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I. Autoreferat rozprawy

I.1. Wprowadzenie

W ostatnich latach, coraz wigcej uwagi poswigcane jest obecnosci
niesteroidowych lekow przeciwzapalnych (NLPZ) w s$rodowisku naturalnym.
Pomimo, ze s3 wykrywane w stgzeniach nie przekraczajagcych 1 ug/L, ich
chroniczne oddzialywanie na ekosystemy moze zaburza¢ ich prawidlowe
funkcjonowanie. Do grupy trudnodegradowalnych NLPZ nalezy naproksen (kwas
2-(6-metoksynaftalen-2-ylo)propanowy), ktéry ze wzgledu na dziatanie
przeciwbolowe oraz przeciwzapalne jest powszechnie stosowany na catym §wiecie.
Jednakze, lek ten nie jest calkowicie metabolizowany w organizmie ludzkim
[Wojcieszynska i in. 2016; Domaradzka i in. 2015; Grenni i in. 2013].

Ze wzgledu na zlozong struktur¢ naproksenu, jego utylizacja
w oczyszczalniach $ciekow nie zachodzi z duza wydajnoscig. Ponadto lek ten
wykazuje wrazliwo$¢ na S$wiatto UV. Warto podkresli¢, ze ostatnia faza
oczyszczania $ciekow jest ich sterylizacja z wykorzystaniem lamp UV. Skutkuje
to uwolnieniem do S$rodowiska naturalnego nie tylko naproksenu, ale rowniez
produktow jego fototransformacji. Badania wykazaty, ze produkty fotodegradacji
naproksenu sg bardziej toksyczne dla organizmow zywych niz sam lek [Isidori 1 in.
2005]. Zasadnym jest zatem poszukiwanie i opracowywanie biologicznych metod
utylizacji naproksenu.

Dotychczas opisano tylko kilka szczepéw mikroorganizméw posiadajacych
systemy enzymatyczne umozliwiajgce degradacje naproksenu. Sposrod szczepow
z kolekcji Zespolu Biochemii i1 Genetyki Mikroorganizméw jedynie Bacillus
thuringiensis B1(2015b) rozktada catkowicie naproksen w stezeniu 6 mg/L. w ciggu
30 dni, w obecnosci dodatkowego zrodta wegla [Marchlewicz i in. 2016]. Szczep
Planococcus sp. S5 taka samg dawke leku degraduje po uptywie 38 dni [Dzionek
iin. 2018]. Ze wzgledu na potencjal degradacyjny tych szczepoéw moga one znalez¢
zastosowanie w oczyszczaniu $ciekow.

Bioaugmentacja systemOow bioremediacyjnych szczepami  zdolnymi
do rozktadu konkretnych zanieczyszczen ma swoje zalety. Najwigkszg korzyscig
jest usuniecie zanieczyszczen, ktérych nawet niewielkie stezenie moze wykazywaé
toksyczny wplyw na autochtoniczng mikroflore systemu bioremediacyjnego.
Jednakze, aby biodegradacja zanieczyszczenia byta efektywna przez dtuzszy okres
czasu, wprowadzony szczep powinien wykazywac¢ zdolno$¢ do kolonizacji systemu
1 namnazania si¢ w nim. Sukces bioaugmentacji jest uzalezniony od wielu
czynnikdbw. Najwazniejszym z nich sa predyspozycje wprowadzanych
mikroorganizmdw oraz sposéb ich wprowadzenia do systemu. Wynika to z faktu,
ze systemy bioremediacyjne, w szczeg6lnosci w oczyszczalniach §ciekdw, stanowig
ztozone 1 kompleksowe spotecznosci mikroorganizméw, ktére uksztattowaty sie
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w wyniku szeregu oddziatywan miedzygatunkowych 1 $rodowiskowych. Zatem
wprowadzenie obcego szczepu do takiego $rodowiska moze skutkowaé jego
szybkim wyparciem z systemu [Xu i in. 2010; Ma 1 in. 2009].

Aby zwigkszy¢ przezywalno$¢ mikroorganizmow, stosuje si¢ ich
immobilizacj¢, ktéora dodatkowo obniza koszty procesow bioremediacyjnych,
jednoczesnie zwiekszajac ich efektywnos¢. Najpopularniejsza metoda immobilizacji
stosowang w bioremediacji jest adsorpcja na powierzchni, poniewaz skutkuje
wprowadzeniem do systemu uksztalttowanego biofilmu, ktory wykazuje nizsza
wrazliwo$¢ na metabolity innych mikroorganizméw oraz wahania parametroéw
srodowiskowych [Martins i in. 2013]. Zdolno$¢ do wytwarzania biofilmu
na powierzchni porowatych materialdéw jest kluczowa cechg warunkujaca
efektywng immobilizacje. Ponadto, poprzez dobdér optymalnych warunkéw
immobilizacji, a takze odpowiedniego no$nika, mozliwe jest zwigkszenie
efektywno$ci wytwarzania biofilmu. Jednak unieruchomienie mikroorganizméow
w biofilmie moze wigza¢ si¢ rOwniez z ograniczeniem dyfuzji oraz ostabieniem ich
mozliwosci katalitycznych [Xu i in, 2010]. Wynika to ze zrdéznicowanych profili
ekspresji genéw komorek znajdujacych sie w biofilmie [Flemming 1 in. 2016].

Ciekawym zagadnieniem sg takze interakcje bakterii z powierzchnig nos$nika.
Wykazano bowiem, ze rozpoczgcie procesu adhezji jest zroznicowane w zaleznosci
od rodzaju materiatu i skutkuje utworzeniem przez ten sam szczep bakteryjny
biofilmu o ro6znej strukturze i wihasciwosciach [Dalton i in. 1994]. Interakcje
bakteria-no$nik sg zalezne od oddziatywan elektrostatycznych, hydrofobowych,
topografii powierzchni, a takze od skltadu chemicznego materialu, w tym
od obecno$ci i rodzaju grup funkcyjnych [Tuson i in. 2013]. Przedstawiona
ztozono$¢ procesu immobilizacji moze skutkowa¢ znamiennym wplywem
na zdolno$¢, kinetyke, a takze szlak biodegradacji zanieczyszczen przez szczepy
bakteryjne. Charakterystyka metod immobilizacji, ze szczegdlnym uwzglednieniem
adsorpcji na powierzchni oraz przyktadéw ich zastosowania w bioremediacji,
zostala opisana w publikacji przegladowej Dzionek i in. [2016], zamieszczone]
w rozdziale I1.1 niniejszej rozprawy doktorskie;.



I.2.  Cel pracy doktorskiej

Ze wzgledu na ograniczong wiedz¢ na temat degradacji niesteroidowych
lekow przeciwzapalnych przez immobilizowane mikroorganizmy, konieczne jest
zbadanie wptywu unieruchamiania szczepow zdolnych do degradacji lekow
na kinetyke ich rozktadu. W zwigzku z powyzszym, w pracy podjeto probe
immobilizacji szczepdéw bakteryjnych wykazujacych zwiekszong zdolnos¢
do degradacji naproksenu. Dokonano rowniez analizy wplywu unieruchamiania
na kinetyke rozkladu leku zaré6wno w warunkach monokulturowych, jak
1 w obecnosci autochtonicznej mikroflory systemu bioremediacyjnego.
Glownymi celami badawczymi pracy doktorskiej byty:
Charakterystyka metaboliczna biofilmu;
Optymalizacja warunkow immobilizacji;
Charakterystyka nosnika oraz unieruchomionych mikroorganizméws;

YV VYV

Opracowanie modelu rozktadu naproksenu przez immobilizowane szczepy
bakteryjne oraz okreslenie wplywu immobilizacji na ten proces;

A\

Okreslenie wplywu wprowadzenia immobilizowanych mikroorganizméw do
ztoza biologicznego na rozktad naproksenu.



I.3. Materialy i metody

W celu przygotowania inokulum do immobilizacji, sporzadzono zawiesiny
dwoch szczepoéw bakteryjnych nalezacych do kolekeji Zespolu Biochemii
1 Genetyki Mikroorganizmow. Szczep Bacillus thuringiensis B1(2015b) wytrzasano
w bulionie odzywczym lub pozywce HCT o sktadzie: 5 g/L tryptonu, 2 g/L
hydrolizatu kazeiny, 3 g/L glukozy, 6,8 g/LL KH,PO,, 0,12 g/L MgSO, x 7H,0,
0,0022 g/ MnSO, x 4H,0, 0,014 g/LL ZnSO,4 x 7H,0, 0,02 g/L Fe,(SO,4); oraz
0,18 g/l CaCl, x 4H,0 przez 24 godziny w 30°C [Lecadet i in. 1980]. Szczep
Planococcus sp. S5 hodowano w bulionie odzywczym przez 72 godziny w 30°C.
Nastegpnie, namnozone hodowle zwirowano (5000g, 4°C, 15 min) i zawieszono
w jalowej minimalnej pozywce mineralnej (MSM) o sktadzie: 3,78 g/L Na,HPO,
x 12H,0, 0,5 g/ KH,PO4, 5 g/ NH,Cl, 0,2 g/ MgSO, x 7H,O oraz
0,01 g/L ekstraktu drozdzowego [Gren i in. 2009].

Jako nos$niki, w immobilizacji metoda adsorpcji na powierzchni,
zastosowano pianke poliuretanowa (PUR; Instapak®, Charlotte, NY, USA) oraz
gabke Loofah (York, Bolechowo, Poland). Przygotowanie pianki poliuretanowe;j
do immobilizacji obejmowato uformowanie z niej szescianow o wymiarach
I x1x1 cm, wazacych 10 £ 5 mg. Gabki Loofah poddawano procesowi suszenia
w eksykatorze w celu ustalenia suchej masy oraz uformowano z nich
prostopadiosciany o wadze 150 mg. Uzyskane no$niki kolejno dwukrotnie ptukano
w wodzie destylowanej oraz sterylizowano (121°C, 1,2 atm, 20 min).

Immobilizacja komoérek B1(2015b) metoda adsorpcji na powierzchni
na piance poliuretanowej przeprowadzona byta w nastepujacy sposob: 0,1 g PUR
inkubowano w 100 ml zawiesiny komoérek B1(2015b) o gestosci optycznej
0,8 (ODggp) W 30°C. Po 72 godzinach no$nik zawieszono w 0,9% NaCl, zwirowano
(500 rpm, 4°C, 2 min) i zawieszono w 0,9% NaCl. W celu dokonania
charakterystyki metabolicznej biofilmu oraz znajdujacych si¢ w nim komoérek
bakteryjnych, przeprowadzono optymalizacj¢ 1 walidacj¢ metody pomiaru
aktywnosci niespecyficznych esteraz z zastosowaniem dioctanu fluoresceiny, bez
naruszania struktury biofilmu. Aby tego dokonaé, zmodyfikowano metode
opracowang przez Liang 1 in. [2009]. Modyfikacja polegata na pominigciu etapu
odrywania komorek od no$nika. Analizie poddawano caly nos$nik wraz
z nienaruszonym biofilmem. Wykonano testy adsorpcji fluoresceiny przez nosnik
oraz autohydrolizy dioctanu fluoresceiny. Przeprowadzono optymalizacje
parametrow reakcji, takich jak sposob aplikacji dioctanu fluoresceiny, predkosé
wytrzasania, pH buforu fosforanowego oraz czas inkubacji. W celu ustalenia
czulosci metody, analiz¢ aktywnos$ci niespecyficznych esteraz immobilizowanych
bakterii na nos$niku przeprowadzono po inkubacji przez 24, 48 oraz 72 godzin
w pozywce bez zrodta wegla. Ponadto w celu oceny zmian strukturalnych biofilmu
przeprowadzono w skaningowym mikroskopie elektronowym (SEM) obserwacje



biofilmu poddanego procesowi glodzenia. Aby dokona¢ walidacji metody,
uzyskane wyniki testow czuto$ci porOwnano z wynikami pomiaru zuzycia tlenu
(OUR, ang. oxygen uptake rate) przez immobilizowane bakterie wraz z no$nikiem
zgodnie z procedurg opracowang przez De Beer i in. [1994] oraz Amon 1 in. [1996].
Szczegbtowy opis modyfikacji metody analizy aktywnosci mikroorganizmow
z zastosowaniem dioctanu fluoresceiny i warunkow analiz znajduje si¢ w pracy
Dzionek i in. [2018a] zamieszczonej w rozdziale II.2 niniejszej rozprawy
doktorskie;j.

W kolejnym etapie badan, przeprowadzono proces immobilizacji szczepdw
Planococcus sp. S5 oraz Bacillus thuringiensis B1(2015b) na gabce Loofah. Aby
uzyska¢ najwyzsza wydajno$¢ immobilizacji oraz biofilm o najwigkszej aktywnosci
metabolicznej, dokonano optymalizacji warunkoéw immobilizacji, ktéra obejmowata
parametry takie jak: wiek hodowli, pozywka, suplementacja glukoza, chlorkiem
sodu lub solami metali, poczatkowa ggsto$¢ optyczna inokulum, czas i temperatura
inkubacji oraz pH pozywki, a takze predkos¢ wytrzasania. Wybor optymalnych
warunkéw procesu immobilizacji dokonywano na podstawie pomiaru masy
uzyskanego biofilmu oraz opracowanej analizy aktywno$ci niespecyficznych
esteraz z zastosowaniem dioctanu fluoresceiny, bez naruszania struktury biofilmu.
Zoptymalizowana procedura immobilizacji komoérek S5 przedstawiala sig
nastepujaco: 0,75 g gabki Loofah inkubowano w 100 ml zawiesiny komodrek S5
o gestosci optycznej 1,2 (ODgo9) W pozywce MSM o pH 7,2, suplementowanej
glukoza (0,5 g/L), NaCl (10 g/L) oraz MnSO,4 (0,01 g/L) 1 wytrzasanej przy
predkosci 90 rpm przez 72 godziny w 30°C. Natomiast zoptymalizowany protokot
immobilizacji komodrek B1(2015b) byt nastepujacy: 0,75 g gabki Loofah
inkubowano w 100 ml zawiesiny komorek B1(2015b) o gestosci optycznej
0,2 (ODggp) W pozywce HCT o pH 8, suplementowanej glukoza (0,5 g/L) oraz
MnSO, (1 g/L) i wytrzasanej przy predkosci 110 rpm przez 48 godzin w 20°C.
W kolejnym kroku gabki Loofah z immobilizowanymi komorkami S5 lub
B1(2015b) ptukano dwukrotnie 0,9% roztworem NaCl i1 wykorzystywano
w dalszych badaniach [Dzionek i in. 2018b; 2020].

Aby opracowa¢ modele rozktadu naproksenu przez immobilizowane szczepy
bakteryjne, wykonano testy kometabolicznej biodegradacji naproksenu. W tym celu
przygotowano uklady zawierajace immobilizowane komorki szczepu S5 oraz
pozywke MSM suplementowang naproksenem w stezeniu 6, 9, 12 lub 15 mg/L.
Co 3 dni, uktady suplementowane byly glukoza w stezeniu 0,5 g/L. Aby okresli¢
wpltyw immobilizacji na degradacje leku, przygotowano uklady zawierajace
zawiesiny komorek S5 oraz naproksen w analizowanych stezeniach. Ponadto
przygotowano uklad zawierajacy immobilizowane komorki S5 oraz pozywke
MSM, ktorej suplementacja naproksenem w st¢zeniu 6 mg/L wykonywana byta
kazdorazowo po catkowitym rozkladzie podanej dawki [Dzionek i in. 2018b].



Stezenie naproksenu okreslano z uzyciem wysokosprawnej chromatografii
cieczowej w odwroconym uktadzie faz (HPLC) [Wojcieszynska i in. 2014].

W trakcie badan poddano analizie aktywnos$¢ enzymoéw zaangazowanych
w rozklad naproksenu. W tym celu przygotowano hodowle immobilizowanych
na gabce Loofah komoérek szczepu S5 (15-dniowe) oraz nieimmobilizowanych
zawiesin komorek S5 (15 oraz 35-dniowe) na podtozu MSM suplementowanym
glukoza (0,5 g/L) oraz naproksenem (6 mg/L). Komorki oddzielono od medium
poprzez wirowanie (4500g, 4°C, 15 min), a w celu oderwania ich od no$nika
dodatkowo zastosowano worteksowanie. Otrzymany osad komorek bakteryjnych
zawieszono w 50 mM buforze fosforanowym o pH 7,0, poddano procesowi
sonikacji (6 x 15 sek.) oraz ponownie zwirowano (9000g, 4°C, 30 min.).

Aktywno$¢ O-demetylazy wyznaczono poprzez analize ubytku substratu,
kwasu wanilinowego przy A = 260 nm. Mieszanina reakcyjna (1 ml) obejmowata
100 mM buforu TRIS-HCI, 500 uM kwasu wanilinowego, 1 mM kwasu
tetrahydrofoliowego oraz ekstrakt enzymatyczny. Reakcje przeprowadzano
w warunkach beztlenowych przez 10 min. w 30°C. Po zatrzymaniu reakcji
metanolem, mieszaning poddano analizie HPLC [Abe 1 in. 2005]. Aktywnos$¢
monooksygenaz aromatycznych okre§lono spektrofotometrycznie poprzez §ledzenie
szybkosci utleniania NADH przy dhugosci fali A = 340 nm (e = 6220 M cm™).
Mieszanina reakcyjna zawierata 50 mM buforu fosforanowego, 200 uM NADH
oraz 8,8 uM FAD, wybrane zwiazki aromatyczne w stezeniu 1 mM (fenol,
naproksen), a takze ekstrakt enzymatyczny [Wojcieszynska 1 in. 2011]. Aktywnosci
dioksygenazy naftalenowej mierzono spektrofotometrycznie przez monitorowanie
powstawania produktu reakcji - cis,cis-dihydrodiolu przy dtugosci fali A = 262 nm
(e = 8230 M cm), w obecnoéci 50 mM wysyconego naftalenem buforu
fosforanowego Na-K [Cidaria i in. 1994]. Dla oznaczenia aktywnos$ci dioksygenazy
1,2-gentyzynianowej  kontrolowano pojawianie si¢ produktu reakcji -
maleilopirogronianu przy dlugoéci fali A = 330 nm (¢ = 10800 M' cm™)
w obecnosci 0,33 mM gentyzyny rozpuszczonej w 0,1 M buforze fosforanowym
[Feng 1 in. 1999]. Aktywno$¢ dioksygenazy 1,2-salicylowej okreslono poprzez
spektrofotometryczne oznaczenie powstawania produktu reakcji - kwasu
2-oksohepta-3,5-dienodiowego przy A = 283 nm (g = 13600 M cm™). Mieszanina
reakcyjna zawierata 20 uM buforu TRIS-HCI oraz 0,1 uM salicylanu [Hintner 1 in.
2001].

Aby okresli¢ wptyw immobilizacji mikroorganizméw na rozktad naproksenu
w systemie bioremediacyjnym skonstruowano zloza biologiczne. Kazde z nich
sktadatlo si¢ z czterech ruchomych podjednostek o wymiarach 400 x 100 mm
(tacznie 1600 x 100 mm), aby mozliwe bylo wprowadzenie immobilizowanych
na gabce Loofah bakterii B1(2015b) na réznych wysoko$ciach systemu. Zloza
biologiczne augmentowano autochtoniczng mikroflorg pochodzaca z komory



przeptywowej osadnika Imhoff’a w Krupskim Mtynie — Zigtek, w celu
uksztattowania btony biologicznej. Po 21 dniach do zl6z wprowadzono
immobilizowane komodrki B1(2015b) oraz syntetyczne $cieki o nastgpujagcym
sktadzie: 0,317 g/L CH;COONH,, 0,04 g/L NH4Cl, 0,024 g/L K,HPO,,
0,008 g/L KH,PO,4, 0,1 g/L CaCOs, 0,2 g/L MgSO, x 7H,0, 0,04 g/L NaCl,
0,005 g/L FeSO4 x 7H,0, 0,5 g/L glukozy oraz 1 mg/L naproksenu w zamkni¢tym
obiegu. Co 3 dni syntetyczne S$cieki suplementowano glukoza oraz makro-
i mikroelementami. W celu oceny wydajnosci pracy zi6z biologicznych
wykonywano pomiar chemicznego zapotrzebowania na tlen (ChZT) metoda
z dichromianem potasu [Dzionek i in. 2020].

W trakcie badan okreslono rowniez wptyw wprowadzenia do zloza
biologicznego immobilizowanych na gabce Loofah komorek BI1(2015b)
na autochtoniczng mikroflor¢ systemu bioremediacyjnego. W tym celu, przed
1 po procesie biodegradacji naproksenu, z probek blony biologicznej oraz gabek
Loofah wyizolowano DNA oraz amplifikowano metoda PCR region V3-V5
bakteryjnego genu 16S rRNA oraz region ITS1/ITS2 eukariotycznego genu rRNA.
Dokonano rozdziatu wuzyskanych fragmentow DNA poprzez elektroforeze
w gradiencie czynnika denaturujacego (DGGE) oraz poddano sekwencjonowaniu
[Plocinniczak i in. 2013; Anderson i in. 2003]. Na podstawie analizy intensywnos$ci
prazkbw DNA na zelach DGGE wyliczono indeks Shannon’a-Wiener’a (H’)
obrazujacy réznorodno$¢ mikrobiologiczng populacji [Xia i in. 2008].

W trakcie badan dokonano réwniez obserwacji struktury gabki Loofah oraz
biofilmu z zastosowaniem skaningowej mikroskopii elektronowej. W tym celu
fragmenty no$nika, bez lub z immobilizowanymi bakteriami B1(2015b) lub S5,
poddano utrwaleniu w 3% glutaraldehydzie przez 24 godziny oraz 1% czterotlenku
osmu przez 3 godziny. Kolejno, dokonano odwodnienia probek poprzez szereg
alkoholowy (30, 50, 70, 80, 90, 95 oraz 100% etanol) oraz poddano liofilizacji.
Uzyskane probki nastgpnie pokryto ztotem 1 analizowano w mikroskopie
skaningowym JSM-7100F TTL LV [Dzionek i in. 2018b].
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I.4. Wyniki i dyskusja

Obecnie najczesciej stosowane metody oceny wydajnosci immobilizacji
zaktadajg wysiew oderwanych z biofilmu mikroorganizmow i szacowanie jednostek
tworzacych kolonie (CFU), badZz oznaczanie suchej masy biofilmu. Jednakze zadna
z tych metod, nie przedstawia stanu fizjologicznego unieruchomionych komorek.
Badania aktywnos$ci enzymatycznej immobilizowanych mikroorganizmoéw opierajg
si¢ na ich uwolnieniu z macierzy, co skutkuje uzyskaniem niepelnej aktywnosci
catego biofilmu. W ramach badan, podjeto probe modyfikacji istniejacej metody
oceny stanu fizjologicznego immobilizowanych komorek w biofilmie bazujacej
na hydrolizie dioctanu fluoresceiny (FDA) [Dzionek i in 2018a; Liang i in. 2009].
Modyfikacja polegata na omini¢ciu etapu odrywania biofilmu od no$nika
1 wykonanie testu na nienaruszonym biofilmie wraz z no§nikiem.

Badania nad modyfikacja testu przeprowadzono na immobilizowanych
na piance poliuretanowej (PUR) komorkach szczepu Bacillus thuringiensis
B1(2015b). Analiza wstepna wykazata, ze w badanym zakresie stezenia
fluoresceiny (0,5-5 pg/mL), jej adsorpcja przez PUR nie przekraczata 9%, jednakze
zalezala od poczatkowego stezenia. Z tego wzgledu, aby test przedstawial
prawidlowa aktywno$¢ niespecyficznych esteraz, nalezy przeprowadzi¢ analizg
adsorpcji  fluoresceiny na zastosowanym no$niku. Istotnym czynnikiem
wpltywajacym na powtarzalno$¢ testu, okazat si¢ by¢ sposob aplikacji FDA. Wynika
to ze ztozonej i heterogennej struktury biofilmu, co utrudnia dyfuzje FDA
do wnetrza biofilmu [Flemming 1 in. 2016]. Zatem najnizszy wspotczynnik
zmienno$ci wynoszacy 7% uzyskano w prébach, w ktorych FDA wstrzykiwane
bylo bezposrednio w nos$nik. Przeprowadzona optymalizacja warunkéw testu
wykazata, ze najwyzsze wartosci catkowitej aktywnosci metabolicznej (TEA)
uzyskano podczas wytrzasania probek w buforze fosforanowym o pH w zakresie
7,4-7,6 przez 1 godzing. Istotng obserwacja byl brak akumulacji fluoresceiny
w biofilmie po 1,5 godz. inkubacji.

W celu okres$lenia czutosci testu, dokonano oceny wplywu obnizenia
metabolizmu pod wptywem glodzenia na proces immobilizacji. W pierwszej dobie
eksperymentu obserwowano najwyzszg wartos¢ TEA (360 + 24 ug/g suchej masy
na godz.), co $wiadczy o zuzywaniu przez immobilizowane komorki
nagromadzonych zapaséw energetycznych. Wraz z wydluzaniem czasu inkubacji,
po 72 godzinach, TEA obnizyla si¢ dwukrotnie (170 + 7 pg/g suchej masy na godz.)
ze wzgledu na wyczerpanie substancji zapasowych i ograniczenie aktywnos$ci
metabolicznej. Uzyskane wyniki byly zgodne z obserwacjami Gengenbacher
1in. [2010] oraz Voelker i in. [1995], ktérzy zaobserwowali wyrazny spadek
produkcji ATP przez szczepy Bacillus subtilis 1 Mycobacterium tuberculosis,
w wyniku pozbawienia zwigzkéw odzywczych. Poréwnujac wartosci TEA
uzyskane przez unieruchomione komoérki B1(2015b) oraz przez wolne komorki
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inkubowane w tych samych warunkach zaobserwowano, Zze immobilizacja
ogranicza niekorzystny wplyw glodzenia na komorki. Po 48 godzinach inkubacji
w medium pozbawionym zrodet wegla, warto§¢ TEA wolnych komoérek B1(2015b)
wynosita 161 £ 17 ug/g suchej masy na godz. 1 utrzymywata si¢ na takim poziomie
az do konca eksperymentu. Mozna zatem wnioskowaé, ze minimalny endogenny
metabolizm szczepu Bacillus thuringiensis B1(2015b) wynosi 161-170 pg/g suche;j
masy na godz. Obserwacja biofilmu dokonana z zastosowaniem skaningowe;j
mikroskopii elektronowej (SEM) wykazata pozytywny wptyw glodzenia na proces
tworzenia biofilmu. Wynika to z faktu, ze niedobor substancji odzywczych indukuje
sporulacje, ktéra promuje proces produkcji egzopolisacharydow u szczepdéw blisko
spokrewnionych z B1(2015b), takich jak Bacillus subtilis i Bacillus cereus
[Mielich-Siiss 1 in. 2015; Sonenshein, 2000].

Uzyskane wyniki TEA metoda z dioctanem fluoresceiny podczas glodzenia
poréwnano z wynikami pomiaru zuzycia tlenu. Zaobserwowano bardzo wysoka
korelacj¢ trendu spadku TEA oraz OUR podczas eksperymentu, co $wiadczy
o wiarygodnosci opracowanej metody. Szczegotowe informacje dotyczace walidacji
metody oceny stanu fizjologicznego immobilizowanych komoérek bakteryjnych bez
naruszania struktury biofilmu, a takze wplywu glodzenia na unieruchomione
na piance poliuretanowej komorki szczepu Bacillus thuringiensis B1(2015b)
zaprezentowano w pracy Dzionek i in. [2018a] zamieszczone] w rozdziale I1.2
niniejszej pracy.

Badania nad wptywem immobilizacji szczepdbw Bacillus thuringiensis
B1(2015b) oraz Planococcus sp. S5 na gabce Loofah na ich zdolno$ci degradacji
naproksenu poprzedzono optymalizacja procesu unieruchamiania, w celu uzyskania
biofilmu charakteryzujacego si¢ najwyzszg wartoscig TEA.

W  trakcie  optymalizacji  immobilizacji  szczepu  Planococcus
sp. S5 wykazano efektywniejszg indukcje wytwarzania biofilmu w obecnos$ci
glukozy. Gotz [2002] wykazat, ze blisko spokrewnione z rodzajem Planococcus
szczepy Staphylococcus aureus oraz Staphylococcus epidermidis wymagaty
suplementacji glukoza podczas immobilizacji, ktéra indukowata synteze adhezyn
biorgcych udziat w poczatkowej adsorpcji komoérek do powierzchni nos$nika. Cecha
charakterystyczng szczepow z rodzaju Planococcus jest zwigkszona tolerancja
na stres osmotyczny. Cecha ta byla rowniez widoczna u komodrek szczepu S5,
ktérych biofilm osiggat wyzsze wartoSci TEA w medium dodatkowo
suplementowanym NaCl w stezeniu 19 g/L. Fenomen ten wynika z przystosowan
halofilow do wyzszego =zasolenia. Szczepy halofilne pod wpltywem stresu
osmotycznego produkuja wigksze ilosci egzopolisacharydéw, ktorych dodatkowa
funkcja jest zwigkszanie pojemnosci wodnej biofilmu [Quarashi 1 in. 2012].
Procedura immobilizacji szczepu Planococcus sp. S5 na gabce Loofah skutkowata
najwyzszymi wartosciami TEA podczas 72 godzinnej inkubacji w minimalne;
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pozywce mineralnej (MSM) o pH 7,2 suplementowanej glukozg (0,5 g/L), NaCl
(19 g/L) oraz MnSO, (0,05 g/L), wytrzasanej przy 90 rpm w 30°C oraz przy
wysokiej koncentracji komorek (ODgoy = 1,2). Uzyskany ta procedurg biofilm
na powierzchni jednej gabki Loofah charakteryzuje si¢ TEA wynoszaca
1250,26 + 87,61 pg/g suchej masy na godz.

Immobilizacja szczepu Bacillus thuringiensis B1(2015b) na gabce Loofah
wykazata odmienne mechanizmy indukcji biofilmu. Proces unieruchamiania byt
najwydajniejszy w pH 8, w pozywce HTC bogatej] w zrodlta wegla oraz sole
mineralne, dodatkowo suplementowanej glukoza. Wytlumaczeniem tego zjawiska
jest neutralizacja ujemnego tadunku $ciany komorkowej oraz powierzchni no$nika
poprzez wysoka site jonowa bogatej pozywki HTC [Palmer 1 in. 2007]. Ograniczyto
to oddzialywania elektrostatyczne 1 tym samym umozliwito adhezje komorek
B1(2015b) do gabki Loofah. Ze wzgledu na fakt, ze mangan stymuluje sporulacje
1 tym samym produkcje biofilmu u szczepoéw z rodzaju Bacillus, sprawdzono jak
dodatkowa suplementacja manganem wplynie na aktywno$¢ enzymatyczng
biofilmu szczepu B1(2015b). Badania wykazaly, ze mangan w stezeniu 0,33 mM
znaczgco wptyngt na zwigkszenie TEA uzyskanego biofilmu. Warto zaznaczy¢,
ze Morikawa 1 in. [2006] zaobserwowal, ze mangan w stezeniu nawet
1 M stymulowat produkcj¢ biofilmu przez szczep Bacillus subtilis Bl.
Podsumowujac, immobilizacja szczepu Bacillus thuringiensis B1(2015b) na gabce
Loofah przebiegata najwydajniej na podtozu HTC o pH 8, suplementowanej
glukoza (0,5 g/L) oraz MnSQO, (1 g/L), wytrzasanej przy 110 rpm w 20°C przez
48 godziny przy niskiej koncentracji komoérek (ODgyy = 0,2). Biofilm szczepu
B1(2015b) na powierzchni gabki Loofah charakteryzowal si¢ wartoscia TEA
wynoszaca 790,14 £ 40,60 pg/g suchej masy na godz. Szczegotowe informacje
dotyczace proceséw optymalizacji immobilizacji szczepdw Planococcus sp. S5 oraz
Bacillus thuringiensis B1(2015b) na gabce Loofah zaprezentowano w pracach
Dzionek i in. [2018b] oraz Dzionek i in. [2020] zamieszczonych odpowiednio
w rozdzialach I1.3 i I1.4 niniejszej pracy.

W kolejnym etapie badan przeprowadzono testy biodegradacji naproksenu
przez immobilizowane na gabce Loofah szczepy Planococcus sp. S5 oraz Bacillus
thuringiensis B1(2015b).

Analiza modelu rozktadu leku przez szczep S5 zostala przeprowadzona
w warunkach monokulturowych z zastosowaniem rdéznych stezen naproksenu
(6,9, 12 oraz 15 mg/L), zar6wno przez komorki unieruchomione na gabce Loofah,
jak 1 przez zawiesiny komorek. Zaobserwowano, ze wolne komorki S5 byty zdolne
do catkowitego rozkladu leku w stezeniu 6, 9 oraz 12 mg/L w odpowiednio
38,44 oraz 62 dni. Biodegradacja najwyzszego analizowanego stezenia leku
(15 mg/L) zakonczyla si¢ po rozkladzie 29% leku w czasie trwania eksperymentu.
Wyniki te udowodnity, ze naproksen w stezeniu wyzszym niz 12 mg/L wykazuje
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dziatanie hamujace na wolne komorki szczepu Planococcus sp. S5. Analiza krzywej
rozktadu leku przez szczep S5 wykazata wolniejszy przebieg degradacji
w poczatkowej fazie inkubacji, ktory byl niezalezny od poczatkowego stezenia
leku. W tej fazie wolne komorki S5 rozktadaty 6,3 + 3,4 ug naproksenu na godzing.
Po 29 dniach zaobserwowano fazg szybszej degradacji, podczas ktorej komorki
S5 byty zdolne do rozktadu 12,0 £ 4,5 pg leku w ciggu godziny.

Immobilizowane na gabce Loofah komorki S5, byly zdolne do calkowitej
degradacji naproksenu w analizowanych dawkach w ciggu 17, 32, 43 oraz 53 dni.
Zatem dzieki immobilizacji, czas rozkladu naproksenu przez szczep S5 zostal
niemal dwukrotnie skrocony. Wykazano rowniez nizsza ~ wrazliwo$¢
unieruchomionych komoérek S5 na lek, co skutkowato catkowitym rozktadem
najwyzszej analizowanej dawki leku. Analiza szybkos$ci rozktadu w poszczegdlnych
dniach inkubacji wykazata, ze tempo rozkladu leku bylo state, niezalezne od dnia
inkubacji, a takze od poczatkowego stezenia naproksenu. Co ciekawe, predkosé
ta wynosita 12,1 + 4 pg leku na godzing i nie roznita si¢ od tempa rozkladu
naproksenu przez wolne komorki S5 w fazie szybszej degradacji leku. Wynika
to z faktu, ze immobilizowane komdrki wykazuja cechy charakterystyczne hodowli
w fazie stacjonarnej [Flemming i in. 2016], a to wlasnie w tej fazie wolne komorki
S5 degradowaly lek najwydajniej. Brak fazy adaptacyjnej immobilizowanych
komoérek S5 wskazuje na ich dobrg adaptacje do rozktadu Ileku, nawet
w najwyzszym stezeniu. Biofilm charakteryzuje si¢ dobrymi wlasciwosciami
sorpcyjnymi, a takze ograniczong dyfuzja. Dzieki tym cechom, komorki w biofilmie
maja mniejszy kontakt z zanieczyszczeniem, ktory jest transportowany do komorek
w stalym, wolniejszym tempie. W efekcie, immobilizowane komodrki sa mniej
narazone na ich szkodliwe oddziatywanie, 1 tym samym, mogg degradowac ich
wyzsze stezenia [Rahman i in. 2006].

W trakcie badan sprawdzono réwniez przebieg wielokrotnych cykli
degradacji naproksenu w stezeniu 6 mg/L przez immobilizowane na gabce Loofah
komorki Planococcus sp. S5. Calkowity rozklad naproksenu byt obserwowalny
w trzech cyklach. Pierwsza 1 druga dawka leku =zostala zdegradowana
po odpowiednio 17 1 15 dniach inkubacji, w trzecim cyklu zauwazono natomiast
wolniejszy przebieg rozktadu, ktéry trwal 21 dni. W czwartym cyklu, tylko
27% leku ulegto biodegradacji. Tempo rozkladu leku w ciggu pierwszych trzech
cykli bylo podobne i wynosilo odpowiednio 14,8 + 3,0, 16,0 £ 6,9 oraz
11,4 £3,9 pg na godzing. Jednakze immobilizowane na gabce Loofah komorki
szczepu Planococcus sp. S5 wykazywaly petng zdolno$¢ degradacyjng przez 55 dni,
co sugeruje, ze immobilizacja wydtuza aktywnos$¢ katalityczng komorek, co moze
by¢ efektem zwigkszenia stabilnosci bton komorkowych [Rahman i1 in. 2006].
Dokonano takze analizy w skaningowym mikroskopie elektronowym (SEM) zmian
struktury biofilmu szczepu S5 na powierzchni gabki Loofah, w wyniku ekspozycji
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na kolejne dawki leku. Zaobserwowano znaczacy wzrost wydzielanych
egzopolisacharydow, co skutkowato powigkszeniem bariery ochronnej przez szczep
S5. Mechanizm ten jest odpowiedzia na obecno$¢ toksycznych czynnikow
1 dodatkowo zmniejsza wrazliwo$¢ komorek na ten czynnik [Zhou 1 in. 2013].

Istotng czes$cig badan byto okreslenie wplywu immobilizacji komorek
Planococcus sp. S5 na aktywno$¢ enzymoOw zaangazowanych w rozktad
naproksenu. Zgodnie z pracg Domaradzka i in. [2015], dokonano analizy
aktywno$ci takich enzymow jak O-demetylaza, monooksygenazy aromatyczne,
dioksygenaza naftalenowa, dioksygenaza 1,2-gentyzynianowa oraz dioksygenaza
1,2-salicylowa. Aktywno$¢ analizowanych enzyméw zaréwno w ekstraktach
wolnych, jak 1 immobilizowanych komérek szczepu S5 §wiadczy o braku zmian
w szlaku biodegradacji naproksenu w wyniku unieruchomienia. Znaczace zmiany
zaobserwowano natomiast w  warto§ciach tych  aktywnosci. Zgodnie
z oczekiwaniami, aktywnos$¢ analizowanych enzymow wolnych komorek S5 byta
nizsza w fazie wolniejszego rozkladu (15 dzien degradacji). W tym samym czasie,
aktywno$¢ wigkszosci badanych enzyméw z komorek immobilizowanych byla
dwukrotnie wyzsza. Zaobserwowano takze znacznie wyzsza aktywnos$¢
monooksygenaz aromatycznych, po zastosowaniu naproksenu zamiast fenolu jako
substratu reakcji. Jednakze ze wzgledu na specyfike metodologii wyznaczania
aktywno$ci aromatycznych monooksygenaz (oznaczanie redukcji NAD),
niewykluczonym jest, ze wiecej enzymow nalezacych do klasy oksydoreduktaz jest
zaangazowanych w degradacj¢ naproksenu przez szczep Planococcus sp. SS5.
Zwiekszona aktywno$¢ dioksygenazy 1,2-gentyzynianowej komorek
immobilizowanych moze §wiadczy¢ o zwigkszonym udziale w rozktadzie leku
w stosunku do dioksygenazy 1,2-salicylowej. Ze wzgledu na zblizone tempo
biodegradacji naproksenu przez wolne komoérki S5 w szybszej fazie rozktadu leku
oraz komorki immobilizowane, zaktadano, ze aktywno$¢ analizowanych enzymow
bedzie rowniez zblizona. Jednakze aktywno$¢ komodrek immobilizowanych
w 15 dniu degradacji leku byla znacznie wyzsza niz komoérek wolnych w 35 dniu,
w wyniku czego obserwowano istotne przyspieszenie czasu degradacji leku.
Szczegdlowe informacje dotyczace przebiegu degradacji naproksenu przez szczep
Planococcus sp. S5 w analizowanych st¢zeniach oraz w wielokrotnych cyklach,
a takze wplywu immobilizacji na aktywnos$¢ enzymow zaangazowanych w rozktad
naproksenu zaprezentowano w pracy Dzionek i in. [2018b] zamieszczonej
w rozdziale I1.3 niniejszej pracy.

Badania nad przebiegiem degradacji naproksenu przez immobilizowany
na gabce Loofah szczep Bacillus thuringiensis B1(2015b) prowadzono w ztozu
biologicznym, zawierajacym uksztalttowang autochtoniczng mikroflor¢ pochodzaca
z komory przeplywowej osadnika Imhoff’a w Krupskim Miynie — Zietek. Ponadto
sprawdzono przebieg degradacji leku przez immobilizowane komoérki B1(2015b)
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umieszczone w ztozu biologicznym bez autochtonicznej mikroflory. Po 15 dniach
inkubacji, immobilizowane komoérki B1(2015b) w systemie bez autochtonicznej
mikroflory byly zdolne do degradacji 70% leku. Na podstawie przeprowadzonych
badan wstepnych ustalono, ze autochtoniczna mikroflora ztoza biologicznego
nie wykazywala zdolnosci do degradacji naproksenu. Po wprowadzeniu do ztoza
biologicznego immobilizowanych na gabce Loofah komorek BI1(2015b)
zaobserwowano prawie 90% rozktad leku po 15 dniach inkubacji. Otrzymane
wyniki wskazuja na synergistyczne oddzialywania pomigdzy wprowadzonymi
immobilizowanymi komoérkami  szczepu Bacillus  thuringiensis B1(2015b)
a autochtoniczng mikroflorg ztoza biologicznego podczas rozkladu naproksenu.
Tego typu interakcje w systemach bioremediacyjnych nie sg do konca poznane.
Moga one by¢ efektem zwigkszania biodostepnosci zanieczyszczen poprzez
produkcje biosurfaktantow, wykorzystywaniem metabolitow, ktore nie moga by¢
dalej transformowane, wymiang czynnikow wzrostowych, badz indukcja agregacji.
Przyktad synergii obserwowanej w glebie przedstawil Byss 1 in. [2008].
Zaobserwowal on, ze w wyniku inokulacji gleby szczepem Pleurotus ostreatus
znaczgco wzrosla liczba bakterii Gram-dodatnich 1 tym samym, wzrosta wydajnos¢
biodegradacji  wielopierscieniowych  weglowodoréw  aromatycznych  przez
te bakterie (WWA). Ponadto obecno$¢ beztlenowych bakterii z rodzaju Clostidium
w dolnych partiach ztoza biologicznego mogta przyczyni¢ si¢ do przyspieszenia
rozktadu naproksenu, ze wzgledu na posiadanie enzyméw demetylujacych oraz
degradujacych kwas weratrowy, badz katechol [Mechichi 1 in. 2005].

W trakcie trwania eksperymentu monitorowano réwniez wydajnos$¢ pracy
ztoza biologicznego. Analiza chemicznego zapotrzebowania na tlen (ChZT)
wykazata znacznie wydajniejszg prace zloza biologicznego z immobilizowanymi
komoérkami B1(2015b) oraz autochtoniczng mikroflorg (82,65 + 1,91% redukcji
ChZT w ciggu 3 dni) niz zloza biologicznego zawierajacego wylacznie
immobilizowane komorki B1(2015b) (68,85 £ 0,074% redukcji ChZT w ciagu
3 dni). Jednakze, immobilizowane komoérki B1(2015b), byty zdolne do rozktadu
znaczacej cze$cl materii organicznej z syntetycznych $ciekéw, co pokazuje ich
potencjat w bioremediacji.

Obserwacja w skaningowym mikroskopie elektronowym powierzchni gabki
Loofah wraz z immobilizowanymi komorkami BI1(2015b) po 15 dniach
przebywania w ztozu biologicznym wykazata, ze zostala ona niemalze catkowicie
zasiedlona autochtoniczng mikroflorg. Uformowany biofilm charakteryzowal sie¢
znaczng iloScig zewnatrzkomorkowych wydzielin 1 wykazywat zrdéznicowanie
w zalezno$ci od wysokos$ci ztoza, z ktorej zostat pobrany. W dolnej i $rodkowe;j
czesci ztoza obserwowano gltownie biofilm bakteryjny, natomiast w goérnej czesci
przewazaly strzgpki grzybowe. Ze wzgledu na to, ze komoérki szczepu B1(2015b)
nie byly widoczne na powierzchni gabek Loofah, przeprowadzono analize
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bakteryjnych regionéw V3-V5 genu 16S rRNA z zastosowaniem elektroforezy
w gradiencie czynnika denaturujacego (DGGE), aby potwierdzi¢ obecnos¢ komorek
B1(2015b) w ztozu biologicznym oraz ustali¢ zmiany jakos$ciowe mikroflory
bakteryjnej. Dodatkowo przeprowadzono analize jako$ciowa szczepow grzybowych
poprzez analiz¢ regionow ITS1/ITS2 genu 18S rRNA. Badania wykazaty znaczace
zmiany jakoSciowe spolecznosci autochtonicznej mikroflory bakteryjnej
po 15 dniach ekspozycji na naproksen. Skutkowato to obnizeniem indeksu
Shannon’a-Wiener’a o niemal potowe. Szczepy grzybowe natomiast wykazaly
mniejszg wrazliwo$¢ na naproksen, co w efekcie nie wptyneto na zmiang indeksu
bioréznorodnosci. Badania Grenni i in. [2014] wykazaly, ze nawet 3-godzinna
ekspozycja na naproksen w stezeniu 100 pg/L powodowala znaczacy spadek
zywych komoérek mikroorganizmow rzeki Tyber. Naproksen w stezeniu
10 uM spowodowat takze zahamowanie produkcji azotanow (IIl) przez bakterie
nitryfikacyjne  Nitrosomonas europaea, bedace fundamentalnym szczepem
systemow bioremediacyjnych w oczyszczalniach $ciekéw [Wang i in. 2011].

Obecnos¢ sekwencji genu 16S rRNA immobilizowanego szczepu
B1(2015b), zaré6wno na gabce Loofah, jak i wypelnieniu zloza, na réznych
wysokosciach ztoza biologicznego, potwierdzita obecno$¢ szczepu i namnazanie
si¢ w systemie po zakonczonym procesie degradacji naproksenu. Zaobserwowano
roOwniez znaczgce zmiany jakosciowe spotecznosci bakteryjnych i1 grzybowych
w wyniku wprowadzenia immobilizowanych na gabce Loofah komoérek szczepu
B1(2015b). Obserwowano wzrost bior6znorodnosci, zmiany grup dominujacych,
a takze wzrost szczepow wrazliwych na naproksen. Uzyskane wyniki wskazuja
jednoznacznie na zagrozenie wynikajagce z ekspozycji na naproksen
dla autochtonicznej mikroflory systeméw bioremediacyjnych. Pokazujg réwniez,
ze szybka degradacja leku, skutkuje przywroceniem réwnowagi systemu oraz
ogranicza eliminacj¢ cennych szczepow bakteryjnych autochtonicznej mikroflory
systemu bioremediacyjnego. Szczegdlowe informacje dotyczace degradacji
naproksenu w ztozu biologicznym przez immobilizowane na gabce Loofah komoérki
Bacillus thuringiensis B1(2015b) oraz analizy DGGE zaprezentowano w pracy
Dzionek i in. [2020] zamieszczone] w rozdziale I1.4 niniejszej pracy.
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1. Introduction

The twentieth century went down in history as a period of
extremely dynamic civilizational and technological development.
Industrialization, wars, and intensive use of large-scale heavy metals
and synthetic xenobiotics led to many environmental problems [1,2].

The contamination of the environment by petroleum products,
pharmaceutical compounds, chloro- and nitrophenols and their
derivatives, polycyclic aromatic hydrocarbons, organic dyes, pesticides
and heavy metals is a serious problem [3,4,5,6,7,8,9]. These pollutants
enter the environment by different ways. For example, one of the
major consequences of the armed conflict between Iraq and Kuwait
was the release into the environment millions of barrels of crude oil.
After the war ended, scientists began numerous studies aimed at the
removal of oil from the contaminated environment. Other sources of
crude oil in ecosystems are accidental oil spills. One of the biggest
marine disasters took place in Mexico in 2010, and it resulted in the
spewing out of about 2.8 million barrels of crude oil from the British
Petroleum (BP) oil rig Deepwater Horizon into the sea [10,11].

Pesticides are other serious pollutants present in soils. USEPA
reported that in 2007, global consumption of pesticides for
agricultural purposes was 2.36 million tonnes [12]. These compounds,
used in bulk for long periods of time in a limited area, lead to serious
disorders in indigenous microflora and humans, because pesticides are
also toxic to non-target organisms [12,13,14]. Moreover, many
metabolites of pesticide biodegradation are also toxic and constitute
priority pollutants. For example, the major metabolites of parathion
and 2,4-dichloropenoxy acetic acid biodegradation are p-nitrophenol
and 2,4-dichlorophenol, respectively [9,15,16,17,18].

It has been reported that many microorganisms are able to biodegrade
different pollutants [4,5,7,8,19,20]. However, the biodegradation
rate depends on the physiological state of the microorganisms, which
are sensitive to variable environmental factors. It is known that
immobilization improves microorganisms' resistance to unfavourable
environmental impacts [6,8].

The main purpose of this review is to present and discuss the latest
reports about the natural carriers in the processes of bioremediation
by immobilized cells. In the article immobilization methods for
bioremediation are also presented.

2. Bioremediation methods

In 1930 Tausz and Donath [21] presented the idea of using
microorganism to clean soil contaminated with petroleum derivatives,
giving rise to biodegradation processes. Today, bioremediation is a
commonly used method to restore the natural and useful values of
contaminated sites by microorganism able to degrade, transform, or
chelate various toxic compounds [22]. Microorganisms can break
down organic pollutants by using them as a source of carbon and
energy, or by cometabolism. Heavy metals cannot be degraded or
destroyed biologically and undergo transformation from one oxidative
state or organic complex to another. It changes their water solubility
and decreases their toxicity [22,23].

Bioremediation is eco-friendly, non-invasive, cheaper than
conventional methods, and it is a permanent solution that can end
with degradation or transformation of environmental contaminants
into harmless or less toxic forms [23,24,25,26]. Soil bioremediation
can be carried out at the place of contamination (in situ), or in a
specially prepared place (ex situ). In situ technology is used when
there is no possibility to transfer polluted soil, for example when
contamination affects an extensive area [26,27,28].

There are three basic methods of in situ bioremediation
with microorganisms: natural attenuation, biostimulation, and
bioaugmentation [24,29,30].

Natural attenuation is connected with the degradation activities
of indigenous microorganisms. This method avoids damaging the

habitat, allows ecosystem revert to its original condition and enables
detoxification of toxic compounds [24,31].

Removal of contaminations by the natural attenuation takes a long
time because degrading microorganisms in soil represent only about
10% of the total population. The increase of bioremediation efficiency
in situ may be realized in the bioaugmentation process, in which the
specific degraders are introduced into the soil [30,31]. This method is
applied when the indigenous microflora are unable to break down
pollutants, or when the population of microorganisms capable of
degrading contaminants is not sufficiently large. To make the process
of bioaugmentation successful, microorganisms introduced into the
polluted environment as a free or immobilized inoculum should be
able to degrade specific contamination and survive in a foreign and
unfriendly habitat, be genetically stable and viable, and move through
the pores in the soil. Microorganisms can be previously isolated from
the contaminated soil and propagated, or their functional ability can
be enhanced in the laboratory. Nonindigenous strains or genetically
modified microorganisms (GMM) can also be incorporated into the
remediated soil [31,32,33,34]. However, the result of bioaugmentation
depends on the interaction between exogenous and indigenous
populations of microorganisms because of the competition, mainly for
nutrients [31].

To accelerate in situ bioremediation processes, biostimulation is used
in order to modify the physical and chemical parameters of the soil. For
this purpose, compounds such as nutrients (e.g. biogas slurry, manure,
spent mushroom compost, rice straw and corncob) or electron
acceptors (phosphorus, nitrogen, oxygen, carbon) are introduced into
the soil [29,30,32,35].

Because in situ processes are out of hand it is difficult to predict
the effect of remediation of contaminated sites [28]. Ex situ methods
allow more efficient removal of pollutants, by controlling the
physico-chemical parameters, resulting in a shortening of the total
time of reclamation. These advantages outweigh ex situ methods’
disadvantages such as additional cost and risk connected with the
possibility of dispersion of the contamination during transport. During
the ex situ processes contaminated medium is excavated or extracted
and moved to the process location. Liquids can be clean in constructed
wetlands while semi-solid or solid wastes in slurry bioreactors. Solid
contaminations are biodegraded through land farming, composting
and biopiles [26,28,36,37].

Constructed wetlands are used with success in the treatment of
wastewater derived from domestic, industrial or agricultural sources
[38]. They require the competition of microbes (bioremediation) and
plant (phytoremediation). Microorganisms degrade or sorb organic
substance present in the water undergoing treatment. Plants are used
to remove, transfer or stabilize contaminants through metabolism,
accumulation, phytoextraction or immobilization at interface of roots
and soil [37]. Bioremediation processes in slurry bioreactors can be
performed under aerobic or anaerobic conditions [28]. These systems
utilize naturally occurring microorganisms or strains possessing
specific metabolic capabilities to transform toxic compounds [27].
Slurry bioreactors are one of the best applied technologies used in the
bioremediation of contaminated soils because they undergo under
controlled operating conditions. It allows for the enhancement of
microorganisms activity [27,39,40].

Landfarming is one of the most widely used soil bioremediation
technologies. In this technology, excavated contaminated soils are
spread out in a thin layer on the ground surface. Aerobic microbial
activity within the soil is stimulated through the aeration and addition
of minerals, nutrients and moisture [41,42]. Landfarming is a relatively
simple technology however it is inexpensive and effective for easily
biodegradable contaminants only at low concentration [28,37,41,42,43].
Composting is a controlled biological process that treats of agricultural
and municipal solid wastes and sewage sludge using microorganisms
under thermophilic and aerobic conditions [28,37]. Through
composting, it is possible to reduce the volume of residues in landfills.
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Biodegradation of solid contaminants takes place mainly as a result of
oxidation and hydrolysis. The optimum temperature for growth of
microorganisms engaged in composting is in the range of 40 to 70°C.
The risk of contamination by pathogens is small, because most of them
are inactivated at 70°C. A key factor during composting is microbial
accessibility to the pollutants and the characteristics of the amending
agents. This method is eco-friendly, has simple protocols, allows
the control of large volumes of waste and ends with the total
mineralization of pollutants [26,44,45]. Composting has been applied to
bioremediation of soils contaminated with petroleum hydrocarbons,
solvents, chlorophenols, pesticides, herbicides, polycyclic aromatic
hydrocarbons and nitro-aromatic derivatives [28,37,46]. More advanced
systems of composting are biopiles that are more expensive but enable
more effective control of the process and its higher efficiency [28]. It
is possible as the aerated composted piles are equipped with the
dissolved oxygen, moisture and nutrient control systems and the
proper aeration is forced by vacuum or injection system. This
technology has been used for remediation of petroleum-contaminated
soil [28,37,46].

3. Immobilization methods

In recent times, bioremediation processes more and more
often employ immobilization methods. Immobilization is defined as
limiting the mobility of the microbial cells or their enzymes with
a simultaneous preservation of their viability and catalytic functions
|47,48,49,50,51]. This process may use the natural ability of
microorganisms to form biofilms on the surface of various materials,
which is commonly observed in the environment. Immobilization
significantly reduces costs of bioremediation processes and improves
their efficiency. This method brings many benefits to bioremediation,
such as higher efficiency of pollutant degradation, multiple use of
biocatalysts, reduced costs — the stage of cell filtration is eliminated,

ensuring a stable microenvironment for cells/enzymes, a reduced
risk of genetic mutations, ensured resistance to shear forces present
in bioreactors, increased resistance of biocatalysts to adverse
environmental conditions and heavy metals, increased biocatalyst
survival during storage, and increased tolerance to high pollutant
concentrations [1,47,51,52].

There are five main techniques of immobilization: adsorption,
binding on a surface (electrostatic or covalent), flocculation (natural
or artificial), entrapment, and encapsulation (Fig. 1). Flocculation does
not require carriers, and therefore will not be discussed [1,47].

3.1. Adsorption

Immobilization of microbial cells and enzymes by adsorption
takes place through their physical interaction with the surface
of water-insoluble carriers. This method, commonly used in
bioremediation processes, is quick, simple, eco-friendly and
cost-effective. Adsorption on a carrier surface is achieved by the
formation of weak bonds. For that reason there is a high probability of
cells leaking from the carrier into the environment, and this method is
not used for GMM immobilization [1,53,54].

3.2. Binding on a surface

Electrostatic binding on a surface is very similar to physical
adsorption, but the probability of microorganisms leaking is lower.
This method requires washing the surface of the carrier with a buffer
solution to obtain a hydrophilic surface that can attract the negatively
charged cells or enzymes [55,56].

The procedure for immobilization is different in the case of covalent
binding, because it requires the presence of a binding agent.
Immobilization can be performed only on chemically activated
carriers enriched with amide, ether and carbamate bonds. This
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Fig. 1. Methods of immobilization [12,129,130,131,132].
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method is mainly used for the immobilization of enzymes, because
binding agents are often toxic to cells, and for that reason microbial
viability and activity are lowered. The advantage of the covalent bonds
is that they are strong enough to prevent the leaking of molecules into
the environment [1,48,57,58].

3.3. Entrapment in porous matrix

Entrapment of microorganisms is well-known and widely used in
bioremediation. After the entrapment, microbial cells are able to move
only within a carrier. This prevents the cells from leaking into the
environment but may limit the exchange of nutrients and metabolites.
Microorganisms entrapped in the heterogeneous carrier are
physiologically diverse. The cells located near the surface have high
metabolic activity in contrast to starved cells in the interior of the
carrier [1,47,51,59]. Entrapment is a rapid, nontoxic, inexpensive and
versatile method [8,51]. Entrapped microorganisms are protected
against environmental factors. The most important parameter in
entrapment of microorganisms is the ratio of the size of the pores of
the carrier to the size of the cells. In a situation where the pores
are larger than the immobilized cells, they leak into the environment
[1,47,51,59].

3.4. Encapsulation

Encapsulation is very similar to the entrapment, but in this case
immobilized particles are separated from the external environment
with a semi-permeable membrane. The biggest advantage of this
method is the significant protection of biological material against the
adverse conditions of the external environment. However, due to the
limited permeability of the used membrane and the probability of its
damage by growing cells, encapsulation is rarely used in ex situ
bioremediation [1,47,60].

4. Support materials

Not every material is suitable for immobilization. A good carrier
should be insoluble, non-toxic, both for the immobilized material and
the environment, easily accessible, inexpensive, stable and suitable for
regeneration. The immobilization process should be simple and
harmless. Another important aspect is that different immobilization
methods require carriers with specific properties. For example,
carriers used for adsorption or binding on the surface should have a
high porosity to ensure that the contact area of the immobilized
material and the carrier is as large as possible [1,61,62]. The nature of
performed bioremediation processes also has an impact on the choice
of the carrier. Carriers used in bioaugmentation ought to be readily
biodegradable. In wastewater treatment processes the carrier should
have a high mechanical resistance because it may be exposed to
different kinds of physical forces [1,63].

Carriers are classified as organic and inorganic or natural or
synthetic. Natural organic carriers have many functional groups
which stabilize biocatalysts. This class of carriers includes: alginate,
K-carrageenan, chitosan, sawdust, straw, charcoal, plant fibres,
corncob, bagasse, rice, husks of sunflower seeds, diatomite and
mycelium [64,65,66,67,68,69,70,71,72,73,74,75,76]. These supports are
hydrophilic, biodegradable, biocompatible, and inexpensive because
they are mostly waste from the food industry. However, the possibility
of their application in bioremediation processes is limited because of
low resistance to biodegradation, sensitivity to organic solvents, and
stability in a narrow pH range [1,52,74,77].

Synthetic organic carriers have numerous functional groups with
diversified characters. This class includes polypropylene, polyvinyl
chloride, polystyrene, polyurethane foam, polyacrylonitrite and
polyvinyl alcohol [78,79,80,81,82,83,84,85]. Their advantage is the
possibility to regulate their structure at the macromolecular level —

the selection of the proper molecular weight, the spatial structure and
the manner and arrangement order of each active functional group
in the chain. Moreover, during synthesis, the porosity, pore diameter,
polarity and hydrophobicity of the carrier may be controlled.
Furthermore, synthetic supports can be formed into various shapes
(tubes, membranes, coatings, carriers of various shapes from spherical
to oval), and they are easily available and relatively inexpensive [1,86,87].

Inorganic carriers (natural and synthetic) have a high chemical,
physical and biological resistance. They are represented by magnetite,
volcanic rocks, vermiculite, porous glass, silica-based materials,
ceramics and nanoparticles [88,89,90,91,92]. A significant disadvantage
of these carriers is the presence of a small number of functional groups,
which prevents sufficient bonding of the biocatalyst. For that reason
they are used in the formation of hybrid carriers, combining natural
polymers and synthetic nanoparticles [47,88,93].

5. Immobilization in bioremediation

Higher biodegradation efficiency observed after the use of
immobilized microorganisms in comparison to free ones caused
the increase interest in their application in bioremediation processes
[94,95]. It is assumed that carrier protects and hinders the spread of
organic pollutants and in this way reduces the surface contaminants
concentration on the immobilized microorganisms. Moreover, changes
in microenvironment after immobilization may lead to changes in cell
morphology, physiology and metabolic activity [96,97]. Wastes from
the food industry are very good and inexpensive candidates for
carriers [52,98,99,100,101]. Some researchers have also started to
explore inorganic adsorbents, such as expanded perlite or tezontle
[99,102,103]. Table 1 presents a list of carriers used in bioremediation
processes.

5.1. Plant fibres

The most often applied vegetable fibre in immobilization is a sponge
derived from Luffa cylindrica or Luffa aegyptiaca. These plants grow in
tropical and subtropical climates. The loofah sponge shows important
advantages required for immobilization processes: high porosity
(85-95%) with simultaneous low density (0.018-0.05 g/cm?®). The
sponge is composed of fibre networks that form an open and free
space for the exchange of matter [2,104].

The first usage of the loofah sponge was reported in 2003.
Microalgal-luffa sponge immobilized discs were applied in nickel
biosorption processes. It has been shown that loofah sponge restricts
the leaking of the immobilized biomass into the environment. It is an
extremely stable carrier and can be regenerated at least 7 times [2].
Mazmanci et al. [105] reported that the loofah sponge was a source of
carbon and energy for white rot fungi, and therefore should not be
used for their immobilization (long-term bioremediation). On the
other hand, it provides an excellent support for in situ or short-term
bioremediation (without a source of carbon and energy) with these
fungi.

5.2. Sugarcane bagasse

Sugarcane bagasse, derived from the extrusion of a plant Saccharum
officinarum, is widely used for the production of ethanol, and is an
excellent biosorbent. Bagasse is rich in carbohydrates, mainly lignin
and cellulose. The spatial structure of bagasse is formed by
parallel-arranged fibres and micropores (0.5-5 pm). It is an ideal place
to attachment bacteria and fungal hyphae. Another advantage of this
carrier is its mechanical strength. After centrifugation at 1500 rpm no
disintegration or microorganism leaking into the medium were
observed [100,106].

Mohammadi and Nasernejad [72] demonstrated that immobilization
of Phanerochaete chrysosporium on sugarcane bagasse significantly
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Table 1
Natural carriers used in bioremediation.
Carrier Removed pollution Immobilized microorganisms Efficiency of bioremediation References
Plant fibres (Loofah sp.) Aromatic hydrocarbons Bacillus cereus Unimmobilized — 74% [122]
Immobilized — 79%
Phenol Trametes versicolor Unimmobilized — 39% [96]
Immobilized — 87%
Methyl parathion Bacterial consortium Unimmobilized — 55% [12]
Immobilized — 98%
Carbendazim (pesticide) Bacterial consortium Unimmobilized — 12% [70]
Immobilized — 95%
Ni Chlorella sorokiniana Unimmobilized — 64% [2]
Immobilized — 88%
Baggase Tetradecane A. venetianus Unimmobilized — 22.3% [106]
Immobilized — 76.8%
Anthracene P. chrysosporium Unimmobilized — 43% [72]
Immobilized — 82%
Mesotrione (herbicide) Bacillus pumilus HZ-2 Unimmobilized — 48% [99]
Immobilized — 75%
Chromium Acinetobacter haemolyticus Unimmobilized — 38% [123]
Immobilized — 92%
Sawdust Petroleum oil Arthrobacter sp. Unimmobilized — 18% [67]
Immobilized — 36%
Crude oil hydrocarbon Bacterial consortium Unimmobilized — 79.37% [101]
Immobilized — 95.9%
Chromium A. haemolyticus Unimmobilized — 80% [124]
Immobilized — 99.8%
Corncob p-Nitrophenol Arthrobacter protophormiae RKJ100 Unimmobilized — 39% [99]
Immobilized — 79%
Carbofuran B. cepacia PCL2 Unimmobilized — 67.69% [125]
Immobilized — 96.97%
Hexadecane Pseudomonas sp. Unimmobilized — ~33% [52]
Immobilized — ~56%
Chlorophenols Bacterial consortium Unimmobilized — 87% [77]
Immobilized — 89.7%
Expanded perlite Methyl tert-butyl ether Soil consortium Unimmobilized — 22% [110]
Immobilized — 50%
Hexadecane Aspergillus niger Unimmobilized — 81% [126]
Immobilized — 96%
Styrene P. aeruginosa Immobilized — 90% [111]
Tezontle Sulfonated azo dyes Bacterial consortium Abiotic test — 16.8 mg/(L » 24 h) [127]
(Acid Orange 7, Acid Red 8) Immobilized — 80 mg/(L = 24 h)
Propanil (herbicide) Bacterial consortium Immobilized — 36.78 mg/(L = 24 h) [128]
Methyl paration Bacterial consortium Abiotic test — 9% [102]
Immobilized — 58%
E. coli RAZEK Unimmobilized — 49% [114]
Immobilized — 95%
DDT (pesticide) P. fluorescens Unimmobilized — 55% [113]
Immobilized — 99%
Coco-peat oil Bacterial consortium Unimmobilized — 51.2% [115]
Immobilized — 86.6%
Husks of sunflower seeds Crude oil Rhodococcus sp. QBTo Unimmobilized — 28% [74]
Immobilized — 66.1%
Cotton fibres n-Heptadecane Acinetobacter sp. HC8-3S Unimmobilized — 82% [82]

Immobilized — 96%

increased the production and activity of manganese peroxidase during
the biodegradation of anthracene. After the immobilization of
Acinetobacter venetianus on this carrier, a higher rate of tetradecane
degradation was observed. This was probably connected with binding
of the contaminant on the hydrophobic surface of the carrier, and
in consequence the easier access of microorganisms to hydrocarbon
[82]. Increased efficiency of phenol degradation by immobilized
Candida tropicalis PHB5 was also observed [100]. The microorganisms
immobilized on the bagasse are suitable for bioremediation in
bioreactors because they remain active for up to 8 bioremediation
cycles [100,106].

5.3. Sawdust

One of the most common agro-wastes is sawdust, which has been
successfully used for the immobilization of bacterial cells. Arthrobacter
sp. immobilized on sawdust did not lose their enzymatic activity after
6 weeks of storage (at 25°C and 45°C) and was still able to degrade

similar quantities of crude oil [67]. Sawdust possesses a labyrinthine
structure providing very high surface area for cellular attachment.
High hydrophilicity of this carrier may hamper the adsorption of
oil-degrading microorganisms on the carrier. However, this difficulty
may be overcome by non-toxic hydrophobic coating of sawdust [107].
Hazaimeh et al. [101] during studies on degradation of oil by a
bacterial immobilized consortium, demonstrated that immobilization
significantly increased the production of biosurfactants by bacteria.
This was to increase the solubility, and thus the bioavailability of
hydrophobic hydrocarbons.

5.4. Corncob

Materials derived from agro-industrial residues (AIR), such as
corncobs, offer many advantages over synthetic matrices. Corncobs
are robust, porous and perforated. This increases the attachment area
for organisms and allows their growth without limiting diffusion.
Corncobs have a high water holding capacity, improve soil structure
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and oxygen diffusion, are readily available in maize processing plants,
and their usage in the processes of bioremediation provides an
alternative method of AIR disposal [12,52,98].

The first study of corncobs used as a carrier in bioremediation [108]
showed that they are a good carrier for the bioaugmentation of soil
contaminated with oily-sludge. It was also noted that after the
introduction of immobilized bacteria, the degree of oxygenation of the
lower layers of the soil had increased as a result of the creation of air
pockets by corncobs. Plangklang et al. [109] showed that Burkholderia
cepacia PCL3 bacteria grow very well on the surface of the corncob,
and thereby leaked into the medium due to the lack of space on the
carrier. Rivelli et al. [52] observed the increased degradative activity
after immobilization of bacteria on corncob powder. Additionally, this
carrier stabilized soil and improved the oxygen diffusion and the
water-mass transfer [52].

5.5. Expanded perlite

Volcanic rocks are known for their sorption and mechanical
properties. They are widely used in construction, filters and
hydroponics. One of these rocks is perlite which is excavated
worldwide. Because crude perlite has a relatively high density and
small surface area, it is subjected to heat treatment, resulting in a
significant extension and the forming of air bubbles inside. Expanded
perlite obtained in this way has a low density (0.032-0.4 g/cm?), high
porosity, and high surface area [89,110].

For the first time, expanded perlite was used for the bioremediation
studies by Paca et al. [111]. It was shown that biofilter consisted of
perlite particles with immobilized cells of Pseudomonas aeruginosa
was more effective in styrene biodegradation [111]. Emtiazi et al.
[112] demonstrated that the transformed cells of Escherichia coli
immobilized on perlite were more genetically stable than in other
carriers, and they were able to produce biosurfactants, which
increased the solubility of petroleum hydrocarbons, and therefore the
degree of their biodegradation.

5.6. Tezontle

Tezontle is a volcanic rock tested recently as a carrier in
bioremediation. This rock is commonly used in Mexico as a building
material, and has a characteristic reddish colour (due to the presence
of iron ions). The surface is highly porous and perforated, which
provides a good place for biofilm formation by microorganisms [102].

Santacruz et al. [113] demonstrated that Pseudomonas fluorescens
immobilized on a tezontle biofilter is able to degrade DDT up to
999.8 mg/L per day and 2,4-dichlorophenoxyacetic acid up to
2634 mg/L per day. Yafiez-Ocampo et al. [103] observed biodegradation
of a methyl-parathion and tetrachlorvinphos mixture by a consortium
of bacteria immobilized on tezontle. They showed a decrease in the
optical density of bacteria after 13 d of the experiment, whereas the
death of free cells occurred after 6 d. In addition, the immobilized cells
did not require supplementation with glucose during pollutant
breakdown. This demonstrates that after immobilization the new
environment is more friendly for bacteria which are able to degrade
greater amounts of insecticides [103]. Similar results were obtained
by Abdel-Razek et al. [114] during research on methyl-parathion
biodegradation by transformed E. coli RAZEK immobilized on tezontle.

5.7. Other carriers

Recently, increasing interest is observed in the usage of coco-peat,
husks of sunflower seeds and cotton fibres as carriers in bioremediation.
These carriers have not gained popularity yet, but so far studies have
shown their promising possibilities in bioremediation [74,82,115].

Nunal et al. [115], during the biodegradation of heavy-oil by a
bacterial consortium immobilized on coco-peat, showed that the

carrier, because of its porous and perforated surface, is a good place to
create a stable biofilm. Moreover, they observed that the immobilized
bacteria, after 60 d of the experiment, degraded 86.6% of the heavy-oil,
while the free cells decomposed only 51.2% of it. After 90 d of storage,
bacteria immobilized on the coco-peat had a greater survival rate than
those encapsulated in sodium alginate. This makes coco-peat an
excellent candidate carrier in bioaugmentation [115].

Bioremediation of crude oil by Rhodococcus spp. QBTo immobilized
on sunflower seed husks, also shown that immobilization improves
the survival and enzymatic activity of microorganisms. After 120 d
of storage at 10°C the bacterial survival rate was about 76%, and
therefore sunflower seed husks are an appropriate carrier for the
bioaugmentation of contaminated soils [74].

Lin et al. [82] noted that the negative charge and the presence of
hydroxyl and carboxylic acid groups make cotton fibres a good carrier
for immobilization of microorganisms. It was shown that Acinetobacter
sp. HC8-3S degraded more than 70% of the crude oil with 90 g/L NaCl,
whereas free cells degraded about only 15% under the same conditions.
This opens up the possibility of inexpensive bioremediation in areas of
high salinity by immobilized microorganisms. The authors showed that
the adsorption properties of cotton fibres allow the use of this carrier
for the biodegradation of floating oil from oil spills [82].

5.8. Pros and cons of natural and synthetic carriers

Application of immobilized cell systems in bioremediation indicates
several advantages over the usage of free microorganisms: prolonged
activity, stability of biocatalyst, feasibility of continuous processing,
increased tolerance to high toxic compounds concentration, easier
recovery, possibility of regeneration and reuse of biocatalyst,
reduction of microbial contamination risk and ability to use smaller
bioreactors with simplified process [1,94,99,116]. Because each
support has its own requirements in terms of the microorganisms
used and the degraded compounds, the support selection is a key step
which influences the success of bioremediation process [61,94].

The main feature of the carriers is mechanical resistance, which
allows to the recovery, regeneration and reuse of biocatalyst in
bioremediation processes [94,116,117]. This feature is typical for
sawdust, wood chips, shavings, loofah sponge and polyvinyl alcohol
beads, polyurethane foam, among from natural and synthetic carriers,
respectively [94,96,97,117,118]. In bioremediation processes very
important is the use of low-price and easy accessible carriers because
only than they may be applied on the large scale. This condition fulfils
plant residue, polyvinyl alcohol beads, polyurethane foam, different
ceramics, and natural polymers such as agarose, k-carrageenan,
alginate, agar, and chitosan [52,62,97,103,107]. However, most of the
natural polymers are non-mechanically resistant. One of the most
often described natural carriers is alginate. It is cheap, biocompatible,
non-toxic and easy to use [51,48,49,97,119]. Unfortunately, it cannot
be used in continuous conditions because of the problems with gel
degradation and low physical strength resulting in the leakage of
immobilized microorganisms from the matrix [61,120].

Equally important carriers potentially useful in bioremediation have
to meet other requirements of good matrices: non-toxicity and
insolubility. These features characterize both natural (chitosan, loofah
sponge, corncob, sawdust, tezontle, sugarcane bagasse, wood chips) and
synthetic (polyvinyl alcohol, polyurethane, polypropylene, polystyrene)
carriers [36,52,81,94,95,100,101,103,107,116,117,118,121].

It is possible to find among both natural and synthetic carriers
almost ideal one, which may be used with success in bioremediation.
However, the predominance in the usage of natural carriers is
connected with their biodegradability, renewability and availability in
nature. Moreover, many of natural carriers are agro-waste that may be
further used in biotechnological processes. The immobilization of
microorganisms on natural carriers is environmentally friendly
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because it causes less disposal problems that may occur for synthetic
ones [52,99,100,101,107].

6. Conclusions

Interest in organic carriers, which are wastes from the agricultural
and food industries, increases continuously, because they are very good
material for immobilization. All of them have many functional groups,
which positively affect the degree of colonization by microorganisms.
Moreover, volcanic rocks (expanded perlite and tezontle) are also
known as carriers which have good sorption properties and high
mechanical resistance.

Carriers such as the loofah sponge and corncob have been used with
success in bioremediation in situ, and the former has also shown the
greatest support for pesticide biodegradation. In ex situ bioremediation
the best results have been obtained using carriers such as bagasse,
sawdust, expanded perlite and tezontle. Coco-peat, sunflower seed
husks, cotton fibres and porous glass seem to be promising materials
for immobilization, although their application requires further studies.
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Abstract: Due to the increasing interest and the use of immobilized biocatalysts in bioremediation
studies, there is a need for the development of an assay for quick and reliable measurements of
their overall enzymatic activity. Fluorescein diacetate (FDA) hydrolysis is a widely used assay
for measuring total enzymatic activity (TEA) in various environmental samples or in monoculture
researches. However, standard FDA assays for TEA measurements in immobilized samples include
performing an assay on cells detached from the carrier. This causes an error, because it is not
possible to release all cells from the carrier without affecting their metabolic activity. In this study,
we developed and optimized a procedure for TEA quantification in the whole biofilm formed on
the carrier without disturbing it. The optimized method involves pre-incubation of immobilized
carrier in phosphate buffer (pH 7.6) on the orbital shaker for 15 min, slow injection of FDA directly
into the middle of the immobilized carrier, and incubation on the orbital shaker (130 rpm, 30 °C)
for 1 h. Biofilm dry mass was obtained by comparing the dried weight of the immobilized carrier
with that of the unimmobilized carrier. The improved protocol provides a simple, quick, and more
reliable quantification of TEA during the development of immobilized biocatalysts compared to the
original method.

Keywords: immobilization; fluorescein diacetate; polyurethane foam; biofilm; total enzymatic activity

1. Introduction

Increasing technological and civilization progress resulted in the level of anthropogenic pollution
(e.g. pesticides, heavy metals, pharmaceuticals, dyes) in the natural environment increasing
significantly in recent years. However, scientific progress made it possible to cheaply and effectively
reduce the amount of these pollutants in the environment through bioremediation. This process is
based on microorganisms equipped with systems of enzymes that allow them to obtain carbon and
energy from xenobiotics [1-3].

An important attribute of stable bioremediation systems is their well-shaped microflora. For that
reason, introduction of new microorganisms into the bioremediation systems very often ends, however,
with their quick removal by the microflora present in the system. One of the common methods used
to increase the chance of survival upon introducing microorganisms into the new system is their
immobilization. In addition, immobilized biocatalysts bring certain advantages into bioremediation
studies, such as reducing costs, ensuring a stable microenvironment for cells and their enzymes,
and increasing the efficiency and resistance of biocatalysts to adverse environmental conditions and
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high pollutant concentration. Immobilized biocatalysts were extensively examined in the treatment of
wastewaters contaminated with various pollutants, and their potential is promising [2,4-7].

Among various immobilization techniques, particular attention in bioremediation studies is paid
to the ability of some bacterial strains to form biofilms on various materials. This technique is simple,
fast, cheap, and non-toxic for cells and the environment. One of the most important advantages of
this method, considering bioremediation systems, is also the spread of the introduced cells within
the system, caused by the detachment of external parts of the biofilm in one of its growth phases.
The necessary condition, in this technique, to receive a stable and efficient immobilized biocatalyst,
is the development of a biofilm strongly attached to the surface of the carrier [4,8-10]. To obtain this
kind of biofilm, it is necessary to optimize conditions of the immobilization process for each strain and
the carrier [4,11].

Currently, the most commonly method used to determine the efficiency of immobilization is
the plate method which relies on plating and subsequent counting of colony-forming units (CFUs)
released from the carriers [12] or determination of dry weight of the immobilized biomass [13].
However, none of the above methods determine the physiological state of immobilized cells,
which is significantly affected by the quality of the formed biofilm. An indirect method allowing
determination of immobilization efficiency is to conduct pollution degradation tests for which an
immobilized biocatalyst was developed [14]. However, with multifactor optimization, determining
the immobilization efficiency using this method is problematic, especially in the case of hardly
biodegradable pollutants that are decomposed over a long period of time. In such cases, enzymatic
determination of the metabolic activity of microbial cells may be the solution.

Fluorescein diacetate (3',6'-diacetyl-fluorescein; FDA) is a prefluorophore, which can be
hydrolyzed by a wide spectrum of non-specific extracellular enzymes and membrane-bound enzymes
like proteases, lipases, and esterases. Fluorescein, which is a product of hydrolysis, has a yellow-green
color and is characterized by strong light absorption at 490 nm. For this reason, the concentration
of fluorescein after enzymatic reactions can be easily measured spectrophotometrically. Moreover,
measurements of enzymatic activity using FDA hydrolysis correlate with other parameters, such as
biomass, ATP content, oxygen consumption, or optical density, and therefore, are often expressed as
the total enzymatic activity (TEA) [15-17].

Despite its simplicity, determination of enzymatic activity of immobilized bacterial cells with
FDA was presented so far in only one study [18]. The method proposed by Liang et al. [18] assumes
the determination of FDA-hydrolyzing enzyme activity of cells that are detached from the carrier.
A measurement of enzymatic activity performed in this way carries an error for two very important
reasons. Firstly, it is impossible to detach the entire biofilm from the carrier in a non-toxic way because
of the biofilm binding strength [19]. On the other hand, bacterial cells at different depths of the biofilm
are characterized by different enzymatic activities [11,20]. Therefore, depending on the biofilm binding
strength, its various layers with different enzymatic activities can be released and assumed as a total
activity. In this study, we made an attempt to apply an appropriate modification to this method to
eliminate the mentioned errors. The most important modification was to skip the step of cell removal
from the biofilm and to conduct the FDA assay on the entire biofilm with the carrier. To achieve a
reliable and reproductive assay, tests were started by determining the ability of carrier to adsorb the
product of FDA hydrolysis. We also examined the influence of shaking, and determined which of
the substrate application methods resulted in the highest FDA hydrolysis efficiency and the lowest
coefficient of variation. Due to the fact that the repeatability and sensitivity of methods based on
enzymatic activity depend on the operational conditions [21,22], the optimization of conditions such
as pH and incubation time was performed. As a result, a sensitive and reproducible method was
developed to determine the total enzymatic activity (TEA) of the entire biofilm formed on the carrier
without disturbing it. Using this method, it is possible to determine the efficiency of immobilization
during the optimization of its conditions quickly and precisely.
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2. Results and Discussion

2.1. Fluorescein Adsorption by Polyurethane Foam (PUR)

After the decision to carry out the enzymatic assay on the biofilm along with the carrier, particular
attention should be paid to the possible interaction of the reaction product with the carrier. Fluorescein,
without ionic functional groups (e.g., COO™), is characterized by very limited solubility in water.
As the ionization increases, the interaction of the dye with oppositely charged functional groups of the
carrier will also increase due to ion exchange. For this reason, the sorption of fluorescent dyes depends
on both the pH and the functional groups of the carrier. Due to the presence of two negatively charged
groups, and the absence of positive charges, fluorescein is much better adsorbed by positively charged
surfaces than by negative ones [23-25].

In this study, the immobilization of the naproxen- and ibuprofen-degrading bacterium Bacillus
thuringiensis B1 (2015b) [26] was conducted on PUR as a carrier. This is one of the most commonly
used materials for microorganism immobilization, and it is characterized by good mechanical strength,
non-toxicity, large surface area, and low price [8,27]. It was also shown that polyurethane foam,
due to the presence of neutral carbamate groups, is a good sorbent of hydrophobic compounds [8,28].
Therefore, since fluorescein exhibits hydrophobic characteristics [24], its adsorption by polyurethane
foam was investigated.

Sterile PUR cubes were incubated for 1 h with fluorescein formed during the hydrolysis of
fluorescein diacetate to test the adsorption capacity of PUR. Conducted tests showed that, in the
analyzed range of fluorescein concentrations (0.5-5 ng/mL), its adsorption by PUR did not exceed 9%
of the dye, but the adsorption value depended on the initial concentration of fluorescein (Figure 1).
The average value of adsorbed fluorescein in concentrations below 2.5 ug/mL was equal to 3.8 + 1.6%,
which was a statistically insignificant result (¢-test; p > 0.05). However, when the initial fluorescein
concentration was higher than 2.5 ug/mlL, 7.7 & 1.12% of dye adsorption was observed. Due to the
fact that this result was a statistically significant difference (f-test, p < 0.05), in this study, when the
obtained concentration was in the range of 2.5-5 ug/mL, the adsorption of fluorescein by PUR was
included in the final concentration.
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Figure 1. Fluorescein adsorption by sterile polyurethane foam (PUR) cubes depending on the initial
concentration of the dye after 1 h of incubation.

Adsorption of fluorescein by materials used as carriers for immobilization is not yet extensively
described. A good sorbent material, zeolite, was shown to adsorb 17% of the dye during overnight
incubation [23]. However, the material which did not adsorb fluorescein, due to the negative charge of
its surface, was silica gel [24].
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The adsorption capacity of the carrier can be one of the most important factors which significantly
affects the reliability of the FDA assay. For this reason, the adsorption test should be performed for
each carrier at the beginning of the optimization of immobilization.

2.2. Fluorescein Diacetate Application and Impact of Shaking

Depending on bacterial strain, the physiological condition of the cells, and the environmental
conditions, biofilms can be flat or consist of numerous water channels and extensive structures.
They may contain a small number of cells and a rich matrix, or be very densely packed with cells.
The structure of the biofilm and the condition of the cells at different depths differ significantly.
However, the transport of water, metabolites, or nutrients in any type of biofilm is conducted in the
same way. Mass transfer in the biofilm follows the principles of diffusion (in the biofilm matrix)
and advection (in the water channels). Because mass transport in the biofilm is limited in its deeper
layers, due to the slower diffusion through the matrix, a chemical gradient is created that affects the
physiological state of cells at different heights of the biofilm [4,11,20,29]. For that reason, an examination
of the physiological state of the biofilm should concern each of its layers. However, this causes
technical complications that must be investigated to correctly perform the enzymatic assay and obtain
reliable results.

In order to check whether the method of application of fluorescein diacetate would affect the
reproducibility and efficiency of its hydrolysis, FDA was applied to the buffer solution or injected
directly into the immobilized PUR cube and incubated for 1 h. Depending on the site of FDA
application, a different hydrolysis efficiency and coefficient of variation was observed (Table 1).
The most reproducible and efficient result was obtained when the substrate was applied directly
into the center of immobilized PUR cubes (262 == 18 ug/g dry mass per h). Addition of FDA to the
phosphate buffer caused a large discrepancy in the obtained results (210 + 48 pg/g dry mass per h).

Table 1. Reproducibility of the method for determining fluorescein diacetate (FDA) hydrolytic activity
depending on the method of FDA application. TEA—total enzymatic activity; SD—standard deviation;
CV—coefficient of variation.

Location of  Biofilm Dry Fluorescein TEA o
Application Mass (g) Concentration (ug/mL)  (ug/g dry mass per h) Mean SD CV (%)
Solution 0.0082-0.0089 1.35-2.30 157-267 210 48 23
Carrier 0.0084-0.0086 2.02-2.40 238-283 262 18 7

The immobilization of bacterial cells on polyurethane foam often results in the formation of a
very abundant biofilm, both on its surface and inside the pores. As a result, a high cell density can
be obtained in a small volume of the carrier, but also with limited mass transfer to the internal parts
of the carrier [20,30]. For that reason, the application of FDA to the buffer solution could cause the
adsorption of the FDA to only occur due to a biofilm located on the outer parts of the PUR. Therefore,
different amounts of substrate could penetrate into the PUR interior, causing divergences. Nevertheless,
it should also be taken into account that the release of fluorescein from the biofilm, especially from the
internal parts of the carrier, may be slower due to the limited mass transfer and electrostatic repulsion
with amino acids present in the biofilm matrix [31]. In order to achieve results with the smallest
error, the final procedure assumes injecting the FDA directly into immobilized carriers placed in a
phosphate buffer.

To evaluate the impact of agitation on the efficiency and reproducibility of FDA assay with
immobilized B1 (2015b) cells on PUR, hydrolytic activity was measured after 1 h in static conditions,
and upon subjection to a rotation rate of 130 rpm (Table 2). Under static conditions, a higher
concentration of fluorescein (275 nug/g dry mass per h) was observed in comparison to assays conducted
with shaking (249 ug/g dry mass per h). However, this result was the least reproducible as confirmed
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by the obtained coefficient of variation (46%). Results obtained during assays shaken at 130 rpm
proved to be the most reproducible with the smallest coefficient of variation (8%).

Table 2. Impact of shaking on the reproducibility of FDA assay.

o Dry Biofilm Fluorescein TEA o
Agitation Mass (g) Concentration (ug/mL)  (ug/g dry mass per h) Mean SD  CV (%)
With 0.0079-0.0086 1.36-3.89 164469 275 126 46

Without 0.0081-0.0089 1.92-2.32 226-273 249 21 8

In enzymatic assays, proper mixing is necessary to ensure sufficient substrate contact with enzyme
active sites. However, excessive shaking, due to the shear forces, can deactivate the enzymes and
reduce the efficiency of enzymatic reactions [32]. On the other hand, in static incubation, FDA will be
rapidly hydrolyzed near the biofilm, while the rest of the FDA may not be transferred to the biofilm
surface and matrix [17]. However, it was shown that shaking at below 200 rpm does not damage the
enzymes and provides the best efficiency of enzymatic reactions in soils [17,33]. For that reason, in the
final method, samples were incubated with shaking at 130 rpm.

2.3. pH Optimization

One of the crucial factors influencing enzyme activity is the pH of the assay mixture. Therefore,
each enzyme is characterized by a specific pH value at which it works most efficiently. At the optimal
pH, the active site of the enzyme is properly spatially shaped. This behavior is related to the proper
protonation of amino acids included in the active site. However, due to the fact that FDA hydrolysis is
carried out by many different enzymes, determining the optimum for the reaction involves determining
the optimum of the enzyme group. It should also be noted that one of the FDA hydrolysis products is
acetic acid; therefore, it is necessary to perform the assay in a buffer with an appropriate buffering
capacity [17,34]. The temperature of the assay mixture also affects it pH value. Thus, to best assess the
physiological state of the analyzed bacterial cells, the assay was carried out at the optimal temperature
for their growth (30 °C).

In order to select the optimal pH of phosphate buffer, the hydrolysis of fluorescein diacetate in
pH-buffering solutions ranging from 6.8 to 7.6 was examined.

Conducted assays showed significant differences in FDA hydrolysis at different pH levels
(Figure 2). Incubation of the immobilized B1 (2015b) strain with FDA in the buffer with the lowest
pH (6.8) resulted in the smallest amount of released fluorescein in 1.5 h (54 & 6 ug/g dry mass per h).
As the pH of the buffer increased, hydrolytic activity also increased. Maximum FDA hydrolysis was
observed at pH 7.4-7.6 (138 & 7 ug/g dry mass per h to 128 £ 5 nug/g dry mass per h). According to
Guilbault and Kramer [35], FDA-hydrolyzing enzymes exhibit the highest activity at a pH from 7 to 8.
However, most researchers use pH 7.6, which is very beneficial [22], mainly because of the fact that
abiotic FDA hydrolysis is statistically significant at higher pH values. For this reason, pH above 7.6
was not examined during evaluation.
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Figure 2. Effect of pH on the enzymatic hydrolysis of fluorescein diacetate (FDA) by Bacillus
thuringiensis B1 (2015b) cells immobilized onto PUR. Error bars were obtained based on the standard
deviation. Statistically significant differences are marked with letters (post hoc, p < 0.05).

Depending on the type of the carrier and its ionization, pH of the environment may influence
abiotic degradation of FDA [17]. In this study, abiotic and spontaneous FDA hydrolysis in the presence
of PUR in the analyzed pH range was not statistically significant (data not shown).

The lack of background in quantification of microbial enzymatic activity is undoubtedly an
advantage. However, not every carrier will affect the abiotic FDA degradation; therefore, the above
test should be performed in phosphate buffer (pH 7.6) before the FDA assay with immobilized cells.

2.4. Incubation Time

The biofilm matrix is a complex mixture of many compounds such as polymers, proteins,
polysaccharides, and nucleic acids. Other important components of the biofilm matrix are also
cellular elements, including enzymes. They may come from autolysed cells or may be secreted by
viable cells to facilitate degradation of macromolecular substances adsorbed by extracellular polymeric
substances (EPS) [11,20]. Frelund et al. [36] also demonstrated the presence of enzymes responsible
for the hydrolysis of FDA in the biofilm matrix. They observed much greater enzymatic activity per
cell in activated sludge flocs than in sludge cultures. Jorgensen et al. [37] also noted that they may
be responsible for 20-30% of FDA hydrolysis reactions from samples. However, due to the anionic
nature of the biofilm, accumulation of negatively charged fluorescein in the biofilm matrix after 1.5 h
of incubation was not statistically significant (data not shown).

In this study, we investigated the temporal variation of fluorescein release from B1 (2015b) cells
immobilized onto PUR during 1.5 h of incubation. A linear relationship was observed throughout
all analyzed times of incubation with the maximum amount of released fluorescein after 1.5 h of
incubation (128 + 5 pug/g dry mass per h, Figure 3). This result show that FDA hydrolysis was
not limited by substrate concentration over the analyzed period of time. Due to the fact that the
assay was conducted at a favorable temperature for bacterial cell proliferation (30 °C) [38], it was
suggested that a long-term incubation could lead to a result that would not reflect the enzymatic
activity of the original sample [17,22,39]. Adam and Duncan [39] also pointed out that it is more
important to estimate the hydrolytic potential of the samples than to obtain the highest concentration
of fluorescein; therefore, they recommend that incubation last not longer than one hour. On the
other hand, Green et al. [22] recommended that incubation last longer than 2 h for soil samples,
thereby allowing better differentiation of the results.
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Figure 3. Fluorescein release over time during FDA hydrolysis by immobilized B1 (2015b) cells onto
PUR. Error bars were obtained based on the standard deviation.

In the analyzed period of time, errors associated with the growth of microorganisms were
eliminated. However, to allow a longer differentiation of samples, an incubation time of 1 h was chosen
for the final procedure.

2.5. Sensitivity Assay—Carbon Starvation

The incubation time during immobilization is an extremely important parameter which
determines the formation of a stable and strong biofilm, which, after reaching maturity, will be
fully resistant to adverse environmental conditions and will be able to degrade higher concentrations
of impurities. However, to produce biofilms, bacterial cells must be metabolically active. One of
the basic factors affecting metabolic activity is the availability of easily assimilable carbon sources.
During a shortage of carbon sources, bacterial cells will reduce their size, and very often, their shape
as well (they become more round). If, however, nutrition level drops to a minimum, the response to
these conditions involves limiting endogenous metabolism to such a level that they will not be able to
reproduce, but will remain active [40—42]. Under these conditions, the vegetative bacterial cells can
survive, depending on the strain, from a few to even 100 days (e.g., Arthrobacter crystallopoietes) [43].

In order to determine sensitivity of the optimized method, it was observed how the total enzymatic
activity (TEA) of bacterial cells in the developing biofilm decreased to the point of minimal endogenous
metabolism under starvation during the immobilization process. Seventy-two hours of incubation
without a carbon source in the medium resulted in a gradual decrease in TEA (Table 3). After 24 h
of incubation, when immobilized B1 (2015b) cells were using accumulated sources of energy, the
highest enzymatic activity (360 & 24 pg/g dry mass per h) was observed. Along with the progressing
starvation, after 72 h, a nearly twofold reduction in mean TEA was observed (170 + 7 ug/g dry
mass per h), which indicates the exhaustion of energy reserves and restriction of metabolic activity.
The obtained results agree with those obtained by Gengenbacher et al. [44] and Voelker et al. [45],
in which a significant decrease in the amount of ATP was demonstrated in nutrient-starved Bacillus
subtilis and Mycobacterium tuberculosis, which indicates a reduction of metabolic activity. It should be
also noted that the obtained fluorescein concentration after the analyzed period of time does not differ
despite increasing biofilm mass (Table 3). This result can be caused by continuous EPS production by
bacterial cells without progressing colonization of the carrier. However, monitoring of the changes
in the optical density (ODggg) of the medium during immobilization reveal that, with progressing
incubation, more cells migrated from the medium. After 24, 48, and 72 h, reductions in the initial
ODyg value were observed to be 39.5 4= 0.9, 48.8 £ 3.5, and 54.8 £ 9.1%, respectively. It was observed
also that, despite the increasing amount of EPS during incubation, it did not exceed 13-15% of the
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biofilm mass (Table 3). These results clearly indicate that the drop in TEA was caused by the decreasing
activity of newly colonizing bacterial cells, instead of the increasing amount of EPS.

Table 3. Impact of carbon starvation on the TEA of the immobilized Bacillus thuringiensis B1 (2015b)
strain during the immobilization process. EPS—extracellular polymeric substances.

Incubation  Biofilm dry Dry EPS Fluorescein TEA o
time (h) mass (g) mass(g) concentration (ug/ml) (ug/g dry mass per h) Mean  SD  CV (%)
24 0.0034-0.0049  0.0005-0.0007 1.21-1.66 326-383 360 24 7
48 0.0064-0.0078  0.0008-0.0010 1.63-2.45 255-325 287 28 10
72 0.0080-0.0091  0.0010-0.0013 1.43-1.50 166-180 170 7 4

In comparison to the TEA values obtained from planktonic B1 (2015b) cells present in the medium,
cells immobilized in the biofilm were characterized by better resistance to starvation. After 48 h of
incubation, unimmobilized B1 (2015b) cells showed the lowest TEA value (161 & 17 ug/g dry mass
per h), which was maintained until the end of the analyzed period of time. This result shows that the
TEA in the range of 160-170 pg/g dry mass per h indicated that the Bl cells (2015b) were limited to
endogenous metabolism.

It was noticed that starvation of Bacillus thuringiensis B1 (2015b) cells promoted their
immobilization on polyurethane foam. To observe the progress of immobilization, SEM micrographs
were prepared after 24, 48, and 72 h of incubation of polyurethane foam with Bacillus thuringiensis B1
(2015b) cells (Figure 4).

(a) (b)

3 3
-— 10pm  JEOL
SEM

_— 10pm JEOL
15.0kV LED SEM

15.0kV LED

(d

Figure 4. SEM micrographs of biofilm formation by the B1 (2015b) strain onto PUR cubes during
starvation after 24 h (b), 48 h (c), and 72 h (d) of incubation. The surface of the unimmobilized control
PUR cube is shown in (a).
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As can be seen in Figure 4b, the colonization of polyurethane foam by B1 (2015b) cells was already
evident after 24 h of immobilization. Adsorption of bacterial cells onto the surface of polyurethane
foam was observed, which indicates the start of the biofilm formation process. Over time, the bacterial
cells began forming microcolonies and secreting extracellular polymeric substances (EPS; Figure 4c).
After 72 h, accumulated cells and extracellular matrices in the form of connected aggregates were
observed on the PUR surface (Figure 4d). As is known, the limitation of nutrients such as carbon,
nitrogen, or phosphorus in the medium is an inducer of sporulation in Bacillus subtilis and Bacillus cereus
cells. The transcription factor Spo0A is activated, which, apart from participating in the production
of spores, also promotes the formation of biofilm by induction of EPS production. This is one of
the defense mechanisms of this genus during the absence of nutrients [46,47]. Due to the fact that
the Spo0A gene was found in the genome of Bacillus thuringiensis [48,49], the mechanism of biofilm
induction during starvation in B. thuringiensis B1 (2015b) used in this study could be similar. As a
result, the decrease in total enzymatic activity of immobilized B1 (2015b) cells was caused by spending
energy reserves on EPS synthesis and biofilm formation.

During estimation of the immobilization efficiency, only by determining the dry mass of
immobilized bacterial cells could 72 h of incubation be considered optimal. However, after examination
of the enzymatic activity, it is shown that the bacterial cells were weakened. The biodegradation tests
in this case could be significantly prolonged due to the time when the biofilm would be regenerating. If,
however, contamination indicates toxic effects on the strain, it could even lead to their death. With the
developed method, it is possible to examine the physiological state of the biofilm formed on the carrier,
thereby optimizing the immobilization process, allowing one to obtain a biofilm with the highest
enzymatic activity.

2.6. Comparision of the Modified FDA Method with Oxygen Consumption

Oxygen is the key substrate conditioning the metabolism of aerobic organisms. It is necessary for
ATP synthesis, and therefore, for the growth, proliferation, and synthesis of various cellular elements.
However, due to its poor solubility in water, cultures of aerobic microorganisms must be constantly
mixed to ensure its transition from the gas phase. For this reason, oxygen availability in the medium
can be a growth-limiting factor for cell cultures [50]. Because of the unique mass transfer properties
of biofilms, they are able to adsorb oxygen even at low concentrations. As a result, biofilms ensure,
in the top layers, a constant amount of oxygen depending on the cell’s oxygen demand, which, in turn,
results from the physiological state of bacterial cells [51]. Recent studies showed that differences in
oxygen concentration in the horizontal direction at the same depth of aerobic biofilms are statistically
insignificant; however, like the previously mentioned nutrients, they are significant in the vertical
direction [52,53].

The oxygen uptake rate (OUR), due to its good correlation with metabolic activity, provides
valuable information on the physiological state of microbial cells. Due to its relatively simple
calculation, OUR is often used to characterize activated sludge [54], production processes [55],
and bioremediation [56,57].

To test whether the optimized method would present the same relationships as those used to
assess the physiological state of microbial cells, the oxygen uptake rate (OUR) was measured during
the starvation assay described above. Table 4 summarizes the obtained values of OUR and TEA after
24, 48, and 72 h of incubation of B1 (2015b) cells with PUR in a medium without carbon sources.
The trend in oxygen uptake rate showed a very good correlation with the decrease in total enzymatic
activity. After 72 h, immobilized cells showed a nearly twofold reduction in OUR (70 £ 4 ug/g dry
mass per h) compared to values obtained after 24 h of incubation (176 & 13 ug/g dry mass per h).
A similar decrease in OUR value in a trickling filter biofilm was also observed by Cox et al. [41] in the
absence of toluene, which was the only carbon source in the experiment.
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Table 4. Comparison of TEA and oxygen uptake rate (OUR) during carbon starvation of immobilized
B1 (2015b) cells during the immobilization process. Data are presented as means =+ standard deviation
of three replicates.

Incubation time (h) TEA OUR
v (ug/g dry mass per h) (ug Oy/g dry mass per h)
24 360 £ 24 176 £13
48 287 £ 28 120+ 9
72 170+ 7 70+ 4

A comparison of the proposed and optimized method in this study for evaluating the physiological
state of immobilized cells in biofilms and the method based on the determination of oxygen
uptake requires a consideration of the advantages and disadvantages of each technique. OUR is
well-established method that allows an indirect estimation of metabolic activity. Its biggest advantage
is the duration of the measurement, because results can be obtained after 10 minutes. On the other
hand, this method requires experience, due to the fact that, depending on the method of flask sealing
and oxygen removal from the gas phase, the result may be burdened with various errors caused by the
transfer of oxygen from the air. The determination of the physiological state by direct analysis of the
activity of non-specific enzymes responsible for organic matter degradation proposed herein does not
require any technical steps that may disturb the final results.

To conclude, in this study, a modification of the FDA assay was optimized in a way which allows
results which are reproducible and have a low coefficient of variation. The result also implies the
diversity of activities resulting from the heterogeneity of the biofilm. However, due to the possible
fluorescein adsorption by the carrier, it is necessary to carry out adsorption tests. With the proposed
method, it is possible to monitor changes in the physiological state of the biofilm formed on the carrier
through optimization of the immobilization process. By conducting the optimization in this way, the
development of an immobilized biocatalyst was possible with the highest enzymatic activity, and thus,
with the highest biodegradation capacity or resistance to harsh environmental conditions.

3. Materials and Methods

3.1. Materials

Polyurethane foam (PUR) used in this study is a commonly used material to protect packages
during transport (Instapak®, Charlotte, NY, USA). The carrier was trimmed into 1 x 1 x 1 cm
cubes with a weight of 10 £ 5 mg, and was washed two times with distilled water to remove
impurities, before being autoclaved (121 °C, 1.2 atm, 20 min). All the chemicals were purchased
from Sigma-Aldrich (St. Louis, MO, USA).

3.2. Bacterial Strains and Growth Conditions

Bacterial strain Bacillus thuringiensis Bl (2015b) isolated from the soil of the chemical factory
“Organika-Azot” in Jaworzno (Poland) was used for immobilization [26]. Strain B1 (2015b) was grown
in the nutrient broth (BBL) at 30 °C on a rotary shaker at 130 rpm for 24 h. After cultivation, cells
were harvested by centrifugation (5000 rpm, 15 min), washed twice with a sterile mineral salt medium
according to Gren et al. [58], and re-suspended in the same medium. A bacterial suspension at a final
concentration corresponding to an optical density (ODgq) of 0.8 was used for immobilization.

3.3. Immobilization Procedure

Each Erlenmeyer flask (250 mL) containing sterile carrier material (0.1 g) was inoculated with
the bacterial cell suspension (100 mL). The mineral salt medium [58] in which the immobilization
process was conducted did not contain any carbon sources. The immobilization process was carried
out on the orbital shaker (130 rpm) at 30 °C for 72 h. After incubation, the medium was removed
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and immobilized PURs were suspended in NaCl solution (0.9%), centrifuged at 500 rpm for 2 min to
remove unbound microorganisms, rinsed with 0.9% NaCl, and used for further analysis.

3.4. Standard Method of Non-Specific Esterase Activity with FDA Assay

The physiological state of the bacterial cells was determined via measurements of non-specific
esterase activity with fluorescein diacetate (FDA) as a substrate. The original method [18] includes
detaching microorganisms from the carriers by shaking (5 g) in 100 mL of distilled water (200 rpm,
30 min). In the next step, 2 mL of the microorganism suspension was added to 8 mL of phosphate
buffer (pH 7.0) and incubated for 15 min with shaking at 30 °C. After pre-incubation, 0.1 mL of
FDA stock solution (4.8 mM, dissolved in acetone) was added to each sample and incubated for 2 h.
Fluorescein concentration was measured spectrophotometrically (Genesys 20, Thermo Fisher Scientific,
Inc., Rochester, NY, USA) at 490 nm and was calculated on the basis of a standard curve.

3.5. Abiotic Controls for FDA Assay

To examine fluorescein adsorption by PUR, sterile carrier cubes (one cube per assay) were placed
in solutions with different concentrations (0.5-5 ug/mL) of sterile fluorescein suspended in phosphate
buffer (pH 7.0) and incubated in the dark on the orbital shaker (130 rpm, 30 °C). After 1 h of incubation,
absorbance (A =490 nm) was measured. Additionally, control samples were prepared in the case of
FDA autohydrolysis and the natural coloration of the sample with and without sterile carriers.

3.6. Optimization Procedure

The main aim of the optimization procedure was to skip the step of detachment of microorganisms
from the carrier in such a way to allow testing of the enzymatic activity of the entire biofilm formed
on the carrier without disturbing it. For the best reproducibility, the impacts of substrate application
method (FDA added to the liquid or into the carrier) and agitation (with or without) were examined.
In order to maximize the activity of non-specific esterases, optimizations of the pH (6.8-7.6) and of the
incubation time of immobilized strain B1 (2015b) (15-90 min) with FDA solution were also performed.

3.7. Modified Method of Non-Specific Esterase Activity with FDA Assay

The final methodology is defined as follows: an immobilized PUR cube was placed into 8 mL
of phosphate buffer (pH 7.6) and incubated for 15 min on the orbital shaker. In the next step, 0.1 mL
of FDA solution in acetone (4.8 mM) was slowly injected directly into the middle of the carrier and
incubated on the orbital shaker (130 rpm, 30 °C) for 1 h. Fluorescein concentration was measured as
described in Section 3.4.

3.8. Sensitivity Assay—Carbon Starvation

To determine the sensitivity of the method, the impact of carbon starvation on the metabolic
response of bacterial cells and the immobilization process was monitored and expressed as total
enzymatic activity (TEA). In this test, bacterial cells were immobilized onto PUR as described in
Section 3.3 with the incubation time varied to 24, 48, or 72 h. After incubation, the FDA hydrolysis
potential of the immobilized bacterial cells was examined. The biofilm’s dry mass was calculated
by comparing the dried weight of the immobilized carrier (dried at 105 °C for 2 h and stored in a
desiccator) with that of the unimmobilized carriers incubated and dried under the same conditions.
TEA was expressed in ug of fluorescein obtained from 1 g of biofilm dry mass for 1 h [59]. TEA values
for unimmobilized cells of B1 (2015b) were obtained in the same way as for immobilized cells, except
that 2 mL of the culture was added to the phosphate buffer (pH 7.6) and, after 1 h of incubation with
FDA, bacterial cells were collected through filtration on 0.2-um Nuclepore filters [15,17,59]. Migration
of the bacterial cells from the medium was determined using spectrophotometry (ODggo; Genesys 20,
Thermo Fisher Scientific, Inc., Rochester, NY, USA). EPS extraction from the immobilized PUR cubes
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was conducted according to the protocol proposed by Subramanian et al. [60] with some modifications.
The PUR cube after 24, 48, or 72 h of incubation was transferred from the medium into 20 mL of distilled
water, centrifuged (500 rpm for 2 min) to remove unbound microorganisms, and re-suspended in the
same volume of Milli-Q water (Burlington, MA, USA). In the next step, the sample was ultrasonically
treated three times for 15 s with a time interval of 10 s, and centrifuged (without carrier, 14000 rpm
for 20 min at 4 °C). The collected supernatant containing EPS was precipitated with 2.2 volumes of
absolute chilled ethanol through incubation of the mixture at 20 °C for 1 h, and was separated by
centrifugation at 6000 rpm for 15 min at 4 °C. The dry EPS mass was obtained by drying the pellet at
room temperature and overnight storage in the desiccator.

3.9. Scanning Electron Microscopy

Scanning electron microscopy (SEM) was used to illustrate biofilm formation onto a carrier during
starvation. For this purpose, immobilized carrier cubes were fixed in 3% glutaraldehyde and 1%
osmium tetroxide, dehydrated with ethanol (30, 50, 70, 80, 90, 95, and 100%, each for 10 min), dried by
lyophilization, covered with gold, and observed with a high-resolution electron microscope JSM-7100F
TTL LV (JEOL, Tokio, Japan).

3.10. Oxygen Consumption

Oxygen uptake rate (OUR) was determined using an Elmetron multiparameter equipped with
a Clark electrode. One immobilized PUR cube was introduced into a flask containing 15 mL of
oxygen-saturated phosphate buffer (pH 7.6, 20 °C). To minimize the measurement error, the vessels
were placed on a magnetic stirrer and sealed. The decrease in oxygen concentration was registered
every 30 sec for 10 min. Oxygen uptake rate was calculated from the slope of a linear regression line
through the obtained results and expressed as OUR (ug of consumed O, by 1 g of biofilm dry mass
during 1 h) [54,61].

3.11. Statistical Analysis

All experiments were performed in at least three replicates. The values of the efficiency of
immobilization and enzyme activities were analyzed by one-way ANOVA (p < 0.05 was considered
significant) using the STATISTICA 12 PL software package (StatSoft Inc., Krakéw, Poland). A post
hoc test was applied to assay the differences between the treatments. To express the repeatability and
precision of conducted assays, the coefficient of variation (CV) was calculated as the quotient of the
standard deviation and the mean of the obtained TEA from each flask.
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Abstract: Planococcus sp. S5, a Gram-positive bacterium isolated from the activated sludge is known
to degrade naproxen in the presence of an additional carbon source. Due to the possible toxicity
of naproxen and intermediates of its degradation, the whole cells of S5 strain were immobilized
onto loofah sponge. The immobilized cells degraded 6, 9, 12 or 15 mg/L of naproxen faster than the
free cells. Planococcus sp. cells immobilized onto the loofah sponge were able to degrade naproxen
efficiently for 55 days without significant damage and disintegration of the carrier. Analysis of
the activity of enzymes involved in naproxen degradation showed that stabilization of S5 cells in
exopolysaccharide (EPS) resulted in a significant increase of their activity. Changes in the structure
of biofilm formed on the loofah sponge cubes during degradation of naproxen were observed.
Developed biocatalyst system showed high resistance to naproxen and its intermediates and degraded
higher concentrations of the drug in comparison to the free cells.

Keywords: whole-cell immobilization; loofah sponge; Planococcus sp. S5; naproxen

1. Introduction

In recent years more attention has been paid to the presence of various medicines in the natural
environment. One of them is naproxen (2-(6-methoxy-2-naphthyl)propionic acid) which belongs to the
group of polycyclic Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). This drug is not metabolized
in human body and the sewage treatment plants are not adapted to its utilization. Therefore, naproxen
has been releasing into the natural environment in an unchanged form for over 40 years. Due to its
continuous accumulation in the environment, naproxen is now one of the most frequently detected
drug in surface and drinking water (concentration in the range 0.01-2.6 ug/L) [1-3].

The most efficient methods for naproxen removal from the environment are based on the
physicochemical processes. However, the biggest disadvantage of these methods is generation
of products with greater toxicity than the drug itself and formation of free radicals that directly
damage biological structures [3—-6]. The use of microorganisms in naproxen utilization brings many
benefits. Bioremediation is based on the capabilities of selected microorganisms for accumulation,
transformation, detoxification or degradation of pollutants. This technology is environmentally
friendly, cheap and effective [7-9].

During application of microbial cells in bioremediation processes, extremely important is their
immobilization. It allows increasing microbial degradation capacity, extends viability and catalytic
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activity of cells introduced into bioremediation systems as well as increases the chances of microbial
cells survival and adaptation to changing environment. In immobilization process, microbial cells are
trapped in polymeric gels (entrapment, encapsulation) or on the surface of various carriers (adsorption,
electrostatic or covalent binding on the surface). However, the main disadvantages of immobilization
are: limitation of diffusion, leakage of cells into the medium or lowering their catalytic functions
depending on the binding compounds used. Recently, immobilization based on the natural ability of
some microorganisms to biofilm formation on the surface of various carriers is gaining more attention.
Through the existence of many microenvironments in the biofilm, cells are less vulnerable to changing
environmental conditions. Created in this way stable matrix is also characterized by a high degree of
heterogeneity in which microbial cells are protected against anti-bacterial agents and bacteriophages
and are able to degrade contaminants at higher concentrations [8,10,11].

From an economic point of view, the carrier and the procedure for immobilization of
microorganisms should be cheap. Therefore, natural and organic carriers are widely used in
bioremediation processes [8,12]. These biodegradable and biocompatible supports are characterized
by hydrophilic surface on which many functional groups are located. Among these natural carriers,
particular attention is paid to the group of lignocellulolistic plant materials. One of them is loofah
sponge derived from the dry mature fruit of Luffa aegyptiaca, grown in most subtropical and tropical
regions. This sponge is composed of an open network of fibres that form the skeleton of the fruit. The
main advantages of this material are its high porosity, low price, non-toxicity, simple application and
operation technique and high mechanical resistance [13-15].

The present work is a continuation of studies on bacterial degradation of NSAIDs. Our previous
study showed the ability of Gram-positive Planococcus sp. S5 to catalyse naproxen degradation under
cometabolic conditions [2]. The aim of this study was to investigate the effect of immobilization of
Planococcus sp. S5 cells on the loofah sponge on degradation processes. The degradation capacity of
the developed biocatalyst at various concentrations of naproxen and its reusability were examined.
To investigate how immobilization affected degradation activity of S5 strain, the activity of enzymes
involved in naproxen utilization was examined. Additionally, visualization of biofilm formed on the
surface of the carrier and its changes during drug degradation was performed. This is the first report
about degradation of naproxen by immobilized bacterial cells. Moreover, the results of these studies
enable evaluation of potential application of tested strain in bioremediation systems.

2. Results and Discussion

2.1. Immobilization of Planococcus sp. S5 on Loofah Sponge

The natural ability of some microorganisms to colonize surface of porous materials is a key
feature for efficient immobilization. At the beginning, process of cells attachment to the surface is
reversible and cells may be easily removed from the carrier by washing. In the second phase, cells
which synthesize extracellular polymeric substances bind to the surface of the carrier with such a
force that more invasive process is needed to remove them. Taking into consideration stability of the
constructed biocatalyst, it is desirable that the formed biofilm should be strongly bound to the carrier.
This feature depends on the species of the microorganism and the type of the surface. Additionally,
selection of proper conditions of immobilization can improve the quality of biofilm [16-18]. To verify
the quality of biofilm formed by S5 strain, which corresponds to its catalytic functions, its physiological
state was evaluated by determination of its ability to hydrolyse fluorescein diacetate by non-specific
esterases produced by alive bacterial cells (total enzymatic activity). This assay was chosen due to its
simplicity, short incubation time (1 h) and possibility of spectrophotometric determination of the data.
What is more important, the test used is correlated with other bacterial indicators such as an amount
of biomass or adenosine triphosphate (ATP) and the oxygen consumption [19,20].

Selection of the optimal conditions for immobilization of the whole bacterial cells by their
adsorption on the surface is an extremely important in designing of biocatalyst systems. Due to
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the diversity of bacteria, optimization should be carried out for each immobilized strain. Strain
Planococcus sp. S5, which was isolated from the activated sludge from a sewage treatment plant
in Bytom Miechowice (Poland), was able to degrade aromatic compounds like salicylate, benzoate,
hydroxybenzoate and dihydroxybenzoate and phenol [21,22]. However, this is the first report regarding
its immobilization and one of a few on the ability of biofilm formation by bacteria from Planococcus
genus [23].

Procedure of Planococcus sp. S5 immobilization on the loofah sponge through its adsorption
on the surface was developed by optimizing each parameter to obtain the highest amount and
enzymatic activity of immobilized microorganisms. Immobilization of S5 cells on the loofah sponge
was the most effective in mineral salts medium (pH 7.2), in the presence of glucose and manganese
salt, during bacteria incubation with shaking (90 rpm) at 30 °C. The effect of the growth phase on
immobilization process was also observed. The best results were obtained for a culture at stationary
phase. Immobilization of S5 strain was also more efficient during the osmotic stress caused by a higher
concentration of NaCl (19 g/L) and at high number of cells in the medium (initial ODggg equal to 1.2)
(Figure S1).

It has been proven that limitation of carbon source in the medium stimulates biofilm formation by
Bacillus subtilis by activating the Spo0OA transcription factor [24]. This mechanism enables survival and
proliferation of bacteria during nutrient deficiency at which growth in the form of planktonic cells
is impossible. On the other hand, Staphylococcus aureus and Staphylococcus epidermidis form biofilms
only when glucose is present in the medium because it is necessary for the synthesis of adhesins [25].
Therefore, since S5 strain is not spores producing bacterium [21], efficient immobilization in the
presence of glucose probably resulted from synthesis of adhesins which are involved in attachment of
cells to the carrier. Bacteria of genus Planococcus are known to be moderately halophilic [26-28]. Recent
research [23] shows that osmotic stress favours the formation of biofilm by Planococcus rifietoensis
by increasing production of exopolysaccharides (EPS), which additionally improves water holding
capacity at higher salt concentrations.

The developed method of S5 strain immobilization on the loofah sponge resulted in
0.0191 % 0.0022 g of Planococcus sp. S5 cells (dry mass) immobilized on each loofah cube, able
to hydrolysis of 23.88 & 1.06 pg of fluorescein diacetate during 1 h (total enzymatic activity) (Figure 1).
Results for fluorescein diacetate hydrolysis and fluorescein adsorption by unimmobilized loofah cubes
were not statistically significant.

(b)

Figure 1. Loofah sponges cubes after total enzymatic activity assay; (a) unimmobilized carrier (b)
loofah cubes after incubation with Planococcus sp. S5 cells.
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2.2. Naproxen Biodegradation

2.2.1. Biodegradation of Different Concentration of Naproxen

Naproxen (2-(6-methoxy-2-naphthyl)propionic acid)) belongs to the propionic acid derivatives
family. Due to the presence of two aromatic rings, naproxen biodegradation is more difficult than
monocyclic NSAIDs. Only a few strains (mainly white-rot fungi) are known to possess enzymatic
systems which enable them to acquire carbon and energy from naproxen [29,30]. Biodegradation of
naproxen by bacterial strains is a process that is being explored. However, none of the known bacterial
strains—Planococcus sp. S5 [2], Bacillus thuringiensis B1(2015b) [31], Stenotrophomonas maltophilia
KB2 [32], Pseudomonas sp. CE21 [33]—are able to use naproxen as the sole carbon source. First study
about naproxen biodegradation by strain Planococcus sp. S5 [2] revealed that the addition of glucose
which was readily available source of carbon and energy resulted with complete biodegradation of the
drug. However, due to the negative effect of naproxen on the total enzymatic activity of free S5 cells,
the degradation of the drug at a concentration of 6 mg/L lasted 38 days (data not published). For this
reason it was decided to carry out the immobilization process.

Loofah sponge due to the relatively large surface area and chemical composition (cellulose,
hemicellulose, lignin) shows good sorption properties. However, making the loofah sponge capable
of sorption of hydrophobic substances (like naproxen) requires subjecting it to a cooking process
with NaOH to increase its hydrophobicity and to create available vacant sites [34,35]. For this reason,
the loofah sponge in this study has not been subjected to a cooking process with NaOH to limit its
sorption capacity. Another important factor that needed to be consider in biodegradation studies
with immobilized cells by adsorption of the surface is accumulation of xenobiotics in biofilm. This
phenomenon is related to the sorption properties of exopolysaccharides (EPS). While the sorption of
positively-charged compounds by EPS is more efficient due to anionic nature of biofilm, sorption of
anionic organic molecules is limited due to electrostatic repulsion [36].

There was no changes observed in drug concentration during incubation with sterile
non-immobilized carriers, which confirms lack of the naproxen adsorption capacities by prepared
in that way loofah sponges. Naproxen was also not detected in the biofilm formed onto the loofah
sponges by Planococcus sp. S5. Obtained results demonstrated that loss of the drug from the medium
during biodegradation experiments was caused only by immobilized cells of Planococcus sp. S5.

To investigate whether the immobilization onto the loofah sponges affected the degradation
capacity of Planococcus sp. S5, biodegradation of various concentrations of naproxen (6, 9, 12 or
15 mg/L) by immobilized cells with respect to non-immobilized cells was tested (Figures 2 and 3).

Observation of the efficiency of the naproxen cometabolic biodegradation conducted by free
cells of Planococcus sp. S5 showed that they were able to degrade naproxen in concentration 6, 9 and
12 mg/L respectively in 38, 44 and 62 days. Biodegradation of the highest tested concentration of
the drug (15 mg/L) stopped after biodegradation of 29% of naproxen (Figure 2a). Obtained results
shows that the free cells of S5 strain were able to complete cometabolic naproxen biodegradation at a
concentration up to 12 mg/L. Higher drug concentrations showed inhibitory effects on free cells of the
S5 strain. Immobilization of Planococcus sp. S5 cells onto the loofah sponges resulted in a significant
acceleration of the naproxen cometabolic biodegradation. It was observed a complete biodegradation
of 6,9, 12 and 15 mg/L of naproxen respectively after 17, 32, 43 and 53 days (Figure 2b).
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Figure 2. Cometabolic degradation of 6, 9, 12 and 15 mg/L naproxen by (a) free cells of Planococcus
sp. S5; (b) cells of Planococcus sp. S5 immobilized onto the loofah sponge. Data presented as
mean =+ standard deviation of three replicates.

In order to evaluate changes in the course of the biodegradation process, the rate of naproxen
biodegradation was calculated (Tables 1 and 2). Biodegradation rates by free cells of S5 were statistically
different (Test T, p > 0.05) than by immobilized cells. During the biodegradation of naproxen by
free cells, in the initial phase the slower drug degradation was observed, independently of the
drug concentration (average 6.3 & 3.4 pg/h). After 29 days twice faster biodegradation of the drug
(12.0 & 4.5 ug/h) was observed that lasted until the end of biodegradation (Table 1). Designation of the
naproxen biodegradation rates by immobilized cells of S5 strain revealed its almost linear and constant
course (12.1 & 4 pg/h) (Table 2). Interestingly, there was no significant difference between naproxen
biodegradation rates by the immobilized cells and by free cells during faster drug degradation phase
(Test T, p > 0.05). This situation was most likely caused by the fact that cells in the biofilm exhibit
characteristics of the stationary phase (altered genetic expression profile and slower growth) [37].
Confirmation of this hypothesis is the fact that the phase of faster naproxen degradation by free cells
of Planococcus sp. S5 occurred when cells entry into the stationary phase (data not published).

Table 1. Naproxen degradation rates by free cells of Planococcus sp. S5. Data presented as a mean +
standard deviation of three replicates.

Period [Day-Day] Average Naproxen Degradation Rate [pg/h]

6 mg/L 9 mg/L 12 mg/L 15 mg/L
0-3 9.8 £22 6.6 £0.6 64+1.1 57+£09
3-7 48+22 73+17 58+ 1.0 50+1.7
7-11 1.3+0.5 53+25 1.2+£0.5 76+02
11-14 26+14 77+15 17+26 81+19
14-21 3.0+04 25+04 64+15 74401
21-27 65+1.4 45+17 64+0.5 3.8+ 0.6
27-29 19.6 £33 192 £6.0 115+ 46 55+ 1.2
29-34 119+ 0.9 10.6 =1.4 92+1.5 01+£19
34-38 82+1.6 184+13 19.6 £ 0.6 1.0+£32
3841 114+ 0.5 101+ 0.7 06+£73
41-44 10.3 £ 0.6 67+1.1 —22+49
44-47 89+51 13+38
47-50 55+4.0 12+40
50-54 11.4 £09 -13+37
54-58 128 +1.1 —-07+24

58-62 78 +£20 1.0+19
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Table 2. Average naproxen degradation rates by immobilized cells of Planococcus sp. S5. Data presented
as a mean = standard deviation of three replicates.

Period [Day-Day] Average Naproxen Degradation Rate [ug/h]

6 mg/L 9 mg/L 12 mg/L 15 mg/L

04 11.2+12 20.7 £ 8.6 161+ 6.7 139+ 0.6
4-8 139+ 09 10.1+14 18.0 + 14.6 10.5+25
8-13 158 £1.1 129 +£18 132 £54 134 £42
13-17 182 +1.7 64+24 101 +1.2 100+ 1.4
17-21 11.6 £3.0 9.4+09 10.0 £1.0
21-25 15.0 =58 12.0 +4.8 4.6 +42
25-29 76+39 51406 9.7 +£5.6
29-32 87 +42 64+29 13.1 £ 5.6
32-36 11.5+1.7 10.8 £ 6.0
36-39 174 £48 94+43
39-43 73+24 13.0+25
43-46 19.0 £2.8
4649 17.7 £ 0.6
49-53 146 £22

It is known that one of the most important parameters that can significantly affect the
biodegradation process is initial substrate concentration. Analysis of the patterns and correlations
between the time of incubation, naproxen concentration and biodegradation rate shows that free
cells of Planococcus sp. S5 were capable of the fastest biodegradation of naproxen at the lowest dose.
With increasing drug concentration the rate of naproxen biodegradation was decreased (Figure 3a).
Obtained results indicated that during decomposition of naproxen, accumulation of metabolites
occurred, which negatively affect free cells of S5 strain and caused increasing difficulties with its total
degradation. Therefore, biodegradation of the highest dose of naproxen (15 mg/L) ended with 29%
efficiency most likely due to the critical level of inhibitory or toxic metabolites. Recently, more attention
has been focused on the antibacterial activity of certain NSAIDs or their derivatives [38,39]. Although
the mechanisms of this process are not known, one study found that vedaprofen, bromfenac and
carprofen—by binding to polymerase o subunit—inhibit the proliferation of E. coli, A. baylyi, S. aureus
and B. subtilis cells [39]. Inhibitory effect of naproxen on the ammonia oxidizing bacterium (AOB)
Nitrosomonas europaea was observed by Wang et al. [40]. They revealed that naproxen at concentration
of 10 pM significantly inhibits nitrile production by AOB by affecting membrane integrity of the cells,
while exposure on the drug in concentration of 1 uM did not influences AOB cells. To reveal possibility
of antibacterial activity of naproxen or its intermediates on Planococcus S5 cells more research should
be attempted.

No correlation between analysed variables was observed for the immobilized cells. Degradation
proceeded with the same trend regardless of the initial naproxen concentration (Figure 3b). Obtained
results indicated good adaptation of immobilized S5 cells to the presence of higher concentrations of
naproxen. Lack of the lag phase and concentration-independent drug biodegradation course suggests
that formed biofilm reduced the sensitivity of the cells to naproxen and its intermediates. Due to the
good sorption properties and the limited diffusion in the extracellular biofilm matrix, immobilized
microorganisms have limited contact with xenobiotics, which are transported to the cells at a constant,
slower rate. This mechanism allows the immobilized cells to biodegrade higher concentrations of
impurities, without causing toxic effects [41]. Thus, the immobilized cells of Planococcus sp. S5 onto the
loofah sponge have a promising potential to use them for the bioremediation of naproxen-contaminated
sites. In addition, lack of the toxic effect of naproxen and its metabolites on immobilized cells allowed
them to utilize higher concentrations of the drug compared to the free cells.
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Figure 3. Naproxen (6, 9, 12 and 15 mg/L) biodegradation rate by (a) free cells of Planococcus sp.
S5; and (b) immobilized on loofah sponges cells of Planococcus sp. S5; presented as patterns and the
relationships among the time of incubation, naproxen concentration and biodegradation rate.

2.2.2. Stability and Degradation Capacity of the Developed Whole-Cell Biocatalyst System

The stability during long-term operations is a crucial factor for practical application of immobilized
biocatalysts. To test reusability of Planococcus sp. S5 cells immobilized on the loofah sponges, the
efficiency of naproxen biodegradation in subsequent cycles has been determined. In the presence of fresh
sterile mineral salts medium in each cycle, immobilized cells were able to complete drug degradation
in 3 repetitions (Figure 4). The first and the second dose of naproxen were utilized within respectively
17 and 15 days. In the next cycle it was observed deceleration of the degradation efficiency (21 days)
while in the 4th cycle, the biodegradation ended after decomposition of 27% of the drug. However,
cells of Planococcus sp. S5 immobilized on loofah sponges demonstrated the ability to efficient naproxen
biodegradation for 55 days. After the end of the experiment, no significant damage and disintegration of
the loofah sponges was observed, which confirms its high mechanical resistance [14].
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Figure 4. Cycles of 6 mg/L naproxen degradation by immobilized Planococcus sp. S5 on the loofah
sponge. Data presented as a mean =+ standard deviation of three replicates.

Evaluation of the biodegradation rate during each cycle shows not significant differences in the
first 3 cycles of naproxen biodegradation amounting 14.8 + 3.0, 16.0 & 6.9 and 11.4 + 3.9 pug/h
respectively (Table 3, Figure 5). Only during the first cycle it was observed increasing rate of
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drug degradation. The second and third cycle, however, were characterized by slowing down
biodegradation rate, while the last one proceeded unstable (Table 3). It is suggested that one of
the reasons why immobilization extends the catalytic activity of cells is to ensure the stability of cell
membranes and adequate permeability [41].

Table 3. Average biodegradation rate of 6 mg/L naproxen by immobilized cells of Planococcus sp. S5 in each
cycle. Data presented as a mean =+ standard deviation of three replicates. Different letters (a, b, c) indicate a
statistically significant difference between biodegradation rates during subsequent cycles (p > 0.05).

Period [Day-Day] Average Naproxen Degradation Rate [pug/h]

I Cycle II Cycle III Cycle IV Cycle
04 112 +1.22
4-8 13.9+09b
813 158+1.1Pb
13-17 182 +1.7°¢
17-21 2324182
21-25 168 £0.7b
25-29 1744+ 02
29-32 67+01¢
32-36 15.0 +£ 3.8
36-39 89+14P
3943 96+ 1.2P
43-46 182+ 202
46-49 12.3 +2.43ab
49-53 83+18P
53-55 38+352
55-58 85+32b
58-61 6.8+0.12
61-64 35+1.72
64-67 39+1.09
67-70 33+19a
70-73 —42+25¢
B > 0.015
Bl <0.015
Bl <0.0125
< 0.01
09 < 0.0075
@ o B <0.005
% 0.0 B < 0.0025
4 3
g of
g oo
g oo
g

R

Figure 5. Naproxen (6 mg/L) biodegradation rate during subsequent cycles by immobilized on loofah
sponges cells of Planococcus sp. S5 presented as patterns and the relationships among the time of
incubation, cycle and biodegradation rate.
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The ability of immobilized cells of Planococcus sp. S5 to carry out the biodegradation of naproxen
in several cycles indicates the possibility of their use in bioremediation. However, to study their
behaviour in such systems it is necessary to conduct pilot studies.

2.3. The Influence of Immobilization on Enzymes Activity

The process of biodegradation of naproxen by white rot fungi is much better understood than
by bacteria [29,42—44]. One of the proposed mechanisms demonstrates naproxen demethylation
carried out by cytochrome P-450 [32]. The reaction product, 6-desmethylnaproxen appeared during
biodegradation of naproxen by the Planococcus sp. S5 strain. Domaradzka et al. [2] showed that
some enzymes involved in the degradation of polycyclic aromatic hydrocarbons were active during
cometabolic (with glucose) biodegradation of naproxen by free cells of Planococcus sp. S5. The activity
of phenol monooxygenase, naphthalene dioxygenase, hydroxyquinol 1,2-dioxygenase and gentisate
1,2-dioxygenase was demonstrated.

A typical degradation pathway of aromatic compounds by bacteria is the initial hydroxylation
followed by the ring cleavage [45]. The first step in degradation of naphthalene (the derivative of
which is naproxen) is the hydroxylation of C1 and C2 catalysed by naphthalene dioxygenase [46]. It
was suggested that this enzyme is responsible for hydroxylation of C7 and C8 of naproxen. Moreover,
on the base of the activity of phenol monooxygenase additional hydroxylation was proposed. Formed
trihydroxylated derivative probably is cleaved by hydroxyquinol 1,2-dioxygenase [2]. One of the
most important steps in catabolism of naphthalene is its conversion to salicylate, which bacterial
pathway has been well described. The most important part of the catabolism of salicylate is direct ring
cleavage by salicylate 1,2-dioxygenase or gentisate 1,2-dioxygenase (in case salicylate transformation
to gentisate by monooxygenase). The salicylate transformation products are next introduced into the
tricarboxylic acid cycle [47-49].

Because the immobilization of bacterial cells may change the xenobiotic degradation pathway,
the activity of enzymes that are involved in naproxen degradation were examined. This phenomenon
is related to the change in the gene expression profile that occurs during the formation of the biofilm
and can be related to the type of carrier surface [50,51].

The activities of O-demethylase, aromatic monooxygenase (with phenol or naproxen as a
substrate), naphthalene dioxygenase, gentisate 1,2-dioxygenase and salicylate 1,2-dioxygenase were
compared. As is shown in Table 4, the activity of all analysed enzymes was observed, both in free and
immobilized cells. Obtained results showed that the naproxen biodegradation pathway in immobilized
S5 cells probably did not change markedly. Significant changes, however, were observed in the values
of activity (Table 4). As expected, during the slower degradation phase of naproxen (15th day), free
S5 cells were characterized by the lowest activity of enzymes associated with drug degradation. At
the same time, the enzymatic activity of immobilized cells was about 2 times higher in the case of
O-demethylase, aromatic monooxygenase (with phenol as a substrate), naphthalene dioxygenase
and salicylate 1,2-dioxygenase. Interesting increase in the activity of aromatic monooxygenase (with
naproxen as a substrate, 10 times higher) and gentisate 1,2-dioxygenase (4 times higher) was observed
in the immobilized cells. However, due to the methodology for determining the activity of aromatic
monooxygenase (determination of reduced nicotinamide adenine dinucleotide - NADH oxidation),
it is not excluded that more of the enzymes belonging to the class of oxidoreductases are involved
in the degradation of naproxen by immobilized cells of Planococcus sp. S5. A higher gentisate
1,2-dioxygenase activity may have been caused by the increase of its participation (in relation to
salicylate 1,2-dioxygenase) in the drug biodegradation due to immobilization.

Due to the non-statistically different biodegradation rate of naproxen by free cells in the phase of
faster drug degradation and immobilized cells, it was suspected that the enzymatic activity of these
systems would also not be different. However, according to the analysis (Table 4), the activity of all
analysed enzymes was higher in the immobilized cells. Higher activity of enzymes associated with the
biodegradation of naproxen in immobilized cells confirms that the sensitivity to the drug of cells in the
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developed biocatalyst was reduced. For that reason, the significant acceleration of its biodegradation
was observed.

Table 4. Specific activity of enzymes involved in naproxen degradation under cometabolic conditions
by immobilized and non-immobilized Planococcus sp. S5. Different letters (a, b, c) indicate a statistically
significant difference between activity of enzymes from free and immobilized cells (p > 0.05).

Specific Enzyme Activity
(U/mg protein)
Enzyme Free Cells Immobilized Cells
15th Day 35th Day 15th Day
O-demethylase 412.84 + 48,532 737.16 + 55.81° 1051.84 + 65.57
Aromatic 13.06 +0.832 2714 £240° 31.55 + 1.18 ¢
monooxygenase (Phe)
Aromatic 1478 £1.28° 65.17 +3.59° 12371 £12.39°¢
monooxygenase (Npx)
Naphthalene 816 + 0824 10.71 + 2232 15.73 + 1.80 P
dioxygenase
Gentisate 52.95 +2.90 122.26 +-9.44 203.03 4 18.55 €
1,2-dioxygenase
Salicylate 388.26 + 11.122 520.38 + 24.60 714.87 + 71.58 €

1,2-dioxygenase

2.4. Changes in Biofilm Formed Onto the Loofah Sponge during Naproxen Degradation

Visualization of bacterial biofilm in high resolution using SEM (Scanning Electron Microscopy)
is one of the best methods to determine the biofilm structure. Preparation of samples for analysis
by SEM involves the fixation of their structures (using glutaraldehyde and osmium tetraoxide),
dewatering, drying and covering with a conductive layer. However, due to the fact that the structure
of EPS (which stability is dependent on the presence of water) often collapses during dewatering
and drying, identifying certain structures in biofilm sometimes is problematic [52]. The procedure
of sample preparation very often leads to the creation of artefacts. One of them, especially at higher
magnifications, is the appearance of EPS as fibres or granularity and not as a gel structure surrounding
the cells [53]. However, the advantage of this visualization method is the possibility of determining
the distribution of microorganisms and changes in the biofilm structure caused by specific factors.
Considering the identical preparation of samples for analysis, demonstration of changes in the biofilm
structure in relation to the state of biofilm before exposure to a specific factor reduces the probability
of incorrect image analysis.

Loofah sponge which was used as a carrier for immobilization, observed in SEM revealed its
multidirectional highly fibrous network and porous surface with a small protuberances (Figure 6a)
which was a suitable place for the attachment of microorganisms.

After immobilization of Planococcus sp. S5 cells through the adsorption on the surface (lasting
72 h), accumulation of cells covered with an extracellular matrix (Figure 6b) was observed. Flat biofilm
formed on the loofah sponges had the form of irregular rods of different lengths (Figure 6b) and
appeared in aggregates.

When the first and the second dose of naproxen (6 mg/L) have been degraded (respectively 17th
and 36th day of incubation), immobilized loofah sponges were observed in SEM to reveal changes
in biofilm structure during naproxen biodegradation. After complete degradation of the first dose of
naproxen, a more diversified and intense colonization of the carrier was observed (Figure 6c). There
was present formation of the connections between aggregates (Figure 6c) and new fibrous extracellular
matrix-like structures. When the second dose of naproxen was degraded, surface of loofah sponges
was completely covered by biofilm formed by Planococcus sp. S5 (Figure 6d). A decrease in the amount
of aggregates in relation to the newly formed structures was observed.
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In the presence of toxic substances bacteria trigger different protective mechanisms. One of them
is the secretion of large amounts of EPS, which will create a protective layer for cells. At the same time,
by forming clusters, the cells reduce the contact surface with the toxin-containing environment [54].
Due to the problematic utilization of naproxen by free S5 cells (especially in the first phase of
degradation), increased tolerance of immobilized cells appears to be the result of the accumulation of
large amounts of extracellular substances in the biofilm. The same defence mechanism was observed by
Ma et al. [55] against to immobilized bacteria from activated sludge during biodegradation of phenol.
They showed that with the increase in the amount of toxic phenol nol photodegradation products,
the number of microbial cells in the biofilm decreased. On the other hand, the amount of secreted EPS
was increasing, which resulted with a lack of differences in the phenol biodegradation way.

i

B ‘

Figure 6. Scanning electron microscopy (SEM) micrographs of unimmobilized loofah sponge (a),
biofilm formed by Planococcus sp. S5 cells onto loofah sponge before naproxen degradation (b), after
decomposition of the first dose of naproxen (6 mg/L) (c) and the second dose of the drug (6 mg/L) (d).

3. Materials and Methods

3.1. Bacterial Cultures Cultivation

Isolated from activated sludge Gram-positive strain Planococcus sp. S5 described by Labuzek et al. [21]
was used. Proliferation of S5 cells was carried out in the nutrient broth (BBL) at 30 °C on a rotary shaker at
130 rpm. After 72 h of incubation bacterial cultures were centrifuged (5000 rpm, 15 min), washed twice
with mineral salts medium [56] and resuspended in the same medium. Prepared bacterial suspensions
were used as an inoculum for immobilization and control non-immobilized cells experiments.
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3.2. Carrier Preparation for Immobilization

The first step in the preparation of the loofah sponges (York, Bolechowo, Poland) for
immobilization was drying them in a desiccator to establish constant weight and cutting out fragments
weighing 0.15 g. Obtained cubes were washed according to Igbal et al. [14] and sterilized (121 °C,
1.2 atm) two times at an interval of 24 h.

3.3. Immobilization Procedure

Cells of S5 strain were immobilized through the adsorption on the surface of loofah sponge.
Immobilization was conducted in 250 mL Erlenmeyer flasks, which contained 0.75 g of the carrier and
100 mL of the mineral salts medium (pH 7.2) with Planococcus sp. S5 cells (optical density at 600 nm
equal to 1.2; Genesys 20, Thermo Scientific). Medium was supplemented with glucose (0.5 g/L), NaCl
(10 g/L) and MnSOy4 (0.01 g/L). Flasks were incubated with shaking (90 rpm), at temperature of 30 °C.
After 72 h of incubation, loofah sponges with immobilized bacteria were rinsed with aqueous solution
of NaCl (0.9%) to remove unbound microorganisms and used for biodegradation experiments.

3.4. Characterization of Immobilized Loofah Sponges

Dry mass of the immobilized bacteria was obtained by comparing the dried weight of immobilized
carrier (105 °C, 2 h and stored in a desiccator) with unimmobilized carriers incubated and dried under
the same conditions. Enzymatic activity of biofilm formed onto loofah sponge was measured as follow
(modified method proposed by Jiang et al. [19]): immobilized carrier (1 cube) was added to 8 mL
of phosphate buffer (pH 7.6) and incubated for 15 min on the orbital shaker (130 rpm, 30 °C). After
pre-incubation, 0.1 mL of FDA (Sigma-Aldrich, St. Louis, MO, USA) (4.8 mmol L~1) was slowly
injected directly into middle of the carrier and incubated in the dark on the orbital shaker (130 rpm,
30 °C) for 1 h. Fluorescence intensity in the liquid was measured spectrophotometrically at 490 nm
(Genesys 20, Thermo Scientific, Waltham, MA, USA). Concentration of fluorescein was calculated on
the basis of a standard curve.

3.5. Biodegradation Experiments

Naproxen decomposition was conducted in 500 mL Erlenmeyer flask containing 250 mL of
the mineral salts medium [56] and 10 pieces of the loofa sponge colonized by bacteria. Each flash
was supplement with naproxen (Sigma-Aldrich, USA) to obtain a final concentration of 6, 9, 12 or
15 mg/L and at every 3 days with glucose (0.5 g/L, POCH, Gliwice, Poland) and incubated with
shaking (130 rpm) at 30 °C. The control cultures contained non-immobilized cells of Planococcus sp.
S5 were also prepared. For estimation of naproxen accumulation in the biofilm the drug extraction
with modified Huerta et al. protocol was performed [36]. Loofah sponges with immobilized bacteria
were cut into small pieces and placed in 15 mL falcon tube with 10 mL of mixture of citric buffer
(pH 4) and acetonitrile (1:1, v/v, Sigma-Aldrich, USA). Mixtures were subsequently sonicated 3 times
for 10 min and centrifuged (15,000 rpm, 20 min). Obtained supernatants were analysed by HPLC
and naproxen concentrations were calculated based on a standard curve prepared with extraction
mixture. Determination of naproxen adsorption on the carrier was conducted by incubation sterile
loofah sponges (1.5 g) with 250 mL of MSM medium supplemented with naproxen (6 mg/L) and
glucose (0.5 g/L) in 500 mL Erlenmeyer flasks. Medium samples were taken every 24 h for 7 days and
analysed by HPLC to determine naproxen concentration.

3.6. Determination of Naproxen Concentration

Decomposition of naproxen was monitored by HPLC (Merck HITACHI, Darmstadt, Germany)
equipped with a LiChromospher® RP-18 column (4 x 250 mm), liChroCART® 250-4 Nucleosil 5 C18
and a DAD detector (Merck HITACHI). Medium samples from each flask were taken at 3 days period
and centrifuged (14,000 rpm, 20 min). Naproxen identification and quantification in the supernatant
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was done by following the protocol proposed by Wojcieszytiska et al. [32]. The mobile phase consisted
acetonitrile and 1% acetic acid (50:50 v/v) with a flow rate of 1 mL/min and column temperature was
23 °C. The detection wavelength was set at 260 nm. Naproxen was identified by way of comparison of
HPLC retention time (2.41 min) and ultraviolet-visible spectra with those of the external standards. To
determine the abiotic degradation of naproxen, uninoculated controls were prepared.

3.7. Enzyme Assay

After 15 days of incubation (additionally free cells after 35 days), free and immobilized cells of
Planococcus sp. S5 were separated from the medium by centrifugation (4500 x g for 15 min at 4 °C).
The release of immobilized cells from the carrier was carried out by vortexing. The obtained pellet
was washed with 50 mM phosphate buffer (pH 7.0), disrupted by sonication (6 times for 15 s) and
centrifuged at 9000x g for 30 min at 4 °C. Obtained crude extract was used for the measurement of
enzyme activities.

The activity of O-demethylase was determined by measuring the loss of vanillic acid (A = 260 nm)
with the use of the HPLC method [57]. In order to determine monooxygenase activity (with phenol or
naproxen as a substrate), NADH oxidation (e349 = 6220/M cm) was measured spectrophotometrically [58].
The naphthalene dioxygenase, gentisate 1,2-dioxygenase and salicylate 1,2-dioxygenase activity was
measured spectrophotometrically by the formation of cis,cis-dihydrodiol (ex¢p = 8230/M cm) [46],
maleylpyruvate (e330 = 10,800/M cm) [49] and 2-oxohepta-3,5-dienedioic acid (€83 = 13,600/M cm) [48],
respectively. Protein concentration was determined using the Bradford method [59]. One unit of enzyme
activity was defined as the amount of enzyme required to generate 1 pmol of product per minute.

3.8. Scanning Electron Microscopy

To observe the structure of biofilm formed onto the loofah sponges and its changes
during naproxen biodegradation, samples for Scanning Electron Microscopy were prepared. For
this examination, unimmobilized and immobilized loofah sponges before and after naproxen
biodegradation were collected from the medium and prepared as follows: fixation in 3% glutaraldehyde
(24 h), in 1% osmium tetroxide (3 h), dehydration with ethanol (30, 50, 70, 80, 90, 95 and 100%, each for
10 min), drying by lyophilisation and covering with gold. Samples were observed in high-resolution
electron microscope JSM-7100F TTL LV (JEOL, Tokio, Japan).

3.9. Statistical Analysis

All experiments were performed in at least three replicates. The values of the efficiency of
naproxen biodegradation and enzymes activities were analysed by STATISTICA 12 PL software
package. Statistically significant differences and similarities have been demonstrated by the f-test or
the Least Significant Differences (LSD) test (p > 0.05).

4. Conclusions

Ability of some bacterial strains to form a biofilm on the surface of various materials is a key
element for efficient immobilization process. By optimizing each parameter of the immobilization
procedure, a biocatalyst that is characterized by increased naproxen biodegradation capacities has
been developed. Immobilized cells of Planococcus sp. S5 strain on the loofah sponge, compared to the
free cells, were able to faster biodegradation of naproxen added at higher doses. Additionally, due to
the maintenance of full catalytic activity for 3 cycles (55 days), immobilized onto the loofah sponge S5
cells, show promising potential in their application in bioremediation systems. Analysis of the effect
of immobilization on the activity of enzymes associated with naproxen biodegradation showed that
it caused a significant increase in the activity of all examined enzymes. The significant increase in
the efficiency of the naproxen biodegradation by immobilized S5 cells was most probably caused by
the synthesis of large amounts of EPS, which by sorption and limitation of the substrates diffusion
increased the tolerance of the strain to the drug.
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Figure S1: Effect of different variants of environmental and physiological factors on the efficiency of the
immobilization of cells Planococcus sp. S5 Luffa sponge:

(a) Age of the culture taken for immobilization (24, 48 or 72 h);

(b) Immobilization medium (Lysogeny Broth (LB), Mineral Salts Medium or HTC (medium rich in both
carbon and ion sources)

(c) Addition of a carbon source (Mineral Salts Medium + 0.5 g/L glucose or HTC + 0.5 g/L glucose)

(d) Initial Optical Density of the culture (0.2, 0.4, 0.6, 0.8, 1.0 or 1.2)

(e) Incubation time of the carrier with bacterial culture (16, 24, 40, 48, or 72 h)

(f) Agitation speed during immobilization (70, 90, 110, 130 or 150 rpm)

(g) Temperature of the process (15, 20, 25, 30, 35 or 40 °C)

(h) Immobilization medium pH (3, 4, 5, 6, 7.2 or 8)

(i) Salt concentration in immobilization medium (9, 10, 16, 19, 26, 29 or 36 g/L)

(j) Addition of a metal ions (manganese, iron or calcium)

All experiments were performed in at least five replicates. The values of the efficiency of immobilization and
enzyme activities were analyzed by one-way ANOVA (p<0.05) using STATISTICA 10 PL software package. A
post-hoc test or T-test were applied to assay the differences between the treatments (differences are marked
with subsequent letters).
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Abstract: The naproxen-degrading bacterium Bacillus thuringiensis B1(2015b) was immobilised onto
loofah sponge and introduced into lab-scale trickling filters. The trickling filters constructed for this
study additionally contained stabilised microflora from a functioning wastewater treatment plant
to assess the behavior of introduced immobilized biocatalyst in a fully functioning bioremediation
system. The immobilised cells degraded naproxen (1 mg/L) faster in the presence of autochthonous
microflora than in a monoculture trickling filter. There was also abundant colonization of the loofah
sponges by the microorganisms from the system. Analysis of the influence of an acute, short-term
naproxen exposure on the indigenous community revealed a significant drop in its diversity and
qualitative composition. Bioaugmentation was also not neutral to the microflora. Introducing a
new microorganism and increasing the removal of the pollutant caused changes in the microbial
community structure and species composition. The incorporation of the immobilised B1(2015b) was
successful and the introduced strain colonized the basic carrier in the trickling filter after the complete
biodegradation of the naproxen. As a result, the bioremediation system could potentially be used to
biodegrade naproxen in the future.

Keywords: bacteria; immobilization; loofah sponge; naproxen; trickling filter; wastewater treatment

1. Introduction

Pharmaceuticals and personal care products are nowadays being detected in surface water and
groundwater more and more frequently. Although their concentration typically does not exceed
1 ng x L1, chronic exposure on non-target organisms can have significant consequences. One of the
drugs that can affect entire ecosystems is naproxen (2-(6-methoxy-2-naphthyl)propionic acid), which is
a polycyclic non-steroidal anti-inflammatory drug (NSAID). This drug is not metabolized by humans
and wastewater treatment plants do not have strains that are capable of degrading naproxen with high
efficiency. Additionally, it is one of the drugs that is easily photolyzed. It has been proven that the
naproxen phototransformation products are often more toxic than the drug itself [1]. It should also be
noted that in the last phase of water purification in wastewater treatment plants sterilization using UV
light is performed. Hence, not only is naproxen released into the environment, but also the products of
its phototransformation.

Among the various bioremediation systems that are used in wastewater treatment plants, particular
attention has been paid to those that are based on immobilised microorganisms. Naturally occurring
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biofilm and immobilization ensure the retention and accumulation of the biomass, which decreases the
filtration costs. One of the systems that is based on this attached growth is a trickling filter. These
systems are characterized by a simpler design and a smaller environmental footprint due to their
lower installation and operational costs compared to other wastewater treatment systems [2]. As was
mentioned above, most wastewater treatment plants are not adapted to remove NSAIDs. One possible
solution might be bioaugmenting the existing bioremediation systems.

Introducing strains that are capable of utilising specific pollutants in bioremediation systems has
many advantages as well as a few disadvantages. The biggest benefit is associated with removing
the pollutants, which despite the use of low concentrations may have a toxic effect on autochthonous
microflora. If bioaugmentation is successful and the introduced strains are not removed from the
system, the biodegradation of the contaminants will remain constant over a long period of time.
However, in order to make this possible, after the introduction, the strains must show a degradative
activity, colonize the system and be able to propagate in it, which does not always occur. The success
of bioaugmentation is determined by many factors. Not only can the selection of the strains with the
appropriate features be crucial, but also the way that they are introduced into a complex community.
In addition to preparing a sufficiently high biomass concentration, it is also important to conduct an
acclimatization pre-run. Such a process should be performed in a separate system that is run under the
same conditions but only with the strain that was selected for the bioaugmentation so that it can adapt
to the conditions that prevail in the system [3]. To increase the chance of the survival of the introduced
strains, they can also be introduced in an immobilised form. This method is fast, inexpensive and
simple and does not require any acclimatization or specialized equipment. The most commonly used
method for immobilization for bioaugmentation is adsorption on the surface because it results with a
shaped biofilm that is introduced into the system. Additionally, immobilization provides a barrier
that protects the introduced cells from other microorganisms and the substances that they excrete as
well as from toxic shock or environmental fluctuations [4]. However, bioaugmentation can also have
negative consequences. One of these is the significant changes in the composition of the autochthonous
microflora that result from the competition and inhibition of the new strains. One consequence may be
a significant drop in the effectiveness of the system [5]. For that reason, an experiment that examines
the interactions between the immobilised strains that are introduced into wastewater treatment systems
and the microbial communities that are present in these systems as well as the influence of these
communities on the degradation capacity should be performed.

In our work, we present the process of developing an immobilised biocatalyst which was
constructed to bioaugmentation of the bioremediation system and to investigate its naproxen
degradation capabilities in such a system. A Gram-positive Bacillus thuringiensis B1(2015b), which is
able to degrade naproxen under cometabolic conditions, was selected to be the introduced strain [6].
The cells were immobilised on the loofah sponge through adsorption on the surface and were introduced
into a trickling filter that contained stable microbial communities from the wastewater treatment plant.
To determine the influence of the autochthonous microflora that was present in the bioremediation
system on the efficiency of naproxen biodegradation by the immobilised B1(2015b), the removal
of the drug in the bioaugmented trickling filter and in a system without autochthonous microflora
was monitored. We present a visualization of the biofilm that was created on the loofah sponges
and its colonization after its introduction into the trickling filter. Additionally, the impact of an
acute, short-term naproxen exposure and bioaugmentation on the qualitative composition of the
autochthonous microflora was also evaluated. This is the first report about wastewater treatment
system bioaugmentation with immobilised cells that are capable of degrading naproxen that includes
its impact on the autochthonous microflora.
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2. Results

2.1. Immobilization of Bacillus thuringiensis B1(2015b) on Loofah Sponge

The immobilization process in this study was the most efficient in a HCT medium (pH 8) in the
presence of glucose with shaking (110 rpm) at 20 °C for 48 h. A HCT medium is very rich in both
carbon sources and metal ions and therefore it was used to form biofilm by the Bacillus thuringiensis
genus [7]. Analysis of the initial amount of the cells shows that the smallest number of cells (ODggg
equal to 0.2) resulted in the highest mass of the biofilm and the enzymatic activity. It was observed that
the age of a culture that is used for immobilization has a significant influence on the metabolic activity
of a biofilm. The lowest enzyme activity was demonstrated by a 24 h old biofilm. The highest activity
was observed in 48 h and 72 h old cultures. That is why a 48 h old culture of B1(2015b) was selected for
the immobilization process in this study. Interesting results we obtained during the analysis of the
medium pH and addition of the different metal salts. A significant increase in the enzymatic activity
of the biofilm was noted when incubation was conducted in pH 8.0 and with supplementation with
manganese (Figure 51, Supplementary Materials).

After the optimization of each immobilization parameter immobilized biocatalyst contained
28 + 3.5 mg of dry biofilm mass per loofah cube, which hydrolyzed fluorescein diacetate (FDA) to
19.07 + 1.06 nug/mL of fluorescein in 1 h (Table 1). FDA abiotic hydrolysis and fluorescein adsorption
by the loofah cubes that were not immobilised was not statistically significant.

Table 1. Comparison of the B. thuringiensis B1(2015b) biofilm mass that was created on loofah sponge
and its metabolic activity before and after the optimization of the immobilization process.

. Fluorescein Total Enzymatic
Development Stage Dry Bl[omﬁlr]n Mass Concentration Activity
8 [ng-mL-1] [ng g Dry Mass—1-h—1]
Before optimization 83+09 4.56 +0.48 532.77 + 39.09
After optimization 28+35 19.07 + 1.06 709.14 + 40.60

2.2. Naproxen Biodegradation in the Trickling Filters

Trickling filters TF-I and TF-C were designed to recreate the conditions that prevail in wastewater
treatment plants. The only distinguishing parameter was maintaining a constant, room temperature.
The flow rate was adjusted to 0.0066 m3/h in order to prevent the wastewater from spraying through
packing material too strongly or quickly. Simultaneously, this enables the time of contact between
wastewater and microorganisms to be established, which is expressed as the hydraulic retention time
(HRT), which was set for six hours.

In the TF-I0 system, which only contained the lightweight expanded clay aggregate (LECA) and
the microflora from the Imhoff tank, there was an almost 20% loss of the drug (Figure 1a) in the
first four days, which was caused by its adsorption by the LECA and not because of biodegradation.
Over the following days, naproxen concentration was constant. In the TF-C control system that
contained both the LECA and immobilised B1(2015b) cells on the loofah sponges, 70% of the drug
was removed. In the TF-I tricking filter with introduced B1(2015b) cells on the loofah sponges and the
microflora from the Imhoff tank, almost 90% of the naproxen was degraded. These results indicate a
synergistic interaction between introduced immobilized biocatalyst and autochthonous microflora on
naproxen biodegradation.
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Figure 1. The trickling filters (TF) performance: (a) naproxen (1 mg/L) biodegradation: TE-C (A),
TF-I (0) and TF-10 (o); (b) removal of the COD in TF-C (A), TF-I (O0).Data are presented as the mean + the
standard deviation of three replicates.

At the same time that the naproxen biodegradation was being monitored in the trickling filters,
the level of chemical oxygen demand (COD) was also determined. Samples for this analysis were
taken from the collection tanks before the supplementation with the nutrients and glucose. After the
stabilization processes, the decrease in the COD in TF-C and TF-Iremained at a constant level (Figure 1b).
More efficient decomposition of the organics from the synthetic wastewater was observed in TF-I
(82.65 + 1.01%) compared to TF-C (68.85 + 0.074%). This was caused by the addition of microorganisms
into TF-I that were specialized for wastewater treatment. The obtained results indicated that despite
the relatively short time period (21 days), the stabilization processes were performed successfully and
a fully functioning biofilm in the TF was developed.

2.3. Colonization of the Loofah Sponges

Observation of the loofah sponges using scanning electron microscope (SEM) showed their highly
porous structure, which was a suitable site for the attachment of the Bacillus thuringiensis B1(2015b)
cells (Figure 2a). At the beginning of the experiment, immobilised B1(2015b) cells were clearly visible
on the surface of the loofah sponges (Figure 2b).

()
Figure 2. Cont.
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(b) (c)

Figure 2. Scanning electron microscopy (SEM) micrographs of the uncolonized loofah sponges (a),

that were colonized by Bacillus thuringiensis B1(2015b) (b), microflora from the Imhoff tank at the bottom
(c), in the middle (d) and at the top (e) of the trickling filter.

After 15 days, the loofah sponges that remained at the top, in the middle and at the bottom of the
trickling filter were almost completely covered by the microflora from the Imhoff tank flow chamber
(Figure 2c—e). The biofilm that had formed on the surface of the sponges was characterized by a large
amount of extracellular matrix, and therefore detecting individual cells was very difficult. There were
differences in the formation of the biofilm depending on the site in the trickling filter into which the
immobilised strain was incorporated. We observed that bacterial biofilm was formed in the lower
and the middle parts of the trickling filters, while fungal hyphae were dominant in the upper parts
(Figure 2c—e).

2.4. Phylogenetic Characterization of the TF Microbial Population

In this study, we analyzed the qualitative changes in both the bacterial (V3-V5 regions of the 165
rRNA gene) and fungal populations (ITS1/2 regions of the 185 rRNA gene) after acute, short-term
exposure to naproxen (1 mg/L). As can be seen in Figure 3a, the untreated microflora from the Imhoff
tank flow chamber was formulated by different bacterial strains with the Pseudomonas species being
the dominant group. After 15 days of microflora exposure to naproxen, there were significant changes
in the qualitative composition and a decrease in the diversity index (Table 2). The dominant groups of
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microorganisms that had been observed before the exposure to naproxen had probably the highest
sensitivity to the drug, except for the strains that belong to the Clostridium sp. Interestingly, the presence
of the drug caused a significant growth of the aerobic bacterium Chryseolinea sp. (Basic Local Alignment
Search Tool (BLAST) similarity 100%), which to date has been found in soils in China and Korea and in
Europe only in Germany. Although this genus is characteristic for uncontaminated forest soils, its
tolerance to polycyclic aromatic hydrocarbons has not yet been studied. However, because this strain

was no longer observed in the system after the bioaugmentation, it could be limited by other strains.

i 4 " [ ]
Trickling filter 10| Trickling filter Loofah sponges

M AAE AR

1
| B ]

e - =3 1

Microflora JTrickling filter IO} Trickling filter jLoofah sponges
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Figure 3. The denaturing gradient gel electrophoresis (DGGE) profiles that were obtained at different
stages of the experiment using the amplified (a) bacterial V3-V5 regions of the 165 rRNA gene and
(b) the fungal ITS1/2 regions of the 185 rRNA gene. The lines that are marked as Microflora Imhoff
contain the sequences that were obtained from the middle part of TF-10 before the exposure to naproxen;
Trickling filter I0 after the exposure to naproxen; Trickling filter and loofah sponges after the complete
biodegradation of naproxen; B1(2015b) contains the sequences that were obtained from pure cultures
of B1(2015b) cells. The letters T M B represent the sampling sites: T—top, M—middle and B—bottom
of the TE.

Table 2. Changes in the Shannon-Wiener index (H") of the bacterial (165 rDNA) and fungal (185 rDNA)
communities corresponding to the denaturing gradient gel electrophoresis (DGGE) profiles that were
obtained after the treatments. Columns marked as Microflora Imhoff contain the H” values that were
calculated from the middle part of TF-I0 before the exposure to naproxen; Trickling filter 10 after the
exposure to naproxen; Trickling filter and the loofah sponges after the complete biodegradation of
naproxen. The letters T M B represent the sampling sites: T—top, M—middle and B—bottom of the TE.

Microflora Trickling Filter I0 Trickling Filter Loofah Sponges

Imhoff M B T M B T M B
16S rDNA 2.164 1.039 1.386 2.025 2307 2253 1.886 1.791 2.342
18S rDNA 2.686 2.761 2.043 2564 2780 2718 - 2.800 2.841

The fungal strains demonstrated a greater tolerance to naproxen than the bacteria. Changes in
their composition, dominant groups and diversity index were not significant after their exposure to
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naproxen, except in the upper part of the TF, which contained a smaller amount of the 185 rDNA
sequences (Figure 3b; Table 2).

Among the identified species, it was possible to distinguish fungi that belong to the genera
Trichosporon sp. and Vanrija sp. The vast majority of the fungal DNA sequences (9 of 13) that were
obtained were not similar to the sequences in the NCBI library.

By analyzing the 16S rDNA sequence from the B1(2015b) cells and comparing them with the
sequenced genetic material from the TF and loofah sponges, it was confirmed that the bioaugmentation
had been performed successfully. The immobilised B1(2015b) cells on the loofah sponges that remained
in the trickling filter after 15 days were still present not only on the loofah sponges, but also in the core
of the trickling filters (BLAST similarity 99%) (Figure 3a).

Therefore, after the biodegradation of naproxen, the influence of the immobilised B1(2015b) cells
on the composition of the microflora from the Imhoff tank flow chamber in the trickling filter was
analyzed. A comparison of the bacterial composition in the TF after exposure to naproxen (TF-10) and
after bioaugmentation shows a significant increase in biodiversity as a result of the introduction of the
immobilised B1(2015b) cells (Figure 3a; Table 2). Changes were also observed in the dominant groups
(Clostridium sp. and Pseudomonas sp. new domination) as well as in the growth of the bacteria that
were present prior to the drug exposure and were sensitive to it (e.g., Pseudomonas sp.). Additionally,
strains that were below the detection level before bioaugmentation were also present, probably as a
result of the changes in the community composition. Analysis of the qualitative composition of the
bacterial population that was introduced onto the loofah sponges indicated that the carrier was a good
site for colonization. This was confirmed by the presence of strains from the LECA on the surface of
the carrier.

The lack of significant changes in the fungal community in this study indicates that
bioaugmentation did not affect the composition of autochthonous strains or their diversity on the basic
carrier (LECA) in the trickling filter (Figure 3b; Table 2). However, significant changes were observed
in the number of fungal strains that colonized abundantly lignocellulosic sponges.

3. Discussion

3.1. Immobilization of Bacillus thuringiensis B1(2015b) on Loofah Sponge

The ability of bacteria to form a biofilm on the surface of various materials can provide many
advantages for cells such as a higher level of resistance to the toxic compounds in the environment.
In bioremediation, a biofilm matrix additionally ensures a better chance for the adaptation and
survival of bacteria in a new environment with autochthonic microflora. Because the efficiency of
bioremediation using a trickling filter depends on the quality of the biofilm that is formed, its parameters
for immobilization were optimized by adsorption on loofah sponge. Among the various accessible
materials that are used for immobilization, it is desirable that carriers should be biodegradable and
biocompatible when being used for bioremediation. At the same time, carriers have to also be
characterized by a high level of porosity, mechanical resistance and a low price. Loofah sponges, which
are composed of cellulose, hemicellulose and lignin, are an eco-friendly material for bacterial cell
immobilizations due to their high mechanical resistance and high porosity [8,9].

The Bacillus thuringiensis B1(2015b) that was used in this study was isolated from the soil of
the chemical factory “Organika-Azot” in Jaworzno, Poland. This Gram-positive strain is able to
degrade various aromatic compounds such as phenol, vanillic acid, protocatechuic acid, benzoic acid
or 4-hydroxybenzoic acid as well as some non-steroidal anti-inflammatory drugs such as naproxen and
ibuprofen [6,10]. Because of these valuable features, this strain was immobilised on the loofah sponge.

One of the major factors that influences attachment is the surface charge of bacterial cells, which
depends on the positively or negatively charged molecules that are predominant on the surface of
the bacterial cell wall. Most bacteria have a negatively charged surface (negative zeta potential) at
physiological pH (pH 7). However, the bacteria cell wall zeta potential is strongly determined by the
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ionic strength of the surrounding medium and pH value [11]. It has been shown that Bacillus cereus
spores exhibit a higher efficiency of attachment to hydrophobized, negatively charged glass when the
medium has the same pH as the isoelectric point of their cell wall (pH 3) [12]. Due to the fact that loofah
sponge is composed of polysaccharides, its charge at pH equal to or higher than 7 is negative. For that
reason, the same charge of the cell surface and the carrier complicates the initial cell adhesion to the
carrier surface. High ionic strength facilitates the neutralization of the cell wall charge when the cell
and carrier surfaces have the same charge and in this way;, it reduces their electrostatic repulsion [11].
It is known that adding manganese significantly increases the amount of the biofilm of Bacillus
species [13]. Manganese belongs to the group of essential metals that regulate the activity of
many enzymes by functioning as a catalytic cofactor. One of these enzymes is phosphoglycerate
phosphomutase (EC 5.4.2.1), which plays a crucial role during the initiation of sporulation. This enzyme
is responsible for the accumulation of 3-phosphoglyceric acid (3-PGA) in spores and its utilisation
during germination [14]. On the other hand, other studies have indicated that manganese is complexed
with SpoOF (a signal mediator), which is involved in the sporulation phosphorelay. In this mechanism,
the phosphate is transferred from histidine kinase to SpoOF and later to Spo0OB (the phosphotransferase).
The final step is the transition of the phosphate to SpoOA, which is a transcription factor that initiates
spore or biofilm formation [13,15]. Simultaneously, an increase in the amount of phosphorylated Spo0A
results in unblocking the sinl transcription. Sinl subsequently represses the activity of SinR and thereby
prevents the blocking of the eps and tapA operons, which are involved in exopolysaccharide (EPS) and
TasA protein (one of the matrix components) synthesis, respectively [16]. Despite the fact that a HCT
medium already contained manganese (0.015 mM), during the optimization of the immobilization
conditions, the addition of 0.33 mM of manganese significantly improved the quality of biofilm that
was formed by the B1(2015b) cells. It is noteworthy that Morikawa et al. [17] showed that even at a
concentration of 1000 mM, manganese stimulated biofilm formation by the Bacillus subtilis B1 strain.

3.2. Naproxen Biodegradation in the Trickling Filters

Because of its polycyclic structure, naproxen belongs to the group of hard-to-biodegrade
xenobiotics. However, naproxen removal has been observed in monoculture conditions by only
a few bacterial strains [4,6]. Moreover, Gérny et al. [10] proposed a naproxen biodegradation
pathway by Bacillus thuringiensis B1(2015b). According to their studies, the first stage comprises
demethylation by tetrahydrofolate-dependent O-demethylase, which was observed so far only during
fungal biotransformation. In the next step, O-desmethylnaproxen probably undergoes hydroxylation
to 7-hydroxy-O-desmethylnaproxen. Due to the fact that naproxen is naphthalene derivative,
it might be degraded like naphthalene however, only 2-formyl-5-hydroxyphenylacetic acid was
detected. The last observed intermediate was salicylic acid which is transformed into maleyl puryvate,
2-ox0-3,5-heptadienedioic acid or cis,cis-muconic acid. These results indicated that strain Bacillus
thuringiensis B1(2015b) is able to degrade naproxen into the tricarboxylic acid cycle intermediates.
The ability of strain B1(2015b) to naproxen mineralization has made it a promising strain for the
complete removal of this drug from wastewater.

On the other hand, only a few studies have been done with mixed microflora under non-sterile
conditions. Due to the overgrowth of autochthonous bacteria and the inhibition of the growth of
the microorganisms that are able to degrade these types of contaminants, the removal efficiency
of naproxen was significantly lower than in monoculture conditions [18]. Because of the growing
problem of drugs in the environment, there is a need to develop bioremediation methods adapted to
their removal.

One of the key elements of a trickling filter is the carrier on which the biofilm is created. To date,
various packing materials, such as plastics, stones [19], polyurethane foam [20] or zeolite have been
used [21]. However, by selecting the correct packing material, it is possible to improve the effectiveness
of the performance of a trickling filter. In this study, we selected lightweight expanded clay aggregate
(LECA) (particle size 10-20 mm) due to its high porosity, natural origin, low cost and lack of toxicity.
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Additionally, studies on the usability of LECA in bioremediation have revealed its high sorption
properties for heavy metals and certain pollutants [22].

In order to create a fully functioning trickling filter, there was a need to implement its by biological
active microflora. The TF-I and TF-I0 systems that were constructed for this study were inoculated
with microflora from the Imhoff tank flow chamber from the wastewater treatment plant of Krupski
Miyn-Zietek (Poland), which was built almost 60 years ago and has never been modernized or otherwise
augmented since that time.

The TF-I0 system was constructed in order to examine if the autochthonous microflora from
the Imhoff tank flow chamber was able to biodegrade naproxen. The conducted study revealed that
the initial drug loss was caused by LECA adsorption and not as an effect of biodegradation. It was
confirmed in an additional control system, which contained only LECA and synthetic wastewater
contaminated with naproxen (results not shown). This result shows that even wastewater treatment
system with almost 60 years of history do not have microflora able to degrade or remove naproxen.
Fungi primarily have the ability to degrade non-steroidal inflammatory drugs, which also implies that
they are less sensitive to these compounds. This is related to the presence of more advanced enzyme
complexes and detoxification pathways than those that are observed in bacterial strains [23]. We could
suppose that the presence of fungi in bioremediation systems will provide a higher possibility of
xenobiotic degradation for drugs such as NSAIDs. However, fungi only constituted a small percentage
of the entire microflora of the trickling filters and activated sludge.

After introducing the immobilized cells of Bacillus thuringiensis B1(2015b) into the trickling filters,
they were able to degrade naproxen in the presence of the autochthonous microflora and beyond their
optimal growth conditions. Moreover, we observed a positive influence of the synergism between the
introduced B1(2015b) strain and the autochthonous microflora on naproxen biodegradation. Although
this type of ecological interactions occurs often in bioremediation systems, their mechanisms of action
are not well known. It is assumed that this might be caused by increasing the bioavailability of a
contaminant through the production of surfactants, a metabolic association of intermediates that
cannot be further degraded, an exchange of growth factors or enhanced aggregation. For example,
Byss et al. [24] observed that the inoculation with Pleurotus ostreatus of soil that had been contaminated
with PAH resulted in significant stimulation of the growth of G+ bacteria and simultaneously more
efficient bioremediation. In our study, we suspected that synergisms could be caused by the exchange
of growth factors and the interaction of the Imhoff population and the B1(2015b) strain. Additionally,
the presence of the anaerobic bacterial communities in the lower part of the TF (e.g., Clostridium sp.),
could accelerate the naproxen biodegradation, due to the ability to demethylation or degradation
of aromatic compounds like veratrate or catechol [25]. However, the B1(2015b) cells were able to
degrade naproxen.

A further major factor that affects the performance of attached-growth bioreactors is the selection
of an appropriate carbon to nitrogen (C:N) ratio in synthetic wastewater, which is associated with
ensuring adequate amounts of carbon compounds, which are electron donors in the denitrification
process. Under carbon-deficit conditions (C:N 3:1), nitrification and denitrification rates may not
be in equilibrium and as a result, there is a lower performance of the bioreactors [2]. In our study,
we prepared synthetic wastewater with a C:N ratio of 10:1, which according to Xia et al. [2], provides
the best efficiency for the reduction of the COD in biofilm-based bioreactors. Additionally, immobilized
cells of B1(2015b) introduced into the TF without autochthonous microflora were able to degrade
most of the organic carbon from the synthetic wastewater. However, the addition of the specialized
microflora from the wastewater treatment plant resulted in the higher removal of the organic carbon.

3.3. Colonization of the Loofah Sponges

In response to deficiencies of organic and mineral compounds, temperature and pH fluctuations,
the presence of heavy metals as well as the substances that are secreted by other organisms,
microorganisms began to aggregate into extensive communities in the form of biofilm. This solution
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ensured the most critical advantages in the context of the colonization of aquatic environments. Biofilm
forms various structures and water channels, which provide mechanical stability, mass transport,
and functional heterogeneity. However, the key element is the biofilm matrix, whose main component
is a highly hydrated EPS. Because of its sorption properties, biofilm accumulates nutrients as well as the
exopolysaccharides, lipids, nucleic acids and enzymes that are secreted by cells while it also limits the
direct contact of cells with toxins [4,8,26]. In natural habitats, biofilm is composed of multiple, highly
selected strains of microorganisms. This microbiological diversification ensures metabolic cooperation
and genetic exchanges among the populations in the biofilm [26]. For example, a synergistic effect
occurred during the testing of the sodium dodecyl sulfate (SDS) resistance of Pseudomonas aeruginosa,
P. protegens and Klebsiella pneumoniae strains. In monospecies biofilms, strains had different levels of
resistance, whereas in a consortium, the more resistant species protected the rest of the community [27].
In bioremediation systems consortium we can also observe a more abundant biofilm matrix, in which
the microorganisms are exposed to higher concentrations of potentially toxic compounds and required
a protective barrier [3].

A characteristic feature of trickling filters is the diversity of conditions depending on the height.
This also results in a different variety of microorganisms at different levels which is connected with the
occurrence of two regions—the upper part of the aerobic region and a progressive lower anaerobic
region due to the lack of additional aeration [21].

3.4. Phylogenetic Characterization of the TF Microbial Population

In bioremediation systems, autochthonous microflora operates in the form of cooperating
communities. However, the presence of factors such as pollution or the addition or depletion
of nutrients can significantly affect the diversity of microbial communities. The impact of pollutants on
diversity depends on its type and the duration of the exposure. It was demonstrated that naproxen can
negatively affect non-target organisms and entire ecosystems [28]. To date, there have only been a few
studies on the effects of naproxen on microbial communities. Grenni et al. [28] observed that after 3 h
of naproxen exposure (100 ug/L), the number of live cells of the microorganisms from the Tiber River
decreased drastically. At a concentration of 10 pM, naproxen also inhibits nitrite production by the
ammonia-oxidizing bacterium (AOB) Nitrosomonas europaea, which is a fundamental member of the
microflora in wastewater treatment systems [29].

However, little is known about how naproxen affects the compositions of the microorganisms
communities in bioremediation systems that are not adapted to degrade NSAIDs. In this study,
we observed significant changes in the bacterial community which resulted in a drastic reduction
in their biodiversity. This result shows how much risk naproxen can pose to bacteria in wastewater
treatment plant if it enters in large quantities.

It should be also stressed that bioaugmentation is not indifferent to the autochthonous microflora
in a bioremediation system. This effect can be positive or negative. The presence of new strains can
change the composition of the microbial community through competition or inhibition. In the case
of immobilization, the carrier onto which a strain is introduced should also be considered to be an
influencing factor.

A carrier that can be a carbon and energy source for a specific group of microorganisms should
be introduced carefully. A too large amount can cause these species to be too dominant, which
could disrupt the performance of the entire system. In this study, we analyzed the influence of
bioaugmentation over a short period of time and after 15 days, the beginning of overgrowth was
observed. Further analyses should be performed to assess the long-term impact of the introduction of
cellulosic materials into the communities in wastewater treatment systems.
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4. Materials and Methods

4.1. Immobilization Optimisation and Procedure

In order to develop an immobilisation procedure that will results in the most abundant biofilm,
ten immobilization parameters for optimization were accessed. These included the type of growth
medium used: nutrient broth, mineral salts medium, HCT medium and its supplementation with
glucose (0.5g/L). Additionally, we also assess the age of the culture that was harvested for immobilization
(24, 48 or 72 h) and initial culture optical density (0.2, 0.4, 0.6, 0.8, or 1.0). The influence of the agitation
speed (70, 90, 110, 130 or 150 rpm), incubation time of the bacterial culture with carrier (16, 24, 48 or
72 h), temperature (15, 20, 25, 30, or 35 °C), medium pH (3, 4, 5, 6, 7.2 or 8), salt concentration (7, 8,
14,17, 24 or 34 g/L) and additional supplementation with metal salts (manganese, iron or calcium)
was studied.

The final procedure used after immobilization was as follows: the bacterial strain Bacillus
thuringiensis B1(2015b), which was cultivated according to Marchlewicz et al. [6] and re-suspended
in the HCT medium, was used for the immobilization [7]. The optical density value (ODggp) of the
bacterial suspension that was prepared for the immobilization was equal to 0.2. Loofah sponges, which
were prepared according to Dzionek et al. [4], were used as the carrier for the immobilization of the
B1(2015b) cells. For the immobilization, each Erlenmeyer flask (1000 mL) that contained sterile carrier
material (7.5 g) was inoculated with the bacterial cell suspension (600 mL). The HCT medium (pH 8) in
which the immobilization process was conducted was additionally supplemented with glucose (0.5 g/L)
and manganese sulphate (1 g/L). The flasks were incubated with shaking (110 rpm) at 20 °C for 48 h.
After incubation, loofah sponges with the immobilised B1(2015b) cells were rinsed with NaCl (0.9%) in
order to remove any unbound microorganisms and were then used for bioremediation experiments.

4.2. Configuration and Operational Conditions of the Trickling Filters (TFs)

Three lab-scale TFs were constructed for this study, namely TF-I, TF-C, and TF-I0. Each TF
was composed of four filter units. One filter unit consisted of polyvinyl chloride (PVC)
pipe (H X W = (400 x 100 mm) X 4), which was protected from the bottom by steel mesh and filled
with the biofilm carriers. The total volume of each TF was 0.015 m3 and the filling was 46% of the
reactor volume. As a base, biofilm carriers were selected lightweight expanded clay aggregate (LECA),
which constituted 70% of each filter unit filling volume. The remaining 30% of the filling comprised
the loofah sponges with immobilized bacteria (Figure 4).

As the nutrient and carbon sources, synthetic wastewater (15 L) was continuously circulated into
the trickling filters by a peristaltic pump with a flow rate of approximately 0.0066 m3/h. The synthetic
wastewater was based on the one that was proposed by Kosjek et al. [30] with some modifications.
The composition per 1 L was as follows: 0.317 g CH3COONHy; 0.04 g NH4Cl; 0.024 g K,HPO4; 0.008 g
KH;POy; 0.1 g CaCO3; 0.2 g MgSO, x 7H,0; 0.04 g NaCl; 0.005 g FeSOy4-x 7H,0 and 0.6 g glucose.
A nutrient and glucose stock solution were added to the collection tanks every three days. The addition
of calcium carbonate prevented the excessive acidification of the wastewater, whose pH was adjusted
to 7.6 and was inspected every three days. The temperature in the trickling filters was maintained
within a range of 21-23 °C. The hydraulic residence time (HRT) was determined using a draining test
and is expressed as the ratio of the volume of the liquid in the trickling filter to the volumetric flow
rate [31]. The chemical oxygen demand (COD) was analyzed using the potassium dichromate method
according to the standard procedures [32].

Trickling filter TF-I was inoculated with biomass that had been taken from the Imhoff tank flow
chamber in the wastewater treatment plant of Krupski Mtyn-Zietek (Poland). To colonize the trickling
filter, a mixture of biomass and synthetic wastewater was continuously circulated through TF-1. When
the biofilm on the surface of the LECA reached a thickness of 2-3 mm, the stabilisation of TF-I was
considered to be complete (21 days) and loofah sponges with the immobilized bacteria were added
to each filtration unit. The first control trickling filter (TF-C) contained only loofah sponges with
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immobilized bacteria and the LECA. The second control trickling filter (TF-IO) contained only stabilised
biomass (2-3 mm thick biofilm) from the Imhoff tank flow chamber and LECA.
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Figure 4. Experimental set-up of the trickling filters.

4.3. Naproxen Biodegradation Experiments

Fresh synthetic wastewater (15 L) that had been supplemented with naproxen (1 mg/L) was added
to each trickling filter and circulated for the next 15 days. All of the experiments were conducted
in a closed circuit. To determine the naproxen concentration, synthetic wastewater samples were
taken from the collection tanks every 24 h for 15 days and analyzed using HPLC equipped with
a LiChromospher® RP-18 column (4 x 250 mm), liChroCART® 250-4 Nucleosil 5 C18 and a DAD
detector (Merck HITACHI, Darmstadt, Germany). As a mobile phase was used acetonitrile and 1%
acetic acid (50:50 v/v) at a flow rate of 1 mL x min~!. Naproxen was detected in the supernatant at
wavelength 260 nm. Identification and quantification by comparison the HPLC retention times and
UV-visible spectra with the external standards were conducted [23].

Uninoculated, additional controls (contained only LECA or synthetic wastewater supplemented
with naproxen) were also prepared in order to determine adsorption or abiotic degradation of the drug.
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To investigate the microbial population on the LECA and loofah sponges, the carriers were taken
from three sampling points at depths of 20, 700 and 1400 mm (Figure S1, Supplementary Materials).
To examine the effect of naproxen on the microflora from the Imhoff tank flow chamber (TF-10), the
LECA samples were taken before the naproxen was added and after 15 days of runoff. In order to
investigate the colonization of the loofah sponges by the microflora from the Imhoff tank flow chamber,
samples of the loofah sponges were taken after the complete biodegradation of naproxen (TF-I).

4.4. Biofilm Analysis Using Scanning Electron Microscopy

The biofilm structure on the loofah sponges was observed before and after naproxen biodegradation
in trickling filter TF-I using Scanning Electron Microscopy. Samples were prepared according to
Dzionek et al. [4] and were observed with a JSM-7100F TTL LV high-resolution electron microscope
(JEOL, Tokyo, Japan).

4.5. Phylogenetic Characterization of the Microbial Population in the TFs

Changes in the microbial population on the carriers were determined using the denaturing
gradient gel electrophoresis (DGGE) method. In order to obtain the DNA samples, the biofilm from
the carrier samples was removed by shaking and rinsing with a NaCl solution (0.9%), centrifuged
(14,000 rpm, 20 min) and re-suspended in the same solution. DNA was immediately extracted from
various materials using a Genomic DNA isolation kit (A&A Biotechnology, Gdynia, Poland) according
to the manufacturer’s instructions.

The PCR amplification of the bacterial V3-V5 region of 165 rRNA
gene (about 570 bp) was performed using the universal primers MF341-GC
(5’-CGC CCG CCG CGC CCC GCG CCC GTC CCG CCG CCC CCG CCCG CCT ACG GGA GGC
AGC AG-3’) and MR907 (5'-CCG TCA ATT CMT TTG AGT TT-3’) [33]. In order to obtain the
sequences of the highly conserved regions of ITS1 and ITS2 from the fungal rRNA gene (500-800 bp),
the primers ITSIF (5'-CTT GGT CAT TTA GAG GAA GTAA-3’) and ITS4 (5'-TCC TCC GCT TAT
TGA TAT GC-3’) were used [34]. Each 25 pL. PCR reaction contained 1 pL of extracted DNA,
a1 x PCR buffer, a 10 mM dNTP mixture, 10 mM of forward and reverse primers, 0.2 mg/L. BSA and
1.25 U Pfu DNA Polymerase. Amplification was carried out with the cycling conditions for bacterial
16S rDNA according to Plociniczak et al. [33] and Anderson et al. [34] for the fungal ITS. The PCR
products were examined with a 1.5% agarose gel in order to isolate the DNA fragments of the required
length and to reamplify them.

DGGE was performed with the D-code System (Bio-Rad, Hercules, CA, USA) according to
Plociniczak et al. [33]. The PCR products were loaded directly onto 6% (for 165 rRNA gene) or 8% (for
ITS regions) polyacrylamide gelsin a 1 X TAE buffer. The gels were prepared with a denaturing gradient
in the range of 30-60% (for the 16S rRNA gene) or 18-58% (for the ITS regions). The electrophoresis
was first run at 180 V for 30 min and then at 80 V for 17 h at 60 °C. The gels were subsequently stained
with SYBR Gold (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
instructions. The strong bands were cut out and diluted in 25 uL sterile water overnight, reamplified
with the primers described above (except for primer MF341-GC, which was used without a GC clamp)
and sequenced. The nucleotide sequences that were obtained were compared with known sequences
in GenBank using the BLAST program (https://blast.ncbi.nlm.nih.gov).

The intensity of the individual DGGE bands was evaluated using Image] software and was scored
as absent (value 0) or present on a scale of 1 to 4 in order to generate a data set. The diversity of a
microbial population was determined using the Shannon Wiener index (H’) according to Xia et al. [2].

4.6. Statistical Analysis

All of the experiments were performed in at least three replicates. The values of the efficiency
of naproxen biodegradation and the values of the physico-chemical parameters that were obtained
were analyzed using the STATISTICA 12 PL software package (StatSoft, Tulsa, OK, USA). Statistically
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significant differences and similarities were determined using the t-test or the Least Significant
Differences (LSD) test (p > 0.05).

5. Conclusions

The immobilised Bacillus thuringiensis B1(2015b) introduced onto loofah sponges were successfully
incorporated into the trickling filters. Synergistic influence of the autochthonous microflora on
the naproxen biodegradation that was performed by the immobilised B1(2015b) cells was revealed.
This short-term analysis revealed the possible effects of introducing a larger quantity of naproxen into
a wastewater treatment plant. One of them can be a large decrease in the microbial diversity.

Supplementary Materials: The following are available online: Figure S1: Influence of different variants of
environmental and physiological factors on the immobilisation efficiency of Bacillus thuringiensis B1(2015b) cells
on loofah sponges.
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Figure S1: Influence of different variants of environmental and physiological factors on the
immobilisation efficiency of Bacillus thuringiensis B1(2015b) cells on loofah sponges.
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Figure S1: Influence of environmental and physiological factors on the immobilisation
efficiency of Bacillus thuringingiensis B1(2015b) cells on loofah sponges:

(a) Immobilisation medium (Nutrient Broth, Mineral Salts Medium or HCT (medium rich in
both carbon and ion sources));

(b) Additional carbon source (Mineral Salts Medium + 0.5 g/L glucose or HTC + 0.5 g/L
glucose);

(c) Age of the culture that was harvested for immobilisation (24, 48 or 72 h);

(d) Initial culture Optical Density (0.2, 0.4, 0.6, 0.8, or 1.0);

(e) Agitation speed (70, 90, 110, 130 or 150 rpm);

(f) Incubation time of the bacterial culture with a carrier (16, 24, 48 or 72 h);

(g) Temperature (15, 20, 25, 30, or 35°C);

(h) Immobilisation medium pH (3, 4, 5, 6, 7.2 or 8);

(1) Salt concentration in the immobilisation medium (7, 8, 14, 17, 24 or 34 g/L);

(j) Additional metal ions (manganese, iron or calcium).

All experiments were performed in at least five replicates. The values of the efficiency of
immobilisation and enzyme activities were analyzed using a one-way ANOVA (p > 0.05)
using STATISTICA 10 PL software package. A post-hoc test or T-test was applied to assess
the differences between the treatments (differences are marked with successive letters a, b,
¢, dore).



I1I.

Podsumowanie

. Dokonano modyfikacji i walidacji testu pozwalajacego na oceng¢ stanu

fizjologicznego immobilizowanych komorek w Dbiofilmie, bazujacego
na hydrolizie dioctanu fluoresceiny.

Na podstawie wynikdw optymalizacji procesu immobilizacji szczepow
Planococcus sp. S5 oraz Bacillus thuringiensis B1(2015b) na gabce Loofah
poznano mechanizmy indukcji biofilmu przez te szczepy.

W wyniku immobilizacji na gabce Loofah komodrek Planococcus sp. S5
zmniejszono wrazliwo$¢ szczepu na naproksen. W efekcie rozktad leku zostat
niemal dwukrotnie przyspieszony, a takze mozliwa byla degradacja
najwyzszego analizowanego stezenia naproksenu, ktory na wolne komorki S5
wykazywat dziatanie hamujace.

Immobilizowany na gabce Loofah szczep Planococcus sp. S5 wykazywat petng
aktywno$¢ degradacyjng przez 55 dni, w ciggu ktorych zdegradowane zostaty
3 dawki naproksenu.

Nie zaobserwowano zmian szlaku degradacji naproksenu przez szczep
Planococcus sp. S5 w wyniku immobilizacji. Obserwowano natomiast znaczace
zmiany w wartosciach aktywnosci nastepujacych enzymoéw zaangazowanych
w rozktad naproksenu: O-demetylazy, monooksygenazy aromatycznej,
dioksygenazy naftalenowe;, dioksygenazy 1,2-gentyzynianowej
oraz dioksygenazy 1,2-salicylowe;.

Bioaugmentacja zloza biologicznego immobilizowanymi na gabce Loofah
komoérkami Bacillus thuringiensis B1(2015b) skutkowata synergistycznymi
oddziatywaniami  pomigdzy  wprowadzonymi  komodrkami  B1(2015b)
a autochtoniczng mikroflorg. Spowodowalo to znaczace przyspieszenie
rozktadu naproksenu w ztozu biologicznym.

Ekspozycja autochtonicznej mikroflory zloza biologicznego na naproksen
skutkowala  znaczacym  zubozeniem  biordznorodno$ci  spotecznosci
bakteryjnych obecnych w ztozu.
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IV. Streszczenie

Obecnie pojawia si¢ coraz wigcej doniesien o obecnosci farmaceutykow,
w tym niesteroidowych lekéw przeciwzapalnych, w §rodowisku naturalnym.
Jednym z nich jest naproksen, ktory nie wulega calkowitej biodegradacji
w organizmie cztowieka. Dodatkowo, oczyszczalnie $ciekéw nie sg przystosowane
do jego utylizacji. W ostatnich latach wyizolowano 1 opisano szczepy bakteryjne,
charakteryzujace si¢ zwickszonymi mozliwosciami degradacyjnymi naproksenu.
Celem pracy doktorskiej byla immobilizacja szczepdéw bakteryjnych zdolnych
do degradacji naproksenu. Dokonano charakterystyki zastosowanego no$nika oraz
utworzonych na jego powierzchni biofilméw bakteryjnych. Ustalono wptyw
unieruchamiania na przebieg rozktadu leku w warunkach monokulturowych, a takze
w obecnosci autochtonicznej mikroflory ztoza biologicznego. Ponadto zbadano
zmiany aktywnos$ci enzymow zaangazowanych w rozklad naproksenu w wyniku
immobilizacji.

Badania nad wplywem immobilizacji na biodegradacj¢ naproksenu
rozpoczgto przeprowadzeniem optymalizacji procesu unieruchamiania. Jednakze,
aby poprawnie oceni¢ stan fizjologiczny immobilizowanych bakterii w biofilmie,
zmodyfikowano metode bazujaca na hydrolizie dioctanu fluoresceiny.
Wprowadzona modyfikacja polegata na ominigciu odrywania biofilmu od no$nika
1 przeprowadzenie testu na nienaruszonym biofilmie wraz z nos$nikiem.
Opracowana procedura zaktada wytrzasanie probek w buforze fosforanowym o pH
w zakresie 7,4-7,6 przez 1 godzing, a wynik wyrazano jako calkowitg aktywno$¢
metaboliczng (TEA). Analiza czutosci testu, w trakcie ktorej mierzono zmiany TEA
w wyniku glodzenia pozwolita wyznaczy¢ minimalny endogenny metabolizm
szczepu Bacillus thuringiensis B1(2015b), wynoszacy 161-170 ug/g suchej masy
na godz. Zaobserwowano réwniez, ze niedobor substancji odzywczych indukuje
na powierzchni pianki poliuretanowej proces tworzenia biofilmu przez komorki
szczepu B1(2015b).

W wyniku optymalizacji unieruchamiania szczepu Planococcus sp. S5
na gabce Loofah zaobserwowano, ze najwyzsze wartosci TEA (1250,26 + 87,61
ug/g suchej masy na godz.) osiggano podczas 72-godzinnej inkubacji w minimalne;j
pozywce mineralnej (MSM) o pH 7,2 dodatkowo suplementowanej glukoza,
NaCl oraz MnSO,, wytrzasanej przy 90 rpm w 30°C oraz przy wysokiej
koncentracji komorek. Szczep Bacillus thuringiensis B1(2015b) immobilizowany
na gabce Loofah wykazywal najwieksze wartosci TEA (790,14 + 40,60 ug/g suchej
masy na godz.) po 48-godzinnej inkubacji w podlozu HTC o pH 8§,
suplementowanej glukoza oraz MnSO,, wytrzasanej przy 110 rpm w 20°C przy
niskiej koncentracji komorek.

Analiza rozkladu naproksenu przez szczep Planococcus sp. S5 wykazata
dziatanie hamujace leku w stgezeniu wyzszym niz 12 mg/L na wolne komorki tego
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szczepu. Zaobserwowano, ze wolne komodrki S5 byty zdolne do caltkowitego
rozktadu leku w stezeniu 6, 9 oraz 12 mg/L w odpowiednio 38, 44 oraz 62 dni.
Rozktad leku przebiegat dwufazowo. Pierwsza faza, trwajaca 29 dni
charakteryzowata si¢ wolniejszym rozktadem naproksenu. Podczas drugiej fazy
obserwowano dwukrotnie szybszy rozklad leku. Immobilizowane na gabce Loofah
komoérki S5 byly zdolne do calkowitej degradacji leku we wszystkich
analizowanych st¢zeniach, a tempo rozkladu byto stale, niezalezne od dnia
inkubacji oraz zblizone do szybkos$ci degradacji w trakcie II fazy przeprowadzane;j
przez komorki wolne. Badania nad przebiegiem wielokrotnych cykli degradacji
naproksenu w najnizszym analizowanym stezeniu wykazaty, ze w wyniku
immobilizacji, komorki Planococcus sp. S5 zachowaly pelng zdolnos¢
degradacyjng przez 55 dni, rozktadajac w tym czasie 3 dawki leku. W trakcie
rozktadu leku, komorki S5 wydzielaty znaczne ilosci egzopolisacharydéow w celu
zwigkszenia bariery ochronnej przed naproksenem. Badania nad wplywem
immobilizacji  szczepu  Planococcus  sp. S5 naaktywno$¢ enzymow
zaangazowanych w rozklad naproksenu wykazaty, zZe immobilizacja nie
spowodowata zmiany szlaku jego degradacji. Zaobserwowano natomiast znaczace
zmiany w warto$ciach tych aktywnos$ci. Wykazano, ze aktywno$¢ enzymatyczna w
I fazie rozktadu leku przez wolne komorki S5 byla znacznie nizsza niz w fazie
szybszego rozkladu. Pomimo zblizonego tempa degradacji leku przez wolne
komoérki S5 w II fazie oraz przez immobilizowane komoérki S5, aktywnos$¢
analizowanych enzymow komoérek immobilizowanych byta znacznie wyzsza niz
wolnych komorek.

Przebieg biodegradacji naproksenu przez immobilizowane na gabce Loofah
komorki szczepu Bacillus thuringiensis B1(2015b) monitorowano w ztozu
biologicznym augmentowanym autochtoniczng mikroflora pochodzaca z komory
przeptywowej osadnika Imhoff’a w Krupskim Mtynie — Zigtek. Analiza wykazata,
ze immobilizowane komorki B1(2015b) zdegradowaly 70% naproksenu w stezeniu
1 mg/L w nieaugmentowanym ztozu biologicznym. Natomiast w obecnosci
autochtonicznej mikroflory, unieruchomione komoérki B1(2015b) w tym samym
czasie roztozyty 90% leku. Uzyskane wyniki ukazaty synergistyczne oddziatywania
pomiedzy autochtoniczng mikroflora zloza biologicznego a wprowadzonymi
komoérkami  B1(2015b), ktore skutkowaly przyspieszeniem biodegradacji
naproksenu. Dzigki analizie bakteryjnych regionéw V3-V5 genu 16S rRNA
z zastosowaniem elektroforezy w gradiencie czynnika denaturujagcego (DGGE),
potwierdzono, ze wprowadzony szczep Bacillus thuringiensis B1(2015b) byt
zdolny do przetrwania oraz namnazania si¢ w zlozu biologicznym po zakonczonym
procesie degradacji naproksenu. Ponadto przeprowadzono analiz¢ zmian
jakosciowych populacji bakteryjnych oraz grzybowych autochtonicznej mikroflory
ztoza biologicznego po ekspozycji na naproksen, a takze po wprowadzeniu
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immobilizowanych komoérek B1(2015b). Wykazano, ze naproksen spowodowat
wyrazne obnizenie biordéznorodnosci mikroflory bakteryjnej. Szczepy grzybowe
charakteryzowaty si¢ mniejszg wrazliwoscig na lek. Natomiast w wyniku
wprowadzenia immobilizowanych komoérek BI1(2015b), ktore byly zdolne
do szybkiej eliminacji leku, obserwowano wzrost biordéznorodnosci mikroflory
bakteryjnej oraz grzybowe;.
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V. Summary

More and more researches are reporting the presence of pharmaceuticals,
especially non-steroidal anti-inflammatory drugs in the natural environment. One
of them, naproxen is not fully degraded in the human body. Additionally,
wastewater treatment plants are not adapted to its utilization. In recent years,
bacterial strains which are characterized by increased naproxen degradation
potential have been isolated and described. Therefore, the aim of the doctoral
dissertation was to immobilize bacterial strains capable to degrade naproxen.
The characteristics of the carrier used and bacterial biofilms formed on its surface
were made. The effect of immobilization on the course of drug degradation
in monocultural conditions, as well as in the presence of autochthonous microflora
of the trickling filter was determined. In addition, changes in the activity
of enzymes involved in naproxen degradation as a result of immobilization
were investigated.

Studies on the effects of immobilization on the biodegradation of naproxen
began with the optimization of the immobilization process. However, to correctly
assess the physiological state of immobilized bacteria in the biofilm, the method
based on the fluorescein diacetate hydrolysis was modified. The modification
was to omit the detachment of the biofilm from the carrier and conducting the test
on the intact biofilm together with the carrier. The developed procedure assumed
shaking of samples in phosphate buffer with a pH in the range of 7.4-7.6 for 1 hour
and the result was expressed as total metabolic activity (TEA). The sensitivity
assay, during which changes in TEA as a result of starvation were measured,
allowed to determine the minimal endogenous metabolism of the Bacillus
thuringiensis B1(2015b) which was equal to 161-170 pg/g dry weight per hour.
It was also observed that nutrient deficiency induced biofilm formation
by B1(2015b) cells on the surface of polyurethane foam.

As a result of optimization of the immobilization of the strain Planococcus
sp. S5 on Loofah sponge, it was observed that the highest TEA wvalues
(1250.26 +£ 87.61 pg/g dry weight per hour) were achieved during 72-hour
incubation in mineral salt medium (MSM; pH 7.2) additionally supplemented with
glucose, NaCl and MnSO,, shaken at 90 rpm at 30°C and with high cell
concentration. Strain Bacillus thuringiensis B1(2015b) immobilized on the Loofah
sponge showed the highest TEA values (790.14 + 40.60 pg/g dry weight per hour)
after 48-hour incubation in HTC medium (pH 8), supplemented with glucose
and MnSQ,, shaken at 110 rpm at 20°C with low cell concentration.

Analysis of naproxen degradation by Planococcus sp. S5 strain showed
an inhibitory effect at a concentration higher than 12 mg/L on free S5 cells. It was
observed that free S5 cells were able to completely degrade the drug
in a concentration of 6, 9 and 12 mg/L in 38, 44 and 62 days, respectively.
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The degradation of the drug proceed in two phases. The first phase, lasting 29 days,
was characterized by a slower naproxen degradation rate. During the second phase,
drug degradation was twice as fast. Immobilized S5 cells on Loofah sponge were
able to completely degrade the drug in all analyzed concentrations, and
the degradation rate was constant, independent of the day of incubation and similar
to degradation during phase II performed by free cells. Studies on the course
of repeated cycles of naproxen degradation at the lowest analyzed concentration
showed that as a result of immobilization, Planococcus sp. S5 cells maintained full
degradation capacity for 55 days, during which degraded 3 doses of the drug.
Additionally, during naproxen degradation, S5 cells secreted significant amounts
of exopolysaccharides to increase the protective barrier against naproxen. Studies
on the impact of the Planococcus sp. S5 immobilization on the activity of enzymes
involved in naproxen degradation have shown that immobilization did not change
the degradation pathway. However, significant changes were observed in the values
of these activities. It was shown that the enzymatic activity in the first phase of drug
degradation by free S5 cells was much lower than in the faster degradation phase.
Despite the similar rate of drug degradation by free S5 cells in phase II and by
immobilized S5 cells, the activity of the analyzed enzymes of immobilized cells was
significantly higher than that of free cells.

The naproxen biodegradation by Bacillus thuringiensis B1(2015b)
immobilized on the Loofah sponge was monitored in a trickling filter augmented
with autochthonous microflora from the Imhoff tank flow chamber in Krupski
Mtyn — Zietek. Analysis showed that immobilized B1(2015b) cells degraded
70% of naproxen at a concentration of 1 mg/L in the trickling filter without
autochthonous microflora. However, in the presence of indigenous microflora,
immobilized B1(2015b) cells at the same time degraded 90% of the drug. Obtained
results showed synergistic interactions between the autochthonous microflora
of the trickling filter and introduced B1(2015b) cells, which resulted in acceleration
of naproxen biodegradation. By analyzing the bacterial V3-V5 regions
of the 16S rRNA gene using denaturing gradient gel electrophoresis (DGGE), it was
confirmed that the introduced Bacillus thuringiensis B1(2015b) was able to survive
and multiply in the trickling filter after the process of naproxen degradation.
In addition, an analysis of the qualitative changes of bacterial and fungal
communities of autochthonous microflora after exposure to naproxen, as well
as after the introduction of immobilized B1(2015b) was performed. Naproxen has
been shown to cause a significant reduction in bacterial microflora biodiversity.
Fungal strains were less sensitive to the drug. However, as a result
of the introduction of immobilized B1(2015b) cells, which were able to quickly
eliminate the drug, an increase in the biodiversity of bacterial and fungal microflora
was observed.
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dr hab. Danuta Wojcieszynska, prof. US



Katowice, dn. 29.05.2020

dr hab. Matgorzata Adamczyk-Habrajska
Instytut Technologii i Mechatroniki
Wydziat Nauk Scistych i Technicznych
Uniwersytet Slaski w Katowicach

Oswiadczenie

W zwigzku z wykorzystaniem przez mgr Anne Dzionek ponizszych prac, jako

rozprawy doktorskiej, o§wiadczam, iz méj udziat procentowy szacuje si¢ w nich na:

1. “Immobilization of Planococcus sp. S5 Strain on the Loofah Sponge and Its Application
in Naproxen Removal”, opublikowanej w Catalysts (2018, 176) — wkiad procentowy 5%
obejmujacy wykonanie mikrografii SEM;

2. “Enchanced Degradation of Naproxen by Immobilization of Bacillus thuringiensis
B1(2015b) on Loofah Sponge” — opublikowanej w Molecules (2020, 872) — wkiad
procentowy 5% obejmujacy wykonanie mikrografii SEM;

....................................................

dr hab. Malgorzata Adamczyk-Habrajska




Katowice, dn. 25.05.2020

dr hab. Katarzyna Hupert-Kocurek, prof. US

Instytut Biologii, Biotechnologii i Ochrony Srodowiska
Wydziat Nauk Przyrodniczych

Uniwersytet Slaski w Katowicach

Oswiadczenie

W zwiazku z wykorzystaniem przez mgr Anne Dzionek pracy pt. “Immobilization of
Planococcus sp. S5 Strain on the Loofah Sponge and Its Application in Naproxen Removal”,
opublikowanej w Catalysts (2018, 176) jako rozprawy doktorskiej, oswiadczam, iz méj udziat

procentowy, jako wspétautora, szacuje na 5% i obejmuje udziat w korekcie manuskryptu.

dr hab. Katarzyna Hupet-Kocurek



Katowice, dn. 29.05.2020

dr Jolanta Dzik

Instytut Technologii i Mechatroniki
Wydziat Nauk Scistych i Technicznych
Uniwersytet Slaski w Katowicach

Oswiadczenie

W zwigzku z wykorzystaniem przez mgr Ann¢ Dzionek pracy pt. “Fluorescein
Diacetate Hydrolysis Using the whole Biofilm as a Sensitive Tool to Evaluate the
Physiological State of Immobilized Bacterial Cells”, opublikowanej w Catalysts (2018, 434)
jako rozprawy doktorskiej, o§wiadczam, iz méj udzial procentowy, jako wspétautora, szacuje

si¢ na 5% i obejmowat wykonanie mikrografii SEM.

dowd(a Uik

...................................................

dr Jolanta Dzik



