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DEMONSTRATE MATHEMATICA 
Vol. XXXVII No 3 2004 

Justyna Sikorska 

ORTHOGONAL STABILITY OF THE CAUCHY 
FUNCTIONAL EQUATION ON BALLS 

IN NORMED LINEAR SPACES 

Abstract. We study the stability of some functional equations postulated for or-
thogonal vectors in a ball centered at the origin. The maps considered are defined on a 
finite-dimensional normed linear space with Birkhoff-James orthogonality and take their 
values in a real sequentially complete linear topological space. The main results establish 
the stability of the corresponding conditional Cauchy functional equation on a half-ball 
and in uniformly convex spaces on a whole ball. The methods used in the first part of 
the paper are similar to those from [10]. Since, however, now in a general structure, some 
additional problems arise, we need several new tools. 

1. Introduction 
In the present paper we deal with the stability of functional equations, 

in particular the Cauchy functional equation, postulated for pairs of orthog-
onal vectors from a ball centered at the origin in a normed linear space with 
Birkhoff-James orthogonality. R. Ger and J. Sikorska in [2] considered the 
stability of the Cauchy functional equation postulated for orthogonal vec-
tors only and defined on the whole space. F. Skof in [11], [12] and F. Skof & 
S. Terracini in [13] dealt with the stability of the Cauchy and quadratic equa-
tions on an interval. Z. Kominek in [6] studied the stability of the Cauchy 
equation on an TV-dimensional cube in the space RN . Unifying these inves-
tigations, the author studied in [10] the stability on a ball centered at the 
origin in a finite-dimensional inner product space. 

As in earlier papers, because of the methods used in our proofs, we 
restrict ourselves to orthogonality in a finite-dimensional space. 

Let X be a normed linear space X of dimension > 2. The orthogonality 
relation in X is defined as follows. 

1991 Mathematics Subject Classification: 39B52. 
Key words and phrases: stability, additive and quadratic mappings, Birkhoff-James 

orthogonality, orthogonal additivity, Cauchy functional equation. 
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DEFINITION 1.1. A vector x G X is orthogonal in the sense of Birkhoff-
James to a vector y £ X (x _L y) if and only if 

II® + (¿y\\ > ll^ll for all / j g l . 

Many properties of the Birkhoff-James orthogonality can be found e.g. 
in [1], [3], [4], [5], [7], [9], [14], [15]. For the convenience of the reader we give 
here those that are used in the present paper more often: 

(i) if x,y G X \ {0}, x JL y, then x and y are linearly independent; 
(ii) if x, y G X, x -L y, then ax _L (3y for all a, ¡3 G R (homogeneity of the 

relation); 
(iii) if P is a two-dimensional subspace of X, x e P, A > 0, then there 

exists y e P such that x _L y and x + y ± Xx — y. 

Let B denote a ball in X. Later on we shall also use the following 

DEFINITION 1.2. (i) We say that a function / : B —> Y is additive (on 
the ball B) if and only if for all x,y G B such that x + y € B we have 
f(x + y) — f(x) + f ( y ) . (ii) A function / : B —> Y is quadratic (on the 
ball B) if and only if for all x,y e B such that x + y,x — y&B we have 
f{x + y) + f(x - y ) = 2 f(x) + 2 f ( y ) . (iii) We say that a function / : £ Y 
is orthogonally additive (on the ball B) if and only if for all x,y G B such 
that x + y G B and x A. y we have / ( x + y) = f(x) + f ( y ) . 

Throughout the paper, N, No, R denote the sets of all positive integers, 
all nonnegative integers and all real numbers, respectively, and i . stands for 
the orthogonality relation in the sense of Birkhoff-James. 

2. Auxiliary results 
On account of the results of J. Ratz ([9]) and Gy. Szabo ([15]) we have 

the following theorems. 

THEOREM 2.1 ([9, p.41, Corollary 7]). Let (X, || • ||), d i m X > 2, be a real 
normed linear space with Birkhoff-James orthogonality, and let (Y, + ) be a 
uniquely 2-divisible abelian group. Then every orthogonally additive mapping 
f : X —>Y has the form f — g + h with g quadratic and h additive. 

THEOREM 2.2 ([9, p.47, Theorem 16], [15, p.95, Theorem 1.8]). Let (X, || • ||), 
d i m X > 2 , be a real normed linear space with a norm that does not come 
from an inner product and with Birkhoff-James orthogonality, and let (Y, +) 
be an abelian group. Then each orthogonally additive mapping f : X Y 
is additive. 

REMARK 2.3. In general, the converse of Theorem 2.1 is not true. In partic-
ular, a quadratic function need not to be orthogonally additive. 
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REMARK 2 .4 . Under the assumptions of Theorem 2 .2 , every even orthogo-
nally additive mapping is the zero function. 

In what follows, we show that in every finite-dimensional normed linear 
space there exists a basis that consists of vectors orthogonal in the sense of 
Birkhoff-James. We start with quoting a theorem by R.C. James from [5]. 

THEOREM 2.5 ([5, p.268, Theorem 2.2]). Any element of a normed linear 
space is orthogonal to some hyperplane through the origin. 

REMARK 2.6. For a given hyperplane H may not exist an element x with 
x -L H. This problem of finding an element x € X with x A. H is equivalent 
to finding an element x with | / (x ) | = | | / | | ||x|| for a given functional / . 

Using the above theorems we construct an orthogonal basis in X . Let 
{c*i,i, . . . , c^/v} be an arbitrary basis in X, i.e. 

X = lin { a i , i , . . . , ai.jv} = : Hi. 

By induction we construct a basis { u i , . . . consisting of orthogonal 
vectors. Let u\ := a i j . From Theorem 2.5 there exists a hyperplane H2 
through the origin (dim H2 = N — 1) such that 

«1 -L H 2 , # 2 = lin {<*2,2, . . . , a 2 , ; v} 

for some vectors <22,2, • • •, «2,/v 6 X . Then 

u\ _L a2ti for all i € { 2 , . . . , iV}. 

Define ui 0.2,2- There exists a hyperplane Hz C H2 through the origin 
(dim # 3 = N - 2) such tha t 

U2 1 i?3, H z = lin {0-3,3,..., 

for some 0*3,3, • • •, c*3,N £ X . We have 

u2 -L az,i for all i 6 { 3 , . . . , N} 

and 
tti 1 a 3 ) i for all i G { 3 , . . . , N} (since Hz C H2). 

Define uz := 03,3. By the induction step there exists a hyperplane H^ 
through the origin (dim Hk = N — k + 1) such that 

1 -L Hk, Hk = lin {ak<k, • • •, afc.w} 

for some vectors a ^ , . . . , a^ jv € X. Then 

Uk-1 ± ajt, , for all i e {k,..., N}. 

Moreover, 

Uj A. for all j € { 1 , . . . , k — 2} and for all i 6 {fc,..., N}. 



582 J. S ikorska 

Define uk :=ak tk- In such a way we construct vectors till u/v-i := ajv-i.JV-l-
We have dimlin{ti^v—i) 0£n—i,n} — 2. There exists a vector tt/v such that 
u/v-1 J_ UN (cf. [9, p.37, Lemma 1]). In such a way we have defined a 
sequence of vectors U\,..., UN with the properties: 

•Ui 1 Uj for i, j € { 1 , . . . , N}, i < j. 

Any two vectors orthogonal in the sense of Birkhoff-James are linearly in-
dependent, so X — lin { u i , . . . , u/v}, and we have the desired basis. 

3. Stability on a half-ball 
Assume that the domain (X, || • ||) is a real normed linear space, d imX = 

N > 2, the target space Y is a real uniformly complete linear topological 
space, and V is a nonempty, bounded subset of Y which is convex and 
symmetric with respect to zero. Let, moreover, B stand for a ball in X 
centered at the origin. Without loss of generality we may assume that it is 
the unit ball. 

The aim of this section is to prove the following 

THEOREM 3.1. If f : B —> F fulfils the condition 

(1) (x,y,x + yeB,x±y) =» f(x + y) - f(x) - f{y) 6 V, 

then there exist an additive function a : X —+Y, a quadratic function q : 
X —*Y and a constant k = k(N) such that 

f ( x ) — a(x) — q(x) € k seqcl V , x E jrB. 

REMARK 3.2. The above result is slightly weaker than expected one. Prom 
Theorem 2.1 every orthogonally additive function is a sum of an additive 
and a quadratic one. But the converse, in general, is not true. This result, 
as well as the lack of uniqueness, is caused by a restriction from the whole 
space to a ball. Some details will be presented after Lemma 3.7. 

The proof of this theorem is a consequence of several lemmas. 

LEMMA 3.3. Let f : B —> Y be an odd mapping satisfying (1). Then for every 
x 6 \B and A € M such that Ax, (1 + Ax) 6 \B we have 

(2) f(x + Ax) - / ( x ) - /(Ax) € 3V. 

P r o o f . Take x 6 \ B and A e K such that Ax, (1 + A)x € The following 
four cases will be considered: 

(i) A > 0, (ii) A = 0, (iii) - 1 < A < 0, (iv) A < - 1 . 

(i) There exists y G X such that x _L y and x+y _L Xx — y.We check that 
y, x+y, Ax—y € B. The above orthogonality relations with fj, = 1 give ||x|| < 
||x+y|| and ||x+j/|| < | |(l+A)x||. Moreover, ||y|| < | |x+?/| |+| |-x| | < (2+A)||x|| 
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and ||Ax - y\\ < ||Ax|| + || - y|| < (2 + 2A)||x||. Hence, if ||x|| < then 

ll*+y|| < h IMI < < llAa;-2/ll < ^ i S y = s o x+y> f . X x ~ v e B 

and we can apply (1). Namely: 

/(x + Ax) - f ( x + y) - f(Xx - y) € V, 

/(x + y ) - / ( z ) - / ( y ) e V, 

/ ( A x - y ) - / ( A x ) + / ( y ) e V , 

whence (2) follows immediately. 

(ii) If A = 0 then (2) is surely satisfied since /(0) <E V C 3V. 

(iii) Using (i) and the oddness of / we can write: 

/(x + Ax) - f(x) - /(Ax) = /(x + Ax) + / ( -Ax ) - /(x) 

= /(x + Aa:)+ (1 + A )x ) 

- / ( ( 1 + A)x + ( - j ^ ) (1 + A )x ) e SV. 

(iv) Using again (i) and the oddness of / we get 

/(x + Ax) - /(x) - /(Ax) = / ( ( - 1 - A)(—x)) + / ( - x ) - /((—A)(—x)) € 3V. 

This completes the proof. 

LEMMA 3.4. Let f : B —+Y be an odd mapping satisfying (1). Then there 

exist an additive function a : X —* Y and a constant k\ = k\(N) such that 

for any x € ^B one has 

a(x) — f(x) € seqcl V. 

Proo f . Let u i , . . . , ujv be an orthogonal basis in X, ||uj|| = ¿6 {1 , . . . , N}. 

Each x € X we can write as x = J2iLi a i u i f ° r some (uniquely determined) 
ai,...,aj\r € R. Further, we decompose each a, into its integral part ri{ 
and its mantissa m*, so that a j = rii + m^, i G {1 , . . . , iV } . Then x = 

E i l i (niui + rriiUi). 

Define a function F : X —• Y by 

N 

F(x) := 5^(ni/(ui) + /(m^)). 

z=i 

Fix x 6 27?"S. Since Uj J. lin { i t j+ i , . . . , u^} , then, by induction for every 
i € {1 , . . . , N}, we have 
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IKuill < ||Villi + ai+iui+i + ... + a;vujv|| 
i - 1 

< | | a i « i + . . . + a N u N \ \ + £ || - a j U j \ \ < 2 i-1||x||. 

j = 1 

H e n c e ||a{iii|| < ¿ t t W , i€{l,...,N}, s o « ¡ 1 4 , ctjUj G yrrr+iB C \B 
f o r ¿ 6 { l , . . . , i V } . 

O b s e r v e t h a t f o r a n y x € ^ j - B w e h a v e 

N 

F(x) - /(x) = Y^(nif(ui) + fimiui) - fi^iUi + mjUi)) 
i = i 

I t is e a s y t o s h o w t h a t 

N , N 

E / ( « » « < ) - / ( ¿ « i « i ) € ( n - I ) ^ 
i=1 ^ 

( i t f o l l o w s f r o m t h e f a c t t h a t f o r e v e r y i € { 1 , . . . , N — l } w e h a v e ot{Ui _L 

E j L i + i a j u v s o t h a t / ( E j l i O i j U j ) - / ( « ¿ U i ) - / ( E j i i + i w ) € V ) . 

D e n o t e : Ai : = rnf(ui) + f(rriiUi) - f(riiUi + m j U j ) , i G { 1 , . . . , J V } . 

O b s e r v e t h a t s i n c e w e h a v e ||aiUi|| < \ a n d ||tti|| = w e g e t |a t| < 1 f o r 

a l l i € { 1 , . . . , N } . C o n s i d e r i n g t w o cases : 0 < a * < 1 a n d —1 < a ; < 0, w e 

g e t Ai = 0 a n d Ai G 3 V , r e s p e c t i v e l y . A s a c o n s e q u e n c e w e o b t a i n 

(3) F ( x ) - f ( x ) e ( 4 N - l ) V , xe^B. 

W e s h o w n o w t h a t f o r a n y x, y G X w e h a v e 

F(x + y)~ F(x) - F(y) G 6N V. 

F o r th i s e n d , t a k e x , y G X a n d w r i t e t h e m in t h e f o r m 

N N 

X = E aiui — E (niUi + m»U»)> 
¿=1 ¿=1 

N N 

y = Yl @iUi = E (kiUi + liUi)> 
i=1 ¿=1 

f o r s o m e ( u n i q u e l y d e t e r m i n e d ) r e a l s a * , z G { 1 , . . . , 7 V } ; n* , ki s t a n d 

h e r e f o r t h e i n t e g r a l p a r t s , a n d m ; , I j - f o r m a n t i s s a s o f c*t a n d fa ( i € 

{ 1 , . . . , N}), r e s p e c t i v e l y . 

L e t Fi, i G { 1 , . . . , N } s t a n d f o r t h e z - th s u m m a n d in t h e d e f i n i t i o n o f 

f u n c t i o n F . 
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Fix i G {1, . . . , N}. Assume first that rrii + li < 1. Then, by Lemma 3.3, 
we have 

Fi(x + y)~ Fi(x) - Fi(y) = /((mi + U)ui) - / (m^i ) - f ( l i U i ) 6 3 V. 

Let now 1 < rrn + li < 2. Since (m, — l)uj G B, we have 

Fi{x + y ) - F i { x ) - F i { y ) 

= fim) + / ( ( m i + k~ l ) « i ) - f(rriiUi) - f(hui) 

= ( f ( u i ) + f { i m i ~ l ) « i ) - f (miUi) j 

+ (/ ( (mi + k - 1 )tti) - / ((mi - l )ui) - f{liUi)j e6V . 

Hence, 
N 

F(x + y)~ F(x) - F(y) = £ fax + y)~ Fi(x) - Fi(yj) G 6AT V. 
¿=1 

According to [8], there exists an additive function a : X —> Y such that 
for all x G X 

(4) a(x) — F(x) € 6N seq cl V. 

Moreover, from Lemma 3.3, we have 

(5) 2 7 ( ^ x ) - / ( x ) 6 3 ( 2 " - l ) F , xe^B, n G N. 

Using now (3), (4) and (5) we get for any x G ^B 

a(x) - f ( x ) = 2n_1 ( « ( ^ s ) -

+ 2 iV-1/(2ArrT^) - f(x) G (2^(5N + 1) - 3) seqcl V, 

so we have got the assertion of the lemma with fci = 2N(5N + 1) — 3. 

LEMMA 3.5. Let f : B —>Y be an even mapping satisfying ( 1 ) . Then for all 

vectors x, y G \B such that x + y, x — y G ^ B we have 

(6) f ( x + y) + f ( x - y) - 2 / ( * ) - 2 f ( y ) G k2 V 

for some positive constant 

Proo f . We show first that 

(7) f ( x ) - 4"/ ( ¿ x ) 6 ^ (4n — 1) V, xe \B, n G N. 
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Take x G \B. There exists y G X such that x ± y and x + y _L x — y. As in 
Lemma 3.3 we get \, ^ G B, so 

- - Kf) - ̂  ( I ) ) + - Kf) - ̂  (-D) 
-<'(!)-'(^-'(=7*)) 
+2(/ (I) - / - / e ̂  

and whence we have (7) with n = 1. The rest follows from an easy induction. 
Fix now x 6 \B and A > 0 such that Ax, (1 + \)x, (1 - X)x G \B. There 

exists y G X such that x J_ y and x + y ± Xx — y. We have x + y, Ax — y, y G 
B. Moreover, ||(1 - \)x + 2y\\ < \\x + y\\ + ||Ax - y|| < 3(1 + A)||x||. So, 
2y, (1 — X)x + 2y G 2B. By (1) and the evenness of /, we get 

f{x + Ax) + f(x - Xx) - 2 f ( x ) - 2f(Xx) 

Actually, from the above, for any x G X and a, ¡3 € M such that 
ax, fix, (a + (3)x, (a — (3)x G \ B we have 

(8) f(ax + fix) + f(ax - fix) - 2f{ax) - 2f(f3x) G 434 V. 
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Fix now x, y G \B such that x + y,x — y G ^B. Because of (8) it is 
enough to assume that x and y are linearly independent. Let u and v be 
vectors from the subspace lin {x , y}, generated by x and y, such that u ± v. 
Then x = au + (3v, y = 711 + Sv for some a, /?, 7,6 G R. We have ||cra|| < 
\\au + f3v\\ = ||x||, II^H < 2||x||, HtixH < ||7« + H I = ||y||, ||HI < 2||y||, 
||au + 7«|| < 11*11 + ll.'/li- II"« - 7«ll < bll + lly||> 110« + ¿«11 < 2||x|| + 2||y||, 
\\f3v—iu|| < 2||x||+2||y||. Hence, au, 7u E \B, f3v, 5v, au+ju, au—ju e B, 
f3v + Sv, (3v — Sv 6 2B. Using (1), (7) and (8), and taking care that the 
suitable vectors are in the domain, we get the desired assertion. 

The following lemma has been established as Lemma 9 in [10]. 

L E M M A 3 . 6 . Let f : B —*Y satisfy the condition 

x, y, x + y, x-y e B => f{x + y) + f(x-y)~ 2/(x) - 2 f(y) G V. 

Then there exist a quadratic mapping q : X —» Y and a positive constant 
= {N) such that 

q(x) — f(x) € ^seqclV, x G B. 

L E M M A 3 . 7 . Let f : B —> Y be an even mapping satisfying ( 1 ) . Then there 
exist a quadratic function q : X —• Y and a positive constant k4 = k^N) 
such that 

q(x) — f(x) 6 ^seqclV, x G -B. 
Zi 

Proof . The lemma is an immediate consequence of Lemma 3.5 and Lem-
ma 3 . 6 . 

R E M A R K 3 . 8 . Neither in Lemma 3 . 4 nor in Lemma 3 . 7 we get uniqueness of 
the function which approximates /. Moreover, in Lemma 3.7 we get a result 
slightly weaker than expected. Namely, we cannot expect that each function 
q satisfying the assertion of the lemma is orthogonally additive (what would 
mean, according to Remark 2.4, that for example in a normed linear space 
of dimension not less than 2, in which the norm does not come from an inner 
product, it is the zero function). The example below shows that, in general, 
a function q, which has all the properties occurring in Lemma 3.7, fails to 
be orthogonally additive. 

E X A M P L E 3 . 9 . Take / : R 2 —> K which is even, orthogonally additive and 
assume that a norm || • || in R2 does not come from an inner product. Then 
for every e > 0 we have 

(x,y,x + y G x ± y) \f{x + y)-f(x)-f{y)\<e. 

Take an arbitrary e > 0 and define q : R2 —> R as q(x) := f(x) + c(x2 + x2) 
for all x = (xi,x2) G R2 and with a real c such that |c| < where a 
is a positive constant such that for all x G R2 we have (x2 + xij) < a||x||2 
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(the Euclidean norm and || • || are equivalent). Because / is quadratic, so 
is q. Moreover, for every x 6 ^B we have 

| /(x) - q(x)| = |c(x? + x\)\ < k4e. 
However, the function q is not orthogonally additive on a half-ball. To see 
this, take arbitrary x = (xi, X2) and y = (2/1,2/2) from \B such that x _L y 
and note that 

q(x + y)~ q{x) - q{y) = 2c(x1yi + x2yi). 
The above difference cannot be always zero. Otherwise, the orthogonality 
relation in the sense of Birkhoff-James would be equivalent to the orthog-
onality relation connected with some inner product defined on M2, which 
leads to a contradiction. 

Now we have collected all tools needed and we are ready to prove The-
orem 3.1. The proof works similarly to that of Theorem 1 from [10]. 
P r o o f of T h e o r e m 3.1. Let /0 , fe : B —• Y denote the odd and even 
part of the function / , respectively. Then, if / fulfils (1), so do the functions 
fo and fe. From Lemma 3.4 we infer that there exist an additive function 
a : X —> y and a constant k\ such that 

a(x) — /0(x) € ki seqcl V for all x G ^B, 

and from Lemma 3.7 we get the existence of a quadratic function q : X —> y 
and a constant £4 such that 

q(x) — /e(x) e fojseqclV for all x € ^ B . 

Consequently, 

a(x) + q(x) — /(x) € (fci + k4) seqclF for all x € ^ B , z 
which gives the assertion of the theorem with k = fci + £4 and completes 
the proof. 

Similarly also to [10], we can establish stability results for Jensen, Pexider 
and exponential functional equations. 

4. Stability in uniformly convex spaces 
Let us recall the following 

DEFINITION 4 . 1 . A normed linear space (X , || • ||) is called uniformly convex 
if and only if for every e > 0 there exists ¿(e) > 0 such that for all x, y € X 
if ||x|| = ||y|| = 1 and ||x - y\\ > £ then | | i (x + y)|| < 1 - ¿(e). 

Assume now that (X, || • ||) is a real uniformly convex space, dimX = 
N > 2, with Birkhoff-James orthogonality relation and the sets Y, V and 
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B have the same properties as in paragraph 3. Let, moreover, S stand for 
the unit sphere in X . 

PROPOSITION 4.2. There exists an n € N such that for every x € S there 
exists a decomposition 

v 
x = Ylui>i> 1 - 3 - n 

i= l 
such that 

Huj-.iH < 1 for \ <j<n-\, \<i<2j, 

Kill < \ for 1 < i < 2", 

and moreover, 

Uj-l,i = Ujt2i-1 + Uj,2i , 1 <j<n, l<i<2j \ 

Ujy2i-1 -L Uj,2t , ||«j,2t-l|| = IK,2i||, 1 < j < n, 1 < i < 2j~l. 
The following diagram shows the decomposition described in Proposi-

tion 4.2. 

«1,1 + «1,2 

« 2 , 1 + « 2 , 2 « 2 , 3 + « 2 , 4 

« 3 , 1 + « 3 , 2 « 3 , 3 + « 3 , 4 « 3 , 5 + « 3 , 6 « 3 , 7 + « 3 , 8 

« n , l + U n , 2 ••• « n , 2 " - l + « n , 2 " 

Proof . Take x € ^S. By [15] for every y E \S there exists a unique A € 
5,3j which depends continuously on y and such that 

x + Ay J. x — Ay. 

Define the function fx : ^S —• R as follows 

fx(y) := ||a; + Ay|| — ||x — Ay|| 
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for all y e ^S and with A as described above. Since fx(x) = 2||x|| > 0 
and fx(—x) = — 2||x|| < 0 (in both cases A = 1) and S is connected, there 
exists a yo £ such that fx(yo) = 0. Hence, for a suitable A we have 
Ik + Ayo|| = — Aj/o|| and x + Ayo J_ x — Xyo• From the last orthogonality 
relation we deduce, moreover, that ||a; + Ayo|| < 2||x|| = 1, whence the vector 
2x, of norm 1, can be written as a sum (x + Xyo) + (x — Ayo) of two orthogonal 
vectors of the same norm smaller than or equal to 1. 

So far, we have proved that any vector of the norm 1 can be decomposed 
into two orthogonal vectors, both of the same norm, smaller than or equal 
to 1. 

In what follows, we shall see that it is impossible to decompose a given 
vector of norm 1 into a sum of two orthogonal vectors of norms close to 1. 
In other words, we proceed to show that there exists 5 > 0 such that for 
every x € S we have 

(9) (x = u + v, u 1 v, |M| = IMI) |MI < 1 - s . 

Suppose, on the contrary, that there exists a sequence (xn)n€N> xn G S, 
and sequences (un)neN, (fn)neN of elements of the unit ball such that xn = 
un + vn, un _L vn and ||itn|| = ||vn|| > 1 - 6n with 8n -> 0. 

Let rn | |un | | and Sn {u e X : ||u|| = r„}. Then 1 - 6n < rn < 1 
and rn —> 1. Let, moreover, ( w n ) n e n , (£n)neN be such that wn 6 Sn, £n > 0, 
£n —> 0 and 

(1 -f £n)wn -Un + Vn. 

Compute 
Wn UT 

Tn Tn 

So, there exists no such that 
wn un 

= —1|«n ~ Cn^n|| > — ( IK | | ~ £n||™n||) = 1 ~ £n-
Tn 

1 , „ > - for all n > no-
Tn Vn 

Take rj > 0. There exists n\ > no such that < rj. We thus obtain 
w n i 

' n i 
+ 

U-n i 

' n i 

> 

1 
' n i 

' n i 

U. 
1 + 1 

ni T 2 un\ 2 

U. ni + 0
 vni ~ ^ £m > 1 - V, 

which contradicts the uniform convexity of X . So, we have proved that there 
exists some ö > 0 such that any vector x € S can be decomposed into a sum 
of two orthogonal vectors of equal norms less than 1 — 5. It is now easy to 
see that the desired n we reach after + 1 steps. 

In what follows we shall again treat separately odd and even functions. 
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LEMMA 4 . 3 . Let f : B Y be an odd function satisfying ( 1 ) . Then there 
exist an additive function a : X and a constant c\ = c\(N) such that 

f(x) — a(x) 6 ciseqclV for all x 6 B. 

Proof. First we will show that for a positive constant mi one has 

(10) f(x)-2f(^jem1v,xeB. 

Take x £ B and using Proposition 4.2 write it in the form 
2n ! 

® = -L Wnj2fc, Un,2k-1, Un,2k € X&, & € { l , . . . , 2 n }. 
¿=1 1 

From (1) and Lemma 3.3 we get (with uo,i := x) 

HX) ~ V (I) = ^ ^ C^"1^ ~ /iuj,2i—l) ~ / M ) 

+2 t e (/ +/ (T) - •f (V))G 3(271+1 -1} K 

So we have got (10) with mx = 3(2 n + 1 - 1). 
Let a be the function from Lemma 3.4. Take x 6 B. We have 

/(*) - a(x) = ( / ( * ) - 2 / ( | ) ) + 2 ^ / ( | ) - « ( f ) ) e c\ seq cl V, 

where c\ = mi + 2k\ with constants taken from Lemma 3.4 and (10). This 
finishes the proof. 

LEMMA 4.4. Let f : B —> Y be an even mapping satisfying (1). Then there 
exist a quadratic function q : X —*Y and a constant C2 = C2(N) such that 

f(x) — q{x) 6 C2seqdF for all x G B. 

Proof . It runs analogously to the previous one. Instead of (10) we prove, 
however 

/ ( : r ) - 4 / em2V, xeB, 

with m,2 = 3 • 2 n + 2 — 5, and we use Lemma 3.7. The constant C2 is then equal 
to m.2 + 4/̂ 4. 

Proceeding as in the proof of the main result of the third paragraph, we 
use the above two lemmas in order to obtain the next result. 
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THEOREM 4.5. If a function f : B Y satisfies (1) then there exist an 
additive function a : X Y, a quadratic function q : X —> Y and a 
constant c = c(N) such that 

f(x) — a(x) — q(x) € cseqcl V for all x € B . 

5. Some examples 
The assumption about the uniform convexity of the space is only a suf-

ficient condition for the stability of the Cauchy equation on the whole ball. 
We will see in the following examples that this condition is not necessary. We 
will show it in two examples in two-dimensional spaces but these results can 
be generalized to Rn for arbitrary n > 2. Since the considerations concern 
concrete spaces, the estimating constants obtained are much better than in 
the general case of uniformly convex spaces. 

EXAMPLE 5.1. We consider X = l\\ it means we take R2 with the norm 
defined as ||(x, y)|| = \x\ + |y| for all (x, y) € R2. 

One can check that the following vectors are orthogonal in the sense of 
Birkhoff-James, and, in general, the symmetric relations do not hold: 

if |a |< |fc | , 

if | o | > | 6 | , 

if ab < 0, 

if ab > 0. 

( 1 , 0 ) 1 (a, b) 

( 0 , 1 ) 1 (a, 6) 

(a, b) 1 (1,1) 

(a, 6) 1 ( 1 , - 1 ) 

The homogeneity of Birkhoff-James orthogonality gives many other ortho-
gonality relations. 

We prove that for every x € l\, ||x|| = 1, there exist vectors U,V,VJ 6 l\ 
such that 

(11) x = (u + v) + w, u = v = w = - , u i D , U + D i U ) . 
z 

We will show that every vector (a, b) 6 R2 of norm 1 from the first quadrant 
(similar considerations are valid for the other quadrants) can be decom-
posed in this way. It is clear that such (a, b) is of the form ^ + d, \ — d^ or 

( i - d, \ + d) for some d e [ o , i ] . If d € [o , \ then 

+ 

We have 

> 1 d,--d and 5 . « d,--d 
1 
2 
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If d e 1 1 
4 ' 2 then 

* I -")+ Cs • " J 
, i i 

Moreover, 

d , \ - d 

and 

1 _ 1 
4 ' _ 4 

1 1 
4 ' 4 

= 2d < 1. 

4 4 

1 
2 

When we change the coordinates we have similar decompositions for vectors 
of the form ^ — d, ^ + d^j for d 6 0, ^ . 

Similarly to the earlier considerations one should first treat separately 
odd and even functions. First we will show that if / is an odd mapping 
satisfying (1) then 

f(x)-2f(^jem1v, xeB 

for some positive constant mi. Namely, we have 

/w-v(f) 
= (/(u + v + w)-f(u + v)~ /(«;)) + (/(u + u) - /(u) - /(«)) 

+(/<-> - v(i))+(/<-> - v(i))+(/<-) - )) 
• ' ( 'GMi)- '^)) 

Now, as in the proof of Lemma 4.3, using Lemma 3.4, we infer that there 
exist an additive function a:l\—*Y and a positive constant ci such that 

f(x) — a(x) 6 ci seqcl V, x 6 B. 

If now / is an even mapping satisfying (1), then 
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with some constant m2, and there exist a quadratic mapping q : l\ —> Y 
(taken from Lemma 3.7) and a positive constant ci such that 

f(x) — q(x) e C2 seqcl V, x G B. 

Here we use similar computations to those used above for odd mappings. 
Now, joining both previous results, we are able to state that there exist 

an additive function a : l\ —> V, a quadratic function q : l\ —> Y and a 
positive constant c such that 

f(x) — a(x) — q(x) 6 c seqcl V, x € B. 

It is interesting to see that the method described for uniformly convex 
spaces, which seems to be quite natural for that situation, does not work 
here. Namely, we have the following situation. 

Consider the unit sphere. In the first quadrant, for example, all vectors 
of the unit sphere can be decomposed into orthogonal vectors of equal norms 
as follows: 

1 j 1 j - + d, d 
2 ' 2 

Q'^-2d) + (d,d), de 
1 1 
4 ' 2 

and analogously for vectors of the form ^ — d, ^ + d^j for d 6 [o, . All 

vectors of the unit sphere in the first quadrant between and 
can be then decomposed into two orthogonal vectors of norm But later 
when we are going further towards the vertices of the unit sphere, the norm 
of the two vectors obtained in this decomposition increases, namely 

= \\(d,d)\\ = 2d. 

Finally at the vertices it is only possible to decompose into two vectors of 
norm 1, so we do not get (9) as we did in a uniformly convex space. Actually, 
also in such a space, it is impossible to decompose a vector of norm 1 into two 
orthogonal vectors, each of norm Since two nonzero vectors, orthogonal 
in the sense of Birkhoff-James, are linearly independent, this contradicts 
directly the strict convexity (and so the uniform convexity). 

E x a m p l e 5.2. Consider now the space it means, we take R 2 with the 
norm defined as | | ( x , y ) | | = max{|x|, |?/|} for all (x, y) G R 2 . 



Cauchy functional equation 595 

if 

.0 V
I 

UT 

if M > H 

if ab < 0, 

if ab > 0. 

It is interesting, in comparison with Example 5.1, that the orthogonal 
vectors now look as follows: 

(a,b) ± ( 1 , 0 ) 

(a,b) 1 ( 0 , 1 ) 

(1 ,1 ) ±(a,b) 

(1,-1)-L (a, b) 

Again, in general, the symmetric relations do not hold. 
Proceeding as earlier, we prove that for every x € IMI = 1, there exist 

vectors u,v,w G l\ such that (11) holds. All the remaining computations are 
unchanged. 

REMARK 5.3. If we consider n-dimensional spaces or with N > 2 while 
decomposing a vector to the form (11) it is enough to fix n — 2 coordinates 
and then, after necessary scaling down, to work with two other coordinates 
using Examples 5.1 or 5.2. 
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