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Abstract: Designing carbonaceous materials with heightened attention to the structural properties
such as porosity, and to the functionalization of the surface, is a growing topic in the lithium-ion
batteries (LIBs) field. Using a mesoporous silica KIT-6 hard template, mesoporous carbons belonging
to the OMCs (ordered mesoporous carbons) family, namely 3D cubic CMK-8 and N-CMK-8 were
synthesized and thoroughly structurally characterized. XPS analysis confirmed the successful
introduction of nitrogen, highlighting the nature of the different nitrogen atoms incorporated in
the structure. The work aims at evaluating the electrochemical performance of N-doped ordered
mesoporous carbons as an anode in LIBs, underlining the effect of the nitrogen functionalization.
The N-CMK-8 electrode reveals higher reversible capacity, better cycling stability, and rate capability,
as compared to the CMK-8 electrode. Coupling the 3D channel network with the functional N-doping
increased the reversible capacity to ~1000 mAh·g−1 for the N-CMK-8 from ~450 mAh·g−1 for the
undoped CMK-8 electrode. A full Li-ion cell was built using N-CMK-8 as an anode, commercial
LiFePO4, a cathode, and LP30 commercial electrolyte, showing stable performance for 100 cycles.
The combination of nitrogen functionalization and ordered porosity is promising for the development
of high performing functional anodes.

Keywords: ordered mesoporous carbon (OMC); CMK-8; nitrogen doping; functional materials;
lithium-ion batteries (LIB)

1. Introduction

As the market of electromobility and energy storage expands, batteries with higher capacity,
cyclability, and safety are deemed necessary [1]. Non-aqueous rechargeable Li-ion batteries (LIBs) are
one of the most prominent energy storage devices, and their development represents a prodigious
success of modern materials electrochemistry that led to the Nobel Prize of Chemistry in 2019.

Replacing lithium metal with cheaper and more abundant anodes such as sodium (Na), potassium
(K), calcium (Ca), magnesium (Mg), aluminum (Al), etc., has become a valid alternative to lithium
metal batteries (LBs). However, when it comes to metal-ion batteries (MIBs), other systems are still not
competitive with Li-ion systems [2,3].

Currently, LIBs are prevalent when we think about the battery market for portable electronic
devices. However, this technology has also been successfully implemented in hybrid electric vehicles
(HEVs) or battery electric vehicles (BEVs), as well as in stationary energy storage [4]. All these systems
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are running with a graphite-based anode material. Unfortunately, graphite, due to its low specific
capacity, cannot meet the growing request for small electronics, electric cars, and electricity storage
stations [5].

Graphitic and non-graphitic carbon materials are recognized as some of the most interesting
candidates for anode materials [6], both for Li, Na-ion batteries, and other energy storage
applications [7–13], due to their high electrical conductivity, high chemical and thermal stability,
and large surface area, low cost and easy availability [14]. Carbon spheres [15], carbon nanotubes [16],
as well as carbon nanofibers [17] and graphene [18–20], constitute a new plethora of possible
replacements for graphitic carbon.

In the past 10 years, ordered mesoporous carbons (OMCs), which consist of a family of materials
called CMK-n, have gained more scientific interest from the point of view of anode lithium battery
materials. This is mainly due to their unique structural and morphological characteristics. Ordered
mesoporous interconnections together with high surface areas, large pore volumes, and uniform pore
size distribution are the most interesting properties of this class of materials [21]. Properties that
provide short pathways for ion transfer, better electrolyte absorption, and higher specific capacity,
paving the way for an increase in performance in the final device [22].

OMCs are commonly synthesized via a nanocasting method using mesoporous silica materials
as hard templates. Highly-used templates are named MCM-48, SBA-1, SBA-15, and SBA-16 [23,24].
The chemistry literature reports CMK-3, a reverse replica of the SBA15, as the most used battery
OMCs carbon material [25]. On the other hand, less attention has been paid to CMK-8, even if its
interpenetrating bicontinuous network of channels is a tempting feature as pathways for Li-ions.
The three-dimensional (3D) cubic mesoporous carbon, CMK-8, can be prepared through a reverse
replica of 3D cubic mesoporous silica KIT-6 (Ia3d symmetry) [26].

In recent years, different functionalization [27], doping [28], and composite [29] have been
used to improve the electrochemical performance of several carbon materials [30]. Nitrogen
functionalized/doped materials are the most attractive class due to the nitrogen electronegativity (3.5),
which is higher than that of carbon (3.0) and atomic diameter, which is smaller. Therefore, stronger
interaction between the nitrogen-doped carbon material and lithium ions is reasonably predictable for
an easier lithium insertion/extraction [31].

This study demonstrates that functionalizing/doping mesoporous carbon (N-CMK-8) with nitrogen
can serve as highly reversible anode material for LIBs, with superior capacity and cycling stability.
Besides, to study the anode side of a whole lithium-ion cell, we report a formulation of a full device with
a commercial LFP as a cathode material. The N-doped mesoporous carbon having large surface area
and uniform pore width facilitates the contact between electrode and electrolyte and the transport of
electrolyte ions. Besides, the N-doping generates defect sites and provides many active sites for Li-ion
storage. All these characteristics are propitious for high specific capacity and excellent performance of
N-CMK-8 for LIBs.

2. Materials and Methods

2.1. Synthesis Process

2.1.1. Silica Template KIT-6

The mesoporous cubic Ia3d silica (KIT-6) was produced in an acidic aqueous solution using
a mixture of Pluronic P123 (EO20PO70EO20, MW: 5800 g/mol), butanol, and tetraethoxysilane (TEOS).

All chemicals were purchased from Sigma Aldrich. P123 (36 g) was mixed in 1302 mL of MilliQ
water and 60 mL hydrochloric acid (HCl) under stirring at 35 ◦C. When the solution became completely
transparent, 44.4 mL of butanol was added. After 1 h, 77.4 g of TEOS was inserted, and the solution
was first left under stirring for 24 h. Subsequently, the solution was transferred in a closed propylene
bottle at 35 ◦C or 100 ◦C for 24 h under static conditions. The temperature of the hydrothermal step
influenced the pores size distribution, with the lower temperature (35 ◦C) resulting in the smallest
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pores. After filtration, the silica was calcined at 550 ◦C for 10 h to remove the organic residuals.
The resulting materials were named as KIT-6-35 ◦C and KIT-6-100 ◦C, depending on the temperature
of the hydrothermal step.

2.1.2. Mesoporous CMK-8 and N-CMK-8 Carbon Materials

Ordered mesoporous carbons were produced using KIT-6 silica as a template. Furfuryl alcohol
and furfuryl amine were used as carbon precursors for the production of CMK-8 and N-CMK-8,
respectively. KIT-6-100 ◦C was used as a template for CMK-8 and KIT-6-35 ◦C as a template for N-CMK-8.
All chemicals were purchased from Sigma Aldrich. Silica (KIT-6, 2 g) was impregnated with 2 mL of
precursor (the quantity depended on the pore volume determined with BJH (Barret–Joyner–Halenda)
method). First, a polymerization process was carried out in an air atmosphere at 100 ◦C for 2 h.
The resulting material was further impregnated with half the amount of precursor and polymerized
under air at 160 ◦C for 2 h. Pyrolysis was performed under N2 flow at 950 ◦C for 2 h. Finally, the silica
template was removed by washing in 1:1 MilliQ water and ethanol solution containing 2 M solution
of NaOH.

2.2. Structural Characterization

N2 adsorption and desorption isotherms were recorded at −196 ◦C using a Micromeritics Tristar
instrument. The pore volume and pore size distribution were determined from the adsorption isotherm
and the BJH (Barret–Joyner–Halenda) method, and the specific surface area was calculated by the
BET (Brunauer-Emmet-Teller) multipoint method. The SAXS measurements were performed on
a Mat:Nordic instrument from SAXSLAB. The XPS measurements were performed on a PHI 5000 Versa
Probe III Scanning XPS Microprobe from ULVAC-PHI, Inc. SEM images were captured with a Leo
Gemini ULTRA 55, ZEISS microscope.

2.3. Electrode Preparation

Electrodes were prepared by mixing mesoporous CMK-8 or N-CMK-8 with carbon black, Super P™
(Alfa Aesar, Haverhill, MA, USA), and Kynar® PVDF binder (Arkema, Colombes, France) in NMP
(N-methyl-2-pyrrolidone, anhydrous, 99.5%, Sigma Aldrich AB, Stockholm, Sweden). The mixture
was transferred to a glass vial, and Super-P™ and Kynar® 5% (w/w) solution in NMP were added.
The solution was stirred overnight in a capped vial, forming a slurry having a weight ratio of
(CMK-8/N-CMK-8: Super-P: PVDF) of (8:1:1). The slurry was coated onto a copper foil with a TQC
AB3400 motorized automatic film applicator. A stainless-steel doctor blade (Wellcos Co., Seoul, Korea)
was used to obtain a 250 µm thick coating of the slurry. The electrode sheets were dried for 1 day at
ambient conditions in a fume hood, followed by drying in a vacuum oven at 80 ◦C and 20 mbar for 2 h.

2.4. Electrochemical Analysis and Device Testing

The electrochemical response of the CMK-8 and N-CMK-8 materials was tested as an anode in
a Li-ion half-cell. The electrodes (~10 mm diameter, 2.5 mg·cm−2 active material) were transferred
to a glove box (H2O and O2 less than 1 ppm) and dried under vacuum at 80 ◦C in a Buchi oven.
Coin cells were assembled in an argon-filled glovebox using CR2032 housings. Glass microfiber
(Sigma Aldrich) was used as the separator, soaked with 30 µL of commercial electrolyte LP30
(Sigma Aldrich), while a lithium metal disc was used as an anode (diameter 11 mm, areal density
4 mg·cm−2). Galvanostatic charge-discharge tests were performed between 0.01 V and 2.9 V using
a Scribner 580 battery cycler. The full-cells were prepared using the N-CMK-8 anode with a commercial
LFP (LiFePO4) cathode material. The lithium-ion cell was assembled and properly balanced by
a positive/negative capacity ratio of 1:1. The mass loading of the carbon electrodes was about
1.5 mg·cm−2.
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3. Results and Discussion

3.1. Structural Characterization: N2 Sorption, XRD, SAXS, and XPS Analysis

Figure 1a,c show the nitrogen adsorption–desorption isotherms of CMK-8 and N-CMK-8,
respectively. The isotherms confirm the synthesis of mesoporous materials, displaying type-IV
isotherms with what looks like a combination of H2 and H4 type hysteresis following the IUPAC
classification [32]. This means that the materials exhibit a combination of spheroidal- and slit-shaped
pores. The differences between the isotherms of the two samples indicate that their pore shape and/or
pore tortuosity differ somewhat, where the N-CMK-8 has a broader pore size distribution. Based on
Brunauer–Emmett–Teller (BET) analysis, the specific surface areas were 1240 m2/g and 970 m2/g for
CMK-8 and N-CMK-8, respectively. The corresponding pore size distributions in Figure 1b,d, calculated
by the Barret–Joyner–Halenda (BJH) method, further confirm the porosity difference. The CMK-8
shows a narrow pore size distribution peak at 4 nm, while the nitrogen functionalized N-CMK-8 was
characterized by a trimodal porosity with three distribution peaks, the first at 4.2 nm, the second at
6.2 nm, and the third at 9.2 nm. The two different silicas, KIT-6-100 ◦C for CMK-8 and KIT-6-35 ◦C
for N-CMK-8, were used to produce carbons with similar BET and pores size distribution. The lower
specific surface area and the different pore size distribution of the N-CMK-8 were influenced by the
different polymerization reactions and pyrolysis of the furfuryl amine precursor during synthesis [33,34].
Further explanation will be reported in the SAXS section.
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Figure 1. Barret–Joyner–Halenda (BJH) sorption isotherms (with P0 = vapor pressure of the adsorbate)
and pore size distributions of CMK-8 and N-CMK-8. (a) Absorption and Desorption Curves of CMK-8,
(b) Pore size distribution of CMK-8. The distribution peak is centered at 4 nm, (c) Absorption and
Desorption Curves of CMK-8, (d) Pore size distribution of N-CMK-8. The distribution peaks are
centered at 4.2, 6.2 and 9.2 nm.
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In the wide X-ray diffraction patterns of the CMK-8 and N-CMK-8 powders, reported in Figure A1,
the materials showed two broad peaks ~25 and ~43. Those peaks were related to (002) and (100)
diffractions, respectively. However, the wide-angle XRD was not resolutive for ordered, structured
carbons as CMK8. Therefore, the materials were characterized by small angle X-ray scattering (SAXS).

Figure 2 presents the indexed SAXS patterns for the two carbons. The CMK-8 carbon shows
peaks indexed as reflections from (211), (220), (321), (400), (420), and (332) planes, consistent with
the cubic space group Ia-3d [35]. The pattern confirms the formation of highly ordered mesoporous
carbon as a negative replica of cubic Ia-3d mesoporous silica (KIT-6) [36]. The N-CMK-8 carbon shows
a somewhat different pattern, with peaks indexed as reflections from (110), (211), (220), (222), (321),
and (400) planes. The appearance of the (110) and the small (222) peaks suggest the existence of
a large fraction of displaced or uncoupled gyroidal sub-frameworks, and a lower level of symmetry,
consistent with the tetragonal space group I41/a. This mesophase transition is associated with a process
of strain relaxation upon silica removal [37–40]. The absence of a significant (110) peak in the CMK-8
pattern shows that the material is dominated by the undisplaced double gyroidal frameworks with
Ia-3d symmetry, but the minute (110) peak visible indicates the presence of a small fraction of a lower
symmetry mesophase. The CMK-8 keeps the Ia-3d symmetry thanks to the presence of complementary
pores in the KIT-6 silica produced at 373 K, which connect the enantiomeric pair of 3D mesoporous
channel systems. Upon pyrolysis of the carbon precursor, rigidly interconnecting carbon bridges
avoid the structure displacement during silica removal. For N-CMK-8, the starting KIT-6 silica was
synthesized at 308 K, where no complementary pores are typically formed. For this reason, the two
carbon sub-frameworks produced during pyrolysis with this silica are displaced upon silica removal,
and the structure transforms from the body-centered cubic Ia-3d to the body-centered tetragonal I41/a.
The trimodal porosity shown by the N-CMK-8 seems to be associated with the symmetry modification.
The first peak (4.2 nm) is related to the undisplaced Ia-3d domain. The structural displacements upon
silica removal likely induce a distortion of the pores and the appearance of the second and third peak
(6.2 nm and 9.2 nm).

 

 

 

 

 

 
Figure 2. Small angle X-ray scattering (SAXS) patterns for CMK-8 and N-CMK-8. (a) SAXS pattern of
CMK-8, (b) SAXS pattern of N-CMK-8. In both a and b panels, the peaks are indexed as reflections
from crystallographic planes and reported in the table on the top right of the figures.

XPS was used to analyze the binding character of the N heteroatoms in the N-CMK-8 material,
and the XPS spectra for the N-CMK-8 are reported in Figure 3. The three main peaks of the survey
spectrum correspond to C 1s, O 1s, and N 1s, with a relative surface elemental composition of 81.2%,
12.2%, and 6.4%, respectively. The C 1s peak can be deconvoluted in three different components.
The main peak at 284.4 eV is associated with sp2 hybridized carbon or graphitic carbon. The peak at
285.7 eV is related to the bonding between carbon and nitrogen, indicating an N-sp2 C bond. The third
broad peak centered at 286.8 eV is not as identifiable, as it can have contributions from both N-sp3 C
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bonds and C-O bonds. Three sub peaks for C-O can be suggested, one at 286.3 eV for C-OH, one at
287.5 eV for C=O, and the last at 288.5 eV associated with carboxylic groups. Therefore, the carbon
atoms constitute a honeycomb structure, which is modified by the nitrogen and oxygen incorporation.
The high-resolution N 1s peak allows a better understanding of how the nitrogen is incorporated
into the structure. The peak can be deconvoluted into three main sub-peaks at 398.4 eV, 399.4 eV,
and 400.8 eV [41]. The first peak corresponds to pyridinic nitrogen, which substitutes a carbon atom on
a C6 ring at the edge of the layer, and it is bound to two sp2 carbons. The second peak is associated with
pyrrolic nitrogen, which substitutes a carbon atom on the C5 ring with more sp3 character. These two
types of nitrogen contribute with electrons to the graphitic carbon layer, inducing donor states near the
Fermi level [42]. The last peak at 400.8 eV corresponds to graphitic nitrogen, substituting a graphitic
carbon and forming bonds with three sp2 carbons. The high-resolution O 1s peak is more complicated
to describe, considering all the different contributions. We suggest a deconvolution with four sub peaks:
The first at 530.5 eV is associated to C≡O in quinone; the second at 531.8 eV to oxygen in hydroxyls,
ethers, C=O in esters, amides and anhydrides; the third at 533.4 eV to C-O in esters and anhydrides and
contributions from carboxylic groups; and the fourth at 535.6 eV is attributed to adsorbed water [43].
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Figure 3. XPS spectrum of N-CMK-8 with relative surface elemental composition. (a) Full spectrum;
(b) high-resolution of C 1s, (c) high-resolution of N 1s, and (d) high-resolution of O 1s.

3.2. Electrochemical Evaluation

The ordered mesoporous carbons were studied in a half-cell configuration vs. Li metal. SEM images
of the composite electrode (CMK-8: Super P: Kynar®) are presented in Figure A2. Figure 4a,b report
the voltage profiles vs. the specific capacity of the N-CMK-8 and CMK-8, respectively. Both materials
show a very high irreversible charging capacity between the first and second cycles. The irreversibility
is connected to the extended plateau starting at around 1 V in the first cycle, which is associated with
electrolyte decomposition at the surface of the active material and formation of a solid electrolyte
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interface (SEI) [44]. The presence of edges and defects in high surface area materials provides many
sites for the electrolyte decomposition, which explains the large irreversible capacity. The introduction
of nitrogen and formation of the pyridinic and pyrrolic sites further increases the side reactions and
Li-ion trapping, resulting in an even higher irreversible capacity compared to the CMK-8 without
nitrogen. However, the presence of nitrogen has also a very beneficial effect in terms of electrochemical
performance. As seen in Figure 4a, the N-CMK-8 can reversibly store ~1000 mAh·g−1, which is more
than double than the available reversible capacity of the CMK-8. The numerous nitrogen defects at the
high surface area act as Li insertion sites, enhancing the storage capability. Moreover, the low energy
barrier for Li insertion and adsorption to the pyridinic and pyrrolic defects provides a higher specific
capacity [45].
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Figure 4. Voltage profiles for the first 3 cycles of (a) N-CMK-8 and (b) CMK-8. Long-term specific
capacities of (c) N-CMK-8 and (d) CMK-8.

Figure 4c,d report the charge and discharge capacities vs. cycles number at 0.1 A·g−1 for the two
carbons. The increase in capacity of the CMK-8, after the initial 10 cycles of irreversible formation of
the SEI, is likely due to a better infiltration of the electrolyte inside the mesopores of the material as
cycling proceeds. For the N-CMK-8, the SEI formation is reduced, probably due to a combination of
the broader porosity and the increased polarity of the nitrogen-functionalized surface. The N-CMK-8
shows very good reversible performance and stability for 200 cycles, being competitive compared to
different N-doped carbon materials reported in the literature (see Table 1).
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Table 1. CMK-3 and N-doped carbon materials used as anodes in Li-ion batteries are compared with
this work (N-CMK-8). Potential windows, specific capacity, capacity retention, and relative reference is
listed for each material in the table.

Material Potential Window
(V)

Specific Capacity
at 0.1 A·g−1 (mAh·g−1)

Capacity Retention
(Number of Cycles) Ref.

This work 0.01–3 ~950 ~95% (200)

CMK3 0.01–3 ~400 ~88% (100) [21]

N doped carbon nanotubes 0.01–3 ~600 ~93% (10) [16]

N doped carbon nanofibers 0.01–3 ~850 >95% (150) [46]

N doped graphene nanosheets 0.01–3 ~720 ~100% (10) [45]

N doped porous carbon
nanofiber webs 0.01–3 ~1280 >100% (600)

(2 A·g−1) [47]

N doped double shelled
hollow nanospheres 0.01–3 ~850 ~100% (100) [48]

The charge-discharge rate performance of the N-CMK-8 is reported in Figure 5a. The electrode
shows good behavior at high-rate, delivering ~200 mAh·g−1 at 5 A·g−1 and showing a nearly unaltered
performance when cycled again at 0.1 A·g−1. The mesoporous structure provides short diffusion paths
for the Li ions penetration and a desirable high surface to volume ratio. Besides, the low adsorption
energies for Li of the nitrogen functionalities presumably enhance the charge transfer reactions.
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Finally, the N-CMK-8 anode was tested in combination with a LiFePO4 cathode in a full cell.
LiFePO4 is typically used in laboratory studies as a cathode because of its environmental friendliness,
but it has a lower specific capacity compared to NMC (Lithium Nickel Manganese Cobalt Oxide)
cathodes used nowadays in commercial applications [49,50]. Figure 5b shows that the Li-ion cell
has stable performance over 100 cycles (>90% capacity retention [51]) with high coulombic efficiency,
demonstrating the feasibility of using nitrogen functionalized ordered mesoporous carbons as anodes
for practical applications in LIBs.

4. Conclusions

Ordered mesoporous carbon of type CMK-8 and nitrogen-functionalized CMK-8 have been
synthesized and structurally characterized. The N-CMK-8 exhibits a broader pore size distribution
with three distinct pore size distribution peaks. High-resolution XPS of the N 1s spectrum showed
that differently bound nitrogen atoms (pyridinic, pyrrolic, and graphitic) are present in the N-CMK-8
structure. Galvanostatic charge and discharge (GC/D) curves show the beneficial effect of the nitrogen
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on the storage capability of an N-CMK-8 anode. The nitrogen defects appear to provide a lower energy
barrier for lithium insertion and adsorption.

In half-cell configuration, the N-CMK-8 can reversibly store ~1000 mAh·g−1 at 0.1 A·g−1 and retain
~200 mAh·g−1 at the fast rate of 5 A·g−1. A full cell with LiFePO4 as cathode material and LP30 as
electrolyte shows stable performance over 100 cycles with very high coulombic efficiency, comparable
to similar commercial cells. Our results demonstrate that controlling the porosity and functionalizing
mesoporous carbons such as CMK-8 is a highly promising strategy to improve anode performance for
Li-ion batteries of the future.
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