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On some mean value theorem
via covering argument

Dariusz Soko lowski

Abstract

We show how the full covering argument can be used to prove some
type of Cauchy mean value theorem.

1 Introduction

The full covering argument based on the Cousin’s lemma (see, e.g., [1], [2], [9],
[11]) allows as to obtain very elegant and clear proofs of many classical results
from mathematical analysis (see [1], [2], [6], [10], [11, Sections 4.5.3, 4.5.4 ]).
Recall that

Definition 1. A family C ⊂ {(x, [s, t]) : x ∈ [s, t] ⊂ [a, b]} is a full cover
of an interval [a, b], if there exists a function δ : [a, b] → (0,∞) such that
(x, [c, d]) ∈ C for x ∈ [a, b] and a ≤ c ≤ x ≤ d ≤ b with 0 < d− c < δ(x).

Definition 2. By a partition of an interval [a, b] we mean a finite family
{(xk, [zk−1, zk]) : k = 1, . . . , n} such that xk ∈ [zk−1, zk] for every k ∈
{1, . . . , n} and a = z0 < z1 < . . . < zn = b.

The crucial in this theory, mentiond above result reads as follows:
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Lemma 1 (Cousin). Every full cover of an interval [a, b] contains a partition
of [a, b].

To show the standard argumentation with the use of full covers, we prove
for example the following result (cf. [1, Theorem 1]):

Proposition. If the function f : [a, b] → R is lower (resp., upper) semicon-
tinuous on [a, b], then f is bounded from below (resp., from above) on [a, b].

Proof. Assume that f is lower semicontinuous and put

C :=
{

(x, [c, d]) : x ∈ [c, d] ⊂ [a, b] and f is bounded from below on [c, d]
}
.

We show that C is a full cover of [a, b]. Fix x ∈ [a, b] and ε > 0. Since f is
lower semicontinuous at x, there exists δ(x) > 0 such that

f(y) > f(x)− ε for y ∈ (x− δ(x), x+ δ(x)).

So, if we take an interval [c, d] ⊂ [a, b] such that x ∈ [c, d] and d − c < δ(x),
then [c, d] ⊂ (x− δ(x), x+ δ(x)) and, consequently, f is boundend from below
on [c, d] (by a constant f(x)− ε).

Due to Cousin’s lemma we can find a partition {(z1, I1), . . . , (zn, In)} ⊂ C

of [a, b]. Since f is bounded from below on every set Ik, for every k ∈ {1, . . . , n}
there exists mk ∈ R such that

f(x) > mk for x ∈ Ik.

Thus, using the fact that [a, b] = I1 ∪ . . . ∪ In, we get

f(x) > m for x ∈ [a, b],

where m := min1≤k≤nmk.

Using full covers one can, in particular, define the Henstock integral gen-
eralizing the Riemann integral and show its many properties (see, e.g., [4],
[8]). In 2006, J.W. Hagood and B.S. Thomson ([5]) generalized the Henstock
integral. For this purpose they introduced the notion of a right adequate cover
generalizing a full covering relation and proved a counterpart of the Cousin’s
lemma connected with this new relation ([5, Lemma 7]).

In this note we give a new proof of some version of the Cauchy mean value
theorem using the concept of a right adequate cover and based on the ideas
of papers [6] and [5] (see Theorem below), then we comment some possible
versions of our theorem and its connections with other results obtained with
the same technique, and finally we formulate a few classical corollaries which
easy follow from our result.
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2 Main result

If the functions f, g : [a, b]→ R are continuous on [a, b], differentiable in (a, b)
and g′(x) 6= 0 for x ∈ (a, b), then according to the basic Cauchy mean value

theorem there exists c ∈ (a, b) such that f(b)−f(a)
g(b)−g(a) = f ′(c)

g′(c) . Assuming now

additionaly that f ′(x) ≤ g′(x) (resp., |f ′(x)| ≤ g′(x)) for x ∈ (a, b), as a
direct consequence of the Cauchy result we get the inequality f(b) − f(a) ≤
g(b) − g(a) (resp., |f(b) − f(a)| ≤ g(b) − g(a)). The mean value theorem
with this mean value inequality was generalized by many mathematicians at
least in two directions: by replacing standard derivatives by right-hand-side
derivatives as well as by considering functions with values in more general
spaces (e.g., in Banach spaces) – see, e.g., [3, Theorem 8.5.1, Problem 8.5.2],
[7, Theorem B]. In the present short note we give the new proof to one of such
results by using covering relation. This technique was used in the proofs of the
following mean value theorems: [2, Theorems 7,8], [6, Theorems 1,2] and [5,
Theorem 9]. Similar to this last theorem we consider right-hand derivatives,
and similar to [6, Theorem 1] we take functions with complex values.

Recall that by g′+(x) we denote the right-hand-side derivative:

g′+(x) = lim
y→x+

g(y)− g(x)

y − x
.

We consider also so called right-hand derivative values (cf. [7]). Namely, if
f : [a, b] → C and x ∈ [a, b) then an element y ∈ C is a right-hand derivative
value of f at x if there exists a decreasing sequence (tn)n∈N such that tn → x
and

y = lim
n→∞

f(tn)− f(x)

tn − x
.

Definition 3. [5, Definition 6] We call a family C ⊂ {(x, [s, t]) : x ∈ [s, t] ⊂
[a, b]} a right adequate cover of an interval [a, b], if there exist two functions
r : [a, b)→ (a, b), l : (a, b]→ (a, b) such that l(x) < x < r(x) for x ∈ (a, b),

• (a, [a, r(a)]) ∈ C,

• (b, [s, b]) ∈ C for s ∈ (l(b), b),

• (x, [s, r(x)]) ∈ C for x ∈ (a, b), s ∈ (l(x), x].

Lemma 2. ([5, Lemma 7]) Every right adequate cover of an interval [a, b]
contains a partition of [a, b].

Applying the above lemma we obtain the following generalization of [2,
Theorem 7], [6, Theorems 1,2 (A),(B)]:
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Theorem. Let f : [a, b] → C (resp., f : [a, b] → R) be a function continuous
from the left on (a, b], g : [a, b] → R a nondecreasing function and Q at most
countable subset of [a, b]. Assume that for every x ∈ [a, b) \ Q there exists a
right-hand derivative value RDf(x) of f such that

|RDf(x)| ≤ g′+(x) <∞ (1)

(resp., RDf(x) ≤ g′+(x) <∞),

g is continuous from the left on (a, b] \ Q and for every x ∈ Q there ex-
ists a sequence (yn)n∈N such that yn ∈ (x, b], n ∈ N, limn→∞ yn = x and
limn→∞ f(yn) = f(x). Then

|f(b)− f(a)| ≤ g(b)− g(a) (resp., f(b)− f(a) ≤ g(b)− g(a)).

Proof. Let Q = {yn : n ∈ N}, where N ⊂ N. Fix ε > 0 and set

D :=
{

(x, [u, v]) : x ∈ [u, v] \Q ⊂ [a, b),

|f(v)− f(u)| ≤ g(v)− g(u) + ε(v − u)
}
,

E :=
{

(b, [u, b]) : a ≤ u < b, |f(b)− f(u)| ≤ g(b)− g(u) + ε(b− u+ 1)
}
,

Fn :=
{

(yn, [u, v]) : yn ∈ [u, v] ⊂ [a, b), |f(v)− f(u)| ≤ ε2−(n+1)
}
, n ∈ N.

We show that the family

C := D ∪ E ∪
⋃
n∈N

Fn

is a right adequate cover of [a, b]. Fix x ∈ [a, b].

If x = a /∈ Q then we can take a number δ > 0 such that∣∣∣∣g(v)− g(a)

v − a
− g′+(a)

∣∣∣∣ ≤ ε

2
for v ∈ (a, a+ δ) ∩ (a, b),

and then choose a number r(a) ∈ (a, b) ∩ (a, a+ δ) for which∣∣∣∣f(r(a))− f(a)

r(a)− a
−RDf(a)

∣∣∣∣ ≤ ε

2
.

Hence,

|f(r(a))− f(a)| ≤ |RDf(a)|(r(a)− a) +
ε

2
(r(a)− a),

g′+(a)(r(a)− a) ≤ g(r(a))− g(a) +
ε

2
(r(a)− a),
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which in view of (1) implies the inequality

|f(r(a))− f(a)| ≤ g(r(a))− g(a) + ε(r(a)− a)

and consequently, (a, [a, r(a)]) ∈ D ⊂ C.

If x ∈ (a, b) \Q then we choose at first δ > 0 such that∣∣∣∣g(v)− g(x)

v − x
− g′+(x)

∣∣∣∣ < ε

2
for v ∈ (x, x+ δ) ∩ (a, b),

and then a number r(x) ∈ (x, x+ δ) ∩ (a, b) such that∣∣∣∣f(r(x))− f(x)

r(x)− x
−RDf(x)

∣∣∣∣ < ε

2
.

In particular, we have

|f(r(x))− f(x)|
r(x)− x

< |RDf(x)|+ ε

2
, g′+(x) <

g(r(x))− g(x)

r(x)− x
+
ε

2
.

Since f and g are continuous from the left at x, we can find l(x) ∈ (a, x) such
that

|f(r(x))− f(u)|
r(x)− u

< |RDf(x)|+ ε

2
and g′+(x) <

g(r(x))− g(u)

r(x)− u
+
ε

2

for u ∈ (l(x), x]. Applying now (1) we get

|f(r(x))− f(u)| < |RDf(x)|(r(x)− u) +
ε

2
(r(x)− u)

≤ g′+(x)(r(x)− u) +
ε

2
(r(x)− u)

< g(r(x))− g(u) + ε(r(x)− u),

thus, (x, [u, r(x)]) ∈ D ⊂ C for u ∈ (l(x), x].

Assume now that x = b. Using continuity from the left of both functions
at b we can choose l(b) ∈ (a, b) such that

|f(b)− f(u)| ≤ g(b)− g(u) + ε(b− u+ 1) for u ∈ (l(b), b),

i.e., (b, [u, b]) ∈ E ⊂ C for u ∈ (l(b), b).

If x = a = yn for some n ∈ N then by our assumption there is a number
r(a) ∈ (a, b) for which

|f(r(a))− f(a)| ≤ ε2−(n+1),
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i.e., (a, [a, r(a)]) ∈ Fn ⊂ C.

Finally, if x = yn ∈ (a, b) for some n ∈ N then there exist numbers
a < l(x) < x < r(x) < b such that

|f(r(x))− f(u)| ≤ ε2−(n+1) for u ∈ (l(x), x],

which means that (x, [u, r(x)]) ∈ Fn ⊂ C for u ∈ (l(x), x].

By Lemma 2 there exists a partition {(xk, [zk−1, zk] : k = 1, . . . l} ⊂ C of
[a, b]. Note that xl = b and every family Fn contains at most two elements of
our partition (exactly two, if yn = xk for some k ∈ {1, . . . , l} and it is a label
of adjacent intervals). Consequently, using also monotonicity of g, we have

|f(b)− f(a)| ≤
l∑

i=1

|f(zi)− f(zi−1)| =
∑

xi∈[a,b)\Q

|f(zi)− f(zi−1)|

+
∑
n∈N

∑
xi=yn

|f(zi)− f(zi−1)|+ |f(b)− f(zl−1)|

≤
∑

xi∈[a,b)\Q

(
g(zi)− g(zi−1) + ε(zi − zi−1)

)
+
∑
n∈N

2
ε

2n+1

+g(b)− g(zl−1) + ε(b− zl−1 + 1)

≤ g(b)− g(a) + ε(b− a+ 2).

Since ε > 0 was arbitrary, we obtain the desired result.

In the case of real-valued function f the proof goes by the same way with
only slight modifications (cf. also [5, Theorem 9] and its proof).

3 Comments

Thoroughly analysing the above proof one can formulate the following obser-
vations concerning our theorem:

1. The assumption of monotonicity of g is used only in the last estimation
and if Q = ∅ it can be omited.

2. In case of the function f with real values we can replace its left-hand-
side continuity by the weaker assumption: lim infy→x− f(y) ≥ f(x) for
x ∈ (a, b] (cf. also [5, Section 5.a]).

3. In case of the function f taking its values in C we can replace this set
by a normed vector space and, simultaneously, the absolute value by a
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norm (cf. also the last paragraph in [2] and the paragraph under [6,
Theorem 1]). Even more, we can consider the function f with values
in a topological linear space assuming at the same time the inequality
p(DRf(x)) ≤ g′+(x) instead of (1), where p is a real continuous subaddi-
tive and positively homogeneous functional on this space – then we get
the inequality p(f(b)− f(a)) ≤ g(b)− g(a) (cf. [7, Theorem B]).

4. The assumption (1) (resp., its counterpart in real case) can be replaced
by the following: |RDf(x)| ≤ RDg(x) (resp., RDf(x) ≤ RDg(x)),
where right-hand derivative velues RDf(x) and RDg(x) are associated
with the same decreasing sequence (tn)n∈N tending to x (cf. [7, Theorem
B]).

The notion of the right adequate cover introduced in [5] allowed us to
generalize [2, Theorem 7], [6, Theorems 1,2 (A),(B)] by considering one-sided
derivatives only, and simultaneously to keep the standard, characteristic of
covering relations method, argumentation. Our theorem and [5, Theorem 9]
are independent, however this last theorem together with [5, Section 5.b] and
[8, Theorem 4] also generalizes [6, Theorem 2 (A),(B)]. Moreover, our result
together with the third comment generalizes [3, Theorem 8.5.1, Problem 8.5.2],
and in case of continuous functions f and g it is a consequence of [7, Theorem
B].

4 Corollaries

Finally, we formulate three classical results from real and complex analysis
being immediate consequences of our main theorem. Recall that by D+f(x)
and D+f(x) we denote right-hand Dini derivatives:

D+f(x) = lim inf
y→x+

f(y)− f(x)

y − x
, D+f(x) = lim sup

y→x+

f(y)− f(x)

y − x
.

Applying Theorem with Q = ∅ and taking into account the first comment
we get the following result:

Corollary 1. If f : [a, b] → R and g : [a, b] → R are continuous from the
left on (a, b] and satisfy the inequality −∞ < D+f(x) ≤ g′+(x) < ∞ (resp.,
∞ > D+f(x) ≥ g′+(x) > −∞) for x ∈ [a, b), then f(b) − f(a) ≤ g(b) − g(a)
(resp. f(b)− f(a) ≥ g(b)− g(a)).

Proof. In case of the inequality −∞ < D+f ≤ g′+ < ∞ it is enough to use
Theorem together with our first comment. If ∞ > D+f ≥ g′+ > −∞ then it
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is enough to apply the first part of this corollary to −f , −g and to observe
that D+(−f) = −D+f .

Corollary 2. (cf. [11, Theorem 7.30, Exercises 7.8.6–7.8.8]) If f : [a, b]→ R
is continuous from the left on (a, b] and −∞ < D+f(x) ≤ 0 (resp., ∞ >
D+f(x) ≥ 0) for x ∈ [a, b), then f is nonincreasing (resp., nondecreasing).

Proof. Assume that D+f ≤ 0 on [a, b) and fix c, d ∈ [a, b], c < d. By Corollary
1 used to the functions f |[c,d], g ≡ 0, we have f(d)− f(c) ≤ 0.

If D+f ≥ 0 on [a, b) then it is enough to apply the second part of our first
corollary.

Corollary 3. If f : [a, b] → C is continuous from the left on (a, b] and for
every x ∈ [a, b) zero is a right-hand derivative value of f at x, then f is
constant.

Proof. Fix c ∈ (a, b]. By Theorem used to the functions f |[a,c], g ≡ 0, we have
|f(c)− f(a)| ≤ 0, i.e., f(c) = f(a).
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