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by means of the growth tensor. II. Growth specified on dome 

surface 

ZYGMUNT FIEJNOW1CZ. JERZY NAKTELSK1, KRYSTYNA HEJNOW1C2. 

Department of Biophysics and Cell Biology, Silesian University, 
Jagiellotiska 28, 40-032, Katowice, Poland 

fRoceival: December 27, 1983, 1,0D:opted: January 17. I984 

Abstract 

Variations of the elemental relative rate of growth are modeled for parabolic, elliptic 
and hyperbolic domes of shoot apices by using the growth tensor in a suitable curvilinear 
coordinate system when the mode of area growth on the dome surface is known. 
Variations of growth rates within the domes arc obtained in forms of computer-made 
maps for the following variants of growth on the dome surface: (I) constant meridional 
growth rate, (2) isotropic area growth, (3) anisotropy of area growth which becomes more 
intensive with increasing distance from the vertex. In variants I and 2 a maximum 
of volumetric growth rate appears in the center of the dome. Such a distribution 
of growth seems to be unrealistic, However, the corresponding growth tensors are 
interesting because they can be used in combination with other growth tensors to get 
the expected minimum volumetric growth rate in the dome center. 

Key words; apical dome. growth tensor, growth variations 

I NTRODUCTION 

In the previous paper of this series (II ej now icz et at 1984) we illustrated 
use of the growth tensor and of a natural coordinate system in modeling 
spatial variations of growth within shoot apical domes of different shapes, 
For such modeling it is necessary to have information about the variation 
of growth along one displacement line. In the previous paper this information 
concerned the axis of the done, and was in the form of an assumed pattern 
of the elemental relative rate of growth in length, RERG,, along the axis, 
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In this paper we illustrate modeling based on knowledge either of the meridional 
RERG 1  or of the anisotropy of surface growth along one displacement line 
on the dome surface. The questions we pose are: what is the distribution 
of growth rates within the dome if the meridional REGR, is constant on 
the surface, and what is the distribution if there is isotropy of the surface 
growth (the meridional RERG I  is the same as the latitudinal RERG I ) or 
a certain type of directionality of growth on the surface? 

METHODS OF CALCULATIONS 

The methods are the same as in the previous paper (II ej no w icz et al. 
1984), except that the displacement velocity vector, V, is given on the dome 
surface instead of on the dome axis. As in the previous paper, we consider 
three shapes of apical domes: (A) parabolic, (B) elliptic, and (C) hyperbolic, 
assuming that the natural coordinate systems for these domes are: paraboloidal 
(u, v, 9) for A, and prolate spheroidal  !I, 0) for B and C. To have the 
general forms of the growth tensor for such domes at hand we are repeating 
the tensors from the previous paper (Fig. 1). 

RESULTS 

A. PARABOLIC DOME 

Variant A 3 *: RERG, ( „, „,„,„„ao  is constant on the dome surface on which 
v = vs . 

The condition specifying this variant is RERG Ion, )  = 
1 01/,, 

 
vit4  2 + vs2 

= const  k on the surface r = r,. 
By integrating we obtain: 

V — —
1 

k (u .\/u
2 +q + vs2 In lu+-\/u2 + v,2  I +c) 

on the surface. Since at the vertex (u = 0) V, must be null, we use this 
condition to determine the integration constant C, and find that C = — Vs

2  In r .„ 
We have thus on the surface: 

2 
2• 2 

) = — u 
2k 

v s  + n u + v,2 
 

vs  

*I The numbering of the variants is in continuation with those of the previous paper. 
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Fig. I. Orthogonal curvilinear coordinate systems, aplical domes and corresponding growth 
tensors. The upper left diagonal element of the tensor represents the RERG, in periclinal 
direction (meridional on dome surface). In the series of coordinate variables, e.g. a, v, 
the one corresponding to the pei-iclinal curves is given first, then follows the variable 
corresponding to the anticlinal coordinate (curve) and the last corresponds to the latitudinal 
coordinate. The surface of the dome is indicated by the heavy curve, The geometric 
focus of a dome (focal point of the parabolas, ellipses or hyperbolas) is on the level 
indicated by the asterick. The grov4th tensor should be multiplied by a corresponding scale 
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and in the whole dome 

k .\/u
2  + v 2  

V., u
2

+ 1.7
2

+ V
2

ln 
.‘/u +1),2 (

u 
N/ 3 3 

 

 

u + vs
2 

 

vs  

  

Introducing' this into the general form of the growth tensor we obtain the 
specific growth tensor for the variant being considered: 

k 

   

(2u2 
+ v2)  tu2 + vs  

u (v 2 —v + s
2 ) LN V2  (U 2  +  V2 ) .t si s 5  

u2 + vs2 
u2 2 + V, 

   

v (u u2  + v5
2  + vs LN ) 

0 

    

2 (14 2  -F 
v2),Iu2 + vs2 

  

       

— C 
(u 

 N/U2 v+ + vs2 LN) 

U N/U 2 V,2  LN 

0 

0 

0 
(u2 + v2) (u + + vs2 LN) 

    

where LN = In 
u + + vs

2 
 

vs  

 

  

    

From inspection of this growth tensor it follows that: (I) the ratio of 
RERG i(„,)  to RERG" i„, ) , i.e. the ratio of the 1 st diagonal term of the 3rd 
diagonal term, is 1 at the vertex (u —.0) as it should be though at first 
sight such a result is not obvious ., and that (2) RERG j(1 )  is the same along 
a v-line. The maps provided by the computer for BERG, in different directions 
are not shown here. They indicate that there is a slow decrease of the 
latitudinal RERG i  with increasing distance from the vertex, and a rather 
pronounced increase of anticlinal RERG J  with this distance in the peripheral 
part of the dome. Also an increase of this rate with distance from the 
surface is indicated, so that the maximal RERG, in the anticlinal direction 
is at the geometric focus of the dome. 

The distribution of the volumetric growth rate is shown on Fig. 2 (A 3 ). 
There is maximum of this growth rate in the central part of the dome (quite 
far from the focus), however the variation is not especially pronounced because 
the minimal RERG, O1 , which occurs at the vertex, amounts to 71% of the 
maximum rate. 
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Fig. 2. Computer maps of volumetric growth rate (RERGi) for 3 variants of parabolic 
dome. Each map represents half of a longitudinal axial section through the dome. The full 
range of growth rate variation was divided by computer in 5 equal parts and the position 
of each part is marked by one symbol on the map. The growth rate in each part is 
indicated by inserted numbers. The constant k (or c) for which the map was computed, 
is taken as unit. It should be observed that this constant does not affect the proportions 
between the rates in different parts of the dome, though it affects the absolute values 
of the rates. The map for the variant A5 was computed on the assumption that a=0.07. 

This constant affects the proportions between growth rates 

Variant A,: Growth is isotropic on the surface of the dome i.e. RERG, („,„) = 
= RERG ui„, )  when v = v.. Thus we have: 

1 a V„ 

072 E- VI  U 
2 + Vs

2  U   

Integration gives Y., = cu on the dome surface: c is the integration constant. 
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By means of scaling factors we obtain the vector point function for the 
whole dome: 

c,,/u2 + v 2  
=  U. 

On introducing V„ and its partial derivative into the general form of growth 
tensor we obtain the specific form of growth tensor for the considered variant: 

U4  +2u 2  V5
2  + V2  V5

2  — UV 0 
U

2 + vs2 

UV U 2  
04 2 + v2 ) \/:4 2  

0 0 U

2 + v2 

The maps of the distribution of linear growth rates (not shown here) 
indicate that the absolute values of RERG„„„ )  and RERGI(ar)  decrease with 
increasing distance from the vertex on the dome surface, Beyond the surface, 
the RERG i(„„. )  is equal to RERG I(1.0  at points lying on the axis above the 
focus. At any other point within the dome the tangential growth is not isotropic; 
the meridional rate is higher than that in the latitudinal direction. The 
highest ratio is 2 when approaching the focus from the bottom. RERG, in the 
direction of v-lines increases with distance from the vertex, however, its con-
tribution is relatively small. Accordingly, there is a maximum of volumetric 
growth rate in the center of the dome but below the focus (Fig. 2, A 4 ). The 
rate of volumetric growth at the vertex amounts to 50% of the maximal 
rate. 
Variant A 5 : On the dome surface there is increasing anisotropy of area growth 

with increasing distance from the vertex. 
We assumed the following specification of this variant: RERG, ( ,,„ 

= RERG 1(1 ,20  (1-Fau 2 ), where a > 0 and is constant. This specification is for 
the dome surface i.e. v = u5 .  From the growth tensor we have thus 
0 V 1 

(1 -Fau 2 ) V. integration gives the displacement velocity on the 
Ou u 

surface: 

= cue1" 2 , 

where c is integration constant. For every point in the dome we have: 

c v/u2 
 v2 

 

Vv    Uei au2  
/U 2  + 

and therefore the specific form of growth tensor for this variant is: 
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U 2  (v 2  — 1 + au2 

(u 2  + v 2 ) ( u 2  + us ) 
U4.7 

u + 2 v u
2 

+ v
2 2L,   

0 0 1 

0 
U

2 
 + V

2 

U

2 

UV 

0 

Computer data show that this variant gives minima of all growth rates 
in the distal region of the dome. Data for the volumetric growth rate is 
shown in Fig. 2, A 5 . The fastest linear growth rate is in the direction of u-lines 
everywhere. 

B. ELLIPTIC DOME 

Variant B3: RERG I{mer)  is constant on the dome surface, 
We have thus: 

1  °V'  k 
. sinh 2 + sin' )7  01 

on the dome surface, where = integration of this equation leads to elliptic 
integral, thus the components of the growth tensor cannot be expressed by 
means of elementary functions. For this reason we will not further consider 
this variant. However, we will modify condition specifying the RERG u „,„ )  
on the surface in the following way: 

  

k 

   

   

Binh 3 +sin 2 1971 ,/sinh2 sine  q 

which means that the RERG io„, l on dome surface is not constant but decreases 
slightly with distance from the vertex. This decrease is from 001.18 at the vertex 
to k/1.54 at the dome basis (for t = 1.48) when the dome surface is specified 
by  = 1, or in an even narrower range when is higher than 1. This variant 
is numbered as B3 . 

0 V 
In the variant B3, we have  k, Integration gives Vit  = kq+c on the 

ark 
surface, For q = 0 Ifc., must be null thus C = 0. Upon introducing the scatting 
factor, we obtain a general expression for I  for all points in the dome: 

q 
= k  • 

.\./sinh 2 
 s  sin' q 

The specific form of the growth tensor for this variant is thus: 
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k 

,/sinh 2 
 s + sin 2  

n sin n cos ri (sinh 2 sinh 2 cosh sinh 
(sinh2  

1 +     0 
nh2  +sin 2  n) (sinh 2 

 s + sin g  ri) sinh 2  + sine rj  

ti cosh sinh rj sin ri cos n 
0 

sinh 2  +sin 2  i1 sinh2 sin 2  

0 0 ictgr1 

Computer data show that linear growth rates in all directions decrease 
with increasing n and  The least variable is the RERG in„ )  on the dome 
surface, the highest rates are at the focus. Correspondingly the volumetric 
growth rate has a very sharp maximum at the focus, (Fig. 3, B 3.). It should 
be noted that the computer, when preparing the map B :w  divided the range 
of RERG" variation into 5 equal parts, thus in the case of a sharp maximum 
the largest region of the dome is within the part characterized by the lowest 
rate. Within this region there is quite a high variation of the rate; the 
highest (1.8) is in the distal zone of the dome, the lowest (0.65) is at its basis. 
Variant B4: Area growth is isotropic on the surface of the dome. 

The condition specifying this variant is: 

1 011,1 ctg 

.s/sinh2 .s/sinh2  + sin' n 

on dome surface, where = s . Integration gives V,  c sin  on the surface. 
Thus the displacement velocity for the whole dome is: 

Vn = 
sinh 2 sin 2  

   sin j. 
.‘./sinh2 sin 2  

The specific form of the growth tensor for this variant is: 

c cos ti 

./sinh2 
 s +sin 2  n 

sin2 
 i  (sinh 2 sinh 2 sinh cosh tg 

1 + • 2 •  2 2 (sinh 2 sin 2  rh(sinh n) sinh 2  + sin 2  

sinh cosh tgr1 sin 2  
sinh 2 sinh 2  +sin 2  rj 

0 

0 

0 

1 
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Computer data show that the variation of growth rates in the B4 are 
similar to that for the previous variant, however, the maxima of growth rates 
in the dome center (at the focus) are not as pronounced as previously. Fig. 3, 
B4 illustrates the distribution of RERG„„ i  
Variant B5 : Anisotropy of growth in area on dome surface increases with 

distance from the vertex. 

We assumed the following condition specifying this variant: RERG„, i = 
RERG wati  (1 +a sin I?), where a > 0. Introducing the RERG 1  from the 

general form of growth tensor we obtain: 

1 017, ctg 
(1 +a sin II) V„. 

,/sinh 2 an ./sinh 2  

Upon integration c sin rie"'", where c is integration constant. The 
last equation is valid for the dome surface where Introducing scaling 
factor we obtain the displacement velocity for every point in the dome: 

V = 
 c 

‘/
, 

 sinh2 + sin2 yi 

sin ;le i", 
sinh 2 sing 

The specific form of the growth tensor is thus: 

 

c cos ne"'" 

 

x 

 

s +sin 2  

 

sin 2  (sinh 2 sinh 2 sinh cosh tg 
 0 1 +a sin g+   

(sinh 2 sin2  ti) (sinh 2 
 s 

 + sine 17) sinh 2  +sin 2  

sinh if cosh tg i sin2 
 q  0 

sinh sin 2  fl sinh2  

0 0 1 

The maps showing RERG 1  in different directions indicate a very interesting 
distribution of growth rates. The growth rate in every direction at points along 
)7-line increases first with distance from the vertex (increasing 0), attains 
a maximum and further decreasses. The maximum of the RERG 1  tangent 
to n-line is more pronounced in the axial region of the dome (i.e. for lower 

-values) and is located clearly below the focus. Similarly maxima of other 
principal growth rates in the axial region of the dome are located below the 
focus. Correspondingly, there is a maximum of volumetric growth rate in the 
central part of the dome below the focus (Fig. 3, 13 5 ). This is a wide maximum, 
and relatively very high in comparison to growth rates at the vertex and 
at dome base. 
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C, HYPERBOLIC DOME .  

Variant C3 RERG1 i m„) is constant on the dome surface where q qc . 
The equation specifying this variant is: 

1 a V, 
 	,' 

\./sinh 2 sin e 10  

As in the case of elliptic dome, integration of this equation does not lead 
to Y as an elementary function. Instead of this variant we thus consider 
the modified variant C3a  defined in the following way: 

k 
RERG io , ) =  

.s/sinh 2 sin 2  /7, 

on the surface q x . We obtain: 

1 

.s/T111 2 sin2 -isinh 2  + sin 2  n, 

Upon integration V= = k+c. For = 0 I/4- must be null, thus c —• 0. Hence :  

k Vsinh
2 

sin2  q 
114 

= 

v

/

sinh
2 
 +sin' II, 

for every point in the dome. 
The specific form of the growth tensor for this variant is: 

k 

sinh + sine rt, 

sin 2 
j sin q cos 

+ sinh cosh - 7 - 0 
sinh2 sine sinh 2  +sin 2  

sin q cos q cosh sinh 
0 

sinh 2 sin g  q sinh 2 sin2  

0 0 ctgh 

The computer prepared maps of RERG I  in different directions indicate 
that in this variant each principal growth rate has a low maximum at the 
focus. Correspondingly, the distribution of the volumetric growth rate is such 
as illustrated by the Fig. 4, C3a .  

Variant C4 : Area growth is isotropic on the dome surface, i.e. RERG io „)  — 
RERG io „, ) . 

The equation specifying this variant is for q 
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1 (31/4 l  ctg 

,/sinh 2  + sin e , sinh 2  4+ sin 2  

Upon integration 1/4  = c sinh 4 on the dome surface and 

c .\/sinh 2  + sin e  
V  	 sinh 

\f sinh 2  4+ sin e  

in every point of the dome. 
The specific form of the growth tensor is: 

1+ sinh2 
(  sin 2 sin2  \ sin ri cos n tgh 4  

0 
sinh 2  + sin2 sinh 2  + sin 2  

sin  cos n  tgh 4 sinh2  
sinh 2  4+ sin 2 

 n sinh2 sin 2 
 fl 

0 

The computer data show that there is only little variation of RERG E  in 
different directions in the dome. The distribution of volumetric growth rate 
is shown in Fig. 4, C4. 
Variant Cs: Anisotropy of area growth on the dome surface increases with 

increasing distance from the vertex. 
We assumed the following specification of this variant : RERG („,„)  

RERG Q,, )  (1 +a sinh 4) i.e.: 

1 017 (1+ a sinh 4)  V4  

sinh 2  4+ sin2  ri s \/sinh 2  + sine rl 

Upon integration V4 = ces in h  sinh 4 on the dome surface n  = rta . Introducing 
the scaling factor we obtain: 

c ‘/sinh 2  +sin e  rt 
 sinh 

.s/sinh 2  4+ sin 2 
 ti 

for the whole dome. The specific form of the growth tensor is: 

sin2 sin2 sin i cos tgh 1 + sinh 2  4 (a+  0 sinh + sin e  rt sinh2  4+ sine  rt 

c cosh 
onsinK 

sin ti cos ri tgh sinh 2  
0 

.s/sinh2 sin2  rt sinh 2  +sin 2  rt sinh2  + sin e  

0 0 1 

c cosh 4   

,/sinh 2  4+ sin2  
0 

Computer data show that each principal growth rate increases with 4. 
The BERG, tangent to the increases the fastest. The map for the 
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Fig. A. As Fig. 2 but for hyperbolic dome. except that the map C5 is for the constant a=0.07 

volumetric growth rate is shown in Fig. 4, C s . It can be seen that the variant 
under consideration gives similar variation of the volumetric growth rate as 
the corresponding variant A5 for a parabolic dome. 

DISCUSSION 

Some patterns of growth rate distribution considered in this paper show 
a very interesting feature: the appearance of a maximum of volumetric growth 
rate in the central part of the dome. is such a central maximum of the 
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growth rate realistic? Certainly not. Volumetric growth rate in case of constant 
cell size is reflected in the proportional relative rate of cell division, which 
in turn is reflected in the mitotic index. A maximum of the mitotic rate 
in the central part of apical dome has not been hitherto described for 
a vegetative phase of shoot development, though it might be possible in 
the dome during transformation to the generative phase (Lyndon 1976). 
A possibility exists that the central maximum of volumetric growth rate 
occurs but does not cause a maximum of mitoses in this part, because the 
higher volumetric growth rate is compensated for by the increasing cell volume 
as they move through the central region of the dome during its growth. Indeed, 
in vegetative apices the cells are often larger in the central part of the dome 
(central mother cells). To determine whether such a possibility is realistic, 
we need calculations based on the relationship between growth rates, cell 
division rates, and cell pattern. Such calculation is now possible (Hejnowicz 
and Romberger 1984) and preliminary analysis leads to the conclusion that 
a deep minimum of mitotic frequency cannot be explained by the occurrence 
of slightly larger cells in the central part of a dome if the volumetric growth 
rate in the dome is as uniform as possible. Thus it is even more unrealistic 
for a maximum of the growth rate in the center of the dome. It appears 
that variants of growth specifying central maximum of volumetric growth 
rate are not realistic; on the contrary variants with a central minimum of 
the rate would be realistic. We have not yet found such a variant. 

The variants considered in previous papers (Hejnowicz and Nakielski 
1979, Hejnowicz et al, 1984), as well as the variants A s  and C5 in this 
paper, have a minimum of volumetric growth rate in the distal part of the 
dome but not in its center. However, the variants considered previously 
and those now under consideration cover such a wide range of growth 
variations that they offer possibilities of getting a minimum in the dome 
center by a suitable combinations of them. Observe first that the growth 
tensor is an additive quantity. We may, therefore, add simple growth tensors 
to get a more complex one. Additivity of tensors is a mathematical statement, 
additivity of growth tensors can be easily illustrated. Assume that we have 
different specifications of RERG"„ )  on the surface of a parabolic dome, 
RERG"„,„ )  =f (u, vs) where vs  represents the dome surface, and the specifications 
are in form of different functions f l  (u, vs), 12  (a, v s) ...  (u, v5).  We have: 

1 • 01/,‘  = f (u, v s) 

N1/44 2  +  V 2  
V„ =   F (u, vs)  G (u, v) 

N/u2  + 

u 2 + r.2  ou 

thus  = S Ni
/u2 + v2  f (u, v s) du on the surface. If we denote the integral on the 

right side by F (u, vs) the displacement velocity in the whole dome is: 



Modeling of growth variations within apical domes 315 

we have thus (Vu ) ;  = G i , of course. is a function of u and v, vs  enters 
it only as a constant parameter, the same for different i. 

The growth tensors for different variants are 

3G 1 vG i  
Eu u

2
+ 

V2 

1 OG i uG E  
vrr'.  ov U 2  + v2 

+ V 

0 0 

of the form: 

0 

0 

Gi  

Let us now assume that we can specify the meridional growth rate by 
a linear combination of the functions A, i.e.  RERG 10„„ )  = k (u, 
+k2 f2(u, 0+ _k nfn (u, v,) where k it  represents coefficients of the combination. 
Some of the coefficients may be negative. We have: 

I -10  +v2  E k1f, (u, du = k 1  F 1  (u, us) +k2  F2 OA, V 5 H-  k n  F, (u, r.,) 

on the surface and 

„iu 2  v 2 
V„ =- 

+ 
ki Fi  = k i  G i +k2  G2 + k n  G, 

in the whole dome. 
The growth tensor then has the form: 

cG 1 OG„ v (k i G i -F._+kn G„) 
K „ ± PC, -  

DU as 11 2 + v2 

1  OG aG„ u (k 1  G 1  +... +k i,  -... + /u2 +v2 01) av u
2 

+ V
2 

0 0 k i  G 1 +  ... +k, .., +k, G, 

  

which means that it is the sum of the growth tensors corresponding to separate 
functions A(u, vi) taken in proportion to their coefficients. As mentioned the 
coefficients may be negative, however the limitation is now obvious: the resulting 
tensor must have all diagonal components which are either null or positive 
everywhere in the apex (for all possible u and v), because we assume that 
the cells of the dome can either grow or not grow but cannot shrink. 

How to use the different variants hitherto described, among them the 
unrealistic ones with maximum of RERG ina  in the dome center, in order to 

obtain a new variant with a minimum of the volumetric growth rate at 
the center? Let us assume that we have two functions 1 72 —fi (u, vs) and 

0 

0 
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V 2  .f2 (u, v s) of which the first, fi , gives nearly uniform volumetric growth 
rate and the second, f2 , gives a maximum of the rate in the dome center. 
We can obtain a new function, 17,, .f(u, vs) which is the difference between 
the two functions, i.e. 11,i .f (u, vs).— k 1  .11(u, v,)—k 2 f2 (u, v), where lc, and k 2  
are coefficients. Obviously, by proper adjustment of the coefficients the 
growth rate distribution obtained from If. will have a minimum of volumetric 
growth rate in the center and the requirement of no shrinkage will be 
fullfilled. Modeling based on combinations of the variants of growth will 
be illustrated in the next paper. 
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Modelowanie przestrzennej zmiennogei wzrostu w apikalnych czOciach 
wierzcholkow p-du za pomocq tensora wzrostu. II.Gdy znany jest sposOb 

wzrostu na powierzchni wierzcholka 

Streszczenie 

W pracy pokazano jak mozna pray pomocy tensora wzrostu i ukladu wspolrzednych 
naturalnych wyznaczaa wzgledne elernentarne szybkoici wzrostu wewn4trz wierzcholka pcdu 
gdy znany jest sposob wzrostu na powierzchni wierzcholka. Wyznaczono rozmieszczeriie 
szybkoic.i wzrostu w trzech typach wierzcholkOw — parabolicznym, eliptycznym i hiper-
bolicznym — przyjmuj4c dla kaklego z rich nastcpuj4ce warianty wzrostu na powierzchni 
wierzcholka: (1) staloga wzglcdnej elementarnej szybkoki wzrostu poludnikowego, (1) izotropia 
wzrostu powierzchniowego tzn. rawnoge szybkoki wzrostu poludnikowego i rownoleinikowego 
w kaidym punkcie powierzchni, (3) anizotropia wzrostu powierzchniowego nasilaj4ca sic 
z odlegloki4 od szczytu. Komputerowe mapy wykazuj4 maksimurn szybkoki wzrostu ob-
jetokiowego w centrum wierzcholka dla dwoch pierwszych wariantOw, Ma. minimum szybkoici 
wzrostu objctokiowego w czcki dystalnej dla trzeciego wariantu. Warianty a centralnym 
maksimurn szybkogci wzrostu wydaj4 sic bye nierealistyczne, bowiem ekstremum szybkogci 
wzrostu, jezeli takowe wystepuje w centrum realnego wierzcholka, jest typu minimum a nie 
maksimurn. S4 one jeclnak u±yteczne, bowiem odpowiadaj4ce im tensory wzrostu w liniowej 
kombinacji a innymi tensorarni wzrostu umozliwiajc otrzymanie minimum szybkogci wzrostu 
w centralnej cacki wierzcholka. 
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