
1

Fast median calculation method

J. Cadenas, G. M. Megson, R. S. Sherratt and P. Huerta

The ever increasing demand for high image quality requires fast and efficient

methods for noise reduction. The best known order-statistics filter is the median filter.

A method is presented to calculate the median on a set of N W-bit integers in BW

time steps. Blocks containing B-bit slices are used to find B-bits of the median; using

a novel quantum-like representation allowing the median to be computed in an

accelerated manner compared to the best known method (W time steps). The

general method allows a variety of designs to be synthesised systematically. A

further novel architecture to calculate the median for a moving set of N integers is

also discussed.

Introduction: The median filter is the most common non-linear spatial filter known for

its excellent noise-reduction capability in smoothing of images [1]. It also finds

applications broadly in digital signal processing analysis [2]. The median, M, on a set

of integers is such that half the integers in the set are less or equal to M, and half are

greater or equal to M. Without loss of generality, an odd number of integers in the

set, N = 2k +1, is most practical; this is maintained throughout this Letter. If the

integers were sorted, the median is the integer in the middle location.

The median can be calculated by sequential sorting with a complexity of O(N log N)

[3]. Non-sorting based methods, especially those designed for hardware

architectures achieve the calculation in a number of steps related to the bit length of

unsigned integers, W, rather than N [4]. The method of Prokin and Prokin [5] is better

than previous sorting and non-sorting methods and uses W steps to find the median.

This Letter presents a method to calculate the median on a set of N W-bit integers in

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Central Archive at the University of Reading

https://core.ac.uk/display/355398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

BW time steps, where B is a parameter used to decide how to slice the integers in

the data set into blocks.

The new method creates slices of B-bits, forming BW processing blocks, each

block calculating B-bits of the output median. Blocks of 2-bit or 3-bit are practical for

hardware implementation. Working on more than 1-bit reveals hidden parallelism.

However, no previous known method operates on more than 1-bit at a time, as

presented here. The data representation of B-bit slices is changed on the fly allowing

the method to explore ahead, further than one bit a time, using a Quantum

Representation (QR) of bits, which retains the advantages of flexible data

manipulation and data parallel properties. This Letter starts with an example on a

small set of non-negative integers. The analysis produces an architecture for

calculating the median on a sliding window of size N. The method is then extended to

cover signed integers and to solve the more generic problem of a rank filter.

Quantum representation: Define a data bit as a qubit with the form d = a0Q[0] + a1Q[1]

where ai are quantum amplitudes [6]. The qubit is a superposition of two states

defined as Q[0] = [0 1] and Q[1] = [1 0]. Hence, d = a0 [0 1] + a1 [1 0] = [a1 a0] = Q[d]; if d

= 0, Q[d] = Q[0], else Q[d] = Q[1]. The tensor operator onto two qubits is defined as: Q[g]

 Q[h] = [g1 g0]  [h1 h0] = [g1h1 g1h0 g0h1 g0h0] which extends straightforwardly to

higher dimensions. A p-bit binary string Xj = xp-1xp-2 ... x0 can be represented as

         0121 XXpXpXjX QQQQQ 


 , which forms a 2p-bit QR. For instance, when

W = 2, x1x0 = 00, Q[00] = [0 1]  [0 1] = [0 0 0 1]. This format maps the input bits to a

set of mutually orthogonal vectors which allows implicit parallel processing and

provides a unique index within a 2p elemental vector.

Small example: Consider a data set of N = 5 elements 4, 8, 2, 7, 14, each of W = 4

bits. N = 2k+1 implies k = 2 and indicates that, P = k+1 = 3 is the position of the

3

median. Partitioning the input data with B = 2 bits forms two groups as in Table 1,

creating vertical slices of two bits (far left in table). Group 1 is processed first. The

QR is generated, for each 2-bit slice and labelled as qi for i = 3, ..., 0. All qi are added

in parallel (vertically). These sums are then accumulated right to left into A. A parallel

comparison is performed on each accumulation against P, searching for the first

occurrence (right to left) when A ≥ P; (column q1 in the example). The two MSB of the

median are then found as “01”, indicating that only the elements 4, and 7 are median

candidates. Next, group 2 is processed. First, P is recalculated as P = 3 -1 = 2 (1

being the A value to the right under q1 column) and then the slices for elements 8, 2

and 14 (gray in table) are nullified. Computing the QR, sum and accumulation for the

second group proceeds, as before, on the remaining 2-bit slice. The condition A ≥ P

is first satisfied for A under q3. The remaining two bits for the median are “11”.

Combining the results from group 1 and 2 give the median as M = 0111 = 710.

The QR representation produces a virtual parallel sorting mechanism (see blocking

4-bits at the time, bottom of Table 1). For 2-bit blocks, block 1 discards item elements

2, 8, and 14. The element 2 must be to the right of the median, so the median new

position is P = 3 – 1 = 2, within the only remaining median candidates 4 and 7. The

process generalises to large problem sizes and in principle after the accumulation

and comparisons, the median can be obtained in a single step. The exponential

nature of the tensor operator for generating QR becomes unwieldy for large W, but

for small and reasonable cases (particularly those used in applications) can provide a

fast architecture.

Sliding window median architecture: Figure 1 shows an inside view of block 1 to

process a set of N elements of W bits each, by blocking B-bits at a time which

produces  BW processing blocks. Input elements are pipelined with N stages.

Each stage holds B bits; this forms a sliding window with element slices X1
W-1-(j-1)B, ...,

4

XN
W-jB, for j = 1, 2, ..., BW . The QR is generated for each slice producing 2B bits with

indices i = 0, ..., 2B-1. The QR is easily implemented with B-to-2B binary decoders. A

parallel sum of N bits each is performed along index i and labelled S1
i for block 1 with

accumulation A1
i. For the sum S, carry-save-adder (CSA) tree structures [7] produce

a sum of log2N bits over which the accumulation is performed. For a typical N = 9 or

11, fast 4-bit adders will suffice. The expected position for the median is P1 for the

first block with a value P1 = k+1. Internally to the logic, 2B parallel greater than or

equal comparisons are performed on the log2N bits of A1 against P1. A simple

arrangement of XOR gates then extracts the first occurrence of the comparisons A ≥

P. A single bit over an i bit-array, i = 0, ..., 2B-1 will be set (for B = 2, this could be [0 0

1 0]) as the result of the comparison process. The set bit position bit-code

corresponds to the B bits from the median that can be extracted in that block. The

logic then calculates the new position P2 to be used in the next block, calculated as

P2 = P1 – A1
i-1 for the i value where the comparison is true.

All previous results are pipelined vertically where the calculation continues to the next

block. Elements that cannot be the median get nullified (using the enable bits shown

in the figure as e1
t, t = 1, ..., N for the first block). A structure to generate these nullify

enable signals for the next block is shown in Figure 2 (left) along with a suggested

logic for each Et block in the figure (for B = 2, right). For the first block these enable

signals are conveniently wired to 1. Thus, after BW processing blocks the median

M is found at the bottom, with each block contributing B bits of M. The position of the

median in the window is indicated by the enable set bits generated on the last block.

Timing analysis: Reducing the median computation by B steps would not represent

an improvement if the time of each step, due to the complexity of the arrangement, is

larger than before. Figure 3 shows that this does not happen for N >7. The median

computation time in [5] is t[5] = WT[5] and, for figure 1, t = (W/B)T, thus the speedup

factor of Figure 1 is s = B(T[5]/T) with T[5] and T representing the critical paths of [5]

5

and Figure 1 respectively. At N = 15, directly from Figure 3, T[5]/T ~ 0.625 for B = 2,

and consequently speedup s = B(T[5]/T) ~ 1.25 or 25% faster. Similarly, a 25%

speedup is seen for B = 3. We corroborated this evidence for a circuit implemented in

FPGA technology (Virtex 4 device) for the case N = 15 and B = 2. T is essentially due

to the CSA tree followed by a chain of 2B-1 accumulators of log2N width each, which

make them suitable for implementation with fast full carry look-ahead adders [7]. T[5]

is basically the delay cost of the CSA tree.

Signed integer extension: Let the number of positive integers be C0 and negative

integers C1, then N = C0 + C1. If C0 > C1, set P = k + 1 – C1 initially, otherwise set P

= k + 1 – C0; the method applies unmodified to the remaining W-1 bits.

A rank filter: An order R filter, for a set of N elements has R elements less or equal to

the output and N – R elements greater or equal to the output [5]. For N = 2k +1, the

median is a rank filter with R = k. The method in this Letter calculates the median by

setting P = R + 1 initially. The accumulation in figure 1 can be performed left to right

as shown, or right to left. Thus, in order for the method to perform as a rank filter, for

left to right accumulation, requires setting P = N – R initially. For right to left it

requires setting P = R + 1.

Conclusion: This method reduces by B the number of steps to calculate the median

on a set of N items compared to previously known methods. We found parameters B

and N for which circuit implementations also make the method faster. This is ideal

for real-time processing of images. The method applies to non-negative or signed

integers and also easily extends to the case of rank filtering. Multiple architectures

can be derived with different tradeoffs between area and time in fully pipelined

structures.

6

References

1 GONZALEZ, R., and WOODS R.: „Digital image processing‟ (Prentice Hall, 2002)

2 YOUNG, N., and EVANS A. N.: „Median centred difference gradient operator and

its applications in watershed segmentation‟, Electron. Lett., 2011, 47, (3), pp. 178-

180

3 CORMEN, T. H, LEISERSON, C. E., RIVEST R. L., and STEIN C.: „Introduction to

Algorithms‟ (The MIT Press, 2003)

4 CHANG, S., and CHIG, W.: „A parallel median filter with pipelined scheduling for

real-time 1D and 2D signal processing‟, IEICE Trans. Fundamentals, 2000, E83-A,

(7), pp. 1396-1404

5 PROKIN, D., and PROKIN, M.: „Low hardware complexity pipelined rank filter‟,

IEEE Trans. On Circ and Syst. II., 2010, 57, (6), pp. 446-450

6 NEILSEN, M. A., and CHUANG, I. L.: „Quantum computation and quantum
Information‟ (Cambridge, 2000)

7 PARHAMI, B.: „Computer arithmetic, algorithms and hardware designs‟ (Oxford,
2000)

Authors’ affiliations:

J. Cadenas and R. S. Sherratt (School of Systems Engineering, University of
Reading, Reading, RG6 6AY, United Kingdom)

G. M. Megson (School of Electronics and Computer Science, University of
Westminster, London W1T 3UW, United Kingdom)

P. Huerta (Escuela Técnica Superior, Universidad Rey Juan Carlos, Madrid, Spain)

E-mail: o.cadenas@reading.ac.uk

7

Figure Captions

Fig. 1 A pipelined architecture of a block to calculate B-bits of the median by

processing slices of B-bits from a set of N = 2k + 1 non-negative elements of W-bits.

Fig. 2 Left: Nullify enable signal architecture and Right: A logic structure for each

block Et on the left for the case of B = 2 bits, W = 4 bits.

Fig. 3 Estimated ratio of T[5]/T for critical paths of the architecture in [5] (T[5]) against

the critical path of the architecture in Figure 1 (T) as a function of window size N.

Table Captions

Table 1: (Top) Median calculation for input items 4, 6, 2, 7, 14 by blocking 2-bits at a

time. (Bottom) Quantum representation of 4, 6, 2, 7, 14 by blocking 4-bits at a time.

8

Figure 1

+

Logic

X1 X2 XN ...
XW-1, .., W-B

 QR QR QR

1
1e

1
2e

1
Ne


N

 
N


N

1

1B2
S



1

2B2
S



1
0S

+ +
0 ...

1
0A

1

2B2
A



1

1B2
A



2p

 MW-1, .., W-B

1p

9

Figure 2

M3

M2 X1 X2 XN ...
XW-1, .., W-B

 E1 E2 EN
 2

1e

2
2e

2
Ne

MW-1, .., W-B

t
3X

1
te

1
1e

1
Ne

...

t
2X

2
te

1
2e

10

Figure 3

11

Table 1

Item10 Item2 Group 1 q3 q2 q1 q0 Group 2 q3 q2 q1 q0

4 0100 01 0 0 1 0 00 0 0 0 1

8 1000 10 0 1 0 0 00 0 0 0 0

2 0010 00 0 0 0 1 10 0 0 0 0

7 0111 01 0 0 1 0 11 1 0 0 0

14 1110 11 1 0 0 0 10 0 0 0 0

 S = Σqi 1 1 2 1 S = Σqi 1 0 0 1

 A = ΣS 5 4 3 1 A = ΣS 2 1 1 1

q15 q14 q13 q12 q11 q10 q9 q8 q7 q6 q5 q4 q3 q2 q1 q0

0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0

