
<Vorname Nachname [et. al.]>(Hrsg.): <Buchtitel>,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn <Jahr> 1

A Comparison of Value Sensitive Design and Sustainability
Design

Stefanie Betz, Andreas Fritsch1

Abstract: Research and practice in different disciplines try to address technical, social, economical
and environmental issues in software systems. This includes not only direct effects of a system and
its features but also long-term and cummulative effects that are only shown over time. Neverthe-
less, in traditional software engineering these effects are usually not taken into consideration. This
makes it hard to assess these long-term and cumulative impacts of a system. Therefore, solutions
are needed to help software engineers to understand and assess the systemic effects of decisions
taken in requirements engineering and systems development. In this paper we discuss and analyze
two existing approaches, which provide concepts and methods for this task: Value Sensitive Design
(VSD) and Sustainability Design (SD). The analysis shows that the two approaches have conceptual
similarities such as the different sustainability dimensions (in SD) versus values (in VSD) and hier-
archy of effects (in SD) versus direct and indirect stakeholders (in VSD). Altogether, SD provides a
more holistic and structured conceptualization, while VSD – looking back at a longer tradition – can
provide a range of experiences when it comes to integrating values in software engineering.

Keywords: Value Sensitive Design, Sustainability Design, Software Engineering, Sustainability,
Value

1 Introduction

Software is the backbone of modern society as software systems are increasingly embed-
ded in our society [Ch16]. Therefore, software designers need to be aware of the implica-
tion of the socio-technical systems they build. However, in traditional software engineering
practice the long-term and cumulative impacts of a system are usually not taken into ac-
count and treated in isolation [Be15b]. For example, when designing a groupware system
that supports knowledge sharing – balancing of human aspects like privacy and reputation
of the involved individuals might well decide whether the software is eventually accepted
by its intended users [Mi07]. Or think about the design of a procurement system, where
a traditional approach would focus on financial return and supplier compliance and de-
fine the requirements accordingly. A holistic approach could integrate further aspects like
providing visibility of a product’s carbon footprint [Be15a]. One can imagine that this
decision has far reaching and accumulative effects on the ecological performance of the
respective organization. This might in turn affect consumer perception and thereby the
long-term financial performance.

These examples illustrate that the discipline of Software Engineering needs to cope with
multidimensional and long-term impacts of systems that have traditionally received little
1 Karlsruhe Institute of Technology, Institute of Applied Informatics and Formal Description Methods (AIFB),

Building 11.40, D-76128 Karlsruhe, {firstname}.{lastname}@kit.edu



attention [Be15b]. Thus, concepts and methods are needed to support understanding of
possible effects of software systems and to provide a common ground for research and
practice.

Several approaches have been proposed to consider (and balance) technical, social, in-
dividual, economical, and environemental concerns in software engineering (e.g. [Fr99],
[HL07], [Be14], [Ra15]). Also, a number of conferences and workshops are emerging in
this research area, e.g. ICT4S (http://ict4s.org), the SEIS Track at ICSE
(http://2016.icse.cs.txstate.edu/seis) or the RE4Susy Workshop at the RE
(http://web.csulb.edu/∼bpenzens/re4susy/). This paper focuses on two approaches that ex-
plicitly provide concepts and methods to support understanding and provide a common
ground: one is called Value Sensitive Design [Fr99] and the other Sustainability Design
[Be14]. In the following, we are going to shortly introduce them and then discuss their sim-
ilarities and differences. We believe that either of the approaches has its specific strengths
(exemplary case studies versus a structured conceptual framework) and hope that a juxta-
position may inspire synergetic advancements in both communities and related research
fields.

2 Value Sensitive Design

The term Value Sensitive Design (VSD) was first coined by Friedman to describe an
emphasis of human values in technology design projects [Fr99]. It has since become
a “branded term” for specific strategies and techniques concerned with human values
[DN15] in technology design. In 2015, Davis and Nathan [DN15] published a summary of
the field from which we draw in order to outline VSD.

According to VSD, a technology influences humanity in an “emergent and relational pro-
cess” [DN15, p. 15]. The influential factors of this process are the design of the technology
(e.g. product features), the context of its use and the involved stakeholders. A core assump-
tion herein is that technology products can be improved by identifying and addressing hu-
man values in the design. Friedman defines the term human value as “what a person or
group of people consider important in life” [FKB06, p. 349]. This broad notion is accom-
panied by a non-exclusive list of specific values named Human Welfare, Ownership and
Property, Privacy, Freedom from Bias, Universal Usability, Trust, Autonomy, Informed
Consent, Accountability, Courtesy, Identity, Calmness and Environmental Sustainability
[FKB06]. Davis and Nathan [DN15] describe four core commitments of VSD. These can
be seen as characteristics that may distinguish VSD from other design approaches. Accord-
ing to the authors, these characteristics are proactive stance, interactional perspective,
direct and indirect stakeholders and tripartite methodology. VSD is proactive in that it
asks researchers to consider human values during the design of a technology – rather than
merely criticizing and analyzing existing technologies. The interactional perspective is
taken by acknowledging that technology and values influence each other bidirectionally:
on the one hand, a technology’s design supports (or hinders) certain values and on the
other hand, the usage of a technology is dependent on people’s values. Furthermore, VSD
distinguishes between direct stakeholders and indirect stakeholders. Direct stakehold-



<Vorname Nachname [et. al.]>(Hrsg.): <Buchtitel>,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn <Jahr> 3

ers are those who use a product or technology. Those who do not interact directly with a
product or technology, but are influenced by others’ use are indirect stakeholders.

The tripartite methodology of VSD consists of conceptual, empirical and technical “in-
vestigations” [FK02]. These investigations are seen as “iterative” and “integrative”. During
conceptual investigations, the affected stakeholders and values affected by a technology’s
use are to be identified. Empirical investigations apply methods like surveys or question-
naires (among others) to examine the relationship of technologies and their stakeholders
with respect to human values. Lastly, technical investigations focus on the relationship be-
tween specific technological features and values – a concrete approach might be the design
of a software that explicitly supports one of the human values listed above.

Several methods have been developed to support VSD [DN15]. Most of them are adap-
tations of design or social science methods, like fore example value-oriented mock-ups
or value-oriented semi-structured interviews. Further methods were described by Davis
and Nathan [DN15] as values-oriented analyses (Direct and Indirect Stakeholder Analysis,
Value Dams and Flows) and a values-oriented toolkit (Envisioning Criteria and Cards).

In the following, we shortly illustrate some of the described concepts and methods using
our first introductory example of a groupware system for the purpose of knowledge sharing
(see [Mi07]). The system CodeCOOP was developed together with an industry partner to
support software engineering knowledge sharing. During development of the system con-
ceptual and empirical VSD-methods were employed: During conceptual investigations,
direct stakeholders were identified by their roles as (among others) those who submit ques-
tions to the systems or those who answer questions. Examples for indirect stakeholders are
managers or executives of the firm. The empirical investigation method Value Dams and
Flows served to identify several tensions between critical values like privacy, reputation
or trust. One outcome was for example that “queriers” fear that their reputation could be
harmed when they ask a poor question. This insight led to the implementation of a feature
that allows editing of posts to correct errors and improve quality.

3 Sustainability Design

Sustainability Design (SD) in the context of software engineering has been coined by
Becker et al. in the Karlskrona Manifesto of Sustainability Design [Be14]. The manifesto
is the central paper of this approach providing the main concepts, which are presented in
the following. The core definition of sustainability that has been adopted for the manifesto
is the simple and common “capacity to endure” [Be15b].

The main concepts the manifesto is presenting to approach sustainability are the five di-
mensions and the three orders of effects. The five dimensions are (1) individual sustain-
ability, which aims at maintaining individual human resources (e.g. health, education), (2)
social sustainability, which aims at preserving and improving the societies in their soli-
darity and services, (3) environmental sustainability, which aims at preserving the natural
resources, (4) economical sustainability, which aims at retaining capital and added value,
and (5) technical sustainability, which aims at maintaining and evolving information, sys-



tems, and infrastructure. These dimensions can be in conflict with each other [Be15c].
Thus, being technologically sustainable may have a negative effect on the economical sus-
tainability.

The three orders of effects are: (1) the direct effects of the software system development
and use; (2) the enabling effects that result from the ongoing use of the software system,
and (3) the systemic changes caused by the long-time software system usage on a larger
scale [Be15c]. The manifesto also follows the idea of not presenting concrete techniques
but rather a set of principles and commitments for SD [Be14]. These are for example that
sustainability is systemic, multidimensional and applies to a system and its wider context.
Moreover, sustainability needs to be addressed interdisciplinarily and requires action from
several levels, which interact with each other. Finally, sustainability is independent of the
purpose of the system, requires long-term thinking, and can be achieved without cutting
the needs of the future generations.

The manifesto ends with several suggestions for different stakeholders how to get started
to achieve sustainable design. Researchers could identify and discuss research questions,
customers and users can put the concern on the table and try to use sustainable products,
education may revise the curricula and codes of ethics to include sustainability and finally,
software practitioners should raise awareness and try to identify the effects on the different
dimensions [Be14].

There exists some papers providing initial methods and techniques (e.g.system scoping,
stakeholder participation, stakeholder impact analysis, goal modelling) to support sus-
tainability design (see for example [Be15a], [Be15c], [Ch15]). These papers are focusing
on requirements engineering as the authors of the manifesto see “requirements as the key
to sustainability” [Be15a].

We now go back to our second initial example, a procurement system (see [Be15a]), to
illustrate some of the listed methods, dimensions and effects: Discussing the purpose of
the project the project team assesses possibilities to support sustainability development of
the company emphasizing the effects that the procurement system can have on sustainabil-
ity in all dimensions (system scoping). For example, the system can visualize the carbon
footprint of products and facilitate the choice of providers who apply sustainable practice
in the environemental dimension. Another action the project team conducts is to extend
the number of stakeholders using a stakeholder impact analysis. Possible stakeholders in-
volve for example local supplier representatives, service delivery organizations, process
analysts, the CTO, and the strategic planning group. Surrogate stakeholder can be intro-
duced to keep the number of stakeholders manageable. The visualization of the carbon
footprint of a product within the procurement system qualifies as a direct effect along the
environmental dimension of sustainability. This in turn enable users of the system to buy
products with low carbon footprints (enabling effect and economic dimension). Taking a
long-term perspective, this can lead to the systemic effect of reduced carbon footprints
(systemic effect and environmental dimension) (see [Be15a]).



<Vorname Nachname [et. al.]>(Hrsg.): <Buchtitel>,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn <Jahr> 5

4 Discussion

First of all, one can identify several similarities between VSD and SD. The focus of both
approaches is on ”thinking in a broader context”, when designing technology. Also, both
approaches advocate the idea that technology has an impact on humanity. Thus, they not
only take into account immediate effects and technical requirements but also think about
effects in multiple dimensions for different stakeholders. Interestingly, both approaches
use the idea of commitments for their design approaches rather than providing concrete
techniques. But the inherent concept of sustainability design is much broader and more
holistic than value sensitive design. Of course, this is already indicated when only looking
at the names of the two approaches (value versus sustainability). Thus, SD is emphasizing
the long-term effects of systems over time. Additionally, VSD is only emphasizing the
“human values” such as human welfare, trust, privacy etc. and environmental sustainabil-
ity. SD, in turn, has the already mentioned broader focus including not only individual,
social, and environmental aspects but also technical and economical ones. This might help
to not only integrate e.g. social or environmental aspects into software design, but also
to identify and address tensions between these aspects and more “traditional” foci like
efficiency and cost.

The sustainability dimensions can be understood as a way of structuring different kinds
of values: Penzenstadler and Femmer propose a generic model for sustainability where
values represent dimensions of sustainability [PF13]. In this view, the value privacy for
example would be an aspect of the individual dimension of sustainability.

In this context it is also worth to mention, that the authors of the VSD approach have
not determined and defined the human values for VSD. They only provided a seemingly
rather arbitrary list of values. However, both approaches acknowledge systems thinking,
the “hierarchy” of effects and the possible conflicts between different dimensions or val-
ues. Although, systems thinking is not explicitly mentioned in VSD and the hierarchy of
the effects is only mentioned indirectly (and up to the second level) by referring to direct
and indirect stakeholders.

Finally, there is one big difference of the two approaches and their use as a common ground
for sustainability design. The manifesto is explicitly written to provide a definition and
common ground for SD. VSD has evolved more and is based on different publications. We
have provided a table on page 6 that provides a summary of the described characteristics
of VSD and SD.



Value Sensitive Design Sustainability Design

V
al

ue
s/

D
im

en
si

on
s

Human Welfare Social Sustainability
Ownership and Property Economical Sustainability
Privacy Environmental Sustainability
Freedom from Bias Individual Sustainability
Universal Usability Technical Sustainability
Trust
Autonomy
Informed Consent
Accountability
Courtesy
Identity
Calmness
Environmental Sustainability

Im
pa

ct direct stakeholders direct effects
indirect stakeholders enabling effects

systemic effects

Pr
in

ci
pl

es
/C

om
m

itm
en

ts

proactive stance Sustainability is systemic
interactional perspective Sust. has multiple dimensions
direct/indirect stakeholders Sust. transcends multiple disciplines
tripartite methodology Sust. is a concern independent of the purpose of the system

Sust. applies to both a system and its wider contexts
Sust. requires action on multiple levels
System visibility is a necessary precondition and enabler
for sust. design
Sust. requires long-term thinking
It is possible to meet the needs of future generations with-
out sacrificing the prosperity of the current generation

Tab. 1: Value Sensitive Design versus Sustainability Design



<Vorname Nachname [et. al.]>(Hrsg.): <Buchtitel>,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn <Jahr> 7

5 Conclusion

We have presented VSD and SD as two approaches with somewhat similar objectives.
Altogether, the described differences amount to VSD following a bottom up and SD a top
down approach. The first started out with design projects and the task to consider human
values in the process. And the latter was initialized with a definition of the challenge to be
resolved (sustainability in software design) and is now applying these conceptualizations
in design processes. Hereby, SD is more structured and holistic (e.g. by defining the five
dimensions of sustainability as a structuring means for different values, where VSD has
so far considered a seemingly arbitrary list of human values). However, VSD is looking
at a longer tradition and can provide a range of experiences when it comes to integrating
values in software engineering.

We invite researchers leaning towards either of the presented approaches to share expe-
riences and ideas: both approaches offer concepts and methods to address related issues
and both promise to offer valuable insights in order to improve the design of software sys-
tems. We think it is important that software engineers are aware of the major role software
plays in our society and that they are responsible for long term effects of the system they
engineer (see also [Be15a]). Future steps for us as researchers and software engineers are
to further implement the concepts we presented in current software engineering practices
and apply these in exemplary case studies. So, for example one could imagine to develop
templates for requirements documentation and sustainability aware modelling languages.

References

[Be14] Becker, Christoph; Chitchyan, Ruzanna; Duboc, Leticia; Easterbrook, Steve; Mahaux,
Martin; Penzenstadler, Birgit; Rodriguez-Navas, Guillermo; Salinesi, Camille; Seyff, Nor-
bert; Venters, Colin; Betz, Stefanie: , The Karlskrona manifesto for sustainability design,
2014.

[Be15a] Becker, Christoph; Betz, Stefanie; Chitchyan, Ruzanna; Duboc, Leticia; Easterbrook,
Steve M.; Penzenstadler, Birgit; Seyff, Norbert; Venters, Colin C.; Kocak, Sedef Akinli:
Requirements: The key to sustainability. IEEE Software, (1):1–1, 2015.

[Be15b] Becker, Christoph; Chitchyan, Ruzanna; Duboc, Leticia; Easterbrook, Steve; Penzen-
stadler, Birgit; Seyff, Norbert; Venters, Colin C.: Sustainability design and software: The
karlskrona manifesto. In: Proceedings of the 37th International Conference on Software
Engineering-Volume 2. IEEE Press, pp. 467–476, 2015.

[Be15c] Betz, Stefanie; Becker, Christoph; Chitchyan, Ruzanna; Duboc, Leticia; Easterbrook,
Steve; Penzenstadler, Birgit; Seyff, Norbert; Venters, Colin: Sustainability debt: A
metaphor to support sustainability design decisions. In: Fourth International Workshop
on Requirements Engineering for Sustainable Systems (RE4SuSy). Ottawa, Canada, Au-
gust 2015.

[Ch15] Chitchyan, Ruzanna; Betz, Stefanie; Duboc, Leticia; Penzenstadler, Birgit; Easterbrook,
Steve; Ponsard, Christophe; Venters, Colin: Evidencing Sustainability Design through Ex-
amples. 2015.



[Ch16] Chitchyan, Ruzanna; Becker, Christoph; Betz, Stefanie; Duboc, Leticia; Penzenstadler,
Birgit; Seyff, Norbert; Venters, Colin: Sustainability Design in Requirements Engineering:
State of Practice. In: ICSE’16: 38th International Conference on Software Engineering.
Austin, Texas, USA, May 2016.

[DN15] Davis, Janet; Nathan, Lisa P.: Value Sensitive Design: Applications, Adaptations, and Cri-
tiques. In (van den Hoven, Jeroen; Vermaas, Pieter E.; van de Poel, Ibo, eds): Handbook
of Ethics, Values, and Technological Design, pp. 11–40. Springer Netherlands, Dordrecht,
2015.

[FK02] Friedman, Batya; Kahn, Peter H. JR: Human values, ethics, and design. In: The human-
computer interaction handbook. L. Erlbaum Associates Inc., pp. 1177–1201, 2002.

[FKB06] Friedman, Batya; Kahn, Peter H. JR; Borning, Alan: Value Sensitive Design and Informa-
tion Systems. Human-computer interaction in management information systems: founda-
tions, pp. 348–372, 2006.

[Fr99] Friedman, Batya: Value-sensitive design: A research agenda for information technology.
Technical report, 1999.

[HL07] Hochheiser, Harry; Lazar, Jonathan: HCI and Societal Issues: A Framework for Engage-
ment. International Journal of Human-Computer Interaction, 23(3):339–374, December
2007.

[Mi07] Miller, Jessica K.; Friedman, Batya; Jancke, Gavin; Gill, Brian: Value tensions in design:
the value sensitive design, development, and appropriation of a corporation’s groupware
system. In: Proceedings of the 2007 international ACM conference on Supporting group
work. ACM, pp. 281–290, 2007.

[PF13] Penzenstadler, Birgit; Femmer, Henning: A generic model for sustainability with process-
and product-specific instances. In: Proceedings of the 2013 Workshop on Green In Soft-
ware Engineering. Fukuoka, Japan, p. 3, March 2013.

[Ra15] Rashid, A.; Moore, K.; May-Chahal, C.; Chitchyan, R.: Managing Emergent Ethical Con-
cerns for Software Engineering in Society. In: 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering. volume 2, pp. 523–526, May 2015.


