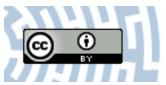


You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: A theorem of the Hahn-Banach type

Author: Wilhelmina Smajdor, Joanna Szczawińska

Citation style: Smajdor Wilhelmina, Szczawińska Joanna. (1995). A theorem of the Hahn-Banach type. "Demonstratio Mathematica" (Vol. 28, nr 1 (1995) s. 155-160).



Uznanie autorstwa - Licencja ta pozwala na kopiowanie, zmienianie, rozprowadzanie, przedstawianie i wykonywanie utworu jedynie pod warunkiem oznaczenia autorstwa.

UNIWERSYTET ŚLĄSKI w katowicach Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego

Wilhelmina Smajdor, Joanna Szczawińska

A THEOREM OF THE HAHN-BANACH TYPE

Let Y be a linear subspace of a linear space X over the rationals \mathbb{Q} and let $C \subseteq X$ be Q-convex. Moreover, let \mathcal{F} be a family of subsets of a linear space E over Q having the binary intersection property. Suppose that F is a Q-concave set-valued function defined on C and assuming values in \mathcal{F} . We give some conditions under which every additive selection of the restriction of F to $Y \cap C$ can be extended to an additive selection of F.

1. Let X be a linear space over the set of rational numbers \mathbb{Q} and let $A \subseteq X$ be a set. We say that A is \mathbb{Q} -radial at a point $a \in A$ iff for every $x \in X, x \neq 0$ there exists an $\varepsilon > 0$ such that $a + \lambda x \in A$ for every $\lambda \in (-\varepsilon, \varepsilon) \cap \mathbb{Q}$.

A non-empty set $A \subseteq X$ is called \mathbb{Q} -convex iff $\lambda x + (1 - \lambda)y \in A$ for all $x, y \in A$ and $\lambda \in \mathbb{Q} \cap [0, 1]$. A functional $p : A \to \mathbb{R}$ defined on a \mathbb{Q} -convex set A is called J - convex iff

(1)
$$p\left(\frac{x+y}{2}\right) \leq \frac{p(x)+p(y)}{2} \quad \text{for } x, y \in A.$$

The proof of the following theorem can be found in [2] (Theorem 10.1.1) where X is n-dimensional euclidean space \mathbb{R}^n . The proof in the general case differs from that one only formally.

THEOREM A. Let $D \subseteq X$ be a Q-convex and Q-radial at a point $x_0 \in D$. Assume that $Y \subseteq X$ is a linear subspace over Q of $X, x_0 \in Y$ and $p: D \to \mathbb{R}$ is a J-convex function. If $f: Y \to \mathbb{R}$ is an additive function fulfilling

(2)
$$f(x) \leq p(x) \quad for \ x \in D \cap Y,$$

¹⁹⁹¹ Mathematics Subject Classification: 46A22, 26E25, 39B99.

Key words and phrases: Hahn-Banach theorem, additive selection, concave set-valued function, binary intersection property.

then there exists an additive function $g: X \to \mathbb{R}$ such that $g|_Y = f$ and

$$g(x) \leq p(x) \quad for \ x \in D.$$

Suppose that the hypotheses of Theorem A hold. Put

$$C:=(D-x_0)\cap(x_0-D)$$

and

$$q(x) := p(x_0 + x) - f(x_0), \text{ for } x \in C.$$

We can observe that C is symmetric, \mathbb{Q} -convex, and \mathbb{Q} -radial at 0 and q is J-convex on C. Moreover the inequalities

(2')
$$f(x) \le q(x) \text{ for } x \in C \cap Y,$$

(3') $g(x) \le q(x) \text{ for } x \in C,$

hold. Setting in (2') x = 0, we get $0 = f(0) \le q(0)$. Next putting in (1) for the functional $q, y = -x, x \in C$ we obtain

$$0 \le q(0) \le rac{1}{2}q(x) + rac{1}{2}q(-x).$$

Consequently

$$-q(-x) \leq q(x)$$
 for all $x \in C$.

Now we can introduce a set-valued function on C with compact and convex values in \mathbb{R} by the formula

$$F(x) = [-q(-x), q(x)], \quad x \in C.$$

It is easy to check that the set-valued function F fulfils the following conditions:

(1")
$$F(\lambda x + (1-\lambda)y) \subseteq \lambda F(x) + (1-\lambda)F(y)$$

for $x, y \in C$ and for $\lambda \in \mathbb{Q} \cap [0, 1]$,

(2")
$$f(x) \in F(x)$$
 for $x \in C \cap Y$,

(3")
$$g(x) \in F(x)$$
 for $x \in C$.

In addition F is an odd set-valued function, i.e.,

(3)
$$F(-x) = -F(x) \text{ for } x \in C.$$

Conversely, if the set-valued function F fulfils conditions (1''), (2'') and (3''), then for q the relations (1), (2') and (3') hold.

In the next part of the paper we consider the family \mathcal{F} of subsets of a linear space over \mathbb{Q} . We assume that \mathcal{F} has the binary intersection property. It means that every subfamily of \mathcal{F} , any two members of which intersect has non-empty intersection (see [3]).

2. In [1] a version of the Hahn-Banach theorem for subadditive setvalued function is proved. In this paper we are going to give a new version of the Hahn-Banach theorem for concave set-valued function i.e., fulfilling the inclusion (1'').

THEOREM 1. Let X be a linear space over \mathbb{Q} , let $C \subseteq X$ be \mathbb{Q} -convex, \mathbb{Q} -radial at a point $x_0 \in C$ and C = -C. Assume that Y is a linear subspace over \mathbb{Q} of X, $x_0 \in Y$. Furthermore, assume that \mathcal{F} is a family of non-empty subsets of a linear space E over \mathbb{Q} having the binary intersection property and fulfilling the conditions:

(4) $A \in \mathcal{F}, \ u \in E \Rightarrow A + u \in \mathcal{F}$

(5) $A \in \mathcal{F}, \ \mu \in \mathbb{Q} \cap (0, \infty) \Rightarrow \mu A \in \mathcal{F}.$

If a set-valued function $F: C \to \mathcal{F}$ fulfils conditions (1''), (3) and $f: Y \to E$ is an additive function, which is a selection of the restriction of F to $C \cap Y$ (i.e., (2'') holds), then there exists an additive extension $g: X \to E$ of ffulfilling (3'').

Proof. Denote by Ω the family of all additive maps $\phi : \operatorname{dom} \varphi \to E$ such that $Y \subseteq \operatorname{dom} \varphi \subseteq X$, where $\operatorname{dom} \varphi$ is a linear subspace of X over $\mathbb{Q}, \varphi(x) \in F(x)$ for $x \in \operatorname{dom} \varphi \cap C$ and $\varphi(x) = f(x)$ for $x \in Y$. The family Ω is non-empty because f belongs to it. In this family we introduce the partial order " \prec " defined by $\varphi \prec \psi$ iff dom $\varphi \subseteq \operatorname{dom} \psi$ and $\psi|_{\operatorname{dom} \varphi}$ coincides with φ . The family Ω is inductive. To see that take a non-empty chain $C \subseteq \Omega$. Set $\varphi_{\mathcal{C}}(x) = \varphi(x)$ if $x \in \operatorname{dom} \varphi$ and $\varphi \in C$. It is easy to see that $\varphi_{\mathcal{C}} \in \Omega$. This function is the upper bound of C. Applying the Kuratowski-Zorn lemma we can gain a maximal element in Ω . It suffices to show that an arbitrary φ belonging to Ω whose domain is different from whole X cannot be maximal in Ω . Take $z \in X \setminus \operatorname{dom} \varphi$. Let Z be a linear subspace over \mathbb{Q} of X spanned by dom φ and z. Choose $x, y \in C \cap \operatorname{dom} \varphi, \lambda, \mu \in (0, \infty) \cap \mathbb{Q}$ such that $x + \mu z, y + \lambda z, x - \mu z, y - \lambda z \in C$ (such x, y, λ, μ exist because C is \mathbb{Q} -radial at x_0 and $x_0 \in \operatorname{dom} \varphi$). We have

$$\frac{\lambda}{\lambda+\mu}\varphi(x) + \frac{\mu}{\lambda+\mu}\varphi(-y) = \varphi\left(\frac{\lambda}{\lambda+\mu}x + \frac{\mu}{\lambda+\mu}(-y)\right)$$

$$\in F\left(\frac{\lambda}{\lambda+\mu}x + \frac{\mu}{\lambda+\mu}(-y)\right) = F\left(\frac{\lambda}{\lambda+\mu}(x+\mu z) + \frac{\mu}{\lambda+\mu}(-y-\lambda z)\right)$$

$$\subseteq \frac{\lambda}{\lambda+\mu}F(x+\mu z) + \frac{\mu}{\lambda+\mu}F(-y-\lambda z).$$

Hence and by (3) we get

$$0 \in \frac{\lambda}{\lambda + \mu} [F(x + \mu z) - \varphi(x)] - \frac{\mu}{\lambda + \mu} [F(y + \lambda z) - \varphi(y)].$$

Thus

$$0 \in \frac{F(x + \mu z) - \varphi(x)}{\mu} - \frac{F(y + \lambda z) - \varphi(y)}{\lambda}$$

whence

(6)
$$\frac{F(x+\mu z)-\varphi(x)}{\mu}\cap\frac{F(y+\lambda z)-\varphi(y)}{\lambda}\neq\emptyset.$$

Similarly the relations

$$\frac{\lambda}{\lambda+\mu}\varphi(x) + \frac{\mu}{\lambda+\mu}\varphi(-y) = \varphi\left(\frac{\lambda}{\lambda+\mu}x + \frac{\mu}{\lambda+\mu}(-y)\right)$$

$$\in F\left(\frac{\lambda}{\lambda+\mu}x + \frac{\mu}{\lambda+\mu}(-y)\right) = F\left(\frac{\lambda}{\lambda+\mu}(x-\mu z) + \frac{\mu}{\lambda+\mu}(-y+\lambda z)\right)$$

$$\subseteq \frac{\lambda}{\lambda+\mu}F(x-\mu z) - \frac{\mu}{\lambda+\mu}F(y-\lambda z)$$

.

give

(7)
$$\frac{F(x-\mu z)-\varphi(x)}{-\mu}\cap\frac{F(y-\lambda z)-\varphi(y)}{-\lambda}\neq\emptyset.$$

We have also

$$\frac{\lambda}{\lambda+\mu}\varphi(-x) + \frac{\mu}{\lambda+\mu}\varphi(-y) = \varphi\left(\frac{\lambda}{\lambda+\mu}(-x) + \frac{\mu}{\lambda+\mu}(-y)\right)$$

$$\in F\left(\frac{\lambda}{\lambda+\mu}(-x) + \frac{\mu}{\lambda+\mu}(-y)\right) = F\left(\frac{\lambda}{\lambda+\mu}(-x+\mu z) + \frac{\mu}{\lambda+\mu}(-y-\lambda z)\right)$$

$$\subseteq \frac{\lambda}{\lambda+\mu}F(-x+\mu z) - \frac{\mu}{\lambda+\mu}F(y+\lambda z).$$

The same argument as above allows to get

(8)
$$\frac{F(x-\mu z)-\varphi(x)}{-\mu}\cap\frac{F(y+\lambda z)-\varphi(y)}{\lambda}\neq\emptyset.$$

Conditions (6), (7), (8) and the binary intersection property imply that there exists a $u \in E$ such that

$$u \in \bigcap \bigg\{ \frac{F(x+\mu z) - \varphi(x)}{\mu} : x \in \operatorname{dom} \varphi \cap C, \mu \in \mathbb{Q} \setminus \{0\}, \ x + \mu z \in C \bigg\}.$$

Consequently

 $\varphi(x) + \lambda u \in F(x + \lambda z)$ for $x \in \operatorname{dom} \varphi, \lambda \in \mathbb{Q}$ such that $x + \lambda z \in C$. The function $\varphi_0 : Z \to E$ defined by $\varphi_0(x + \lambda z) := \varphi(x) + \lambda u$ is an additive extension of φ different from φ and fulfils the condition

$$\varphi_0(x) \in F(x)$$
 for $x \in Z \cap C$.

Thus φ cannot be a maximal element in Ω . The proof is complete.

158

Let X be a real linear space and $A \subseteq X$. We say that A is radial at a point $a \in A$ iff for every $x \in X$, $x \neq 0$ there exists an $\varepsilon > 0$ such that $a + \lambda x \in A$ for all $\lambda \in (-\varepsilon, \varepsilon)$.

Similar considerations as in the proof of Theorem 1 give the following result.

THEOREM 2. Let X be a real linear space, C be a convex symmetric subset of X, and Y be a subspace of X. Assume that \mathcal{F} is a family of non-empty subsets of a real linear space E having the binary intersection property and fulfilling condition (4) and

$$A \in \mathcal{F}, \ \mu \in (0,\infty) \Rightarrow \mu A \in \mathcal{F}.$$

If C is radial at a point $x_0 \in A, x_0 \in Y$ and a set-valued function $F : C \to \mathcal{F}$ is concave and fulfils condition (3), $f : Y \to E$ is a linear function which is a selection of the restriction F to $Y \cap C$, then there exists a linear extension $g : X \to E$ of f fulfilling (3").

3. Let E denote an ordered real linear space i.e. E has a binary reflexive and transitive relation " \leq " such that

$$y_1 \leq y_2 \Rightarrow \lambda y_1 \leq \lambda y_2$$
 for all $y_1, y_2 \in E$, and real $\lambda \geq 0$,
 $y_1 \leq y_2 \Rightarrow y_1 + y_3 \leq y_2 + y_3$ for all $y_1, y_2, y_3 \in E$.

We say that E has the least upper bound property (abbreviated: l.u.b.p.) iff every non-empty subset A of E which has an upper bound, has least upper bound.

As a consequence of Theorem 2 we can get the following theorem.

COROLLARY. Let X be a linear space and let Y be a linear subspace of X. Assume that D is a convex subset of X, D is radial at $x_0 \in D, x_0 \in Y$ and $D = 2x_0 - D$. Moreover, assume that E is an ordered real linear space with l.u.b.p. If $p: D \to E$ is convex and $f: Y \to E$ is a linear function dominated by p on $Y \cap D$, then there is a linear extension $g: X \to E$ of f which is dominated by p on D.

Proof. Consider the family \mathcal{F} of all intervals [a, b] in E, the set $C = (D - x_0) \cap (x_0 - D)$ and the set-valued function

$$F(x) := [-p(-x + x_0) + f(x_0), p(x + x_0) - f(x_0)].$$

One can easily see that all assumptions of Theorem 2 are fulfilled. Thus there exists a linear extension $g: X \to E$ of f such that

$$g(x) \in F(x)$$
 for $x \in C$.

If $x \in x_0 + C$, then

$$g(x) = g(x_0) + g(x - x_0) = f(x_0) + g(x - x_0)$$

$$\leq f(x_0) + p(x - x_0 + x_0) - f(x_0) = p(x).$$

This completes the proof.

Our corollary gives Theorem 2.1 from [4] in the case $2x_0 - D = D$.

References

- [1] Z. Gajda, A. Smajdor, W. Smajdor, A theorem of the Hahn-Banach type and its application, Ann. Polon. Math. 57 (1992), 243-252.
- [2] M. Kuczma, An introduction to the theory of functional equalities and inequalities, Polish Scientific Publishers (PWN) and Silesian University Press, Warszawa-Kraków-Katowice, 1985.
- [3] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. 68 (1950), 28-46.
- J. Zowe, Sandwich theorems for convex operators with values in ordered vector space, J. Math. Anal. Appl. 66 (1978), 282-296.

Wilhelmina Smajdor INSTITUTE OF MATHEMATICS SILESIAN UNIVERSITY Bankowa 14 PL 40-007 KATOWICE, POLAND

Joanna Szczawińska INSTITUTE OF MATHEMATICS PEDAGOGICAL UNIVERSITY Podchorążych 2 PL 30-084 KRAKÓW, POLAND

Received April 9, 1993.

160