-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

/

re-

\

You have downloaded a document from
RE-BUS
repository of the University of Silesia in Katowice

Title: A study on the static field of a point charge in three-dimensional electrodynamics

Author: Gennadiy Pivnyak, Mendel Pevzner, Andrey Medvedev, Edgar Caseres Cabana,
Andrzej Bak, Andrzej Bajerski, Adam Smolinski

Citation style: Pivnyak Gennadiy, Pevzner Mendel, Medvedev Andrey, Caseres Cabana
Edgar, Bak Andrzej, Bajerski Andrzej, Smolinski Adam (2020). A study on the static
field of a point charge in three-dimensional electrodynamics. “Journal of Physics
Communications” Vol. 4, no. 7 (2020), art. no. 075020, s. 1-8. DOI:10.1088/2399-
6528/aba734

Uznamie autorstwa - Licencia ta pozwala na kopiowanie, Zimiemanie,

|® (V) rozprowadzanie, przedstawiame 1 wylconywanie utworu jedynie pod wanunlasm

0ZNACZenis autorstwa.

W UNIWERSYTET SL}%{SKI m Biblioteka "\ Ministerstwo Nauki

W KATOWICACH == Uniwersytetu Slaskiego i Szkolnictwa Wyzszego



https://core.ac.uk/display/355661344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
7 May 2020

REVISED
8 July 2020

ACCEPTED FOR PUBLICATION
17 July 2020

PUBLISHED
27 July 2020

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 4.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

J. Phys. Commun. 4(2020) 075020 https://doi.org/10.1088,/2399-6528 /aba734

Journal of Physics Communications

PAPER

A study on the static field of a point charge in three-dimensional
electrodynamics

Gennadiy Pivnyak', Mendel Pevzner’, Andrey Medvedev’, Edgar Caseres Cabana’, Andrzej Bak®,
Andrzej Bajerski® and Adam Smolinski®

1

Department of Power Supply Systems, Dnipro University of Technology, 19 Yavornytskoho Ave., Dipro, 49005, Ukraine

Department of Physics, Dnipro University of Technology, 19 Yavornytskoho Ave., Dnipro, 49005, Ukraine

Department of Automatic and Computer Systems, Dnipro University of Technology, 19 Yavornytskoho Ave., Dnipro, 49005, Ukraine
Scientific Research Institute of the Center of Renewable Energy and Energy Efficiency, Universidad Nacional de San Agustin de Arequipa,
San Agustin Street 107, PE-04000, Arequipa, Peru

Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland

¢ Central Mining Institute, Plac Gwarkéw 1, 40-166, Katowice, Poland

5

E-mail: smolin@gig.katowice.pl

Keywords: three-dimensional electrodynamics, static potential, polarization of vacuum, chiral symmetry breaking, confinement

Abstract

The static field potential in quantum electrodynamics in the space of three dimensions (QED3)
produced by a point charge was investigated taking into account the polarization of the vacuum. The
polarization operator is taken in the N~ ! approximation which was previously used to study the
dynamic violation of chiral symmetry in QED;. An approximate analytical analysis is accompanied by
numerical calculations; there is a good quantitative agreement between the results obtained using
these methods. The case of massive dynamical fermions is considered. The limiting transition to the
massless case is analyzed, as well as the confinement problem occurring in this model.

1. Introduction

Quantum electrodynamics in the space of three dimensions (QED3) has recently been the object of attention of
many authors. The reasons for this interest are different. Among them, one can observe the presence of a
dynamic violation of chiral symmetry (including the IT systems) [ 1-6] and confinement [7, 8] (understood as
the growth of the potential modulus with increasing distance). These two phenomena are interrelated in this
model. However, there are also other reasons for the interest in QEDj5 . Thus, breaking chiral symmetry
accompanied by the appearance of the dynamic particle mass takes place in quantum field theory [9, 10]. In this
case, a close analogy is observed between the processes of particle occurrence in the center of a strong field in the
one-particle problem of relativistic quantum mechanics and the dynamic particle mass appearing in the
quantum field approach [11-13]. In this respect, quantum electrodynamics of three-dimensional space
(QED,. 1) represents an example of a quantum field model in which, in a certain approach, chiral symmetry
breaking, studied in ample detail in [14—17], is observed. This is not the case for the corresponding two-
dimensional relativistic quantum mechanical problem that was studied only in a few works (see [18-21]).
Moreover, a number of problems studied in detail in the spatial case [14—17] remained uninvestigated for the
two-dimensional analog.

Particular attention was paid to the static field of the point charge in QED;. We will note here that an explicit
expression for the potential of such a field is necessary for solving a number of specific problems, in particular,
for solving the corresponding quantum-mechanical problem mentioned above. On the other hand, as shown
by relevant studies [22], it is important to take into account the polarization of the vacuum, since this can
significantly change the character of the dependence of the potential on the distance between the point and the
source. By contrast, an exact account of the vacuum polarization in the N — 1 approximation, carried out in [22]
and being one of the simplest approaches, does not allow expressing this potential through known functions. In
this case, the following ways can be used to obtain the desired expression for the potential:

© 2020 The Author(s). Published by IOP Publishing Ltd
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(a) numerical integration followed by interpolation;

(b) approximation of the integrand by a simpler expression that makes it possible to calculate the integral
explicitly, in a subsequent comparison with the result of numerical integration using the exact expression
for the polarization operator.

In this paper the consideration of the static field of a point charge in QED3 is discussed. As for the photon
propagator, the same approximation is used here as in the literature [8]. Anyway, the novelty in comparison with
the previous studies described in the literature of the field comprises the following:

(a) studying approximations of various character within the linear fractional case for a function inverse to the
polarization operator (earlier in [8]; for this purpose, only two-point approximation was used, see
also [23]);

(b) using numerical methods (in particular, Mathematica 9.0) when calculating the potential within the
framework of the approximation used for the above function;

(¢) comparing the result obtained by means of numerical methods for the potential with the result obtained
using approximations of various types within the linear-fractional approximation for a function inverse to
the polarization operator;

(d) analyzing the dependence of the investigated potential on the quantum coupling constant and the fermion
mass in a sufficiently wide range of values of the indicated quantities.

2. The general expression for the static potential of the point charge field in QED;

To find the static potential, we start from the standard expression [17]
Ao(7) = iQ/ @) f DY (%, 0)e*Fd’k, )

where Q—charge of the source, D" (k, 0)—transverse part of the total photon propagator at zero frequency,
regularized in a gauge-invariant manner. It can be represented as

DY (k, 0) = 1/(ik* - (k)); ©)

(here k = IE ), and the function ¢ (k), associated with the polarization operator in QED3, was first calculated in
the approximation considered in [22]. It has the following form:

2 _ 2
pk) =1+ 20;;:2 : (1 + % : arctg(k/Zm)) ©)

where o stands for the dimensional coupling constant in QED3, and m is the mass of the fermion. Further,
introducing dimensionless quantities x = k/2m, (3 = a/(8wm), we represent the function ¢ as

px) =1+ s -(1 + X2x_ ! . arctgx). (4)

x2

Substituting (2) and (3) into expression (1) and bearing in mind representation (4), as a result of integration over
the angle, we have

Ao(p) = @/2m) ” x](')(—:pcfa)c)dx’ )

where p = 2mr. We draw attention to the fact that the integral (5) diverges at the lower limit if m = 0. To avoid
this divergence, we represent the function 1 /¢ (x) = f (x) as

fG) =10+ fx) —f(0), (6)
where f(0) = 3+34;8'
Substituting the equality (6) into (5), we obtain
3
Ao(p) = (Q/27T)(3 e Li(p) + 345 Lz(P))- )
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Here

L = [ 2

™ Jolpx) (= B/ (x + (x* — 1) - arctgx))
La(o) = f(; x 3+ Bx + (x? — 1) - arctgx) dx

®

3. Results and discussion

3.1. Approximation of the integrand
The integrals (5), (8) with function (4) are not expressed in terms of the known elementary and special functions;
therefore, in the present paper, both the approximation of the integrand by a simpler expression and numerical
integration are used for the calculation.

Let us first consider the calculation of the indicated integral by approximating the function f (x), choosing
the fractional-linear approximation as the simplest one. On the other hand, this choice is prompted by the type
of the specified function when m = 0 [24]. In this case, the approximated function can be represented as

a + apx
F(x) = ———, 9

(x) bt box )
here constants a, ay, by, b, are determined by the requirement of the functions f (x) and F (x) values
coincidence at given points. Using in this case relations (5), (6), we obtain

a ab -

Ao(p) = (Q/zm(b—1 “Lilp) + (ﬂz - %) : Lz), (10)
1 1

where L, is determined by the first of the relations (8), and L, is given by

Py = [ Lol T b b
L= [ el (Ho(sz) No(ﬂbz)} (11)

here Hy and Nj are, respectively, the zero-order Struve and Neumann functions [25].

Giving a certain meaning to the divergent integral L, can be argued as follows [26]. We find the derivative
dL
w
Li(p) = InC — Inp.

If we choose as the constant C the value p, which has the meaning of a dimensionless fundamental length,
then for the desired integral we have

o
= % . f J(€) - dé = — %; then, as aresult of integrating the resulting expression, we obtain
0

Lip) = In 22, (12)
0

To solve the problem, the two-point approximation was used in [3, 16, 17] (it was required that the above
functions coincide at the point x = 0 and with x — 00). However, for determining all the constants of the two
relations that result from the coincidence of the values of the functions in question at the indicated points, it
turns out to be insufficient. In [3, 16, 17] there is no consideration of this question. Therefore, this gap is filled,
namely, it is assumed that when x — 00 it coincides not only with the first but also the second terms in the
expansion of the functions f (x) and F (x) by degree 1/x. In this case, for the constants entering into the relation
(6), we can obtain the following values:

=3 a,=8/m; by =3+ 40; b, = 8/m. (13)

These values coincide with the results of [8, 23].

Itis quite natural in this case to use also the three-point approximation, proceeding from the coincidence of
the values of the functions f (x) and F(x) in points x = 0; x = 1aswellas x — 00. Then for constants a;, a,,
by, b, we have

01:3;02:1;b1:3+4ﬂ;b2:1. (14)

Figure 1 shows the plots of the functions f (x) and F (x), corresponding to two-point (F,(x)) and three-
point (F5(x)), approximating (functions f (x) correspond to the dotted line, the functions F, (x) and F;(x) are
plotted with red and blue lines, respectively). In the process of numerical calculations, the computational
package of Mathematica 9.0 was used.
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Figure 1. Plots of the integrand at (a) 3 = 0.01, (b) 8 = 0.1,(c) = 1,(d) 8 = 10, (e) B = 100 and (f) 5 = 500.

The analysis of the curves presented in figure 1 as well as formulae (9), (13), (14) shows the following:

(1) Both the two-point approximation and its three-point analogue, in general terms, from a qualitative point
of view correctly convey the behavior of the function in question throughout the investigated region of
photon pulses.

(2) For small momenta in the case of small 3; the accuracy of the three-point approximation proves to be higher
than the two-point approximation; this accuracy decreases with increasing constant 3.

(3) For sufficiently large (3 the accuracy of the two-point and three-point approximations in the region of both
small and large momenta turn out to be comparable.

(4) With the increase in constants, 3 the output of both functions to the asymptotic mode of values occurs later
than at its small values.
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Figure 2. Plots of the dimensionless potential as a function of the dimensionless distance at (a) 3 = 0.01,(b) # = 0.1,(c) 8 =1,
(d) 8 = 10,(e) 8 = 100 and (f) B = 500.

3.2. Calculation of the static potential of the point charge field in QED;
We proceed to— calculating the potential which is of interest to us, using, first of all, the results of approximation.
Using formulae (10)—(14), for the two-point approximation we have

Q 3 Po 43 77
o(p) 27r(3+4ﬁ N T3 2
'(Ho(%@ +49) - p) - N T+ 40 p))) (s)
Similarly, we obtain for the three-point approximation
Q 3 Po 43 m
A(p) = | — . jpfo, = 7
o(p) 27r(3+4ﬁ N T i 2
(H(3 -+ 49) - )~ N3+ 49) - ) | (16)

Dependence of potential Ay(p) on the dimensionless distance at different 3 is shown in figure 2.
Turning to these figures and comparing the results obtained using approximating functions, as well as those
obtained on the basis of the exact function (4), we reach the conclusions listed below.

5
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(1) The approximations in question describe the qualitative behavior of the potential Ay(p) well in the
investigated interval of distances; we also observe a good quantitative agreement between the results of the
approximation and the exact result for the dependence of the potential under consideration on the distance
in the investigated range of distances.

(2) With increasing the 3 constant, the accuracy of the approximation improves.
(3) The accuracy of the approximation proves to be higher in the regions of both the small and large distances.

(4) In the investigated range of distances, the accuracy of the three-point approximation is higher than the two-
point approximation.

The last remark needs additional comments. Thus, it is known that when m = 0 (8 — o0) the integral (5)
converges and is computed in a closed form. In this case we have [24]

)

This relation can be obtained by passing to the limit from the finite mass of the fermion to the case m — 01in
formula (15), but not (16), whereas with regard to item 4) of the conclusions of the section under consideration
we should expect the opposite. This fact is a consequence of the divergence of the integral (5), which implies the
order of the transition m — 0 and integration over the photon momenta.

From what has been said, the following follows. If it is necessary to use the expression for potential Ay (p) in
the analytical form, in a wide range of values of the constant (3 of values 3 < 1and up to the values 5 > 1, but
finite, three-point approximation is preferable (formula (16)). When 3 — oo(m = 0), the formula (17) should
be used.

Thus, when analyzing the potential under consideration, if it is an analytic expression, it is reasonable to start
from the relation (16) to which we turn. Here, we consider the possibility of weakening the condition for the
disappearance of confinement, understood as the disappearance of the field at infinity. Itis known [4, 15-17,
25-27] that in QED; confinement takes place if m = 0 (this can be easily seen from expression (16)). If m = 0,
confinement disappears.

Analyzing the graphs shown in figure 2, one can see the following:

(a) when the virtual fermion mass is not equal to zero and the coupling constant is fixed in the considered range
of coupling constants and distances, the potential under study is a monotonously decreasing function of the
distance from the observation point to the source;

(b) at a fixed value of the indicated distance, a weak dependence of the potential on the coupling constant is

observed at its small values, starting to increase significantly with the growth of this constant from the values
of 3> 1.

An investigation of the dependence of the potential on the distance can be performed in more detail, if we
choose the value of the distance scale

T = 3mm/c. (18)
where
1
Co m (19)
1+ -0

Then, as shown in [8], we have:
Aog(r) = 22 In(4co/3mmr), if 1 < ts
T
Ao(r) = ¢ - 22 In(4co/3mmr), if  r.>> 1, (20)
T

Thus, it can be observed that at large distances the role of the charge which is the source of the field, is the
magnitude ¢ - Q. In other words, the magnitude ¢, in our case is the renormalization constant, the appearance
of which is associated with the creation of virtual massive fermions in a vacuum. In additional, we see, that
potential A, (r) being monotonically decreasing function of the distance between a field source and observation
point changes its sign if noticed distance increases.

Let us consider now the situation when virtual fermions are massless. Here the natural scale of distances is
the quantity
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=8/ (21)

Then we have
Ay(r) = 22 In(8/ar), if 1< 1y
s

Ag(r) = ¢q - Q. 8/ar, if  1.>> (22)
2T

We notice that in this case, the potential depending from the distance between a field source and an
observation point is different for different distances (with an increasing distance). In addition, we had
established that in the case under consideration the potential keeps its sign. The physical aspects of this
phenomenon are discussed in detail in [8]. Briefly, in this case, a pole appears in the photon propagator in the
space-like region of momenta, which leads to the appearance of mass in the photon. The presence of an
imaginary mass, on the one hand, leads to instability of the bulk state, which is responsible for screening at large
distances, and, on the other hand, means its instability. This effect manifests itself in a faster decrease compared
to the case of massive vacuum fermions of the studied potential with distance from the point under
consideration fields to the source.

Since in the problem under consideration, there are three dimensional parameters which are the
dimensional fundamental length 1y, the mass of the fermion #1 and the coupling constant «, it is possible to
construct various dimensionless combinations with them which can play the role of characteristic parameters
for the corresponding problems. In particular, here, when we try to weaken the condition for the disappearance
of confinement in the sense indicated above, we use the value introduced previously 8 = # and, instead of the

traditional condition for this case 3 — o0, it is assumed that
B> 1. (23)

Using expression (16), and also writing out the principal term of the asymptotic representation of the
difference Ho(z) — Ny(z) [25], as a condition of screening (lack of confinement), it is necessary to take

4
smy 4 (24)
r 6mr + (ar)/r
Taking into account condition (18), and also that r > 1y; from the relation (19), we obtain
r< 1o - el/(émr), (25)

from which it follows that the screening is impossible and, hence, the presence of confinement only for strictly
nonzero values of the loop fermion masses.

4, Conclusions

When calculating the potential of the static charge field in QED; in N~!approximation, the possibility of using a
fractional-linear approximation for a function associated with a polarization operator is investigated. When
comparing the application of different variants of fractional-linear approximation for the considered function
with the result of numerical integration, it turns out that the best approximation gives a three-point
approximation. On the basis of this approximation, an analytical expression is obtained for the required
potential and it is shown that when the mass of loop fermions vanishes, this expression does not go over into the
known exact expression; the reason for this discrepancy is analyzed. On the basis of the expression for the
potential obtained with the help of the three-point approximation, the possibility of weakening the condition for
the disappearance of confinement was investigated and it is shown that in the approximation considered this
possibility is absent.
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