
ASHESI UNIVERSITY

SCALABLE AUTOMATED MACHINE LEARNING

UNDERGRADUATE THESIS

B.Sc. Computer Science

Gbetondji Jean-Sebastien Dovonon

2020

ASHESI UNIVERSITY

SCALABLE AUTOMATED MACHINE LEARNING

UNDERGRADUATE THESIS

Undergraduate Thesis submitted to the Department of Computer Science,

Ashesi University in partial fulfilment of the requirements for the award of

Bachelor of Science degree in Computer Science.

Gbetondji Jean-Sebastien Dovonon

2020

DECLARATION

I hereby declare that this Undergraduate Thesis is the result of my own original work and

that no part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

..

Candidate’s Name:

...

Date:

...

I hereby declare that preparation and presentation of this Undergraduate Thesis were super-

vised in accordance with the guidelines on supervision of Undergraduate Thesis laid down

by Ashesi University.

Supervisor’s Signature:

...

Supervisor’s Name:

...

Date:

...

i

Acknowledgements

I am grateful to God for seeing me through this, and to my supervisor for the meaningful

discussions and the much needed guidance.

ii

Abstract

Automated machine learning holds a lot of promise to revolutionize and democratize the

field of artificial intelligence. Neural architecture search is one of the main components

of AutoML and is usually very computationally expensive. Autokeras is a framework that

proposes a Bayesian optimization approach to neural architecture search in order to make it

more efficient [8]. AutoKeras suffers from two major limitations: (i) the lack of support for

parallel Bayesian optimization, which limits applicability in distributed settings and (ii) a

slow start issue which limits the performance when time is limited. Solving these two prob-

lems would make Autokeras more flexible, and allow it to scale to the available resources of

the user. We address these two problems. First we design and implement two algorithms for

parallel bayesian optimization. Then we incorporate a greedy algorithm to tackle the slow

start problem. To evaluate the performance of those algorithms, we first evaluate the Au-

tokeras Bayesian searcher and compare the results to the algorithms we have implemented.

On a Tesla T4 GPU, running for 12 hours, the Bayesian searcher got to 80.9% for. Our first

parallel algorithm, GP-UCB-PE got 81.85% on 4 GPUs for 12 hours. Our second paral-

lel algorithm, GP-BUCB got 81.89% on GPUs for 12 hours. By incorporating the greedy

approach, we achieved 86.78% after running for 3 hours.

iii

Table of Contents

DECLARATION. i

Acknowledgements . i

Abstract . iii

Table of Contents . iv

List of Figures . vi

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Objective . 2

Chapter 2: Related Work . 3

2.1 State of the art neural architecture search 3

2.2 AutoKeras . 4

Chapter 3: Methodology . 5

3.1 Parallel Evaluation . 5

3.1.1 UCB for GPU parallelism . 5

3.1.2 GP-UCB-PE . 6

3.1.3 GP-BUCB . 7

3.2 Greedy Search . 7

Chapter 4: Experiments and Results . 8

4.1 Implementation . 8

4.2 Experimental setup and baseline . 8

Chapter 5: Conclusion and Future Work . 10

5.1 Summary . 10

iv

5.2 Future Work . 10

References . 11

v

List of Figures

2.1 Autokeras tree like search space . 4

4.2 Our two parallel methods achieve 1 percent better test accuracy compared

to the Autokeras baseline. 9

4.3 Our greedy approach achieves 6 percent better test accuracy compared to

the Autokeras baseline with a 4 times shorter training time. 9

vi

Nomenclature

AutoML Automated Machine Learning

GP-BUCB Gaussian Process Batch Upper-Confidence Bound

GP-UCB Gaussian Process Upper Confidence Bound

GP-UCB-PE Gaussian Process Upper-Confidence Bound Pure Exploration

HPO Hyperparameter Optimization

NAS Neural Architecture Search

UCB Upper-Confidence Bound

vii

Chapter 1: Introduction

Machine learning and data science provide researchers with tools to analyze data,

interpret it, and use it to make predictions or replicate human intelligence [10, 3, 11, 9].

Because of the amount of data that is generated by pretty much any computer-based system

nowadays, it is quite common to see machine learning being used by users who do not

necessarily have a broad machine learning expertise. These users range from researchers

from other fields to software engineers trying to include a new cool predictive feature in their

new mobile application. In those cases, the user is likely not to have the required experience

to build machine learning models. Automating machine learning, to some extent is highly

desirable in such contexts. A framework to automate machine learning would, however,

need to account for the available resources, resources which can vary a lot depending on

the user. Time and GPU are the resources used here to train machine learning models. The

amount of resources is not fixed and is not the same for every use. In this diversity of

working environments, we are trying to come up with a framework to automate machine

learning in a way that performance scales with the available resources. We will focus on

deep learning for image classification.

1.1 Motivation

Automated machine learning (AutoML) consists of a set of techniques and approaches to

automating parts of the machine learning process. The machine learning process (defining

and training architectures that perform) is tedious and is more of an art than a science (in-

volves a lot of intuition, guesses, trial and error), AutoML seeks to automate this process

and make it data-driven [7].

The usual AutoML framework has two main concerns when it comes to deep learning: neu-

ral architecture search (NAS) and hyperparameter optimization (HPO).

HPO is not specific to deep learning but to any machine learning method that requires hyper-

parameters to be set. hyperparameters are not learned during training but rather define the

training procedure, therefore setting the right hyperparameters has a considerable influence

1

on the performance of the model.

Most machine learning frameworks include default hyperparameter settings, however, in

general, hyperparameters tuned for the specific context outperform the default configura-

tion, sometimes by a large margin. HPO can help discover configurations that are optimal

for the given context.

NAS is the process of searching for deep learning architectures for a specific task. The

search is done over a search space, then evaluated using the relevant metric, the next archi-

tecture to evaluate is the chosen following the search policy [5].

For both HPO and NAS, AutoML has been able to outperform experts, given enough re-

sources. The main limitation of AutoML is that it requires huge computation power and

time, mostly because of the cost of NAS. Recent methods have made it possible to perform

NAS in resource-constrained environments. Those approaches do not always perform as

well as the state of the art but can get close [8].

When it comes to training environments, there are several possible configurations, and

resource-constrained environments include a vast range of possible constraints, both in terms

of computation power (CPU and GPU) and time. It is beneficial to have a framework that

can make full use of the available resources available no matter where the configuration falls

within the possible range of possible training environments.

1.2 Objective

We are trying to make AutoML scale better with the available resources. The goal is to have

a platform that can perform in low resource environments but can improve performances

when additional resources are available. In the end, the users should be able to specify the

resources available. The resources to be specified would be:

1. GPUs specs

2. Time

We will focus on the NAS aspect of AutoML for image classification.

2

Chapter 2: Related Work

Neural architecture search (NAS) is one of the more resource-heavy aspect of the

AutoML process. It consists of searching for an architecture that maximizes a given objec-

tive (typically a desired test accuracy).

Neural architecture search typically has three main components [5]:

• the search space that characterizes the possible networks that can be searched for and

evaluated

• the optimization strategy that defines how to search the search space for the best net-

work

• the evaluation strategy that estimates the performance of a network (typically training

the network from scratch)

2.1 State of the art neural architecture search

The best NAS methods usually work based on reinforcement learning, evolutionary tech-

niques, random search [6].

Several methods achieve competitive performance and can often challenge experts in a com-

petitive setting. However, their cost, (in GPU days) is usually huge. NASnet , which uses

reinforcement learning, takes 2000 GPU days to run CIFAR 10[15].

Several techniques exist to reduce the cost of AutoML [5]:

• low fidelity estimates that work by evaluating architectures with a lower fidelity (a

subset of the data, few epochs)[12].

• learning curve extrapolation which can help estimate the learning outcome after just a

few epochs [1].

• weight inheritance methods base weights on previously trained architectures. Applied

in systems like AutoKeras [8].

• training a one shot model.

3

2.2 AutoKeras

AutoKeras is a system that uses network morphing operations guided by Bayesian optimiza-

tion in order to do NAS efficiently [8]. It uses a tree-like search space with a base network.

The base network is trained first and serves as root to the tree. The network morphism op-

erations that can be applied to that network constitutes branches that link to other network

nodes in the tree-like search space.

Figure 2.1: Autokeras tree like search space

The optimization strategy used by Autokeras uses Bayesian optimization with the

upper confidence bound (UCB) acquisition function. It uses the A* search algorithm to

explore the tree-like search space and find a network with a high acquisition value. This

Bayesian optimization procedure is based on a Gaussian process and the UCB acquisition

function, we will refer to it as GP-UCB (Gaussian Process Upper Confidence Bound).

4

Chapter 3: Methodology

Our main goal is to develop an AutoML method that scales in terms of time and

computation power. We do this by proposing two additions to the Autokeras algorithm:

• parallel evaluation: making it possible to search for multiple networks and evaluate

them simultaneously on several GPUs

• faster search using a greedy approach

3.1 Parallel Evaluation

Our proposed method is based on the efficient Bayesian optimization method proposed in

AutoKeras [8]. They adapted BO to work on a tree-based search space where every network

is a node, and the edges are morphism operations that connect a parent network and a child

network. Their acquisition function is the upper confidence bound (UCB) and is optimized

using the A∗ search algorithm with simulated annealing. The search finds the node with that

maximizes the acquisition function. Simulated annealing is used to avoid always choosing

the best architecture. The reason for avoiding that is one weakness inherent to network mor-

phism: it can only increase the size of a network [14].

3.1.1 UCB for GPU parallelism

In order to achieve performance scaling with GPU number, it is possible to train as many

networks as there are GPUs, all in parallel. Doing so is non-trivial because Bayesian Opti-

mization is a sequential algorithm. So at every step t, after evaluating a candidate network

ft , generating ft+1 requires the feedback yt .

First, systematically using the same algorithm to optimize the same acquisition function

will result in a higher chance of generating the same networks to evaluate. One solution is

to have a joint acquisition function for a defined number of evaluations. We can then plan

5

how many concurrent evaluations should be done and choose a number q of points to evalu-

ate using the q expected improvement in a way that we maximize the information gain from

the q evaluations [13]. This is also non-trivial and would add the constraint of knowing the

number q of parallel evaluations before optimizing the acquisition function.

The following is the UCB acquisition function that is used in AutoKeras:

α(f) = µ(y f)+βσ̇(y f) (3.1)

Work has been done on UCB specifically to make the process parallel[2, 4].

3.1.2 GP-UCB-PE

The first method is the Gaussian process with upper confidence bound and pure exploration

(GP-UCB-PE) [2]. This method chooses the first element by optimizing UCB then chooses

the remaining q-1 points using pure exploration. An advantage of using UCB is that it

provides us with a clear balance between exploration and exploitation, regulated by the

balancing factor β . We can then focus on exploration.

The next step consists in using a greedy strategy to choose the next q-1. The greedy step here

is a pure exploration step because we maximize the variance instead of the UCB acquisition

function. At each step of the greedy optimization process, we use the updated variance

σ(f)k updated with the previously generated networks. This is possible because σ(f)k does

not depend on the feedback y f obtained after evaluating f . We can then use the same search

algorithm proposed in AutoKeras to optimize the variance [8].

Using pure exploration is one exploration strategy, and it can be used an approximation to

maximizing the information gain from choosing the next q-1 points, as shown in [2]. Other

exploration strategies could also be used, like for random selection, or choosing the q top

selections using UCB.

6

3.1.3 GP-BUCB

Another algorithm can be used to tackle the issue of parallel Bayesian optimization, the

Gaussian process batch upper confidence bound (GP-BUCB) [4].

GP-BUCB works by sequentially choosing q architectures using UCB. After using UCB to

select a point to evaluate, the mean predicted value is used to update the GP, then the next

point to evaluate is selected.

Even though it does not pose a problem for the first point, there is a problem of

delayed feedback for the next q-1 points to select. To solve that, it hallucinates the feedback

by using the mean predicted value as feedback, then proceeds.

In the case of AutoKeras we would use the same search algorithm to optimize the acquisition

function on the hallucinated GP, then use the batch of delayed feedback to update the original

GP.

3.2 Greedy Search

One of the issues faced when using network morphism is that the child network is always at

least as big as the father network. To avoid networks growing too big, Autokeras searches

over the entire tree search space (including the root) and not only the leaves. This procedure

makes it possible to produce a new network to evaluate that is not always as big as the

most recently evaluated networks. It can become an inconvenience when the time available

is limited, or the hardware resources cannot train networks fast enough. Neural networks’

performances are usually related to their size, with bigger networks performing better than

smaller ones. With the usual Autokeras optimization strategy the networks are shallow

during the first iterations causing a slow start effect.

In order to avoid that, we propose to use a greedy searcher that restricts the search space to

the children of the best leaf. This restricts the search space to a minimal number of networks.

The network with the best acquisition value is then evaluated.

7

Chapter 4: Experiments and Results

In this chapter, we show how our approaches — GP-BUCB, GP-UCB-PE, Greedy

approach — provide significant improvement over the baseline search algorithm provided

with AutoKeras.

4.1 Implementation

We provide three python classes for neural architecture search. The first class implements

the GP-UCB-PE algorithm, and the second the GP-BUCB algorithm. The last class imple-

ments a Bayesian searcher that uses a search space restricted by incorporating our greedy

approach. For that searcher, we reduced the maximum number of epochs to 30 to avoid

over-fitting. We measure the improvements provided against the original Bayesian searcher

provided by Autokeras. In order to evaluate the algorithms, we use the CIFAR 10 dataset.

4.2 Experimental setup and baseline

All experiments are ran using PyTorch and use a Tesla T4 GPU. For the methods that use

parallel evaluation, we use four Tesla T4 GPUs. We use a batch size of 64. The models are

trained on 80% of the training set and validated on the remaining 20%. The performances

are reported using the test set.

As a baseline, we run the Autokeras Bayesian searcher for 12 hours. The best accuracy

reached is 80.9%. During this run, 24 models were evaluated.

The GP-BUCB algorithm reached 81.89%, and evaluated 93 models in 23 search iterations.

The GP-UCB-PE reached 81.85%, and evaluated 129 models in 33 search iterations. The

GP-UCB-PE has a better performance early on, but the GP-BUCB has a smoother learning

curve. Both algorithms improve the baseline accuracy by 1 percent for a similar training

time.

The greedy approach achieved 86.78% with 38 models evaluated in 3 hours.

8

Figure 4.2: Our two parallel methods achieve 1 percent better test accuracy compared to the
Autokeras baseline.

Figure 4.3: Our greedy approach achieves 6 percent better test accuracy compared to the
Autokeras baseline with a 4 times shorter training time.

9

Chapter 5: Conclusion and Future Work

5.1 Summary

The goal of this research was to develop AutoML techniques that are more flexible in the

sense that they scale with the available resources (GPU and time). To achieve that, we based

our work on Autokeras, a tool for resource-efficient AutoML. We designed and implemented

three approaches: GP-BUCB, GP-UCB-PE, and a greedy approach that achieved a 1 per-

cent, 1 percent and 6 percent improvement in test accuracy on the CIFAR 10 dataset. Our

approaches make it possible to have performance scale better with the number of GPUs and

the time available, making it possible for users to make a full use of their training resources.

5.2 Future Work

We plan to increase the number of searcher classes available, using other Bayesian opti-

mization algorithms, and eventually release the code as a python package. The approaches

we designed have not yet been evaluated on other datasets like Fashion MNIST or CIFAR

100. These tests would help verify the robustness of the suggested methods. A theoretical

analysis of the methods suggested also needs to be done in order to assess their time and

space complexity. Possible improvements include adding more options for building blocks,

distance functions and search spaces. The type of problems that can be handled is also an

area to work on in order to make it possible for the system to work for text data, audio data

or even image generation.

10

References

[1] BAKER, B., GUPTA, O., RASKAR, R., AND NAIK, N. Accelerating Neural

Architecture Search using Performance Prediction. arXiv e-prints (May 2017),

arXiv:1705.10823.

[2] CONTAL, E., BUFFONI, D., ROBICQUET, A., AND VAYATIS, N. Parallel Gaussian

Process Optimization with Upper Confidence Bound and Pure Exploration. arXiv e-

prints (Apr 2013), arXiv:1304.5350.

[3] DANNENHAUER, D., FLOYD, M. W., DECKER, J., AND AHA, D. W. Dungeon

Crawl Stone Soup as an Evaluation Domain for Artificial Intelligence. arXiv e-prints

(Feb. 2019), arXiv:1902.01769.

[4] DESAUTELS, T., KRAUSE, A., AND BURDICK, J. W. Parallelizing exploration-

exploitation tradeoffs in gaussian process bandit optimization. Journal of Machine

Learning Research 15 (2014), 4053–4103.

[5] ELSKEN, T., HENDRIK METZEN, J., AND HUTTER, F. Neural Architecture Search:

A Survey. arXiv e-prints (Aug 2018), arXiv:1808.05377.

[6] HE, X., ZHAO, K., AND CHU, X. AutoML: A Survey of the State-of-the-Art. arXiv

e-prints (Aug 2019), arXiv:1908.00709.

[7] HUTTER, F., KOTTHOF, L., AND VANSCHOREN, J. Automated Machine Learning:

Methods, Systems, Challenges. Springer, 2019.

[8] JIN, H., SONG, Q., AND HU, X. Auto-keras: An efficient neural architecture search

system. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining (2019), ACM, pp. 1946–1956.

[9] LEE, J., YOON, W., KIM, S., KIM, D., KIM, S., SO, C. H., AND KANG, J.

BioBERT: a pre-trained biomedical language representation model for biomedical text

mining. arXiv e-prints (Jan. 2019), arXiv:1901.08746.

11

[10] NAKANO, R. Neural Painters: A learned differentiable constraint for generating brush-

stroke paintings. arXiv e-prints (Apr. 2019), arXiv:1904.08410.

[11] RADFORD, A., WU, J., CHILD, R., LUAN, D., AMODEI, D., AND SUTSKEVER, I.

Language models are unsupervised multitask learners.

[12] REAL, E., AGGARWAL, A., HUANG, Y., AND LE, Q. V. Regularized Evolution for

Image Classifier Architecture Search. arXiv e-prints (Feb 2018), arXiv:1802.01548.

[13] WANG, J., CLARK, S. C., LIU, E., AND FRAZIER, P. I. Parallel Bayesian Global

Optimization of Expensive Functions. arXiv e-prints (Feb 2016), arXiv:1602.05149.

[14] WEI, T., WANG, C., RUI, Y., AND CHEN, C. W. Network Morphism. arXiv e-prints

(Mar 2016), arXiv:1603.01670.

[15] ZOPH, B., VASUDEVAN, V., SHLENS, J., AND LE, Q. V. Learning Trans-

ferable Architectures for Scalable Image Recognition. arXiv e-prints (Jul 2017),

arXiv:1707.07012.

12

