and their injuries were either in the upper or 
lower extremities. A total of six patients were in the 95th percentile, of which five 
patients (83%) had distal part fractures and one had superficial injuries of the 
extremities. Five (83%) out of the six patients, after showing raised levels of either 
one or both biomarkers during the first week post injury, again showed a high level 
at the follow-up visit (Table 7). Only one patient in the CT-negative group showed 
biomarker levels, defined in the orthopedic controls, that were in the 95th percentile 
(GFAP >3.61 ng/mL or UCH-L1 >2.74 ng/mL). This 21-year-old male had no 
extracranial injuries and was previously healthy. On arrival day, his GFAP level was 
0 ng/mL and his UCH-L1 level was 3.50 ng/mL. On the follow-up visit, his GFAP 
level was 1.31 ng/mL and his UCH-L1 level was 0.80 ng/mL. There was no 
difference in biomarker levels between the three patients with skull base fracture 
with no intracranial abnormalities and other mTBI patients. 

5.1.3 MRI findings 
A total of 52 (71%) orthopedic trauma patients underwent head MRI, of which 30 
patients (58%) had normal MRI findings. Only one old contusion was suspected in 
one case, but either nonspecific ischemic-degenerative changes, or other 
insignificant abnormalities were shown in the rest of the patients. No imaging 
changes comparable with acute TBI were found. Normal findings were observed in 
four of the six patients (67%), who underwent head MRI, having levels of GFAP 
and UCH-L1 in the 95th percentile. Only one mTBI patient, whose arrival day 
sample showed UCH-L1 level in the 95th percentile, had normal head MRI findings.  
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Table 8.  Head MRI findings in the patients with orthopedic injury. T13D, T2, FLAIR, SWI, DWI 
and DTI sequences were utilized and used to confirm the absence of brain 
pathology. (From the original publication I) 

MRI finding N % 

Not done 21 28.8 

Normal 30 41.1 
Slight ischemic-degenerative lesions 7 9.6 

Ischemic-degenerative lesions and atrophy 1 1.4 

Old infarct, ischemic-degenerative lesions and atrophy 3 4.1 
Ischemic-degenerative lesions and signs of old trauma 1 1.4 
Venous angioma or cavernotic angioma 3 4.1 

Calcification 2 2.7 
Unspecified white matter lesion 5 6.8 

T13D, T2, fluid-attenuated inversion recovery (FLAIR), susceptibility-weighted imaging (SWI), 
diffusion-weighted imaging (DWI), and diffusion tensor imaging (DTI) sequences were utilized and 
used to confirm the absence of brain pathology. 

MRI findings in orthopedic injury patients are shown in Table 8. MRI findings were 
categorized into three classes: abnormal MRI findings, normal MRI findings, and 
MRI not done. For the orthopedic patients, the levels of GFAP and UCH-L1 within 
these three classes are shown in Table 9. No significant difference in levels of GFAP 
and UCH-L1 were observed among these classes. 
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5.1.4 Comparison between orthopedic trauma and CT-
negative mTBI groups 

On arrival day, higher GFAP levels were observed in patients with orthopedic trauma 
compared to patients with CT-negative mTBI findings (p = 0.026); but in the 
following days no difference was observed (Fig. 7). Comparing patients with 
orthopedic injury and CT-negative mTBI findings, no significant difference was 
observed in UCH-L1 levels. Therefore, the GFAP levels in the arrival day sampling 
had the ability to discriminate the patient groups modestly in the ROC analysis (AUC 
= 0.629, 95% CI, 0.514–0.731; Fig. 8 and Table 10). Differences in GFAP and UCH-
L1 levels over time are shown in Table 11. In patients with CT-negative mTBI, a 
significant decrease in UCH-L1 levels after arrival day were observed on day 1 and 
at the follow-up, while no significant differences in GFAP levels were observed. In 
orthopedic injury patients, no significant differences in GFAP and UCH-L1 levels 
were observed over time. Among patients with isolated CT-negative mTBI, 
orthopedic injury patients, and CT-negative mTBI patients with concomitant 
orthopedic injuries, no significant statistical differences in GFAP and UCH-L1 
levels were found. 
 
 

 

Figure 9. Receiver operating characteristic (ROC) curves for distinguishing orthopedic patients 
from patients with CT-negative mild traumatic brain injury Days 3 and 7 are not shown 
due to the sample size. GFAP, dashed line; UCH-L1, solid line. For numeral values see 
Table 6. (From the original publication I) 
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Table 10. Receiver operating characteristic curves for distinguishing orthopedic patients from 
patients with CT-negative mild traumatic brain injury. (From the original publication 
I) 

Days 3 and 7 are not shown because of the small sample size. Significant AUC in bold. 
GFAP, glial fibrillary acidic protein; UCH-L1, ubiquitin C-terminal hydrolase-L1; AUC, area under 
the receiver operating characteristic curve; CI, confidence interval; n (ortho), number of orthopedic 
patients; n (mTBI), number of patients with CT-negative mild traumatic brain injury. 
 

Table 11. Differences in UCH-L1 and GFAP Levels Over Time (From the original publication 
I) 

  Day 1 - Arrival day p value Follow-up - Arrival Day p value 

Orthopedic injury 

  n 11 
  

27 
  

  UCH-L1 
(ng / ml) 

-0.10 (-0.28; 0.00) 0.250 -0.10 (-0.28; 0.08) 0.336 

  GFAP  
(ng / ml) 

-0.03 (-0.18; 0.00) 0.641 0.00 (-0.22; 0.07) 0.194 

CT-negative mTBI 

  n 14 
  

37 
  

  UCH-L1 
(ng / ml) 

-0.15 (-0.40; 0.00) 0.021* -0.10 (-0.30; 0.00) 0.003* 

  GFAP   
(ng / ml) 

0.00 (-0.01; 0.06) 0.922 0.00 (-0.16; 0.18) 0.658 

The table shows changes in UCH-L1 and GFAP levels between arrival day and day 1 and arrival 
day and follow-up visit. n, number of subjects with proteomics levels at both time points; p values 
from Wilcoxon signed rank test. *p <0.05. Other values are expressed as median (25th; 75th 
percentile). GFAP, glial fibrillary acidic protein; UCH-L1, ubiquitin C-terminal hydrolase-L1; mTBI, 
mild traumatic brain injury. 

 
UCH-L1 (ng / mL) 

  
GFAP (ng / mL) 

 
n (ortho) n (mTBI) 

 
AUC 95 % CI 

  
AUC 95 % CI 

   

Arrival 
day 

0.523 0.399 0.638 
 

0.629 0.514 0.731 44 52 

Day 1 0.464 0.310 0.604  0.437 0.300 0.576 26 36 

Day 2 0.482 0.300 0.666  0.350 0.201 0.535 15 22 

Follow-
up 

0.547 0.432 0.651 
 

0.487 0.387 0.603 48 69 
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5.2 Early levels of GFAP and NF-L in mTBI 

5.2.1 Study subjects 
In the mTBI cohort of 107 patients, with 73 male (68.2%) and 34 female (31.8%) 
patients, the mean patient age was 47.6 ± 20.2 years. The number of patients with 
CT-negative and CT-positive findings were 52 (48.6%) and 55 (51.4%), 
respectively. The GOSE scores were available for 105 patients (98.1%). Table 12 
shows the patient characteristics. Regarding outcome, 15 patients (14%) had 
unfavorable outcome, 90 patients (84.1%) had favorable outcome, 68 patients 
(63.5%) had incomplete recovery, 37 patients (34.6%) had complete recovery, and 
4 patients were dead (3.7%). 

Table 12. Patient characteristics (From the original publication II) 

 
Age (years) 47.64 ± 20.19 

Sex  

Male 73 (68.2%) 

  Female 34 (31.8%) 

Marshall Grade  

   No visual pathology 52 (48.6%) 

   Diffuse injury 24 (22.4%) 

   Diffuse injury with swelling 1 (0.9%) 

   Diffuse injury with shift 1 (0.9%) 

   Mass lesions 29 (27.1%) 

Pupil reactivity  

  Unreactive 1 (0.9%) 

  Sluggish 2 (1.9%) 

  Reactive 99 (92.5%) 

  Missing data 5 (4.7%) 

GOSE  

  1 4 (3.7%) 

  2 0 

  3 6 (5.6%) 

  4 5 (4.7%) 

  5 7 (6.5%) 

  6 14 (13.1%) 

  7 32 (29.9%) 

  8  37 (34.6%) 
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  Missing data 2 (1.9%) 

  Total 107 (100%) 
Demographics are reported in mean ± standard deviation or percentages (%). GOSE = Glasgow 
Outcome Scale-Extended. 

5.2.2 GFAP and outcome 
Comparison of levels of GFAP between patients with unfavorable vs. favorable 
outcome, and incomplete vs. complete recovery are shown in figures 9A and 9B. 
There was not a significant difference between patients with incomplete recovery 
(median, 1467 pg/mL; IQR, 6453 pg/mL) and complete recovery (median, 612 
pg/mL; IQR, 1996 pg/mL). The patients with unfavorable outcome (median, 4867 
pg/mL; IQR, 24 667 pg/mL) had significantly higher levels of GFAP compared to 
the patients with favorable outcome (median, 875 pg/mL; IQR, 2280 pg/mL; p = 
0.002). 

Figure 10A. Levels of glial fibrillary acidic protein (GFAP) and neurofilament light protein (NF-
L) in patients with complete (Glasgow Outcome Scale-Extended [GOSE] 8) and 
incomplete (GOSE <8) recovery (y axis is zoomed). Box plots represent medians 
in picograms per milliliter and interquartile ranges. (From the original publication 
II)  
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Figure 10B. Levels of glial fibrillary acidic protein (GFAP) and neurofilament light protein (NF-
L) in patients with favorable (Glasgow Outcome Scale-Extended [GOSE] 5–8) and 
unfavorable (GOSE 1–4) outcome (y axis is zoomed). Box plots represent 
medians in picograms per milliliter and interquartile ranges. (From the original 
publication II) 

A significant negative correlation existed between GFAP levels and GOSE score 
(Spearman ρ = –0.25; p = 0.01; Table 13). With an AUC of 0.755, GFAP could 
predict favorable outcome (95% CI, 0.628–0.882; p = 0.002), and with an AUC of 
0.598, GFAP could predict complete recovery (95% CI, 0.489–0.706; p = 0.099; Fig. 
10A, 10B). 

Table 13. Correlation between biomarkers and GOSE and RPCSQ (From the original 
publication II) 

Biomarkers GOSE RPCSQ (PRQ, total) 

 Spearman ρ p-value n Pearson’s r p-value n 
GFAP -0.25 0.010 105 0.030 0.769 96 

NF-L -0.382 P <0.001 105 -0.016 0.874 96 
Statistically significant findings are in bold. GOSE: Glasgow Outcome Scale-Extended; RPCSQ: 
Rivermead Post Concussion Symptoms Questionnaire. 
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Figure 11A. Receiver operating characteristic (ROC) curves for predicting complete recovery 
(Glasgow Outcome Scale-Extended 8). Area under the ROC curve (AUC) for glial 
fibrillary acidic protein (GFAP), 0.598 (95% CI, 0.489–0.706, p = 0.099) and AUC 
for neurofilament light protein (NF-L), 0.665 (95% CI, 0.561–0.768, p = 0.005). 
(From the original publication II) 

 

 

 

 

 

 

 

Figure 11B. Receiver operating characteristic (ROC) curves for predicting favorable outcome 
(Glasgow Outcome Scale-Extended [GOSE] 5–8). Area under the ROC curve (AUC) 
for glial fibrillary acidic protein (GFAP), 0.755 (95% CI, 0.628–0.882, p = 0.002) and 
AUC for neurofilament light protein (NF-L), 0.826 (95% CI, 0.694–0.958, p <0.001). 
(From the original publication II)  
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5.2.3 GFAP and outcome in CT-positive / negative mTBI 
After dividing patients into CT-negative and CT-positive subgroups, there was no 
significant correlation of levels within these outcome subgroups, and there was no 
difference in GFAP levels between the outcome groups. GFAP was unable to predict 
outcome in multi-variate logistic regression model, neither independently, nor 
together with NF-L. 

5.2.4 NF-L and outcome 
Significantly higher levels of NF-L were observed in patients with incomplete 
recovery (median, 17 pg/mL; IQR, 47 pg/mL) compared to patients with complete 
recovery (median, 11 pg/mL; IQR, 10 pg/mL; p = 0.005). Patients with unfavorable 
outcome (median, 66 pg/mL; IQR, 35 pg/mL) also had significantly higher levels of 
NF-L than patients with favorable outcome (median, 13 pg/mL; IQR, 13 pg/mL; p 
<0.001; Fig. 9A, 9B).  

A significant negative correlation existed between the GOSE score and the NF-
L levels (Spearman ρ = –0.382; p <0.001; Table 12). With an AUC of 0.665 (95% 
CI, 0.561–0.768; p = 0.005) and an AUC of 0.826 (95% CI, 0.694–0.958; p <0.001), 
NF-L could predict complete recovery and favorable outcome, respectively (Fig. 
10A, 10B). Having GFAP in a multi-variate logistic regression model, the NF-L 
level was a complete recovery predictor (odds ratio [OR] = 1.008; 95% CI, 1.000–
1.016; Table 14). Furthermore, the NF-L level was also a statistically significant 
complete recovery predictor in the model (OR = 1.006; 95% CI, 1.001–1.011). 

Table 14. Logistic Regression Analysis of GFAP and NF-L to Distinguish Mild TBI Patients 
with Complete Recovery from Patients with Incomplete Recovery (From the original 
publication II) 

Number of patients = 98 OR 95%CI 
Age  0.987 0.961 1.013 
PTA 0.483 0.158 1.473 
Time elapse 4.037 1.264 12.897 
Worst GCS 0.672 0.285 1.581 
ISS 0.960 0.902 1.021 
Marshall II – V 0.417 0.121 1.442 
Marshall V 0.232 0.052 1.037 
Pupillary reactivity 29.760 1.543 574.069 
GFAP 1.000 1.000 1.000 
NF-L 1.008 1.000 1.016 

Time elapse of more than 24 hours, Marshall I, and pupil reactive are used as reference category. 
Significant OR values in bold. GFAP, glial fibrillary acidic protein; NF-L, neurofilament light protein; 
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TBI, traumatic brain injury; OR: odds ratio; CI: confidence interval; PTA: post-traumatic amnesia; 
GCS, Glasgow Coma Scale; ISS, Injury Severity Score. 

5.2.5 NF-L and outcome in CT-positive / negative mTBI 
In the CT-negative mTBI subgroup, there was no difference in the levels of NF-L 
between the outcome groups, and there was no significant correlation between the 
levels and the outcome. However, the NF-L levels in patients with incomplete 
recovery (median, 52 pg/mL; IQR, 54 pg/mL) were significantly higher than patients 
with complete recovery (median, 15 pg/mL; IQR, 15 pg/mL; p = 0.007), within the 
CT-positive mTBI subgroup. Also, within this subgroup, significantly higher levels 
of NF-L were observed in patients with unfavorable outcome (median, 66 pg/mL; 
IQR, 35 pg/mL) compared to patients with favorable outcome (median, 20 pg/mL; 
IQR, 41 pg/mL; p = 0.013). 

In the CT-positive mTBI subgroup, there was a significant negative correlation 
between GOSE score and the levels of NF-L (Spearman ρ = –0.450; p = 0.001). In 
this subgroup, with an AUC of 0.750 (95% CI, 0.593–0.908; p = 0.007) and an AUC 
of 0.720 (95% CI, 0.559–0.880; p = 0.013), NF-L could predict complete recovery 
and favorable outcome, respectively. Also, within this subgroup, in a multi-variate 
logistic regression model, the level of NF-L could significantly predict complete 
recovery (OR = 1.009; 95% CI, 1.001–1.016). 

5.2.6  Cut-off values 
By using the ROC curves of the full cohort, cut-off values for GFAP and NF-L were 
derived for predicting favorable outcome and complete recovery. The level of 
sensitivity was set to a minimum of 90%. 

For predicting complete recovery, GFAP had a cut-off level of 6438.05 pg/mL, 
with a sensitivity of 97% (95% CI, 86–100) and a specificity of 26% (95% CI, 68–
99). For the prediction of favorable outcome, GFAP had a cut-off level of 12189.85 
pg/mL, with a sensitivity of 92% (95% CI, 85–99) and a specificity of 47% (95% CI, 
16–68).  

For predicting complete recovery, NF-L had a cut-off value of 28.15 pg/mL, with 
a sensitivity of 94% (95% CI, 82–99) and a specificity of 44% (95% CI, 32–57). For 
the prediction of favorable outcome, NF-L had a cut-off value of 53.6 pg/mL, with 
a sensitivity of 90% (95% CI, 82–95) and a specificity of 67% (95% CI, 38–88). 

5.2.7 Combination of GFAP and NF-L and outcome 
For complete recovery, with GFAP levels below 6438.05 pg/mL and NF-L levels 
below 28.15 pg/mL, the combination of the two biomarkers were used in a panel 
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with a sensitivity set to >90%. The optimal sensitivity was 94.6% (95% CI, 86.5–
100.0) and specificity was 47.1% (95% CI, 35.3–58.8). 

For favorable outcome, with GFAP levels below 980.75 pg/mL and NF-L levels 
below 41.85 pg/mL, the combination of the two biomarkers were used in a panel 
with a sensitivity set to >90%. The optimal sensitivity was 90% (95% CI, 83.3–95.6) 
and specificity was 86.7% (95% CI, 66.7–100.0). 

5.2.8 Correlation between the levels of GFAP and NF-L 
The levels of GFAP and NF-L were correlated significantly, except for unfavorable 
outcome. Pearson’s r = 0.635 and p <0.0001 for the whole cohort. For incomplete 
recovery, Pearson’s r = 0.496 and p <0.0001, for complete recovery, Pearson’s r = 
0.995, p <0.0001, and for favorable outcome, Pearson’s r = 0.739 and p <0.0001. 

5.3 Admission levels of T-tau and Aβ40 and Aβ42 
in outcome of mTBI 

5.3.1 Study subjects 
In the mTBI cohort (n = 107), 72 male (68.6%) and 33 female (31.4%) patients were 
recruited, with the mean patient age of 47 ± 20 years (mean ± SD). The final study 
population was formed by the 105 patients with available GOSE score. Patients were 
divided into two subgroups, patients with CT-positive findings (n = 54, 51.4%) and 
patients with CT-negative findings (n = 51, 48.6%). Table 15 illustrates patients’ 
characteristics.  

Regarding outcome, 35% of patients had complete recovery (n = 37), 65% of 
patients had incomplete recovery (n = 68), and the mortality was 3.8% (n = 4). The 
time elapse was 28 ± 35 hours among the patients in whom the exact time of injury 
was available (n = 76). For the group of patients for whom time elapse was unknown, 
11 patients were sampled <24 hours, and 18 patients were sampled >24 hours from 
the injury.  
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Table 15. Patient characteristics (From the original publication III) 

Age (years) 47.46 ± 20.25 

Sex  

Male 72 (68.6%) 

  Female 33 (31.4%) 

Marshall Grade  

   No visual pathology 51 (48.6%) 

   Diffuse injury 24 (22.9%) 

   Diffuse injury with swelling 1 (1%) 

   Diffuse injury with shift 1 (1%) 

   Mass lesions 28 (26.7%) 

Pupil reactivity  

  Unreactive 1 (1%) 

  Sluggish 2 (1.9%) 

  Reactive 98 (96.2%) 

  Missing data 4 (3.8%) 

GOSE  

  1 4 (3.8%) 

  2 0 

  3 6 (5.7%) 

  4 5 (4.8%) 

  5 7 (6.7%) 

  6 14 (13.3%) 

  7 32 (30.5%) 

  8  37 (35%) 

  Missing data 2 (1.9%) 

  Total 107 (100%) 
Demographics are reported in mean ± standard deviation or percentages (%). GOSE = Glasgow 
Outcome Scale Extended. 

5.3.2 The levels of T-tau and outcome 
No significant differences were observed after comparing the levels of T-tau between 
patients with incomplete recovery (2.8 pg/mL, IQR 7.5 pg/mL) and patients with 
complete recovery (2.65 pg/mL, IQR 3.58 pg/mL; Figure 11). A significant negative 
correlation between GOSE score and the levels of T-tau were observed in all patients 
(Spearman ρ = –0.231, p = 0.018; Table 16A). The likelihood of complete recovery 
could not be predicted by the level of T-tau (AUC 0.56, 95% CI, 0.45–0.67; Figure 
12A). It seemed that gender influenced T-tau (Table 16B). There was no significant 
correlation between the outcome and the levels of T-tau within the CT-negative 
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subgroup, and there was no difference in the levels of T-tau between the outcome 
groups. A significant negative correlation existed in the CT-positive subgroup 
between the ordinal GOSE score and the levels of T-tau (Spearman ρ = –0.288, p = 
0.035). There was no correlation between the levels of T-tau and the RPCSQ scores 
(Table 16A). 

Table 16A. Correlation between biomarkers and GOSE and RPCSQ (From the original 
publication III) 

Biomarkers GOSE RPCSQ (PRQ, total) 

 Spearman ρ p-value n Pearson’s r p-value N 

Amyloid β40  –0.082 0.410 104 –0.007 0.948 95 

Amyloid β40 0.063 0.525 103 –0.015 0.889 94 

Tau –0.231 0.018 105 –0.013 0.900 96 

Statistically significant findings are in bold. GOSE: Glasgow Outcome Scale Extended; RPCSQ: 
Rivermead Post Concussion Symptoms Questionnaire. 

Table 16B. Correlation between biomarkers and Gender and Age (From the original publication 
III) 

Biomarkers Gender Age 

 Spearman ρ p-value n Pearson’s r p-value n 

Amyloid β40  0.034 0.731 104 0.180 0.068 104 

Amyloid β40 –0.032 0.750 103 0.063 0.525 103 

Tau 0.252 0.010 105 0.013 0.899 105 

Statistically significant findings are in bold. 
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Figure 12.  Levels of total tau (T-tau), β-amyloid isoform 1–40 (Aβ40), and β-amyloid isoform 1–42 
(Aβ42) in patients with complete (GOS 8) and incomplete (GOS <8) recovery (y axis is 
zoomed). Box plots represent medians in picograms per milliliter and interquartile 
ranges. (From the original publication III) 

5.3.3 The levels of Aβ40 and Aβ42 and outcome 
There was no significant difference in the levels of Aβ40 between patients with 
incomplete (17.42 pg / mL, IQR 12.65pg / mL) and complete recovery (16.9 pg / 
mL, IQR 12.76 pg / mL). There was also no significant difference in the levels of 
Aβ42 between patients with incomplete (15.23 pg / mL, IQR 10.61 pg / mL) and 
complete recovery (16.94 pg / mL, IQR 12.36 pg / mL; Figure 11). The levels of 
Aβ40 and Aβ42 had no significant correlation with the GOSE score (Table 16A). 
Prediction of complete recovery were not possible by examining Aβ40 (AUC 0.52, 
95% CI, 0.41 – 0.64) and Aβ42 (AUC 0.54, 95% CI, 0.43 – 0.63; Figure 12B, 12C). 
There was no difference in levels of Aβ40 and Aβ42 between the CT-positive and 
CT-negative outcome groups, and there was no significant correlation between the 
outcome and levels within these subgroups. There was no correlation between the 
levels of Aβ40 and Aβ42 and the RPCSQ scores (Table 16A). 
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Figure 13A. Receiver operating characteristic (ROC) curves for predicting complete recovery 
(GOS 8). Area under the curve (AUC) for T-tau, 0.56 (95% CI 0.45–0.67). (From the 
original publication III) 

 

 

 

 

 

 

 

 

 

 

 

Figure 13B. ROC curves for predicting complete recovery (GOS 8). AUC for Aβ40, 0.52 (95% CI 
0.41–0.64). (From the original publication III) 



Iftakher Hossain 

 76 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13C. ROC curves for predicting complete recovery (GOS 8). AUC for Aβ42, 0.54 (95% CI 
0.43–0.63). (From the original publication III) 

5.3.4 Combining T-tau, Aβ40 and Aβ42 
T-tau were not able to predict outcome together with Aβ40 and Aβ42 or 
independently, or vice versa, using a conventional multivariate logistic regression 
model. For the evaluation of the ability of these three biomarkers to predict 
incomplete recovery, PanelomiX software was used. 

The optimal sensitivity was 92.5% (95% CI, 85.1–98.5) and specificity was 
27.8% (95% CI, 13.9–41.7), when the sensitivity was set to >90%, and levels of T-
tau were above 0.55 pg/mL, Aβ40 above 20.26 pg/mL and Aβ42 above 23.9 pg/mL, 
for at least two of the three biomarkers. 

5.3.5 Correlation among the levels of T-tau, Aβ40 and Aβ42 
There was no significant correlation in levels of T-tau, Aβ40 and Aβ42 for 
incomplete and complete recovery subgroups, as well as in the whole population.  

5.3.6 Best multiparameter panel for outcome prediction 
Combining biomarker levels, clinical variables, and considering time elapse to 
predict the outcome, different panels were examined to find the best combination. 
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T-tau taken >24 hours from the injury, combined with ISS and age, was the best 
available panel. This panel had a sensitivity and specificity of 90.8% (95% CI, 83.1–
96.9) and 57.1% (95% CI, 40–74.3), respectively, given that the variables were 
above their cut-off values (12.84 pg/ml for T-tau, 3.5 for ISS, and 22.5 years for age) 
for at least two of the three variables.



 
 

6 Discussion 

6.1 Persistently elevated levels of GFAP and UCH-
L1 in orthopedic injury, unrelated to TBI 

In this observational, prospective, two-center study, the serum levels of GFAP and 
UCH-L1 were assessed in patients with CT-negative mTBI findings compared to 
patients with acute orthopedic injury. The main finding was that, in a clinically 
relevant sense, these biomarker levels were unable to discriminate these groups. 
Therefore, when determining whether patients with acute injuries have concomitant 
mTBI or not, these biomarkers do not provide diagnostic benefit. In addition, these 
levels of biomarkers were not able to distinguish patients with isolated CT-negative 
mTBI, patients with CT-negative mTBI with concomitant orthopedic injuries, and 
patients with orthopedic injuries. High levels of these biomarkers were prone to 
persist, comparing acute phase sampling to samples taken at follow-up visits several 
months later. This suggests that, irrespective of an injury, clearly higher levels can 
be found in some people. All the patients in the orthopedic injury subgroup with 
biomarker levels in the 95th percentile had injuries in the extremities and were 
female. Of the 52 patients in the othopedic injury subgroup who underwent head 
MRI, 30 patients had normal MRI findings, while the other 22 patients had 
nonspecific ischemic-degenerative changes indications or other insignificant 
abnormalities. None of these findings suggested acute TBI, which was carefully 
clinically excluded. In addition, only one patient had CT-negative mTBI findings 
together with high biomarker values but had normal MRI findings.  

Many studies have explored the levels of UCH-L1 and GFAP in all TBI severity 
classes, though the mTBI validation is incomplete. The reason is that the controls are 
generally healthy volunteers, and poor characterization of patients and small 
numbers have been barriers when non-CNS trauma controls are used. Also, the 
diagnostic differentiation that is relevant for this study is for mTBI, but comparison 
in previous studies has mainly been with sTBI and moTBI. Promising results in 
diagnostical and outcome prediction potential of GFAP and UCH-L1 for TBI have 
been reported by several studies (Mondello et al., 2012; Diaz-Arrastia, et al., 2014; 
Nylén et al., 2006; Mondello et al., 2014; Okonkwo et al., 2013; Papa & Lewis, 
2012). Some studies detected measurable but low levels of GFAP (Honda et al., 
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2010; Papa et al., 2016a; Papa & Lewis, 2012; Welch et al., 2016) and UCH-
L1(Mondello et al., 2012; Diaz-Arrastia et al., 2014; Papa et al., 2010, 2016b) in 
patients with orthopedic injury without any TBI. Two studies have shown that higher 
levels of GFAP (Papa & Lewis, 2012)and UCH-L1 (Papa et al., 2012) were observed 
in orthopedic trauma patients compared to the uninjured controls, and significant 
differences were found between all other groups (including orthopedic controls and 
different TBI severities) and uninjured controls (Papa et al., 2012; Papa & Lewis, 
2012). Papa et al. found that in patients with CT-positive findings the breakdown 
product levels of GFAP were significantly higher compared to patients with CT-
negative findings, irrespective of mTBI, moTBI or orthopedic injury. They also 
found that significantly higher breakdown product levels of GFAP were found in 
CT-negative mTBI and moTBI patients compared to patients with orthopedic 
injuries, although no median of p values were provided (Papa & Lewis, 2012). The 
performance of UCH-L1 was investigated by the same group, and they found that 
the levels of UCH-L1 were higher in patients with CT-negative TBI (mTBI or 
moTBI) compared to CT-negative trauma controls (p = 0.057) (Papa et al., 2012). 
The results of the current study are inconsistent with these findings. However, 
another study has also shown that patients with mTBI could not be discriminated 
from uninjured controls after analysing the levels of UCH-L1 in two different 
immunoassays (Puvenna et al., 2014). Papa et al. also found promising results for 
differentiation of patients with CT-positive and CT-negative mTBI and moTBI and 
patients with orthopedic injuries, regarding performance of UCH-L1 and GFAP 
levels (Papa et al., 2016b). They also detected high UCH-L1 levels (range 0.045–
4.241 ng/mL) in some of their controls with orthopedic trauma, which agree with 
our findings, even though the TBI study populations has significant differences.  

Cross-study comparisons are difficult, since different assay methods are used. 
However, key findings in our analysis relied on comparisons within the study by 
using a single analytic platform, so these should not be affected. We found 
significant correlations between the levels of UCH-L1 and GFAP in patients with 
orthopedic injuries, on arrival day, day 1 and at the follow-up visit. Biomarker levels 
over time showed one significant difference: the levels of UCH-L1 in patients with 
CT-negative mTBI were significantly lower on day 1 and follow-up compared to 
arrival day. In the orthopedic injury subgroup of our study there was no relationship 
found between the relatively high levels of UCH-L1 and GFAP in patients and their 
acute injury, since heterogeneous injuries were observed with elevated biomarker 
levels several months after the injury. The above-mentioned studies, excluding one 
study by Papa, et al., (Papa et al., 2016b) did not measure the levels and correlation 
of UCH-L1 and GFAP in patients with orthopedic injuries at different time points.  

Interestingly, all the patients who had UCH-L1 and GFAP levels in the 95th 
percentile of the orthopedic injury subgroup were females, and at the follow-up visit, 
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majority of them had persistent high levels of these biomarkers. Throughout the 
orthopedic injury subgroup, female patients had significantly higher UCH-L1 levels 
than male patients. This observation is still unexplained. However, in a combined-
gender analysis, higher levels of GFAP were observed in patients with orthopedic 
injury compared to patients with mTBI, while on arrival, the levels of UCH-L1 had 
no statistical difference.  

Original presumptions were that both UCH-L1 and GFAP are CNS specific. 
Subsequently, UCH-L1 has been detected outside the CNS, in the cells of the kidney, 
ovaries, and testis (Kajimoto et al., 1992; Meyer-Schwesinger et al., 2009; Wilkinson 
et al., 1989), whereas the expression of GFAP was found in non-CNS and non-glial 
cells, such as liver stellate cells (Guido et al., 1997; Middeldorp & Hol, 2011), 
Schwann cells (Jessen et al., 1984), chondrocytes, (Hainfellner et al., 2001) 
lymphocytes (Middeldorp & Hol, 2011), fibroblasts (Hainfellner et al., 2001), and 
myoepithelial cells (Viale et al., 1988). Studies with knocked-out mice as subjects 
have reported that UCH-L1 plays an integral role in the function and structure of the 
neuromuscular junction (Chen et al., 2010). Regardless, UCH-L1 and GFAP have 
largely been considered TBI specific, regarding TBI diagnostics (Papa & Lewis, 
2012; Papa et al., 2012). S100B is the most researched astroglial biomarker for TBI 
(Thelin et al., 2017; Undén et al., 2013), and is included in the Scandinavian 
guidelines for the initial management of minimal, mild and moderate traumatic head 
injuries (Undén et al., 2015). Since it has an effective NPV for pathological 
intracranial CT findings (Romner et al., 2000), it is possible to avoid unnecessary 
CT imaging, but its availability of extracranial sources, e.g. adipocytes and 
chondrocytes, has raised concerns regarding its utility (Olsson et al., 2011; Rothoerl 
et al., 1998; Savola et al., 2004; Thelin et al., 2017). Nevertheless, GFAP has been 
reported to be superior to S100B in the detection of intracranial injuries in multi-
trauma patients with TBI (Luoto et al., 2017; Zetterberg & Blennow, 2016), and 
patients with mTBI (Papa et al., 2016a) and sTBI (Diaz-Arrastia et al., 2014) .  

UCH-L1 and GFAP are not TBI specific biomarkers, even though they are 
mostly originated from the CNS. It has been reported that strokes and seizures 
resulted in elevated levels of UCH-L1 and GFAP (Gurnett et al., 2003; Ren et al., 
2016). Studies on glioma (Jung et al., 2007) and ependymomas (Ilhan et al., 2011) 
have reported high plasma levels of GFAP, and a promising study investigated that 
there was a correlation between the levels of GFAP and the prognostic markers with 
high-grade gliomas. However, there was one subject included in the healthy control 
group of this study who had significantly higher levels of GFAP compared to the 
median of GFAP levels of the patients with high-grade glioma (Kiviniemi et al., 
2015). 

Previously, using the same assay method, our research group reported that the 
levels of UCH-L1 and GFAP could differentiate patients with unfavorable outcome 
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from favorable outcome. In that study, the reported cut-off value for unfavorable 
outcome of UCH-L1 and GFAP was 1.03 ng/mL and 1.26 ng/mL (Takala et al., 
2016) respectively, while in another study a cut-off value for UCH-L1 of 1.89 ng/mL 
(Mondello et al., 2011) and for GFAP >1.5 ng/mL (Vos et al., 2004) to predict in-
hospital mortality has been reported. Papa et al. reported the median levels of UCH-
L1 and GFAP for the orthopedic injury patients, which are relatively comparable 
with our study findings. Our study, using The Evidence Investigator Cerebral 
Custom Array IV by Randox Biochip technology, found that patients with acute 
orthopedic trauma might often have overlapping levels of UCH-L1 and GFAP with 
the levels of patients with mTBI. Note that in this study we did not analyse the 
properties of these biomarkers and their ability to assess different subgroups of 
mTBI.  

All patients with available MRI (67%) in the group of patients with GFAP and 
UCH-L1 levels in the 95th percentile, had normal MRI findings. These patients had 
neither intracranial tumors, nor any history of seizures or epilepsy related to their 
current injuries. According to these results, it is clear that an increase in the levels of 
these biomarkers, for the orthopedic patients, is not related to any acute brain disease 
or condition. Therefore, three possible interferences and explanations are raised.  

First, previous studies reported that orthopedic injury patients could have higher 
levels of GFAP and UCH-L1 compared to the healthy control group. It supports the 
idea that these two biomarkers are not entirely brain specific. In other words, feasible 
extracerebral origins exists. AntiGFAP antibodies have been found in ligamentum 
and epiglottis flavum in vitro, by staining fibroblasts and chondrocytes (Hainfellner 
et al., 2001). Fellenberg et al. and Hsu et al. studied that, bone marrow-derived 
mesenchymal cells, and skin fibroblasts of patients with spinal muscular atrophy in 
vitro could be a rich source of UCH-L1, respectively (Fellenberg et al., 2010; Hsu et 
al., 2010). Thus, the expression of GFAP and UCH-L1 in fibroblasts and 
chondrocytes of extremity bone marrow and joint cartilage (which) leads to an 
increase of these biomarkers in peripheral blood following orthopedic fractures, 
which potentially explains our results. It has been also studied that both of these 
biomarkers could be expressed in neuromuscular junction and Schwann cells, which 
further leads to an explanation that our patients with orhopedic trauma developed 
peripheral traumatic neuropathy (Chen et al., 2010; Jessen et al., 1984). 
Unfortunately, this explanation remains theoretical, since clinical data describing the 
symptoms of neuropathy were unavailable and these patients did not undergo 
electrophysiological tests. 

Secondly, although there is a minor possibility that according to the current 
definition of mTBI, which is not standardized, some orthopedic controls could have 
concomitant mTBI. However, it should be considered that the inclusion and 
exclusion criteria of orthopedic controls and patients with TBI were evaluated 
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meticulously during this prospective study. If any patient with orthopedic injuries 
had any suspicions or signs of head or neck trauma, indicating concussion or 
involved in high-energy trauma, the patient was excluded from this study. Following 
this, no patients, including those with elevated levels of GFAP and UCH-L1, had 
acute changes in their MRI. 

Thirdly, it is well known that orthopedic injuries might develop CNS 
inflammation following the neurohumoral and cytokine storm due to the peripheral 
trauma. Therefore, there is a possibility that some of the orthopedic patients in this 
study had a non-traumatic CNS insult (Cape et al., 2014; Chuang et al., 2005).  

According to current literature, the half-life of GFAP and UCH-L1 are 
approximately 10 hours and 24 hours, respectively (Thelin et al., 2017). Surprisingly, 
in this study, those patients with orthopedic injuries had elevated levels of these two 
blood biomarkers in acute setting, as well as several months later, during the follow-
up visits. It conveys the information that many patients with orthopedic injuries had 
high levels of GFAP and UCH-L1, irrespective of TBI and acute injuries. 

6.2 Significant correlation between early levels of 
GFAP and NF-L and outcome in mTBI 

It was found that in this population, NF-L was useful in predicting complete 
recovery, and especially useful in predicting favorable outcome, using samples 
obtained within 24 hours after admission. GFAP also provided adequate favorable 
outcome prediction ability. The most important finding was that in a multivariate 
logistic regression model, with known level of GFAP and outcome predictors, 
statistically, NF-L was a significant complete recovery predictor for all patients with 
mTBI. Moreover, in patients with CT-positive mTBI, NF-L could predict complete 
recovery independently in a multi-variate logistic regression model using the same 
clinical variables. For the prediction of complete recovery, compared to the 
prediction ability of a single biomarker, a combination of these two biomarkers has 
shown increased sensitivity (94.6%) and specificity (47.1%). For predicting 
favorable outcome, the same combination also had higher sensitivity (90.0%) and 
specificity (86.7%), compared to a single biomarker. Significantly higher levels of 
NF-L were observed in patients with incomplete recovery, compared to the patients 
with complete recovery. Patients with unfavorable outcome had significantly higher 
levels of GFAP and NF-L, compared to patients with favorable outcome. The 
outcome assessed with GOSE had a strong negative correlation with the levels of 
GFAP and NF-L. 

The correlation of the two biomarkers was weakest in patients with unfavorable 
outcome, since different structures and cell types express GFAP and NF-L, different 
responses arise from the exoskeleton of long axons and the cytoskeleton of astroglia 
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following the same physical forces. Therefore, such panels of biomarkers are needed 
to be developed for more reliable prediction of outcome following mTBI.  

Higher levels of GFAP were observed in patients with incomplete recovery in 
one of our previous studies, assessing samples taken on Day 1 after the injury in a 
cohort with TBIs of all severities. Patients with unfavorable outcome had higher 
levels of GFAP on the arrival day, Day 1, and Day 2, and these levels had negative 
correlation with GOSE. Furthermore, the levels of GFAP upon arrival had the ability 
to distinguish between unfavorable and favorable outcome (Takala et al., 2016). A 
previous study showed that GFAP levels, within 12 hours from the injury, were 
higher in patients with unfavorable outcome than patients with favorable outcome 
(Zetterberg et al., 2013a). One study found that mortality in patients with TBI could 
be predicted by elevated levels of GFAP on Day 2 (Lumpkins et al., 2008), while 
another study reported GFAP levels were significant outcome predictors within 6 
hours of the injury (Wiesmann et al., 2010). One study reported that GFAP 
breakdown products could not sufficiently predict complete recovery, but favorable 
outcome could be adequately predicted (McMahon et al., 2015). An interesting 
finding by Metting et al. (ref?) is that prediction was not possible from GFAP levels 
measured <3 hours after the injury, after comparing these results with the GOSE 
score obtained 6 months following mTBI (Luoto et al., 2017; Wang et al., 2018b). 
This result may relate to findings that have shown that the levels of GFAP only rise 
16–24 hours after the injury (E. P. Thelin, Zeiler, et al., 2017). The Transforming 
Research and Clinical Knowledge in TBI (TRACK-TBI) study, where 83% of the 
study population were patients with mTBI, showed that patients with complete 
recovery could not be discriminated from patients with incomplete recovery, by 
observing the GFAP levels (Diaz-Arrastia et al., 2014). Including TBIs of all 
severities, two studies found that GFAP is able to discriminate patients with 
favorable and unfavorable outcome (Diaz-Arrastia et al., 2014; Takala et al., 2016). 
The TRACK-TBI investigators reported this aforementioned property of GFAP, 
with an AUC of 0.74 (95% CI, 0.61–0.87) (Diaz-Arrastia et al., 2014) and our prior 
study reported this property with an AUC of 0.723 (95% CI, 0.602–0.814) (Takala 
et al., 2016). Thus, the results of this study are consistent with the above-mentioned 
studies, with an AUC of 0.755 (95% CI, 0.628–0.882). Studies have shown that 
predictive ability may improve by combining multiple astroglia-derived biomarkers 
(Halford et al., 2017).  

It has been reported that for sTBI, NF-L is a blood-based protein biomarker with 
high sensitivity (Shahim et al., 2016). The relationship between the NF-L levels in 
the CSF and DTI of DAI after sTBI has been investigated, and it is shown that the 
NF-L levels could predict the TBI outcome as well as the degree of the axonal injury 
(Skillbäck et al., 2014). A novel finding in this study is that, in the whole study 
population, as well as in the CT-positive mTBI subgroup, NF-L levels have a 
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predictive ability to discriminate patients with unfavorable outcome from favorable 
outcome and incomplete recovery from complete recovery. While other studies have 
shown that athletes with rapid recovery could be differentiated from athletes with 
prolonged symptoms by assessing the levels of NF-L (Shahim et al., 2017; Shahim 
et al., 2016a), in this study there was no correlation between the RPCSQ scores and 
the levels of either GFAP of NF-L. There was, however, a correlation between the 
GOSE scores and the NF-L levels. A combination of the levels of NF-L and GFAP 
obtained higher sensitivity and specificity than that of each individual biomarker.  

Neither of the two biomarkers were able to predict recovery in the CT-negative 
subgroup. Potentially, inadequate statistical power could be the cause. Poor 
outcomes were less in the CT-negative subgroup, even though the CT-positive and 
CT-negative subgroups had similar population size. It is also a possibility that the 
factors that cause poor outcome can be different in the CT-positive and CT-negative 
subgroups. Rather than structural injury (detectable by structural neuroimaging or 
possibly by blood biomarkers), host factors, such as education, premorbid mental 
health, coping strategies and socioeconomic status (Lingsma et al., 2015; van der 
Naalt et al., 2017), could be causes of poor outcome in CT-negative patients. 

In this mTBI study, available data showed that even though all patients had GCS 
≥13, some injuries could be classified as more severe injuries, using other severity 
measures, such as PTA. For many patients it was not possible to assess the duration 
of PTA accurately. In addition, imaging findings in TBI have no standardized 
severity classification. Therefore, only GCS was used, since it is most often used, 
and it has least uncertainty. 

6.3 Prediction ability of admission levels of T-tau 
for outcome in mTBI 

This observational, prospective study investigated the circulating protein biomarkers 
T-tau, Aβ40, and Aβ42 and their performance for predicting outcome within the first 
24 hours from admission, in a well characterized cohort including CT-positive and 
CT-negative subgroups, implementing highly sensitive modern immunoassays. A 
significant correlation between T-tau levels and outcome was found in the whole 
mTBI study population, including the CT-positive subgroup. However, comparing 
patients with complete and incomplete recovery, no significant difference was 
observed in the levels of T-tau, Aβ40, and Aβ42, and these levels could not usefully 
predict the likelihood of complete recovery. Furthermore, assessing the RPCSQ 
scores, there was no correlation between the biomarker levels and the severity of 
symptoms. Although, a multiparameter panel method suggested that T-tau levels 
sampled >24 hours from the injury may have predictive value (sensitivity of 90.8% 
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and specificity of 57.1%) for predicting incomplete recovery, when used in 
combination with the clinical parameters ISS and age. 

This study’s results agree with earlier studies that reported limited diagnostic 
value of serum tau for intracranial injury and outcome prediction of mTBI (Bulut et 
al., 2006; Kavalci et al., 2007). The TRACK-TBI investigators reported that acute 
P-tau levels, as well as the P-tau – T-tau ratio used in an assay platform with high 
sensitivity, outperformed individual T-tau levels in TBI outcome prediction 
(Rubenstein et al., 2017). The results of this study might have been different if P-tau 
levels were also measured, but only T-tau levels were available and analysed. The 
admission levels of plasma T-tau are not able to discriminate complete and 
incomplete recovery. A cause may be that in most cases of mTBI, mainly subcortical 
myelinated axons in the white matter are injured, but the unmyelinated cortical axons 
mainly express tau (Blennow et al., 2012; Shahim et al., 2016a). The samples were 
obtained within 24 hours after admission, therefore, it might be that the measurable 
levels of T-tau were not reflecting the cortical axonal injury yet, since this eventual 
injury is a slower process. Previous studies reported that there was no correlation 
between the levels of Aβ40 and Aβ42 and outcome, and these levels are not able to 
predict complete or incomplete recovery (Marklund et al., 2014; McKee et al., 2016; 
Olsson et al., 2004; Shahim et al., 2016a; Tsitsopoulos et al., 2017). This study 
results agree with these previous findings. No significant correlation was found 
between neurocognitive tests following mTBI and plasma levels of T-tau and Aβ42 
in a recent study (Lippa et al., 2019), but since late levels of T-tau were used, the 
findings of study cannot be compared to the results of our study. 

6.4 Strengths  

Study I 

Very few previous published studies included, mostly, a small number of orthopedic 
patients and healthy individuals as controls, to compare the levels of GFAP and 
UCH-L1 with CT-negative mTBI. This study explored the specificity of these blood 
biomarkers to discriminate the patients with orthopedic injury and CT-negative 
mTBI, using a well-characterized cohort. The samples were collected at multiple 
time points, including the follow-up visit. Additionally, their head MRI data were 
analysed at 4 weeks, as well as 3–10 months during the follow-up visit to study the 
reasons of persistently elevated levels of GFAP and UCH-L1 in the orthopedic 
trauma group. Following this, the study strengthens the idea that GFAP and UCH-
L1 are not TBI specific biomarkers. 
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Study II 

For the clinical translation of biomarkers, especially for the stratification of the 
patients with mTBI, the prognostic ability of the blood biomarkers needs to be 
evaluated by using the acute samples. The outcome of the patients with mTBI was 
predicted using their admission blood levels of GFAP and NF-L, which was a unique 
criterion of this study. A well characterized cohort with a considerable sample size 
and measuring the levels of these blood-based biomarkers by using Simoa 
technology, were the other strengths of this study. It has been reported that Simoa 
has higher sensitivity than electro-chemiluminescence–based assay or conventional 
enzyme-linked immunosorbent assay (ELISA) (Kuhle et al., 2016). 

Study III 

A strength of the study is that a multiparameter panel was developed which 
supported the idea that T-tau is a slow-raising biomarker. Additionally, the patient 
cohort was well characterized and collected prospectively. It is almost impossible to 
measure the blood levels of T-tau accurately in mTBI, using most of the 
immunoassays, since the concentrations are considerably low in peripheral blood 
(Zetterberg & Blennow, 2016), therefore, the Simoa technology was also used, as in 
Study II. Additionally, experimenting the prediction ability of the axon terminal 
biomarkers for mTBI, using the admission sample was a novel idea. 

6.5 Limitations 

Study I 

Although, since this study reported for the first time that the levels of GFAP and 
UCH-L1 are persistently high in some patients, irrespective of their traumas, this 
study had some limitations. A major limitation of this study was the performance of 
Randox assay. The lower limit quantification ability of this assay method is inferior 
to the other current assays. A more sensitive assay could possibly be able to 
differentiate patients with orthopedic injury and CT-negative mTBI (Dadas et al., 
2018; Papa et al., 2016b; Papa & Lewis, 2012). However, this limitation would not 
change the main finding of this study – some patients have elevated levels of GFAP 
and UCH-L1, irrespective of an injury. This limitation also emphasises the 
development of an ideal immunoassay for the clinical application of the blood 
biomarkers (Luoto et al., 2017; Wang et al., 2018b). 

Another limitation is that we did not have the biomarker levels measured from 
healthy controls. This could have provided more insights on the biochemical 
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properties of these blood-borne biomarkers in injured and uninjured patients 
(Middeldorp & Hol, 2011).  

Furthermore, patients were not recruited at night and their first samples were 
taken on day 1. Moreover, many patients with mTBI only came to the ED after 
several hours of initial injury when symptoms developed, which is a common 
phenomenon.  Due to this, it might have had an effect on the levels of UCH-L1 and 
GFAP, considering their kinetics in blood (Halford et al., 2017; Mondello et al., 
2018; Thelin et al., 2017). 

Study II 

The key limitation of this study is the lack of data for NF-L and GFAP levels >24 
hours after admission. If later levels were present, the likelihood of recovery could 
be better predicted. There was variety in the time from injury to sampling, which 
may have influenced the biomarker levels, even though this was included in the 
analysis as a covariate. To assess the clinical significance of several measured levels, 
more concrete and detailed information of these biomarker kinetics after TBI is 
necessary.  

Another limitation is the lack of information on the symptom’s duration 
following mTBI in patients who recovered prior to outcome evaluation. Importantly, 
the mTBI cohort in this study is atypical to a general mTBI study population. The 
severity was only assessed by GCS, due to a large CT-positive subgroup, which is 
uncommon, but due to hospital admission, the patients were easily recruited.  

Another recognized limitation is the variable of the GOSE assessment between 
6–12 months, yet all patients was assessed by one experienced clinician. Studies 
have reported that patients with full recovery reach recovery shortly following 
mTBI, whereas most patients who have symptoms after 6 months will also still be 
symptomatic by 1 year (Van Der Naalt et al., 1999). Uncertainty arises in the 
outcome validation since it is not impossible to recover by 1 year after still being 
symptomatic at 6 months.  

These biomarkers’ prognostic ability has quite large confidence intervals, due to 
the considerably small sample size, especially considering large variability within 
mTBI, which should be noted when interpreting results. Larger sample sizes should 
confirm these results, even though unfavorable outcome percentage after mTBI 
(15/107; 14%) in this study is in correlation with the general concept of mTBI 
outcome. 
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Study III 

The first limitation of this study is that only a single timepoint, within 24 hours after 
admission, data of T-tau, Aβ40 and Aβ42 levels were available. More information 
about the ability of the studied biomarkers to predict outcome could be revealed by 
a serial sampling kinetic study, which would estimate the timing of the peak values 
and the total efflux of a biomarker (Thelin et al., 2019). It has been reported that Tau 
is a long-term biomarker for mTBI, with first peak value <1 hour after the initial 
injury and second peak around 36 hours after the injury (Shahim et al., 2014). Within 
the initial 24 hours after the injury, Aβ42 becomes significantly elevated and remains 
fairly stable for several days (Mondello et al., 2014), however, contraindicatory 
studies have reported no significant increase of Aβ40 and Aβ42 following mTBI 
(Zetterberg et al., 2006). It was found that the levels of T-tau certainly performed 
best combined with clinical variables, and when taken >24 hours from the injury. 
Variability between patients of sample collection timing in relation to injury could 
have a negative influence on the ability of the studied circulating biomarkers to 
predict outcome. Although time elapse (the time from injury to sampling) was used 
as a covariate in the analysis, we might have missed the most accurate diagnostic 
time window for these biomarkers.  

Secondly, a limitation to consider is the variability in assessing the GOSE 6 to 
12 months after the injury. The limitation section of study II elaborated on this 
limitation.  

Thirdly, the severity of injuries in our mTBI cohort is worse than the average 
mTBI population typically seen in the ED. This is due to the recruitment bias towards 
patients that were admitted in hospital. Therefore, several abnormal CT findings 
were found in the mTBI cohort. Additionally, some patients had PTA for >24 hours 
after the injury, which is an indication of more severe TBI according to many 
classifications, even though all the patients had GCS in the mTBI category. This 
issue is a reflection on the problems of classification of acute TBI by severity. The 
CENTER-TBI study (Maas et al., 2017b) has shown that approximately 33% of 
intensive care unit (ICU) treated cases were classified as mTBI according to GCS 
(Steyerberg et al., 2019). Hence, the nature of this study had to be considered when 
results were interpreted. In addition, the assessment of the duration of PTA was 
performed retrospectively at the outcome visit, which is less reliable compared to 
prospective evaluation.  

When comparing earlier studies with this study results, it is important to mention 
that there was no collection of CSF samples and no patients in the cohort had injury 
mechanism caused by repetitive sports-related injury. 

 
For the critical interpretation of the findings of studies II and III, it is obvious 

that the results were driven by patients with more severe injuries – especially those 
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who had mass lesions or multiple contusions. As discussed, to partially address this, 
CT-positive and CT-negative findings were analysed separately, and significant 
findings were found in the CT-positive subgroup. These findings should be evaluated 
in the light of the studies’ injury classification. 

6.6 Future directions 

6.6.1 Can cut-off values of the biomarkers be defined by 
using a standard and sensitive immunoassay method? 

Considering the future applications of the blood biomarkers, for the rapid assessment 
of mTBI, the following steps are recommended. Firstly, developing a standard assay 
with clearly defined cut-off values for abnormalities, is an emerging need. This assay 
should have high sensitivity for the detection of TBI, and adequate specificity for 
patients with orthopedic injuries and patients with a wide range of pre-existing 
neurological and medical problems. Secondly, to translate the research findings of 
the blood biomarkers in clinical practice, large multicenter studies with adequate 
control groups, including healthy subjects and patients with polytraumas, should be 
conducted. Hopefully, the current studies from CENTER-TBI (Maas et al., 2017b) 
and TRACK-TBI (Huie et al., 2020) would be able to provide more meaningful 
insights for the clinical applications of the biomarkers in TBI. 

6.6.2 Could NF-L be useful to identify DAI? 
This project has reported that, for mTBI, both NF-L and GFAP might be useful 
predictive biomarkers, but this important study findings need to be validated using 
several time-points of biomarkers sampling and in larger cohorts. Since this study 
reported that the early levels of NF-L could identify the patients with unfavorable 
outcome and incomplete recovery, in a well characterized cohort with mTBI, it might 
be that NF-L – mainly expressed in subcortical myelinated axons of white matter 
(Shahim et al., 2017; Zetterberg & Blennow, 2016), is able to provide more helpful 
information for the early diagnosis of DAI, the most common mechanism of mTBI. 
For this purpose, correlating the early levels of NF-L with sub-acute and late DTI 
metrics of the patients with mTBI is strongly recommended. 

6.6.3 Can a prediction model be developed including 
biomarkers for mTBI? 

This project focussed on biomarkers mainly expressed by axon terminals. However, 
a panel analysis was used to investigate their ability to predict outcome, since it is 
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apparent that T-tau, Aβ40, or Aβ42 indicate various types of axonal damage. It is an 
emerging need to develop a prediction model including circular biomarkers from 
different cellular origins, especially used in panels, since mTBI is a multifaceted 
cascade of neurometabolic changes. A recent study has shown that to detect the need 
for head CT scanning following TBI, single proteins’ ability was outperformed by 
different cellular origin biomarkers used in panels (Posti et al., 2019). In a cohort 
where 70% of the patients had sTBI, it was found that a serum biomarker panel, 
consisting of different cellular originated proteins, improved the ability to predict 
outcome (Thelin et al., 2019). 

T-tau has shown to have outcome prediction potential, but studies that can 
possibly include a P-tau – T-tau ratio and using considerably larger sample sizes are 
necessary. Future studies should also give emphasis on the serial sampling of the 
biomarkers, as their kinetics need to be known for clinical application.  
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7 Conclusions 

7.1 GFAP and UCH-L1 – not CT-negative TBI 
specific 

In this study, the most important finding was that some patients with orthopedic 
injury had higher levels of UCH-L1 and GFAP compared to patients with CT-
negative mTBI. Persistent elevation of these biomarkers, up to several months after 
the initial injury, suggests that the origin of these biomarkers is not necessarily 
related to injury, and the source remains unknown. It was also found that these 
biomarkers are not specific for mTBI. The diagnostic utility of UCH-L1 and GFAP 
is seriously impaired in patients with orthopedic trauma with suspicions of TBI, due 
to their lack of specificity. 

7.2 GFAP and NF-L – promising outcome 
predictors of mTBI 

A significant correlation exists between the early levels of NF-L and GFAP and the 
outcome in patients with mTBI. The NF-L levels within 24 hours of admission has 
significant predictive value in mTBI, as well as in a multi-variate model. 

7.3 T-tau – a possible predictor 
The main finding of this study was the significant correlation between the admission 
levels of T-tau and the outcome in patients with mTBI. Neither T-tau, Aβ40, or Aβ42 
used alone, nor used in different panels could provide complete recovery prediction 
in the mTBI cohort. 
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me. 
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Besides conducting my doctoral studies, I was learning Finnish language, was 
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