
Thesis for The Degree of Licentiate of Engineering

Towards Efficiency and Quality Assurance in Threat
Analysis of Software Systems

Katja Tuma

Division of Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2018



Towards Efficiency and Quality Assurance in Threat Analysis of Soft-
ware Systems

Katja Tuma

Copyright ©2018 Katja Tuma
except where otherwise stated.
All rights reserved.

Technical Report No 187L
ISSN 1652-876X
Department of Computer Science & Engineering
Division of Software Engineering
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.

Printed by Chalmers Reproservice,
Gothenburg, Sweden 2018.

ii



Abstract

Context: Security threats have been a growing concern in many organizations.
Organizations developing software products strive to plan for security as soon
as possible to mitigate such potential threats. In the design phase of the
software development life-cycle, teams of experts routinely analyze the system
architecture and design to find potential security threats.

Objective: The goal of this research is to improve on the performance of
existing threat analysis techniques and support practitioners with automation
and tool support. To understand the inner-workings of existing threat analysis
methodologies we also conduct a systematic literature review examining 26
methodologies in detail. Our industrial partners confirm that existing techniques
are labor intensive and do not provide quality guarantees about their outcomes.

Method: We conducted empirical studies for building an in-depth understand-
ing of existing techniques (Systematic Literature Review (SLR), controlled
experiments). Further we rely on empirical case studies for ongoing validation
of an attempted technique performance improvement.

Findings: We have found that using a novel risk-first approach can help
reduce the labor while producing the same level of outcome quality in a shorter
period of time. Further, we suggest that the key for a successful application
of this approach is two fold. First, widening the analysis scope to end-to-end
scenarios guides the analyst to focus on important assets. Second, appropriate
model abstractions are required to manage the cognitive load of the human
analysts. We have also found that reasoning about security in a formal setting
requires extending the existing notations with security semantics. Further,
minimal model extensions for doing so include security contracts for system
nodes handling sensitive information. In such a setting, the analysis can be
automated and can to some extent provide completeness guarantees.

Future work: In the future, we plan to further study the analysis completeness
guarantees. In particular, we plan to improve on the analysis automation
and investigate complementary techniques for analysis completeness (namely
informal pattern based techniques). We also plan to work on the disconnect
between the planned and implemented security.

Keywords

Secure Software Design, Threat Analysis (Modeling)





Acknowledgment

First and foremost, I am thankful to my supervisor Riccardo Scandariato for
his support and mentorship along my journey. His guidance helped plunge
into the world of research while keeping my life in balance. I am especially
grateful to my examiner Robert Feldt and co-supervisor Gul Calikli for their
helpful advice. I am also grateful to Christian Berger and Francisco Gomes for
supporting my passion for teaching.

Many thanks to my office mates Rebekka Wohlrab, Pierguiseppe Malozzi,
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Chapter 1

Introduction

Today security threats to software systems are becoming a growing concern
in many organizations. Thus security is considered early-on in the software
development life cycle (SDLC) [1]. Practitioners that value security in their
products adopt well established best practices, e.g. by applying secure design
principles [2] and patterns [3]. Design models are often analyzed to assure
the desired properties of the system. Model analysis can be done for different
architectural perspectives (e.g., topological view, data view, access control and
permissions, functional view, etc.) and on several levels of abstraction.

Threat analysis (threat modeling) is a method that strives towards validating
the software architecture and discovering potential design weaknesses. It
includes activities which help to identify, analyze and often prioritize potential
security and privacy threats to a software system and the information it handles.
The main reason for performing threat analysis is discovering potential risks
early-on in the development and thereafter eliciting (or refining) security
requirements.

First, reports show that only about one third of the surveyed organizations
adopt threat analysis as part of their design process [4]. The manual effort that is
today required for performing threat analysis may be a limiting factor for a more
wide-spread adoption. In fact, empirical evidence indicates that techniques such
as STRIDE can be repetitive and time consuming [5]. Meanwhile, there is a lack
of security experts in organizations to handle such manual effort. To address the
above issues, this work contributes with an investigation on how to find the most
important threats faster. To cater to our partners from the automotive industry,
we have focused on model-based threat analysis. We have proposed an extended
notation (eDFD) and an accompanying analysis approach (eSTRIDE) in Paper
C. The approach relies on making reductions to the problem and solution
space before and during the analysis, respectively. Such reductions enable
the analysts to focus the analysis and avoid discussions about threats with
low priority. As such, this analysis approach is not appropriate for achieving
threat coverage. The approach is initially validated with an illustration. A
more extensive validation is ongoing work. We are conducting a case study in
collaboration with two large automotive industries. The participants are split
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2 CHAPTER 1. INTRODUCTION

into a control group using STRIDE and an experimental group using eSTRIDE.
The two groups are given the task to analyze a large system using the assigned
techniques. We plan to measure and compare the group performances based
on the quality of analysis outcomes (i.e., the number of important threat that
were discovered) and the timely discovery of important threats (when they
were discovered in the process).

Second, evidence suggests a low recall of model-based threat analysis tech-
niques such as STRIDE (about 0.5, as recorded in Paper B). This means that
on average the number of overlooked threats is very high for such techniques.
From our experience, threat analysis is in practice performed using design
notations with little semantics. Further, for many existing techniques there is
no correctness or completeness guarantees of analysis outcomes (as recorded
in Paper A). This makes automated reasoning for quality assurance a very
challenging task. Such guarantees (and their automation) are important for
compliance to security standards (e.g., ISO26262 [6]) and software certification.
Therefore, this issue is particularly relevant for the automotive domain. To
address this issue we propose a formalized approach (SecDFD Analysis) for
performing threat analysis on the design-level (Paper D). In information flow
security, low level code is statically analyzed for a particular set of inputs
to determine potential leaks of sensitive information. Initially the inputs are
assigned so called security labels. Typically, a high label refers to a private input
and a low label refers to a public input. The proposed approach contributes
with a formal specification language (SecDFD) for a design-level notation and
an automated analysis of information disclosure threats with label propagation
and a security policy checker. The benefits of this approach are twofold: (i) the
design-level specification language SecDFD is kept simple, yet equipped with
security semantics to enable the automation and (ii) the automated analysis
rests on the semantics of SecDFD security labels and thus provides completeness
guarantees in the context of the modeled system.

The remainder of this Chapter is organized as follows. Section 1.1 narrows
the research focus, whereas Section 1.2 provides background on the main topics
of research. In Section 1.3 we provide a summary of the publications appended
in the respective Chapters. The collective results and answers to the presented
research questions are discussed in Section 1.4, followed by a conclusion and
charted vision for future work in Section 1.5.

1.1 Research Focus

This section describes the research tracks and research questions of this work.

Figure 1.1 depicts a completion bar of three research tracks. Works drawn
with a dotted line are either part of ongoing work or planned for future work.
The systematic literature review (SLR) presented in Paper A is not shown in
this Figure, as it was a result of an in-depth study of the state-of-the-art.

High effort. The first research track was oriented towards an industrial
collaboration with the automotive industry. With respect to the current state
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Figure 1.1: Research tracks and research questions of this work.

of practice, the most pressing issue is the lack of security experts. Increasing the
efficiency of threat analysis has the potential to free valuable resources. For this
reason, we were interested to look into possibilities to reduce the time spent on
analyzing threats without sacrificing the quality of outcomes. Evidently, there
is a trade-off between systematicity and timely discovery of important threats.
In Paper C we explore this trade-off and provide a “short-term” solution with
value to the industry. In parallel to this study we worked on building a deeper
understanding on how the analysis procedure effects the technique performance.
Specifically, we were interested to understand how the procedure of visiting the
architecture facilitates designers in identifying threats. To this aim we looked
into the scope of analysis, i.e. the number of elements analyzed at once. On the
one hand, there exist such techniques that suggest practitioners to find threats
to architectural components in isolation (e.g., STRIDE-per-element). Further
down the line, some techniques consider a slightly larger analysis scope and
suggest finding threats to a set of components (e.g., STRIDE-per-interaction).
Finally there are end-to-end analysis techniques that suggest finding threats to
a chain of components (e.g., proposed approach in Paper C). Our hypothesis
was that the technique performance linearly increases with the increase of
the analysis scope. We conducted an empirical comparison of two existing
techniques to test this hypothesis (Paper B). The first goal of this work is to
introduce an approach for finding important threats faster by enlarging the
analysis scope.

RQ1. What are the effects of broadening the analysis scope on
the quality of analysis outcomes? (Paper B, C)
To achieve this goal, we faced two challenges.

RQ1.1. What changes are required in the design model to facili-
tate a threat analysis focusing on important threats? (Paper C)
The first challenge was related to enlarging the analysis scope from a single
component (or a pair) to a chain of architectural components. By doing so, the
cognitive load of the human analyst increases also. A large cognitive load makes
problem solving more difficult for the human brain [7]. Therefore, the first
challenge is to enlarge the scope but at the same time abstract un-important



4 CHAPTER 1. INTRODUCTION

details (RQ1.1).

RQ1.2. What changes are required for a model-based threat anal-
ysis procedure to focus on important threats? (Paper C)
The second challenge was to reduce the manual effort as much as possible by
introducing short-cuts during the analysis. The procedure of striving towards
systematicity was not appropriate anymore. Therefore, changes to the analysis
procedure were required (RQ1.2).

Low recall. The second research track was oriented towards increasing
the formalism of model-based threat analysis to achieve completeness and
correctness guarantees of analysis outcomes. Threat analysis is considered
complete when all existing threats to the system and its assets have been
identified and documented. For instance in Paper B we measure the recall of
the techniques as the ratio of the correctly identified threats and all existing
threats (including the threats that were overlooked). The analysis correctness
(or precision) refers to the ratio of correctly identified threats and all identified
threats (including falsely identified threats). The lack of formalism in threat
analysis techniques makes analysis automation difficult. Therefore, the second
goal of this work is to provide a practical formalized approach with certain
completeness guarantees of outcomes (Paper D).

RQ2. What formalism is sufficient for an easy-to-use design-level
threat analysis with completeness guarantees about analysis out-
comes? (Paper D)
In contrast to the research goal mentioned above, this work aims towards
finding a more “long-term” solution, which can be leveraged for assuring the
quality of analysis outcomes. To achieve this goal we faced the challenge of
understanding what level of formalism is required for a correct and complete
threat analysis and can still preserve the simplicity of design-level notations,
such as DFDs (RQ2.).

Disconnect to code. Design-level models that are used during threat analysis
often become obsolete soon after the design phase. These models are seldom
kept up to date due to resource constraints. Therefore, there is a disconnect
between the planned security and implemented security. The third research
track is focused on bridging the gap between the intended and implemented
security architecture. We have started working on this track (other publications
[a]), yet more effort is planned for the future. We refer the reader for more
details about our future plans to Section 1.5.

1.2 Background

In this section we provide the background on the main topics related to
this research. We clarify the terminology and introduce the topic of threat
analysis of design models, automated analysis of design models, and security
correspondence between design models and code.
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1.2.1 Threat Analysis of Design Models

A necessary condition for a secure system is the correct definition and imple-
mentation of its security requirements [8]. However, the sufficient condition for
a secure software is an unknown [1]. Thus we can only aspire to build software
systems with acceptable levels of security. Sometimes referred to as security
by design, secure software design is a term used to describe methodologies,
techniques, tools, and best practices that facilitate building security into prod-
ucts throughout the entire software development life-cycle (SDLC). To this
aim, threat analysis (modeling) techniques are used in the design phase of the
SDLC.

We describe threat analysis in Paper A as such:

“Threat analysis includes activities which help to identify, analyze
and prioritize potential security and privacy threats to a software
system and the information it handles. A threat analysis technique
consists of a systematic analysis of the attacker’s profile, vis-a-vis
the assets of value to the organization. Such activities often take
place in the design phase and are repeated later on during the
product life-cycle, if necessary. The main purpose for performing
threat analysis is to identify and mitigate potential risks by means
of eliciting or refining security requirements.”

Existing threat analysis techniques are commonly categorized into three
non-exclusive categories, depending on the focus of the technique. Risk-centric
threat analysis techniques focus on assets and their value to the organization.
They aim at assessing the risk and finding the appropriate mitigations. Their
main objective is to estimate the financial loss for the organization in case
of threat occurrence. Therefore, when risk-centric techniques are used assets
dictate the priority of elicited security requirements. For instance, CORAS [9] is
an approach consisting of a modeling language, tool, and method for performing
a risk analysis. CORAS uses asset diagrams for refining the target system
and threat diagrams for identifying threats. The approach uses structured
brainstorming in the context of workshops as the method for identifying
threats. All the while, the identified threats are documented with threat
diagrams. Finally, the approach enables risk estimations and their treatment
with treatment diagrams.

On the other hand, attack-centric threat analysis techniques focus the
analysis around the hostility of the environment. They put emphasis on
identifying attacker profiles and the complexity of attacks exploiting any
system vulnerability. Attacker profiles are commonly distinguished with respect
to attacker capabilities, motivation, window of opportunity and number of
attackers and their organization (i.e., singleton, groups, hacktivists, terrorists,
etc.). The main objective of attack-centric techniques is to achieve high threat
coverage and identify appropriate threat mitigations. Notably, attack trees [10]
can be used in order to decompose attacker actions into possible events (leaf
nodes) that could trigger the attack. Similarly, Fault-tree analysis [11] (FTA)
and Event-tree analysis (ETA) also use trees for analyzing safety properties of
a system.
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Finally, the literature also mentions so-called software-centric threat analysis
techniques. This group of techniques focus the analysis around the software. For
example, in STRIDE [4] [12] the analysis is performed on Data-Flow Diagrams
(DFDs), which provide a high-level architectural view of the software. STRIDE
is an acronym for categories of security threats that are considered during
the analysis. In essence, this method strives for achieving threat coverage
by systematically visiting each element (or interaction) in the DFD and by
mapping threat categories to DFD elements in to help brainstorming security
threats. For a more complete list of existing threat analysis techniques we refer
the reader to Paper A.

1.2.2 Automated Threat Analysis of Design Models

Many approaches propose to automate the analysis of design models to mini-
mizing the resources needed for performing threat analysis in organizations.
Often such approaches are able to semi-automate the analysis. That is, they
automate parts of the analysis technique, while some parts still require manual
effort. Depending on the sophistication of the analysis automation, we continue
to describe knowledge-based automation of threat categories, graph-based
automation, and formal approaches.

The Microsoft Threat Modeling tool (MTM) [13] is a tool developed to
support the STRIDE methodology. MTM provides the ability to graphically
represent the DFDs. The tool further enables the generation of threat categories
for individual DFD elements with the use of the STRIDE threat-to-element
mapping table. Other works approach threat analysis automation in a similar
way. For instance, Sion et al. [14] present an approach which aims to automate
threat mitigations (i.e., possibly matching security threats to existing security
solutions). Yet both approaches automatically generate threat categories, rather
than actual security threats.

Design models (e.g., software architecture) can be sometimes represented
with graphs. A common method for automating the analysis of design models is
by discovering patterns in such graphs. Depending on the analysis focus, such
patterns represent threats, vulnerabilities, or security solutions. For example,
Almorsy et al. [15] proposed an approach for automating the security analysis
by capturing vulnerabilities and security metrics. To this aim, they develop an
approach for modeling a system and specify formal signatures of vulnerabilities
and metrics with the Object Constraint Language (OCL). Similarly, Berger et
al. [16] proposed a knowledge-based approach for abstracting the architecture
to graphs and querying such graphs to detect vulnerabilities.

When more effort for modeling (and analysis of) system design is justified,
formal approaches can be adopted. Such approaches typically require the
modelers to have a strong background in formal methods and topics alike. On
the other hand, the automation of analysis reasoning in a formal setting comes
sometimes for free due to the underpinned semantics. Yet the efficiency of such
approaches is often still a challenge. For instance, early work of Sheyner et
al. [17] automate the generation of attack graphs, based on the well understood
formalism of attack trees. Later work by Ou et al. [18] builds on that to increase
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the scalability of attack graph generation. Further, due to the crosscutting
nature of security concerns, Xu et al. [19] approached automating threat analysis
with aspect-oriented petri nets. The authors model the intended functions and
security threats with Petri nets, whereas they model threat mitigations with
Petri net-based aspects. Given the presented semantics, the authors are able
to construct a search tree and verify whether certain threat paths are possible
in the model.

1.2.3 Security Correspondence Between Model and Code

Building software from an architectural design does not guarantee a correct
implementation. Further, correct implementations of planned architectures
undergo maintenance which can gradually lead to architecture degradation.
We provide a brief introduction into the existing work on bridging the gap
between the intended and implemented security architecture.

1.2.3.1 Secure Models to Secure Code

One of the basic principles of Model-Driven Engineering (MDE) considers
models as first class entities and any software artifact as a model or as a model
element [20]. One aspect of MDE is model transformation from model to code
(i.e., generating code). Code generation has the potential to carry over security
solutions designed in the model. In the case of MDE the link between the
model and code is explicit. Therefore, the implemented security is likely to
correspond to the modeled security, but is not guaranteed. We provide a short
description of a few Model-driven Security (MDS) approaches.

UMLSec. UMLsec is one of the most popular UML-based MDS ap-
proaches [21]. With UMLSec security requirements, threat scenarios, security
concepts, security mechanisms, and security primitives can be modeled by
using stereotypes (UML profiles), tags, goal trees and constraints. It is further
possible to formally analyze UMLSec diagrams against security requirements.
As opposed to other MDS approaches UMLSec considers multiple security ob-
jectives, namely, confidentiality and integrity. The approach has been combined
with Secure Tropos [22] tackling security from the requirements phase [23]. It
has been used in industrial case studies [24–26] and provides tools support [27].
UMLSec is considered as the most complete and mature MDS approach. Yet,
the approach lacks support for automated model to code transformations.

SecureUML. SecureUML is an approach that aims to bridge the gap between
security modeling languages and design modeling languages [28]. It is used
for modeling role-based access control (RBAC) and is limited to one security
objective, namely, authentication. Compared to UMLSec, SecureUML provides
some automated transformations. For instance, access control infrastructures
for server-based applications can be generated automatically from SecureUML
models. SecureUML provides semantics [29–31] for a formal analysis of security
design models.
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SecureMDD. SecureMDD is a MDS approach that facilitates the develop-
ment of security-critical applications based on cryptographic protocols [32].
In particular, it is a domain-specific approach tailored to smart card applica-
tions. Starting from a platform-independent model, SecureMDD generates a
formal abstract state machine specification and Java code. The state machine
specification is used for formally proving security properties of the therefrom
generated Java code.

For a complete review of existing secure design methodologies and notations
we refer the interested reader to systematic literature reviews [33], [34], and
survey [35].

1.2.3.2 Security Implementation to Secure Model

Existing approaches (e.g., SECORIA [36]) have studied how to obtain security
facts about the architecture just by observing the code. To this aim, a combi-
nation of static and dynamic program analysis techniques are used. Static code
analysis techniques perform the analysis “off-line”, e.g. based on a model in-
stance or source code, without accounting for program inputs. Such techniques
analyze all possible executions of the program and are forced to make certain
approximations. Dynamic code analysis techniques take program inputs into
account (typically a single input). They use runtime program information
(e.g., executable files, external libraries, dynamic memory allocation, etc.) to
perform the analysis. This allows greater precision for a particular input, but
also causes lower correctness guarantees for other program inputs.

Empirical evidence suggests that in general the accuracy of obtaining system
architectures from the implementation is low [37,38]. We refer the reader to
the related work and discussion sections of Paper D and other publications
([a]) for more background on this topic.
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1.3 Paper Summaries

This section includes a summary of the appended papers. In the summaries we
describe our research goals, adopted methods, main contributions, limitations,
and position our research with respect to the related work.

1.3.1 Threat Analysis of Software Systems: A System-
atic Literature Review (Paper A)

The number of existing threat analysis techniques makes it difficult for practi-
tioners to make informed decisions about selecting the appropriate method for
adoption in their organizations. Further, the existing literature on systematiz-
ing the knowledge about threat analysis is limited [39] and does not provide a
complete set of existing techniques. The initial goal of Paper A was to catalog
and characterize the existing threat analysis techniques. The second goal was
to provide future research directions and to address when the techniques could
be adopted by practitioners. In this study we compare 26 identified methodolo-
gies for what concerns their applicability, characteristics of the required input
for analysis, characteristics of analysis procedure, characteristics of analysis
outcomes, ease of adoption, and their validation. The study was conducted
by strictly following the existing guidelines [40] and included an elaborate
strategy, including backwards snowballing [41] for searching the literature and
extracting the data. This study also discusses the obstacles to be overcome
for adopting identified techniques to current trends in software engineering
(i.e., Development and Operations, Agile development) and their generalization
across domains. In addition, the study provides recommendations to practi-
tioners for technique adoption depending on the amount of planned resource
investment.

Contributions. The main findings of the SLR are: (i) Existing threat
analysis techniques lack in quality assurance of outcomes, (ii) the use of
validation by illustration is predominant, (iii) the tools presented in the primary
studies lack maturity and are not always available, (iv) there is a lack of
Definition of correctness and completeness guarantees for analysis outcomes.

Limitations. Substantial work was done by a single researcher, therefore
we consider a risk of subjectivity as an internal threat to the validity of Paper
A. Particularly, the selection of studies and the data extraction was mainly
performed by the first author. We have mitigated this threat by planning
and executing random quality assessments. Generally, the validity of SLR
results depends on the external validity of the selected studies. To mitigate this
threat we have developed and applied a rather conservative inclusion criteria,
excluding gray literature papers, position papers and such. Further, Paper
A restricts the search of literature to a subset of existing venues and digital
libraries. Searching a non-representative set of existing literature would have
harmed the validity of our conclusions. Yet we included top ranked venues and
searched among the most influential works in software engineering.

Related work. To the best of our knowledge Paper A presents a first
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extensive systematic literature review of existing threat analysis methodologies.
Previous work has presented reviews (e.g., Mellado et al. [42]) and surveys (e.g.,
Salini et al. [43]) of security requirements engineering (SRE) methodologies
and techniques. While a subset of techniques is also mentioned in these works
(such as [44], [45], [46] and [47]), our contributions are unique in its research
questions and in providing a more complete list of existing threat analysis
techniques. With respect to risk analysis and assessment, Latif et al. [48]
present a systematic literature review in the field of cloud computing with a
focus on risk assessment. Further, Cherdantseva et al. [49] present a state-of-
the-art review of the literature on cyber security risk assessment methods for
SCADA systems. Both of the aforementioned reviews are narrowly scoped to
one domain and do not assess the characteristics of the studied works.

Summary. In summary, this study provides an empirical analysis of
existing threat analysis techniques. It was performed as part of an in-depth
study of the state-of-the-art, hence it does not contribute to any of the research
questions listed in Section 1.1. One of the main goals for conducting a SLR
is to identify knowledge gaps, which we summarize in the main contributions
above.

1.3.2 Two Architectural Threat Analysis Techniques Com-
pared (Paper B)

Among other things, threat analysis techniques may differ in the scope of
analysis. We were interested to study the effects of a different analysis scope
on the technique performance. To this aim, Paper B rigorously compares two
existing techniques with different scopes, namely STRIDE-per-element and
STRIDE-per-interaction [4]. In particular, this study measures the respective
techniques’ performance in terms of their productivity, precision, and recall.
The study was conducted in the context of in-vitro experiments with master
students. We have adopted a standard design for a comparative study of one
independent variable with two values, namely, Element and Interaction [50].
The participants were split into two treatment groups, the Element and
Interaction treatment group. They were further assigned to teams. The
teams were instructed to (i) create a DFD and (ii) perform a threat analysis
of a familiar system using the respective technique in a fixed time frame and
report the analysis results. We collected the measure of effort (in minutes)
spent by each team on both sub-tasks (DFD creation and threat analysis). The
final reports were compared to a ground truth analysis to collect the measure
of true positives (TP ), false positives (FP ) and false negatives (FN). On that
basis, the study collects evidence about statistical significant differences (SSD)
between (i) the average productivity (number of TP per hour) of treatments,
(ii) the average precision (TP/(TP + FP )) of treatments, and (iii) the average
recall (TP/(TP + FN)) of treatments. Beyond that, the study controls for
any possible discrepancies between the populations of the treatment groups
(i.e., with an obligatory entry and exit questionnaire) and gathers subjective
feedback on the usability of the techniques.

Contributions. We observed slightly better results for the STRIDE-per-
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element technique (SSD between the average recall of treatments, Element :
0.62 Interaction : 0.49). We also observed a slightly better average pro-
ductivity (no SSD, Element : 4.35 TP/hour Interaction : 3.27 TP/hour).
One possible explanation for the difference in treatment performance is that
STRIDE-per-interaction is more difficult to perform for novice analysts [4]
(such as our participants). STRIDE-per-interaction requires the consideration
of pair-wise interactions of elements, thus increasing the cognitive load for the
analyst [7]. Accordingly, we have observed that on average the Interaction
teams produced larger DFDs, indicating that interactions lead to participants
constructing a more complex problem space. The increased cognitive load
and lack of domain expertise might have effected the performance of the
Interaction teams. In terms of overall performance, this study concludes
that there is no significant difference in the observed treatments.

Limitations. The report analysis was carried out by a single researcher,
which contributes to the internal threat of subjectivity. In addition, possible
mistakes could have been made while building the ground truth and assessing
the reports handed in by the participants. The size of the target system was
purposefully large enough to position the analysis in realistic circumstances.
Therefore, participants were facing a complicated and time consuming task.
This has raised the risk of over-loading the participants. Yet, we have mitigated
this threat by supervising the experiment in a span of 4 hours. In these four
hours we advised the participants to first elicit all the threats. Afterwards,
additional time was given for writing the reports, which were assessed to include
the exact threats that were identified under supervision. The use of student
participants instead of professionals is considered problematic for generalizing
the results. Commonly referred to as convenience sampling [51], this kind of
participant sampling is considered controversial due to drawbacks [52]. Yet,
studies have shown that the difference in performance of professionals and
graduate students is often small [53–55].

Related work. Scandariato et al. [5] analyzed a previous version of
STRIDE-per-element and evaluated the productivity, precision, and recall of
the technique in an academic setting. We remark that our study has some
discrepancies with respect to the observed productivity (4.35 in our study
vs. 1.8 threats per hour), precision (0.6 vs. 0.81), and recall (0.62 vs. 0.36).
However, a direct comparison is not entirely possible, as the two studies use
different versions of STRIDE-per-element (our being the most up-to-date). A
privacy oriented analysis methodology (LINDDUN [56]) has been evaluated
with 3 descriptive studies [57]. LINDDUN is inspired by STRIDE and is
complementary to it. Both techniques start from a representation of a system,
which is described as a DFD. Similarly, the authors of the descriptive studies
assess the productivity, precision (correctness) and recall (completeness) of the
technique, as well as its usability. The work of Karpati, Sindre, Opdahl, and
others provide experimental comparisons of several techniques, namely, misuse
cases (MUC) and mal-activity diagrams [58–60]. Finally, several empirical
comparisons were performed where MUC were compared to other techniques
(e.g., mal-activity diagrams [60], attack trees and Common Criteria [61]). In
comparison to the above mentioned studies the novelty of our work is the study
of performance impact due to the difference in the analysis scope.
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Summary. In summary, this study shows that there are little performance
differences between the studied techniques. This finding indicates that the
performance of techniques visiting architectural elements in isolation does
not differ significantly to the performance of techniques considering pair-wise
interactions. It further suggests that possible performance differences might
occur when the analysis scope is further enlarged to end-to-end scenarios.

may be observed when comparing only by further enlarging the analysis
scope and changing the analysis procedure. Therefore, Paper B contributes
towards answering RQ1.

1.3.3 Towards Security Threats That Matter (Paper C)

This paper is motivated by the need to increase efficiency of threat analysis
techniques in the automotive industry. To this aim, we enlarge the analysis scope
and tailor the analysis procedure to focus on important assets. STRIDE [4]
is a popular approach used in the automotive today. Yet, empirical evidence
indicates that this technique can be tedious and time-consuming due to the
threat explosion problem [5]. For this reason, we have proposed a novel approach
inspired by the well-known STRIDE. The proposal comes as a result of numerous
workshop sessions with our industrial partners that further highlighted the
needs and shortcomings of existing approaches. As a collection of lessons
learned, the first author synthesized the approach and validated it with an
illustration.

Contributions. We propose to prioritize threats before the analysis be-
gins based on assets and their priorities. This requires practitioners to enrich
the architectural model (i.e., built an extended DFD or eDFD) with assets,
their sources, targets, security concerns and priorities, domain assumptions,
communication channels, and existing security solutions. The DFD extensions
are made to end-to-end user scenarios around highly prioritized assets. During
the analysis procedure, such scenarios become the scope of the analysis. Fi-
nally, the approach proposes initial guidelines for handling threat explosion
by introducing “short-cuts” both before and during the analysis. The initial
illustration shows a reduced number of low prioritized threats, yet does not
provide sufficient evidence for the potential benefits of the approach.

Limitations. The proposed approach relies on the correctness of the DFD
enrichments (e.g., domain assumptions). This means that the presence of a
domain expert is mandatory. We see potential in countering this limitation
by enriching future tool support with domain knowledge. Another draw back
is that the approach assumes that there are indeed non-critical areas in the
architecture, which can be disregarded for threat elicitation. If the architecture
is highly critical and contains only assets with high security objectives, the
abstractions will be limited. Finally, the approach was initially validated using
an illustration by the first author. Ongoing work is extending this validation
in the context of an empirical case study with practitioners.

Related work. Significant work has been done in the area of threat analysis
and risk assessment (TARA) methods in the automotive domain. Macher et
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al. [62] performed a review of TARA methods in the automotive context. In
their main findings, the authors identify most applicable TARA methods for
early phase analysis (i.e., EVITA [63], HEAVENS [64] and SAHARA [65]).
Yet, these techniques do not tackle the threat explosion problem. Beyond the
domain of automotive, there are existing risk-centric threat analysis techniques
(e.g., CORAS [66], PASTA [67]). These techniques are not semi-automated and
do not explore the possibilities for solution or problem space reduction. When
it comes to semi-automation of threat analysis, several approaches have been
proposed in the past. Notably, the approach in Paper C relates to extracting
threats from DFDs by J. Berger et al. [16]. Similarly to our work, the authors
extend the DFD notation with assets, security objectives and topological
behavior. Furthermore, they also develop a set of guidelines, which are used
to build a threat model of the architecture. However, these rules are used to
discover only cataloged threats and do not aim to handle threat explosion.

Summary. In summary, this paper proposes a novel approach for per-
forming an risk-first threat analysis with an enlarged scope of analysis. The
approach leverages the enriched architectural model (eDFD) and guidelines for
handling threat explosion to guide the analysis towards the most important
threats. As a result, such analysis can lend itself useful for practitioners in
favor of sacrificing systematicity for a timely discovery of highly prioritized
threats. This paper contributes to answering RQ1.

1.3.4 Flaws in Flows: Unveiling Design Flaws via Infor-
mation Flow Analysis (Paper D)

Paper D is motivated by the low recall of existing techniques using informal
design notations, (such as STRIDE [5]). On the one hand, literature describes
formalizations of DFDs [68] which often result in a complicated language
hindering their usability. On the other hand, several studies propose threat
analysis automation (e.g., by means of pattern matching [15, 16]) with no
correctness or completeness guarantees of analysis outcomes. Inspired by code-
level information flow security [69,70], we propose a formal approach to analyze
security information flow policies at the level of the design model.

Contributions. The main contributions are two-fold: (i) a light-weight
extension of the modeling capabilities of DFDs, and (ii) a tool-supported,
formally-based flow analysis technique. The extension of the DFD notation
requires the designer to provide the intended security policy for system assets. In
addition, the designer is required to specify an abstract input-output security
contract for the computational nodes. The designer also specifies a global
security policy for all system assets, based on which the design flaws are
identified. The additional information mentioned above is leveraged in the
analysis procedure. The second contribution of this work is a formally-based
flow analysis technique that propagates security labels across the design model.
The approach is implemented and packaged as a publicly available plug-in for
Eclipse. We have validated the approach using 4 real world case studies.

Limitations. We have only considered a subset of possible node types and
their semantics. For instance, we initially consider only nodes of type store,
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compare, join, use, split, forward, copy, encrypt, and decrypt. The formal
model can be extended to support more node types, such as authentication
and authorization. Further, the provided Eclipse plug-in currently supports
the specification of local temporal dependencies by explicitly enumerating data
flows. A possible extension would include an algorithm which can detect such
dependencies with label propagation. For instance, a stable state of security
labels can be used as the satisfying condition for exiting the propagation
algorithm. Finally, the validation is limited and was largely done by a single
researcher. Particularly, it would be beneficial to validate the approach on
larger cases with known and unknown design flaws.

Related work. Jürjens et al. [21, 71] have proposed UMLSec, an exten-
sion for UML to model security aspects in system design and prove security
properties, such as secrecy. UMLSec’s formal semantics scales very well as
they apply to a variety of model types (such as activity diagrams, statecharts,
sequence diagrams, etc.). Similarly to our approach, UMLSec defines a system
as a composition of subsystems and enables modeling a security policy and
attackers. In contrast, Jürjens et al. [21] focus the analysis on attacker behavior,
rather than the semantics of security labels on flows. Existing works have
introduced formal semantics to DFDs. The extensions made to the DFDs are
mainly used for expressing functional correctness, rather than non-functional
properties. For instance, Leavens et al. [72] propose a DFD semantics that
allows to specify the dynamic behavior of a concurrent system, and Larsen
et al. [73] leverage formal specifications in the Vienna Development Method
(VDM) language to formally reason about DFDs. We refer to the work by
Jilani et al. [74] for an overview.

Summary. This paper proposes a formally-based threat analysis approach
with minimal security extensions required in the design notation. Therefore,
this paper contributes towards answering RQ2.
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1.4 Discussion

This section provides the answers to the main research questions of this work.
To this aim, we discuss the main findings of the appended papers. First, we
discuss the main findings of studies conducted for the purpose of an in-depth
study of the state-of-the-art (Paper A and Paper B).

Our assessments in Paper A show that existing threat analysis techniques
are mainly applicable on the level of requirements, architecture and design.
This is not very surprising considering that the main purpose for performing
threat analysis is to elicit security requirements. Further, most of the studied
techniques use architectural design models and requirements (usually in textual
form) as inputs to the analysis procedure, which is in line with the first finding.
Interestingly, the precision of most threat analysis procedures is based on
templates and examples, such as textual descriptions of example threats. About
half of the studied techniques consider risk to prioritize the analysis outcomes.
The analysis outcomes of the studied techniques in turn are mostly threats.
Yet, half of the techniques also produce security mitigations or requirements.
Finally, we have found that not many of the studied techniques have a way to
assure the quality of analysis outcomes.

Paper A also investigates the ease of adoption for the studied techniques.
About half of the studied techniques do not provide any tool support. We draw
attention to the fact that most of the existing tools are used as visual aids
for representing the architecture, rather than for actually analyzing it. The
target audience for most of the studied techniques are security experts and
security trained engineers. We hypothesize which characteristics are important
for adopting the techniques in practice and provide the following guidelines for
technique selection:

(a) If the organization plans to make small investments into adopting a threat
analysis technique and security is not prioritized by management, we recom-
mend selecting a technique that can be used without further modifications.
Important criteria: Tool availability and maturity, sufficient documentation,
low target audience and a light-weight analysis procedure.

(b) If the organization plans to make small investments into adopting a threat
analysis technique and security is prioritized by management, we recom-
mend selecting a technique that is systematic. Important criteria: System-
atic analysis procedure, expert-based and preferably semi-automated.

(c) If the organization plans to make large investments into adopting a threat
analysis technique, we recommend developing an “in-house” adaption of a
promising technique. Important criteria: Systematic analysis procedure,
potential for improvement (e.g., technology improvement).

Paper B investigates the effects of enlarging the analysis scope on technique
performance. Figures 1.2(a) and 1.2(b) show the hypothesis and observed
reality about the linear dependency between technique performance and the
analysis scope. Empirical evidence shows that the productivity and precision
are not significantly different for the observed treatments. Thus, in the context
of the controlled experiments reported in Paper B, the analysis scope does not
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(a) Hypothesis about technique per-
formance.

(b) Reality about the performance of
two techniques.

Figure 1.2: Hypothesis about technique performance in relation to the cognitive
load required for brainstorming threats (left) and its reality for two specific
techniques (right).

have a significant effect on the overall technique performance. On the other
hand, we have collected interesting observations about the differences between
treatments. Namely, the Interaction teams have on average produced slightly
larger DFDs. Further, on average the Element teams have produced more
duplicated treats, indicating that the notion of interactions is useful for correctly
applying reductions suggested by STRIDE. In an ongoing case study we are
measuring performance differences that might occur when the scope is further
enlarged to end-to-end scenarios.

Table 1.1 presents a list of main findings ordered by the research questions
defined in Section 1.1.

RQ1: What are the effects of broadening the analysis scope on
the quality of analysis outcomes? The findings of Paper B indicate that
techniques with a “small” difference in analysis scope do not differ in terms of
overall performance. However, techniques with a “larger” difference in analysis
scope (e.g., one element vs. a scenario) might differ in terms of performance.
Further, Paper C suggests that enlarging the analysis scope might help manage
the threat explosion problem, and in turn produce outcomes of similar quality
in a shorter period of time.

RQ1.1: What changes are required in the design model to facili-
tate a threat analysis focusing on important threats? Reasoning about
risk early-on requires a good understanding of the assets and their whereabouts
in the system. During the asset analysis, the assets first need to be identified
in the model (incl. asset source, target(s)). The importance of assets can
only be deduced by discussing their security objectives (i.e., confidentiality,
integrity, availability, accountability) and the priorities of those (high, medium,
low). The annotated assets are required in the model to indicate where the
model should be further extended. By focusing on highly prioritized assets, the
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Table 1.1: Main research questions 1 and 2 with shortened answers.

RQ Main findings Paper

RQ1 • A risk-first approach is required to focus only on threats that
will be mitigated.
• The domain and security knowledge of the team has a large
impact on the quality of outcomes and needs to be present in the
architectural model before the analysis begins.
• The design notation needs to be extended with more security
information.
• The complexity of the architectural model needs to be managed
by making model abstractions wherever possible while enrich-
ments are made only around assets with highest priorities.
• During the analysis threats are only elicited for scenarios con-
taining high priority assets.
• During the analysis threats are only elicited for scenarios con-
taining high priority assets.
• During the analysis only threats that directly threaten a highly
prioritized security objective are considered.
• During the analysis only threats that are possible despite an-
notated domain assumptions and existing security solutions are
considered.
• Automation is required to further reduce manual effort.

C

C

C,D

C

C

C

C

C

C, D

RQ2 • The design notation needs to be extended with processing
node types to determine what operations they performs over the
assets.
• A security specification language is required for design-like
models (e.g., SecDFD).
• The security condition and the attacker model need to be
defined to reason about analysis completeness.
• The semantics of the analysis procedure needs to be developed
(e.g., security contracts of node types).

D

D

D

D
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analysis is performed on parts of the architecture (reduction before the analysis
starts). Domain assumptions, communication channels, and existing security
solutions are notation extensions that are used to make reductions during the
analysis. In the context of ongoing validation of eSTRIDE, we have found that
analysts feel like a large amount of time is spent for establishing a consensus
regarding domain assumptions (at the beginning of each session). Initial re-
sults of this validation indicate that in the beginning of sessions participants
frequently discussed the domain without noting assumptions down explicitly.
When domain assumptions were not explicitly written down more time was
spent on re-visiting the same issues later-on.

RQ1.2: What changes are required for a model-based threat anal-
ysis procedure to focus on important threats? In Paper C we provide
guidelines for handling threat explosion before (visited in RQ1.1) and during
the analysis. To reduce the effort during threat analysis, we propose a slight
departure from the analysis procedure suggested by STRIDE. First, eSTRIDE
analysis is performed using eDFDs. Second, threats are only elicited for sce-
narios containing high priority assets. Third, the scope of the analysis is an
end-to-end scenario (per asset). This means that the entire scenario is consid-
ered during threat elicitation, rather than single elements (or their interactions).
Further, only threats that directly threaten a highly prioritized security ob-
jective are considered. For instance, tampering threats are compromising the
integrity objective. Finally, only threats that are possible despite annotated
domain assumptions and existing security solutions are considered. Initial
results from the ongoing validation indicate that the guidelines for problem
space minimization and effort reduction during analysis (i.e., eSTRIDE) indeed
help focusing on important threats. Yet, we also observed that the participants
showed hesitation when marking assets as un-important (i.e., assets with low
priorities were rare). This limited the amount of possible effort reduction.
Finally, we found that automation is required for further effort reduction.
Ongoing validation confirms this claim. In particular, participants were often
idle due to threat documentation.

RQ2. What formalism is sufficient for an easy-to-use design-level
threat analysis with completeness guarantees about analysis out-
comes? In Paper D we present the semantics of a security DFD (dubbed
SecDFD), an extended design notation and a security specification language
which is used in our analysis approach inspired by code-level information flow
security. The extensions to the regular DFD are intensionally kept simple. First,
it is important to specify what assets are under analysis. Thus modelers are
required to extend their model with assets their sources, targets, and security
objectives (i.e., confidentiality). Assets and their properties are required in
order to be able to reason about information flows. Second, it is important
to specify what happens to assets (and their properties) when they traverse
nodes. Therefore, modelers are also required to specify the type of nodes
(e.g., forward, store, encrypt, etc.). Further, the security condition and the
attacker model need to be defined to reason about analysis completeness. The
security condition defines what it means for a SecDFD to be secure, whereas
the attacker model defines the attacker abilities. Finally, the semantics of
the label propagation is required. At this point the type of nodes become
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of paramount importance as they dictate which security contract should be
applied upon label propagation. We present the semantics of SecDFD together
with the complementary analysis approach in the appended paper.

1.5 Conclusion and Future Work

To conclude, this research contributes to four main knowledge gaps regarding
threat analysis methods. First, empirical evidence and experience from practice
suggest that most popular techniques (i.e., STRIDE) are manually-intensive
and require a lot of resources in organizations. In this work we have presented
an approach for leveraging enriched models to reduce this effort (Paper C).
Second, manual analysis techniques (such as STRIDE) have been recorded
to have a low recall (i.e., number of overlooked threats is high). Further,
we provide evidence (Paper A) about a lack of correctness and completeness
guarantees for the analysis outcomes. With respect to this issue, we contribute
with a new formalism of SecDFD, coupled with an analysis approach (Paper
D).

We envision three research directions in the future. First, we plan to
continue our industrial collaboration. In this direction, we have ongoing
work which empirically validates the approach proposed in Paper C. In this
validation, we are comparing the end-to-end approach proposed in Paper
C to the STRIDE-per-element technique. Therefore, we will complete our
investigation about the possible performance differences caused by enlarging
the analysis scope (previously studied in Paper B). We also envision that the
approach will be tailored and optimized after the empirical results are analyzed.
Following this, we plan to implement tool support for semi-automating the
analysis. Second, we plan to continue working towards improving the recall of
threat analysis techniques. In this respect, we are conducting ongoing work
related to strengthening analysis automation with pattern-based design flaw
detection. We also plan to extend the node types and their semantics in
SecDFD (Paper D). As a follow-up study we plan to validate the approach
on larger open source projects with known and unknown design flaws. As
securing design-level models does not guarantee a correct implementation
of the intended security, we plan to extend the work in Paper D to relate
the security contracts to the implementation. The proposed semantics have
the property of compositionality, which opens up possibilities for applying
the semantics to annotated classes in object oriented programming languages
(e.g., by leveraging code annotations in Java). Finally, in practice informal
design notations are often preferred due to their flexibility and ease of use.
The correctness of the models that can be created with such notations is
sometimes under dispute. Without hindering such design notations, we are
planning to look into other means to assure correctness. In particular, we
plan to look into possibilities for design refactoring after implementation. To
this aim, we plan to leverage existing reverse engineering tools to obtain call
graphs, program interfaces, and dependency hierarchies. Those in turn can
be analyzed for correspondence to the refactored model (e.g., by means of
approximation and heuristic approaches). By doing so, the modelers would have
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the opportunity to check that the refactored model is correct (i.e., corresponds
to the current implementation) for the parts which should be unchanged, and
that the refactorings only effect the desired parts of the model.
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