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Resumo: Este artigo é uma introdução a variedades simplécticas tóricas
para não especialistas, começando com uma breve síntese de variedades sim-
plécticas e acções hamiltonianas. As variedades simplécticas tóricas formam
já um tema extenso, ao qual a modesta lista de referências abaixo não faz
justiça – o objectivo deste texto não é ser exaustivo ou justo, mas simples-
mente deixar entrever o que são estes espaços e a razão pela qual o leitor
poderá querer adicioná-los ao seu repertório de objectos geométricos.

Abstract This is an elementary introduction to symplectic toric manifolds
for nonspecialists, starting with a brief review of symplectic manifolds and
hamiltonian torus actions. Symplectic toric manifolds are by now a vast
subject, for which the undersized list of references below does no justice –
the aim of this text is not to be exhaustive or fair, but simply to give a
glimpse into what these spaces are like and why it can be a good idea to
add them to your repertoire of geometric objects.
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1 What is Symplectic Geometry?
Geometry concerns the study and measure of space. Symplectic refers to an
additional structure that can be put on some even-dimensional spaces. Sym-
plectic geometry is intrinsically related to complex geometry and, just like
complex geometry, is sometimes counterintuitive. Whereas local complex
geometry is basically modelled on C, C2, C3, etc, local symplectic geometry
is basically modelled on R2, R4, R6, etc.

1This text is based on the lecture titled Symplectic Toric Manifolds at the conference
Matemáticos Portugueses pelo Mundo (Portuguese Mathematicians around the World) in
Porto on 24/June/2019. Many thanks to Diogo Oliveira e Silva, Jorge Milhazes de Freitas
and Samuel Lopes for organizing this excellent mathematical S. João celebration!

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 119-132



120 An Invitation to Symplectic Toric Manifolds

A symplectic form ω at a point p of a manifold M is a special type of
differential 2-form, i.e., a device that takes two tangent vectors u⃗, v⃗ ∈ TpM
as input and returns a real number as output, that may be interpreted as

ω(u⃗, v⃗) = kind of signed area of parallelogram spanned by u⃗ and v⃗.

By signed area we mean, in particular, a number that may be positive, nega-
tive, or zero, contrasting with usual (euclidean, riemannian, ...) geometries.

In the case of the basic model of R2 with its so-called standard sym-
plectic form,

ω0 ∶= dx ∧ dy ,

this signed area is

ω0(u⃗, v⃗) = det(u1 v1
u2 v2

) = u1v2 − u2v1 ,

thus actually equal to plus or minus the euclidean area of the parallelogram
spanned by u⃗ and v⃗. The sign depends on the orientation of the basis u⃗, v⃗
and ω0(v⃗, u⃗) = −ω0(u⃗, v⃗). Moreover, there is only zero as output in just one
dimension, since ω0(v⃗, v⃗) = 0 for all v⃗.

In the next case of R4, the standard symplectic form,

ω0 ∶= dx1 ∧ dy1 + dx2 ∧ dy2 ,

just adds up the contributions from the projections onto the two coordinate
planes x1, y1 and x2, y2. If we have vectors u⃗ = u⃗1+ u⃗2 and v⃗ = v⃗1+ v⃗2 (where
u⃗1, v⃗1 and u⃗2, v⃗2 denote the projections onto the coordinate planes x1, y1 and
x2, y2), then

ω0(u⃗, v⃗) = (dx1 ∧ dy1) (u⃗1, v⃗1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

signed area of A1

+ (dx2 ∧ dy2) (u⃗2, v⃗2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

signed area of A2

can be thought of as a sum of signed areas for the projections A1 and A2
onto each of the coordinate planes x1, y1 and x2, y2. Other projections are
not taken into account.

The higher cases R2n are analogous. In particular, in R6 we have the
standard symplectic form

ω0 ∶= dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3 .

Physicists often regard (x1, x2, x3) as position coordinates and (y1, y2, y3)
as momentum (kind of velocity) coordinates of a particle in 3-dimensional
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space. The symplectic form ω0 encodes the mutual entanglement of position
and momentum in a somewhat implausible way that actually fits reality. In
Section 2, we will describe the motion of a classical mechanical system via
Hamilton’s equations for position and momentum in terms of a flow on a
symplectic manifold.

Historical remark:

Symplectic geometry is a branch of mathematics, that could be viewed
as emerging in the XIX century from classical mechanics. The
mathematicians William Rowan Hamilton (1805-1865) and Sofia Ko-
valevskaya (1850-1891) were at the onset of this field and worked on
problems related to the motion of rigid bodies. Symplectic geome-
try experienced a vigorous expansion in the last 50 years and deals
nowadays with many other geometric problems, stimulated by inter-
actions with diverse areas of mathematics and physics. The adjective
symplectic in mathematics is a calque2 coined by Hermann Weyl, by
substituting the Latin root in complex by the corresponding Greek
root, in order to label the symplectic group.

In general, a symplectic manifold is a pair (M,ω) whereM is a mani-
fold (necessarily even-dimensional, say dimM = 2n) and ω is a closed nonde-
generate 2-form onM . Whereas closedness is a natural differential condition
from analysis, nondegeneracy is an algebraic condition saying that at each
point any nonzero tangent vector admits a nontrivial pairing with some
other tangent vector – this is what forces the evenness of the dimension.

One of the fundamental theorems in symplectic geometry goes back to
Darboux [6] in the late XIX century in the context of differential systems.
What is now known as Darboux’s theorem states that any symplectic
manifold looks locally near any of its points like a neighborhood of the origin
in R2n equipped with

ω0 ∶= dx1 ∧ dy1 + . . . + dxn ∧ dyn .

We hence refer to (R2n, ω0) as the local model. Although this shows that
there are no local invariants in symplectic geometry besides the dimension,
the local symplectic geometry, i.e. the symplectic geometry of (R2n, ω0),
is already quite interesting and there remain deep open questions about

2A calque or loan translation is a word or phrase that is introduced through translation
of the constituents into another language.
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it. Normal form theorems like Darboux’s play a central role in symplectic
geometry.

On a symplectic manifold (M,ω), the top power of the symplectic form,
ωn, is necessarily a volume form, called the symplectic volume. This fol-
lows from the nondegeneracy of ω, and may be also seen through Darboux’s
theorem with ωn0 = n!dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn. Therefore, a symplectic
manifold is symplectically oriented, and nonorientable manifolds cannot be
symplectic.

On a symplectic manifold (M,ω), we are able to integrate the symplectic
form ω over a surface A ⊂M :

∫
A
ω = symplectic area of A.

In the case of (R4, ω0), this yields again a sum of contributions from the two
projections onto each of the coordinate planes x1, y1 and x2, y2:

∫
A
ω = ∫

A1
dx1 ∧ dy1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
signed area of A1

+∫
A2
dx2 ∧ dy2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
signed area of A2

.

Such a measurement is anisotropic in the sense that (multiple-dimensional)
directions are not all the same. For instance, a nontrivial surface in the
x1, x2-plane has one-dimensional projection onto the x1, y1 and x2, y2 planes,
hence has zero symplectic area. Such a surface in a four-dimensional man-
ifold is called lagrangian. On the other hand, a nontrivial surface in the
x1, y1 plane already has a nonzero symplectic area. Such a surface is called
symplectic.

In general, we distinguish different important types of submanifolds in
a 2n-dimensional symplectic manifold (M,ω). A symplectic submani-
fold is a submanifold where the restriction of the symplectic form is non-
degenerate, hence still a symplectic form. Such submanifolds are again
even-dimensional. When n = 1, these submanifolds turn out to be re-
lated to complex curves. An isotropic submanifold is a submanifold
where the restriction of the symplectic form vanishes identically. Any one-
dimensional submanifold is isotropic and isotropic submanifolds are at most
half-dimensional; this follows from linear algebra. A lagrangian subman-
ifold is an n-dimensional isotropic submanifold. Lagrangian submanifolds
are thus the largest isotropic submanifolds and turn out to be related to
dynamics.
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Examples and nonexamples:

(0) As mentioned, the examples (R2n, ω0) above are the local prototypes
of symplectic manifolds.

(1) Any oriented surface may be equipped with a symplectic structure
by choosing any area form to take the role of symplectic form. In
particular, a unit sphere in R3 equipped with the standard (euclidean)
area form is automatically a symplectic manifold. This area form may
be written away from the poles as

ωstd ∶= dθ ∧ dh ,

where h is a height function and θ the angle around that height axis,
giving total area 4π; cf. Section 4.

(2) Some of the simplest 4-dimensional symplectic manifolds are products
of oriented surfaces, such as S2 × S2 equipped with a sum of area
forms (eventually different on each factor), and complex projective
space CP2, that is, the space of complex lines in C3. The standard
symplectic form in CP2 (or, for that matter, in CPn) is called Fubini-
Study form and we will give some insight into it in Section 3. In
general, products of symplectic manifolds are symplectic.

(3) The only spheres that may be symplectic are the 2-dimensional ones.
Let us see why. In a sphere Sk of any other dimension, closed 2-forms
are always exact (this topological fact is usually encoded asH2(Sk) = 0
for k ≠ 2). Now, by Stokes’ theorem, a symplectic form cannot be exact
on a compact manifold without boundary, because if it were ω = dα,
then its top power ωn = d(α ∧ ωn−1) would also be exact, which is
impossible for a volume form on such a manifold:

∫
M
ωn = ∫

M
d(α ∧ ωn−1) = ∫

∂M
α ∧ ωn−1 = 0 contradicting ∫

M
ωn > 0 .

By now there are a number of texts on symplectic geometry, a subset
of which is [11, 12, 4]. For a beautiful overview geared towards symplectic
topology, see McDuff’s lecture [10].

2 What are Hamiltonian Torus Symmetries?
The definition of symplectic form contains exactly what is needed for the
following general assertion: On a symplectic manifold (M,ω), any smooth
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function H ∶ M → R generates (in a nontrivial way) a flow that preserves
both the symplectic structure ω and the function H.

Such a flow is called the hamiltonian flow generated by H and then
H is called a corresponding hamiltonian function. The asserted property
refers to the existence and uniqueness (by nondegeneracy of ω) of a vector
field X

H
defined by

ω(X
H
, ⋅) = dH(⋅) . ☆

This vector field X
H
satisfies the following equations where we use Cartan’s

magic formula, L
X
= dı

X
+ı

X
d, for the Lie derivative with respect to a vector

field X:

L
XH
ω = d ı

XH
ω

²
dH

+ ıXH
dω

0̄

= 0 and L
XH
H = ı

XH
dH
°
ıXH

ω

= 0 .

This vector field X
H

integrates (by the theorem of Picard-Lindelöf) into a
local time evolution, a.k.a. flow, and the equations L

XH
ω = 0 and L

XH
H = 0

amount infinitesimally to this flow preserving ω and H. The vector field X
H

is called the hamiltonian vector field of H.

Examples and nonexamples:

(0) For euclidean space (R6, ω0) and any function H ∶ R6 → R, equation ☆
for the flow generated by H translates into Hamilton’s equations:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dxk
dt

= ∂H
∂yk

dyk
dt

= − ∂H
∂xk

.

(1) For the unit sphere (S2, ωstd = dθ ∧ dh) and hamiltonian function H
equal to the height function h, equation ☆ yields as hamiltonian vector
field

X
H
= ∂

∂θ
,

so the corresponding flow rotates around the height axis. This clearly
preserves area ωstd and height H. Notice how this contrasts with the
gradient flow of H, which is basically perpendicular and preserves
neither ωstd nor H.
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Figure 1: Hamiltonian function for the rotation of S2 around the height
axis.

(2) For the 2-torus (T2, ω ∶= dθ1 ∧ dθ2), we have that the rotation given
by the vector field ∂

∂θ1
preserves area, yet is not hamiltonian, since the

contraction
ω( ∂

∂θ1
, ⋅) = dθ2(⋅)

is closed yet not exact, i.e., there is no corresponding global hamilto-
nian function.

The flow in Example (1) is also an example of S1-action. Indeed,
the time-t evolution ϕt is given, with respect to these coordinates, by
ϕt ∶ (θ, h) z→ (θ + t, h), so it is 2π-periodic (i.e., ϕt+2π ≡ ϕt) and satis-
fies the group law (i.e., ϕt1 ○ϕt2 ≡ ϕt1+t2). Because it is also hamiltonian, we
call it a hamiltonian S1-action.

Analogously, for a d-dimensional torus Td = S1 × . . . × S1 we define a
hamiltonian TdTdTd-action to be an action of Td for which each of the S1-
factors acts in a hamiltonian fashion, say with hamiltonian function Hk,
and each of these Hk is invariant by the rest of the action. By collecting
these hamiltonian functions, we build an invariant function

H ∶= (H1, . . . ,Hd) ∶M → Rd .

This upgraded version of hamiltonian function is known as a (special case
of) moment map. The concept of moment map for hamiltonian actions of
arbitrary Lie groups has recently become central in geometry and topology.

Atiyah [2] and, independently, Guillemin and Sternberg [9] proved in
the 80’s, that the image of such a function H ∶ M → Rd on a compact,
connected symplectic manifold (M,ω) corresponding to a hamiltonian Td-
action is always a convex polytope. Moreover, they showed that that image
is simply the convex hull of the images of the fixed points of the action. This
deep and key theorem is known as the convexity theorem.
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To get rid of lazy factors in that action, we concentrate on faithful
(i.e. effective) actions for which only the identity group element gives
rise to the identity diffeomorphism. We think of effective hamiltonian Td-
actions as hamiltonian torus symmetries. Now, if a d-dimensional torus
acts in a faithful and hamiltonian fashion on a 2n-dimensional symplectic
manifold, then it must be d ≤ n. This follows from the fact that the orbits
are isotropic, that isotropic submanifolds are at most half-dimensional, and
that Lie theory tells us that a faithful action of a d-dimensional Lie group
always admits orbits equivariantly diffeomorphic to the group itself, the so-
called principal orbits. Therefore, a maximal hamiltonian torus symmetry
is of the form Tn acting on M2n.

3 What are Symplectic Toric Manifolds?
A symplectic toric manifold is a compact connected symplectic manifold
(M,ω) with a maximal hamiltonian torus symmetry, meaning, with a faith-
ful hamiltonian action of a half-dimensional torus. If dimM = 2n, then we
have the n-dimensional torus Tn acting faithfully and with a moment map

H ∶M → Rn .

Examples and nonexamples:

(0) Examples with (R2n, ω0) are ruled out by lack of compactness. How-
ever, most of the theory could be, and often is, extended to such
examples.

(1) The unit sphere (S2, ωstd = dθ∧dh) together with the S1-action gener-
ated by the height function H = h is a symplectic toric manifold. We
point out some of the features of this example, to which we will come
back in more general set-ups:

(a) The image interval [0,2] is the orbit space, i.e., there is exactly
one S1-orbit per height value. The endpoints of this interval
correspond to the two fixed points (singular orbits), South pole
and North pole.

(b) The best coordinates to understand this system are the angle
coordinate θ where the rotation occurs and the function H = h
encoding the hamiltonian action, valid away from the poles. Such
coordinates are called action-angle coordinates. With respect
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to such coordinates, the symplectic form is simply a product form
dθ ∧ dH, just like a form in the local model space (R2, dx ∧ dy).

(c) The area of an invariant strip on S2 corresponding to a subinterval
of [0,2] of height ∆h is equal to 2π ⋅ ∆h. This result goes back
more than two millenia; see Section 4.

(1’) We revisit the previous example from a complex viewpoint. Regard-
ing S2 as a Riemann sphere, we denote by [z0 ∶ z1] the point given
by the complex line in C2 through (z0, z1) and (0,0). The South pole
is [1 ∶ 0] and the North pole is [0 ∶ 1]. Now we recast that exam-
ple as (CP1, ωFS), where the Fubini-Study symplectic form ωFS is equal
to 1

4ωstd, the element eit of the circle acts by multiplication on the
coordinate z1,

eit ⋅ [z0 ∶ z1] = [z0 ∶ eitz1] ,

which, on a chart, is again a simple shift of the angle coordinate, and
the corresponding hamiltonian function is

H1 ∶=
∣z1∣2

2 (∣z0∣2 + ∣z1∣2)
.

(2) Consider now complex projective space CPn (as a 2n-dimensional real
manifold) with a diagonal action of Tn by

(eiθ1 , . . . , eiθn) ⋅ [z0 ∶ z1 ∶ . . . ∶ zn] = [z0 ∶ eiθ1z1 ∶ . . . ∶ eiθnzn] .

The Fubini-Study symplectic form is a globally well-defined form,
which, away from the hyperplanes zk = 0, is given by the Darboux-type
formula

ωFS = dθ1 ∧ dH1 + . . . + dθn ∧ dHn ,

where the component Hk of the moment map H ∶ CPn → Rn is

Hk ∶=
∣zk∣2

2 (∣z0∣2 + . . . + ∣zn∣2)
.

For instance, when n = 3 we get the following picture:
We list again the earlier features, some of which now take more thought
to check:

(a) The image simplex is the orbit space, i.e., there is exactly one
Tn-orbit per point on the n-simplex. The vertices of this simplex
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Figure 2: Moment map for the standard action on CP3.

correspond to the n + 1 fixed points, [1 ∶ 0 ∶ . . . ∶ 0], . . . [0 ∶ . . . ∶
0 ∶ 1]. The interior points correspond to orbits through points of
the form [z0 ∶ z1 ∶ . . . ∶ zn] with all coordinates zk nonzero.

(b) Best to understand this system are the action-angle coordinates,
H1, . . . ,Hn and θ1, . . . , θn. With respect to these coordinates,
and in points mapping by H to the interior of the simplex,
the symplectic form is just like a form in the local model space
(R2n, dx1 ∧ dy1 + . . . + dxn ∧ dyn).

(c) The (symplectic) volume of a Tn-invariant subset H−1(S) is sim-
ply equal to (2π)n ⋅ ∣S∣, where ∣S∣ is the (euclidean-)volume of the
subset S of the simplex.

By the convexity theorem, we already know that the moment map image
of a 2n-dimensional symplectic toric manifold is a polytope in Rn. One can
show that such a polytope enjoys special properties: it is simple, i.e., there
are n edges meeting at each vertex, it is rational, i.e., the edges meeting at
each vertex τ are of the form τ + tuj , t ≥ 0, with each uj ∈ Zn, and it is
smooth, i.e., for each vertex, the corresponding u1, . . . , un can be chosen to
form a Z-basis of Zn; see, for instance, [5].

As first proved by Delzant [7], it turns out that this polytope encodes
enough information to reconstruct its originating symplectic toric manifold,
and that all such simple, rational, smooth polytopes occur as moment map
images of symplectic toric manifolds. Delzant’s theorem is a celebrated
result classifying symplectic toric manifolds in terms of polytopes:

{ 2n-dim’l symplectic
toric manifolds } ←→ { simple rational smooth

polytopes in Rn }

where this one-to-one correspondence takes a symplectic toric manifold,
(M,ω,H) where the Tn-action admits H ∶ M → Rn as moment map, to
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the polytope which is the image of this moment map:

(M,ω,H) ←→ H(M) .

For such a correspondence, there are underlying notions of equivalence of
the objects involved. In the simplest version, polytopes in Rn are identi-
fied up to translation, and symplectic toric manifolds are identified up to
equivariant diffeomorphism preserving the symplectic forms: (M1, ω1,H1)
and (M2, ω2,H2) with actions of Tn are equivalent if and only if there is a
diffeomorphism ϕ ∶M1 →M2 such that ϕ∗ω2 = ω1 and ϕ(g ⋅ p) = g ⋅ ϕ(p) for
all g ∈ Tn and p ∈M1.

Note that the problem of classifying compact symplectic manifolds in
dimension 4 or higher is completely open. The presence of a hamiltonian
torus symmetry significantly helps.

Since there is just one 1-dimensional polytope of length ` up to trans-
lation, we see that the only 2-dimensional symplectic toric manifolds are
scaled spheres (S2, `2 ωstd) with rotation action as above. The panorama
for 2-dimensional polytopes is much more rich. Still, up to translation, the
2-dimensional simple, rational, smooth polytopes with only three vertices
are the triangles with vertices (0,0), (`,0) and (0, `) or their transforms
by GL(2;Z). This is saying that the corresponding symplectic toric man-
ifolds are (CP2,2`ωFS) with standard T2-action or their transforms by an
isomorphism of T2.

The upshot is that any such symplectic toric manifold is given combina-
torially in terms of a polytope in an euclidean space of half the dimension
that of the manifold. Hence, all questions pertaining to such manifolds
should admit an answer in terms of polytopes – a mathematician’s dream!
In particular, the earlier properties admit generalizations to all symplectic
toric manifolds (M,ω,H) as follows:

(a) The polytope image is the orbit space, so H is also the point-orbit
projection, and the vertices of the polytope correspond to the fixed
points. There are precise descriptions of the isotropy subgroups in
terms of the face-stratification.

(b) There are action-angle coordinates, H1, . . . ,Hn and θ1, . . . , θn, valid at
points mapping to the interior of the polytope, which are the best
coordinates to understand this system. With respect to them, the
symplectic form is ω = dθ1 ∧ dH1 + . . . + dθn ∧ dHn.

(c) The (symplectic) volume of a Tn-invariant subset is equal to (2π)n
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times the (euclidean) volume of the corresponding subset in the poly-
tope.

A lot of the geometry of symplectic toric manifolds has already been un-
derstood, yet many interesting questions remain. Currently, these manifolds
are used as test grounds for theories or conjectures in topology, geometry
and mathematical physics, such as mirror symmetry.

Many open questions for these manifolds relate to their lagrangian sub-
manifolds. We can see that connected lagrangian submanifolds invariant by
Tn are principal Tn-orbits, i.e., those corresponding to the interior points of
the image polytope. We might now ask about other lagrangian submanifolds
that fit nicely with respect to the torus action, in the sense that they are
invariant by some subgroup of Tn and they intersect Tn-orbits in a clean
way. The image under the moment map of such a lagrangian submanifold
of (M,ω,H) lies in the intersection of the polytope H(M) with an affine
subspace. Examples are all principal Tn-orbits, the standard real part sub-
manifolds like RPn in CPn, lagrangian submanifolds like the one presented
in [3], and many lagrangian submanifolds sitting in level sets of components
of the moment map.

4 Epilogue – all the way from Archimedes
We close by going back more than two millenia to Archimedes’ supposedly
favourite work on measuring spheres and cylinders. In around 200 BC,
Archimedes was the first to realize that the surface area of a sphere between
two parallel planes intersecting it depends only on the distance between those
planes and not on the height where they intersect the sphere. Moreover,
Archimedes asserted that the surface area on the sphere is the same as that
of a cylinder with the radius of that sphere and height given by the distance
between the planes, as the following figure illustrates. This is exactly the
feature that allows us to write the standard area form as ωstd = dθ ∧ dh.

Nowadays, if you know first-year calculus, you may check Archimedes
result by computing an appropriate surface integral using, for instance,
cylindrical coordinates (θ, z) to write points on the sphere as (x, y, z) =
(
√
R2 − z2 cos θ,

√
R2 − z2 sin θ, z):

Area = ∫
2π

0 ∫
h+∆h

h
Rdz dθ = 2πR ⋅∆h ,

or else use some approximation method and then take the limit [1]. However,
Archimedes did not know calculus. It seems that he used an approximation
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Figure 3: Spherical and cylindrical strips all with the same area: 2πR ⋅∆h;
image kindly reproduced from [1].

argument, for which a relevant reference is the palimpsest3 discovered in the
XX century after some quite adventurous history.

In the 80’s, Duistermaat and Heckman [8] showed powerful results for
symplectic manifolds with hamiltonian torus actions, which may be viewed
as a vast generalization of Archimedes’ theorem for the 2-sphere. Just like
Archimedes might have had no idea that, more than two millennia later, his
spirit would be at the origin of new mathematics, one wonders what other
leaps await mankind starting from symplectic toric manifolds.
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