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Vol. XXVIII No1l 1995

Wilhelmina Smajdor, Joanna Szczawirnska

A THEOREM OF THE HAHN-BANACH TYPE

Let Y be a linear subspace of a linear space X over the rationals Q and
let C C X be Q-convex. Moreover, let 7 be a family of subsets of a linear
space E over Q having the binary intersection property. Suppose that F is a
Q-concave set-valued function defined on C and assuming values in F. We
give some conditions under which every additive selection of the restriction
of F to Y N C can be extended to an additive selection of F.

1. Let X be a linear space over the set of rational numbers Q and let
A C X be a set. We say that A is Q-radial at a point a € A iff for every
z € X,z # 0 there exists an ¢ > 0 such that a + Az € A for every A €
(-&,)N Q.

A non-empty set A C X is called Q-convez iff Az + (1 — A)y € A for all
z,y € Aand A € QN [0,1]. A functional p : A — R defined on a Q-convex
set A is called J — convez iff

z+ z)+
(1) p( 23/) < X )2:0(3/)
The proof of the following theorem can be found in [2] (Theorem 10.1.1)

where X is n—dimensional euclidean space R™. The proof in the general
case differs from that one only formally.

for z,y € A.

THEOREM A. Let D C X be a Q-convez and Q-radial at a point zg € D.
Assume that Y C X is a linear subspace over Q of X,zo € Y andp: D - R
is a J-convez function. If f :' Y — R is an additive function fulfilling

(2) f(z) <p(zx) forzeDNY,
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then there ezists an additive function g : X — R such that gly = f and

9(z) < p(z) forz e D.
Suppose that the hypotheses of Theorem A hold. Put
C:=(D-z9)n(x0— D)
and
g(z) :=p(zo + z) — f(zo), forzeC.

We can observe that C' is symmetric, Q—convex, and —radial at 0 and ¢
is J-convex on C. Moreover the inequalities

(2 f(z) < q(z) forzeCnY,

(31 9(z) < g(z) forz eC,

hold. Setting in (2') z = 0, we get 0 = f(0) < ¢(0). Next putting in (1) for
the functional q, y = —z, = € C we obtain

1 1
0 < ¢(0) < 54(2) + 59(~2)-
Consequently
—q(—z) < ¢(z) forallzeC.

Now we can introduce a set-valued function on C with compact and
convex values in R by the formula

F(z) = [~q(-2),q(z)), @ €C.

It is easy to check that the set-valued function F fulfils the following
conditions:

(1) F(\ + (1= \)g) € AF(2) + (1 - \)F(y)
for z,y € C and for A € QN 0, 1],

(2" f(z) € F(z) forzeCnY,

(3" g(z) € F(z) forz e C.

In addition F is an odd set-valued function, i.e.,

(3) F(-z)=-F(z) forzeC.

Conversely, if the set-valued function F fulfils conditions (1"), (2”) and (3"),
then for g the relations (1), (2) and (3') hold.

In the next part of the paper we consider the family F of subsets of a
linear space over Q. We assume that F has the binary intersection property.
It means that every subfamily of F, any two members of which intersect has
non-empty intersection (see (3]).
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2. In [1] a version of the Hahn-Banach theorem for subadditive set-
valued function is proved. In this paper we are going to give a new version
of the Hahn-Banach theorem for concave set-valued function i.e., fulfilling
the inclusion (1”).

THEOREM 1. Let X be a linear space over Q, let C C X be Q-conver,
Q-radial at a point g € C and C = —C. Assume thatY is a linear subspace
over Q of X, zo € Y. Furthermore, assume that F is a family of non-empty
subsets of a linear space E over Q having the binary intersection property
and fulfilling the conditions:

(4) AeF,ueE 2> A4+ueF
(5) AceF, peQn(0,00) =>pderF.

If a set-valued function F : C — F fulfils conditions (1"),(3)and f : Y — E
is an additive function, which is a selection of the restriction of F toCNY
(i.e., (2") holds), then there ezists an additive extension g : X — E of f
fulfilling (3").

Proof. Denote by 2 the family of all additive maps ¢ : domyp — F
such that Y C dom¢ C X, where dom ¢ is a linear subspace of X over
Q, ¢(z) € F(z) for z € dompNC and ¢(z) = f(z) for z € Y. The family Q
is non-empty because f belongs to it. In this family we introduce the partial
order “<” defined by ¢ < 1 iff dom ¢ C dom % and % |qom, coincides with
. The family € is inductive. To see that take a non-empty chain C C 2. Set
ec(z) = p(z) if z € domyp and ¢ € C. It is easy to see that ¢ € Q. This
function is the upper bound of C. Applying the Kuratowski-Zorn lemma we
can gain a maximal element in Q. It suffices to show that an arbitrary ¢
belonging to 2 whose domain is different from whole X cannot be maximal
in Q. Take z € X \ dom ¢. Let Z be a linear subspace over Q of X spanned
by dom ¢ and z. Choose z,y € C Ndomey, A, u € (0,00) N Q such that
THpz,y+Az,z—pz,y—Az € C (such z,y, A, p exist because C is Q—radial
at z¢ and 7o € dom ¢). We have

A A
@)+ () = (A+ A+”(y0

¢ F(137+ ma(n) = P55 49 + £ cu- )

Q'i—F(z+#2)+ﬁF( ~y = Az).

Hence and by (3) we get

06;%;W@+ud P(@)] - T4 [F+32) - el
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Thus
0c Fletpz)—o(z) Fly+Arz) - #(y)
1 A
whence
(©) F(z + pz) — o(z) A F(y + Az) — o(y) £0.

7 A
Similarly the relations

A A
T <P()+/\+ o(-y) = (/\+ ,\+u(y))

e F(33me+ tha(on) = F( 5356 - 09 + ph—(-u4 )

- /\i F(z — pz) - )‘_*_ —F(y—Az)
give
) F(z - u_zl)L— ()  Fly~ /\_Z) = %) 4y,
We have also

A
,\+“¢(— )+/\+ﬂso( y) = (/H#(— )+,\+“( y))

( (— )+ 5 ( y)) (Ai —e+p2)+ 5 ( Y- /\2))

/\+ T F(y+Az).

The same argument as aboye allows to get
(8) F(:L'—;LZ)—QO(:E) n F(?/'*TAZ)_SO(:‘/) ;éw
—u A
Conditions (6),(7), (8) and the binary intersection property imply that there
exists a # € E such that

ueﬂ{F(z-'-”;)—(P(w) iz €domenC,ue Q\ {0}, m+;¢z€C}.

C %“F(—:c + pz) -

Consequently
e(z)+ Au € F(z + Az) for z € domp, A € Q such that z+ Az € C.

The function ¢g : Z — E defined by ¢o(z + Az) := ¢(z) + Au is an additive
extension of ¢ different from ¢ and fulfils the condition

vo(z) € F(z) forze ZnC.

Thus ¢ cannot be a maximal element in 2. The proof is complete. w
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Let X be a real linear space and A C X. We say that A is radial at a
point a € A iff for every z € X, z # 0 there exists an € > 0 such that
a+ Az € Aforall A € (—¢,¢).

Similar considerations as in the proof of Theorem 1 give the following
result.

THEOREM 2. Let X be a real linear space, C be a conver symmetric subset
of X, and Y be a subspace of X. Assume that F is a family of non-empty
subsets of a real linear space E having the binary intersection property and
fulfilling condition (4) and

AeF, pe(0,00)=>pAcF.

If C is radial at a point 29 € A,z9 € Y and a set-valued function F : C — F
is concave and fulfils condition (3), f : Y — E is a linear function which is
a selection of the restriction F to Y NC, then there ezxists a linear extension
g:X — E of f fulfilling (3").

3. Let F denote an ordered real linear space i.e. F has a binary reflexive
and transitive relation “<” such that

n <y => Ayy < Ayp forall yy,y, € F, and real X > 0,
n<w=>n+yy+y foral y,y,y3 € E.

We say that E has the least upper bound property (abbreviated: lu.b.p.) iff
every non-empty subset A of £ which has an upper bound, has least upper
bound.

As a consequence of Theorem 2 we can get the following theorem.

COROLLARY. Let X be a linear space and let Y be a linear subspace of
X. Assume that D is a conver subset of X, D is radial at z9 € D,z9 €Y
and D = 2z9 — D. Moreover, assume that E is an ordered real linear space
with Lu.b.p. If p: D — E is convez and f : Y — E is a linear function
dominated by p on Y N D, then there is a linear extension ¢ : X — FE of f
which is dominated by p on D.

Proof. Consider the family F of all intervals [a,b] in E, the set C =
(D = 20) N (zo — D) and the set-valued function

F(z) :=[-p(=z + 20) + f(20), p(z + o) - f(20)]-

One can easily see that all assumptions of Theorem 2 are fulfilled. Thus
there exists a linear extension g : X — F of f such that

g(z) € F(z) forz e C.
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Ifz € 2o + C, then
9(z) = g(zo) + g(z — o) = f(20) + 9(z — o)
< f(zo) + p(z — 2o + 7o) — f(zo) = p(z).
This completes the proof. m '

Our corollary gives Theorem 2.1 from [4] in the case 2z9 — D = D.
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