

You have downloaded a document from RE-BUŚ

repository of the University of Silesia in Katowice

Title: Countable frames for bimodal logics S5oS5 and Grz.3oGrz.3.

Author: Sławomir Kost

Citation style: Kost Sławomir. (2013). Countable frames for bimodal logics S5oS5 and Grz.3oGrz.3. "Bulletin of the Section of Logic" (Vol. 42 no. 3/4 (2013), s. 183-198).

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowsze chnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci
(nie tworzenia utworów zależnych).

Bulletin of the Section of Logic
Volume 42:3/4 (2013), pp. 183-198

Sławomir Kost

COUNTABLE FRAMES FOR BIMODAL LOGICS $S 5 \otimes S 5$ and $G r z .3 \otimes G r z .3$

Abstract

In this paper we consider bimodal logics $S 5 \otimes S 5$ and $G r z .3 \otimes G r z .3$. We construct and describe two single countable frames which characterize systems $S 5 \otimes S 5$ and $G r z .3 \otimes G r z .3$, respectively.

Introduction

Multimodal logics are widely studied. They find substantial applications in computer science, in particular, to the knowledge representation (see e.g. [6]). For a modal logic L, a frame \mathcal{F} is called an L-frame if all theorems of L are true in \mathcal{F}. Let S be a class of L-frames. A modal logic L is characterized (or determined) by S if S refutes all formulas which are not theorems of L. If $S=\{\mathcal{F}\}$ then we say that L is characterized by the frame \mathcal{F}. Or \mathcal{F} is adequate for L. It is well-known that monomodal system $S 5$ is characterized by the class of all finite frames whose relation is an equivalence relation, and also by the infinite countable cluster (see e.g. [1]). The system $G r z .3$ (also known as $S 4.3 G r z, G r z .3$ is equivalent to $S 4.3 G r z$ see e.g. [3]) is the smallest monomodal logic containing axiom K, Dummett's axiom $\square(\square \varphi \rightarrow \psi) \vee \square(\square \psi \rightarrow \varphi)$ and Grzegorczyk's schema $\square(\square(\varphi \rightarrow \square \varphi) \rightarrow \varphi) \rightarrow \varphi$. This system is determined by the class of finite frames whose relation is a linear order, and also by one infinite frame $\langle\omega, \geq\rangle$ (see e.g. Goldblatt [7]). In monomodal logics, the completeness theorem is often formulated for a class of frames. For some modal logics, it is possible to replace the class with a single frame which can be countably
infinite, as in the case of $S 5$ and $G r z .3$. For bimodal logics, the problem of existence of one appropriate frame is more complicated. We will consider logics $S 5 \otimes S 5$ and $G r z .3 \otimes G r z .3$ which are fusions of $S 5$ and $S 5$ and $G r z .3$ and $G r z .3$, respectively (see [6]). According to transfer theorems from [8], canonicity is preserved under the formation of fusion. The system $S 5 \otimes S 5$ is canonical, so one could consider canonical frame as a single frame for $S 5 \otimes S 5$. But canonical frames are not easy to be described and applied. Moreover, usually they are uncountable. The system $G r z .3 \otimes G r z .3$ is not even canonical (see [4]). We construct and describe two countable frames which characterize systems $S 5 \otimes S 5$ and $G r z .3 \otimes G r z .3$, respectively. These results have practical applications. Both defined frames will allow us to find some of their finite subframes to reject non-theorems of $S 5 \otimes S 5$ or $G r z .3 \otimes G r z .3$, respectively.

Preliminaries

Let \mathcal{L}_{1} and \mathcal{L}_{2} be propositional monomodal languages with modal operators \square_{1} and \square_{2}, respectively. Let $\mathcal{L}_{1,2}$ be propositional bimodal language with both operators \square_{1} and \square_{2}. Bimodal logic $L \subset \mathcal{L}_{1,2}$ is called a fusion of $L_{1} \subset \mathcal{L}_{1}$ and $L_{2} \subset \mathcal{L}_{2}$ if L is the smallest system containing $L_{1} \cup L_{2}$. In this case, we write $L_{1} \otimes L_{2}$ instead of L (see [6]). Let \mathbb{N} be the set of positive integers $\{1,2, \ldots\}$.

A Kripke frame for monomodal logic is a pair $\mathcal{F}=\langle W, R\rangle$ where W is a nonempty set and R is a binary relation on W (R is an accessibility relation).

A Kripke frame for a bimodal logic is a triple $\mathcal{F}=\left\langle W, R_{1}, R_{2}\right\rangle$ where W is a nonempty set and R_{1}, R_{2} are accessibility relations. $\mathcal{F}=\left\langle W, R_{1}, R_{2}\right\rangle$ is connected if for every $x, y \in W$ and $x \neq y$ there exists a sequence $\left(x_{1}, \ldots, x_{k-1}\right)$ of elements from W such that $x S_{1} x_{1}, x_{1} S_{2} x_{2}, \ldots$, $x_{k-2} S_{k-1} x_{k-1}, x_{k-1} S_{k} y$, where $S_{j} \in\left\{R_{1}, R_{2}, R_{1}^{-1}, R_{2}^{-1}\right\}$ for $j \in\{1, \ldots, k\}$. Let \mathcal{F} be a frame and $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}$ parewise disjoint connected parts of \mathcal{F}. If a formula φ is refuted in \mathcal{F}, then φ is refuted in \mathcal{F}_{i} for some $i \in\{1, \ldots, n\}$. The other parts $\mathcal{F}_{1}, \ldots, \mathcal{F}_{i-1}, \mathcal{F}_{i+1}, \ldots, \mathcal{F}_{n}$ do not interfere with refutation of φ in \mathcal{F}_{i}. Hence it is enough to consider connected frames only. The relation \models is defined in a standard way (see [6]).

Below we list some axioms and corresponding to them conditions on relations in frames (see for example [1] and [2]).

$|$| K_{i} | $\square_{i}(\varphi \rightarrow \psi) \rightarrow\left(\square_{i} \varphi \rightarrow \square_{i} \psi\right)$ | no condition |
| :--- | :--- | :--- |
| T_{i} | $\square_{i} \varphi \rightarrow \varphi$ | $\forall_{x} x R_{i} x$ (reflexivity) |
| 4_{i} | $\square_{i} \varphi \rightarrow \square_{i} \square_{i} \varphi$ | $\forall_{x} \forall y \forall z\left(\left(x R_{i} y \wedge y R_{i} z\right) \Rightarrow x R_{i} z\right)$ (transitivity) |
| B_{i} | $\diamond_{i} \square_{i} \varphi \rightarrow \varphi$ | $\forall_{x} \forall y\left(x R_{i} y \Rightarrow y R_{i} x\right)$ (symmetry) |
| $D 1_{i}$ | $\square_{i}\left(\square_{i} \varphi \rightarrow \psi\right) \vee \square_{i}\left(\square_{i} \psi \rightarrow \varphi\right)$ | $\forall_{x} \forall y \forall z\left(\left(x R_{i} y \wedge x R_{i} z\right) \Rightarrow\left(y R_{i} z \vee z R_{i} y\right)\right)$ |
| $G r z_{i}$ | $\square_{i}\left(\square_{i}\left(\varphi \rightarrow \square_{i} \varphi\right) \rightarrow \varphi\right) \rightarrow \varphi$ | There is no infinite chain x_{1}, x_{2}, \ldots with |
| | | $x_{j} R_{i} x_{j+1}$ and $x_{j} \neq x_{j+1}$, for all j. |

Given two frames $\mathfrak{F}=\left\langle W, R_{1}, R_{2}\right\rangle$ and $\mathfrak{B}=\left\langle V, S_{1}, S_{2}\right\rangle$, a map f from W onto V is called a p-morphism from \mathfrak{F} to \mathfrak{B} if, for all $x, y \in W$ and $z \in V$, it satisfies the following conditions:
(i) if $x R_{i} y$, then $f(x) S_{i} f(y)$
(ii) if $f(x) S_{i} z$, then there is $y \in W$ such that $x R_{i} y$ and $f(y)=z$
for $i=1,2$.
Let f be a p-morphism from \mathfrak{F} to \mathfrak{B}. Then f is called a p-morphism from a model $\mathfrak{M}=\langle\mathfrak{F}, \mathfrak{V}\rangle$ to a model $\mathfrak{N}=\langle\mathfrak{B}, \mathfrak{U}\rangle$ if $x \in \mathfrak{V}(p)$ iff $f(x) \in \mathfrak{U}(p)$ for every propositional variable p and $x \in W$.

It is well-known that for all $\mathcal{L}_{1,2}$-formulas φ and all $x \in W,(\mathfrak{M}, x) \models \varphi$ iff $(\mathfrak{N}, f(x)) \models \varphi$ (see e.g. [6]). It follows that if \mathfrak{B} is a p-morphic image of \mathfrak{F} and $\mathfrak{F} \models \varphi$ then $\mathfrak{B} \models \varphi$ for every $\mathcal{L}_{1,2}$-formula φ. These definitions and properties also have monomodal counterpart.

Consider two classes \mathcal{C}_{1} and \mathcal{C}_{2} of frames that are closed under disjoint unions and isomorphic copies. The set $\mathcal{C}_{1} \otimes \mathcal{C}_{2}=\{\langle W, R, S\rangle ;\langle W, R\rangle \in$ $\left.\mathcal{C}_{1},\langle W, S\rangle \in \mathcal{C}_{2}\right\}$ will be called a fusion of \mathcal{C}_{1} and \mathcal{C}_{2}.

It is possible to transfer some theorems from monomodal to bimodal case. The monomodal system $S 5$ is characterized by the class of finite frames whose relation is an equivalence relation. We will need the following theorem (see Theorem 4.1 from [6]):
THEOREM 1. If the modal logics L_{1} and L_{2} are characterized by classes of frames C_{1} and C_{2}, respectively, and both classes are closed under the formation of disjoint unions and isomorphic copies, then the fusion $L_{1} \otimes L_{2}$ is characterized by $C_{1} \otimes C_{2}$.

Moreover, working with finite frames allows us to consider finite disjoint unions of frames only.
$S 5 \otimes S 5$ is the smallest bimodal system which contains the axioms $K_{i}, T_{i}, 4_{i}, B_{i}$ and is closed under the rule of Modus Ponens ($M P$) $\frac{\varphi \rightarrow \psi, \varphi}{\psi}$
and the rules of Necessitation $\left(R N_{i}\right) \frac{\varphi}{\square_{i} \varphi}$, for $i=1,2 . G r z .3 \otimes G r z .3$ is the smallest bimodal system which contains the axioms $K_{i}, G r z_{i}, D 1_{i}$ and is closed under the rule of Modus Ponens and the rules of Necessitation, for $i=1,2$. Monomodal logic Grz. 3 is characterized by the class of finite frames whose relation is a linear order. If we close this class under the formation of finite disjoint unions it will still characterize Grz.3. From the previous theorem, it immediately follows:

Corollary 2.
(i) The system $S 5 \otimes S 5$ is characterized by the class of finite frames $\mathfrak{B}=\left\langle V, S_{1}, S_{2}\right\rangle$ whose relations are equivalence relations.
(ii) The system $G r z .3 \otimes G r z .3$ is characterized by the class of finite frames $\mathfrak{B}=\left\langle V, S_{1}, S_{2}\right\rangle$ whose relations are linear orders, on every $S_{1}\left(\right.$ or $\left.S_{2}\right)-$ connected component, which is connected with respect to $S_{1}\left(\right.$ or $\left.S_{2}\right)$.

As mentioned before, if a formula φ is refuted in some frame, then φ is refuted in some connected part of this frame. Both classes from the previous corollary are closed under getting connected subframes. Hence, if φ is refuted in some frame from our class, then φ is refuted in some connected frame from our class. Therefore, both classes in the corollary above can be replaced by their subclasses consisting only of connected frames.

Countable frame adequate for $S 5 \otimes S 5$

Now we will describe the countable frame $\mathfrak{F}=\langle U, R, B\rangle$ which characterizes the system $S 5 \otimes S 5$. Set $U=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n} ; n \in\{2,3, \ldots\}\right\}, R$ and B are binary relations on U defined as follow:

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{n}\right) R\left(b_{1}, \ldots, b_{m}\right) \text { iff } \\
& \text { - } n=m=2 \text { or } \\
& \text { - } 2<m=n \text { is even and } a_{1}=b_{1}, \ldots, a_{n-2}=b_{n-2} \text { or } \\
& \text { - } m=n \text { is odd and } a_{1}=b_{1}, \ldots, a_{n-1}=b_{n-1} \text { or } \\
& \text { - } k=\min \{n, m\} \text { is odd, }|n-m|=1 \text { and } a_{1}=b_{1}, \ldots, a_{k-1}=b_{k-1} \text {. } \\
& \left(a_{1}, \ldots, a_{n}\right) B\left(b_{1}, \ldots, b_{m}\right) \text { iff } \\
& \text { - } m=n \text { is even and } a_{1}=b_{1}, \ldots, a_{n-1}=b_{n-1} \text { or } \\
& \text { - } m=n \text { is odd and } a_{1}=b_{1}, \ldots, a_{n-2}=b_{n-2} \text { or } \\
& \text { - } k=\min \{n, m\} \text { is even, }|n-m|=1 \text { and } a_{1}=b_{1}, \ldots, a_{k-1}=b_{k-1} .
\end{aligned}
$$

One can check that both R and B are equivalence relations and that \mathfrak{F} is connected. By R^{0} we denote the R-cluster which consists of all sequences of length 2. By $B^{n_{1}}$ we denote the B-cluster which consists of all sequences of length 2 and 3 beginning with n_{1}. $R^{n_{1}, n_{2}}$ denotes the R-cluster which consists of all sequences of length 3 and 4 beginning with n_{1}, n_{2}. Generally, for all $l \in\{1,3,5, \ldots\}, B^{n_{1}, \ldots, n_{l}}$ denotes the B-cluster containing all sequences of length $l+1$ and $l+2$ beginning with n_{1}, \ldots, n_{l}. Analogously, for all $l \in\{2,4,6 \ldots\}, R^{n_{1}, \ldots, n_{i}}$ denotes the R-cluster containing all sequences of length $l+1$ and $l+2$ beginning with n_{1}, \ldots, n_{l}. Let us note that both sets $R^{0} \cap B^{n_{1}}$ and $R^{0} \backslash B^{n_{1}}$ have infinitely many elements for each $n_{1} \in \mathbb{N}$. All sets $R^{n_{1}, \ldots, n_{k}} \cap B^{n_{1}, \ldots, n_{k-1}}, R^{n_{1}, \ldots, n_{k}} \backslash B^{n_{1}, \ldots, n_{k-1}}, B^{n_{1}, \ldots, n_{k+1}} \cap R^{n_{1}, \ldots, n_{k}}$ and $B^{n_{1}, \ldots, n_{k+1}} \backslash R^{n_{1}, \ldots, n_{k}}$ are infinite for each $k \in\{2,4,6, \ldots\}$. In other cases, the defined sets have empty intersection.
$R^{0} \cap B^{n_{1}}=\left\{\left(n_{1}, n_{2}\right) ; n_{2} \in \mathbb{N}\right\}$ for $n_{1} \in \mathbb{N}$
if l is odd:
$B^{n_{1}, \ldots, n_{l}} \cap R^{n_{1}, \ldots, n_{l}, n_{l+1}}=\left\{\left(n_{1}, \ldots, n_{l+2}\right) ; n_{l+2} \in \mathbb{N}\right\}$ for $n_{1}, \ldots, n_{l+1} \in \mathbb{N}$
if l is even:
$R^{n_{1}, \ldots, n_{l}} \cap B^{n_{1}, \ldots, n_{l}, n_{l+1}}=\left\{\left(n_{1}, \ldots, n_{l+2}\right) ; n_{l+2} \in \mathbb{N}\right\}$ for $n_{1}, \ldots, n_{l+1} \in \mathbb{N}$

Lemma 3. \mathfrak{F} is an $S 5 \otimes S 5$-frame.

Proof. Since R (correspond to \square_{1}) and B (correspond to \square_{2}) are equivalence relations we have $\mathfrak{F} \models T_{i}, 4_{i}, B_{i}$, for $i=1,2$.

Lemma 4. Every finite connected $S 5 \otimes S 5$-frame is a p-morphic image of \mathfrak{F}.

Proof. (Sketch) Let $\mathfrak{B}=\left\langle V, S_{1}, S_{2}\right\rangle$ be a finite connected $S 5 \otimes S 5$-frame. We choose an S_{1}-cluster and denote it by S_{1}^{0}. Let $S_{2}^{1}, S_{2}^{2}, \ldots, S_{2}^{m_{0}}$ denote all pairwise different S_{2}-clusters having nonempty intersections with S_{1}^{0}. m_{0} is the number of all those clusters. Next, let $S_{1}^{k_{1}, 1}, S_{1}^{k_{1}, 2}, \ldots S_{1}^{k_{1}, m_{k_{1}}}$ denote all pairwise different S_{1}-clusters having nonempty intersections with $S_{2}^{k_{1}}$ for $k_{1} \in\left\{1,2, \ldots, m_{0}\right\}$ where $m_{k_{1}}$ is the number of all those clusters. Suppose that $S_{2}^{k_{1}, \ldots, k_{l}}$ is already defined for some $l \in\{1,3,5, \ldots\}$ and $m_{k_{1}, \ldots, k_{l}}$ is the number of all pairwise different S_{1}-clusters having nonempty intersections with $S_{2}^{k_{1}, \ldots, k_{l}}$. We denote those clusters by $S_{1}^{k_{1}, \ldots, k_{l}, 1}, S_{1}^{k_{1}, \ldots, k_{l}, 2}, \ldots$, $S_{1}^{k_{1}, \ldots, k_{l}, m_{k_{1}}, \ldots, k_{l}}$. Analogously, if we have $S_{1}^{k_{1}, \ldots, k_{l}}$ for some $l \in\{2,4,6, \ldots\}$, by $S_{2}^{k_{1}, \ldots, k_{l}, 1}, S_{2}^{k_{1}, \ldots, k_{l}, 2}, \ldots, S_{2}^{k_{1}, \ldots, k_{l}, m_{k_{1}}, \ldots, k_{l}}$ we denote all pairwise different S_{2}-clusters having nonempty intersections with $S_{1}^{k_{1}, \ldots, k_{l}}$. This procedure will not stop in finitely many steps. Hence, every cluster will be named infinitely many times. Now let us denote all elements from V as follows:
$S_{1}^{0} \cap S_{2}^{k_{1}}=\left\{x_{1}^{k_{1}}, x_{2}^{k_{1}}, \ldots, x_{t_{k_{1}}}^{k_{1}}\right\}$ for $k_{1} \in\left\{1, \ldots, m_{0}\right\}$
Generally, if l is odd, for $k_{1} \in\left\{1, \ldots, m_{0}\right\}$ and $k_{i} \in\left\{1, \ldots, m_{k_{1}, \ldots, k_{i-1}}\right\}$ we put:
$S_{2}^{k_{1}, \ldots, k_{l}} \cap S_{1}^{k_{1}, \ldots, k_{l}, k_{l+1}}=\left\{x_{1}^{k_{1}, \ldots, k_{l+1}}, x_{2}^{k_{1}, \ldots, k_{l+1}}, \ldots, x_{\left.t_{k_{1}, \ldots, k_{l+1}}^{k_{1}, \ldots, k_{l+1}}\right\}}^{\}}\right.$
if l is even, for $k_{1} \in\left\{1, \ldots, m_{0}\right\}$ and $k_{i} \in\left\{1, \ldots, m_{k_{1}, \ldots, k_{i-1}}\right\}$ we put:
$S_{1}^{k_{1}, \ldots, k_{l}} \cap S_{2}^{k_{1}, \ldots, k_{l}, k_{l+1}}=\left\{x_{1}^{k_{1}, \ldots, k_{l+1}}, x_{2}^{k_{1}, \ldots, k_{l+1}}, \ldots, x_{t_{k_{1}}, \ldots, k_{l+1}}^{k_{1}, \ldots, k_{l+1}}\right\}$
where $t_{k_{1}, \ldots, k_{l+1}}$ is the number of elements in the intersections above. Every point will be named infinitely many times.

Now let us define a mapping $f: U \rightarrow V$:
$f\left(\left(n_{1}, \ldots, n_{l}\right)\right)=x_{z}^{k_{1}, \ldots, k_{l-1}}$ where $k_{1}=\min \left\{n_{1}, m_{0}\right\}$ and
$k_{i}=\min \left\{n_{i}, m_{k_{1}, \ldots, k_{i-1}}\right\}$ for $i \in\{2, \ldots, l-1\}$, and $n_{l}=z\left(\bmod t_{k_{1}, \ldots, k_{l-1}}\right)$.
For our proof, it is enough to show that f is a p-morphism. Every point from \mathfrak{B} belongs to intersection of two clusters and is named as $x_{z}^{k_{1}, \ldots, k_{b-1}}$.

It is easy to see that $x_{z}^{k_{1}, \ldots, k_{l-1}}=f\left(\left(k_{1}, \ldots, k_{l-1}, z\right)\right)$. The complete proof is in Appendix I. Let us consider the following three typical cases in the range of f (Pic.1-3):

- Case I (Pic.1) $S_{1}^{k_{1}, \ldots, k_{l-1}} \cap S_{2}^{k_{1}, \ldots, k_{l-1}, i} \neq \emptyset \neq S_{2}^{k_{1}, \ldots, k_{l-1}, i} \backslash S_{1}^{k_{1}, \ldots, k_{l-1}}$ for $i \in\{1,2\}$ and there is no more S_{2}-clusters which have nonempty intersection with $S_{1}^{k_{1}, \ldots, k_{l-1}}$. Then:

$$
\begin{aligned}
& f\left(R^{k_{1}, \ldots, k_{l-1}} \cap B^{k_{1}, \ldots, k_{l-1}, 1}\right)=S_{1}^{k_{1}, \ldots, k_{l-1}} \cap S_{2}^{k_{1}, \ldots, k_{l-1}, 1}, \text { and } \\
& f\left(R^{k_{1}, \ldots, k_{l-1}} \cap B^{k_{1}, \ldots, k_{l-1}, j}\right)=S_{1}^{k_{1}, \ldots, k_{l-1}} \cap S_{2}^{k_{1}, \ldots, k_{l-1}, 2} \text { for } j \geq 2
\end{aligned}
$$

- Case II (Pic.2) $S_{1}^{k_{1}, \ldots, k_{l-1}} \subsetneq S_{2}^{k_{1}, \ldots, k_{l-1}, 1}$. Then:

$$
f\left(R^{k_{1}, \ldots, k_{l-1}} \cap B^{k_{1}, \ldots, k_{l-1}, j}\right)=S_{1}^{k_{1}, \ldots, k_{l-1}} \text { for } j \in \mathbb{N}
$$

- Case III (Pic.3) $S_{2}^{k_{1}, \ldots, k_{l-1}, 1} \subsetneq S_{1}^{k_{1}, \ldots, k_{l-1}}, S_{1}^{k_{1}, \ldots, k_{l-1}} \cap S_{2}^{k_{1}, \ldots, k_{l-1}, 2} \neq \emptyset$ and there are no more S_{2}-clusters which have nonempty intersection with $S_{1}^{k_{1}, \ldots, k_{l-1}}$. Then:
$f\left(R^{k_{1}, \ldots, k_{l-1}} \cap B^{k_{1}, \ldots, k_{l-1}, 1}\right)=S_{2}^{k_{1}, \ldots, k_{l-1}, 1}$, and
$f\left(R^{k_{1}, \ldots, k_{l-1}} \cap B^{k_{1}, \ldots, k_{l-1}, j}\right)=S_{1}^{k_{1}, \ldots, k_{l-1}} \cap S_{2}^{k_{1}, \ldots, k_{l-1}, 2}$ for $j \geq 2$.

Pic. 1

Pic. 3

From Corollary 2, Lemma 3 and Lemma 4 it follows that:
Theorem 5. $S 5 \otimes S 5$ is characterized by the frame \mathfrak{F}.
REmark. In order to refute a formula in \mathfrak{F}, it is enough to consider finite subframes of \mathfrak{F}. This is shown by the following example.

Example. To show that $\square_{2}\left(\square_{1}\left(p \rightarrow \square_{2} p\right) \rightarrow p\right) \rightarrow\left(\diamond_{1} \square_{2} p \rightarrow p\right)$ is not theorem of $S 5 \otimes S 5$, it is sufficient to find a falsifying valuation v. This will be done at the point $(1,1)$. To falsify $\diamond_{1} \square_{2} p \rightarrow p$, we need $\Vdash_{\langle\mathfrak{F}, v,(1,1)\rangle} p$ and $\forall_{x \in B^{3}} \Vdash_{\langle\mathfrak{F}, v, x\rangle} p$. Putting $\forall_{x \in B^{1} \backslash\{(1,1)\}} \Vdash_{\langle\mathfrak{F}, v, x\rangle} p$ and $\exists_{x \in B^{2}} \Vdash_{\mathfrak{F}} p$, we validate $\square_{2}\left(\square_{1}\left(p \rightarrow \square_{2} p\right) \rightarrow p\right.$. Let $\mathfrak{F}^{\prime}=\left\langle U^{\prime}, R^{\prime}, B^{\prime}\right\rangle$ where $U^{\prime}=\{(1,1),(2,1),(3,1),(1,1,1),(2,1,1),(3,1,1)\}, R^{\prime}$ and B^{\prime} are restriction of R and B, respectively. Then \mathfrak{F}^{\prime} with valuation $v^{\prime}=\left.v\right|_{U^{\prime}}$ is the desired model.

Countable frame adequate for $\operatorname{Grz} .3 \otimes G r z .3$

Let $\mathfrak{D}=\langle U, R, B\rangle$ be a frame built of r, b (two distinct constants) and some rational numbers, i.e. $U=\left\{\left(p_{1} c_{1}, \ldots, p_{n-1} c_{n-1}, 0 c_{n}\right) ; n \in \mathbb{N}, c_{k} \in\right.$ $\left.\{r, b\}, c_{k} \neq c_{k+1}, p_{k} \in\left\{-\frac{n}{n+1} ; n \in \mathbb{N}\right\} \cup\left\{\frac{1}{n} ; n \in \mathbb{N}\right\} \cup\{-1\}\right\} .(0 r)$ and $(0 b)$ are the same element. Both R and B are binary relations on U (see the picture below):
$\left(p_{1} c_{1}^{1}, \ldots, p_{n-1} c_{n-1}^{1}, 0 c_{n}^{1}\right) R\left(q_{1} c_{1}^{2}, \ldots, q_{m-1} c_{m-1}^{2}, 0 c_{m}^{2}\right)$ iff

- $n=m, c_{1}^{1}=c_{1}^{2}, p_{s}=q_{s}$ for $s \leq n-2, c_{n-1}^{1}=r, p_{n-1} \leq q_{m-1}$ or
- $n=m-1, c_{1}^{1}=c_{1}^{2}, p_{s}=q_{s}$ for $s \leq n-1, c_{n}^{1}=r, 0<q_{m-1}$ or
- $n-1=m, c_{1}^{1}=c_{1}^{2}, p_{s}=q_{s}$ for $s \leq n-2, c_{m}^{2}=r, p_{n-1}<0$.
$\left(p_{1} c_{1}^{1}, \ldots, p_{n-1} c_{n-1}^{1}, 0 c_{n}^{1}\right) B\left(q_{1} c_{1}^{2}, \ldots, q_{m-1} c_{m-1}^{2}, 0 c_{m}^{2}\right)$ iff
- $n=m, c_{1}^{1}=c_{1}^{2}, p_{s}=q_{s}$ for $s \leq n-2, c_{n-1}^{1}=b, p_{n-1} \leq q_{m-1}$ or
- $n=m-1, c_{1}^{1}=c_{1}^{2}, p_{s}=q_{s}$ for $s \leq n-1, c_{n}^{1}=b, 0<q_{m-1}$ or
- $n-1=m, c_{1}^{1}=c_{1}^{2}, p_{s}=q_{s}$ for $s \leq n-2, c_{m}^{2}=b, p_{n-1}<0$.

It is easy to check that every R (or B)-connected part of the frame \mathfrak{D} is isomorphic to a frame $\mathfrak{K}=\left\langle U^{\prime}, \leq\right\rangle$ where $U^{\prime}=\left\{-\frac{n}{n+1} ; n \in \mathbb{N}\right\} \cup\left\{\frac{1}{n} ; n \in\right.$ $\mathbb{N}\} \cup\{-1,0\}$. The frame \mathfrak{K} is reflexive, transitive and converse weakly wellfounded (for every nonempty set $X \subset U^{\prime}$, there is an maximal element of X). According to $[3], \mathfrak{K} \models G r z$ and so $\mathfrak{D} \models G r z_{i}$ for $i=1,2 . U^{\prime}$ is linearly ordered so $\mathfrak{K} \models D 1$ and therefore $\mathfrak{D} \models D 1_{i}$ for $i=1,2$. Hence:

Lemma 6. \mathfrak{D} is an $G r z .3 \otimes G r z .3$-frame.
Lemma 7. Every finite connected $G r z .3 \otimes G r z .3$-frame is a p-morphic image of \mathfrak{D}.

Proof. Before giving a formal proof we present its main idea. Let $\mathfrak{B}=$ $\left\langle V, R^{\prime}, B^{\prime}\right\rangle$ be a finite connected $G r z .3 \otimes G r z .3$-frame and x an element from V. We name it x_{0}. Let z be an element in V such that $x_{0} R^{\prime} z$ and $z R^{\prime} t$ for no $t \in V$ other than z. We name it $x_{0,1 r^{\prime}}$. Let $x_{0, n r^{\prime}}$ be the name of an element from $V \backslash\left\{x_{0, n-1 r^{\prime}}\right\}$ which is directly before $x_{0, n-1 r^{\prime}}$ (with respect to R^{\prime}) and $x_{0} R^{\prime} x_{0, n r^{\prime}}$ (it can be x_{0}). $x_{0,1 b^{\prime}}$ and $x_{0, n b^{\prime}}$ are defined in the same way, with respect to B^{\prime}. Let $x_{0,-1 r^{\prime}}$ be another name for element x_{0} and $x_{0,-n r^{\prime}}$ be the name for the element in $V \backslash\left\{x_{0,-(n-1) r^{\prime}}\right\}$ which is the closest to $x_{0,-(n-1) r^{\prime}}$ (with respect to R^{\prime}) and $x_{0,-n r^{\prime}} R^{\prime} x_{0,-(n-1) r^{\prime}}$. Analogously for $x_{0,-1 b^{\prime}}$ and $x_{0,-n b^{\prime}}$. Now suppose that we have already defined $x_{0, \pm n_{1} c_{1}^{\prime}, \ldots, \pm n_{k} c_{k}^{\prime}}\left(c_{i}^{\prime} \in\left\{r^{\prime}, b^{\prime}\right\}\right.$ and $\left.c_{i}^{\prime} \neq c_{i+1}^{\prime}\right)$. $x_{0, \pm n_{1} c_{1}^{\prime}, \ldots, \pm\left(n_{k}+1\right) c_{k}^{\prime}}$, $x_{0, \pm n_{1} c_{1}^{\prime}, \ldots, \pm n_{k} c_{k}^{\prime}, 1 c_{k+1}^{\prime}}$ and $x_{0, \pm n_{1} c_{1}^{\prime}, \ldots, \pm n_{k} c_{k}^{\prime},-1 c_{k+1}^{\prime}}$ are defined analogously $\left(c_{k+1}^{\prime} \neq c_{k}^{\prime}\right)$. For every element x_{0} from V we define sets of successors and predecessors with respect to R^{\prime} and B^{\prime} :
$R_{x_{0, \pm n_{1} c_{1}^{\prime}, \ldots, \pm n_{k} b^{\prime}}^{+}}^{+}=\left\{z \in V ; x_{0, \pm n_{1} c_{1}^{\prime}, \ldots, \pm n_{k} b^{\prime}} R^{\prime} z\right\}$,
$R_{x_{0, \pm n_{1} c_{1}^{\prime}, \ldots, \pm n_{k} b^{\prime}}^{\prime}}=\left\{z \in V ; z R^{\prime} x_{0, \pm n_{1} c_{1}^{\prime}, \ldots, \pm n_{k} b^{\prime}}\right\}$,
$B_{x_{0, \pm n_{1} c_{1}^{\prime}}^{\prime}, \ldots, \pm n_{k^{r^{\prime}}}^{\prime}}^{\prime+}=\left\{z \in V ; x_{0, \pm n_{1} c_{1}^{\prime}, \ldots, \pm n_{k} r^{\prime}} B^{\prime} z\right\}$ and
$B_{x_{0, \pm n_{1} c_{1}^{\prime}}^{\prime}, \ldots, \pm n_{k} r^{\prime}}^{\prime-}=\left\{z \in V ; z B^{\prime} x_{0, \pm n_{1} c_{1}^{\prime}, \ldots, \pm n_{k} r^{\prime}}\right\}$.

$m_{x_{0, \pm n_{1} c_{1}^{\prime}, \ldots, \pm n_{k} n^{\prime}}^{B^{\prime}}}$ we denote the number of elements of the sets defined above, respectively.

Now let us define a mapping $f: U \rightarrow V$ such that $f\left(\left(0 c_{1}\right)\right)=x_{0}$ and $f\left(\left(p_{1} c_{1}, \ldots, p_{k+1} c_{k+1}, 0 c_{k+2}\right)\right)=x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}, o_{k+1} c_{k+1}^{\prime}}$ where $f\left(\left(p_{1} c_{1}, \ldots, p_{k} c_{k}, 0 c_{k+1}\right)\right)=x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}$ and:
a) $o_{k+1}=n_{k+1} \quad$ if $p_{k+1}=\frac{1}{n_{k+1}} \quad$ and $n_{k+1} \leq m_{x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}^{C_{k}^{\prime}}, ~}^{C^{\prime}+}$
b) $o_{k+1}=m_{x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}^{C_{k}^{\prime}}}$
if $p_{k+1}=\frac{1}{n_{k+1}}$
and $n_{k+1}>m_{x_{0, n_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}^{C_{k-1}^{\prime}+}}^{C_{0, o_{1} c_{1}, \ldots, o_{k} c_{k}^{\prime}}^{c_{1}}}$
c) $o_{k+1}=-n_{k+1}$
if $p_{k+1}=\frac{-n_{k+1}}{n_{k+1}+1}$
and $n_{k+1} \leq m_{x_{0, o} c_{1}^{\prime} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}^{C_{k}^{\prime}}$
d) $o_{k+1}=-m_{x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}^{C_{k}^{\prime}}}^{C_{0}^{\prime}-}$
if $p_{k+1}=\frac{-n_{k+1}}{n_{k+1}+1} \quad$ and $n_{k+1}>m_{x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}^{C_{k-1}^{\prime}}}$
e) $o_{k+1}=-m_{x_{0, o_{1}} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}^{C_{k}^{\prime}}$
if $p_{k+1}=-1$
We will show that f is a p-morphism. Let $x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}$ be an element from $V . x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}=f\left(\left(p_{1} c_{1}, \ldots, p_{k} c_{k}, 0 c_{k+1}\right)\right)$ where $p_{i}=\frac{1}{n_{i}}$ if $o_{i}=n_{i}$ or $p_{i}=\frac{-n_{i}}{n_{i}+1}$ if $o_{i}=-n_{i}$. Every R (or B) - connected part of the frame \mathfrak{D} is mapped onto some R^{\prime} (or B^{\prime}) - connected part of the frame \mathfrak{B} with preserving order. Below we consider two examples that show how to map initial elements of \mathfrak{D}. In Pic.1, $f((0 r))$ is not the first element of \mathfrak{B}. In Pic.2, $f((0 r))$ is the first element of \mathfrak{B}.

Of course each element has infinitely many names. In the first example (Pic.1) x_{0} is named $x_{0,-1 b^{\prime}}, x_{0,-1 r^{\prime}}, x_{0,3 b^{\prime}}, x_{0,3 r^{\prime}}$ among others. In the second example (Pic.2) x_{0} is named $x_{0,-1 b^{\prime}}, x_{0,-1 r^{\prime}}, x_{0,4 b^{\prime}}, x_{0,4 r^{\prime}}$ among others. For details check Appendix II.

From Corollary 2, Lemma 6 and Lemma 7 it follows that:
Theorem 8. Grz. $3 \otimes$ Grz. 3 is characterized by the frame \mathfrak{D}.
Remark. Let us mention that in order to refute a formula in \mathfrak{D} it is enough to consider finite subframes of \mathfrak{D}.

Example. To show that $\square_{1}\left(\square_{2}\left(p \rightarrow \square_{1} p\right) \rightarrow p\right) \rightarrow p$ is not a theorem of $G r z .3 \otimes G r z .3$ it is sufficient to find a falsifying valuation v. This will be done at the point $(0 r)$. We need to falsify p in the point $(0 r)(\nvdash\langle\mathcal{D}, v,(0 r)\rangle p)$. Putting $\forall_{n \in \mathbb{N}} \Vdash^{\left\langle\mathcal{D}, v,\left(\frac{1}{n} r, 0 b\right)\right\rangle} \underset{ }{ } p, \Vdash_{\left\langle\mathcal{D}, v,\left(\frac{1}{n_{0}} b, 0 r\right)\right\rangle} p$ and $\Vdash_{\left\langle\mathcal{D}, v,\left(\frac{1}{n_{0}} b, \frac{1}{m_{0}} r, 0 b\right)\right\rangle} p$ for some $n_{0}, m_{0} \in \mathbb{N}$ (let $n_{0}=m_{0}=1$), we validate $\square_{1}\left(\square_{2}\left(p \rightarrow \square_{1} p\right) \rightarrow p\right.$). Let $\mathfrak{D}^{\prime}=\left\langle U^{\prime}, R^{\prime}, B^{\prime}\right\rangle$ where $U^{\prime}=\{(0 r),(1 b, 0 r),(1 b, 1 r, 0 b),(1 r, 0 b)\}, R^{\prime}$ and B^{\prime} are restriction of R and B, respectively. Then \mathfrak{D}^{\prime} with valuation $v^{\prime}=\left.v\right|_{U^{\prime}}$ is the desired model.

References

[1] P. Blackburn, J. van Benthem, F. Wolter, Handbook of Modal Logic, Studies in Logic and Practical Reasoning, Volume 3.
[2] P. Blackburn, M. De Rijke, Y. Venema, Modal Logic, Cambridge University Press 2002.
[3] G. Boolos, The Logic of Provability, Cambridge University Press 1993.
[4] K. Fine, Logics Containing K4, The Journal of Symbolic Logic, Volume 39, Number 1 (March 1974), pp. 31-42.
[5] K. Fine, G. Schurz, Transfer Theorems for Multimodal Logics, B. J. Copeland (ed.), Logic and Reality, Clarendon Press, Oxford 1996, pp. 169-213.
[6] D. M. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-Dimensional Modal Logics: Theory and Applications, Studies in Logic and the Foundations of Mathematics, Volume 148.
[7] R. Goldblatt, Logics of Time and Computation, Center for the Study of Language and Information, CSLI Lecture Notes 7 (1992).
[8] M. Kracht, F. Wolter, Properties of Independently Axiomatizable Bimodal Logics, The Journal of Symbolic Logic, Volume 56, Issue 4 (December 1991), pp. 1469-1485.

Institute of Mathematics
University of Silesia
Bankowa 14
40-007 Katowice, Poland
e-mail: slawomir.kost@us.edu.pl

Appendix I (Complete proof of Lemma 4)

Our aim is to prove that mapping:
$f\left(\left(n_{1}, \ldots, n_{l}\right)\right)=x_{z}^{k_{1}, \ldots, k_{l-1}}$ where $k_{1}=\min \left\{n_{1}, m_{0}\right\}$ and
$k_{i}=\min \left\{n_{i}, m_{k_{1}, \ldots, k_{i-1}}\right\}$ for $i \in\{2, \ldots, l-1\}$, and $n_{l}=z\left(\bmod t_{k_{1}, \ldots, k_{i-1}}\right)$. is a p-morphism.

Let $x_{z}^{k_{1}, \ldots, k_{l-1}}$ be an element from V. Then $x_{z}^{k_{1}, \ldots, k_{l-1}}=f\left(\left(k_{1}, \ldots\right.\right.$, $\left.k_{l-1}, z\right)$). To show that the first condition is fulfilled, let $\left(n_{1}, \ldots, n_{p}\right)$, $\left(h_{1}, \ldots, h_{q}\right) \in U$ such that $\left(n_{1}, \ldots, n_{p}\right) R\left(h_{1}, \ldots, h_{q}\right)$.

- Case I ($p=q=2$)
$f\left(\left(n_{1}, n_{2}\right)\right) \in S_{1}^{0}$ and $f\left(\left(h_{1}, h_{2}\right)\right) \in S_{1}^{0}$. Then $f\left(\left(n_{1}, n_{2}\right)\right) S_{1} f\left(\left(h_{1}, h_{2}\right)\right)$.
- Case II $\left(2<p=q\right.$ is even and $\left.n_{1}=h_{1}, \ldots, n_{p-2}=h_{p-2}\right)$
$f\left(\left(n_{1}, \ldots, n_{p-2}, n_{p-1}, n_{p}\right)\right)=x_{z}^{k_{1}, \ldots, k_{p-2}, k_{p-1}}$ where $k_{1}=\min \left\{n_{1}, m_{0}\right\}$
and $k_{i}=\min \left\{n_{i}, m_{k_{1}, \ldots, k_{i-1}}\right\}$ for $i \in\{2, \ldots, p-1\}$ and
$n_{p}=z\left(\bmod t_{k_{1}, \ldots, k_{p-2}, k_{p-1}}\right)$
$f\left(\left(n_{1}, \ldots, n_{p-2}, h_{p-1}, h_{p}\right)\right)=x_{z^{\prime}}^{k_{1}, \ldots, k_{p-2}, k_{p-1}^{\prime}}$ where
$k_{p-1}^{\prime}=\min \left\{h_{p-1}, m_{k_{1}, \ldots, k_{p-2}}\right\}$ and $h_{p}=z^{\prime}\left(\bmod t_{k_{1}, \ldots, k_{p-2}, k_{p-1}^{\prime}}\right)$.
Both are elements of $S_{1}^{k_{1}, \ldots, k_{p-2}}$, so
$f\left(\left(n_{1}, \ldots, n_{p-2}, n_{p-1}, n_{p}\right)\right) S_{1} f\left(\left(n_{1}, \ldots, n_{p-2}, h_{p-1}, h_{p}\right)\right)$.
- Case III ($p=q$ is odd and $n_{1}=h_{1}, \ldots, n_{p-1}=h_{p-1}$)
$f\left(\left(n_{1}, \ldots, n_{p-1}, n_{p}\right)\right)=x_{z}^{k_{1}, \ldots, k_{p-1}}$ where $k_{1}=\min \left\{n_{1}, m_{0}\right\}$ and $k_{i}=$ $\min \left\{n_{i}, m_{k_{1}, \ldots, k_{i-1}}\right\}$ for $i \in\{2, \ldots, p-1\}$ and $n_{p}=z\left(\bmod t_{k_{1}, \ldots, k_{p-1}}\right)$
$f\left(\left(n_{1}, \ldots, n_{p-1}, h_{p}\right)\right)=x_{z^{\prime}}^{k_{1}, \ldots, k_{p-1}}$ where $h_{p}=z^{\prime}\left(\bmod t_{k_{1}, \ldots, k_{p-1}}\right)$.
Both are elements of $S_{1}^{k_{1}, \ldots, k_{p-1}}$, so
$f\left(\left(n_{1}, \ldots, n_{p-2}, n_{p-1}, n_{p}\right)\right) S_{1} f\left(\left(n_{1}, \ldots, n_{p-2}, n_{p-1}, h_{p}\right)\right)$.
- Case IV $\left(k=\min \{p, q\}\right.$ is odd, $|p-q|=1$ and $n_{1}=h_{1}, \ldots, n_{k-1}=$ h_{k-1})
Suppose that $k=q$.
$f\left(\left(n_{1}, \ldots, n_{p-1}, n_{p}\right)\right)=x_{z}^{k_{1}, \ldots, k_{p-1}}$ where $k_{1}=\min \left\{n_{1}, m_{0}\right\}$ and $k_{i}=$ $\min \left\{n_{i}, m_{k_{1}, \ldots, k_{i-1}}\right\}$ for $i \in\{2, \ldots, p-1\}$ and $n_{p}=z\left(\bmod t_{k_{1}, \ldots, k_{p-1}}\right)$ $f\left(\left(n_{1}, \ldots, n_{p-2}, h_{p-1}\right)\right)=x_{z^{\prime}}^{k_{1}, \ldots, k_{p-2}}$ where $h_{p-1}=z^{\prime}\left(\bmod t_{k_{1}, \ldots, k_{p-2}}\right)$.
Both are elements of $S_{1}^{k_{1}, \ldots, k_{p-2}}$, so
$f\left(\left(n_{1}, \ldots, n_{p-2}, n_{p-1}, n_{p}\right)\right) S_{1} f\left(\left(n_{1}, \ldots, n_{p-2}, h_{p-1}\right)\right)$.
Now suppose $f\left(\left(n_{1}, \ldots, n_{p}\right)\right) S_{1} x_{z_{1}}^{h_{1}, \ldots, h_{l}}$ and let $f\left(\left(n_{1}, \ldots, n_{p}\right)\right)=$ $x_{z_{2}}^{k_{1}, \ldots, k_{p-1}}\left(k_{1}=\min \left\{n_{1}, m_{0}\right\}, k_{i}=\min \left\{n_{i}, m_{k_{1}, \ldots, k_{i-1}}\right\}\right.$ and $\left.n_{p}=z_{2}\left(\bmod t_{k_{1}, \ldots, k_{p-1}}\right)\right)$.
- Case I (p is odd)
$x_{z_{2}}^{k_{1}, \ldots, k_{p-1}} \in S_{1}^{k_{1}, \ldots, k_{p-1}}$ and naturally $x_{z_{1}}^{h_{1}, \ldots, h_{l}} \in S_{1}^{k_{1}, \ldots, k_{p-1}}$. Therefore $x_{z_{1}}^{h_{1} \ldots, h_{l}}$ has another designation which defines its membership to $S_{1}^{k_{1}, \ldots, k_{p-1}}$. It can be $x_{z_{3}}^{k_{1}, \ldots, k_{p-1}}$ or $x_{z_{4}}^{k_{1}, \ldots, k_{p-1}, k_{p}}$ for some z_{3}, z_{4} and $k_{p} . x_{z_{3}}^{k_{1}, \ldots, k_{p-1}}=f\left(\left(n_{1}, \ldots, n_{p-1}, z_{3}\right)\right)$ and of course
$\left(n_{1}, \ldots, n_{p}\right) R\left(n_{1}, \ldots, n_{p-1}, z_{3}\right) . x_{z_{4}}^{k_{1} \ldots, k_{p-1}, k_{p}}=f\left(\left(n_{1}, \ldots, n_{p-1}, k_{p}, z_{4}\right)\right)$ and of course $\left(n_{1}, \ldots, n_{p}\right) R\left(n_{1}, \ldots, n_{p-1}, k_{p}, z_{4}\right)$.
- Case II (p is even)
$x_{z_{2}}^{k_{1}, \ldots, k_{p-1}} \in S_{1}^{k_{1}, \ldots, k_{p-2}}$ and $x_{z_{1}}^{h_{1}, \ldots, h_{i}} \in S_{1}^{k_{1}, \ldots, k_{p-2}}$. Again we use another name for $x_{z_{1}}^{h_{1}, \ldots, h_{i}}$ which defines its membership to $S_{1}^{k_{1}, \ldots, k_{p-2}}$. It can be $x_{z_{3}}^{k_{1}, \ldots, k_{p-2}}$ or $x_{z_{4}}^{k_{1}, \ldots, k_{p-1}}$ for some $z_{3}, z_{4} . x_{z_{3}}^{k_{1}, \ldots, k_{p-2}}=$ $f\left(\left(n_{1}, \ldots, n_{p-2}, z_{3}\right)\right)$ and $\left(n_{1}, \ldots, n_{p}\right) R\left(n_{1}, \ldots, n_{p-2}, z_{3}\right) . x_{z_{4}}^{k_{1, \ldots}, k_{p-1}}=$ $f\left(\left(n_{1}, \ldots, n_{p-1}, z_{4}\right)\right)$ and $\left(n_{1}, \ldots, n_{p}\right) R\left(n_{1}, \ldots, n_{p-1}, z_{4}\right)$.

Appendix II (Complete proof of Lemma 6)

Let us define the mapping $f: U \rightarrow V$ such that $f\left(\left(0 c_{1}\right)\right)=x_{0}$ and $f\left(\left(p_{1} c_{1}, \ldots, p_{k+1} c_{k+1}, 0 c_{k+2}\right)\right)=x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}, o_{k+1} c_{k+1}^{\prime}}$ where $f\left(\left(p_{1} c_{1}, \ldots, p_{k} c_{k}, 0 c_{k+1}\right)\right)=x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}$ and:
a) $o_{k+1}=n_{k+1}$
if $p_{k+1}=\frac{1}{n_{k+1}}$
and $n_{k+1} \leq m_{x_{0, o_{1} c_{1}^{\prime}}, \ldots, o_{k} c_{k}^{\prime}}^{C_{k-1}^{\prime}+}$
b) $o_{k+1}=m_{x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}^{C_{k}^{\prime}}}$
if $p_{k+1}=\frac{1}{n_{k+1}}$
and $n_{k+1}>m_{x_{0, n_{1}} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}^{C_{k}^{\prime}}$
if $p_{k+1}=\frac{-n_{k+1}}{n_{k+1}+1}$
and $n_{k+1} \leq m_{x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}^{C_{k-1}^{\prime}}}^{C_{k}^{\prime}}$
c) $o_{k+1}=-n_{k+1}$
d) $o_{k+1}=-m_{x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}^{C_{k}^{\prime}}, ~}^{C_{1}-}$
if $p_{k+1}=\frac{-n_{k+1}}{n_{k+1}+1} \quad$ and $n_{k+1}>m_{x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}^{C_{k-1}^{\prime}}}$
e) $o_{k+1}=-m_{x_{0, o_{1}} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}^{C_{k-1}^{\prime}}$
if $p_{k+1}=-1$

We will show that f is a p-morphism. Let $x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}$ be an element from $V . x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}=f\left(\left(p_{1} c_{1}, \ldots, p_{k} c_{k}, 0 c_{k+1}\right)\right)$ where $p_{i}=\frac{1}{n_{i}}$ if $o_{i}=n_{i}$ or $p_{i}=\frac{-n_{i}}{n_{i}+1}$ if $o_{i}=-n_{i}$. Now let us take $\left(p_{1} c_{1}^{1}, \ldots, p_{k} c_{k}^{1}, 0 c_{k+1}^{1}\right)$, $\left(q_{1} c_{1}^{2}, \ldots, q_{l} c_{l}^{2}, 0 c_{l+1}^{2}\right) \in U$ such that $\left(p_{1} c_{1}^{1}, \ldots, p_{k} c_{k}^{1}, 0 c_{k+1}^{1}\right) R\left(q_{1} c_{1}^{2}, \ldots, q_{l} c_{l}^{2}, 0 c_{l+1}^{2}\right)$.

- Case I $\left(k=l, c_{1}^{1}=c_{1}^{2}\left(c_{k}^{1}=c_{k}^{2}\right), p_{s}=q_{s}\right.$ for $s \in\{1, \ldots, k-1\}, c_{k}^{1}=r$, $\left.p_{k} \leq q_{k}\right)$
$f\left(\left(p_{1} c_{1}^{1}, \ldots, p_{k} r, 0 b\right)\right)=x_{0, o_{1} c_{1}^{1}}, \ldots, o_{k} r^{\prime}$.
$f\left(\left(q_{1} c_{1}^{2}, \ldots, q_{k} r, 0 b\right)\right)=f\left(\left(p_{1} c_{1}^{1}, \ldots, p_{k-1} b, q_{k} r, 0 b\right)\right)=$
$x_{0, o_{1} c_{1}^{1^{\prime}}, \ldots, o_{k-1} b^{\prime}, o_{k}^{\prime} r^{\prime}}$. It is easy to see that $o_{k} \leq o_{k}^{\prime}$ (because $p_{k} \leq q_{k}$).
$f\left(\left(p_{1} c_{1}^{1}, \ldots, p_{k} c_{k}^{1}, 0 c_{k+1}^{1}\right)\right) R^{\prime} f\left(\left(q_{1} c_{1}^{2}, \ldots, q_{k} c_{k}^{2}, 0 c_{k+1}^{2}\right)\right)$.
- Case II $\left(k=l-1, c_{1}^{1}=c_{1}^{2}\left(c_{k}^{1}=c_{k}^{2}\right), p_{s}=q_{s}\right.$ for $s \in\{1, \ldots, k\}$, $\left.c_{k+1}^{1}=r, 0<q_{l}\right)$
$f\left(\left(p_{1} c_{1}^{1}, \ldots, p_{l-1} b, 0 r\right)\right)=x_{0, o_{1} c_{1}^{1^{\prime}}, \ldots, o_{l-1} b^{\prime}}$.
$f\left(\left(q_{1} c_{1}^{2}, \ldots, q_{l-1} b, q_{l} r, 0 b\right)\right)=f\left(\left(p_{1} c_{1}^{1}, \ldots, p_{l-1} b, q_{l} r, 0 b\right)\right)=$
$x_{0, o_{1} c_{1}^{1^{\prime}}, \ldots, o_{l-1} b^{\prime}, o_{l}^{\prime} r^{\prime}}$. It is easy to see that $0<o_{l}^{\prime}$ (because $0<q_{l}$).
$f\left(\left(p_{1} c_{1}^{1}, \ldots, p_{l-1} b, 0 r\right)\right) R^{\prime} f\left(\left(q_{1} c_{1}^{2}, \ldots, q_{l} r, 0 b\right)\right)$.
- Case III $\left(k-1=l, c_{1}^{1}=c_{1}^{2}\left(c_{k}^{1}=c_{k}^{2}\right), p_{s}=q_{s}\right.$ for $s \in\{1, \ldots, k-1\}, c_{k}^{1}=r$, $p_{k}<0$)
$f\left(\left(p_{1} c_{1}^{1}, \ldots, p_{k-1} b, p_{k} r, 0 b\right)\right)=x_{0, o_{1} c_{1}^{1^{\prime}}, \ldots, o_{k-1} b^{\prime}, o_{k} r^{\prime}}$ and $o_{k}<0$.
$f\left(\left(q_{1} c_{1}^{2}, \ldots, q_{k-1} b, 0 r\right)\right)=f\left(\left(p_{1} c_{1}^{1}, \ldots, p_{k-1} b, 0 r\right)\right)=x_{0, o_{1} c_{1}^{1^{\prime}}, \ldots, o_{k-1} b^{\prime}}$.
$f\left(\left(p_{1} c_{1}^{1}, \ldots, p_{k-1} c_{k-1}^{1}, p_{k} c_{k}^{1}, 0 c_{k+1}^{1}\right)\right) R^{\prime} f\left(\left(q_{1} c_{1}^{2}, \ldots, q_{k-1} c_{k-1}^{2}, 0 c_{k}^{2}\right)\right)$.

Now suppose $f\left(\left(p_{1} c_{1}, \ldots, p_{k} c_{k}, 0 c_{k+1}\right)\right) R^{\prime} z$ for some $z \in V$ and let $f\left(\left(p_{1} c_{1}, \ldots, p_{k} c_{k}, 0 c_{k+1}\right)\right)=x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} c_{k}^{\prime}}$.

- Case I ($c_{k}^{\prime}=r^{\prime}$)
a) $z=x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k-1} b^{\prime}, o_{k}^{\prime} r^{\prime}}$ for some $o_{k} \leq o_{k}^{\prime}$.
$z=f\left(\left(p_{1} c_{1}, \ldots, p_{k-1} b, p_{k}^{\prime} r, 0 b\right)\right)$ for some $p_{k} \leq p_{k}^{\prime}$.
$\left(p_{1} c_{1}, \ldots, p_{k} c_{k}, 0 c_{k+1}\right) R\left(p_{1} c_{1}, \ldots, p_{k-1} b, p_{k}^{\prime} r, 0 b\right)$.
b) $o_{k}<0\left(p_{k}<0\right)$ and $z=x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k-2} r^{\prime}, o_{k-1} b^{\prime}}$.
$z=f\left(\left(p_{1} c_{1}, \ldots, p_{k-2} r, p_{k-1} b, 0 r\right)\right)$.
$\left(p_{1} c_{1}, \ldots, p_{k} c_{k}, 0 c_{k+1}\right) R\left(p_{1} c_{1}, \ldots, p_{k-2} r, p_{k-1} b, 0 r\right)$.
- Case II ($\left.c_{k}^{\prime}=b^{\prime}\right)$
$z=x_{0, o_{1} c_{1}^{\prime}, \ldots, o_{k} b^{\prime}, o_{k+1} r^{\prime}}$ for some $o_{k+1}>0$.
$z=f\left(\left(p_{1} c_{1}, \ldots, p_{k-1} r, p_{k} b, \frac{1}{o_{k+1}} r, 0 b\right)\right)$.
$\left(p_{1} c_{1}, \ldots, p_{k} c_{k}, 0 c_{k+1}\right) R\left(p_{1} c_{1}, \ldots, p_{k-1} r, p_{k} b, \frac{1}{o_{k+1}} r, 0 b\right)$.

