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Abstract

Growth rate variations for two paraboloidal domes: A and B, identical when seen 
from the outside but differing in the internal pattern of principal growth directions, 
were modeled by means of the growth tensor and a natural coordinate system. 
In dome A periclinal trajectories in the axial plane were given by confocal parabolas 
(as in a tunical dome), in dome B by parabolas converging to the vertex (as in 
a dome without a tunica). Accordingly, two natural coordinate systems, namely para­
boloidal for A and convergent parabolic for B, were used. In both cases, the rate 
of growth in area on the surfaces of domes was assumed to be isotropic and identical 
in corresponding points. It appears that distributions of growth rates within domes A 
and B are similar in their peripheral and central parts and different only in their 
distal regions. In the latter, growth rates are relatively large; the maximum relative 
rate of growth in volume is around the geometric focus in dome A, and on the 
surface around the vertex in dome B.
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INTRODUCTION

Principal directions of growth (PDG) can be determined in symplasti- 
cally growing plant organs (Hejnowicz and Romberger 1984). They are 
indicated by eigenvectors of symmetric part of the growth tensor. We can 
associate these directions with each point within the organ, thus there is 
a pattern of PDG trajectories. Trajectories of PDG are mutually orthogonal
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(Hejnowicz 1984). In practice, their pattern can be recognized from the 
cell-wall network (under the condition that the growth is not isotropic) 
because the line elements oriented along PDG and thus mutually ortho­
gonal, preserve orthogonality during growth. The curvilinear coordinate 
system, for which coordinate lines are tangent at any point to the trajectories 
of PDG is called a natural coordinate system (Hejnowicz 1984). This 
system is the most appropriate for dynamic descriptions and analysis of the 
growing organ.

In an apical dome there are three PDG: periclinal, anticlinal and lati­
tudinal (Fig. la). How do the trajectories of these directions run, if the 
dome maintains a steady-state shape during growth? Since PDG appear in 
the cell-wall pattern, the periclines and anticlines can be drawn from these 
patterns but sometimes they are not well visible in some regions of the 
organ. From the inspection of the surface layer of cells in the dome it 
appears that at a given point on the surface, the anticlinal trajectory is 
normal, and that the two remaining are tangent to the surface. If the dome 
is a figure of revolution around the axis, and if the tip of the dome does 
not rotate during growth, the periclinal trajectory on the surface is repre­
sented by the dome profile, whereas the latitudinal trajectories are always 
circular. Such a pattern certainly occurs at the surface, but what happens 
inside? If the dome grows symplastically then the trajectories of PDG must 
be continuous, and the pattern of trajectories, known at the surface, can 
be extrapolated into the dome interior (Hejnowicz 1984), However, we can 
obtain two different patterns in this way, with two types of periclinal 
trajectories: A — converging to the segment on the dome axis (as the periclines 
in the axial plane of the tunical dome), B — converging to one point at 
the vertex (as in the dome without a tunica). We denote these cases as A 
and B, respectively. It can be expected that domes A and B with the two 
different patterns of PDG have different variations of growth rates inside. 
The question is: how different are the distributions of growth rates within 
domes A and B, if the domes are identical from the outside, i.e., they 
have the same shape, size, and the same rate of growth in area on the 
dome surface? In the present paper an attempt is made to answer this 
question by relating it to a paraboloidal-dome-shaped meristem.

RESULTS

THE NATURAL COORDINATE SYSTEMS FOR A PARABOLOIDAL DOME

Let us consider a paraboloidal dome of the apex, assuming that its 
shape is a steady-state during growth. The outline of the axial longitudinal 
section of the dome can be described by x2 = 2pz, where p is the para­
meter of the parabola (Fig. la). Two natural coordinate systems can be



Spatial variations of growth 613

Fig. 1. A paraboloidal apical dome with two patterns of trajectories of principal growth 
directions in the axial plane: a) three-dimensional drawing showing spatial orientation of 
principal directions P, A, L—periclinal, anticlinal and latitudinal respectively for two chosen 
points; the axial plane PA and planes PL, fixed by directions P and L, are marked 
(the maps on Figs. 2, 3 and 4 were made for these planes), b) pattern A of trajectories 
given by the paraboloidal system, c) pattern B of trajectories given by the convergent 
parabolic system. In both natural systems the surface of the dome is represented by vs = 3.

The base of the dome is on the level indicated by the asterisk

proposed for this dome, one is paraboloidal coordinate system (A), the other, 
a convergent parabolic system (B) (see Fig. lb, c). The first represents pat­
tern A, the second, pattern B of PDG in the axial plane. The dome for 
which the paraboloidal system is natural, is denoted by A, the second is 
best described by a convergent parabolic system, B

Paraboloidal coordinate system

This system was already used in previous models (Hejnowicz et al. 
1984a, b). The traces of the coordinate surfaces in the axial plane x, z are 
confocal parabolas (Fig lb). They represent periclinal and anticlinal trajec­
tories, while the latitudinal trajectories are circles (they are not marked) 
because the z is a symmetry axis. The equations defining transformation 
between rectangular and paraboloidal coordinates, and the scale factors 
(Spiegel 1959) are as follows:

x = uucos</>, y = uvsin<p, (1)
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where u > 0, v 0, 0 < <p < 2n,
hH= h„ = y/u2 + v2, hv = uv.

For <p = 0, we have: u = y/ y/x2 + z2 +z and v = yjyjx2 Fz2 —z. The sur­
face of dome A is represented by one of the surfaces v. Let us denote 
it as vs. The focus F divides the axis of the dome into two parts. 
The dimension of the upper part from F to the tip increases if the dome 
becomes wider. The relation between v, and p for the parabola which 
represents the surface of the dome is v, = y/p.

Convergent parabolic system

The system was constructed especially for the modeling of dome growth. 
The traces of the coordinate surfaces on the x, z plane are shown in 
Fig. lc. They are parabolas converging to the origin (perclinal trajectories) 
and ellipses (anticlinal trajectories). The latitudinal trajectories are circles, 
as previously. The equations for the transformation and scale factors are:

x = v2 y/m—i cos (p, y = v2 y/m — 1 sin <p, z = y f2

where u 0, — oo < v < oo, 0 <p < 2n, (2)

4u3 v(m —1) 2 ,------
hu = ——--- —' ’ "f =------j=— ’ "«> = v \'m~ 1 >

v 1) y/m

where zn = -L x/4u4 + v4.
ir

H /x2For</> = 0 and z^O, we have: « = ?/—x2 + z2, v = The tip of dome

B is represented by the origin of the coordinate system, the surface of the dome 
is represented by the surface v, and, as previously, we have v,= y/p.

GROWTH TENSOR IN ANY COORDINATE SYSTEM WITH ROTATIONAL SYMMETRY

The growth tensor was defined as the covariant derivative of the field V, 
of displacement velocities of material points in the organ (Hejnowicz and 
Romberger 1984). This tensor expressed in physical components allows 
full characterization of the growing organ. Among other things, in a natural 
coordinate system, diagonal elements of the matrix of the growth tensor 
represent principal growth rates, i.e., relative elemental rate of growth in 
length. RERG,. in PDG. The sum of these elements (in the physical compo­
nents) gives the relative elemental rate of growth in volume, RERGvol.
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The growth tensor can be obtained directly in physical components 
from the dyadic VK (Hejnowicz and Romberger 1984). This method 
will be used to calculate the general form of the matrix of physical 
components of the growth tensor for any curvilinear coordinate system with 
rotational symmetry.

Let us. consider the system (u, v, <p) with rotational symmetry (as it 
is in paraboloidal and convergent parabolic systems). In this system e„, ev, 
e9 represent the unit base vector and vector V is given by the components: 
K, K>- Because the differential operator in each curvilinear system has 
the form (Spiegel 1959):

eu 6 t ev 8 9

( Vu eu + Vv e„ + e„) =

V = — +____
hu du h„ dv hv d<p ’

where h„, h„, hv are the scale factors, hence dyadic VK can be written as:

\/i„ du hv 6v hv dtp J

= (K“eu+7TU 8u(K ev) eu+Tu du(I/” e“+

+7 e‘’+Ę'87(Kl,<?*’)e’’+Tp~Sv^e*)e”+

+TT V(+^7 s7(e,,) + a7(e”) •

First the components are differentiated partially, then all terms are grouped 
with respect to the so-called unit dyadics, e, e,-, for i,j = u,v, tp (Spiegel 1959). 
Thus the sum is obtained which can be expressed as:

Viz = T p e 4- T e e 4- T e e 4-
’ F 'uuvuvu 1 ‘UV^U^V ' JU(p 1

4- T p p -4- T e e 4- T e e 4-1 * vu vu 1 * vv T * v<p 1
4- T p p 4“ T C 4- T C €

• Ł <pu ^cp 1 * <pv <p v 1 * <p<p <P (V

where Tkj for i,j = u,v,tp are the components of the dyadic. An array of 
dyadic components, in the form of a 3 by 3 matrix, can be written. 
This matrix is identical with the sought matrix of the growth 
physical components. It has the following form:

±1' dVu 11_ dhu
< du dv

1/"dVu 1 dhv
v dv du

ll 1
V\ <<p hu du

1 (dVv 1 dhu
hu V du hv dv

1 / 1 8/i„
< Sl) hu du

1 /'dVv 1
< 8</> h„ dv

1 I 8/i„
V dtp hu du

1 dVv 
h„ du

1 8K, 
h„ dv

tensor in
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As was mentioned before, the principal growth rates are given by diagonal 
elements in (3). The element in the upper left hand corner, Tuu, represents 
RERGt in the periclinal direction (RERG((per)), the element in the bottom 
right hand corner, Tw, represents RERGt in the latitudinal direction 
(RERGl(lat)), the element in the center, 7^.,-represents RERG, in the anticlinal 
direction (RERGl{an)). Specification of the matrix depends on determining 
the scale factors and the components of the vector field V.

HELD V FOR THE ISOTROPIC SURFACE GROWTH, SPECIFICATION OF THE GROWTH TENSOR 
(PHYSICAL COMPONENTS)

The feature of isotropic RERG in area on the dome surface (we will 
call it an isotropic surface growth) means that for each point on the surface, 
RERGt is the same in any direction in the plane tangent to the surface 
at this point. It is possible, however, that the values of RERGt for the 
points differing in the distance from the vertex, are different. We know 
that in the plane tangent to the surface, two PDG exist, namely periclinal 
and latitudinal, therefore, RERGuper} must be equal to RERGl{la,^ for v = vs. 
Denoting the components of V on the surface vs by Vu, Vv, Vv, from (3) 
the following condition is obtained:

1 /8F 1 dhu
hu \ 0U + hv dv / \ 8<P hu (4)

where h„, hv, are the scale factor of the system for v = t>s. For domes 
A and B. Kt. = F0 = 0 and does not depend on <p because their growth 
is steady and without rotation, thus there remains:

du hv du “ (5)

After the integration (5) with respect to u (for <p = const.), PM, i.e., Vu on 
the surface of the dome, can be obtained. The field Vu for the whole dome, 

h
from the relation Vu (u, v) = Vu (u, vs) (Hejnowicz 1984), one can calcu- 

hu
late. By this means, we will determine Vu, and then the growth tensor for 
both domes A and B
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Dome A: The variant of isotropic surface growth in a paraboloidal coordinate 
system was already considered in the previous paper (Hejnowicz et al. 
1984b). The following expression for Vu was obtained there:

where cI is constant. Accordingly, the growth tensor (3) (physical com­
ponents) for dome A is:

Cl

y/u2 + v2 u2 + v2
u4 + 2u2 v2 + v2 v2

— uv 0u2 + v.
uv u2 0

(7)
0 0 u2 + v2

Dome B: For a convergent parabolic system, condition (5) is the following:

9K
du

4»3
v? in(in-l) = 0,

where in = -j x/4u4 + t>4. Upon integration Pu = c2v/m-l, where c2 is the 

integration constant. Introducing scaling factor we obtain the displacement 
velocity for all points in the dome:

K (m, v) = c2
v2 Jin (m- 1) 
v2 yjm (m— 1) (8)

where w = ~ x/4u4 + r4 and in is the same as previously. The specific form 

of the growth tensor (3) for dome B is thus:

u4m(m-l)

0

H x/m- 1
m - 0

y/m-1
m

m+1
m 0

0 1

(9)
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where m and in are as previously, and

m2 (in — 1)-in2 (m- 1) m(/h+l)H = -------^7=---------------------------- 1——-------------- .
mm(w+l) m(m+l)

It is worth noting that conditions (4) and (5) say nothing about the 
values of RERG, at different points on the surface vs. In order to have 
equal values of RERG, in corresponding points on the surfaces of both 
domes, it must be assumed that velocity (6) is equal to velocity (8) at 
corresponding points of both domes, for instance at vertices and on base 
levels. As can be seen, this is satisfied at vertices because Vu - 0 there for 
u = 0 and v = vs. Let us consider the second point. Denoting by u£ and u" 
the coordinates for which the surfaces of domes A and B are crossed by 
the base level, from (6) and (8) there is:

«» = - + (10)

Let us assume that vs for both domes is vs= 3 and the coordinates uh 
are as follows: u'b' = 6 in the paraboloidal system and u” as 4.69 in the 
convergent parabolic system. Thus, for c, = 1 from (10), there must be 
c2 = 3. For these constants, the velocities Vu on the surfaces of domes A 
and B are identical in corresponding points, in consequence, Tuu and Tw 
in (7) are equal to Tuu and in (9). Thus the fields V and the growth
tensors in physical components for domes A and B are fully specified.

DISTRIBUTION OF GROWTH RATES

RERG, in different directions and RERGvol for domes A and B, were 
calculated from the specified growth tensors. The results are shown in the 
form of computer-made maps in Figs. 2, 3 and 4. In Fig. 2a, b growth rates 
in the planes PL (see Fig. la), are given. The maps of RERG, for domes A 
and B are similar there, except for a small region near the focus in the 
dome A. On the surfaces of both domes there is an isotropy of the relative 
elemental rate of growth in area. The plots of RERG, around the points 
on the surface are circles, but values of RERG, decrease with increasing 
distance from the vertex. In corresponding points on the surfaces of both 
domes the RERG,'s are equal, as was assumed. Below the surface, within 
the dome interior, RERG, in the PL planes becomes anisotropic, RERG„per, 
becomes higher than RERG„,al,. Maximum of RERG„per, is in the distal part 
of both domes, for dome A particularly at the geometric focus.

In axial plane PA (see Fig. la), growth rates for both domes are 
similar at the base level only (Fig. 3a, b). On the axis of each dome, 
RERG„per, is more or less twice as large as RERG„ant), but on the way
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Fig. 2. Two patterns of variations of the linear growth rate, RERGt in the planes PL for domes 
A and B (see Fig. la). Values RERG, are displayed in the form of two-dimensional computer- 
-made plots of RERGt around a number of points lying on the parabolas in the axial plane 
(for each plot the latitudinal direction is oriented anticlinally as the result of the rotation 
of PL plane by 90 around pericline). For a given point, the RERGt in different directions 
every 10-15°, were evaluated. The positions of points on the surface and on the axis in 
both domes A and B are the same. For all the points, plots of RERGt are drawn in the 

same scale

from the axis to the surface RERGl(anl) decreases in dome A, whereas it 
increases in dome B. In the latter there is the maximum of RERGllanl} in 
the distal part of the dome. This maximum occurs on the surface around 
the vertex. In dome A in the segment of the dome axis between the focus and 
the tip, RERGl(anl} disappears, whereas in dome B in the same region 
there is RERGHanl}> 0.

Figure 4 shows variations in volumetric growth rates: RERGvnl are smallest 
ai the base level of domes, then they increase as the distance from the 
tip decreases. The maximum of RERG,.ol for dome A is in the distal part 
at the focus, and for dome B it is on the surface around the vertex.
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Fig. 3. Two patterns of variations of the linear growth rate, RERGh in the axial plane PA 
for domes A and B. Explanation as in Fig. 2, except that the points for which RERGt were 
evaluated lie in the nodes of the rectangular net. The positions of all corresponding points 

in domes A and B are the same

The area of the higher values of RERGvol, from ranges 4 and 5 in the 
legend for Fig. 4, is relatively small when compared to the size of the 
\Vhole dome. The mean RERGvol calculated for the whole dome is more 
or less similar for domes A and B.

DISCUSSION

The patterns of distribution of growth rates for domes A and B are 
different, as was expected, but it appears that the differences are not 
large. On one hand, PDG (principal directions of growth) are of great 
importance in connection with the growth variation pattern inside the dome.



Spatial variations of growth 621

Fie. 4 Computer-made maps of volumetric growth rate, RERG,„t. for domes A and B. 
RERGu.i for about 120 points within each dome were taken into interpolation. The full 
range of values of RERGmi was divided into 5 equal parts numbered from 1 to 5 and 
marked by different graphical symbols, shown in the legend. The program SYMAP for the 

Riad 32 computer was u& d to obtain the regions on the map

on the other hand, even considerable changes in the pattern of PDG 
trajectories do not matter much for the picture of growth of the dome as 
a whole. The maps presented in this paper indicate that the mean RERGvol 
calculated for the whole dome is similar in the cases A and B, moreover, 
they show that mean RERGvol calculated for the distal part only is also similar, 
althought in this part, the differences between A and B dome in the pattern 
of growth variations are the biggest.

In both domes, maxima of volumetric growth rates are present in their 
distal parts. Such maxima are characteristic not only for paraboloidal domes, 
they were also found in elliptic and hyperbolic domes in the case of an 
isotropic surface growth on the surfaces of domes (Hejnowicz et al. 1984b). 
All this cases with the local maximum seem to be unrealistic when con­
fronted with known empirical facts. The results that have been obtained 
indicate that the maxima are related either to the type of coordinate system, 
or to the mode of the growth specified on the surface of the dome. 
They appear in a small region of the dome around the origin of the 
coordinate system. In this region, anticlinal distance between periclinal 
trajectories increases relatively quickly over a small area and it can give a 
local maximum.

For the description of growth in an organ in terms of the growth 
tensor, we use appropriate orthogonal coordinate systems. Appropriate — it 
means that the coordinate lines resemble a real pattern of PDG trajectories. 
Often the adjustment can be done only roughly, however, knowing how 
different the system is from a real pattern of trajectories, one can indicate 
in what direction the calculated rates should be corrected to approach 
the real rates.
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Comparing both paraboloidal and convergent parabolic systems proves 
that the second one is more complicated mathematically, admittedly, a lot 
of difficulties may be liminated by computer technique.

From the two patterns of PDG used in this paper the first was 
proposed for a tunical dome and the second for a dome without the 
tunica. The tunica is defined as a surface layer of cells in the shoot apex 
without periclinal divisions (Hejnowicz 1980). Hence, there is no anticlinal 
growth within this layer. Such a feature in relation to the apical dome is 
well represented in the paraboloidal coordinate system. In this system the 
assumption: RERGl(ant) = 0 for the segment of the dome axis between the 
focus and the tip, makes it possible that the segment mentioned does not 
increase during dome growth and, therefore, the tunica layer can be formed. 
The absence of the tunica can be interpreted as the decrease of the same 
segment to 0. Hence the proposition that a convariant parabolic system 
may be the natural system for the dome without a tunica growing steadily, 
has been made.

There is an interesting case of a potential tunica (Foster 1939) which 
occurs in conifers. There are some periclinal divisions in the surface layer 
of cells in the shoot apex, and so, in the apex there is no tunica in a strict 
sense. What coordinate system, paraboloidal or convergent parabolic, is more 
natural for this case? This question cannot be answered explicitly because both 
systems have some strong and some weak points. For the study of growth 
variations within the apices of spruce seedlings (Nakielski 1987), the 
convergent parabolic system was chosen.
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Przestrzenna zmienność wzrostu w wierzchołkach z różnymi wzorami 
głównych kierunków wzrostu

Streszczenie

Badano rozmieszczenie szybkości wzrostu w dwóch paraboloidalnych wierzchołkach A 
i B. identycznych z zewnątrz, ale różniących się wzorem trajektorii głównych kierunków 
wzrostu we wnętrzu. W wierzchołku A trajektorie peryklinalne w płaszczyźnie osiowej dane 
były przez współogniskowe parabole zbiegające się na odcinku osi wierzchołka (jak w wierz­
chołku z tuniką), zaś w wierzchołku B przez parabole zbiegające się w szczycie (co może 
odpowiadać wierzchołkowi bez tuniki). W obu przypadkach wzrost powierzchniowy na 
powierzchniach wierzchołków był izotropowy i identyczny w odpowiadających sobie punktach. 
Szybkości wzrostu określano za pomocą tensora wzrostu w dwóch naturalnych układach 
współrzędnych: paraboloidalnym (dla A) i parabolicznym konwergentnym (dla B) Wyniki 
przedstawiono w formie komputerowych map względnych szybkości wzrostu liniowego i ob­
jętościowego. Okazało się, że szybkości wzrostu wewnątrz wierzchołków A i B są podobne 
w strefach centralnej i peryferycznej. natomiast różnią się w strefie dystalnej. W tej ostatniej 
strefie szybkości wzrostu są największe, z tym że w wierzchołku A maksimum zlokalizowane 
jest w geometrycznym ognisku, zaś w wierzchołku B przy powierzchni w pobliżu szczytu. 
Najmniejsze szybkości wzrostu są przy podstawach obu wierzchołków.
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