

You have downloaded a document from **RE-BUŚ** repository of the University of Silesia in Katowice

Title: A theorem of the Hahn-Banach type

Author: Wilhelmina Smajdor, Joanna Szczawińska

Citation style: Smajdor Wilhelmina, Szczawińska Joanna. (1995). A theorem of the Hahn-Banach type. "Demonstratio Mathematica" (Vol. 28, nr 1 (1995) s. 155-160).

Uznanie autorstwa - Licencja ta pozwala na kopiowanie, zmienianie, rozprowadzanie, przedstawianie i wykonywanie utworu jedynie pod warunkiem oznaczenia autorstwa.

Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego

Wilhelmina Smajdor, Joanna Szczawinska

A THEOREM OF THE HAHN-BANACH TYPE

Let Y be a linear subspace of a linear space X over the rationals $\mathbb Q$ and let $C \subseteq X$ be **Q**-convex. Moreover, let $\mathcal F$ be a family of subsets of a linear space *E* over Q having the binary intersection property. Suppose that *F* is a Q-concave set-valued function defined on *C* and assuming values in *T*. We give some conditions under which every additive selection of the restriction of F to $Y \cap C$ can be extended to an additive selection of F .

1. Let X be a linear space over the set of rational numbers $\mathbb Q$ and let $A \subseteq X$ be a set. We say that *A* is Q-*radial at a point a* \in *A* iff for every $x \in X, x \neq 0$ there exists an $\varepsilon > 0$ such that $a + \lambda x \in A$ for every $\lambda \in A$ $(-\varepsilon,\varepsilon) \cap \mathbb{Q}$.

A non-empty set $A \subseteq X$ is called \mathbb{Q} -convex iff $\lambda x + (1 - \lambda)y \in A$ for all $x, y \in A$ and $\lambda \in \mathbb{Q} \cap [0,1]$. A functional $p : A \to \mathbb{R}$ defined on a Q-convex set *A* is called $J - convex$ iff

(1)
$$
p\left(\frac{x+y}{2}\right) \leq \frac{p(x)+p(y)}{2} \quad \text{for } x, y \in A.
$$

The proof of the following theorem can be found in [2] (Theorem 10.1.1) where X is *n*-dimensional euclidean space \mathbb{R}^n . The proof in the general case differs from that one only formally.

THEOREM A. Let $D \subseteq X$ be a **Q**-convex and **Q**-radial at a point $x_0 \in D$. *Assume that* $Y \subseteq X$ *is a linear subspace over* **Q** *of* $X, x_0 \in Y$ *and* $p : D \to \mathbb{R}$ *is a J-convex function. If* $f: Y \to \mathbb{R}$ *is an additive function fulfilling*

$$
(2) \t f(x) \leq p(x) \t for x \in D \cap Y,
$$

¹⁹⁹¹ *Mathematics Subject Classification:* **46A22, 26E25, 39B99.**

Key words and phrases: Hahn-Banach theorem, additive selection, concave set-valued **function, binary intersection property.**

then there exists an additive function g : X $\rightarrow \mathbb{R}$ *such that g\y = f and*

$$
g(x)\leq p(x) \quad \text{for } x\in D.
$$

Suppose that the hypotheses of Theorem A hold. Put

$$
C:=(D-x_0)\cap (x_0-D)
$$

and

$$
q(x) := p(x_0 + x) - f(x_0), \text{ for } x \in C.
$$

We can observe that *C* is symmetric, Q—convex, and Q—radial at 0 and *q* is J -convex on C . Moreover the inequalities

$$
(2') \t f(x) \leq q(x) \t for x \in C \cap Y,
$$

(3[']) $g(x) \leq q(x)$ for $x \in C$,

hold. Setting in (2') $x = 0$, we get $0 = f(0) \leq q(0)$. Next putting in (1) for the functional $q, y = -x, x \in C$ we obtain

$$
0 \le q(0) \le \frac{1}{2}q(x) + \frac{1}{2}q(-x).
$$

Consequently

$$
-q(-x) \le q(x) \quad \text{for all } x \in C.
$$

Now we can introduce a set-valued function on *C* with compact and convex values in R by the formula

$$
F(x)=[-q(-x),q(x)], x \in C.
$$

It is easy to check that the set-valued function *F* fulfils the following conditions:

$$
(1'') \hspace{1cm} F(\lambda x + (1 - \lambda)y) \subseteq \lambda F(x) + (1 - \lambda)F(y)
$$

for $x, y \in C$ and for $\lambda \in \mathbb{Q} \cap [0,1]$,

$$
(2'') \qquad \qquad f(x) \in F(x) \quad \text{for } x \in C \cap Y,
$$

$$
(3'') \t\t g(x) \in F(x) \tfor x \in C.
$$

In addition *F* is an odd set-valued function, i.e.,

$$
(3) \tF(-x) = -F(x) \tfor x \in C.
$$

Conversely, if the set-valued function *F* fulfils conditions (1"), (2") and (3"), then for q the relations (1) , $(2')$ and $(3')$ hold.

In the next part of the paper we consider the family $\mathcal F$ of subsets of a linear space over Q. We assume that *T* has the binary intersection property. It means that every subfamily of \mathcal{F} , any two members of which intersect has non-empty intersection (see [3]).

2. In [1] a version of the Hahn-Banach theorem for subadditive setvalued function is proved. In this paper we are going to give a new version of the Hahn-Banach theorem for concave set-valued function i.e., fulfilling the inclusion $(1'')$.

THEOREM 1. Let X be a linear space over $\mathbf{0}$, let $C \subset X$ be $\mathbf{0}$ -convex, **Q-radial at a point** $x_0 \in C$ and $C = -C$. Assume that Y is a linear subspace *over* Q of X, $x_0 \in Y$. Furthermore, assume that F is a family of non-empty *subsets of a linear space E over Q having the binary intersection property and fulfilling the conditions:*

(4) $A \in \mathcal{F}$, $u \in E \Rightarrow A + u \in \mathcal{F}$

(5) $A \in \mathcal{F}, \ \mu \in \mathbb{Q} \cap (0, \infty) \Rightarrow \mu A \in \mathcal{F}.$

If a set-valued function $F: C \to \mathcal{F}$ fulfils conditions (1"), (3) and $f: Y \to E$ *is an additive function, which is a selection of the restriction of F to* $C \cap Y$ (i.e., $(2'')$ holds), then there exists an additive extension $g: X \rightarrow E$ of f *fulfilling* **(3").**

Proof. Denote by Ω the family of all additive maps ϕ : dom $\varphi \to E$ such that $Y \subseteq \text{dom } \varphi \subseteq X$, where dom φ is a linear subspace of X over $Q, \varphi(x) \in F(x)$ for $x \in \text{dom } \varphi \cap C$ and $\varphi(x) = f(x)$ for $x \in Y$. The family Ω is non-empty because f belongs to it. In this family we introduce the partial order " \prec " defined by $\varphi \prec \psi$ iff dom $\varphi \subseteq$ dom ψ and $\psi|_{\text{dom }\varphi}$ coincides with φ . The family Ω is inductive. To see that take a non-empty chain $\mathcal{C} \subset \Omega$. Set $\varphi_c(x) = \varphi(x)$ if $x \in \text{dom } \varphi$ and $\varphi \in \mathcal{C}$. It is easy to see that $\varphi_c \in \Omega$. This function is the upper bound of *C.* Applying the Kuratowski-Zorn lemma we can gain a maximal element in Ω . It suffices to show that an arbitrary φ belonging to *fl* whose domain is different from whole *X* cannot be maximal in Ω . Take $z \in X \setminus \text{dom } \varphi$. Let Z be a linear subspace over $\mathbb Q$ of X spanned by dom φ and z. Choose $x, y \in C \cap \text{dom } \varphi$, $\lambda, \mu \in (0, \infty) \cap \mathbb{Q}$ such that $x + \mu z$, $y + \lambda z$, $x - \mu z$, $y - \lambda z \in C$ (such x, y, λ, μ exist because C is Q-radial at x_0 and $x_0 \in \text{dom } \varphi$. We have

$$
\frac{\lambda}{\lambda + \mu} \varphi(x) + \frac{\mu}{\lambda + \mu} \varphi(-y) = \varphi\left(\frac{\lambda}{\lambda + \mu} x + \frac{\mu}{\lambda + \mu} (-y)\right)
$$

$$
\in F\left(\frac{\lambda}{\lambda + \mu} x + \frac{\mu}{\lambda + \mu} (-y)\right) = F\left(\frac{\lambda}{\lambda + \mu} (x + \mu z) + \frac{\mu}{\lambda + \mu} (-y - \lambda z)\right)
$$

$$
\subseteq \frac{\lambda}{\lambda + \mu} F(x + \mu z) + \frac{\mu}{\lambda + \mu} F(-y - \lambda z).
$$

Hence and by (3) we get

$$
0\in\frac{\lambda}{\lambda+\mu}[F(x+\mu z)-\varphi(x)]-\frac{\mu}{\lambda+\mu}[F(y+\lambda z)-\varphi(y)].
$$

Thus

$$
0\in \frac{F(x+\mu z)-\varphi(x)}{\mu}-\frac{F(y+\lambda z)-\varphi(y)}{\lambda}
$$

whence

(6)
$$
\frac{F(x+\mu z)-\varphi(x)}{\mu}\cap \frac{F(y+\lambda z)-\varphi(y)}{\lambda}\neq \emptyset.
$$

Similarly the relations

$$
\frac{\lambda}{\lambda+\mu}\varphi(x) + \frac{\mu}{\lambda+\mu}\varphi(-y) = \varphi\left(\frac{\lambda}{\lambda+\mu}x + \frac{\mu}{\lambda+\mu}(-y)\right)
$$

$$
\in F\left(\frac{\lambda}{\lambda+\mu}x + \frac{\mu}{\lambda+\mu}(-y)\right) = F\left(\frac{\lambda}{\lambda+\mu}(x-\mu z) + \frac{\mu}{\lambda+\mu}(-y+\lambda z)\right)
$$

$$
\subseteq \frac{\lambda}{\lambda+\mu}F(x-\mu z) - \frac{\mu}{\lambda+\mu}F(y-\lambda z)
$$

give

(7)
$$
\frac{F(x-\mu z)-\varphi(x)}{-\mu}\cap\frac{F(y-\lambda z)-\varphi(y)}{-\lambda}\neq\emptyset.
$$

We have also

$$
\frac{\lambda}{\lambda+\mu}\varphi(-x) + \frac{\mu}{\lambda+\mu}\varphi(-y) = \varphi\left(\frac{\lambda}{\lambda+\mu}(-x) + \frac{\mu}{\lambda+\mu}(-y)\right)
$$

$$
\in F\left(\frac{\lambda}{\lambda+\mu}(-x) + \frac{\mu}{\lambda+\mu}(-y)\right) = F\left(\frac{\lambda}{\lambda+\mu}(-x+\mu z) + \frac{\mu}{\lambda+\mu}(-y-\lambda z)\right)
$$

$$
\subseteq \frac{\lambda}{\lambda+\mu}F(-x+\mu z) - \frac{\mu}{\lambda+\mu}F(y+\lambda z).
$$

The same argument as aboye allows to get

(8)
$$
\frac{F(x-\mu z)-\varphi(x)}{-\mu}\cap\frac{F(y+\lambda z)-\varphi(y)}{\lambda}\neq\emptyset.
$$

Conditions (6) , (7) , (8) and the binary intersection property imply that there exists a $u \in E$ such that

$$
u \in \bigcap \bigg\{ \frac{F(x + \mu z) - \varphi(x)}{\mu} : x \in \text{dom } \varphi \cap C, \mu \in \mathbb{Q} \setminus \{0\}, x + \mu z \in C \bigg\}.
$$

Consequently

 $\varphi(x) + \lambda u \in F(x + \lambda z)$ for $x \in \text{dom } \varphi, \lambda \in \mathbb{Q}$ such that $x + \lambda z \in C$. The function $\varphi_0 : Z \to E$ defined by $\varphi_0(x + \lambda z) := \varphi(x) + \lambda u$ is an additive extension of φ different from φ and fulfils the condition

$$
\varphi_0(x) \in F(x) \quad \text{for } x \in Z \cap C.
$$

Thus φ cannot be a maximal element in Ω . The proof is complete. \blacksquare

Let X be a real linear space and $A \subseteq X$. We say that A is *radial at a point* $a \in A$ iff for every $x \in X$, $x \neq 0$ there exists an $\varepsilon > 0$ such that $a + \lambda x \in A$ for all $\lambda \in (-\varepsilon, \varepsilon)$.

Similar considerations as in the proof of Theorem 1 give the following result.

THEOREM 2. Let X be a real linear space, C be a convex symmetric subset *of* X , and Y be a subspace of X . Assume that F is a family of non-empty *subsets of a real linear space E having the binary intersection property and fulfilling condition* (4) *and*

$$
A \in \mathcal{F}, \ \mu \in (0, \infty) \Rightarrow \mu A \in \mathcal{F}.
$$

If C is radial at a point $x_0 \in A$, $x_0 \in Y$ and a set-valued function $F: C \to \mathcal{F}$ *is concave and fulfils condition* (3), $f: Y \rightarrow E$ *is a linear function which is a selection of the restriction F to Y* \cap *C, then there exists a linear extension* $g: X \to E$ of f fulfilling $(3'')$.

3. Let *E* denote *an ordered real linear space* i.e. *E* has a binary reflexive and transitive relation "<" such that

$$
y_1 \le y_2 \Rightarrow \lambda y_1 \le \lambda y_2 \quad \text{for all} \quad y_1, y_2 \in E, \text{ and real } \lambda \ge 0,
$$

$$
y_1 \le y_2 \Rightarrow y_1 + y_3 \le y_2 + y_3 \quad \text{for all} \quad y_1, y_2, y_3 \in E.
$$

We say that *E* has *the least upper bound property* (abbreviated: *l.u.b.p.)* iff every non-empty subset *A* of *E* which has an upper bound, has least upper bound.

As a consequence of Theorem 2 we can get the following theorem.

COROLLARY. *Let X be a linear space and let Y be a linear subspace of X. Assume that D is a convex subset of X, D is radial at* $x_0 \in D, x_0 \in Y$ and $D = 2x_0 - D$. Moreover, assume that E is an ordered real linear space with l.u.b.p. If $p : D \to E$ is convex and $f : Y \to E$ is a linear function *dominated by p on Y* \cap *D, then there is a linear extension g : X* $\rightarrow E$ *of f which is dominated by p on D.*

Proof. Consider the family F of all intervals [a, b] in E, the set $C =$ $(D-x_0) \cap (x_0 - D)$ and the set-valued function

$$
F(x) := [-p(-x+x_0)+f(x_0), p(x+x_0)-f(x_0)].
$$

One can easily see that all assumptions of Theorem 2 are fulfilled. Thus there exists a linear extension $g: X \to E$ of f such that

$$
g(x) \in F(x) \quad \text{for } x \in C.
$$

If $x \in x_0 + C$, then

$$
g(x) = g(x_0) + g(x - x_0) = f(x_0) + g(x - x_0)
$$

\$\leq f(x_0) + p(x - x_0 + x_0) - f(x_0) = p(x).

This completes the proof. •

Our corollary gives Theorem 2.1 from [4] in the case $2x_0 - D = D$.

References

- [1] Z. Gajda , A. Smajdor, W. Smajdor, *A theorem of the Hahn-Banach type and its application,* Ann. Polon. Math. 57 (1992), 243-252.
- [2] M. Kuczma , *An introduction to the theory of functional equalities and inequalities,* Polish Scientific Publishers (PWN) and Silesian University Press, Warszawa-Krakow-Katowice, 1985.
- [3] L. Nachbin, *A theorem of the Hahn-Banach type for linear transformations,* Trans. Amer. Math. Soc. 68 (1950), 28-46.
- [4] J. Zo we, *Sandwich theorems for convex operators with values in ordered vector space,* J. Math. Anal. Appl. 66 (1978), 282-296.

Wilhelmina Smajdor INSTITUTE OF MATHEMATICS SILESIAN UNIVERSITY Bankowa 14 PL 40-007 KATOWICE, POLAND

Joanna Szczawinska INSTITUTE OF MATHEMATICS PEDAGOGICAL UNIVERSITY Podchorążych 2 **PL 30-084 KRAKOW, POLAND**

Received April 9, 1993.