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GRAPH OF EVEN POINTS ON AN ARITHMETIC CURVE

ALFRED CZOGAŁA AND PRZEMYSŁAW KOPROWSKI

Abstract. We show that the points of a global function field, whose classes
are 2-divisible in the Picard group, form a connected regular graph, with the
incidence relation generalizing the well known quadratic reciprocity law. We
prove that for every global function field the dimension of this graph is pre-
cisely 2. In addition we develop an analog of global square theorem that
concerns points 2-divisible in the Picard group.

1. Introduction

Let Fq be a finite field of odd characteristic. Further let f, g ∈ Fq[t] be two
irreducible polynomials. The well known quadratic reciprocity law says that(

f

g

)(
g

f

)
=
(
−1
) |f|−1

2 · |g|−1
2 ,

where |f | = qdeg f (respectively |g| = qdeg g) is the cardinality of the residue field
Fq [t]/〈f〉 (resp. Fq [t]/〈g〉). Thus we may define a relation on the set of irreducible
polynomials. We say that a polynomial f is related to g, written f ^ g, when

(
f
g

)
=

1. This relation is symmetric unless −1 is a quadratic non-residue simultaneously
modulo f and g. In the later case ^ is antisymmetric.

If we consider ideals instead of polynomials, this relation remains to be well
defined, providing that the generators have even degrees. Indeed, take two ideals:
p = 〈f〉 and q = 〈g〉, where deg f, deg g ∈ 2Z. Write p^ q if the relation holds for
the generators, i.e. if f ^ g. If uf is another generator of p, then u ∈ F×q and so(
u
g

)
= 1, since the degree of g is even. This shows that ^ is well defined on the

set of prime ideals of even degrees. The quadratic reciprocity law ensures that this
relation is symmetric. It is not, however, transitive as the following example shows.
Take three polynomials f, g, h with coefficients in F5:

f = t2 + 4t+ 1, g = t2 + 2t+ 3, h = t2 + 2.

One easily checks that f ^ g and g ^ h, yet still f 6^ h. Nevertheless it can be
shown that for every two unrelated polynomials f, g, there exists a third polyno-
mial h related to both of them simultaneously. In particular, if we consider a graph,
whose vertices are prime ideals of even degrees and^ is the incidence relation, then
this graph turns out to be connected and its diameter equals 2. The main aim of
this paper it to prove that this property holds not just for polynomials and rational
functions but in every global function field (Theorem 16).

Throughout this paper Fq is a finite field of odd characteristic and K = Fq(X)
is an algebraic function field of one variable over Fq (i.e. a global function field).
The set X of classes of valuation of K can be treated as a smooth complete curve.
For a (closed) point p ∈ X, by [p] we denote its class in the Picard group of X. We
say that p ∈ X is an even point, if its class in the Picard group is 2-divisible, i.e. if
[p] ∈ 2 PicX. In our introductory example, when K = Fq(t) is the field of rational
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2 A. CZOGAŁA AND P. KOPROWSKI

functions, the even points are precisely the ideals generated by polynomials of even
degrees since deg : PicX → Z is a group isomorphism then.

Even points exist in every global function field (Theorem 11). This notion
emerges naturally when one studies theory of quadratic forms over global func-
tion fields. It was proved in [2] that a point is even if and only if it is a unique wild
point of some self-equivalence of K.

The set of even points admit a symmetric relation ^ (see Section 5 for a def-
inition) generalizing the one defined above for polynomials. Like in the case of
polynomials this relation is symmetric (see Proposition 14) but not transitive (see
[2, Remark 3]). It is known (see [2, Proposition 4.5] and [1, Proposition 4.7]) that
the relation ^ controls the formation of bigger wild sets of self-equivalences of K.

The main results of this paper are:

• Theorem 16 saying that the graph of even points of a global function field
is always connected and its diameter is precisely 2.

• Theorem 12 which establishes an even point analog of the Global Square
Theorem.

• Theorem 11 showing that the set of even points have positive density, hence
the even points exist in every global function field.

• Theorem 4 which says that the quotient group PicX/2PicX is naturally
isomorphic to the group of square classes of K that have even valuations
everywhere on X.

The problem of divisibility in the Picard groups (including Picard groups of arith-
metic curves) has been quite vivid in recent years and has drawn attention of
numerous authors. We may cite for example [3, 4, 6, 8]. The list is definitely very
far from being complete but it already gives the reader some glimpse of the subject.

2. Notation

In what follows we use the following notation (partially already introduced
above). Let p ∈ X be a (closed) point, by ordp we denote the associated val-
uation. Further Op = {λ ∈ K | ordp λ ≥ 0} is the valuation ring, Kp is the
completion of K at p and K(p) is the residue field. If Y ⊆ X is an open subset
of X and D ∈ Div Y is a divisor, then [D]Y denotes its class in the Picard group
PicY . In case Y = X we drop the subscript and simply write [D].

It is well known that the exact sequence

0→ Pic0X → PicX
deg−−→ Z→ 0

splits (because Z is a projective Z-module). Equivalently we may write

(1) PicX ∼= Pic0X ⊕ Z,

where the projection onto the second coordinate is the degree homomorphism.
Therefore the necessary condition for a point p ∈ X to be even is deg p ∈ 2Z.
This condition is not sufficient, though, unless |Pic0X| is odd. A convenient con-
dition of evenness of p makes use of a certain subgroup of the square class group
of K. Let Y ⊆ X be an open nonempty subset of X. The group morphism
divY : K× → Div Y , that assigns to a nonzero element of K its principal divisor,
induces a morphism of the quotient groups K×/K×2 → Div Y/2Div Y . Harmlessly
abusing the notation, we denote the latter morphism by divY , too. Define the
subgroup EY of K×/K×2 to be the kernel of this map:

EY := ker
(
divY : K×/K×2 → Div Y/2Div Y

)
.
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It is clear that EY consists of these square classes that have even valuations every-
where on Y :

EY =
{
λ ∈ K

×/K×2 | ordp λ ≡ 0 (mod 2) for all p ∈ Y
}
.

If Y is a proper subset of X, we define one more subgroup. Let ∆Y be the subset
of EX consisting of classes of functions that are local squares outside Y , namely

∆Y := EX ∩
⋂
p/∈Y

K×2p = EY ∩
⋂
p/∈Y

K×2p .

The groups ∆Y ,EY ,K
×/K×2 and PicX/2PicX are elementary 2-groups. We will

often treat them as F2-vector spaces.

3. Natural isomorphism

We begin with a function field analog of a result, which for number fields is
known as Hecke Satz 169. We suspect that it may be known to experts but we are
not aware of any convenient reference.

Theorem 1 (“Hecke Satz 169” for function fields). Let K = Fq(X) be a global
function field. Further let λ1, . . . , λn ∈ K×/K×2 be square classes linearly indepen-
dent over F2 and e1, . . . , en ∈ {0, 1} be some arbitrary exponents. Then the density
of a set

A :=
{
p ∈ X |

(
λi
p

)
= (−1)ei for every 1 ≤ i ≤ n

}
equals δA = 1

2n .

Proof. For every i ≤ n let Li := K(
√
λi) be the quadratic extension of K deter-

mined by λi. Further let Gi := Gal(Li/K) be the associated Galois group and
σi ∈ Gi be the unique non-trivial K-automorphism of Li. Take the composite field
L := L1 · · ·Ln = K

(√
λ1, . . . ,

√
λn
)
. It is a multi-quadratic extension of K and it

follows from Kummer theory that L/K is abelian with the Galois group

(2) G := Gal(L/K) ∼= G1 × · · · ×Gn ∼= (Z/2Z)n.

By Chebotarev density theorem (see e.g. [7, Theorem 9.13A] or [10, Theorem 12,
Chapter XII]) for every τ ∈ G we have

(3) δ
{
p ∈ X |

(
L/K

p

)
= τ

}
=

1

|G|
=

1

2n
.

Here
(L/K

p

)
is the Artin symbol of p in the field extension L/K. Take an automor-

phism σ :=
(
σe11 , . . . , σ

en
n

)
∈ G. Using the isomorphism Eq. (2) we treat the Artin

symbol
(L/K

p

)
as a tuple (

(L1/K
p

)
, . . . ,

(Ln/K
p

)
). Fix an index i ≤ n. We claim that(Li/K

p

)
= σeii if and only if

(
λi

p

)
= (−1)ei . Indeed, the group Gi consists of just

two elements: the identity and σi. The Artin symbol
(Li/K

p

)
vanishes if and only

if p splits in Li if and only if the polynomial t2 − λi(p) factors over the residue
field K(p). This last condition is equivalent to

(
λi

p

)
= 1, which proves the claim. It

follows now from Eq. (3) that
1

2n
= δ
{
p ∈ X |

(
L/K

p

)
= σ

}
= δ
{
p ∈ X |

(
λi
p

)
= (−1)ei for i ≤ n

}
. �

Definition. Let p1, . . . , pk ∈ X and λ1, . . . , λk ∈ EX . We say that the points
p1, . . . , pk are compatible with square classes λ1, . . . , λk if(

λi
pj

)
=

{
1 if i 6= j

−1 if i = j
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for all 1 ≤ i, j ≤ n.

Lemma 2. Let p1, . . . , pk ∈ X be finitely many points. If the classes [p1], . . . , [pk]
are linearly independent (over F2) in PicX/2PicX, then there exist linearly indepen-
dent elements λ1, . . . , λk ∈ EX compatible with p1, . . . , pk.

Proof. We must consider two cases. First assume that all the points p1, . . . , pk have
even degrees. A classical theorem by F.K. Schmidt (see e.g. [9, Corollary V.1.11])
implies that there is a point o ∈ X of an odd degree. Take an affine curve Y :=
X \ {o}. By the assumption, [p1], . . . , [pk] are linearly independent in PicX/2PicX.
We claim that also [p1]Y , . . . , [pk]Y are linearly independent in PicY/2PicY .

In order to prove the claim suppose that

ε1[p1]Y + · · ·+ εk[pk]Y ≡ 0 (mod 2 PicY ),

for some ε1, . . . , εk ∈ F2. Thus there exists a divisor D ∈ Div Y and an element
µ ∈ K× such that the equality

divY µ =
∑
i≤k

εipi + 2D

holds in the group Div Y . Passing to the divisor group of the complete curve we
write

divX µ =
∑
i≤k

εipi + 2D + ordo(µ) · o.

Compute the degrees of both sides to get

0 =
∑
i≤k

εi · deg pi + 2 degD + ordo(µ) · deg o.

The degrees deg p1, . . . ,deg pk are all even, while deg o is odd. It follows that
ordo µ = 2k for some k ∈ Z. Consequently we obtain

divX µ =

k∑
i=1

εipi + 2(D + ko).

Hence ε1[p1] + · · · + εk[pk] is the neutral element of the vector space PicX/2PicX,
therefore ε1 = · · · = εk = 0, which proves the claim.

Now, [2, Lemma 4.1] asserts that there exist linearly independent square classes
λ1, . . . , λk ∈ ∆Y compatible with p1, . . . , pk. The elements λ1, . . . , λk remain lin-
early independent in EX since ∆Y is a subspace of EX . This ends the proof in the
first case.

We now consider the case when at least one of the points p1, . . . , pk has an
odd degree. Without loss of generality we may assume that it is the point pk. Set
Y := X\{pk}. The classes [p1]Y , . . . , [pk−1]Y are linearly independent in PicY/2PicY

and so using [2, Lemma 4.1] again we obtain square classes λ1, . . . , λk−1 ∈ ∆Y

compatible with p1, . . . , pk−1. By the definition of ∆Y we see that
(
λi

pk

)
= 1 for

every i < k. It remains to show the existence of λk. Let ζ be the unique non-trivial
element of the square-class group F×q /F×2

q . Observe that for every point q ∈ X we
have (

ζ

q

)
=

{
1 if deg q ≡ 0 (mod 2)

−1 if deg q ≡ 1 (mod 2).

Define λk to be a product of ζ multiplied by these λi’s that correspond to points
of odd degrees:

λk := ζ ·
∏

1≤i<k
deg pi /∈2Z

λi.

It is now clear that λ1, . . . , λk−1, λk are compatible with p1, . . . , pk. �
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We now prove a converse of Lemma 2.

Lemma 3. Let p1, . . . , pk ∈ X be finitely many points. If there exists compatible
square classes λ1, . . . , λk ∈ EX , then the classes of p1, . . . , pk are linearly indepen-
dent in PicX/2PicX.

Proof. Suppose that ε1[p1] + · · ·+ εk[pk] ∈ 2 PicX for some ε1, . . . , εk ∈ F2 not all
zero. Thus there exists a divisor D ∈ DivX and an element µ ∈ K× such that

divX µ = ε1p1 + · · ·+ εkpk + 2D.

Set j := min{i | εi 6= 0}. In particular we have ordpj
µ ≡ 1 (mod 2). Observe

that the valuation of µ at every q ∈ X \ {p1, . . . , pk} is necessarily even. On the
other hand the valuation of λj is even absolutely everywhere as λj ∈ EX . Com-
bining these two facts we see that the Hilbert symbol (µ, λj)q vanishes everywhere
except possibly at p1, . . . , pk. Moreover, the compatibility between p1, . . . , pk and
λ1, . . . , λk implies that λj is a local square at pi for every i 6= j and so (µ, λj)pi = 1.
Hilbert reciprocity law implies that:

1 =
∏
q∈X

(µ, λj)q = (µ, λj)pj
.

But this is impossible since ordpj
µ ≡ 1 (mod 2) and λj /∈ K×2pj

. �

We are now ready to present the first of the main results of this paper.

Theorem 4. EX
∼= PicX/2PicX.

Proof. It is well known that the group Pic0X is finite. Therefore the group EX ,
viewed as a F2-vector space, is finitely dimensional by [2, Lemma 2.4]. Pick a basis
λ1, . . . , λk ∈ EX of this vector space. Theorem 1 implies that there are compatible
points p1, . . . , pk ∈ X so we have(

λi
pj

)
=

{
1 if i 6= j

−1 i i = j

for all 1 ≤ i, j ≤ k. Now, Lemma 3 asserts that the classes [p1], . . . , [pk] are linearly
independent in PicX/2PicX. Take a linear map that sends λi to pi and extend it by
linearity. It is an injection EX � PicX/2PicX of F2-vector spaces. We claim that
it is actually an isomorphism. Indeed, suppose a contrario that this function is not
surjective. Thus, there is a point pk+1 ∈ X such that [p1], . . . , [pk], [pk+1] remain
linearly independent. Lemma 2 says that there are k + 1 linearly independent
elements in EX , but this contradicts the fact that we have dimF2

EX = k. �

Proposition 5. Let B = {b1, . . . , bk} be a subset of X such that [B] :=
{

[b1] +

2 PicX, . . . , [bk] + 2 PicX
}
is a basis of PicX/2PicX. Further let B = {β1, . . . , βk}

be a compatible basis of EX . For every p ∈ X and λ ∈ EX if ε1, . . . , εk are the
coordinates of [p] + 2 PicX with respect to [B] and ε1, . . . , εk are the coordinates
of λ with respect to B, then (

λ

p

)
= (−1)

∑
εiεi .

Proof. The assertion is trivially true when p ∈ B, thus without loss of generality
we may assume that p ∈ X \B. By the assumption we have

[p] ≡
∑
i≤k

εi[bi] (mod 2 PicX) and λ =
∏
j≤k

β
εj
j .
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Therefore there is a divisor D ∈ DivX and an element µ ∈ K× such that

divX µ = p +
∑
i≤k

εibi + 2D.

Using Hilbert reciprocity law, we write

(λ, µ)p =
∏
q6=p

(λ, µ)q =
∏
i≤k

(λ, µ)εibi
=
∏
i,j≤k

(βj , µ)εiεibi

The element βj is a local square at every bi except bj . Hence the above formula
simplifies to:

(λ, µ)p =
∏
i≤k

(−1)εiεi = (−1)
∑
εiεi .

Now ordp µ ≡ 1 (mod 2) and λ ∈ EX , hence ordp λ ≡ 0 (mod 2). Therefore the
Hilbert symbol (λ, µ)p is the same as the Legendre symbol

(
λ
p

)
. �

Proposition 6. If p, q ∈ X are two points whose classes are congruent modulo
2 PicX. Then ∆X\{p} = ∆X\{q}.

Proof. Fix a subset B = {b1, . . . , bk} of X such that [B] is a basis of PicX/2PicX.
Further let B = {β1, . . . , βk} ⊂ EX be a compatible basis of EX . By the assump-
tion we have

[p] + 2 PicX = [q] + 2 PicX.

Hence there are ε1, . . . , εk ∈ F2 such that

[p] ≡ [q] ≡
∑
i≤k

εi[bi] (mod 2 PicX).

Take any µ ∈∆X\{p} ⊂ EX and let ε1, . . . , εk be its coordinates with respect to B.
We then have

1 =

(
µ

p

)
= (−1)

∑
εiεi =

(
µ

q

)
.

This means that µ ∈ K×2q ∩EX = ∆X\{q} and so ∆X\{p} ⊆∆X\{q}. The opposite
inclusion follows by symmetry. �

Proposition 7. Let B and B be as in Proposition 5. The class of a point p ∈ X
has coordinates ε1, . . . , εk with respect to the basis [B] if and only if(

βi
p

)
= (−1)εi for every 1 ≤ i ≤ k.

Proof. Let [p] ≡
∑
i≤k εi[βi] (mod 2 PicX), it follows from Proposition 5 that(
βi
p

)
= (−1)ε1·0+···+εi·1+···+εk·0 = (−1)εi .

This proves one implication. Conversely, assume that
(
βi

p

)
= (−1)εi for i ≤ k and

the coordinates of the class of p are ε′1, . . . , ε′k ∈ F2. By the previous part, for every
i ≤ k we have

(−1)εi =

(
βi
p

)
= (−1)ε

′
i .

Consequently εi = ε′i. �

Corollary 8. For every basis of EX a compatible basis of PicX/2PicX is determined
uniquely.
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Proof. Fix a basis B = {β1, . . . , βk} of EX . Let [B] =
{

[bi] + 2 PicX | i ≤ k
}

and [C] =
{

[ci] + 2 PicX | i ≤ k
}
be two bases of PicX/2PicX determined by some

subsets
B = {b1, . . . , bk}, C = {c1, . . . , ck}

of X. By the compatibility we have(
βj
bi

)
=

(
βj
ci

)
for all i, j ≤ k. Therefore Proposition 7 implies that the points bi and ci are
congruent modulo 2 PicX for every index i. �

Remark. Let B and B be as in Proposition 5. In the proof of Theorem 4 we
constructed an isomorphism Φ : EX

∼−→ PicX/2PicX that sent βi ∈ B to [bi] +
2 PicX. Corollary 8 asserts that the basis [B] of PicX/2PicX — hence also the
isomorphism Φ — are uniquely determined by B. One may wonder whether Φ
really depends on the choice of the basis B. In fact it does. Different bases give rise
to different Φ’s. To see this phenomenon happen, take a basis B = {β1, . . . , βk}
of EX and the (unique) basis [B] of PicX/2PicX, where B = {b1, . . . , bk} ⊂ X.
Take the isomorphism Φ : EX

∼−→ PicX/2PicX that sends βi to [bi] + 2 PicX. Now,
construct another basis B′ := {β′1, . . . , β′k} of EX setting

β′1 := β1β2 and β′i := βi for i ≥ 2.

Further let p ∈ X be such that

[p] ≡ Φ(β′1) ≡ [b1 + b2] (mod 2 PicX).

Using Proposition 5 we compute(
β′1
p

)
= (−1)1·1+1·1 = 1.

Therefore the class of p cannot be the first vector of a basis of PicX/2PicX compatible
with B′. This proves that the isomorphism Φ′ associated to the basis B′ differ
from Φ.

4. Global square theorem

The well known Global Square Theorem (GST) says that an element of a global
field is locally a square almost everywhere if and only if it is a square globally if
and only if it is a local square everywhere. In this section we derive an analog of
this theorem for even points. First, however, we gather a few criteria for evenness
of a point. Some of them were already proved in [2]. Nevertheless we repeat them
here to make the paper self-contained and easier to read.

Proposition 9. Let p ∈ X be a point. Denote Y := X \ {p}. The following
conditions are equivalent:

(1) p is even,
(2) there is λp ∈ EY such that ordp λp ≡ 1 (mod 2),
(3) EX = ∆Y ,
(4) EX

∼= PicY/2PicY ,
(5) [EY : EX ] = 2.

Proof. The equivalence (1 ⇐⇒ 2) was proved in [2, Proposition 3.2] and the equiv-
alence (1 ⇐⇒ 3) was proved in [2, Proposition 3.4]. Further, [2, Proposition 2.7]
implies that the point p is even if and only if

PicY/2PicY ∼= Pic
0
X/2Pic

0
X ⊕ Z/2Z.
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Thus, it follows from Eq. (1) that p is even of and only if
PicY/2PicY ∼= PicX/2PicX.

Theorem 4 asserts now that the right hand side is isomorphic to EX and this proves
the equivalence (1 ⇐⇒ 4). Finally, by [2, Proposition 2.3.(1)] we have

EY
∼= PicY/2PicY ⊕ Z/2Z.

Hence the equivalence (1 ⇐⇒ 5) follows from the previous part. �

The next lemma can be viewed as a certain variant of Dirichlet density theorem.

Lemma 10. Let k := dimF2
PicX/2PicX. For a coset [D] + 2 PicX ∈ PicX/2PicX

and a square class λ ∈ K×/K×2, not in EX , denote:

A :=
{
p ∈ X | [p] ≡ [D] (mod 2 PicX)

}
,

A+ :=
{
p ∈ A | λ ∈ K×2p

}
, A− :=

{
p ∈ A | λ /∈ K×2p

}
.

Then:
(1) the density of the set A equals δA = 1/2k,
(2) the densities of A+ and A− equal δA+ = δA− = 1/2k+1.

Proof. Pick a subset B := {b1, . . . , bk} of X such that classes of b1, . . . , bk form a
basis of PicX/2PicX and let B := {β1, . . . , βk} be a compatible basis of EX . There
are uniquely determined elements ε1, . . . , εk ∈ F2 such that

[D] ≡
∑
i≤k

εi[bi] (mod 2 PicX).

It follows from Proposition 7 that [p] is congruent to [D] modulo 2 PicX if and only
if (

βi
p

)
= (−1)εi

for every i ≤ k. The set B ∪ {λ} is linearly independent since λ 6∈ EX . Thus we
can write:

A± =
{
p ∈ X |

(
λ

p

)
= ±1 and

(
βi
p

)
= (−1)εi for every i ≤ k

}
.

Consequently Theorem 1 asserts that δA± = 1/2k+1. The set A is a disjoint union
of A+ and A−, hence δA = 2 · 1/2k+1 = 1/2k. �

As technical as the previous lemma may appear, it has two important conse-
quences of a more general nature. First of all, it implies that even points exist in
every global function field. In fact there are always infinitely many of them. The
following result substantially strengthens [2, Proposition 3.11], which was proved
using different, more elementary methods.

Theorem 11. The set of even points has a positive density.

Proof. Apply the previous lemma to D = 0. �

Secondly, we may now prove the promised analog of GST. Here the group of
squares is replaced by the group EX and instead of all the points of K we just take
all even points of K.

Theorem 12. For every λ ∈ K×/K×2, the following conditions are equivalent:
(1) λ ∈ EX ,
(2) λ is a local square at every even point,
(3) λ is a local square at almost every even point.
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Proof. Assume that λ ∈ EX and let p ∈ X be an even point. By Proposition 9
we have EX = ∆X\{p} = EX ∩ K×2p and so λ ∈ K×2p . This proves implication
(1 =⇒ 2). The implication (2 =⇒ 3) is trivial and the implication (3 =⇒ 1) follows
from Lemma 10. �

5. The graph of even points

We are now ready to generalize the relation ^, discussed in the introduction,
to an arbitrary global function field. Take two even points p, q ∈ X. We say that
p, q are related if EX\{p} ⊂ K×2q . We denote it then p ^ q. This relation was
discovered in [2], where it was used to study wild sets of self-equivalences of K.

If p ∈ X is an even point, then [EX\{p} : EX ] = 2 by Proposition 9. Consequently
there is a (non-unique) square class λp ∈ K×/K×2 such that EX\{p} is the disjoint
union of EX and its coset λp ·EX . In particular, p is the unique point at which λp
has an odd valuation (see condition 2 in Proposition 9).

Proposition 13. Let p, q ∈ X be two even points. The following conditions are
equivalent:

(1) p^ q,
(2) λp ∈ K×2q ,
(3) q splits in K(

√
λp).

Proof. The implication (1 =⇒ 2) is trivial since λp ∈ EX\{p}. Next, assume that
λp is a local square at q. Select a representative of the square class λp which has
valuation 0 at q. Abusing the notation slightly, denote it λp again. The condition
λp ∈ K×2q implies that λp(q) ∈ K(q)×2. Take a polynomial f := t2−λp ∈ K[t] and
let f = t2 − λp(q) ∈ K(q)[t] be the reduction of f modulo q. It is well known that
q splits in K(

√
λp) ∼= K[t]/〈f〉 if and only if f factors into linear terms, if and only if

λp(q) is a square in the residue field K(q). This proves (2 =⇒ 3). Finally assume
that q splits in K(

√
λp). Then λp is a local square at q. On the other hand, both p

and q are even hence, by Proposition 9, we have

EX\{p} = EX ∪̇λpEX = ∆X\{q} ∪̇λp∆X\{q} ⊂ K×2q .

This shows the last implication and concludes the proof. �

Remark. Let us return for a moment to our introductory example. If K is the field
Fq(t) of rational functions and p, q are two prime ideals of Fq[t] generated by some
(irreducible) polynomials f, g of even degrees, then we take λp = f and λq = g. It
is clear that p^ q if and only if f is a local square at q if and only if

(
f
g

)
= 1. This

shows that the above definition agrees with the one presented in the introduction.

The following fact was proved already in [2]. We repeat it here for the sake of
completeness.

Proposition 14 ([2, Lemma 4.3]). The relation ^ is symmetric.

Proof. Let λp and λq be squares classes corresponding to p and q, respectively.
Hilbert reciprocity law asserts that∏

r∈X
(λp, λq)r = 1.

If r is neither p nor q, then both λp and λq have even valuations at r and so the
Hilbert symbol (λp, λq)r vanishes. Therefore the above formula simplifies to

(λp, λq)p · (λp, λq)q = 1.

If we assume in addition that p ^ q, then λp ∈ K×2q and so (λp, λq)q = 1, which
implies that also (λp, λq)p = 1. Now, ordp λp ≡ 1 (mod 2), hence λq must be a
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local square at p. It follows from Proposition 9 that q^ p, proving a symmetry of
the relation. �

We may now define an (infinite undirected) graph E = (V,E), whose vertices
are the even points of X and edges are defined by the relation ^, that is:

V =
{
p ∈ X | [p] ∈ 2 PicX

}
, E =

{
(p, q) ∈ V × V | p^ q

}
.

Proposition 15. No vertex of E is adjacent to all other vertices. In particular,
E is not complete.

Proof. Take an even point p ∈ X and let µ ∈ K× be an element such that ordp µ = 0

and µ /∈ K×2p . Using [5, Lemma 2.1] we show that there is a point q ∈ X and an
element λ ∈ K× such that

ordp(λ− µ) ≥ 1, ordq λ = 1 and λK×2 ∈ EX\{q}.

Thus we can write λ = µ + ρ for some ρ ∈ Kp, ordp ρ ≥ 1. It follows that in the
residue field we have

(λµ)(p) = µ(p)2 ∈ K(p)×2.

The well know correspondence between square class groups of a local field and its
residue field ensures that λ ≡ µ (mod K×2p ). In particular λ is not a local square
at p.

Now q is the only point where λ has an odd valuation, hence [q] ∈ 2 PicX by
Proposition 9. Moreover λK×2 = λq and the classes of λ and µ coincide in K×p /K×2

p .
Hence λq /∈ K×2p , which means that q 6^ p. �

Theorem 16. The graph E is connected and has a diameter 2.

Proof. The diameter of E is greater than 1 by Proposition 15. We show that it does
not exceed 2. Let p, q ∈ X, p 6= q be two even points. Suppose that p 6^ q, i.e. they
are not connected by an edge of E . We will show that there is an even point r ∈ X
adjacent to both of them simultaneously. To this end fix again a set B ⊂ X such
that the classes of its elements form a basis of PicX/2PicX. Let B = {β1, . . . , βk}
be a compatible basis of EX . Proposition 7 says that a point r is even if and only
if (

β1
r

)
= · · · =

(
βk
r

)
= 1.

Moreover r is adjacent to p and q if an only if(
λp
r

)
=

(
λq
r

)
= 1.

Theorem 1 asserts that the set{
r ∈ X |

(
β1
r

)
= · · · =

(
βk
r

)
=

(
λp
r

)
=

(
λq
r

)
= 1
}

is not empty (in fact is infinite). Hence there is r ∈ V such that r ^ p and r ^ q
simultaneously. �

Finally we prove regularity of E . Recall that a finite graph is called regular
if every vertex has the same number of neighbors. In our case, every vertex has
infinitely many neighbors, hence the proper measure is the density of the set of
adjacent vertices.

Proposition 17. The graph E is regular in a sense that the density of the set of
neighbors is constant throughout E .

Proof. The assertion follows immediately from Lemma 10. �
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