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Bulletin of the Section of Logic
Volume 42:3/4 (2013), pp. 183-198

Stawomir Kost

COUNTABLE FRAMES FOR BIMODAL LOGICS S5® S5
and Grz.3 ® Grz.3

Abstract

In this paper we consider bimodal logics S5® 55 and Grz.3RGrz.3. We construct
and describe two single countable frames which characterize systems S5® .55 and
Grz.3 ® Grz.3, respectively.

Introduction

Multimodal logics are widely studied. They find substantial applications
in computer science, in particular, to the knowledge representation (see
e.g. [6]). For a modal logic L, a frame F is called an L-frame if all theorems
of L are true in F. Let S be a class of L-frames. A modal logic L is
characterized (or determined) by S if S refutes all formulas which are
not theorems of L. If S = {F} then we say that L is characterized by
the frame F. Or F is adequate for L. It is well-known that monomodal
system S5 is characterized by the class of all finite frames whose relation
is an equivalence relation, and also by the infinite countable cluster (see
e.g. [1]). The system Grz.3 (also known as S4.3Grz, Grz.3 is equivalent to
S54.3Grz see e.g. [3]) is the smallest monomodal logic containing axiom K,
Dummett’s axiom O(Op — )V O(O¢ — ¢) and Grzegorczyk’s schema
O(0(p — Op) — ¢) — . This system is determined by the class of
finite frames whose relation is a linear order, and also by one infinite frame
{w,>) (see e.g. Goldblatt [7]). In monomodal logics, the completeness
theorem is often formulated for a class of frames. For some modal logics, it
is possible to replace the class with a single frame which can be countably
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infinite, as in the case of 55 and Grz.3. For bimodal logics, the problem of
existence of one appropriate frame is more complicated. We will consider
logics S5® .55 and Grz.3® Grz.3 which are fusions of S5 and 55 and Grz.3
and Grz.3, respectively (see [6]). According to transfer theorems from [8],
canonicity is preserved under the formation of fusion. The system S5® S5
is canonical, so one could consider canonical frame as a single frame for
55 ® S5. But canonical frames are not easy to be described and applied.
Moreover, usually they are uncountable. The system Grz.3 ® Grz.3 is not
even canonical (see [4]). We construct and describe two countable frames
which characterize systems S5® S5 and Grz.3®Grz.3, respectively. These
results have practical applications. Both defined frames will allow us to
find some of their finite subframes to reject non-theorems of S5 ® S5 or
Grz.3® Grz.3, respectively.

Preliminaries

Let £ and £, be propositional monomodal languages with modal operators
Oy and Og, respectively. Let £ 2 be propositional bimodal language with
both operators O; and O,. Bimodal logic L C L2 is called a fusion of
Ly C L4 and Lo C L4 if L is the smallest system containing L{U L. In this
case, we write Ly ® Lo instead of L (see [6]). Let N be the set of positive
integers {1,2,...}.

A Kripke frame for monomodal logic is a pair F = (W, R) where W
is a nonempty set and R is a binary relation on W (R is an accessibility
relation).

A Kripke frame for a bimodal logic is a triple F = (W, Ry, Ro) where W
is a nonempty set and Ry, Ry are accessibility relations. F = (W, Ry, Ro)
is connected if for every z,y € W and z # y there exists a sequence
(z1,...,25-1) of elements from W such that xSz, 2z1S%29,...,
xkfzskflxkfl, xk,lSky, where Sj S {R17 R27 R;17 R;l} fOI'j S {17 R If}
Let F be a frame and F1, . .., F, parewise disjoint connected parts of F. If
a formula ¢ is refuted in F, then ¢ is refuted in F; for some ¢ € {1,...,n}.
The other parts Fi,..., Fi_1, Fit1, ..., Fpn do not interfere with refutation
of ¢ in F;. Hence it is enough to consider connected frames only. The
relation |= is defined in a standard way (see [6]).

Below we list some axioms and corresponding to them conditions on
relations in frames (see for example [1] and [2]).
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K; Di(p—v) = (O,0—0;%) no condition

T; Oip — @ VexRiz (reflexivity)

4; O — 0;0;¢ Ve Vy Ve ((2Riy Ay R;z) = xR;z) (transitivity)
B; OO — VoVy(2R;y = yR;x) (symmetry)

D1, 0i(Osp =) VO (D9 — @) | VoV Vo ((2Riy AxRiz)= (yR;z V zRyy))
Grz; | 0;(0:(p—=0;0) =) = There is no infinite chain z1,z2,... with

xRz 1 and x5 # x5, for all j.

Given two frames § = (W, Ry, Ry} and B = (V, S, 55), a map f from W
onto V is called a p-morphism from § to B if, for all z,y € W and z € V,
it satisfies the following conditions:

(i) if 2Ry, then f(2)S;f(y)

(ii) if f(x)S;z, then there is y € W such that zR;y and f(y) = 2

fori=1,2.

Let f be a p-morphism from § to 8. Then f is called a p-morphism from
a model M = (F, V) to a model M= (B, ) if x € V(p) iff f(x) € U(p) for
every propositional variable p and x € W.

It is well-known that for all £; »-formulas ¢ and all z € W, (0, z) = ¢
iff (M, f(x)) = ¢ (see e.g. [6]). It follows that if B is a p-morphic image of
§ and § = ¢ then B = ¢ for every £; o-formula ¢. These definitions and
properties also have monomodal counterpart.

Consider two classes C; and Cy of frames that are closed under disjoint
unions and isomorphic copies. The set C; ® Co = {{(W, R, S); (W, R) €
Cy,{W,S) € Cy} will be called a fusion of C; and Cs.

It is possible to transfer some theorems from monomodal to bimodal
case. The monomodal system S5 is characterized by the class of finite
frames whose relation is an equivalence relation. We will need the following
theorem (see Theorem 4.1 from [6]):

THEOREM 1. If the modal logics Ly and Lo are characterized by classes
of frames Cy and Cy, respectively, and both classes are closed under the
formation of disjoint unions and isomorphic copies, then the fusion L1 ® Lo
is characterized by C1 ® Co.

Moreover, working with finite frames allows us to consider finite disjoint
unions of frames only.
55 ® S5 is the smallest bimodal system which contains the axioms

K;,T;,4;, B; and is closed under the rule of Modus Ponens (M P) %
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and the rules of Necessitation (RN;) DLip’ for i =1,2. Grz.3® Grz.3is

the smallest bimodal system which contains the axioms K;, Grz;, D1; and
is closed under the rule of Modus Ponens and the rules of Necessitation,
for i = 1,2. Monomodal logic Grz.3 is characterized by the class of finite
frames whose relation is a linear order. If we close this class under the
formation of finite disjoint unions it will still characterize Grz.3. From the
previous theorem, it immediately follows:

COROLLARY 2.

(i) The system S5 ® S5 is characterized by the class of finite frames

B = (V,51,59) whose relations are equivalence relations.

(i) The system Grz.3® Grz.3 is characterized by the class of finite frames
B = (V,51,5:) whose relations are linear orders, on every Sy (or S3) —
connected component, which is connected with respect to Sy (or Ss).

As mentioned before, if a formula ¢ is refuted in some frame, then
@ is refuted in some connected part of this frame. Both classes from the
previous corollary are closed under getting connected subframes. Hence,
if ¢ is refuted in some frame from our class, then ¢ is refuted in some
connected frame from our class. Therefore, both classes in the corollary
above can be replaced by their subclasses consisting only of connected
frames.

Countable frame adequate for S5 @ S5

Now we will describe the countable frame § = (U, R, B) which characterizes
the system S5® S5. Set U = {(a4,...,a,) eN*;ne {2 3,...}}, Rand B
are binary relations on U defined as follow:

(CL17 .. .7an)R(b17 ey bm) iff

en=m=2o0r

e 2<m=mnisevenand ay =by,...,a,_2=>b, o or

e m=mnisodd and a; =by,...,ap_1 =by_1 o1

[ ] k:min{m m} is Odd, |n—m| =1 and ay :bh...?ak,l :bkfl.
(a17...7an)B(b17...7bm) iff

e m=mniseven and a1 =by,...,ap_1 =by_1 or

e m=mnisoddand a; =by,...,ap_92=">b, o or

e k=min{n,m} is even, [n —m| =1 and a; = by,...,ap_1 = by_1.
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One can check that both R and B are equivalence relations and that § is
connected. By R° we denote the R-cluster which consists of all sequences of
length 2. By B™ we denote the B-cluster which consists of all sequences of
length 2 and 3 beginning with n;. R">"2 denotes the R-cluster which con-
sists of all sequences of length 3 and 4 beginning with n1, no. Generally, for
alll € {1,3,5,...}, B"» ™ denotes the B-cluster containing all sequences
of length [ + 1 and [ 4+ 2 beginning with nq,...,n;. Analogously, for all
le{2,4,6...}, R" "™ denotes the R-cluster containing all sequences of
length [+ 1 and [+ 2 beginning with nq,...,n;. Let us note that both sets
RN B™ and R°\ B™ have infinitely many elements for each n; € N. All
Sets R’ﬂl,...,’ﬂk m B’ﬂl,...,’ﬂk717 R’ﬂl,...,’ﬂk \ B’ﬂl,...,’ﬂk717 Bn17...7nk+1 m R’ﬂl,...,’ﬂk
and B™Mkt1 \ R7" gre infinite for each k € {2,4,6,...}. In other
cases, the defined sets have empty intersection.

RN B™ = {(ny,n3);ne €N} for ny € N

if [ is odd:
Breomeny Rtk — L(pg oo nggg);nyag € N} forng, ..o np €N
if [ is even:
Rrveominy Brbesmonit — f(pg o nggg);nyeg € N} forng, ... nyp €N

LEMMA 3. F is an S5 ® S5-frame.
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Proor. Since R (correspond to O;) and B (correspond to Os) are equiv-
alence relations we have § | T;,4;, B;, for i = 1,2. a

LEMMA 4. FEwvery finite connected S5 ® S5-frame is a p-morphic image

of §.

Proor. (Sketch) Let B = (V, 51, 52) be a finite connected S5® S5-frame.
We choose an S-cluster and denote it by S{. Let S3,5%,... 57" denote all
pairwise different Sy-clusters having nonempty intersections with S. mg is
the number of all those clusters. Next, let Skl’ Skl’ , Skl’mkl denote all
pairwise different Si-clusters having nonempty mtersectlons with 551 for
k1 €{1,2,...,mg} where my, is the number of all those clusters. Suppose
that Skl’ Sy is already defined for some [ € {1,3,5,...} and my, s, is
the number of all pairwise different Si-clusters having nonempty intersec-
tions with Sf“'"’kl. We denote those clusters by Sfl""’kl’l, Sfl""’kl’27 -
Skl’ R Analogously, if we have S]fl""’kl for some l € {2,4,6,...},
by Sf“'"’kl’l, Sf“'"’kl’z, - S;l""’kl’mkl """ " we denote all pairwise differ-
ent Ssy-clusters having nonempty intersections with Slf Lok Phig proce-
dure will not stop in finitely many steps. Hence, every cluster will be named
infinitely many times. Now let us denote all elements from V as follows:

SO Sk = [ah 2h 7...795;111} for ky € {1,...,mg}

Generally, if { is odd, for k1 € {1,...,mo} and k; € {1, ..., mp, &, ,} We
put:

ki1, ki ki,-kikipr ki, kit K1,k kh NES)

Sy NSy = {zy ) T e Ty kz+1}

if [ is even, for ky € {1,...,mp} and k; € {1,...,m, 1, ,} We put:
ky,....k kv,ookpkiyr g ki kier ki, ki kh NI

ST NSy ={= s Lo ERERE A

where i, . ., is the number of elements in the intersections above. Every
point will be named infinitely many times.
Now let us define a mapping f: U — V:

Fl(n1,...,m)) = 521 where ky = min{ny, mo} and

k; =min{n;, mg, g, tlorie {2, ..., [-1}, andny = 2( mod ¢, &, ,).

For our proof, it is enough to show that f is a p-morphism. Every point
from B belongs to intersection of two clusters and is named as xkl’ k-1
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It is easy to see that z=' M-t = f((k1, ..., ki_1,2)). The complete proof
is in Appendix 1. Let us consider the following three typical cases in the
range of f (Pic.1-3):

e Case I (PiC.l) Sf17---7k171 A 5«517---77617171' # 0 # 5«517---77617171' \ Sfu--wkza
for ¢ € {1,2} and there is no more Sy-clusters which have nonempty
intersection with S;*7*~* Then:

N Eipekio1,1
f(Rkh---Jﬂfl N Bk17~~~7kl—171) — 511 =1 5'21 -1

, and

f(Rkl,...,kl,l 0 Bkl,...,kl,l,j) _ S]flv'-wklfl n 5517---77617172 for j > 2.

o Case Il (Pic.2) Sy0 M=t ¢ ghtrokimul e
f(Rkl,...,kl,1 N Bkl,...,klfl,j) — S]flw-wkl—l fOI'j cN.
P Case III (PICS) S;h---Jﬂ—hl g S]flw-wkl—l’ Sflw-wkl—l 05517---7kl—172 #@

and there are no more Ss-clusters which have nonempty intersection
with ¢ "1 Then:

f(Rkl,...Jﬂ,l n Bkh...,kl,l,l) — 5517"'7]”71717 and

f(Rkl,...,kl,l N Bkl,...,kl,l,j) _ S]flvﬂwklfl A 5517---77617172 for j > 2.

Pic.1
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Pic.2

savmma,

..

From Corollary 2, Lemma 3 and Lemma 4 it follows that:
THEOREM 5. S55® 55 is characterized by the frame §.

REMARK. In order to refute a formula in §, it is enough to consider finite
subframes of §. This is shown by the following example.

EXAMPLE. To show that O5(01(p — Ozp) — p) — (O109p — p) is
not theorem of S5 ® 55, it is sufficient to find a falsifying valuation wv.
This will be done at the point (1,1). To falsify ¢109p — p, we need
W(S,v,(l,l)} P and szBa’ ”_<3,v,z> p. Putting szBl\{(l,l)} ”_<3,v,z> P and
Jpepz ¥z p, we validate Oy(04(p — Ogp) — p. Let § = (U, R, B’
where U’ = {(1,1),(2,1),(3,1),(1,1,1),(2,1,1),(3,1,1)}, R and B’ are
restriction of R and B, respectively. Then § with valuation v’ = v|y is
the desired model.
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Countable frame adequate for Grz.3 ® Grz.3

Let ® = (U, R, B) be a frame built of r,b (two distinct constants) and

some rational numbers, i.e. U = {(p1c1,...,Pn—1¢n—1,0c,);n € Ny¢ €
. 1.

{r.b}en # corr,pr € {—37n € N} U {;;n € N} U {—1}}. (Or) and (0b)

are the same element. Both R and B are binary relations on Uf(see the

picture below):

(pred, .. pn_1ct [ 0c) R(qic?, ... qm_1c2, 1,0c2) iff

e n=m, c%:c%,pszqs for s <n—2, c}hl:r,pn,l < @1 O

en=—m—-1c=c p,=qgfors<n—1,c =r 0<q, 1or

en—1l=m,cl=c}, ps=qsfors<n—2 ¢ =7 py 1 <0.

(plch v 7pn71071171700711)B(Q1C%7 cee qulcgnfhocgn) iff

en=mcl=c p;=qfors<n—2c | =bp, 1 <qn_1or

en=m-1l,cl=c p,=qg fors<n—1,c.=b0<gn or

en—l=mcl=c p,=q fors<n—-2¢ =bp, 1 <0.

(Irob) o~ (1b,1r,0b)— >
gl

@b,1r,0b)

-1r,0b)
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It is easy to check that every R (or B) — connected part of the frame D
is isomorphic to a frame & = (U’, <) where U’ = {—27;n € N} U {fine
N}U{-=1,0}. The frame 8 is reflexive, transitive and converse weakly well-
founded (for every nonempty set X C U’, there is an maximal element of
X). According to [3], & = Grz and s0 D |= Grz; for i = 1,2. U’ is linearly
ordered so & |= D1 and therefore @ }= D1; for i = 1,2. Hence:

LEMMA 6. D is an Grz.3 ® Grz.3-frame.

LEMMA 7.  FEvery finite connected Grz.3 @ Grz.3-frame is a p-morphic
image of ©.

Proor. Before giving a formal proof we present its main idea. Let B =
(V,R', B} be a finite connected Grz.3 ® Grz.3-frame and z an element
from V. We name it z5. Let z be an element in V such that zqR'z and
zR't for no t € V other than z. We name it xq 1,7. Let 2,/ be the name
of an element from V' \ {@g,_1,-} which is directly before =g 1, (with
respect to R') and o R'xo nr (it can be zp). o 1» and xo np are defined in
the same way, with respect to B’. Let 29 _1,» be another name for element
xo and zo,_n, be the name for the element in V' \ {xg _(,—1),»} which
is the closest to xo _(,,_1),» (With respect to R) and 2o . R'@o _(n—1)y -
Analogously for zo _1y and zg _n»r. Now suppose that we have already
defined Lo, £nicl,...,tnpel, (C; € {7”/7 b/} and C; 7é C;+1)~ Lo, tnycf,..., E(nr+1)c, >
xO,inlc/l,...,inkc;C,lc;€+l and xO,inlc/l,...,inkcic,flc;vH are defined analogously
(cpy1 7 ¢),)- For every element zq from V' we define sets of successors and
predecessors with respect to R and B':

!

+ _ . /
zo’inlc/l ’’’’’ dny b/ - {Z S Vv xO,inlc/l,...,inkb/R Z}v

!

— _ . /

z, dngel ., g bl - {Z S Vv zR xO,inlci,...,inkb/}v

14

+ — . /

%o, tnqef,., Tpr! {Z < vao,inlc/l,...,ink'r’/B Z} and

’ ’ ’
By mi+ mbi = mE+ and
B —
To,tnycf,. ., +ngr!
above, respectively.
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Now let us define a mapping f : U — V such that f((0c1)) = zo and

f((plch e 7Pk+10k+1700k+2)) = L0,01¢],...
flprer, - prer, 0cki1)) = 20,010, ey, a0
a) Op41 = Nkt if pryy = 1
N4
Ch 1+ : 1
b) Ok+1 = M, 1016] 50 C) if Pht1 = Nkt1
_ : _ —mE
C) Op41 = —Npt1 if pry1 = oo
Crmi— . Nkt
d) oy, 20.01¢{ 052} if pry1 = Rl
oL\ .
e) ok11 = T 0ol if ppo1 = —1

We will show that f is a p-morphism. Let g s, c; . o,

/ /
10k CleyOk+1C 4 1

where

Ch_1+
and Nk+1 S mzk !

Cr_1t

and ngq1 > Mag o
Ch_—

and Nk+1 S mzfol

ol
and npp1 > ma,

0,01(:/1,...,

.....

1€l

Lo

ool
opel,
ool

onc),

o be an element

from V. x0,0lc/l,...,Okcic - f((plcl7 cee 7]9k0k700k+1)) where Pi = niz if 0 = Ty
or p; = ;4% if o; = —n;. Every R (or B) — connected part of the frame

D is mapped onto some R’ (or B’) — connected part of the frame B with
preserving order. Below we consider two examples that show how to map
initial elements of ©. In Pic.1, f((0r)) is not the first element of B. In

Pic.2, f((0r)) is the first element of B.

Pic.1

Of course each element has infinitely many names.
(PICI) xo is named X0,—1b; T0,—1r/, 0,36, X0,3r/ AIMNONEZ others.

Pic.2

In the first example
In the

second example (Pic.2) zg is named g 1w, @0 1,7, Toap, To 4, AMONE

others. For details check Appendix II.

From Corollary 2, Lemma 6 and Lemma 7 it follows that:

THEOREM 8. Grz.3® Grz.3 is characterized by the frame D.

O

REMARK. Let us mention that in order to refute a formula in © it is
enough to consider finite subframes of ©.
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ExampLE. To show that O;(0s(p — O1p) — p) — p is not a theorem of
Grz.3® Grz.3 it is sufficient to find a falsifying valuation ». This will be
done at the point (0r). We need to falsify p in the point (07) (If 15+ (or)) P)-
PUtting VWEN ”_<@,v,(%r70b)> b, |F<@,v,(%0b70r)> p and |y<®,v,(%0b,%0r70b)> p for
some ng, mg € N (let ng = mqg = 1), we validate O1(02(p — O1p) — p).
Let @ = (U', R/, B’) where U’ = {(0r), (1b,0r), (1b,1r,0b), (17,0b)}, R’
and B’ are restriction of R and B, respectively. Then @’ with valuation
v’ = vy is the desired model.

References

[1] P.Blackburn, J. van Benthem, F. Wolter, Handbook of Modal Logic, Studies
in Logic and Practical Reasoning, Volume 3.

[2] P. Blackburn, M. De Rijke, Y. Venema, Modal Logic, Cambridge Univer-

sity Press 2002.

G. Boolos, The Logic of Provability, Cambridge University Press 1993.

[4] K. Fine, Logics Containing K4, The Journal of Symbolic Logic, Volume
39, Number 1 (March 1974), pp. 31-42.

[5] K. Fine, G. Schurz, Transfer Theorems for Multimodal Logics,
B. J. Copeland (ed.), Logic and Reality, Clarendon Press, Oxford 1996,
pp. 169-213.

[6] D.M. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-Dimensional
Modal Logics: Theory and Applications, Studies in Logic and the Foun-
dations of Mathematics, Volume 148.

[7] R. Goldblatt, Logics of Time and Computation, Center for the Study of
Language and Information, CSLI Lecture Notes 7 (1992).

[8] M. Kracht, F. Wolter, Properties of Independently Axziomatizable Bimodal
Logics, The Journal of Symbolic Logic, Volume 56, Issue 4 (December
1991), pp. 1469-1485.

=)

Institute of Mathematics
University of Silesia

Bankowa 14

40-007 Katowice, Poland
e-mail: slawomir.kost@us.edu.pl


mailto:slawomir.kost@us.edu.pl

Countable Frames for Bimodal Logics S5 ® 85 and Grz.3 ® Grz.3 195

Appendix I (Complete proof of Lemma 4)

Our aim is to prove that mapping:

Fl(ng,...,m)) = x50 M=1 where ky = min{ny, mo} and
k; = min{n;, myg, g, ,tforie {2,.. (-1}, and n; = 2( mod tx, g ).
is a p-morphism.

Let 25 "-1 be an element from V. Then z¥F-1 = Fl(ky, ...,

ki—1,2)). To show that the first condition is fulfilled, let (n4,...,np),
(hi,...,hg) € U such that (ny,...,np)R(h1,..., hy).

e Casel (p=¢g=2)
f((n17n2)) S S(lj and f((hh hg)) S S? Then f((n17n2))51f((h17 hg))

o Case Il (2<p=ygqisevenand ny = hy,...,np_ 9 = hp )
Riveorfip 2,k i
Flna, .. np_a,np_1,np)) = 2z 772" where ky = min{n{, mo}

and k; = min{n;, mg, &, .} forie{2,...,p—1} and

np - Z( mOd tk17-"7kp727kp71
Biyokp—2,ky,
fllna,...,np—a,hp_1,hp)) =2, P71 where
! _ 4 o
p—1 = mln{hpfh mkl,...,kp,g} and hp = 2/( mod tkl,...,kp,g,k;,l)
k1, kp—2
Both are elements of 5] , S0

f((n17 s 7np727np717np))51f((n17 sy Mp2, hp*l? hp))

o Caselll (p=gisoddand ny =h,...,np—1=hp_1)
Fl(n, .. onp_1,ny)) = 2p' "1 where ky = min{ni, mo} and k; =
min{n;, mg, &, forie{2,...,p—1} and

np = 2( mod tg, . g, )

flln, ... np_1,hyp)) = xlz}""’k’”’l where h, = 2/( mod tg, k)
Both are elements of S{ "1 so
f((n17 cee 7nP*27nP*17nP))Slf((n17 sy Np—2,Np—1, hp))

e Case IV (k = min{p,q} isodd, [p —q|=1and ny = hy,...,np_1 =

hi—1)
Suppose that k£ = ¢.
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fl(n, .. np_1,mp)) = 25 where ky = min{ny, mo} and k; —

min{n;, my, g, }forie{2,... ,p—1}andn, = z( mod tkl,...,kp,l)
ke shp—

F((n1, o np_o,hypq)) = )77 where hy_y = 2 mod tp, .k )

Both are clements of 51"~ 5o

f((TLh s 7np*27np*17np))51f((n17 sy p—2, hpfl))~

Now suppose f((ni,...,np))S1zhi" and let f((ny,...,np)) =

xlzg""’k’”’l (k1 = min{ny, mo}, k; = min{n;, my, %, .} and

np = 22( mod tr k. .))

e Casel (pis odd)
Eiyerkop By fop By kop
xz, T e STt and naturally @1t €SP0 There-
2117"'7’” has another designation which defines its membership
Ei,yokop Eiydop— Eiyeikp1,k
o S . can be z, or Zn, or some 23, 24
tshvpllt b 1y--9fp—1 177p17pf

and k. A f((n1,...,np_1, 23)) and of course

k1 yokip 1,k
(TL17. . .7TLp)R(TL17. . '7nP*17z3)' ZE;,&’ R f((n17~ <oy Mp—1, kp7z4))
and of course (n1,...,np)R(n1, ..., np—1, kp, 24).

fore x

e Case Il (p is even)
ke shp ke shp— Ky lip :
@z T € STV and x’zfllhl € Sy "2 Again we use an-
Kyl
other name for z/ Lt

1M which defines its membership to )

It can be 2ol 2 or 25"t for some zs, 24, @bl M =
b yookip

f((n1,. .. ,np_9,23)) and (nq,...,np)R(n1,. .., np_9, 23). 2z " 7" =

fllna,...,np—1,24)) and (n1,...,np)R(n1, ..., np_1, 24).

Appendix IT (Complete proof of Lemma 6)

Let us define the mapping f : U — V such that f((0c;)) = zo and
flprer, s Prs1crs1,06k42)) = To,0101 . sonef ont1c),, Where
f(prer, - prek, 0cki1)) = 20,0,0; . opep, a0
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a) Op1 = Nit1 if pry1 = nk1+1 and ng41 < mgi:jl ’’’’’ onel
, )
b) o1 = mgf,:jl _____ owel if pry1 = nk1+1 and ng41 > m%::’___’%ci
C) Opy1 = —Npt1 if pry1 = n;iﬁrl and ngy1 < mg(i:;l ’’’’’ onel,
, )
d) Of41 — —mg(;;l;l ..... onel if Dit1 = n;ilirl and Npt1 > mz(i;l;l ..... -
e) opy1 = —mg(i:;lmokcz if ppy1 = —1

We will show that f is a p-morphism. Let T001¢),... onc) be an element

from V. x0,0lc/l,...,Okcic - f((plcl7 cee 7]9k0k700k+1)) where Pi = niz if 0 = Ty
or p; = ;¢ if 0; = —n;. Now let us take (piet, ... 7pkc,£700,1f+1),

(qlc%17 . ..7qlcl217 0, ) eU suzch that )

(plcl7 s 7pkck7ock+1)R(qlcl7 - qiey, Ocl+1)'

e Casel (k:l, C% :C% (Cllf :C%)aps — ds for s € {17"'7k_1}7 Cllf =
Pr < qr)
f((plci -5 PET Ob)) - xO,z)lc%/,...,Ok’r’/'

fllgret, ., qur, 0b)) = f((prci, .. ., pr—1b, qrr, 0b)) =

s /
L0 oyel . op b0l It is easy to see that o < o} (because pr < gz ).

f((plci e 7pkcllg7 Ocllg+1))R/f((qlc%7 R qu%7OC%+1)).

e Case Il (k=1—1,cf =¢} (ct =c2), ps = qs for s € {1,...,k},
ci+1:r,0<ql)
f((plci s 7pl*1b7 07")) - x0701c%/,...,01716/'
f((qlc%7 s ql71b7 qr, Ob)) - f((plch s 7pl*1b7 qr, Ob)) -
L0011 o011t ol It is easy to see that 0 < o] (because 0 < g;).
f((plci s 7pl71b7 Or))R/f((qlc% ceeqiy Ob))

o Caselll (k—1=1, ct=c} (ci=c2), ps=qs for s € {1,...,k=1}, cf =,
PE < O)
fl(pict, ..., pr_1b,prr, 0b)) = Tor01el oo son 1 b sonr” and o < 0.
Fllqict, ... qu—1b,0r)) = f((pict, ..., pr—1b,0r)) = To,00el o son bl

f((plci cee 7pk710116717pk01147 OC%@+1))R/](((¢11C%7 ceey %—10%717 OC%))
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Now suppose f((pici, ..., prck,Oc 1)) R 2 for some z € V and let
f(prer, o prer, 0ck41)) = 0,010}, onc) -

o Casel (¢, =7r')
a) z = L0016, 05 b/,0,r fOT sOme 0 < 0}
z= f((pic1,...,pe—1b, pjr,0b)) for some py < pj.
(pici, - prcr, Ockg1 ) R(pic, ..., prp—1b,pyr, Ob).
b) o <0 (pk < O) and z = L0,01¢),...,00_27 ,0p_1b'"
z = f((pic1, ..., pe—27, pr—1b,07)).
(p1c1, ..o, prcr, Ocg 1) R(piet, ..., pe—2m, pr—1b,07).
e Case Il (¢, =b)
2 =T001¢) .. opb! opgqr’ LOT SOME 0 1q > 0.

z = f((pic1s- -, ph—17, Pib, =17, 0b)).

7 Opt1

(prcys - prcr, Ocps 1) R(prey, .., pe—1r, pib, 57—, 0b).
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