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Abstract. In this study two automated segmentation methodologies of an X-ray
computer tomography based numerical analysis are compared. These are then assessed
based on their influence on the stress distribution results of finite element models of
glass fibre reinforced composites made out of non-crimp fabrics. Non-crimp fabrics
reinforced composites are commonly used for wind turbine blades due to their high
stiffness to weight ratio for the dominating bending load. Finite element modelling
based on X-ray computer tomography allows the reduction of the cost and can
accelerate the development process of the key material parameters of wind turbine
blades. Recent research progress in the last years has laid the basis for such a procedure.
Those processes must be easy applicable, fast and accurate. The main challenge in
current methodologies is the segmentation part. The segmentation methods applied
for this study have overcome this issue by being automated. This allows for a
comparatively fast transfer from X-ray computer tomographic data to finite element
results.

1. Introduction
High performance polymer matrix composites are the standard materials used for wind
turbine blades due to their durability and the high stiffness to weight ratio. A good
fatigue behaviour is especially essential due to the huge amount of load cycles (between
50 and 300 million) [1]. In addition, with increasing blade length, higher tensile stiffness
and compression strength are also necessary [2]. The improvement of the composite
structure is expensive since it is mostly based on experiments. Finite element modelling
based on X-ray computer tomographic data allows to account for real material behaviour
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after manufacturing of the composite structure. Misaligned and displaced fibres, fibres
bundles as well as void formations can be implemented in the model [3].

1.1. X-ray computer tomography
Developed originally for the medical diagnostics field, X-ray computer tomography has
expanded its application field to non-medical research and industry in the last decades [4].
This technology allows to create images of the inside of the scanned sample while being
non-destructive [5]. The resolutions of modern tomographs can visualise single fibres [6].
X-ray computer tomography scans of composites can be used to assess manufacturing
processes, tensile failure, compressive failure and kinking, fatigue as well as impact
damage [7].

1.2. X-ray computer tomography image based modelling
X-ray computer tomography image based modelling can improve the quality of finite
element analysis [8]. Recent improvements in the images acquisition and analysis allow
enhanced applications for evaluating material models and structural improvements of
fibre reinforced composites [9]. Increased usage of finite element modelling will reduce the
development and production cost for industrial applications. Automated segmentation
is in particular important since huge amount of data (in the range up to dozens of
Gigabytes), that is generated during X-ray computer tomography, needs to be processed
to serve as basis for finite element modelling. The volume of data creates the necessity
for automated algorithms which allow accurate, repeatable and cost and time efficient
processing. An implementation of the fibre orientation is fundamental for modelling
of fibre reinforced composites. X-ray computer tomography can additionally supply
the fibre orientation as well. Karamov et al. [10] compared two high-fidelity methods,
fibre tracking with the commercial software package Avizo™ and ellipsometry, with a
structural tensor approach. Depending on the scanning resolution, high accuracy of
the calculated fibre orientation was achieved for all methods in their investigation. The
study of Jespersen et al. [11] on the other hand did not include fibre tracking. They
focused more on the generation of surface geometries of the single fibre bundles with the
application of the commercial software packages Avizo™ and Geomagic Wrap®. The
interpolation between single 2D cross-sections resulted in a 3D volume. After the mesh
creation, the orientations of the lay-up were used to calculate the material parameters
with the Classical-Laminate-Theory. Blinzler et al. [12] conducted a similar study.
In contrast to Avizo™ and Geomagic Wrap® they used Solidworks™ to create a 3D
surface geometry. With the help of a generated centroid spline for the 3D fibre bundles,
the waviness could be accounted for, which is advantageous compared to the study of
Jespersen et al. [11]. Both studies however, are manual, time intensive, and depend on
the experience of the operator.

1.3. Objective
The goal of this investigation is to assess the influence of the automated segmentation
procedures for non-crimp fabrics reinforced composites on the fibre bundle scale on the
finite element analysis results. Two methods, called Physical Boundary and Thresholding
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in the following, differing in the representation of the boundary between fibre bundles
will be compared in their ability to model stress concentrations.

2. Approach
Glass fibre reinforced composites are used for the highly automated X-ray computer
tomography aided process. The fundamental parts for such a process are image
acquisition, segmentation and the finite element modelling.

2.1. Material system
Non-crimp fabric glass fibre reinforced composites were manufactured with the
architecture Jespersen et al. described in [13]. Four uni-directional bundle layers are
placed on each other and each layer is supported by a layer of backing bundles. The
composite was manufactured with the vacuum assisted resin transfer moulding technique.
An unsaturated polyester was used as the resin. The composite layup with [b/0, b/0]s
was used where the term ”b/0” denotes a uni-directional bundles layer oriented at 0° on
top of a layer of backing bundles oriented at ±80° (Figure 1).
For the material properties in the finite element analysis, a linear transverse orthotropic

Figure 1: Rendered reconstructed X-ray computer tomographic data of the specimen
with a size of 376 × 936 × 1708 pixels and a voxel size of 10.94µm displayed in the
commercial software package Avizo™ reflecting a physical size of 4.11×10.2×18.7 mm3.

model is chosen. A precis value of the fibre volume fraction is essential for predicting the
material parameters. A 2D scanning electron microscopy image of the centre plane of
the cross-section was taken of the specimen after it was scanned in the X-ray computer
tomograph. The fibre volume fraction was determined based on a image analysis using a
threshold operation and taking the ratio of the high intensity glass-fibre pixels to the total
amount of pixels in fibre bundle part of the cross-section. The material parameters were
calculated based on the fibre volume fraction of 61 % inside the fibre bundles with the
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rule of mixtures for the stiffness along fibre direction and Halpin-Tsai for the transverse
and shear properties [14]. In Table 1 the values normalised with the longitudinal stiffness
can be seen.

Table 1: Calculated material parameters with the Rule of Mixture and Halpin-Tsai
normalised with the value of the longitudinal stiffness E11.

E11 E22 E33 G12 G13 G23 ν12 ν13 ν23

[-] [-] [-] [-] [-] [-] [-] [-] [-]

1.00 0.265 0.265 0.0775 0.0775 0.0575 0.258 0.258 0.254

2.2. Image acquisition
The central part of the gauge section of a tensile test specimen was scanned at DTU
Wind Energy with a 3D X-ray computer tomograph Zeiss Xradia Versa 520 scanner,
that has a 2000 × 2000 pixel detector. A so-called binning of 2 was used. With this
setting 2 × 2 pixels are merged to one pixel. This results in a shorter scanning time but
also signifies a lower resolution. Three single scans were stitched together to cover a
larger field of view. Further, with the exposure time 4 s, the number of projections 3601,
the accelerating voltage 50 kV, the optical magnification 0.4×, the voxel size 10.94µm
resulted in a scanning time of approximately 22 h. The voxel size with 10.94µm is too
coarse to resolve single fibres with diameters of 9 and 17µm. The scanned field of view
covers the entire width and thickness of the tensile test specimen. In the main fibre
direction, the sample needed to be cropped to reduce the scanning and modelling time.
The result is visualised in Figure 1.

2.3. Segmentation method
To investigate the influence of the segmentation method two automated approaches were
used. They differ in their complexity and how the boundaries between uni-directional
and backing bundles are modelled. Yet, both are comparatively simple considering the
goal they need to fulfil. To assure that the segmentation outcomes can be used for
accurate finite element modelling, a fibre orientation must be either provided or the
assignment possibility must be given. Fundamental to achieving this objective in our
approach is a fibre tracking, which was carried out in Avizo™. Based on the correlation
of the image data with cylinder templates fibre centre lines are generated [15]. Those
fibre centre lines are exported as a comma separated value file and the orientation is
later mapped on the finite elements. This material orientation mapping allows for one
of the simplest segmentation methods, the so called thresholding. Thresholding assigns
pixels/voxels based on their grey-scale values to different groups. In this case fibres and
matrix can be separated with thresholding. Combining thresholding and fibre tracking
creates a fast, automated and very accurate method serving as basis for finite element
modelling. This method is called Thresholding in this study (Figure 2a). Applying the
method Thresholding for finite element modelling will deliver accurate stiffness results
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(a) Thresholding (b) Physical Boundary

Figure 2: Automatically segmented surfaces of the methods Thresholding and Physical
Boundary with quasi uni-directional (blue) and backing bundles (yellow) depicted in the
commercial software package Avizo™

but can create the drawback that no physical boundary between quasi uni-directional
and backing bundles is generated. The resulting stress state at the interface between
quasi uni-directional and backing bundles might not be resolved correctly. In order to
overcome this issue, advanced morphological operators are applied on the fibre centre
lines. With the Avizo™ operators Dilation, Closing and Subtract Image independent
backing bundle surfaces are created. This method is called Physical Boundary in this
study (Figure 2b). Since the operations are not only based on the image data, they can
adulterate the actual volume of the uni-directional and backing bundles. The influences
of those segmentation choices will be discussed later on in the results of the finite element
analysis.

2.4. Modelling
The surface data of both automatically generated segmentations are imported in
ANSA™. In this pre-processor mesh quality issues and intersections are removed and a
volume mesh of the bundles is created. The meshing of the Physical Boundary method
takes longer, since penetration issues arise between uni-directional and backing bundles.
This segmentation method separates bundles which are very close together. In order to
be able to fit in solid elements for the matrix between those bundles a shrinkage of the
backing bundles is required. The solid mesh for the matrix surrounding the bundles is
generated with the ANSA™ function ”Include solid facets in detection”. The obtained
fibre orientation from AVIZO™ is mapped element-wise onto the solid elements. This
ensures accurate stiffness and stress results since the ratio between longitudinal and
transverse stiffness with approximately four (Table 1) generates a significant influences
of even small misalignments. Figure 3 shows a comparison of the final models.
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(a) Thresholding (b) Physical Boundary

Figure 3: Meshed models based on the Thresholding and Physical Boundary
segmentation methods with quasi uni-directional (marine-blue) and backing bundles
(yellow and brown) depicted in the commercial software package ANSA™. The matrix
mesh is masked.

3. Results

Figure 4: Plane cut of the Thresholding model through the volume showing the stresses
in fibre direction inside the uni-directional bundles on the left and the position of the
overlapping backing bundles on the right.

Both models (Physical Boundary and Thresholding) were loaded in the main fibre
direction with a strain of 0.25 %. Regarding the obtained stress in fibre direction, it
becomes clear that there are stress localisations, where backing bundles are crossing
uni-directional bundles, depicted in Figure 4. This effect is occurring at all locations
where backing bundles and uni-directional bundles are overlaying. Jespersen et al. [16]
showed in their study that in this area the fatigue damage process of tension-tension
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loaded specimens with a similar material system is originating. They assumed stress
concentrations to be the reason for this initial fibre failure. Their theory can be supported
by these simulation results. Similar finite element analysis by Jespersen et al. [11] and
Blinzler et al. [12] have also shown stress localisations in the overlapping area.

Both models (Physical Boundary and Thresholding) are able to predict these stress
concentrations. There is not significant difference in the stress distribution visible (Figure
5), though areas with higher stresses are more spread in the Thresholding model. The

Figure 5: Plane cut through the volume showing the stresses in fibre direction inside
the uni-directional bundles. On the left the model based on the segmentation method
Thresholding is shown, the model on the right bases on the method Physical Boundary.

model with the physical boundary representation allows for a smother surface mesh,
resulting in a more uniform stress distribution. The model is not able to resolve an
effect on the single fibre scale with an average mesh size of 120µm.

Nevertheless, even on larger scales, stress concentrations are occurring. The stiffness
differences between matrix, backing bundles and uni-directional bundles could cause
those stress concentrations. By assigning matrix material for the backing bundles in the
model based on the segmentation method Thresholding, this influence was examined.
In other words, the fibres have been virtually removed from the backing bundles. The
result is shown in Figure 6. The stress concentrations remain, they are even more severe
at this position in the composite. At the other positions of stress concentrations through
the volume nearly no differences between the model with backing bundles and the model
without backing bundles become visible. By this analysis it becomes evident that the
stiffness properties of the backing bundles have no significant influence on the stress
localisations inside the uni-directional bundles.

In order to exclude the option, that the observed stress localisations are induced by
the mesh, the backing bundles were deleted in the model Physical Boundary and the
accrued volumes were combined and remeshed as solid matrix elements. The results
are depicted in Figure 7. The effect seen in Figure 6 where the concentrated stresses
are more spread are visible in this analysis as well. This signifies that, even without
the presence of backing bundles in the finite element model, stress concentrations occur.
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Figure 6: Plane cut through the volume showing the stresses in fibre direction inside the
uni-directional bundles. Both models base on the segmentation method Thresholding.
For the model on the right the material was changed to the matrix material, the model
on the left shows the result of the original model with the correct backing bundle stiffness
properties (Figure 5 left model).

Figure 7: Plane cut through the volume showing the stresses in fibre direction inside the
uni-directional bundles. Both models are based on the segmentation method Physical
Boundary. However, for the model on the right the backing bundles were removed and
the accrued volumes were new matrix solid elements. The model on the left shows the
result of the original model with the backing bundles included and the correct stiffness
properties.

Nevertheless, the waviness of the uni-directional bundles induced due to the backing
bundles was not removed. Consequently the waviness is assumed to be the reason for
the localised stresses.

It can be concluded that the stress localisations are caused by the backing bundles.
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However, not due to different stiffness differences but due to the induced waviness of the
uni-directional bundles.

4. Conclusion
In this study the influence of two automated segmentation approaches for X-ray
computer tomographic data on the results of a finite element analysis have been
compared. As test specimen, a composite made of non-crimp fabrics comprising four
uni-directional bundles stacked on top of each other and held together by smaller off-axis
backing bundles, was used. The automated segmentation methodologies were developed
in Avizo™ and differ in the generation of a boundary between backing and uni-directional
bundles.

It has been shown that both models show stress localisations in the overlapping area
of backing and uni-directional bundles which has been observed in experimental studies
on a similar material system. Based on further investigations presented in this study,
it can be concluded that the stress concentrations originate at least partly from the
induced waviness due to the backing bundles. The influence of the single fibre scale was
not investigated due to the focus on the fibre bundle level in the finite element model.

Since no significant influences of the segmentation method on the finite element
analysis has been detected, it can be concluded that the developed automated
segmentations are robust. The method Thresholding is regarded favourable due to a
higher time efficiency and reduced complexity. In future work, the proposed methodology
needs to be tested on other composite layups as well. Further research applying the
process of transferring X-ray computer tomography images to finite element models is
necessary to investigate the origin of the stress concentration on the single fibre scale.
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