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Abstract
Unfavorable cell heterogeneity is a frequent risk during bioprocess scale-up and characterized by rising frequencies of low-
producing cells. Low-producing cells emerge by both non-genetic and genetic variation and will enrich due to their higher 
specific growth rate during the extended number of cell divisions of large-scale bioproduction. Here, we discuss recent 
strategies for synthetic stabilization of fermentation populations and argue for their application to make cell factory designs 
that better suit industrial needs. Genotype-directed strategies leverage DNA-sequencing data to inform strain design. Self-
selecting phenotype-directed strategies couple high production with cell proliferation, either by redirected metabolic pathways 
or synthetic product biosensing to enrich for high-performing cell variants. Evaluating production stability early in new cell 
factory projects will guide heterogeneity-reducing design choices. As good initial metrics, we propose production half-life 
from standardized serial-passage stability screens and production load, quantified as production-associated percent-wise 
growth rate reduction. Incorporating more stable genetic designs will greatly increase scalability of future cell factories 
through sustaining a high-production phenotype and enabling stable long-term production.

Keywords Production load · Metabolic burden · Evolutionary stability · Production robustness · Production stability · 
Genetic heterogeneity · Phenotypic heterogeneity

Introduction

To accelerate commercialization of the growing number of 
advanced bioproducts, new solutions are needed to mini-
mize the development costs of scaling bioprocesses to large 
volumes [43, 63]. Often, large-scale biomanufacturing is 
restricted by the long-term stability of the production phe-
notype. Metabolic burdens and toxicities confer a production 
load (defined as percent-wise reduction in specific growth 
rate associated with production). As cultures are scaled to 
industrial numbers of cell generations (e.g. > 40 genera-
tions), this production load selects against high production 
and enriches for spontaneously emerging low-producing 
subpopulations [50, 66]. The economic consequences of a 
poorly scalable process can be significant with estimates of 
full bioprocess scale-up costs ranging between 100 million 

and 1 billion USD including costs of pilot and manufactur-
ing plants [12]. In large bioproduction plants, physiochemi-
cal heterogeneity is another, well-described phenomenon 
that occurs as a consequence of suboptimal mixing gradi-
ents causing variation in substrate, oxygen and pH regulators 
[16, 57]. Cellular heterogeneity on the other hand emerges 
spontaneously and is enriched through selection. Two types 
of cellular heterogeneity can be delineated: genetic hetero-
geneity and phenotypic (non-genetic) heterogeneity. Genetic 
heterogeneity arises due to a variety of gene- and strain-spe-
cific mutation types [50], whilst non-genetic heterogeneity 
arises due to stochastic (noisy) gene and protein regulation, 
expression and distribution to daughter cells [3, 24]. Even 
when starting from a pure single-cell derived master clone 
bank, heterogeneities of low or non-producing cell variants 
can become significant in fermentations [8, 48].

Driving both non-genetic and genetic heterogeneity, 
the selective production load is very case-dependent and 
can be identified as a growth rate reduction that results 
from metabolic burden (e.g. molecular depletions in 
co-factors, redox, charged tRNA and ATP) [5, 26] and 
metabolic inhibitors such as intermediate and end prod-
uct toxicity [62]. The collective load of production 
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(production-associated fitness cost) can be quantified as 
the percent-wise reduction in specific growth rate due to 
production. A functional understanding of the causes of 
production load and possible mitigations can be obtained 
through omics approaches [35]. To quantify, understand 
and mitigate genetic heterogeneity, deep DNA-sequenc-
ing advances have lately enabled better insight into which 
mutational modes (rates, types and targets) that even 
simultaneously can dominate production heterogeneity 
[37, 48]. Non-genetic production heterogeneity has mainly 
been characterized using biosensors [41, 65], flow cytom-
etry [16, 53], micro-engraving of individual cells [38] or 
microfluidics cultivations [28].

Recent synthetic biology strategies now promise to 
reduce both types of heterogeneity in long-term indus-
trial cultures. This shift has enabled the development of 
synthetic product addictions and auxotrophies that couple 
growth to product formation. Product addictions can link 
growth to production via product or pathway-sensitive bio-
sensors that regulate growth by either constitutive essen-
tial genes or conditional selection genes [14, 39, 49, 61, 
65] with different benefits. Synthetic product auxotrophies 
can be generated by metabolically linking pathway flux 
to essential growth-coupled parts of the metabolism [30].

Better strategies are also needed for deconvoluted moni-
toring of long-term robustness and susceptibility to hetero-
geneity. For example, the productive lifetime of popula-
tions increases when the initial production load is lowered 
[48]. However, the inherent positive correlation between 
production loads (burden and product toxicity) and pro-
duction titers, rates, yields (TRY) is masking the picture 
[32, 38]. As a consequence, improvements in production 
load may result from drops in TRY, and initially higher-
performing strain variants can turn out to perform worse 
after several cell generations compared to less loaded 
lower-producers [56]. Therefore, to improve the design of 
scalable strains it is important to monitor and address pro-
duction load as well as the formation rate of spontaneous 
heterogeneity. As a result, predictors of long-term robust-
ness, the production load and production half-life may be 
of similar importance to the TRY metrics.

To better predict the process scalability of new pathway 
designs in academia and industry, we suggest: (1) routine, 
comparable stability screens to measure production half-
life, and (2) routine measurements of production-associ-
ated decrease in specific growth rate (i.e. fitness cost) to 
infer production loads and predict stability early in the 
design-build-test cycles of future cell factories. We further 
discuss synthetic biology stabilization strategies and clas-
sify them as directed towards the mutation genotype or the 
production phenotype.

Predicting and quantifying production 
half‑life

Routine monitoring scale-up stability of new strains using 
standard methodology will likely enable strain engineers 
to better prioritize scalable early designs for example 
compared with short-term improvements that lack long-
term robustness. Strain stability can be predicted by the 
direct production load through relative specific growth rate 
measurements of producing variants and low/non-produc-
ing variants, or the production half-life can be measured in 
serial-passage stability screens [48, 56]. Here we outline 
these two metrics and provide principles for experimental 
design to more accurately grasp the physiological condi-
tions of eventual industrial production including seed train 
propagation.

Production half‑life estimation by serial passaging

Serial passaging of cultures can simulate long-term indus-
trial cultivations to measure production half-life as the num-
ber of generations at which half of the initial production 
level is reached (Fig. 1a). In industrial production, seed 
trains are used to inoculate large fermenters and manage 
cell generations in a production process. In industry seed 
trains are usually passaged prior to reaching stationary phase 
to avoid subsequent lag phases [29]. While intermittent sta-
tionary phases have direct impact on subsequent growth 
behavior, the stationary phase can in some cases also trigger 
different mutational responses [22]. Importantly, industrial 
practice can also entail different stages such as using induc-
ers and feeding programs which may largely change the pro-
duction load depending on the type of product. While cells 
are already stressed during production, stationary phases 
instigate an unwanted stress response and should be avoided 
when simulating scale-up. Further, the passage (seed) vol-
ume not only influences the practical timing, but potentially 
also the simulation of long-term cultivation if population 
bottlenecks are introduced [7] e.g. by passaging markedly 
fewer cells than the expected mutant formation rate. There-
fore, production half-lives can be determined in serial-pas-
sage experiments that resemble adaptive evolution experi-
ments (ALEs) in methodology [52]. However, care should 
be taken to design passaging regimes that avoid unrealistic 
stationary phases, to allow comparison between academic 
studies and industrial practice [29]. Since the estimated pro-
duction half-life ultimately depends on the formation rate of 
spontaneous heterogeneity, the size of the production load 
and the quality of the scale-up mimic, it can be difficult 
to compare an individual factor between different studies. 
Nonetheless, serially passaging of 0.2–2% volume from 
growing (non-stationary phase) cultures appear suitable as 
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standard principle. However, lab-scale serial passaging does 
often not simulate the significant shear pressure and oxygen 
or nutrient heterogeneities of large-scale bioreactors. A rel-
evant solution could be to perform serial-passage simula-
tions in scale-down systems.

Production half‑life estimation by measuring 
production load

Measuring the relative fitness cost of production by specific 
growth rates (production load) is a simple way to predict the 
potential stability of constructed strains. The specific growth 
rate of the strain should be measured in relevant produc-
tion medium and compared to the ancestral non-overpro-
ducing strain, for example containing an empty vector, or 
no integrated heterologous genes (Fig. 1b). Specific growth 
rates can be measured in a microtiter plate system, but any 
changed aeration, pH, temperature and similar conditions 
relative to the end process will potentially bias the results. 
The specific growth rate reduction may be specific to par-
ticular stages in the production cultivation (for example if 
a particular substrate is fed late), and this will complicate 
the ability to predict stability. A very interesting alternative 
may be monitors of cellular capacity (or “residual expres-
sion capacity”) measured as change in (otherwise) constitu-
tive green fluorescent protein (gfp) expression to quantitate 
expression burden with single-cell compatibility [9]. How-
ever, only measuring expression burden may not capture rel-
evant contributions to the production load from metabolic 
toxicities and inhibitions.

Non‑genetic and genetic heterogeneities 
affect bioprocess performance at scale

Different simultaneous types of heterogeneity can be 
expected in long-term fermentations. Further, in addition 
to heterogeneity-driven changes, homogenous changes 
may also occur in cultures over time, e.g. through non-
genetic inheritance of the proteome, thereby further affect-
ing the population dynamics. Therefore, to estimate the 
productive lifetime of a process, it may be helpful to con-
sider theoretical scenarios of production dynamics. The 
S-shaped, bimodal loss curve has been reported in numer-
ous examples [50], and is easily modeled mathematically 
[47] (Fig. 1—case 5). However, heterogeneity in cultures 
can also reduce production levels only partially depend-
ing on the available routes for alleviating production load 
(Fig. 1ab—case 3), e.g. as seen in early chemostat-based 
studies [2, 55]. In addition to changes driven by cell het-
erogeneities (e.g. emerging non-producer cells), tempo-
ral changes in production performance may potentially 
also be strictly homogenous (i.e. uniform across the bulk 
population). Observed at bulk-population level, changes 
in protein-composition during long-term cultivation e.g. 
affected insulin precursor production in S. cerevisiae 
expressed from a multi-copy plasmid [34, 64]. In the case 
of ethanol-producing S. cerevisiae, short-term adaptation 
to the medium during propagation improves the quality of 

Generations

P
ro
du

ct
iv
ity
,t
ite

ro
ry

ie
ld 1

1

a

b

c

3

4

5

Generations

S
pe

ci
fic

gr
ow

th
ra
te

non/low-producing ancestral strain

P
ro
du

ct
io
n
lo
ad

Production half-life

2

3, 5

4

2

Fig. 1  Production over time may change due to non-genetic and 
genetic heterogeneity as well as homogenetic change. Five hypo-
thetical heterogeneity scenarios are presented in relation to, a bulk-
population performance, b bulk population-specific growth rate and 
c) population composition with regards to producing cells (colored), 
low-producing (gray-colored) and non-producing cells (black-
colored). Over a typical cultivation time line, these scenarios may be 
characterized by: case (1) stable increase in performance and increase 
in load (e.g. by homogenous, population-uniform change) (green-
colored), case (2) stable performance despite a production load (e.g. 
by a low spontaneous formation rate of heterogeneity) (pink-colored), 
case (3) partial decline to intermediate lower level due to rising 
subpopulation that overcame the production load through produc-
ing at lower level (e.g. [55]) (yellow-colored), case (4) homogenous 
increase in performance that increases the production load, in turn 
leading to higher enrichment rate of heterogeneity (purple-colored), 
case (5) enrichment of heterogeneity driven by a load, leading to 
complete production decline (e.g., [27]) (blue-colored)
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the propagated cells leading to an improved overall ethanol 
productivity [18], suggesting a positive role of adaptation 
to the environment when producing a primary metabolite, 
e.g. by increasing cell viability. Non-genetic heterogeneity 
can revert as indicated in l-valine producing populations 
of C. glutamicum, where L-valine concentrations were 
visualized with a product biosensor coupled to fluores-
cent protein [41]. Non-genetic and genetic heterogeneity in 
production cultures has largely been studied using different 
techniques and profiled in different studies and produc-
tion systems [41, 48]. However, no evidence suggests a 
mutual exclusivity, and both types of cell heterogeneity are 
likely affected by similar selective forces. In addition to 
the effect of population dynamics on bioprocesses, a num-
ber of studies have reported temporal production declines 
characterized by changes in protein composition [34]. It 
is important to keep in mind that these changes may be 
homogenous and thus not necessarily driven by more-fit 
subpopulations. However, it is possible that epigeneti-
cally inherited protein will homogeneously decrease the 
specific growth rate and thereby increase the production 
load (Fig. 1—case 1). In such cases, increasing produc-
tion load may exacerbate the subsequent enrichment of 
cell heterogeneity (Fig. 1—case 4) and also complicate 
the ability to predict stability based on the initial produc-
tion load. To separate these types, in general, it can be 
expected that heterogeneity-driven performance changes 
will be indicated by increases in specific growth rate due 
to selection, while decreases in specific growth rate are 
expected for homogenous changes in performance. How-
ever, heterogeneity in cultures can also partially reduce 
production levels, depending on the available routes for 
alleviating production load (Fig. 1ab—case 3), e.g. as seen 
in chemostat-based assessments [2, 55].

Mutation genotype‑directed strategies 
prevent production declines leveraging 
DNA‑sequencing

Faster and cheaper deep DNA-sequencing together with 
improved bioinformatics tools now make it feasible to profile 
mixed genetic subpopulations. This can for example visual-
ize different parallel escape paths in production genes or 
uncover if one particular mutation event is highly active. 
To economize sequencing reads, an initial analysis can be 
directed towards the engineered genes. It can be difficult to 
generate a mutational profile at significant population depth, 
especially below 1% population frequencies where many 
sequencing error types become significant [50]. Early stud-
ies of cultivated production populations indicate that certain 
mutational modalities appear more often than others [48, 
56]. Such case-specific knowledge from DNA-sequencing 

can inform mutation genotype-directed stabilization strate-
gies (Fig. 2) (Table 1). In prokaryotic workhorses E. coli, 
Corynebacterium glutamicum and Bacillus subtilis, par-
ticular subfamilies of insertion sequence (IS) elements e.g. 
appear to decimate load-carrying genes for production more 
quickly. IS elements are bacterial mobile genetic elements 
that transpose autonomously in a host genome through the 
action of self-encoded transposases. This discovery has led 
to the development of platform strains with reduced muta-
tion rates through lowered IS activity (Table 2), but other 
escape paths appear frequently, with recombination being 
particularly noticeable and even facilitated by multiple cop-
ies of IS elements in different chromosomal locations [50].

Removal or knockdown of transposable elements 
such as ISs

In bacterial production organisms, mobile genetic IS ele-
ments are a known nuisance to production. IS elements 
can transpose into engineered production genes or facili-
tate recombination [8, 50]. These elements can provide an 
evolutionary advantage in changing environments by offer-
ing reversible knockout of random genes [21], but a similar 
mechanism is not advantageous in a bioprocess perspective. 
Avoiding disruption due to IS elements is a frequent priority, 
also due to examples of wide dissemination in genomes of 
popular key host strains such as Escherichia coli DH10B (66 
copies) [19]. It can be cumbersome to systematically delete 
all IS elements and new transposition can occur in the pro-
cess [46] (Table 2). Improved mitigation strategies employ 
CRISPR-based abolishment and genetic conjugation to make 
hybrid genomes from IS-less genomic regions in related 
strains [59]. Lately, also strategies using CRISPRi to silence 
the transposase genes driving the IS have been shown for 
E. coli strains and Acinetobacter baylyi [25, 44]. Silencing 
strategies are fast and easy to test, yet actual deployment of 
CRISPRi during production is likely a major burden in itself 
[13] with risk for quick mutation and indirect metabolic 
costs to biosynthetic production. To further develop such 
an approach, IS silencing could be established for metabolite 
production and at longer time scales than fluorescent protein 
demonstrations so far shown. On the positive side, far from 
all chromosomal IS subtypes appear highly active. Promoted 
by different stresses, temperatures and other signals, it has 
been shown that only a subset of the wide IS subtypes are 
typically active [36], which could likely reduce the num-
ber of IS removals needed. The genome-reduced, IS-free E. 
coli MDS42 strain has also been shown to improve stability, 
though it has been suggested that the vast genome reduction 
is not necessarily beneficial to the industrial exploitation of 
its metabolism [20, 48].
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Removal of insertion sequence target sites

Recoding the usual 6–9 base pairs long target sites of the 
IS elements poses an alternative IS mitigation strategy that 
has been rarely exploited to date. This is likely due to the 
numbers involved and the fact that the target site specificity 
is usually sufficiently broad to not drastically prevent trans-
posase entry in the engineered gene sequence.

Direct coupling or overlapping of essential 
and product formation genes

Several stabilization strategies physically couple or overlap 
essential genes with the product formation gene to maintain 
it (Fig. 2). This is similar to transcriptional or translational 
fusion of selectable genes such as tetrahydrofolate reductase 
genes used in the improvement of protein production [1]. 

KO

Production phenotype-directed

Inactivate or silence mobile element transposases

Genetic heterogeneity
Mobile elements
Recombination
SNP hotspots

Non-genetic heterogeneity
Fluctuating protein/DNA copy number
Stochastic expression

Mutation genotype-directed stabilization

Production gene Essential gene Production gene Essential gene

Overlap essential and production gene

Recode short and long repeats
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Addiction to product or intermediate

Production phenotype-directed stabilization
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Selection gene

Metabolic coupling of production to essential
metabolism
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Self-selecting

Product
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Fig. 2  Strain engineering strategies for stabilization of long-term bio-
processes. Stabilization of long-term bioprocesses can be divided into 
mutation genotype-directed (bottom-up) strategies mitigating known 
recurring mutational genotypes e.g. informed by DNA-sequencing, 
and production phenotype-directed (top-down) strategies that pro-

vide a non-natural growth advantage to a desirable production phe-
notype, e.g. by coupling the pathway/product metabolically to essen-
tial metabolism or sensing for the pathway/product using genetically 
encoded biosensors
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Yet, the necessary selectable agents are not feedable during 
production e.g. due to cost and/or toxicity. Protein produc-
tion benefits from physical coupling by working directly on 
the target gene for the protein in question, whereas stabili-
zation of metabolite production is complicated by the need 
for balancing multiple enzymatic activities [31]. Alternative 
non-conditional systems have been shown even in mamma-
lian systems using an E. coli antitoxin co-expressed with 
the protein product to overcome simultaneous toxin expres-
sion [42]. To stabilize burdensome expression of a meta-
bolic pathway, Rugbjerg et al. [48] previously transcription-
ally coupled the E. coli essential gene murI, transferring it 
from the chromosome to the plasmid-localized mevalonic 
acid pathway operon. The hypothesis was that IS insertions 
would shut down transcription on the downstream essential 
gene, whose presence would thereby maintain the pathway 
intact [48]. Yet, the long-term production stability improved 
only modestly since competing IS elements circumvented 
the solution. This was likely allowed through exhibiting a 
less growth-restrictive influence on the coupled essential 
gene.

Appearing more broadly effective is the sophisticated 
engineering of direct sequence overlaps, “gene entangle-
ments “between a foreign (production) gene and an essen-
tial gene [4]. The strategy exploits the natural concept of 
prokaryotic overlapping genes and aims to artificially over-
lap the two gene sequences by shared sequence enabled by 

the redundant codon space. Blazejewski et al. [4] in silico 
predicted the sequence space of possible sequence over-
laps between an essential and foreign gene. Given the wide 
sequence space of potential entanglements, applying such 
strategies in metabolite or protein production using entan-
gled production genes may be possible. However, it may 
be challenging to balance the ideal expression strength for 
a balanced metabolic pathway gene with the expression 
strength of an entangled essential gene without compromis-
ing fitness in adverse ways to the process.

Are plasmid‑encoded genes more susceptible 
to mutation?

Plasmid-based expression is still often used industrially, 
e.g. via the pET series [54], due to the ease of attaining 
many gene copies. The loss of plasmid without selection 
(segregational instability) has been solved by antibiotics-
free plasmid addiction systems in industry [23] or through 
kanamycin selection, which can sometimes be accepted by 
the authorities regulating the process. However, structural 
instability (susceptibility to structural variation) and other 
types of mutational instability will still affect heterologous 
or engineered genes and the rates may depend on way they 
are propagated in the cell [58]. The random partitioning 
of plasmids during cell division may amplify single muta-
tion events favoring the growth of cells that contain a high 

Table 1  Detected pathway mutations and mutation genotype-directed stabilization strategies

Mutation type Host and product Suggested stabilization strategy Reference

SNPs, deletions E. coli threonine deaminase Essential gene fusion (sequence entanglement) [4]
IS E. coli mevalonate Essential gene fusion (transcriptional coupling) [48]
Large duplication E. coli 1,4-butanediol Deletion of recombinogenic IS repeats [8]
Deletions E. coli fluorescent protein Avoid DNA repeats [56]
IS A. baylyi fluorescent protein CRISPRi knockdown of IS [25]
IS C. glutamicum fluorescent protein IS deletion [10]
Recombination E. coli poly-3-hydroxybutyrate recA deletion [58]

Table 2  Optimized host organisms engineered to reduce effects from mutation-causing genes

Organism Targeted mutagenic component Strategy Reference

E. coli MDS42 ISs, prophages Deletion of all ISs and prophages [46]
E. coli ISs CRISPR-based abolishment by point mutation, 

conjugation of IS-less regions
[59]

E. coli TOP10 ISs CRISPRi knockdown of IS [25]
E. coli MG1655, BL21(DE3), DH5-

alpha, JM107MA2
ISs CRISPRi knockdown of IS [44]

Bacillus subtillis ISs Deletion [40]
Corynebacterium glutamicum ISs, error-prone DNA polymerase Deletion [10]
Acinetobacter baylyi IS CRISPRi knockdown of IS [25]
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proportion of mutated variants in presence of selection. This 
process of mutant enrichment via segregational purification 
has mainly been studied in systems absent of plasmid selec-
tion, rendering multi-copy chromosomal integrations more 
stable [58]. Yet, multi-copy chromosomal integration also 
appears to prevent clonal amplification of escaping alleles 
due to uneven, random plasmid partitioning [58]. Effec-
tively, uneven segregation, in the face of a plasmid-borne 
fitness cost, means that plasmids de facto pass on novel 
variants as near single copy, yet has a mutational supply of 
corresponding to the plasmid copy number [51]. However, 
it remains to be shown how wide this effect is, including 
its dependency on different plasmid origins and selection 
pressure. As exemplified in S. cerevisiae based production 
of vanillin-β-glucoside, chromosomally integrated genes are 
also the target of rapid mutant enrichment if provided with 
a production load [14].

In E. coli producing GFP, a clever strategy to reduce gen-
eral mutation frequencies was outlined using flow cytom-
etry and sorting for mutant cells with maintained high GFP 
expression following serial cultivation [15]. The authors 
expressed GFP from a high-copy ColE1-type plasmid and 
this strategy identified a polA polymerase mutation which 
decreased plasmid mutation frequencies. As side effects, 
GFP levels and plasmid copy numbers decreased, making it 
challenging to isolate the effects of a reduced mutation rate.

Therefore, successfully lowered mutation rates can be 
difficult to isolate from any co-occurring, but secondary 
decrease in expression strength that could be counteracted 
afterwards. The authors therefore used a model to isolate sig-
nificantly lower mutation rate from the reduced fitness cost 
also resulting from the lowered copy number. Interestingly, 
the authors [15] did not report structural variant error modes 
(such as IS element or recombination) as escape mode on 
this plasmid. Similarly using the power of flow cytometry, 
the same group also investigated incQ-type plasmids and 
isolated the emergence of parasitic satellite plasmids that 
shed the replication genes and expression constructs [67]. 

Even if uneven segregation of multi-copy plasmids elevate 
escape rates, single chromosomal gene copies can also be 
highly vulnerable, as shown through sequencing of vanil-
lin-beta-glucoside producing S. cerevisiae [14].

Self‑selecting and phenotype‑directed 
strategies that couple production to growth

Using recent synthetic biology, high-performing fermen-
tation populations can be long-term stabilized by strate-
gies that couple a desirable production phenotype to the 
specific growth rate at a single-cell level. Leading towards 
a concept of self-selecting fermentations, these strategies 
therefore do not require knowledge on the specific escape 
paths as the strategy is directed towards presence of a 
particular product or important intermediate on its meta-
bolic pathway. Production phenotype-directed stabiliza-
tion can result through coupling production directly to 
essential metabolism [33, 60], or through product addic-
tions employing genetically encoded product-sensing 
biosensors (Fig. 2). Biosensors then detect the product 
or intermediate and next direct this signal to activate 
expression of genes essential for growth. For some of 
the growth-controlling genes used in studies, essentiality 
depends on the conditions; product addictions have been 
designed using classical antibiotics or auxotrophy-based 
selection genes [14, 39, 65], and using self-selecting, non-
conditionally essential genes [49] (Table 3).

Synthetic product addictions by pathway biosensors 
coupled to selection genes

In an early study to enrich non-genetic higher-producing 
cell variants, product-sensing biosensors were coupled to 
selection genes in E. coli cells, resulting in better fatty 
acid and tyrosine production during the cultivation time 
scale of a bench-top fed-batch fermentation [65] (Table 3). 

Table 3  Published production phenotype-directed synthetic addictions, including systems relying on conditioned medium

The reported stability of the production pathway is reported but the instability of the production phenotype also depends on the product (not 
comparable due to lacking production load measurements)

Organism Product Production stability (> 90%) 
(cell generations)

Growth controlling gene Selective condition Reference

E. coli Fatty acids
Tyrosine

No long-term serial-passaging 
cultivation

Leucine prototrophy leuABCD
Antibiotic resistance gene tetR

Leucine depleted, Tetracycline [65]

E. coli Mevalonic acid 95 Folate and peptidoglycan 
biosynthesis folP-glmM

None (self-selecting) [49]

E. coli Tryptophan
Phenylalanine

No long-term serial-passaging 
cultivation

Toxin-Antitoxin system hipA-
hipB

None (self-selecting) [61]

S. cerevisiae Vanillin-ß-glucoside 55 Glutamine prototrophy GLN1 Glutamine depleted [14]
Y. lipolytica Naringenin 320 Leucine prototrophy LEU2 Leucine depleted [39]
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Xiao et al. [65] thereby underlined a significant optimiza-
tion opportunity of non-genetic heterogeneity even within 
very short cultivation (likely around 30 cell generations 
and production only induced at the end). The study was 
therefore not investigating long-term bioproduction in 
terms of further cell generations, which can be done by 
serial passaging. The authors applied classical selection 
genes for leucine prototrophy and tetracycline resistance 
to control specific growth rates, as these genes become 
essential in medium conditioned to these selections. This 
concept (“PopQC”) led to a remarkable fourfold increase 
of free fatty acid titer to 22 g/L [65]. Such short induction 
and cultivation time scales clearly appear fit for enrich-
ing non-genetic variation while genetic variants generally 
require longer time scales [11, 27, 49]. An advantage when 
controlling populations using classical conditional selec-
tion genes is that designs can be more easily engineered, 
simply through using the selective medium conditions [14, 
39, 65]. Conditional selections also enable tuning of the 
selective pressure by changes in concentration of the selec-
tive agent, similar to biosensor-based enzyme screening 
[17]. Finally, selection genes allow time-dependent control 
of populations for example if initial intracellular fatty acid 
product concentrations were too low to activate the biosen-
sor and maintain growth [65]. Such timing was also needed 
to control populations of S. cerevisiae producing vanillin-
ß-glucoside, in which metabolic addiction was engineered 
using the glutamine biosynthetic gene GLN1 as selection 
gene. Glutamine biosynthesis was coupled to biosensors 
sensing pathway intermediates, and initial cultivation was 
carried out without selection in rich medium, as initial cul-
tures would not grow without the growth-controlling glu-
tamine [14]. A few challenges may speak against the use 
of classical selection genes, as medium conditions such as 
antibiotics and dropouts can be industrially challenging to 
introduce. Further, as discussed by Lv et al. [39], use of 
classical selection genes (i.e. involving nutrient auxotro-
phy and antibiotics resistance) also comes with the risk of 
cross leaking the controlled nutrient (e.g., glutamine or 
leucine) or enzyme (e.g. beta-lactamase) to cheating cells 
[39]. Lv et al. instead built a naringenin-addicted produc-
tion host in Yarrowia lipolytica using leucine biosynthetic 
gene and extended the production stability of naringenin 
production from approx. 200–320 generations. Though not 
observed so far, the cross-leakage scenario or “microbial 
herd protection” could mean that low-performing subpop-
ulations are permitted by feeding from cross-leaking cells 
until they reach a certain fraction of the population. Simi-
larly, cross leakage of product to lower-producing cells 
has been highlighted as a risk for circumvention of the 
sensing genes. This scenario is particularly likely towards 
the end of fed-batch fermentations in which the intracel-
lular concentrations are likely elevated. This would present 

cells with an opportunity for escaping production, yet the 
space for taking over the population would be limited by 
reduced growth towards the end of the fermentation. To 
mitigate this problem, sensing for a critical toxic pathway 
intermediate may be a beneficial strategy such as shown 
when stabilizing the pathway to vanillin-ß-glucoside [14].

Self‑selecting fermentations by synthetic product 
addictions in selection‑free medium

Instead of engineering addictions using a potentially cross-
leaking metabolite or toxin, non-conditional (self-select-
ing) addictions control growth rates using constitutively 
essential genes (Fig. 2) [49, 61]. In self-selecting addiction 
systems (i.e. systems independent on media depletions/
supplements), essential genes encoding for example cell 
wall biosynthesis and antitoxins are utilized (Table 3). 
Such addiction systems thereby connect the sensed phe-
notype with a constitutive selection pressure. Identification 
of suitable constitutively essential genes can be challeng-
ing. These should not result in pleiotropic effects on the 
metabolic production pathway, yet production cross talk 
can relatively easily be screened for. Untoggled selection 
is not possible with constitutively essential genes, and 
this complicates the construction of constitutively product 
addicted strains. However, self-selecting product addicted 
strains promise a longer stability and process adaptabil-
ity by circumventing media conditioning and cross leak-
age. Both types of product addiction systems represent an 
added metabolic and transcriptional load that could nega-
tively influence baseline performance of the controlled cell 
factory strain. Therefore, it will be important to assess and 
avoid any such load resulting from the system during the 
development phase.

Synthetic auxotrophy by direct metabolic coupling 
of production to growth

Metabolic coupling between a loaded heterologous pathway 
and the essential metabolism is another interesting stabili-
zation strategy directed to the production phenotype. The 
resulting auxotrophy for the product or intermediate gener-
ates a phenotypic pull, which has been used to select for 
better producing strains, for example through ALE [11]. 
The principle can be applied through knockout of particular 
metabolic reactions, forcing flux through the heterologous 
pathway. Genome-scale metabolic modeling in five main 
production organisms has shown that growth coupling is 
possible for a wide variety of pathways, at least upon sev-
eral gene deletions [33], but growth-coupling strategies can 
also involve gene insertions and medium supplements such 
as antimetabolites that inhibit core reactions for example 
as used in selections during strain construction [6, 30]. As 
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example, metabolic coupling to growth has been designed 
for anthranilate production from glycerol in E. coli by 
deleting four genes in the pyruvate-releasing enzymes of 
the central metabolism, thereby forcing the strain to syn-
thesize anthranilate [60]. Similarly, synthetic mevalonate 
auxotrophs have been designed in E. coli. These were used 
as whole cell reporters in screens for improved mevalonate 
synthesis rather than to optimize production or stability [45]. 
Overall, metabolic coupling appears promising but to our 
knowledge effects on stabilizing phenotypes over time still 
remains to be demonstrated in the literature. One first rel-
evant challenge in this regard may be improving the specific 
growth rates of the growth-coupled mutants to ensure better 
stability and avoiding unfeasible medium supplement condi-
tions and easily disrupted gene insertions.

Outlook towards enabling genetically stable 
continuous bioprocesses

Driven by the recent advances in synthetic biology, meta-
bolic engineering and next-generation sequencing, many 
more innovations are likely to increase long-term bioprocess 
stability as we learn more about the possible production 
escape paths. An important first step will be more routine 
measurements of the percent-wise growth reduction due to 
production (production load) as well as production half-life 
measurements through serial-passaging experiments. Par-
ticularly transformational strategies will reduce the burden 
and inhibitions underlying the production load and use syn-
thetic biology tools for regulating cellular growth and pro-
duction. Both strategies directed to the mutation genotype 
and production phenotype are likely to contribute towards 
making engineered production organisms more easily scal-
able to large cultivation volumes. While not yet shown, 
self-selecting fermentations will in principle also allow 
enriching for beneficial genetic variation. Due to the com-
parably lower rates of spontaneous mutation than phenotypic 
variation, enrichment of beneficial genetic variants would 
likely require longer than the typical 100 generations of cul-
tivation to improve bulk-population level production. This 
would therefore rarely happen during industrial fed-batch 
production, but the principle could be used in development 
of more stable genetic variants at lab scale. As the fields 
of metabolic engineering and bioproduction are develop-
ing with the onset of many new sophisticated bioproducts, 
it is becoming increasingly realistic to design strains early 
on that will exhibit long-term stability. Future studies will 
hopefully allow for more routine evaluation of the scalabil-
ity of new promising strain designs, and e.g. also answer 
questions related to how widespread heterogeneity-driven 
production decline is in contrast to homogeneous long-term 
adaptation in production organisms. Excitingly, the recent 

developments will make continuous production an interest-
ing alternative to the current, industrially dominating fer-
mentation modes.
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Glossary

Biosensor   A genetically coded transcrip-
tion factor or RNA switch that 
senses a metabolite through 
binding and in turn regulates 
gene expression.

Gene fusion strategies  Synthetic stabilization strategy 
for a product formation gene 
either by overlapping or non-
overlapping the gene with an 
essential gene. Overlapping 
strategies are engineered by (par-
tially) overlapping its nucleotide 
sequence with the sequence of an 
essential gene in another reading 
frame thus exploiting the redun-
dancy of the genetic code [4]. 
Non-overlapping strategies tran-
scriptionally or translationally 
couple the product formation 
gene and essential gene [1, 48].

Metabolic burden   Generally in metabolic engi-
neering, it describes metabolic 
depletions and cross-talk asso-
ciated with production and e.g. 
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resulting in reduced specific 
growth rate [26].

Micro-engraving   A single-cell cultivation tech-
nique employing microwells, 
each approx. 0.05 mm in diam-
eter [38].

Plasmid addiction  A synthetic stabilization strategy 
for a plasmid, preventing seg-
regational instability (plasmid 
loss) but not structural instabil-
ity. The strategy renders pres-
ence of a helper gene on the plas-
mid essential for growth [23].

Population bottleneck  A reduction of the population size 
to a very low number of mem-
bers, which may bias the simu-
lation of a long-term fermenta-
tion through lowering of genetic 
diversity [11].

Product addiction   A synthetic stabilization strat-
egy for a metabolic product, in 
which a product-sensing biosen-
sor senses high product concen-
tration and in turn activates an 
essential gene [49] or a condi-
tional selection gene [65].

Production load   The relative reduction in specific 
growth rate associated with pro-
duction due to all factors selec-
tively impacting producing cells 
in a given process.
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