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Abstract: Privileged structures is a term that is used in drug design to indicate a fragment that is
popular in the population of drugs or drug candidates that are in the application or investigation phases,
respectively. Privileged structures are popular motifs because they generate efficient drugs. Similarly,
some elements appear to be more efficient and more popular in catalyst design and development.
To indicate this fact, we use here a term privileged metal combination. In particular, Ru-based catalysts
have paved a bumpy road in a variety of commercial applications from ammonia synthesis to carbon
(di)oxide methanation. Here, we review Ru/Ni combinations in order to specifically find applications
in environmental nanocatalysis and more specifically in carbon (di)oxide methanation. Synergy,
ensemble and the ligand effect are theoretical foundations that are used to explain the advantages
of multicomponent catalysis. The economic effect is another important issue in blending metal
combinations. Low temperature and photocatalytic processes can be indicated as new tendencies in
carbon (di)oxide methanation. However, due to economics, future industrial developments of this
reaction are still questionable.

Keywords: Ru/Ni combinations; synergy; ensemble effect; ligand effect; environmental nanocatalysis;
low temperature carbon (di)oxide methanation; ultra-low temperature carbon oxide methanation

1. Introduction

With the ever increasing human population, responsibly interacting with the environment
is becoming more and more important. Although it is still not certain whether the anthropogenic
contribution is the cause of the climate changes that are occurring, there are good arguments that support
this point of view [1–3]. Our carbon footprint is an inevitable sign of human life and civilization, and the
paradox is that excess carbon could endanger our continued existence. In other words, environmental
sustainability should guide our current rules for managing the environment. Recently, there have been
a variety of chemical concepts that have been proposed to address these problems, in particular, the
green chemistry principle [4], which stresses the importance of the energy and material efficiency that
is associated with minimal risk and safe chemistry. Catalysis is at the center of this concept because by
definition it enables chemical processes to be enhanced by using only a small number of catalysts, i.e.,
substances that might increase the reaction rates. Accordingly, by using a sub-stoichiometric quantity
of a catalyst, we can manipulate the stoichiometric quantities of the reaction products. This means
that catalysis is an energy- and material-efficient method. Rodriguez-Padron et al. [5] estimated that
currently as much as ca. 90% of the processes that are used in food, health, fuel and energy–related
chemicals involve at least one catalytic step. The environmental catalysis concept involves issues such
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as the “catalytic decomposition of pollutants for air, water and soil remediation, hydrogen production,
CO2 reduction and biomass valorization” [5].

Environmental catalysis is of key importance for contemporary civilization. For example, a solution
for mitigating ecotoxic carbon dioxide overproduction could significantly help to develop more
sustainable chemistry. To illustrate the potential of this issue, let us imagine a future that is based on
the renewable fuels that are produced from CO2 in the refineries that are operated using economically
and environmentally friendly chemistry. This would make CO2 an asset rather than a waste [6].

The activity of catalysts critically depends upon its structure. Accordingly, the combination of
metals within a nanocatalyst provides an opportunity to extensively manipulate the structure, which is
a chance to discover unexpected reactivity and to investigate the structure–reactivity relationships.
This would enrich our knowledge about the design protocols of potentially active nanocatalyst systems
and would also produce novel active catalyst candidates. Bimetallic particles are an important form of
metal combination, which gained in importance with the inception of the Sinfelt concept of bimetallic
clusters [7,8]. Historically, the term bimetallic catalysis was coined by Exxon in 1960. Bimetallics can be
further organized as the crown-jewel, hollow, hetero, core-shell or alloyed structures. An example can
be supported bimetallic gold and palladium nanoparticles. An introduction to their synthesis, structure
and application in environmental catalysis can be found in [7]. Here we would like to illustrate how
popular some metal combinations in catalysis are, not only as formally bimetallic structures, but in
a more general sense of a multi-component systems. Recently, an increasing amount of interest has
been devoted to using such systems in environmental engineering. This especially includes carbon
(di)oxide methanation (compare Sections 5 and 6) or biomass conversion [9–11]. A variety of metal
combinations and structural forms have been reported in this area. In this review, we will focus on the
Ru/Ni system, which has shown a specifically intense application in nanocatalysis.

Drug design motifs, which are especially popular in the population of drug molecules, are labeled
as privileged structures. Accordingly, Ru and Ni can be seen as privileged elements in catalysis.
In particular, Ru-based catalysts have paved a bumpy road in a variety of commercial applications from
ammonia synthesis to carbon (di)oxide methanation. Ru/Ni combinations play a role in environmental
engineering and supporting energy storage from renewable sources (photovoltaic panels, tidal power
plants, wind turbines). The Ru/Ni activity in CO2 methanaton allows energy to be stored in a form of
methane (high energy product), which is used as a fuel for generating power in gas turbines. The stored
energy can be used not only to power the existing gas networks, but could be converted into electricity,
e.g., in steam and gas systems or could be pyrolyzed to H2 needed for hydrogen fuel cells. The Ru/Ni
bimetallic combination provides a variety of unique functional properties as the extension of the
operation time and the limitation of carbon deposit on the catalyst surface.

2. Theoretical Ground of Multicomponent Catalysis: Synergy, Ensemble and Ligand Effects

Metal combinations are an attractive way to design novel materials for catalytic applications.
One can understand the reason for this is to simply broaden the library of catalyst candidates.
Bimetallics is the simplest form of these multicomponent systems, and trimetallics are a clear extension
of this concept, e.g., [12]. A variety of uses of bimetallics in nanocatalysis can be found in [13].

Synergy is a term that was originally coined to describe an enhancement of the activity of a drug if
instead of a single medicine we use a combination of drugs. The pragmatic rule of “working together
is better than working alone” goes well beyond the search for synergy. For years, synergy was too
complex to be precisely controlled or designed [14]. The synergic interactions between metals enables
the properties of the original single–metal system to be significantly modified and/or improved in
multicomponent systems. Synergy can involve complex effects and it seems to be helpful to analyze
the meaning of this concept in catalysis.

In catalysis, synergy can be described much more precisely than in medicinal chemistry.
Accordingly, the terms ensemble and ligand effect have been developed to describe the molecular basis
of the interactions between the elements in a catalyst system blended (Figure 1). The most obvious
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forms of bimetallics are alloys. By alloying, the arrangement of the individual metals is modified.
The result is referred to as the ensemble effect. This generates for example the dilution of one of the
elements of a bimetallic system by a second element at the surface. An example is the dilution of
surface Pd by Au. With increasing surface Au coverage, the contiguous Pd ensembles disappear and
isolated Pd ensembles form. This effect explains the enhancement of the reaction rate via the formation
of highly active surface sites, e.g., isolated Pd pairs. In turn, the ligand effect describes the interactions
between the elements of a catalyst, e.g., the electronic perturbation of Pd by Au [15]. For a more
detailed discussion of the ensemble and ligand effects in bimetallics, the reader should see [16], and for
an extensive introduction to the synergistic effect in heterogenous nanocomposite catalysis, see [17].

From the theoretical point of view, a variety of effects can be observed when metals are combined.
Basically, these depend on metal properties. In Table 1, we list metal properties that can be important
when designing or blending catalysts especially methanation catalysts.
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Figure 1. A comparison of the synergy term that is used in pharmacology and catalysis. Synergy
allows classical drug design to be improved (a) by designing multi-component drugs (D1, D2) that can
interact with the multitarget (T1, T2) system in the polypharmacology model (b) or synergy model (c).
However, in catalysis (d), synergy usually involves enhancing the reactivity in a multi-reactant (R1, R2)
system. In a multi-component catalyst (E1; E2), E1 and E2 can interact via the ensemble effect and the
ligand effect. According to [14].

Table 1. Physicochemical properties of selected metals.

Metal a Covalent
Radius b [Å]

Surface Energies
c [J m−2]

Dissociation
Energy [kJ mol−1]

Ionization
Energy [kJ/mol]

Electronegativity
Pauling/Allen Scale Ref.

47Ag 1.45 1.246, 1.250 159.20 ± 2.89
I = 731.0

1.93/1.87 [18–22]II = 2070
III = 3361

46Pd 1.39 2.003, 2.050 <136.04
I = 804.4

2.20/1.58 [19–23]II = 1870
III = 3177

42Mo 1.54 2.907, 3.000 431,68 ± 0.96
I = 684.3

2.16/1.47 [19–22,24]II = 1560
III = 2618

77Ir 1.41 3.048, 3.000 357 ± 67,54 I = 880 2.20/1.68 [18–22]
II = 1600

78Pt 1.36 2.489, 2.475 302.96 ± 1.93
I = 870 2.28/1.72 [19–22,25,26]

II = 1791

76Os 1.44 3.439, 3.450 414.89 ± 77.19
I = 840 2.2/1.65 [18,20–22,26,27]

II = 1600

27Co 1.26 2.522, 2.550 ≤127
I = 760.4

1.88/1.84 [19–22,28]II = 1648
III = 3232

26Fe 1.32 2.417, 2.475 110.96 ± 8.68
I = 762.5

1.83/1.80 [19–22,29]II =78 1561.9
III = 2957

28Ni 1.24 2.380, 2.450 197.02 ± 0.19
I = 737.1

1.91/1.88 [19–22,30]II = 1753.0
III = 3395
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Table 1. Cont.

Metal a Covalent
Radius b [Å]

Surface Energies
c [J m−2]

Dissociation
Energy [kJ mol−1]

Ionization
Energy [kJ/mol]

Electronegativity
Pauling/Allen Scale Ref.

45Rh 1.42 2.659, 2.700 232.13 ± 0.05
I = 719.7

2.28/1.56 [19–22,31]II = 1740
III = 2997

44Ru 1.46 3.043, 3.050 192.97 ± 19.3
I = 710.2

2.2/1.54 [19–22,32,33]II = 1620
III = 2747

a Activity in CO2 methanation increases from Ag to Ru according to [34]. b Covalent radius for the specified metals
based on data from [35]. c Surface energies (experimental data) according to [36,37], respectively.

A variety of metal combination-related effects for noble metal-based nanoparticles were reviewed
in [38].

3. Environmental Catalysis Is Where Economy Drives Chemistry

Notably, early catalysis was connected with Sabatier, who investigated hydrogenation, in particular,
by discovering catalytic carbon dioxide hydrogenation [39]. Originally, this goal was not a matter of
environmental sustainability, but it was rather technological need and economy that inspired him.
First of all, this investigation pioneered modern catalysis. With the increasing number of people
inhabiting the limited area of the earth, the environmental issues have gained in importance. We are
aware today that the economic aspects are directly connected with environmental issues, which is
often a limiting factor in contemporary chemical technology. The environmental sustainability more
and more becomes an economic issue.

It is not a coincidence because the economy controls all aspects of human activity The importance
of the economic element in contemporary chemistry can be illustrated, for example, by the clear lexical
association of atoms and the economy. The atom economy is one of the rules of green chemistry. Although
the actual meaning of the atom economy is idiomatic and applies more to chemistry than to the economy,
the clear economy-based descriptors were inspired by this approach and were analyzed in the economic
dimension, e.g., the E factor—or related E + factor—the proportion of the waste material to desired
products [40]. The concept of circular chemistry that is integrated with a circular economy has recently
been proposed. In this concept, the sustainability of the chemical products is completed by optimizing
the resource efficiency by replacing the “take-make-dispose” technologies with circular processes.
Theoretically, this can provide us with a fully waste-free chemistry [41]. Sabatier’s dehydrogenation
research might point the way to economy-driven chemistry of carbon dioxide. He investigated the
activity of the freshly reduced Ni towards various gases at temperatures between 150 and 200 ◦C.
The inspiration was the discovery that nickel carbonyl could be formed by the action of carbon
monoxide on powdered nickel [42]. Between other reactants, carbon oxide and dioxide (carbon
(di)oxides) could be converted into methane in this reaction. Sabatier was aware of the catalytic action
of the metal by “a real chemical combination of the surface of the metal with the surrounding gas.” In his
Nobel prize lecture, he indicated the poisonous effect of any contaminations. For example, the traces
of thiophene blocked the hydrogenation of benzene into cyclohexane, if catalyzed by Ni. Accordingly,
metal catalysis resembles the action of “ferments”, i.e., the enzymes in living organisms [39].

In the language of today chemistry, in this study, a library of potential hydrogenation catalysts,
was screened. As a result, copper, cobalt, iron and platinum, which can fix free hydrogen or even “take
hydrogen from substances” (dehydrogenation), were discovered.

In the Sabatier model, the catalytic process on metal involves: the adsorption of the reactant on
the catalyst surface, a chemical reaction and the desorption of the products. The efficient conversion
of reactants into products must be a kind of homeostasis between the potential of a catalyst for the
adsorption of a reactant as well as the potential for the desorption of the products resulted. Otherwise,
the adsorbed reactant or product would block the surface and the reaction process could not proceed.
If we analyze the catalyst’s performance as a function of its adsorption energy, the activity of the metals
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can be aligned to a so-called volcano plot. This problem will not be discussed further, and the reader
should compare the many available references for a representative description of this effect, e.g., [43].

A variety of metals have been tested as catalyst candidates for CO2 methanation and many of
these from group VIIIB appeared to be efficient. The activity varied depending on investigations, e.g.,
Fisher et al. indicated the following order of decreasing activity: [44]

Ru > Ir > Rh > Ni > Co > Os > Pt > Fe > Mo > Pd > Ag,

while Graf et al. determined this as: [45]

Ru > Fe > Ni > Co > Rh > Pd > Pt > Ir.

For a number of examples of other data of this type, the reader should compare the references [46].
The differences between individual investigations are obvious. This results from the fact that

metal identification alone is not the only feature that determines the activity of a catalyst. In his
excellent tutorial review on understanding catalysis, Roduner uses the example of gold, which as
a bulk noble metal is an unreactive and, therefore, non-catalytic material. However, as nanogold,
its electronic structure resembles more that of a single gold atom and therefore the catalytic potential
of the gold nanoparticles is attractive. Accordingly, the size of the nanoparticles could be a parameter
that controls the catalytic performance of a material [46].

4. Ru and Ni—Privileged Elements for Catalysis

4.1. Ru and Ni for Catalysis

In the context of the applicability of ruthenium Ru in catalysis, its associations not only with Ni but
also with iron Fe and platinum Pt are worth of mentioning. Both Fe and Pt have numerous applications
in catalysis. In nature, Ru coexists with platinum and is obtained usually from the platinum ore. Ru is
a transition metal in group VIII of the periodic table. It is a polyvalent element coexisting in the same
family as iron. The configuration of Ru 4d75s1 compares to iron Fe 3d64s2. Accordingly, a number
of d electrons are higher in Ru than in Fe. In turn, shielding effect of the inner non-d electrons is
higher for Ru than Fe due to the larger distance from the nucleus of the 4d than 3d shell. Chemical
valences of Ru range from +1 to +8. Ru forms tetroxide (RuO4) and dioxide (RuO2). In the context of
environmental catalysis, the formation of a series of Ru carbonyls is worth mentioning. For further
details of catalysis-related Ru or its compounds and their properties, refer to [33]. The formation of
non-stoichiometric compounds by Ru compounds is worth mentioning in the context of catalysis [47].

In turn, nickel was portrayed by Sabatier as the “Spirited Horse” of Transition Metal Catalysis [48].
It is “delicate, difficult to control, and incapable of sustainable work.” [49]. Like spirited horses,
Ni catalysts are of great value. Ni appeared to be an efficient system that could be used in the
conversions of π-electronic systems. Moreover, a variety of nanotechnologies have been described for
the conjugation of Ni with carbon-based systems, in particular, nanotubes or graphene. A variety of
the technical advantages of Ni-based catalysts and the substantial catalysis-related properties of Ni can
be found in [48].

One of the advantages of Ni catalysis is the price of the catalysts. The prices in USD per 1 mmol
of the substance compares as NiCl2 0.1 < PdCl2 5.8 < PtCl2 32.2 < AuCl3 35.6 < RhCl3 51.8. [49].
With the increasing capabilities of computations, the design of catalysts has gained in importance.
Nørskov et al. drew our attention to the economic issues in catalyst design [50]. In Figure 2, we present
a comprehensive analysis of the problem of combining in catalytic CO2 methanation Fe and Ni, this time.
We can observe that there is an optimum that permits the Fe/Ni activity and its economic price to be
optimized [51]. Accordingly, beyond the physical interactions that occur when combining metals,
which result in an ensemble and the ligand effect, we can also see the economic effect. Additionally,
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because catalysis should work in industry, the economic effect of metal combination is at least equally
important as the action of ensemble or ligand effects.
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element catalysts to be increased (on the right). The catalyst can be optimized by overlapping the price
(left) and physical synergy (right). © Adopted from [50,51].

More sophisticated simulations were used recently to model the Ru catalytic systems. For example,
the outstanding performance of supported sub-nanometer ruthenium particles in the catalytic CO
methanation inspired theoretical investigations using gas-phase ruthenium clusters where Run

+

(n = 2–6) are employed as model systems to explain the reactivity of the system [52].

4.2. Physics of Metal Alloying, Combining of Ru and Ni

Combining metals can result in alloys that are either homogeneous or heterogeneous (consisting
of two or more phases). Unlike homogeneous alloys, which are formed of a uniform single phase,
heterogeneous alloys or unalloyed metals are multi-phase systems. Although a majority of catalytic
applications refer to homogeneous single-phase systems (compare Section 2 for the discussion of the
interactions between the elements in such systems), heterogeneous alloys or unalloyed systems can
also be useful catalysts, e.g., [53,54].

The interphase between metals (metal oxides) affects the material properties. Essential physical
effects are generated in this location. Therefore, bimetallic combinations are important for substantial
technologies as batteries, bimetals, preventing corrosion, or generating electricity. Specifically,
ruthenium forms alloys with the platinum group metals Ni, Pd, Pt and Co, W. Ru is widely used in
technology especially in the chemical industry (catalysts in the synthesis of long-chain hydrocarbons
or oxidation), automotive industry (car catalysts) and electrical engineering (Ru increases the hardness
of the platinum alloys that are used to create electrical contacts and to produce resistance wires) [55].
In non-platinum group bi- or multimetal alloys, a small amount of Ru is advantageous because it often
improves the quality of a material. For example, corrosion resistance in titanium alloys was increased
by introducing 0.1% Ru [56]. Ru/Ni bimetallic combinations are superalloys that are widely used in jet
engine turbines [57]. Several combinations that were based on Ni doped with Ru EPM-102 (3% Ru),
TMS-162 (6% Ru), TMS-138 (6% Ru) or TMS-174 (6% Ru) have also been described [58–60].

Liu et al. designed a bifunctional multicomponent system (NiIrRuAl NPNWs) that was used to
form nanowires that were useful for the electrochemical evolution of H2 and O2. This, in the form of
nanoporous nanowires, which were used as a catalyst in the presence of 0.1 M HClO4 at a cell voltage
of 1.464 V, enabled a complete water splitting [61]. The catalytic activity was enhanced by optimizing
three aspects: (I) the formation of an electrocatalyst alloy with a transition metal [8], (II) a synergistic
active Ru interaction with a stable Ir and (III) the presence of a hierarchical nanostructure and uniform
dispersion of the porous nanostructure [61].

Nickel-metal hydride (Ni-MH) batteries are well known as reversible energy storage systems
whose energy densities (360 MJ/m3) and capacity are among the highest that have been reported [62,63].
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Their main disadvantages are that they discharge faster and have a shorter service life than NiCd-based
systems. In Ni-MH, the cathode is a nickel plate and the anode is an alloy. The alloyed metals are these
capable to form metal hydride with hydrogen released during charging. NiMH batteries are widely
used in hybrid cars [62]. Willey et al. upgraded multicomponent alloys for the Ni-based cells by coating
the surface with various metals or metal oxides from the platinum group (Ru, Pt). The advantage of
such a structure was the productive hydrogen charge/discharge profile and the exceptional resistance
to deactivation in air [64,65].

Shi distinguished four main synergistic catalytic effects in nanocomposite materials [17]: (I) Mutual
coactivation of one component through the other component with the overall effect of enhancing
the catalytic properties of the nanocomposite; (II) in multistage reactions, the successive catalytic
interaction of two components to increase the activity or selectivity of the reaction; (III) in long term
catalytic reactions, the protective effect of one component over another by the degradation of the
main component. (IV) In complex redox reactions, the storage or the release of reagents by catalytic
assistance. The above-mentioned effects can overlap and a resulted complex network of additive or
inhibitory effects can affect the catalytic activity of nanosystems. Defects in the crystal lattice and the
presence of a bimetallic alloy in the vicinity of the nanosystem also play a role in catalytic activity of the
nanomaterial. Chen et al. showed that monometallic sites with higher activity are optimal locations
for a formation of bimetallic sites [66]. The downsizing effects on nanoparticles below the critical value
of 2.7 nm can involve changes of the adsorption force or oxidation state, and changes of the electronic
structure by a formation of two-metal alloys. The length of metal-metal bonds can be modified and
eventually geometric effects can be manipulated by a formation of heteroatom bonding. This results in
new electronic structures at the interface of bimetallic nanocomposites [67].

Actually, the multicomponent structures not only involve metals alone but also metal combinations
in compounds (i.e., the chemical compounds of the individual components), in particular, metal oxides.
The Schottky effect is an example of the physical effects that originate at the contact between neighboring
elements and could crucially influence catalytic activity of the systems (Figure 3).
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Figure 3. Schottky contacts in a Pt/TiO2 (anastase), which can strongly affect the catalytic properties of
a system (right). Additional charge-compensating electrons at the neighboring Ti atoms can occur as
a result of the presence of an HO impurity in TiO2 (left). Its location is below the conduction band
(CB). The transfer of the donor state electrons to the partially filled valence band (VB) of the metal (Pt)
creates a charge-polarized interface. © Adopted from [43,68].

Metal combination is an important manipulation in a variety of nanotechnologies. Electrochemical
condensers (EC) are an illustrative example. EC can be grouped into three main classes:
pseudocapacitors (redox supercapacitors), electrochemical double layer capacitors (EDLC) and
hybrid capacitors [67] whose functional properties are limited by parameters such as density and
maximum power output. Morag et al. described a symmetric pseudocapacitive supercapacitor that
was constructed of Ru/RuO2 applied on Ni foil with a polystyrene distance. This combination appeared
to be especially successful and had fast scan rates, a high-power density and an excellent capacitance
retention [69]. The advantageous pseudocapacitive properties of RuO2 resulted from its specific
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capacitance, high conductivity and stable cycling performances [70]. Similar to TiO and IrO2, RuO2

has low resistivity, which is advantageous for the absorption on the electrodes surface of non–typical
metallic materials [71].

A variety of examples of the use of Ru/Ni systems can be found in environmental engineering.
Jeong et al. described direct methanol fuel cells (DMFCs) that were active at 300–400 ◦C with the Ru/Ni
catalyst, whereas the Ru nanoparticles were sitting on the porous Ni mesh [57]. The ALD (atomic layer
deposition) method, which is used to construct the Ni/ALDRu system, appeared to be advantageous
for electrochemical oxidation of methanol because the above mentioned catalysts do not suffer from
poisoning in the presence of the CO leftovers [58,59]. In practice, Pt and Ru bimetallics are currently
being used for this purpose. The electronic interactions between these elements play a role in high
oxidation performance [57,60,61]. In turn, the Ru/Ni catalyst system in a DMFC (direct methanol
fuel cell) yields a highly efficient hydrocarbon oxidation and reforming below 500 ◦C limiting the
tendency for coal deposition [57,62,72]. Modafferi et al. constructed an intermediate temperature solid
oxide fuel cell (IT–SOFCs) in the auto–thermal reforming (ATR) process. When used for the steam
reforming (SR) of propane, the Ni–Ru/GDC catalyst (GDC—porous gadolinia–doped ceria electrode)
had the highest performance at 700 ◦C [63]. Similar systems have been investigated by Uchida et al. in
SOFCs (solid oxide fuel cell) that were fed with methane at 800 ◦C. In this particular case, up to 3%
nanometric Ru was dispersed in order to improve the anode efficiency. Although the coal deposition
in the ATR (auto-thermal reforming) process was confined in the SR process (steam reforming),
the catalyst was deactivated. The presence of oxygen increased the CO2 and H2O fractions but the
Ni–Ru/GDC (GDC—porous gadolinia–doped ceria electrode) catalyst remained highly active despite
the observed degasification of the coal deposits [64,65]. It has been found that Ru in the Ni–Ru/GDC
system in SOFC fed with C1–C4 gases promoted reforming. At the same time, coal deposition on
anode was decreased [17]. Similar systems were investigated by Lee at al., who constructed a thin film
single-chamber SOFC with a nano–dendric anode Ru–GDC (GDC—porous gadolinia–doped ceria
electrode). In fuel production, these systems had better catalytic activity and thermal stability than
the analogous Ni–GDC systems [66]. The cathode was constructed from perovskites using a sputter
or pulsed laser deposition (SSC or LSCF, respectively). In addition, the surface of the material was
covered with an Au nanocoating in order to improve its electrical conductivity [66].

4.3. Ru and Ni Combinations—Preparation and Applications

Alshammari et al. recently reviewed Au/Pd bimetallics in environmental nanocatalysis, which can
be synthesized by: impregnation, deposition–precipitation, chemical and physical vapor deposition,
co–precipitation or liquid preparation [7]. In Table 2, we have compiled the examples of preparation
and application of Ru/Ni systems.

Table 2. Preparation and application of Ru/Ni systems.

Composition Preparation Method Application Ref.

Ti-0.1 wt.% Ru, Ti-3 wt.% Al-2.5 wt.% V-0.1
wt.% Ru, Ti-6 wt.% Al-4 wt.% V-0.1 wt.% Ru melting increasing the corrosion resistance of

titanium alloys [56]

Ni-24 wt.% Al-2 wt.% Ru, Ni-9.4 wt.%
Al-5.7 wt.% Ru melting superalloys [57]

Ni-34.1 wt.% other metals-2 wt.% Ru melting superalloys [58]

Superalloy with 2–3 wt.% Ru melting improved the microstructural
stability of superalloys [59]

Ni alloys with 2–9 wt.% Ru melting superalloys [60]

Ni/Ru/RuO2
Ru deposition/Ni etching cycles,

electrochemical oxidation supercapacitor electrode [69]

NiAlIrRu nanoporous
nanowires-variable composition melting and dealloying electrocatalytic O/H evolution

reaction (OER/HER) [61]

Ru coated MnAlCoMnNi alloy reduction of Ru complex
improvement of the hydrogenation
properties of nickel-metal hydride

battery alloy
[62,64]

3.3 at% Pd–0.6 at% Ru coated commercial
nickel metal hydride electrode alloy

hydrazine reduction of
metal precursors

enhanced the kinetics at low
temperatures—nickel-metal hydride

battery alloy
[65]
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Table 2. Cont.

Composition Preparation Method Application Ref.

1.5% Ru/Ni selective etching with
nanoparticle transfer methanation [53]

1.44 wt.% Ru/Ni selective etching with
nanoparticle transfer methanation [73]

3% Ru–30% Ni/Ce0,9Zr0,1O2
one pot hydrolysis of metal

nitrates, calcination methanation [74]

1.0% Ru/Ni nanowires Ni precursor wet reduction, selective
etching with nanoparticle transfer methanation [75]

0.5% Ru–20%Ni/Al2O3 wet impregnation, calcination methanation [76]

1% Ru–15% Ni/CeO2-ZrO2
sequential wet

impregnation, calcination methanation/reverse water−gas shift [77]

Ni-Ru/ZrO2 wetness impregnation, calcination methanation [78]

0.39 wt.% Ru/NiMgAl co-precipitation, wet
impregnation, calcination CO2 methanation [79]

9.2 wt.% Ni–0.8 wt.% Ru/SiO2 impregnation, calcination CO methanation [80]
6.5 wt.% Ni@Ru-La2O3/SiO2 wetness impregnation, calcination CO methanation [81]
20 wt.% Ni–0.5 wt.% Ru/SiO2 wetness impregnation, calcination CO methanation [82]

5 wt.% Ni–1 wt.% Ru/Al2O3, 5 wt.% Ni–1
wt.% Ru/YSZ, 5 wt.% Ni–1 wt.%

Ru/MgAl2O4

wet impregnation, calcination dry reforming of methane [83]

15 wt.% Ni–0.5 wt.% Ru/MgO/Al2O3 wet impregnation, calcination dry reforming of methane [84]

14 wt.% Ni–1 wt.% Ru/CeO2-Al2O3
co-precipitation, wet

impregnation, calcination
hydrogen production via steam
reforming of simulated bio-oil [10]

10 wt.% Ni–1 wt.% Ru/C incipient-wetness
impregnation, calcination hydrogenolysis of lignin [11]

Ni-Ru (various loading)/C chemical reduction, galvanic
replacement, calcination catalic hydrogenation [85,86]

1 wt.% Ni–0.3 wt.% Ru/ZnSe: CGSe flux-assisted method, precipitation photocatalytic hydrogen evolution [87]

5. Carbon (Di)oxide Methanation

Carbon dioxide can be seen as a prospective raw material that enables the synthesis of a number
of carbonous products as well as being the basis for developing novel energy and fuel engineering
technologies. Carbon di(oxide) methanation is one of the potential solutions for atmospheric carbon
recirculation. CO2 methanation is often expressed by the following simple equation [88]:

CO2 + 4H2→ CH4 + 2H2O ∆H = −165 kJ/mol

Actually, this process involves a complex collection of reactions [89]. CO2 methanation is
thermodynamically favorable. However, economics, which is determined by energy issues, is
an important limitation of the current technologies [46,73,90,91]. Kinetics requires that catalysts be used
in methanation. Figure 4 illustrates that the thermodynamics K constants define a low temperature as
the most advantageous area for the process. The methanation of CO, solar CO or syngas (mixtures of
CO and H2) are related issues in environmental chemistry [7,73,92].
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6. Ru/Ni Catalysts for Low-Temperature CO2 (CO) Methanation

Ni-based systems are often a good compromise between a high catalytic activity and a low price,
which is important in the current chemical industry often based on heterogeneous catalysis [94–96].
However, nickel catalysts have a poor activity at low temperatures. They can also easily get
deactivated at high temperatures by sintering and/or coke deposition and are particularly susceptible
to sulfur poisoning, e.g., from H2S [80,91,97]. There are several solutions that can improve the
performance and life span of this type of catalyst, for instance, using a support [83,91,98–100], catalytic
promoters [91,99,100], coupling with other non–noble elements into alloys or spinel structures [100,101],
or composing bimetallics with noble metals [10,53,74–76,84]. Ruthenium is one of the most used
noble metals for this purpose. The addition of Ru to an Ni catalyst enhances the Ni reducibility and
dispersion on the catalyst surface [76,77] and increases the catalytic activity at a low temperature in CO2

methanation [53,74]. In dry reforming of methane (DRM), the addition of Ru modifies the interaction
between Ni and the support, improving catalyst stability and catalytic performance. The example
could be Ru–Ni/Al2O3. However, in this way we can also reduce the performance by decreasing
the interaction between Ni and the spinel as in Ru–Ni/MgAl2O4 [83]. In turn, it is suggested that
Ru atoms probably block the most reactive Ni sites (step–edge sites) in an Ni–Ru/MgAl catalyst,
leaving fewer reactive centers for methane activation (terraces), which favors carbon gasification and
prevents CO dissociation [84]. Furthermore, the H2:CO ratio in the RM is shifted to lower values
for ruthenium–nickel catalysts in compared to catalysts that contain only nickel particles [98]. A Ru
additive appeared also advantageous in the production of hydrogen via the steam reforming of
simulated bio-oil (glycerol, syringol, n–butanol, m–xylene, m–cresol and furfural), where Ru affects the
activity of the Ni/CeO2–Al2O3 catalyst and significantly improves the H2 yield, thereby increasing
the reducibility of the Ni2+ species and minimizing the carbon deposition [10]. The addition of Ru
into Ni catalysts often not only improves the overall conversion of a reactant but can also modify
the product distribution. In the hydrogenolysis of lignin, for example, the introduction of Ru into an
Ni/(activated carbon) catalyst increases the relative content of propyl guaiacol and propyl syringol
in the products [11]. Ru also plays a role in photocatalysis. For example, in the metal–organic
framework (Ru–UiO–67), photoelectrons are produced by Ru and delivered to the Ni(II) catalyst,
which ultimately produces Ni0 species for reducing CO2 to CO [102]. In turn, Ru catalyst can be
unblocked by photoexcitation of the adsorbed CO2 [103]. Furthermore, Chen et al. described recently
a photocatalyst consisting of monocrystalline metal selenide particles as a carrier and a bimetallic
Ni-Ru system as a cocatalyst for very efficient hydrogen evolution reaction (HER) from the water [87].
They reported that the optimal catalyst composition contains 1.0 wt. Ni and 0.3 wt.%. Ru, and for such
a material the apparent quantum yield (AQY) is 13.7% (highest H2 evolution rate of 2390 µmol h−1) at
420 nm, which is the highest value recorded so far in the literature for HER photocatalysts with an
absorption edge above 700 nm.

The properties of bimetallics are not a simple statistical result of the presence of these metals but
results from the synergy, i.e., ensemble or ligand effect [38,95], which was discussed in Section 3 of this
review. For the Ru–Ni catalysts, synergistic effects are highly probable because the metal particles are
small and highly dispersed. This results in additional surface active sites [11]. Activity and selectivity
is strongly dependent on the particle size [95]. In this context, Lange et al. constructed bimetallic
RuNi catalysts that were supported on ZrO2 in two series (low metal loading ca. 1 wt.% and higher
metal loading in the range of 2–4 wt.%) with equal molar metal amounts in CO2 methanation at
300–400 ◦C and 10 bar. The Ru–Ni bimetallic particles at the low loading on the support produced an
optimum Ru:Ni ratio for 53:47 compared to the samples with a 0:1, 15:85, 31:69 or 1:0 ratio. Interestingly,
for the higher metal loading, the bimetallic combinations turned out to be worse than the reference
Ru or Ni monometallic material [78]. In bimetallic systems, an equally important factor for catalytic
activity as well as for determining the course of the reaction path is the coordination of the atoms and
the atomic structure of the metal surface [104]. For instance, the surfaces of Ni or Ru–Ni catalysts
with low–coordinated atoms significantly reduce the global activation energy barrier for methane
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or methanol formation from CO and H2. In turn, the doped Ru-corrugated surface Ni (110) favors
methane formation with respect to methanol formation. This is schematically shown in Figure 5 where
the methane pathway is subject to less activation energy than the methanol pathway.
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Low temperature is an important requirement for the catalysis of an exothermic CO2 methanation
reaction [99]. At temperatures higher than 320 ◦C, a competitive reaction, that is, a reverse water gas
shift reaction (RWGS reaction), gets to be important [101,105]. This, in turn, leads to a formation of
by-products such as CO, which is undesirable. Furthermore, at a low temperature, the sintering of
the active species on the catalryst surface can be avoided [91,101]. A low temperature is also a clear
advantage in the context of energy consumption [73]. In Table 3, we listed some of the examples of the
Ru-Ni catalysts for low-temperature CO2 or CO methanation.

Table 3. Ru-Ni catalysts for low-temperature methanation of CO or CO2.

Catalysts (wt.%) Reagent WHSV
(L·g−1·h−1)

T (◦C) Conv. (%) TOF (h−1) Ref.

0.5% Ru/Al2O3 CO2 5.0 430 71 20.9 [106]
0.39% Ru/NiMgAl CO2 2.4 350 83 121.2 [79]

2.39% Ru/TiO2 CO2 3.0 350 88 260.6 [107]
2.41% Ru/TiO2 CO2 3.0 375 74 260.6 [107]

1.0% Ru/Ni nanowires CO2 15.0 179 100 24.8 [75]
1.5% Ru/Ni CO2 15.0 204 100 14.1 [53]

3% Ru-30% Ni/Ce0,9Zr0,1O2 CO2 2.4 230 98.2 no data [74]
1% Ru–15% Ni/CeZr CO2 24.0 350 53 no data [77]

0.5% Ru–20%Ni/Al2O3 CO2 56.0 350 84.9 no data [76]
9.2% Ni 0.8%Ru/SiO2 CO 3.6 320 100 2.24 [80]

6.5% Ni@Ru–La2O3/SiO2 CO 90.0 280 97 46.2 [81]
20% Ni 0.5% Ru/SiO2 CO 40.0 275 80 21.4 [82]

1.44% Ru/Ni CO 15.0 178 100 9.89 [73]
1.44% Ru/Ni CO 15.0 −7 1.2 0.12 [73]

Ru/Ni conjugate appeared highly active at low temperature (entry 6 in Table 3) [53]. Interestingly,
a special method for preparing a catalyst produces an unalloyed bimetallic construct [38,53,75,108].
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We recently discovered a nano–Ru/nanowired–Ni system that is active starting from ca. 125 ◦C (onset of
the reaction) and at 179 ◦C. In such conditions, 100% conversion and 100% selectivity to methane could
be achieved for the TOF value of 2479.2 [75]. A bimetallic catalyst was constructed of the oxidized
forms of the metals. On the surface of this catalyst, the Ni and Ru mainly occurred in the form of Ni
(OH)2 and RuO2. Up to ca. 92% of Ni was in the form of Ni2+ and only 4% was in the form of Ni0.
The presence of the non-stoichiometric oxides RuOx apparently plays a role in a high catalytic activity
of Ru/Ni systems because generally catalyst’s activity is often positively affected by non-stoichiometric
compounds [6]. The high activity of a nano–Ru/nanowired–Ni system is additionally supported due to
the high porosity of the Ni nanowires, which amounts to 99.31% and reaches a level of aerogels [75].

Catalyst support is an important issue for determining low-temperature performance [99,100].
The catalyst specified in Table 3 entry 7 is a good example. In CexZr1−xO2 (CeZrO2) supported Ni
or Ru–Ni catalysts, it is the high oxygen storage capacity of the CeZrO2 solid solution together with
the presence of highly dispersed metal particles that yields a high efficiency [74,100,109]. In addition,
the CexZr1–xO2 support is characterized by a large amount of the basic active sites, which improves the
chemisorption of the acidic CO2 and prevents carbon deposition on the catalyst [110]. The preparation
of the 3% Ru–30% Ni/Ce0,9Zr0,1O2 catalyst is also worth noticing here. The catalyst was prepared
using one-pot hydrolysis, which appeared to be better than the conventional impregnation method.
Accordingly, the catalyst that was prepared using this procedure produced a higher activity at low
temperatures and achieved a 98.2% CO2 conversion with 100% selectivity to methane at 230 ◦C,
where the catalyst was not deactivated after 300 h of operation [74].

The 1% Ru–15% Ni/CeZr and 0.5% Ru–20% Ni/Al2O3 catalysts (Table 3, entries 8 and 9) did not
have an impressive efficiency. However, they did have some important advantages. The 1% Ru–15%
Ni/CeZr system can be used in both CO2 methanation and RWGS reactions [77]. It is extremely stable
and maintained a CO2 conversion of 53% at 350 ◦C in methanation (selectivity to CH4: 93%), while
maintaining a CO2 conversion of 72% at 700 ◦C in a RWGS reaction (selectivity to CO: 91%). In turn,
the Ru–20% Ni/Al2O3 system (Table 3, entry 9) appeared to be very efficient in biogas upgrading
via direct CO2 methanation [76]. The initial concentration of CH4 that was contained in biogas only
slightly affected its catalytic efficiency. This technology seems to be strategic for eliminating the need
to separate CO2 from biogas, which usually takes place in the energy-intensive process of amine
absorption [111]. Another important method in environmental technology is CO methanation used in
syngas engineering, an important green chemistry concept. In Table 3, we listed several data for low
temperature CO methanation under an Ru/Ni catalysis. We reported recently ultra-low temperature
methanation of CO. Interestingly, the reaction can proceed in flow at as low temperatures as −7 ◦C
under Ru/Ni catalysis but not under Re/Ni or Pd/Ni [73].

7. Mechanisms for Carbon (Di)oxide Hydrogenation

Although lexically bimetallic combination refers to metals, in practice, these structures are
much more complex and can include various metal or metal oxide structures. An example of recent
investigations is the research on the mechanism of the hydrogenation performance of Ru/Ni/C
combinations. Ru–Ni–NiO or RuO2–NiO interfaces were formed and both had a completely different
mechanism. The Ru–Ni–NiO structures were reduced to metallic Ru (and to a lesser extent to metallic
Ni), which then produced the so-called hydrogen spillover [85,112–119], and as a result, there is a
synergic formation of Ru, Ni and NiO active sites. In turn, a similar synergy was not observed for the
RuO2–NiO structures [86].

Actually, metal oxides are active catalysts for carbon dioxide methanation. In Figure 6, we present
a reaction mechanism that engages metal oxides and reacting CO2 in forming carbonates or formats.
A comprehensive review of the problem of the catalytic hydrogenation of CO2 by metal oxides is
available in the review [6].
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8. Conclusions

Environmental catalysis is an important area of nanocatalysis. We reviewed here the different
catalysts of this type, finding application, in particular, in carbon (di)oxide methanation. Synergy,
ensemble and ligand effects are theoretical foundations explaining the advantages of multicomponent
catalysis. Economic effect in multicomponent catalysis is an important issue for bimetallics.
Low temperature (ultra-low temperature) and photocatalytic processes could be indicated as new
tendencies in carbon (di)oxide methanation. In drug design, the exceptional popularity and success of
some molecular fragments within the drug molecules population has a label of privileged structures.
In analogy to this term, the efficiency and outstanding physico-chemical performance of the Ru/Ni
combinations evoke a term privileged element for Ru and Ni in catalysis. In particular, Ru-based
catalysts paved a bumpy road in a variety of commercial applications from ammonia synthesis to
carbon (di)oxide methanation.
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