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Katarzyna Pichór, Ryszard Rudnicki and Marta Tyran-Kamińska

STOCHASTIC SEMIGROUPS AND THEIR APPLICATIONS

TO BIOLOGICAL MODELS

Dedicated to Professor Agnieszka Plucińska
on the occasion of her 80th birthday

Abstract. Some recent results concerning generation and asymptotic properties of
stochastic semigroups are presented. The general results are applied to biological models
described by piecewise deterministic Markov processes: birth-death processes, the evolu-
tion of the genome, genes expression and physiologically structured models.

1. Introduction

The main subject of our paper is stochastic semigroups. The stochastic
semigroups are strongly continuous semigroups of positive linear operators
acting on the space L1(E,Σ,m) and preserving the set of densities. Such
semigroups have been intensively studied because they play a special role in
applications. The book of Lasota and Mackey [28] is an excellent survey of
many results on this subject. Stochastic semigroups are generated by e.g.
partial differential equations (transport equations). Equations of this type
appear also in the theory of stochastic processes (diffusion processes and jump
processes), in the theory of dynamical systems and in population dynamics.

In this paper we present some recent results concerning the genera-
tion and the long-time behaviour of stochastic semigroups and illustrate
them by some biological applications. Presented results are based on pa-
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pers [9, 12, 31, 34, 35, 36, 38, 43] but the paper contains also some results
which have not been published yet, and new proofs of previous results. The
organization of the paper is as follows. Section 2 contains the definitions
of stochastic (Markov) operators, stochastic semigroups, and piecewise de-
terministic Markov processes. We also recall results concerning existence
of stochastic semigroups. In Section 3 we study asymptotic properties of
stochastic semigroups: asymptotic stability and sweeping. Theorems con-
cerning asymptotic stability and sweeping allow us to formulate the Foguel
alternative. This alternative says that under suitable conditions a stochastic
semigroup is either asymptotically stable or sweeping. In Section 4 we give
sufficient and necessary conditions for asymptotic stability and sweeping of
stochastic semigroups on the space l1. Section 5 contains applications of
general results to piecewise deterministic Markov processes arising from bio-
logical models (genes expression and physiologically structured models). We
also present a coagulation-fragmentation model of phytoplankton dynamics
[4]. This model leads to a nonlinear stochastic semigroup. The stochas-
tic version of this model based on a point process and its convergence to a
superprocess is given in [39, 40].

2. Stochastic semigroups

Let (E,Σ,m) be a measure space with σ-finite measure m. An operator
P on L1 = L1(E,Σ,m) is called positive if Pf ≥ 0 for f ≥ 0. A positive
linear operator P is called stochastic (or Markov) if ‖Pf‖ = ‖f‖ for each
non-negative function f ∈ L1 and it is called substochastic if ‖Pf‖ ≤ ‖f‖
for f ∈ L1. The family {P (t)}t≥0 of linear operators on L1 is called a
substochastic (stochastic) semigroup if it is a strongly continuous semigroup
and P (t) is a substochastic (stochastic) operator on L1 for every t. Let us
denote by D the subset of the space L1 which contains all densities

D = {f ∈ L1 : f ≥ 0, ‖f‖ = 1}.

Then a strongly continuous semigroup of linear operators {P (t)}t≥0 on L1

is a stochastic semigroup iff P (t)(D) ⊂ D for t ≥ 0.

Let {P (t)}t≥0 be a substochastic semigroup. The infinitesimal generator
(briefly the generator) of {P (t)}t≥0 is by definition the operator A with
domain D(A) ⊆ L1 defined as

D(A) = {f ∈ L1 : lim
t↓0

1

t
(P (t)f − f) exists in L1},

Af = lim
t↓0

1

t
(P (t)f − f), f ∈ D(A).

The operator A is closed with D(A) being dense in L1 and for λ > 0 the
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resolvent operator is

R(λ,A)f = (λ−A)−1f =
∞�

0

e−λsP (s)f ds for f ∈ L1.

The operator λR(λ,A) is substochastic and R(µ,A) ≤ R(λ,A) for µ > λ.
In applications an unbounded operator is usually given and one needs

to know whether it generates a stochastic (or substochastic) semigroup. A
typical situation considered in this paper is in the form of an abstract Cauchy
problem

(2.1) u′(t) = Au(t) +Bu(t), u(0) = f ∈ D.

In the case of a general L1-space we have the following result about pertur-
bations of substochastic semigroups [5, 7, 45] which is a generalization of the
Kato approach [23] to the study of forward Kolmogorov equations on l1. We
resume the l1 framework at the end of this section.

Theorem 1. Assume that (A,D(A)) is the generator of a substochastic
semigroup on L1 and B : D(A) → L1 is a positive operator such that

(2.2)
�

E

(Af(x) +Bf(x))m(dx) ≤ 0 for f ∈ D(A), f ≥ 0.

Then for each r ∈ (0, 1) the operator (A+rB,D(A)) is the generator of a sub-
stochastic semigroup {Pr(t)}t≥0 on L1 and the family of operators {P (t)}t≥0

defined by
P (t)f = lim

r↑1
Pr(t)f, f ∈ L1, t > 0,

is a substochastic semigroup on L1 with generator (C,D(C)) being an exten-
sion of the operator (A+B,D(A)):

D(A) ⊆ D(C) and Cf = Af +Bf for f ∈ D(A).

The generator (C,D(C)) is characterized through the resolvent operator

(2.3) R(λ,C)f = lim
N→∞

R(λ,A)
N
∑

n=0

(BR(λ,A))nf, f ∈ L1, λ > 0,

and the operator BR(λ,A) is substochastic for each λ > 0.

The semigroup {P (t)}t≥0 from Theorem 1 is called the minimal semi-
group related to A + B. The name is justified by the fact that it is the
smallest positive semigroup generated by an extension of (A+ B,D(A)): if
{T (t)}t≥0 is another such a semigroup then T (t)f ≥ P (t)f for all f ∈ D(A),
f ≥ 0. The minimal semigroup {P (t)}t≥0 satisfies the integral equation

P (t)f = S(t)f +
t�

0

P (t− s)BS(s)f ds
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for any f ∈ D(A) and t ≥ 0, where {S(t)}t≥0 is the semigroup generated by
(A,D(A)), and it is also given by the Dyson-Phillips expansion

P (t)f =
∞
∑

n=0

Sn(t)f, f ∈ D(A), t ≥ 0,

where

S0(t)f = S(t)f, Sn+1(t)f =
t�

0

Sn(t− s)BS(s)f ds, n ≥ 0.

Since equation (2.1) plays a crucial role in applications, it is very impor-
tant to know when the trajectories of the semigroup {P (t)}t≥0, i.e. the func-
tions t 7→ P (t)f , can be treated as (generalized) solutions of this equation.
This problem is non-trivial and we refer the reader to [7] for its thorough
study. If the generator of {P (t)}t≥0 is the closure (the minimal closed exten-
sion) of the operator (A+B,D(A)) then {P (t)}t≥0 is the only substochastic
semigroup of which the generator is an extension of (A + B,D(A)) and in
this case the trajectories of this semigroup are solutions of (2.1). Our next
result provides several sufficient and necessary conditions for the genera-
tor of the minimal semigroup {P (t)}t≥0 to be the closure of the operator
(A + B,D(A)). It should be noted that in the case of l1 space Theorem 2
(or rather Corollary 1) gives the Kato result [23, Theorem 3] (see also [21,
Section 23.12]).

Theorem 2. [43, 44] Let λ > 0. Under the assumptions of Theorem 1 the
following conditions are equivalent:

(1) The generator of {P (t)}t≥0 is the closure of (A+B,D(A)).
(2) For all f ∈ L1

lim
n→∞

‖(BR(λ,A))nf‖ = 0.

(3) If for some f ∈ L∞, f ≥ 0, we have (BR(λ,A))∗f = f then f = 0,
where (BR(λ,A))∗ denotes the adjoint of BR(λ,A).

(4) m{x ∈ E : fλ(x) > 0} = 0, where

fλ(x) = lim
n→∞

(BR(λ,A))∗n1(x).

(5) The operator BR(λ,A) is mean ergodic, i.e., for every f ∈ L1

lim
n→∞

1

n

n
∑

k=0

(BR(λ,A))kf exists in L1.

Remark 1. It might be difficult to check conditions (1) or (2). However,
one can check (5) by showing that there is a mean ergodic substochastic
operator K such that Kf ≥ BR(λ,A)f for all f ∈ L1, f ≥ 0, or that there
is f ∈ L1, f > 0 a.e., such that BR(λ,A)f ≤ f (see [31, 43]).
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Remark 2. Note that (see e.g. [44]) the generator of {P (t)}t≥0 is the
operator (A+B,D(A)) if and only if for some λ > 0

lim
n→∞

‖(BR(λ,A))n‖ = 0.

In particular, if B is a bounded operator then this condition holds.

Corollary 1. Assume that (A,D(A)) is the generator of a substochastic
semigroup on L1 and B : D(A) → L1 is a positive operator such that

(2.4)
�

E

(Af(x) +Bf(x))m(dx) = 0 for f ∈ D(A), f ≥ 0.

Let {P (t)}t≥0 be the minimal semigroup related to A+B. Then {P (t)}t≥0 is
stochastic if and only if one of the equivalent conditions of Theorem 2 holds.

Proof. From (2.3) and (2.4) it follows that for each nonnegative f ∈ L1 we
have (see [43, Section 3])

λ‖R(λ,C)f‖ = ‖f‖ − lim
n→∞

‖(BR(λ,A))nf‖.

The substochastic semigroup {P (t)}t≥0 is stochastic if and only if the oper-
ator λR(λ,C) is stochastic for some λ > 0 (see e.g. [28, Section 7.8]).

A lot of biological processes changes in a jump or switch-like way, e.g.
the size of a cell during division and activation or inactivation of genes. A
typical approach is to use piecewise deterministic stochastic processes with
jumps. We now consider piecewise deterministic Markov processes intro-
duced by Davis [13] and show how they are connected with substochas-
tic semigroups. We restrict our considerations to processes without “active
boundaries”. Let E be a Borel subset of a Polish space (separable com-
plete metric space) and B(E) be the Borel σ-algebra. We consider three
characteristics (π, ϕ,J ):

• A semi-flow π : R+ × E → E on E, i.e. π0x = x, πt+sx = πt(πsx) for
x ∈ E, s, t ∈ R+, and the mapping (t, x) 7→ πtx is continuous.

• A jump rate function ϕ : E → R+ which is Borel measurable and such
that for every x ∈ E, t > 0, the function s 7→ ϕ(πsx) is integrable on
[0, t). We additionally assume that

(2.5) lim
t→∞

t�

0

ϕ(πsx)ds = +∞ for all x ∈ E.

• A jump distribution J : E×B(E) → [0, 1] which is a stochastic transition
kernel such that J (x, {x}) = 0 for all x ∈ E.
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We first briefly describe the construction of the piecewise deterministic
Markov process (PDMP) X = {X(t)}t≥0 with characteristics (π, ϕ,J ) (see
e.g. [13, 14] or [43, Section 5.1] for details). Define the function

(2.6) Fx(t) = 1− exp{−
t�

0

ϕ(πsx)ds}, t ≥ 0, x ∈ E,

and note that the assumptions imposed on ϕ imply that Fx is a distribution
function of a positive and finite random variable for every x ∈ E. Let t0 = 0
and let X(0) = X0 be an E-valued random variable. For each n ≥ 1 one can
chose the n-th jump time tn as a positive random variable satisfying

Pr(tn − tn−1 ≤ t|Xn−1 = x) = Fx(t), t ≥ 0,

and define

X(t) =

{

πt−tn−1(Xn−1) for tn−1 ≤ t < tn,

Xn for t = tn,

where the n-th post-jump position Xn is an E-valued random variable such
that

Pr(Xn ∈ B|X(tn−) = x) = J (x,B),

and X(tn−) = limt↑tn X(t) = πtn−tn−1(Xn−1). In this way, the trajectory
of the process is defined for all t < t∞ := limn→∞ tn and t∞ is called the
explosion time. To define the process for all times, we set X(t) = ∆ for
t ≥ t∞, where ∆ /∈ E is some extra state representing a cemetery point
for the process. The PDMP {X(t)}t≥0 is called non-explosive if Px(t∞ =
∞) = 1 for all x ∈ E, where Px is the distribution of the process starting at
X(0) = x.

We next recall the relation between PDMPs and substochastic semi-
groups on L1 = L1(E,B(E),m), where m is a σ-finite measure. We assume
that there is a stochastic operator P on L1 which is the transition operator
corresponding to J , i.e.

�

E

J (x,B)f(x)m(dx) =
�

B

Pf(x)m(dx) for all B ∈ B(E), f ∈ D,

and that there is a substochastic semigroup {S(t)}t≥0 on L1 satisfying

(2.7)
�

E

e−
	
t

0 ϕ(πrx)dr1B(πtx)f(x)m(dx) =
�

B

S(t)f(x)m(dx)

for all t ≥ 0, f ∈ D, B ∈ B(E). Suppose that the generator (A,D(A)) of
{S(t)}t≥0 with

D(A) ⊆ L1
ϕ := {f ∈ L1 :

�

E

ϕ(x)|f(x)|m(dx) < ∞}
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is such that

(2.8)
�

E

Af(x)m(dx) = −
�

E

ϕ(x)f(x)m(dx) for f ∈ D(A), f ≥ 0.

Since P is a stochastic operator, the operator B defined by Bf = (Pϕ)f =
P (ϕf), f ∈ D(A), is positive and condition (2.4) holds, by (2.8). Conse-
quently, there is the minimal semigroup {P (t)}t≥0 on L1 related to A+Pϕ,
by Theorem 1. Corollary 1 together with Remark 1 provide the following

Corollary 2. [43] If the operator K defined by

(2.9) Kf = lim
λ↓0

P (ϕR(λ,A))f, f ∈ L1,

is mean ergodic then the minimal semigroup {P (t)}t≥0 is stochastic.

The next result gives a probabilistic description of the analytic notions.

Theorem 3. [43] Let t∞ be the explosion time for X = {X(t)}t≥0 and let
Ex be the expectation with respect to the law Px of the proces X starting at
X(0) = x. Then the following hold:

(1) For any λ > 0

lim
n→∞

(P (ϕR(λ,A)))∗n1(x) = Ex(e
−λt∞) m− a.e. x.

(2) For any B ∈ B(E), f ∈ D(A), f ≥ 0, and t > 0
�

B

P (t)f(x)m(dx) =
�

E

Px(X(t) ∈ B, t < t∞)f(x)m(dx).

(3) The operator K as defined in (2.9) is stochastic and it is the transition
operator corresponding to the discrete-time Markov process (Xn)n≥0 with
stochastic kernel

K(x,B) =
∞�

0

J (πsx,B)ϕ(πsx)e
−

	
s

0 ϕ(πrx)drds, x ∈ E,B ∈ B(E).

We conclude from Corollary 1 and Theorem 3 that the minimal semigroup
{P (t)}t≥0 is stochastic if and only if

m{x ∈ E : Px(t∞ < ∞) > 0} = 0.

In that case, if the distribution of X(0) has a density f ∈ D(A) then P (t)f
is the density of X(t) for all t > 0.

Remark 3. The assumption on the semi-flow that πt(E) ⊆ E for all t ≥ 0
can be relaxed, by allowing “active boundaries” [13, 14]. One can consider a
flow on an open set Eo and allow some points to exit from Eo or to enter into
Eo through the boundary ∂Eo of Eo. Then the state space E is defined as
E = Eo ∪ (∂−Eo \ ∂+Eo) where ∂±Eo = {x ∈ ∂Eo : x = π±ty for some y ∈
Eo, t > 0}. The jump distribution J (x, ·) is supposed to be defined for all
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x ∈ E ∪ ∂+Eo. Let t∗(x) = inf{t > 0 : πtx ∈ ∂Eo} for x ∈ E be the exit
time from Eo. Assuming that Fx(t∗(x)) = 1 for all x ∈ E, where Fx is as
in (2.6), the process X can be defined similarly to that without boundaries.
We will encounter an example of such a process in Section 5.2.

Particular examples of PDMP are so called pure jump-type Markov pro-
cesses, when between jumps the process does not change its values. A pure
jump-type Markov process on a countable set E is called a continuous-time
Markov chain. Since the semi-flow satisfies πtx = x for all t ≥ 0, x ∈ E, we
have Fx(t) = 1− exp{−ϕ(x)t}, where Fx is as in (2.6). Thus condition (2.5)
holds iff ϕ(x) > 0 for all x. It is convenient to allow the process X to start
from x satisfying ϕ(x) = 0. In that case we take the first jump time t1 = ∞,
define X(t) = x for all t ≥ 0, and set J (x, {x}) = 1 (such a state x is called
absorbing). One can combine ϕ and J into a rate kernel ϕ(x)J (x,B). In
applications the rate kernel is usually given and one can decompose it as
above.

Remark 4. The semigroup {S(t)}t≥0, given by S(t)f = e−ϕtf , t ≥ 0,
f ∈ L1, has the generator (A,D(A)) of the form Af = −ϕf , f ∈ D(A) = L1

ϕ,
which trivially satisfies (2.8). For each λ > 0 we have

ϕR(λ,A)f =
ϕ

λ+ ϕ
f, f ∈ L1.

If P is a stochastic operator then the adjoint operator of P (ϕR(λ,A)) is of
the form

(P (ϕR(λ,A)))∗f =
ϕ

λ+ ϕ
P ∗f for f ∈ L∞.

Consequently, any fixed point f ∈ L∞ of this operator is the solution of
ϕP ∗f − ϕf = λf.

We now consider the case of E = N = {0, 1, . . .}, where we use the
notation l1 = L1(E,Σ,m) with Σ being the family of all subsets and m the
counting measure on E. In the discrete state space setting we represent any
function f as a sequence x = (xi)i∈N.

A matrix Q = [qij] is called a Kolmogorov matrix if its entries have the
following properties

(i) qij ≥ 0 for i 6= j,
(ii)

∑∞
i=0 qij = 0 for j = 0, 1, 2, . . . .

A matrix Q = [qij ] is called a sub-Kolmogorov matrix if it satisfies condition
(i) and the condition

(ii′)
∑∞

i=0 qij ≤ 0 for j = 0, 1, 2, . . . .
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Consider the system of equations

x′i(t) =
∞
∑

j=0

qijxj(t), i = 0, 1, 2, . . . ,

where Q is a sub-Kolmogorov matrix. Let

(2.10) D0(Q) = {x ∈ l1 :
∞
∑

j=0

|qjj||xj| < ∞}.

The set D0(Q) is dense in the space l1 and the matrix Q defines a linear
operator on D0(Q) with values in l1, since D0(Q) ⊆ {x ∈ l1 : Qx ∈ l1}. Let
A be the diagonal part of Q, i.e. A = [aij], ajj = qjj and aij = 0 for i 6= j,
and let B = [bij ] be the off-diagonal part of Q, i.e. B = Q−A. The operator
A with domain D(A) = D0(Q) is the generator of a substochastic semigroup
on l1 and the operator B : D(A) → l1 is positive. By Theorem 1, there is
the minimal substochastic semigroup {P (t)}t≥0 related to Q.

Suppose now that Q is a Kolmogorov matrix. Since −qjj =
∑

i 6=j qij ≥ 0
for all j, we can define the jump rate function ϕ = (ϕj) by ϕj = −qjj . Note
that l1ϕ = D0(Q). The jump distribution J is defined as follows. For k with
ϕk > 0 set J (k, {j}) = qjk/ϕk for j 6= k and J (k, {k}) = 0, and for each
k such that ϕk = 0 set J (k, {k}) = 1 and J (k, {j}) = 0 for j 6= k. The
operator P : l1 → l1 is given by (Px)j =

∑

k J (k, {j})xk. We have (Qx)j =
−ϕjxj + P (ϕx)j for all j ≥ 0, x ∈ l1, and (Q∗x)j = −ϕjxj + ϕj(P

∗x)j
for all j ≥ 0, x ∈ l∞, where Q∗ denotes the transpose of the matrix Q.
By Remark 4, condition (3) of Theorem 2 can be reformulated as: any
nonnegative solution x ∈ l∞ of Q∗x = λx must be the zero solution. In
addition to Corollary 1 we have (see also [11, Section 8.3])

Theorem 4. [23] Let Q be a Kolmogorov matrix and let λ > 0 be a positive
constant. The minimal semigroup related to Q is a stochastic semigroup on
l1 iff the equation Q∗x = λx has no nonzero solution x ∈ l∞.

If the minimal semigroup {P (t)}t≥0 related to a Kolmogorov matrix Q
is a stochastic semigroup then the matrix Q is called non-explosive, as it
corresponds to a non-explosive continuous-time Markov chain.

Finally, observe that an arbitrary stochastic operator P : l1 → l1 is an
integral operator, as defined in the next section. Indeed, for each i the
function f 7→ (Pf)i is a continuous linear functional from l1 to R. Thus
there is a sequence (kij)j∈N ∈ l∞ such that

(Pf)i =
∞
∑

j=0

kijfj =
�

N

kijfj m(dj).
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3. Asymptotic properties

An operator P : L1(E) → L1(E) is called an integral or kernel operator
if there exists a measurable function k : E × E → [0,∞) such that

Pf(x) =
�

E

k(x, y)f(y)m(dy)

for every density f . One can check that if the operator P satisfies condition
P (D) ⊂ D then �

E

k(x, y)m(dx) = 1

for almost all y ∈ E.

A semigroup {P (t)}t≥0 is called integral, if for each t > 0, the operator
P (t) is an integral operator. A substochastic semigroup {P (t)}t≥0 is called
partially integral if there exists a measurable function k : (0,∞)×X ×X →
[0,∞), called a kernel, such that

P (t)f(x) ≥
�

E

k(t, x, y)f(y)m(dy)

for every density f and
�

E

�

E

k(t, x, y)m(dy)m(dx) > 0

for some t > 0.

A density f∗ is called invariant if P (t)f∗ = f∗ for each t > 0. A stochastic
semigroup {P (t)}t≥0 is called asymptotically stable if there is an invariant
density f∗ such that

lim
t→∞

‖P (t)f − f∗‖ = 0 for f ∈ D.

A stochastic semigroup {P (t)}t≥0 is called sweeping with respect to a set
B ∈ Σ if for every f ∈ D

lim
t→∞

�

B

P (t)f(x)m(dx) = 0.

Theorem 5. [36] Let E be a metric space and Σ = B(E) be the σ–algebra of
Borel subsets of E. We assume that a partially integral stochastic semigroup
{P (t)}t≥0 with the kernel k has the following properties:

(a) for every f ∈ D we have
	∞
0 P (t)f dt > 0 a.e.,

(b) for every y0 ∈ E there exist ε > 0, t > 0, and a measurable function
η ≥ 0 such that

	
η dm > 0 and

k(t, x, y) ≥ η(x)
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for x ∈ E and y ∈ B(y0, ε), where B(y0, ε) is the open ball with center
y0 and radius ε. If the semigroup {P (t)}t≥0 has no invariant density
then it is sweeping with respect to compact sets.

For any f ∈ L1(E) the support of f is defined up to a set of measure zero
by the formula

supp f = {x ∈ E : f(x) 6= 0}.

Theorem 6. [35] Let E be a metric space and Σ = B(E). Let {P (t)}t≥0

be a substochastic semigroup on L1(E) which has the only one invariant
density f∗ and let S = supp f∗. Assume that {P (t)}t≥0 is a partially integral
semigroup with the kernel k(t, x, y) such that

�

S

�

S

k(t0, x, y)m(dx)m(dy) > 0

for some t0 > 0. Moreover, we assume that for some t1 > 0

(a) there does not exist a nonempty measurable set B ( E \ S such that
P ∗(t1)1B ≥ 1B and

(b) for every y0 ∈ E \ S there exist ε > 0 and a measurable function η ≥ 0
such that

	
E\S η dm > 0 and

(3.1) k(t1, x, y) ≥ η(x)

for x ∈ E and y ∈ B(y0, ε), where B(y0, ε) is the open ball with center
y0 and radius ε.

Then for every f ∈ D there exists a constant c(f) such that

lim
t→∞

1SP (t)f = c(f)f∗

and for every compact set F ∈ Σ and f ∈ D we have

lim
t→∞

�

F∩E\S

P (t)f(x)m(dx) = 0.

If a substochastic semigroup {P (t)}t≥0 on L1(E) has the only one invari-
ant density f∗ and supp f∗ = E then {P (t)}t≥0 is a stochastic semigroup
and we have the following

Theorem 7. [34] Let {P (t)}t≥0 be a partially integral stochastic semigroup.
Assume that the semigroup {P (t)}t≥0 has a unique invariant density f∗. If
f∗ > 0 a.e., then the semigroup {P (t)}t≥0 is asymptotically stable.

If E is a compact space then from Theorem 5 and Theorem 7 it follows

Corollary 3. Let E be a compact metric space and Σ be the σ–algebra
of Borel sets. Let {P (t)}t≥0 be a stochastic semigroup which satisfies condi-
tions:

(a) for every f ∈ D we have
	∞
0 P (t)f dt > 0 a.e.,
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(b) for every y0 ∈ E there exist ε > 0, t > 0, and a measurable function
η ≥ 0 such that

	
η dm > 0 and

P (t)f(x) ≥ η(x)
�

B(y0,ε)

f(y)m(dy)

for x ∈ E, where B(y0, ε) is the open ball with center y0 and radius ε.

Then the semigroup {P (t)}t≥0 is asymptotically stable.

From Theorems 5 and 7 it also follows

Corollary 4. Let E be a metric space and Σ be the σ–algebra of Borel
sets. Let {P (t)}t≥0 be an integral stochastic semigroup with a continuous
and positive kernel k(t, x, y) for t > 0. If the semigroup {P (t)}t≥0 has an
invariant density, then it is asymptotically stable, and if {P (t)}t≥0 has no
invariant density, then it is sweeping with respect to compact sets.

The property that a stochastic semigroup {P (t)}t≥0 is asymptotically
stable or sweeping from a sufficiently large family of sets (e.g. from all
compact sets) is called the Foguel alternative [28].

4. Foguel alternative on discrete state space

In this section we restrict our considerations to substochastic semigroups
on l1, where criteria for asymptotic stability, sweeping and the Foguel al-
ternative are relatively simple. Using our general approach to stochastic
semigroups we prove the following well-known result concerning irreducible
Markov chains.

Theorem 8. Let {P (t)}t≥0 be a stochastic semigroup on l1 generated by
the equation

x′(t) = Qx(t).

Let us assume that the entries of the matrix Q satisfy the following condition

(T) for every i, j ∈ N, i 6= j there exists a sequence of distinct positive
integers i0, i1, . . . , ir such that i0 = j, ir = i and

(4.1) qirir−1 . . . qi2i1qi1i0 > 0.

Then the semigroup {P (t)}t≥0 satisfies the Foguel alternative:

(a) if the semigroup {P (t)}t≥0 has an invariant density, then it is asymp-
totically stable,

(b) if the semigroup {P (t)}t≥0 has no invariant density, then for every x ∈ l1

and i ∈ N we have

(4.2) lim
t→∞

(P (t)x)i = 0.



Stochastic semigroups 475

Proof. The semigroup {P (t)}t≥0 can be written in the form

(P (t)x)i =

∞
∑

j=0

pij(t)xj.

Suppose first that qmn > 0 for some m,n ∈ N. We show that pmn(t) > 0
for t > 0. Let x(t) be the solution of the equation x′ = Qx with the initial
condition xn(0) = 1 and xk(0) = 0 for k 6= n. Then pmn(t) = xm(t). Since
Q is a Kolmogorov matrix we have qij ≥ 0 for i 6= j. Since x(t) satisfies the
equation x′ = Qx we have

x′n(t) ≥ qnnxn(t),(4.3)

x′m(t) ≥ qmnxn(t) + qmmxm(t).(4.4)

From inequality (4.3) it follows that xn(t) ≥ eqnnt. This and inequality (4.4)
imply

(

e−qmmtxm(t)
)′
= e−qmmt

(

x′m(t)− qmmxm(t)
)

≥ e−qmmtqmne
qnnt > 0.

Thus

e−qmmtxm(t) > xm(0) = 0 for t > 0,

and consequently pnm(t) = xm(t) > 0 for t > 0. Let us fix t > 0 and
i, j ∈ N. From the previous arguments and from (T) it follows that there
exists a sequence of different positive integers i0, i1, . . . , ir such that i0 = j,
ir = i and pikik−1

(

t
r

)

> 0 for k = 1, 2, . . . , r − 1. Since P (t) = P r
(

t
r

)

we
have pij(t) > 0 for t > 0. Thus pij(t) > 0 for arbitrary i, j ∈ N, i 6= j and
t > 0. From inequality (4.3) it follows immediately that pii(t) > 0 for t > 0
and i ∈ N. Hence, for every t > 0 the matrix [pij(t)] has all entries positive.
Thus, the result follows from Corollary 4.

Remark 5. The advantage of formulating Theorem 8 in the form of an
alternative is that in order to show asymptotic stability we do not need
to prove the existence of an invariant density. It is enough to check that
condition (b) does not hold. Then the semigroup {P (t)}t≥0 automatically
is asymptotically stable. This idea enables us to give an almost immediate
proof of Theorem 9 concerning asymptotic stability of a genome evolution
model, where it is not easy to show that the Markov chain has a stationary
distribution.

Example 1. A general birth-death process on N = {0, 1, . . .} is described
by the following system of equations

(4.5) x′i(t) = −aixi(t) + bi−1xi−1(t) + di+1xi+1(t)
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for i ≥ 0, where b−1 = d0 = 0, bi ≥ 0, di+1 ≥ 0 for i ≥ 0, a0 = b0,
ai = bi + di for i ≥ 1. Let us assume that the system (4.5) generates a
stochastic semigroup {P (t)}t≥0 and that di > 0 for i > 0.

First, suppose that bi > 0 for each i. Since qi,i+1 = di+1 > 0, qi+1,i =
bi > 0 for i ≥ 0, condition (T) holds and Theorem 8 applies. Hence, the
semigroup {P (t)}t≥0 satisfies the Foguel alternative.

We now suppose that there exists n > 0 such that bn = 0, bi > 0 for
i 6= n. It is easily seen that condition (T) does not hold. We claim that
Theorem 6 applies. Thus, for each x̄ ∈ l1 there exists a constant c(x̄) such
that the solution of (4.5) with the initial condition x(0) = x̄ satisfies

lim
t→∞

xi(t) = c(x̄)x∗i for i ≤ n,

lim
t→∞

xi(t) = 0 for i > n,

where x∗ = (x∗i ) is an invariant density with suppx∗ = {0, 1, . . . , n}. Indeed,
since N is a discrete topological space condition (3.1) holds. Moreover the
only sets which satisfy the inequality P ∗(t)1B ≥ 1B are ∅, N, and Nn =
{0, 1, . . . , n}. If the sequence x∗ = (x∗i ) is an invariant density and S =
suppx∗ then P ∗(t)1S ≥ 1S . From that it follows that the semigroup has at
most one invariant density, because in the opposite case we could find two
invariant densities with disjoint supports, which is impossible in our case.
Since pij(t) = 0 for j ≤ n < i, we can restrict the semigroup {P (t)}t≥0 to
the space L1(Nn, 2

Nn ,m). Then {P (t)}t≥0 is a stochastic semigroup on this
space and from the ergodic theorem for Markov chains on a finite space it
follows that the semigroup has an invariant density.

We now give an application of Theorem 8 to a model describing the
evolution of paralog families in a genome [38]. Two genes present in the
same genome are said to be paralogs if they are genetically identical. It
is not a precise definition of paralogs but it is sufficient for our purposes.
We are interested in the size distribution of paralogous gene families in a
genome. We divide genes into classes. The i-th class consists of all i-element
paralog families. Let xi be a number of families in the i-th class. Based on
experimental data Słonimski et al. [42] suggested that

xi ∼
1

2ii
, i = 2, 3, . . . .

On the other hand, Huynen and van Nimwegen [22] claimed that

xi ∼ i−α, i = 1, 2, 3, . . . ,

where α ∈ (2, 3) depends on the size of the genome and α decreases if
the total number of genes increases. It is very difficult to decide which
formula is correct if only experimental data are taken into account because
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one can compare only first few elements of both sequences. We construct
a simple model of the evolution of paralog families which can help to solve
this problem.

The model is based on three fundamental evolutionary events: gene loss,
duplication, and accumulated change called for simplicity mutation. A single
gene during the time interval of length ∆t can be:

• duplicated with probability d∆t+o(∆t) and duplication of it in a family
of the i-th class moves this family to the (i+ 1)-th class,

• removed from the genome with probability r∆t + o(∆t). For i > 1,
removal of a gene from a family of the i-th class moves this family to
the (i − 1)-th class; removal of a gene from one-element family results
in an elimination of this family from the genome. A removed gene is
eliminated permanently from the pool of all genes,

• changed with probability m∆t+ o(∆t) and the gene starts a new one-
element family and it is removed from the family to which it belonged.

It is assumed that lim∆t→0
o(∆t)
∆t = 0. Moreover, we assume that all ele-

mentary events are independent of each other. Let si(t) be the number of
i-element families in our model at the time t. It follows from the description
of our model that

s′1(t) = −(d+ r)s1(t) + 2(2m+ r)s2(t) +m
∞
∑

k=3

ksk(t),(4.6)

s′i(t) = d(i− 1)si−1(t)− (d+ r +m)isi(t) + (r +m)(i+ 1)si+1(t)(4.7)

for i ≥ 2. Let s(t) =
∑∞

i=1 si(t) be the total number of families. Then
the sequence (pi(t)), where pi(t) = si(t)/s(t), is the size distribution of
paralogous gene families in a genome at time t.

The main result of the paper [38] is the following.

Theorem 9. Let X be the space of sequences (xi) which satisfy the condi-
tion

∑∞
i=1 i|xi| < ∞. There exists a sequence (s∗i ) ∈ X such that for every

solution (si(t)) of (4.6) and (4.7) with (si(0)) ∈ X we have

(4.8) lim
t→∞

e(r−d)tsi(t) = Cs∗i

for every i = 1, 2, . . . and C dependent only on the sequence (si(0)). More-
over, if d = r then

(4.9) lim
t→∞

si(t) = C
αi

i
,

where α =
r

r +m
.
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In the case of d = r the total number of genes in a genome is constant.
It means that the genome is in a stable state. In this case the distribution of
paralog families is similar to that stated in Słonimski’s conjecture, and both
distributions are the same if r = d = m.

We now show that Theorem 9 follows from Theorem 8. The proof is
different from the one presented in [38].

Proof of Theorem 9. First, we change variables. Let

yi(t) = e(r−d)tisi(t).

Then

y′1 = −(2d+m)y1 + (m+ r)y2 +
∞
∑

k=1

myk,(4.10)

y′i = −(d+ r +m+ d−r
i )iyi + diyi−1 + (r +m)iyi+1(4.11)

for i ≥ 2. We claim that the system (4.10)–(4.11) generates a stochastic
semigroup on l1. Indeed, the system (4.10)–(4.11) can be written in the
following way:

y′(t) = Qy(t),

where Q = (qij)i,j≥1. The matrix Q is a Kolmogorov matrix. By Theorem 4,
the minimal semigroup related to Q is stochastic if for any λ > 0 there is no
non-zero solution of the equation Q∗x = λx, where x ∈ l∞. Here

(Q∗x)1 = −2dx1 + 2dx2,

(Q∗x)2 = (2m+ r)x1 − (r + 2m+ 3d)x2 + 3dx3,

(Q∗x)n = mx1 + (n− 1)(r +m)xn−1 − [r(n− 1) + d(n+ 1) +mn]xn

+ (n+ 1)dxn+1

for n ≥ 3. We consider the case of d 6= 0 (the case of d = 0 is trivial). The
sequence x = (xi)i≥1 satisfies equation Q∗x = λx iff

x2 =
(

1 +
λ

2d

)

x1,

x3 =
(

1 +
r + 2m+ λ

3d

)

x2 −
r + 2m

3d
x1,

xn+1 =
(

1 +
(n− 1)r + nm+ λ

(n+ 1)d

)

xn −
(n− 1)(r +m)

(n+ 1)d
xn−1 −

m

(n+ 1)d
x1

for n ≥ 3. Since the system is linear, it is sufficient to consider the case
x1 > 0. The above system of equations can be replaced by one equation

xn+1 =
(

1+
λ

(n+ 1)d

)

xn+
(n− 1)(r +m)

(n+ 1)d
(xn−xn−1)+

m

(n+ 1)d
(xn−x1)
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for n ≥ 1. Hence, the sequence (xn) is increasing. Thus

xn+1 ≥
(

1 +
λ

(n+ 1)d

)

xn,

and consequently

xn ≥ x1

n
∏

i=2

(

1 +
λ

di

)

for n ≥ 2.

Since the product
∞
∏

i=1

(1 + λd−1i−1) diverges, we have x /∈ l∞.

Now let y(0) ∈ D and m > 0. Then y(t) ∈ D and since
∑∞

i=1 yi(t) = 1,
we see from (4.10) that

y′1(t) ≥ −(2d+m)y1(t) +m.

This implies that

lim inf
t→∞

y1(t) ≥
m

2d+m
.

It means that the semigroup {P (t)}t≥0 generated by Q is not sweeping.
According to Theorem 8 the semigroup {P (t)}t≥0 is asymptotically stable.
Let y∗ = (y∗i ) be an invariant density for {P (t)}t≥0. If we return to the
original system, we obtain (4.8) with s∗i = y∗i /i. If r = d then the invariant

density is of the form y∗i =
m

r

( r

r +m

)i
, which gives (4.9).

We now present a result on asymptotic stability of stochastic semigroups
on l1 which is based on the Foguel alternative.

Theorem 10. Let Q = [qij ], i, j = 0, 1, 2, . . . , be a non-explosive Kol-
mogorov matrix. We assume that there exist a sequence v = (vi) of nonneg-
ative numbers and positive constants ε, m, and k such that

(4.12)
∞
∑

i=0

qijvi ≤

{

m, for j ≤ k,

−ε, for j > k.

Then the stochastic semigroup {P (t)}t≥0 related to Q is not sweeping from
the set {0, 1, . . . , k}. In particular, if the matrix Q satisfies conditions (T)
and (4.12), then the semigroup {P (t)}t≥0 is asymptotically stable.

Proof. Note that if the sequence v = (vi) satisfies condition (4.12), then the
sequence (vi + 1) also satisfies this condition. Hence, we can assume that
vi ≥ 1 for all i. Suppose contrary to our claim that the semigroup {P (t)}t≥0

is sweeping from the set {0, 1, . . . , k}. Let {Pr(t)}t≥0 be the semigroup
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generated by the operator Qr = A+ rB, r ∈ (0, 1), with the domain

D(Qr) = D0(Q) = {x ∈ l1 :
∞
∑

j=0

|qjj ||xj| < ∞}.

Consider the space

l1v = {x ∈ l1 :
∞
∑

i=0

vi|xi| < ∞}

with the norm ‖x‖ =
∑∞

i=0 vi|xi|. Let

Dv
0(Q) = {x ∈ l1 :

∞
∑

i=0

vi|qii||xi| < ∞}.

We now prove that if x ∈ Dv
0(Q), then Pr(t)x ∈ Dv

0(Q) for t > 0. In order
to do it we define the matrix Q̃ = [q̃ij ], where q̃ij = qijviv

−1
j for i 6= j and

q̃jj = qjj − m. Observe that Q̃ is a sub-Kolmogorov matrix, because its
entries lying outside the main diagonal are nonnegative and condition (4.12)
implies

∞
∑

i=0

q̃ij = −m+
(

∞
∑

i=0

qijvi

)

v−1
j ≤ −m+mv−1

j ≤ 0.

Let {P̃r(t)}t≥0 be the substochastic semigroup generated by the operator Q̃r

with the domain

D(Q̃r) = D0(Q̃) = D0(Q).

If y ∈ D0(Q̃) then P̃r(t)y ∈ D0(Q̃) for t ≥ 0. Let H : l1v → l1 be the operator
given by the formula (Hx)i = vixi and let

Ur(t) = emtH−1P̃r(t)H.

Then {Ur(t)}t≥0 is a strongly continuous semigroup of linear operators on
l1v. Moreover, we have

lim
t→0+

t−1(Ur(t)x− x) = mx+H−1Q̃rHx = Qrx

for x ∈ Dv
0(Q) and the domain of the infinitesimal generator C of the

semigroup {Ur(t)}t≥0 is the set Dv
0(Q). The operator Qr with the domain

D(Qr) is the closure of the operator C in the space l1. Thus the semigroup
{Ur(t)}t≥0 is the restriction of the semigroup {Pr(t)}t≥0 to the space l1v. If
x ∈ Dv

0(Q) then Ur(t)x ∈ Dv
0(Q),

	t
0 Ur(τ)x dτ ∈ Dv

0(Q), and

(4.13) Ur(t)x = x+Qr

(
t�

0

Ur(τ)x dτ
)

.
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Let x be a density in l1 such that x ∈ Dv
0(Q). Let us fix t > 0 and set

y =
	t
0 Ur(τ)x dτ . Then y ∈ Dv

0(Q) and, in particular, the double series

(4.14)
∞
∑

j=0

∞
∑

i=0

qrijviyj

is absolutely convergent. Here qrij are entries of the matrix Qr. We now
estimate the following sum

∞
∑

i=0

vi(Qry)i.

Since the series (4.14) is absolutely convergent, we have

(4.15)
∞
∑

i=0

vi(Qry)i =
∞
∑

i=0

vi

(

∞
∑

j=0

qrijyj

)

=
∞
∑

j=0

(

∞
∑

i=0

qrijvi

)

yj .

From (4.12) and (4.15) we obtain

(4.16)
∞
∑

i=0

vi(Qry)i ≤ m
k

∑

i=0

yi − ε
∞
∑

i=k+1

yi ≤ (m+ ε)
k

∑

i=0

yi − ε
∞
∑

i=0

yi.

From (4.13) and (4.16) it follows that

∞
∑

i=0

vi(Ur(t)x)i ≤
∞
∑

i=0

vixi + (m+ ε)
k

∑

i=0

(
t�

0

Ur(τ)x dτ
)

i

− ε

∞
∑

i=0

(
t�

0

Ur(τ)x dτ
)

i
.

If x is a density in l1 and x ∈ Dv
0(Q), then limr→1 Pr(t)x = P (t)x and

Pr(t)x = Ur(t)x. Thus

∞
∑

i=0

vi(P (t)x)i ≤
∞
∑

i=0

vixi + (m+ ε)

k
∑

i=0

t�

0

(P (τ)x)i dτ − ε

∞
∑

i=0

t�

0

(P (τ)x)i dτ

=
∞
∑

i=0

vixi + (m+ ε)
k

∑

i=0

t�

0

(P (τ)x)i dτ − εt.

Since we have assumed that the semigroup {P (t)}t≥0 is sweeping from the
set {0, 1, . . . , k}, we have limt→∞(P (t)x)i = 0 for every i ≤ k and x ∈ l1.
This implies that there exists t1 > 0 such that

t�

0

(P (τ)x)i dτ ≤
εt

2k(m+ ε)
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for t > t1 and i = 1, . . . , k. Thus

(4.17)
∞
∑

i=0

vi(P (t)x)i ≤
∞
∑

i=0

vixi −
εt

2

for t > t1. Since x ∈ l1v, we have
∑∞

i=0 vixi < ∞ and from (4.17) it follows
that

∑∞
i=0 vi(P (t)x)i is a negative number for sufficiently large t, which

contradicts the assumption that x is a density. Thus the semigroup {P (t)}t≥0

is not sweeping from the set {0, 1, . . . , k}. If, additionally, the semigroup
{P (t)}t≥0 satisfies condition (T) then the Foguel alternative holds and the
semigroup is asymptotically stable.

Example 2. Let us consider again a birth-death process as defined by
equation (4.5) with bi > 0 and di+1 > 0 for all i ≥ 0. Let us assume that
there exists ε > 0 such that bi ≤ di − ε for i ≥ k. Then the system (4.5)
generates a stochastic semigroup. From Example 1 we know that condition
(T) holds. Set vi = i for i ≥ 0 and note that

∞
∑

i=0

viqij = (j − 1)dj − j(bj + dj) + (j + 1)bj = bj − dj ≤ −ε

for j ≥ k, which implies condition (4.12). Consequently, the stochastic
semigroup generated by the system (4.5) is asymptotically stable.

5. Continuous state space models

5.1. Stochastic gene expression. We now present a simple model of gene
expression introduced in the paper by Lipniacki et al. [29] and we recall some
analytic results concerning this model obtained in the paper [12]. We con-
sider the process of the regulation of a single gene. The model involves
three processes: gene activation/inactivation, mRNA transcription/decay,
and protein translation/decay. A gene can be in an active or inactive state
and it can be transformed into an active state or into an inactive state, with
intensities q0 and q1, respectively. In [29] the rates q0 and q1 depend only on
the amount of the protein but [25] suggests that these rates can also depend
on the number of mRNA molecules (see Figure 1 Mechanism III). There-
fore, we assume that the rates q0 and q1 depend on the number of mRNA
molecules x1(t) and on the number of protein molecules x2(t). If the gene is
active then mRNA transcript molecules are synthesized at the rate R. The
protein translation proceeds with the rate Kx1(t), where K is a constant. In
addition, mRNA and protein molecules undergo the process of degradation.
The mRNA and protein degradation rate are m and r, respectively. The
state of the system is described by the triple (x1(t), x2(t), γ(t)), where γ(t)
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is a random variables with values 1 if the gene is in the active state and
0 in the inactive state. The functions x1(t) and x2(t) satisfy the following
equations

dx1
dt

= Rγ(t)−mx1,(5.1)

dx2
dt

= Kx1 − rx2.(5.2)

The switching function γ(t) is a stochastic process with values in the set
{0, 1} and this process depends on the functions x1(t) and x2(t).

Equations (5.1)–(5.2) generate stochastic trajectories, which can be de-
scribed as a piecewise deterministic Markov process

X(t) = (x1(t), x2(t), γ(t)) = (x(t), γ(t)), t ≥ 0,

with values in R2 × {0, 1} and the following characteristics (π, ϕ,J ). The
semi-flow {πt}t≥0 is defined by πt(x, i) = (πi

t(x), i) for all (x, i) ∈ R2×{0, 1},
where πi

tx denotes the solution xi(t) of the equation x′(t) = g(x(t), i) with
initial condition xi(0) = x and, for any x = (x1, x2), the vector g(x, i) in R2

has components

g1(x1, x2, i) = Ri−mx1, g2(x1, x2, i) = Kx1 − rx2.

Our state space will be E = K×{0, 1}, where K is the rectangle [0, R/m]×
[0,KR/mr] such that πi

t(K) ⊆ K for all t ≥ 0, i = 0, 1. The jump distribu-
tion J ((x, i), ·) is the Dirac measure δ(x,1−i) and it satisfies J ((x, i), E) = 1
for all (x, i) ∈ E. The jump rate function ϕ is defined by ϕ(x, i) = qi(x),
where q0 = q0(x) and q1 = q1(x) are given non-negative continuous functions
defined on K. We assume that qi(x

i
∗) > 0, i = 0, 1, where x0∗ = (0, 0) and

x1∗ = (R/M,KR/mr). Since πi
t(x) → xi∗ as t → ∞ and qi is continuous for

each i, condition (2.5) holds.

Let L1 = L1(E,B(E),m), where m is the product of the two-dimensional
Lebesgue measure and the counting measure on {0, 1}. The transition op-
erator P on L1 corresponding to J is of the form Pf(x, i) = f(x, 1 − i),
(x, i) ∈ E, f ∈ L1. Let {P0(t)}t≥0 be the stochastic semigroup on L1

given by

P0(t)f(x, i) = 1E(π
i
−t(x), i)f(π

i
−t(x), i) det[

d

dx
πi
−t(x)]

and let (A0,D(A0)) be its generator, which for sufficiently regular f is

A0f(x, i) = −
∂

∂x1
(g1(x, i)f(x, i))−

∂

∂x2
(g2(x, i)f(x, i)).

Since ϕ is bounded, the operator A defined by Af = A0f − ϕf , f ∈ D(A0),
is the generator of the substochastic semigroup {S(t)}t≥0 satisfying (2.7)–
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(2.8) and the minimal substochastic semigroup {P (t)}t≥0 related to A+Pϕ
is stochastic. The functions ui(t, x1, x2) = P (t)f(x1, x2, i), i = 0, 1, satisfy
the following Fokker–Planck system:

∂u0
∂t

+
∂

∂x1
(−mx1u0) +

∂

∂x2
((Kx1 − rx2)u0) = q1u1 − q0u0,

∂u1
∂t

+
∂

∂x1
((R−mx1)u1) +

∂

∂x2
((Kx1 − rx2)u1) = q0u0 − q1u1,

with the initial conditions: u0(0, x1, x2) = f(x1, x2, 0) and u1(0, x1, x2) =
f(x1, x2, 1). Moreover, if f is the density of X(0) then P (t)f is the density
of X(t) = (x(t), γ(t)) and

Pr(x(t) ∈ B, γ(t) = i) =
� �

B

ui(t, x1, x2) dx1 dx2, i = 0, 1.

The main result of the paper [12] is the asymptotic stability of the semi-
group {P (t)}t≥0. The strategy of the proof is as follows. First, it is shown
that the transition function of the related stochastic process has a kernel
(integral) part. Then we find a set E ⊂ E on which the density of the kernel
part of the transition function is positive. Next we show that the set E is
an “attractor”. Since the attractor E is a compact set, from Corollary 3 it
follows that the semigroup is asymptotically stable.

5.2. A size structured model. We consider a model of a cellular popula-
tion which was introduced for the first time probably by Bell and Anderson
[10] and was studied and generalized in many papers (see e.g. [15, 17, 33,
37, 46]). In this model a cell is characterized by its size (maturity) which
ranges from x = a to x = 1. Maturity increases with time t according to the
equation

(5.3)
dx

dt
= g(x).

We assume that an individual with the parameter x has k descendants and
that Pk(x,B) is the probability that any of its descendants has the parameter
in the set B ∈ B([a, 1]) at the birth. For example, if x is the age then
Pk(x,B) = 1B(0). If x is the size and if we consider the case of equal
division [15, 17, 19, 26, 30] then

P2(x,B) =

{

1, if x/2 ∈ B,

0, if x/2 /∈ B.

Models of unequal division have been investigated in many papers [3, 8, 18,
20, 24]. In the case of unequal division the transition function can be given
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by a stochastic kernel of the form

P2(x,B) =
�

B

k(y, x) dy,

where k is a nonnegative measurable function such that
	1
a k(y, x) dy = 1 for

all x. Our model [9, 37] includes both types of binary fission models.

Let bk(x)∆t be the probability that an individual with parameter x has
k descendants in the time interval [t, t+∆t]. A cell with maturity x has

(5.4) P(x,B) =
∞
∑

k=1

kbk(x)Pk(x,B)

descendants with parameters in the set B in a unit of time, and

(5.5) b(x) =
∞
∑

k=0

kbk(x)

is the mean number of its descendants in a unit of time. By µ(x) we denote
the rate of loss, by death or by division, of individuals with parameter x.
Since in our model the maximal value of the parameter x is 1, we assume
that

(5.6)
1�

a

µ(x) dx = ∞,

which means that all cells die or divide before or at reaching the maximal
maturity x = 1. We also assume that a mother of maturity x cannot have
daughters with maturity exceeding x− h, that is,

P(x, [a, x− h]) = 1 for all x ∈ [a, 1],

and that inf{b(x) : x ∈ [1−h, 1)} > 0, which means that cells with x ≥ 1−h
can divide. Moreover, we assume that g : [a, 1] → (0,∞) is a continuously
differentiable function, the functions µ : [a, 1) → [0,∞) and bk : [a, 1) →
[0,∞) are continuous, that there is a constant C̄ > 0 such that

C̄−1µ(x) ≤ b(x) ≤ C̄µ(x) for x ≥ 1− h,

and that for every x ∈ (a, 1)

(5.7)
1�

x

P(x, [a, x)) dx > 0.

If (5.7) were not satisfied, then for some x all daughters of any mother with
x ≥ x would also have maturity greater than x, and thus we could restrict
the set of parameters to the interval [x, 1].
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Let us start with the Kolmogorov’s backward equation

∂v

∂t
= g(x)

∂v

∂x
− µ(x)v(t, x) +

1�

a

v(t, y)P(x, dy).

By u(t, x) we denote a function which describes the distribution of the pop-
ulation with respect to x. The number of individuals with the parameter x
between x1 and x2 at a time t is given by the formula

	x2
x1

u(t, x) dx. The
type of an evolution equation for u depends on the choice of the transition
function P. Let

Pr(x,B) = P(x,B \ {a}).

We assume that for each x the measure Pr(x, ·) is absolutely continuous with
respect to the Lebesgue measure for a.e. x. Then, by the Radon–Nikodym
theorem, there exists an operator P defined on the space

L1
r [a, 1] = {f ∈ L1[a, 1] :

1�

a

|f(x)|Pr(x, [a, 1]) dx < ∞},

and with values in the space L1[a, 1] such that for each nonnegative function
f ∈ L1

r [a, 1] and each set B ∈ B([a, 1]) we have

�

B

Pf(x) dx =
1�

a

Pr(x,B)f(x) dx.

If the function u(t, x) is sufficiently regular, then it satisfies the following
equation

(5.8)
∂u

∂t
+

∂(g(x)u)

∂x
= −µ(x)u(t, x) + Pu(t, x),

with the boundary condition

(5.9) g(a)u(t, a) =
1�

a

P(x, {a})u(t, x) dx

and the initial condition

(5.10) u(0, x) = u0(x) for x ∈ [a, 1].

We have the following result on asynchronous exponential growth (AEG)
of the population.

Theorem 11. [9] Assume that one of the following conditions holds:

(I) there exists a measurable function q : [a, 1]× [a, 1] → [0,∞) such that

1�

a

1�

a

q(y, x) dx dy > 0 and P(x,B) ≥
�

B

q(y, x) dy

for any x ∈ [a, 1] and B ∈ B([a, 1]),
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(II) there exist x0 ∈ (a, 1) and ε > 0 such that P(x, {a}) > 0 for x ∈
(x0 − ε, x0 + ε),

(III) there exist x0 ∈ (a, 1), ε > 0, and a C1-function r : (x0 − ε, x0 + ε) →
[a, 1] such that g(r(x0)) 6= r′(x0)g(x0) and

P(x, {r(x)}) ≥ ε for x ∈ (x0 − ε, x0 + ε).

Then there exist a continuous function f∗ : [a, 1] → [0,∞), f∗(x) > 0 for
x ∈ (a, 1), a continuous function w : [a, 1] → (0,∞), and λ ∈ R such that
e−λtu(t, ·) converges in L1[a, 1] to f∗

	1
a u(0, x)w(x) dx.

Sketch of the proof. Equation (5.8) can be written as an evolution
equation u′(t) = Au. First, it is shown in [9] that A is an infinitesimal
generator of a continuous semigroup {T (t)}t≥0 of linear operators on L1[a, 1].
Then it is proved that there exist λ ∈ R, and positive continuous functions
v and w such that Av = λv and A∗w = λw. From this it follows that the
semigroup {P (t)}t≥0 given by P (t) = e−λtT (t) is a stochastic semigroup on
the space L1([a, 1],B([a, 1]),m), where m is a measure given by m(B) =	
B w(x) dx. We can find c > 0 such that the function f∗ = cv is an invariant

density with respect to {P (t)}t≥0. If one of conditions I, II, III holds, then
{P (t)}t≥0 is partially integral. Finally, from Theorem 7 we conclude that
this semigroup is asymptotically stable. Since the Lebesgue measure and the
measure m are equivalent, we obtain that e−λtu(t, ·) converges to f∗Φ(u(0, ·))
in L1[a, 1], where Φ(g) :=

	1
a g(x)w(x) dx.

Remark 6. It should be noted that if µ(x) = b(x) for all x ∈ [a, 1), where b
is as in (5.5) and µ satisfies (5.6), then the model considered in this section is
a particular example of a piecewise deterministic Markov process with values
in E = [a, 1) and with boundaries as described in Remark 3. To see this
observe that equation (5.11) defines a semi-flow {πt}t≥0 whose trajectories
can leave the interval E only through the point 1. For every x ∈ E we have
t∗(x) = inf{t > 0 : πtx = 1} and

t∗(x)�

0

b(πsx)ds =

πt∗(x)x�

x

b(y)

g(y)
dy =

1�

x

b(y)

g(y)
dy.

Thus the integral is infinite by (5.6), which allows us to construct a PDMP
with characteristics (π, b,J ), where J is such that b(x)J (x,B) = P(x,B)
and P is as in (5.4).

5.3. Piecewise deterministic growth/decay processes. In this section
we describe two simple examples of one-dimensional piecewise deterministic
Markov processes on E = (0,∞) derived from the mathematical study of
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populations of cells. In their examination of the stable nature of the cell
cycle, Lasota and Mackey [27] proposed a model for the cell division cycle
based on three hypotheses:

1) there is an ‘activator’ x, which is necessary for mitosis, produced by cells
according to

(5.11)
dx

dt
= g(x),

2) a cell containing the amount x of the activator divides with probability
ϕ(x)∆t+ o(∆t) during the time interval [t, t+∆t], and

3) at division, each daughter cell receives exactly half of the level of the
activator.

In [27] it was shown, under some regularity conditions, that the density
fn of the amount Xn of the activator at the moment of division in the n-th
generation of cells satisfies fn+1 = Kfn with K being an integral operator

Kf(x) = 2q(2x)
2x�

0

exp
{

−
2x�

y

q(z)dz
}

f(y) dy,

where q(z) = ϕ(z)/g(z), and that K is asymptotically stable: there is a
density f∗ ∈ D such that Kf∗ = f∗ and

(5.12) lim
n→∞

‖Knf − f∗‖ = 0 for all f ∈ D.

Note that condition (5.12) implies that K is mean ergodic.

We assume that g and ϕ are nonnegative continuous functions, g(x) > 0
for x > 0, and that, for some x̄ > 0,

∞�

x̄

1

g(y)
dy =

∞�

x̄

ϕ(y)

g(y)
dy = ∞.

The amount of the activator can be described as a piecewise deterministic
Markov process {X(t)}t≥0 with values in E = (0,∞) and the following
characteristic (π, ϕ,J ). Equation (5.11) defines a semi-flow {πt}t≥0 such
that πt(E) ⊆ E for all t ≥ 0. Since

	t
0 ϕ(πsx)ds =

	πtx
x q(y)dy and πtx → ∞

for all x, condition (2.5) holds. The jump distribution J (x, ·) is δx/2 for

all x and the corresponding transition operator P on L1 is Pf(x) = 2f(2x)
for f ∈ L1. Allowing P to be any stochastic operator on L1 and letting
J (x,B) = P ∗

1B(x), we obtain a general piecewise deterministic growth
process as studied in [31] through the evolution equation of the form

(5.13)
∂u(t, x)

∂t
= −

∂

∂x
(g(x)u(t, x))− ϕ(x)u(t, x) + P (ϕu(t, ·))(x).
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Conditions (2.7)–(2.8) hold with the operator A of the form

Af(x) = −
d

dx
(g(x)f(x))− ϕ(x)f(x),

and the operator K in (2.9) is given by K(f) = P (ϕR0)f , where

R0f(x) =
1

g(x)

x�

0

exp
{

−
x�

y

q(z)dz
}

f(y) dy.

It might happen that the minimal semigroup {P (t)}t≥0 related to A + Pϕ
is not stochastic [31, Example 4]. If K satisfies (5.12) with f∗ = Kf∗,
then the semigroup {P (t)}t≥0 is stochastic and P (t)R0f∗ = R0f∗ for all
t > 0, if R0f∗ ∈ L1, which implies that {P (t)}t≥0 has an invariant density.
The asymptotic behavior of the semigroup {P (t)}t≥0 can be studied with
the help of the results from Section 3. The semigroup {P (t)}t≥0 can have
up to one invariant density and it is partially integral, if condition (I) or
(III) of Theorem 11 holds with the interval [a, 1] replaced by E and P by
P(x,B) = ϕ(x)J (x,B), x ∈ E.

The second example comes from the regulation of genes. Friedman et
al. [16] have considered stochastic aspects of gene expression following from
bursts of protein production, and derived an equation of the form (5.13) for
the concentration of the protein molecules in a given cell, where g(x) = −γx
with γ > 0 and

Pf(x) =
x�

0

f(x− y)
1

b
e−y/bdy

with b > 0 the mean number of molecules per burst. This bursting type
production was studied in [31, 32] in the context of piecewise deterministic
Markov processes, where this time, instead of the growth, protein molecules
undergo the process of degradation according to equation (5.11) with g < 0,
and the degradation is randomly interrupted with intensity ϕ when a ran-
dom amount of protein molecules is produced, independently of the current
number of proteins, so that the operator P is of the form

Pf(x) =
x�

0

f(x− y)h(y) dy,

where h is a probability density on (0,∞).

5.4. Coagulation-fragmentation phytoplankton models. Mathemat-
ical modelling of plankton behaviour is a complex issue involving var-
ious mathematical tools including advection-diffusion-reaction equations,
fragmentation-coagulation processes, point processes, superprocesses, and
stochastic partial differential equations. A review of mathematical models
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of plankton dynamics can be found in [41]. Phytoplankton cells tend to form
aggregates in which they live together like colonial organisms. Since the size
of aggregates is important in the study of fish recruitment, the change of the
size distribution of aggregates is a very interesting problem both from the
biological and mathematical point of view.

We now describe a model of phytoplankton dynamics introduced by Arino
and Rudnicki [4], which takes into account growth and death of aggregates as
well as coagulation-fragmentation processes. Although coagulation is a com-
plex physical process including turbulent shear, particle settling and Brow-
nian motion, it seems that the main role is played by TEP (Transparent
Exopolymer Particles). TEP are by-products of the growth of phytoplank-
ton and their stickiness cause that cells remain together upon contact. On
the other hand the low level of concentration of TEP leads to fragmentation
of phytoplankton aggregates. In this model aggregates are structured by
size, i.e. their mass, which is proportional to the number of cells. The divi-
sion or death of individual cells change the size of aggregates. Apart from
growth due to the division of cells within an aggregate, two main mecha-
nisms are at work: splitting of a given aggregate into parts, which is called
a fragmentation process, and coagulation (aggregation), by which two dis-
tinct aggregates join together to form a single one. In our model all factors
mentioned above are hidden in the probability of aggregation, which makes
mathematics much simpler. It is assumed that coagulation is a binary pro-
cess and two distinct aggregates join together with some probability, which
depends only on the size of aggregates.

In the model the size of an aggregate is denoted by x. An aggregate
grows with rate b(x) but it can die, for example, by sinking to a seabed or
whatever cause, with mortality rate d(x). It can break with rate p(x) and
the size y of its descendants is given by the conditional density K(y, x). We
assume that the ability to glue to another aggregate depends on the size and
is given by the function g(x). Let the function u(t, x) be the density of the
distribution of x, i.e.

x2�

x1

u(t, x) dx

is the number of cells of size x1 < x < x2 at time t. Taking the sums of the
variations due to growth and mortality, fragmentation and coagulation, one
can check that u satisfies the equation

(5.14) u′(t) = −a(x)u(t) +A1u(t) +A2u(t) +A3u(t),

where

a(x) = d(x) + p(x) + g(x),
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(A1f)(x) = −
d

dx
(b(x)f(x)),

(A2f)(x) = 2
∞�

x

K(x, y)p(y)f(y) dy,

(A3f)(x) =

	x
0 f(x− y)f(y)(x− y)yg(x− y)g(y) dy

x
	∞
0 zg(z)f(z) dz

.

In equation (5.14) we have terms responsible for growth A1u, death
−d(x)u(t), fragmentation −p(x)u(t) +A2u(t), and coagulation −g(x)u(t) +
A3u(t).

We consider the solutions of (5.14) as functions from R+ to the space
L1(R+,m) = L1(R+,B(R+),m), where the measure m is given by dm =
x dx. In order to formulate some properties of solutions of (5.14) we assume
that the functions p, d, g and K are sufficiently regular, otherwise some
unwanted phenomena can occur, see e.g. Banasiak [6]. A strongly continuous
semigroup of non-linear operators {P (t)}t≥0 on the space which contains the
set of densities D is called a non-linear stochastic semigroup if P (t)(D) ⊂ D
for t ≥ 0.

Theorem 12. [4] For each u0 ∈ L1(R+,m) there exists a unique solu-
tion u : [0,∞) → L1(R+,m) of equation (5.14) such that u(0) = u0. Let
P (t)u0(x) = u(t, x) for u0 ∈ L1(R+,m). Then {P (t)}t≥0 is a strongly con-
tinuous semigroup of positive bounded operators on L1(R+,m). If g(x) =
xd(x) then {P (t)}t≥0 is a non-linear stochastic semigroup.

It is rather difficult to study the behaviour of solutions of equation (5.14)
when time goes to infinity. Partial results can be obtained by studying the
behaviour of moments Mn(t) of solutions, i.e. Mn(t) =

	∞
0 xnu(t, x) dx,

n = 0, 1, 2, . . . . Ordinary differential equations for Mn(t) have been derived
in [4] and they can be used to give sufficient conditions for the existence of
large aggregates, which is a property important from the biological point of
view.

The model can be extended in two ways. A first way would be to include
a space distribution of aggregates. Such a generalization was done in [39] and
[40]. Alternatively, one can assume that during the division of cells some of
them fall off the aggregates and enter the system as new aggregates, leaving
the size of the original aggregate unchanged by cell division [1, 2, 8].
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