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ON TWO PROPERTIES OF STRUCTURALLY 
COMPLETE LOGICS

This is an abstract of the paper which will appear in Reports on Math
ematical Logic.

Preliminary notions

Let S = (S, f1,..., fn) sentential language C, possibly with index, denotes 
a standard consequence. Sb is the consequence operation determined by 
the rule of substitution. By L(C) we denote the set of all Lindenbaum's 
extensions of the consequence C (L(C) = {X C S : C(X) = S and C(X U 
{a}) = S for every a e X}). End(S) is the set of all endomorphisms 
of S. Let U be the consequence operation induced by a matrix U . The 
symbol E(U ) stands for the set of all formulas which are valid in U . We 
also write U C- U, iff U is a submatrix of U1. In this paper we assume 
that in every functionally complete matrix U(A, D) the set D is proper 
non-empty subset of the domain A of A. By a rule of inference we mean 
a non-empty subset of 2S x S. A rule r is finitary iff for every X C S and 
every a e S : if (X, a) e r, then X is finite. A rule r is elementary iff 
r = {(h(X), h(a)) : h e End(S)} for some X and for some a. In turn, CA 

stands for the consequence operation determined by A (A C S) and by the 
set of the rules R. For simplicity the symbol CR will be used instead of CR. 
Two particular sets of rules will be used: MP - the set which contains only 
the modus ponens and the Godel's rule. CL stands for the set of all classical 
tautologies. I is the set of all theses of the intuitionistic logic and J denotes 
the set of all theses of the Johansson's minimal logic. J G is the set of all
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theses of the weakest logic, in the family of logics containing Johansson's 
minimal logic, for which Glivenko's theorem holds (cf. [7], p. 46). S 4 is 
the set of all theses of the well-known modal logic. We say that C1 is C2 

proper (C G P(C2)) if and only if: C1(X) = S h(X) C C2(0), for every 
X C S and for every h G End(S).

1. Structural completeness versus Tarski's property

She notion of structural completeness has been introduced by W. A. Pogorzel
ski [6] and it reads as follows: the consequence C is structurally complete 
(C G SCpl) iff every structural and permissible rule of C is derivable in it.

If the set X is the only one Lindenbaum's extension of the consistent 
consequence C1 then we say that the consequence C1 has Tarski's property 
in relation to X (cf. [8], [1]).

Lemma 1.1. For every consequences Ci,C2,C3,C4 such that C4 < Ci < 
C2, C3 G P(C2) and C2(X) = C3(C4(X)) for every X C S we get: C1 G 
SCpl L(C1) = L(C2).

Proof. Let C1 g SCpl. Since C1 < C2,C1(X) = S and C2(XU{a}) = S 
for every a G X. Therefore, what we need to prove is C2(X) = S.

Suppose, to the contrary, that C3(C4(X)) = S. Since C3 G P(C2) 
then we get h(C4(X)) C C2(0) for every h G End(S). Consider the rule 
r1 = {(h(C4(X)),P) : p G S and h G End(S)}. The rule r1 is structural 
and permissible in C1 but it is not derivable in C1 , so C1 G SCpl which 
is impossible. Therefore L(C1) C L(C2). Now let X G L(C2). We have 
C2(X U {a}) = S for every a G X. Since C1 < C2, then C1(X) = S. 
Assume to the contrary that for some a G S-X we have C1(XU{a}) = S. 
In this case we consider the rule r2 = {(h(C4(X U {a})),p) : p G S and 
h G End(S)}. By assumption of the lemma we get C3(C4(X U {a})) = S. 
Since C3 G P(C2) then we obtain: h(C4(X U {a})) C C2(0) for every h G 
End(S). Thus the structural rule r2 is permissible in C1 . By assumption 
we have C4 < C1 so C1(C4(X U {a})) = S and therefore r2 is not derivable 
in C1 which contradicts the assumption.

Putting C3 = C2 and C4 = IdId(X) = X for every X C S) we get: 

Corollary 1.2. Let C1 < C2 and C2 G P(C2). If C1 G SCpl, then 
L(C1) = L(C2).
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The assumption C2 e P(C2) is fulfilled, for example, when C2 = U and U 
is a functionally complete matrix. If we add to the assumptions of Lemma 
1.1 that C2 is Post-complete (i.e. C2({a}) = S for every a e S — C2(0)), 
then L(C1) = {C2(0)}.

The assumption of Lemma 1.1 saying that C1 e SCpl, cannot be omit
ted. For example, if C3 = C2 = CMCLP , C4 = Id, then C1 e SCpl and 
L(C1) = L(C2) because S— {p1} e L(C1) — L(C2). By Lemma 1.1 we get:

Theorem 1.3. If C is structurally complete, Sb < C and C(CL) = CL, 
then C has Tarski's property (i.e. L(C) = {CL}).

This theorem can be generalized. For instance — ◦ Sb is Post-complete 
for any functionally complete matrix corresponding to S, thus if C is 
structurally complete, Sb < C and C(U(0)) = U(0), then by Lemma 
1.1 putting C1 = C, C2 = U ◦ Sb, C3 = U and C4 = Sb we get: 
L(C) = {—U(0)}.

These results give the connection between SCpl and Tarski's property.

2. Structural completeness and finite model property

Let KC = {U : U is a finite matrix corresponding to S such C < —U } that 
C < U }. By a theory of C we mean any set X of formulas satisfying 
X = C(X). We say that X has the finite model property corresponding to 
C (X has fmp(C)) iff X = f|{E(U) : X C E(U) and U e KC}.

Theorem 2.1. If C ◦ Sb is a structurally complete consequence operation 
and C ◦ Sb(0) has fmp(Co), then every theory of C ◦ Sb has fmp(Co).

Proof. Let Kco be the consequence operation determined by Kco 
(see [10]), i.e. KCo (X) = [}{U (X) : U e KCo}. Since C ◦ Sb(0) has 

fmp(Co) then we have C ◦ Sb(0) = Kcb (0). Thus, each rule permissible 
for KC^ is also permissible for C ◦ Sb. But KC^ is structural, C ◦ Sb 
is structurally complete and hence KC^ < C ◦ Sb. Moreover, we have 
KCo ◦ Sb(X) = Q{E(U) : X C E(U) A U e KCo} which follows from 

the equality U(Sb(X)) = p|{E(U1) : U1 C U} (comp. [9]) and from that 
U <U1 whenever U1 CU. We conclude that for every theory X of C ◦ Sb,
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X = K Co (Sb(X)) = n {E(U : X C E(U) AU e KCo. Therefore every 
theory X of C ◦ Sb has fmp(C^).

We know (cf. [2],[5]) that there are theories of CMI 2 P ◦ Sb which lack 
fmp(CMP), but for example CJP(0) and CMP(0) have fmp(CMP) (cf.

[1] A. Biela, On the so-called Tarski's property in the theory of Linden- 
baum's oversystems, Reports on Mathematical Logic, No. 7 (1976), 
pp. 3-20, Part I and No. 11 (1981), pp. 13-48, Part II.

[2] W. J. Blok, 2Ao varieties of Heyting algebras not generated by their 
finite members, Algebra Universalis 7 (1977), pp. 115-117.

[7]).  Moreover, R. I. Goldblatt proved that CMJGP has also fmp(CMP). 
Thus, by Theorem 2.1 a consequence CMA P if CMA P(0) has fmp(CMP) and 
there exists a set X being a theory of CMA P ◦ Sb which lacks fmp(CMP), 
then CMA P ◦ Sb is not SCpl. (For example CMJP ◦ Sb, CMI P ◦ Sb, CMJGP ◦ Sb 
are not structurally complete).
By virtue of [3], we get a theory X of CMmP□ ◦ Sb which has not fmp(CMP). 
Therefore, by Theorem 2.1, CCMP□ ◦Sb is not structurally complete if A C X 
and CMP□W has fmp(CMP). Hence for example CS4p□ ◦ Sb e SCpl. 
Since CMI P ◦ Sb e SCpl and there are theories of CMI P ◦ Sb which lack 
fmp(CMI P) then the assumption saying that C ◦ Sb e SCpl is essential. 
From Theorem 2.1 we get that the implication of Lemma 1.1 is not re
versible. Indeed, CMI P is not SCpl. On the other hand it is easy to prove 
that L(CMI P) = L ( CMCLP ) .

We say that C is finitely based by means of elementary rules iff C = 
CR for some finite set R of finitary and elementary rules. Let C be the 
structural consequence operation finitely based by means of elementary 
rules and X let be a theory of C◦Sb. We say that X is finitely axiomatizable 
iff X = C ◦ Sb(Xf) for some finite set Xf C X. Theorem 2.1 and Harrop's 
theorem on decidability (cf. [4]) yield:

Corollary 2.2. Let C be a structural consequence operation finitely 
based by means of elementary rules and such that C(0) has fmp(C). If 
C◦Sb e SCpl then every finitely axiomatizable theory of C◦ Sb is decidable.
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