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Cluster headache is characterized by recurrent, unilateral attacks of excruciating pain associated with ipsilateral cranial autonomic

symptoms. Although a wide array of clinical, anatomical, physiological, and genetic data have informed multiple theories about

the underlying pathophysiology, the lack of a comprehensive mechanistic understanding has inhibited, on the one hand, the devel-

opment of new treatments and, on the other, the identification of features predictive of response to established ones. The first-line

drug, verapamil, is found to be effective in only half of all patients, and after several weeks of dose escalation, rendering therapeut-

ic selection both uncertain and slow. Here we use high-dimensional modelling of routinely acquired phenotypic and MRI data to

quantify the predictability of verapamil responsiveness and to illuminate its neural dependants, across a cohort of 708 patients

evaluated for cluster headache at the National Hospital for Neurology and Neurosurgery between 2007 and 2017. We derive a

succinct latent representation of cluster headache from non-linear dimensionality reduction of structured clinical features, revealing

novel phenotypic clusters. In a subset of patients, we show that individually predictive models based on gradient boosting machines

can predict verapamil responsiveness from clinical (410 patients) and imaging (194 patients) features. Models combining clinical

and imaging data establish the first benchmark for predicting verapamil responsiveness, with an area under the receiver operating

characteristic curve of 0.689 on cross-validation (95% confidence interval: 0.651 to 0.710) and 0.621 on held-out data. In the

imaged patients, voxel-based morphometry revealed a grey matter cluster in lobule VI of the cerebellum (–4, –66, –20) exhibiting

enhanced grey matter concentrations in verapamil non-responders compared with responders (familywise error-corrected

P = 0.008, 29 voxels). We propose a mechanism for the therapeutic effect of verapamil that draws on the neuroanatomy and

neurochemistry of the identified region. Our results reveal previously unrecognized high-dimensional structure within the phenotyp-

ic landscape of cluster headache that enables prediction of treatment response with modest fidelity. An analogous approach applied

to larger, globally representative datasets could facilitate data-driven redefinition of diagnostic criteria and stronger, more generaliz-

able predictive models of treatment responsiveness.
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Introduction
Cluster headache is the most common type of trigeminal

autonomic cephalalgia, a class of disorders characterized by

recurrent, unilateral attacks of excruciating cranial pain

accompanied by prominent, ipsilateral cranial autonomic

symptoms [Headache Classification Committee of the

International Headache Society (IHS), 2018]. Though rela-

tively rare at a population prevalence of 0.2% (Bjørn

Russell, 2004), the intensity of the pain causes great distress,

sometimes to the point of suicidal ideation. A complex inter-

play of hypothalamic, trigeminovascular and cranial auto-

nomic dysfunction has been posited, but the precise

mechanism of causation, and the role of the many molecular

and genetic factors implicated in the disorder, remain un-

known (May et al., 2018; Gibson et al., 2019). The absence

of a clear molecular target early in the causal pathway has

hindered the development of new agents, limiting treatment

options. Crucially, as no treatment response has ever been

robustly linked to any clinical or physiological parameter,

treatment selection remains heuristic, executable no faster

than the weeks-long period of dose escalation needed to

evaluate each candidate agent.

Verapamil, the first-line therapy for cluster headache,

demands a particularly lengthy evaluation, for the risk of

heart block mandates that the high doses typically necessary

to produce an effect are reached in incremental steps of at

least 14 days (Cohen et al., 2007). Patients may endure

many weeks of excruciating attacks until the dose reached is

high enough to indicate an absence of response and another

agent can be considered. There is therefore an urgent need

for a means of distinguishing those who are likely to re-

spond to first-line therapy from those who will not. In the

absence of a known mechanism of causation, it cannot be

assumed that the characteristics—both clinical and physio-

logical—on which the distinction depends could be ad-

equately measured by a small number of ‘biomarkers’. The

consequent obligation to explore a wide array of potential

predictive factors has not been previously fulfilled for two

reasons: first, because of the lack of mathematical techniques

with the power to render the problem computationally tract-

able; and second, because of the lack of patient cohorts of

sufficient size and data quality.

The application of contemporary machine learning to

large, fully inclusive cohorts characterized in great clinical

detail now allows us to explore the association with re-

sponse to treatment of far more complex patterns of clinical

and physiological features than has hitherto been possible.

Where the distinction between patients who respond and

those who do not depends not on one variable but a large

multiplicity, machine learning applied to large scale data

may allow us to delineate a robust ‘decision boundary’—re-

sponsive versus non-responsive—that though supported by

many variables is reproducible across the population. The

difficulty of delineating such boundaries rapidly escalates

with the number of modelled factors and the paucity of

available data, for the wider the space of possibility the

easier it is to find a boundary that fits the training data but

generalizes poorly. A theoretically potent strategy for mini-

mizing this risk is to find a succinct ‘redescription’ of the

clinical picture that amplifies structured, biologically signifi-

cant patterns of variability in patient characteristics while

attenuating random, biologically incidental ones. Though

clinicians do this ‘intuitively’ in grouping patients into

distinct phenotypes defined by selected, pivotal features, ma-

chine learning enables us to do this ‘objectively’, in a data-

driven way. Such ‘machine phenotyping’ involves deriving a

succinct, easily surveyable latent representation of multiple

observed clinical and investigational features that facilitates

the disentanglement of distinct clinical and physiological pat-

terns. Two patterns differing along more feature dimensions

that can be intuitively grasped—an array of two dozen clin-

ical attributes, for example—may be more reliably distin-

guished when projected into a more compact latent space of

(say) two or three derived dimensions of variation. Such rep-

resentation learning (Bengio et al., 2013) can be combined

with conventional supervised machine learning to build pre-

dictive models with greater fidelity, intelligibility, and gener-

alizability than is otherwise possible. Though usually applied

to predicting individual clinical outcomes, this approach

may also enhance our ability to identify modifiable biologic-

al mechanisms by illuminating the complex interplay be-

tween many potential causal factors.

Here we apply high-dimensional machine phenotyping to

a sequential, unselected cohort of MRI patients with cluster

headache—to our knowledge the largest in the literature—in

pursuit of two objectives: to quantify how accurately re-

sponse to verapamil may be predicted from routine clinical

and structural imaging information, and to identify struc-

tural correlates of treatment responsiveness in the brain.

Materials and methods

Patients

Patients with a diagnosis of cluster headache or probable cluster
headache according to the published International Classification
of Headache Disorders at the time of evaluation were included
in this retrospective, observational study. Of 727 patients
treated at the National Hospital for Neurology and
Neurosurgery, London, UK between January 2007 and April
2017 for cluster headache, nine patients were excluded for lack
of an indomethacin trial to rule out other trigeminal autonomic
cephalalgias, eight patients were excluded for having exclusively
bilateral attacks, and one patient each was excluded for missing
490% of clinical data and for having attacks of average dur-
ation 2880 min. Patients with probable cluster headache (28
episodic, 41 chronic) in whom other trigeminal autonomic ceph-
alalgias were ruled out and potential secondary cluster headache
(34 with pituitary abnormality, 21 post-traumatic) were deliber-
ately included to capture all patients that were treated clinically
as cluster headache (Sohn et al., 2018). Of the remaining 708
patients (317 episodic, 391 chronic), 497 (70%) were male with
a mean age of 50 (Table 1). HRA ethical approval for
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consentless analysis of irrevocably anonymized data for the pur-

pose is in place.

Clinical data acquisition

We relied on a comprehensive, semistructured patient record al-

ready implemented within routine clinical care at the host insti-

tution. This included the following variables recorded on the

clinical record in tabular form: demographics; duration, fre-

quency, severity, laterality and location of attacks; associated

symptoms including cranial autonomic symptoms; aura; comor-

bid migraine or other headache diagnosis; family history of clus-

ter headache; history of pituitary abnormality or head trauma

(recent or remote); and verapamil response. Descriptive statistics

of the variables are given in Supplementary Table 1.

MRI acquisition and preprocessing

A subset of patients had previously received a brain MRI as

part of their routine clinical care: this was accessible where per-

formed at our institution but not outside it. MRIs were obtained

on either a Siemens or General Electric scanner at 1.5 or 3 T

using a diversity of clinical imaging protocols, with the majority

of scans acquired as 2D planes with interslice gaps ranging from

5 to 7.5 mm. T1-weighted sequences were preprocessed with

Statistical Parametric Mapping, version 12 (SPM12; Wellcome

Trust Centre for Neuroimaging, London, UK) using default

parameters with the following pipeline adapted for clinical grade

imaging: rigid alignment to MNI space, denoising (Brudfors

et al., 2018), unified segmentation (Ashburner and Friston,

2005), and smoothing of the resulting normalized segmentations

with a Gaussian kernel of 8 mm full-width at half-maximum.

The images entered into the statistical models were resampled at

a voxel size of 1.5 mm isotropic.

Data preparation for machine
learning analyses

Features with 420% missing data and categorical variables

with only one value present were removed. Supplementary

Table 1 describes the distribution and number of missing values

for each feature prior to imputation. Missing data were imputed

with the mean for continuous variables or the mode for categor-

ical variables. Three additional features were engineered

(Supplementary Table 1). After conversion to dummy variables,
the total number of clinical features was 72. Data cleaning and
machine learning analyses were conducted using Python 3.7 and
open source package Scikit-learn (Pedregosa et al., 2011).

Non-linear dimensionality reduction

Principal component analysis was applied to the clinical data
(excluding verapamil responsiveness) and the first 50 compo-
nents were subjected to t-distributed stochastic neighbour
embedding (t-SNE), a non-linear dimensionality reduction tech-
nique that excels at preserving both global and local structure in
the data (van der Maaten and Hinton, 2008). Perplexity and
learning rate were manually adjusted for optimal clustering be-
haviour. Two large clusters were identified visually, and k-near-
est neighbour with k = 2 was used to define these clusters.
Subclusters were manually identified by using the t-SNE coordi-
nates and examining the original dataset.

Verapamil responsiveness

In line with consensus statements (Goadsby et al., 2006;
Mitsikostas et al., 2014), a positive verapamil responsive was
defined as 50% or greater reduction in mean attack frequency
after dose titration in steps of 80–120 mg every 2 weeks up to a
maximum of 960 mg daily (Cohen et al., 2007) and maintained
at the optimum dose for 3 months. A patient was considered a
non-responder if there was 550% reduction in attack fre-
quency, or side effects requiring cessation of treatment.
Response was established by direct interview at follow-up hos-
pital visits as noted in the clinical record.

Imaging analysis

Whole-brain morphometric analysis was performed for spatial
inference of anatomical patterns of responsiveness that could be
illuminating of the underlying biological mechanisms. It was not
used for feature selection in the predictive models. All MRIs
were manually examined for anatomical abnormalities, artefact,
or poor brain coverage. Five were excluded for gross structural
abnormalities or artefact and five for poor brain coverage, leav-
ing a total of 194 patients (105 verapamil non-responders, 89
responders) with an anatomical T1-weighted MRI for analysis.
Most MRIs were obtained at 1.5 T (n = 101) and on a Siemens
scanner (n = 165). MRIs were obtained on average within 2.0

Table 1 Demographics and clinical characteristics

All patients Verapamil responders Verapamil non-

responders

n 708 206 204

Age, years, mean (range) 50.0 (22–89) 50.3 (22–81) 49.4 (22–88)

Male, n (%) 497 (70) 158 (77) 132 (65)

Disease duration, years, mean ± SD 18.6± 11.2 19.2± 11.0 16.8± 10.0

Episodic, n (%) 317 (45) 80 (39)* 47 (23)*

Attack duration, min, mean ± SD 89.5± 65.1 85.4± 58.1 97.6± 72.4

Attack frequency per day, mean ± SD 3.0 ± 2.1 3.0 ± 1.8 3.4 ± 2.6

Lateralitya, %, right:left 49:48 50:50 51:47

SD = standard deviation.
aWhen attacks occur bilaterally, more frequent laterality; percentages may not sum to 100 due to small percentage with both sides affected equally.

*Statistically significant, P5 0.007.
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years [standard deviation (SD) 3.0 years] of the first

appointment.

We used SPM12 for a voxel-based morphometry (VBM) ana-

lysis of unmodulated grey and white matter, comparing verap-

amil responders and non-responders using two-sample t-tests.

Age, sex, diagnosis (episodic versus chronic), disease duration,

attack laterality and duration, scanner manufacturer, tesla

strength, and total grey or white matter were modelled as cova-

riates. Age2 was also included to capture non-linearity between

age and brain volume. Although scanner and sequence hetero-

geneity naturally limit the sensitivity of VBM, our interest was

in large effects that could potentially be clinically predictive, and

scanner parameters were included in the design matrix to con-

trol for false positives. Additionally, we modelled disease dur-

ation and chronicity as we were not interested in dynamic

changes occurring in the brain over the course of disease but ra-

ther constitutional characteristics that might determine the idio-

syncratic response to verapamil at any time.

Threshold masking was applied with the default value of 0.8.

P50.05 at the voxel level after family-wise error (FWE) correc-

tion for multiple comparisons was considered statistically

significant.

Predictive modelling

Patients with verapamil treatment response data were divided

into a training and validation set (90%) and a held-out test set

(10%). We used gradient boosting decision trees implemented

with XGBoost (Chen and Guestrin, 2016) to train and evaluate

models for predicting verapamil response, binarized into re-

sponder versus non-responder, as described above. The choice

of classifier was motivated by the flexibility and robustness of

gradient boosting methods, and their provision of indices of fea-

ture importance. The models were complicated incrementally

with the addition of increasing numbers of clinical and investi-

gational features. We first modelled missing data to determine

whether the pattern of queried clinical features itself holds pre-

dictive value. We then modelled the clinical features alone, and

finally with the addition of imaging features. Such an incremen-

tal approach allows us to quantify the marginal predictive value

of adding less accessible information—such as imaging—to the

models.

Recent functional precision mapping of the cerebellum indi-

cates facial sensorimotor connectivity within lobule VI (Marek

et al., 2018). Given the clear biological relevance of this localiza-

tion, and its derivation from an independent imaging dataset,

we selected this region as the source of imaging features for the

predictive model. The region was transformed into MNI space

from its original 711-2b space with the aid of a deformation

field derived from combined normalization and segmentation of

a high resolution anatomical template in 711-2b space per-

formed with SPM12. The transformed image was used as a

mask to extract the residuals for each patient from an SPM

model incorporating the same covariates as in the VBM models

except verapamil responsiveness. To minimize collinearity, we

used radial basis function kernel principal component analysis

for dimensionality reduction, and entered the first 20 compo-

nents into the predictive model.

Statistical analysis

The receiver operating characteristics (ROC) curve for a classi-
fier shows the relation between the true positive rate against the
false positive rate as the discrimination threshold is varied. We
used the area under the ROC curve (AUC) metric and 10-fold
cross-validation to score the models. Cross-validation is a
method for estimating model performance in which the training
dataset is partitioned into n folds. In each iteration, the model is
trained on n – 1 folds and model performance is measured on
the remaining fold. The mean of the n scores is the cross-vali-
dated score. Confidence intervals were computed based on the
percentiles of 1000 random resamplings (bootstraps) of the
data.

Data availability

Source data are not publicly available in accordance with clinic-
al data governance procedures in place.

Results

Patients

Table 1 summarizes the demographic and clinical character-

istics of the 708 patients included in the clustering analysis,

and the 410 patients with verapamil response data included

in the predictive model. At a significance threshold of

P5 0.007 (P5 0.05 with Bonferroni correction for seven

comparisons), verapamil responders differed from non-res-

ponders in chronicity only (P = 0.001). The vast majority of

patients were trialled for at least 3 months and escalated to

an adequate dose. Of the 204 non-responders, in 21 patients

the therapeutic trial lasted 53 months or did not reach a

dose 4480 mg total daily dose owing to significant side

effects (chest pain, ECG abnormality, rash, intense itching,

marked nausea and vomiting, worsening headaches).

Machine phenotypes

The clinical data used for machine phenotyping were a com-

bination of demographic and diagnostic features, features

more typical of migraine and comorbid headache disorders,

and excluded verapamil responsiveness (Supplementary

Table 1). The reason for excluding verapamil responsiveness

is because we sought to identify phenotypes that predict it.

Embedded into a 2D latent representation, the clinical fea-

tures naturally divided into two large phenotypic clusters

corresponding to episodic and chronic cluster headache

(Fig. 1A). A further eight data-driven phenotypic subclusters

emerged (Fig. 1B), encompassing the existing categories of

probable cluster headache, and six additional subphenotypes

within those meeting strict diagnostic criteria. We included

all patients managed as cluster headache—whether probable

or certain—so as most closely to reflect real-world clinical

practice. Inspection of the defining patterns of features,

detailed in Supplementary Table 2, motivated an umbrella

label for each phenotype: probable episodic, probable
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chronic, post-traumatic, non-autonomic, right-dominant,

left-dominant, equilateral, and with bilateral component.

These subclusters generally differed along an array of mul-

tiple features. For example, the phenotype with no cranial

autonomic symptoms was also less likely to exhibit restless-

ness, photophobia, phonophobia, or retro-orbital pain. A

ninth subcluster, remote trauma, did not differ on any other

clinical features, suggesting this history does not influence

the broader cluster headache phenotype. A comprehensive

list of the characteristic differences is given in Supplementary

Table 2.

Voxel-based morphometry

A cluster of grey matter located within the cerebellar vermis

centred at –4, –66, –20 showed increased density in

verapamil non-responders compared with responders (Fig. 2,

FWE-corrected P = 0.008, 29 voxels). At a less conservative

threshold of P5 0.001 uncorrected, this cluster extended

from the vermis bilaterally into the hemispheric portions of

lobule VI (Fig. 2, 458 voxels). To determine the relation of

this cluster to discrete network parcellations of the cerebel-

lum (Marek et al., 2018), we computed the modified

Hausdorff distance (Dubuisson and Jain, 1994) for each net-

work compartment in each of the 10 participants reported

in the study, demonstrating the greatest similarity—as indi-

cated by the shortest distance—with the facial sensorimotor

compartment of the cerebellum (Fig. 3).

No grey matter region was denser in verapamil responders

compared with non-responders. White matter analyses

yielded no significant differences between the two groups.

Predictive modelling

Response to verapamil was predictable from the clinical fea-

tures alone with an AUC of 0.669 [95% confidence interval

(CI): 0.652 to 0.691, Fig. 4] on the training set. The features

of highest importance to discriminating between responders

and non-responders are shown in Fig. 5, ranked by the fea-

ture importance scores within the gradient boosting model.

Indices of the duration and frequency of individual attacks,

and of the condition overall, appear to contribute the most.

The addition of grey matter density information drawn

from the facial sensorimotor compartment of the cerebellum

yielded a higher AUC (0.689) but within the confidence

intervals of performance (95% CI: 0.651 to 0.710).

A null model including as predictor only missingness rep-

resented as a single binary vector was only weakly inform-

ative (AUC = 0.544; 95% CI: 0.538 to 0.574), showing that

the bulk of the predictive information is contained in the

data values themselves rather than in the fact of including or

omitting them in the clinical record.

Applied to the held-out test dataset, the final model incor-

porating both clinical and imaging predictors yielded an

AUC of 0.621.

Discussion
Drawing on the largest available cohort of richly character-

ized patients with cluster headache, with MRI, we derived a

set of data-driven clinical subphenotypes, quantified the indi-

vidual-level predictability of response to verapamil, and

established an association between treatment success and re-

gional grey matter density in the cerebellum that casts light

on the underlying mechanism of action of verapamil.

Our cluster analysis reveals the separability of distinct sub-

phenotypes to be typically high dimensional, dependent on

the interactions between wide arrays of characteristics rather

than any single biomarker. This may explain why they have

not been previously identified despite being grounded in rou-

tinely recorded clinical features. This is true not only of the

newly identified subphenotypes, but also of the established

A

B

Figure 1 T-SNE embedding of clinical features. (A) Non-lin-

ear dimensionality reduction of the high dimensional clinical

features performed with t-SNE, and labelled by chronicity. (B) Non-

linear dimensionality reduction of the high dimensional clinical

features performed with t-SNE, and labelled by distinct subpheno-

types manually identified with the aid of the low dimensional repre-

sentation. Patients who belong to two clusters are labelled with the

colours of both, one applied to the outline and the other to the

centre.
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Figure 2 Grey matter volumetric brain morphometry of verapamil responsiveness. A cluster of increased grey matter density cen-

tred at –4, –66, –20 in verapamil non-responders compared to responders is shown. The colour bar displays the t-statistic, beginning at t = 3.14

(uncorrected P = 0.001). The white line at t = 4.63 corresponds to FWE-corrected P = 0.05.

Figure 3 Similarity of grey matter locus to cerebellar network regions. Distribution plots of the modified Hausdorff distance between

the grey matter cluster shown in Fig. 2 and the cerebellar network parcellations of each of the 10 participants reported in Marek et al. (2018).

The shortest distance here indicates the greatest similarity.
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subphenotypes of episodic and chronic cluster, whose separ-

ability is shown to extend beyond temporal patterns.

The observation of a high-dimensional phenotypic struc-

ture is important for three reasons. First, a system of disease

classification where the distinction between phenotypes is de-

pendent on a single feature or the rigid application of any

pattern of features is unlikely to cohere with real-world prac-

tice. For example, here we show that patients who in lacking

both cranial autonomic symptoms and restlessness do not

meet strict International Classification of Headache

Disorders-3 criteria nonetheless closely resemble those that

do. This should motivate consideration of a high-dimension-

al, multi-factorial, ‘soft’ approach to disease classification as

an alternative to the simple, rigid system currently in place.

Second, if individual overt biomarkers cannot helpfully dis-

tinguish between subphenotypes of the disorder, as the fail-

ure to find any despite decades of intense research suggests,

then composite latent markers derived from multiple clinical

and physiological characteristics may be the only way to ar-

rive at an accurate picture of the clinical landscape. This

implies that far from a boutique, luxury approach, the com-

bination of machine learning with large-scale data may need

to become the standard for phenotyping cluster headache,

indeed any clinical disorder whose phenotypic structure is

confirmed to be complex. Third, as data of greater scale and

diversity may reveal more complex phenotypic patterns that

predict response to treatment with ever higher fidelity, ma-

chine phenotyping can be no different from intuitive clinical

phenotyping in being perpetually open to revision and elab-

oration. This creates a problem where comparisons between

putatively homogeneous groups are required—for example

in randomized controlled trials of new therapies—and

phenotypic heterogeneity complicates the task of patient

matching. Machine phenotyping can solve this by deriving a

hierarchically organized phenotypic tree a researcher can

prune at a level calibrated to the scale of available data. For

example, where a trial of relatively few patients can support

only a small number of phenotypic groups, a hierarchical

representation can be drawn from the more proximal

branches of the tree, ignoring finer heterogeneity tractable

only at large data scales.

We have shown that verapamil responsiveness is individu-

ally predictable from the patient’s clinical features, establish-

ing the first quantified benchmark for objective prediction of

therapeutic response in cluster headache. Though the rela-

tively modest predictive fidelity limits direct clinical applica-

tion, three strong conclusions can be drawn from this result.

First, a comprehensive, fully inclusive analysis, incorporating

all commonly available clinical and investigational character-

istics, at a data scale close to the maximum feasible in real

world practice enables us to rule with reasonable confidence

on the absence of strong predictive signals as well as their

presence. Modest predictive fidelity here tells us there is like-

ly to be little scope for improvement without more detailed

characterization of each patient, data on an even larger

scale, or both, motivating the wider use of finely granular

structured clinical records. Second, that verapamil respon-

siveness is distributed, dependent on many factors, tells us

the underlying mechanisms—causal, therapeutic, or both—

are likely to be heterogeneous, and looking for a simple

mechanistic explanation is unlikely to be rewarding. Third,

that detailed clinical features, taken together, are nonetheless

reasonably predictive, tells us no individually predictive

model could ignore them, and any inferential model con-

cerned with population level phenomena ought to take them

into account or risk covert confounding.

Our morphometric analysis shows the value of this ap-

proach in illuminating the biological basis of verapamil re-

sponsiveness. Although brain imaging studies conventionally

examine small cohorts of homogeneously imaged patients,

the inferences drawn from them may be limited by the het-

erogeneity of the patient population rather than of the imag-

ing instruments. Here we show that aggregating data on a

scale likely to be infeasible within a single imaging study can

yield informative spatial maps with potential mechanistic

implications. Provided that, as here, the instrumental hetero-

geneity is explicitly modelled, sensitivity may be reduced but

not confidence in significantly associated regions.

We found a region in the face-connected lobule VI of the

cerebellum with greater grey matter density in verapamil

non-responders compared with responders. Neuronal volt-

age-dependent calcium channels are concentrated in the cere-

bellar cortex where they govern neurotransmission between

climbing and parallel fibre efferents and Purkinje cells, the

sole output neuron of the cerebellar cortex. While parallel

Figure 4 Predictive model performance. ROC curves for

three models predicting verapamil response from missing data (light

blue), clinical features only (mid-blue), and clinical and imaging fea-

tures (dark blue). Dotted line represents chance prediction. Cross-

validated AUC values are shown in the legend.
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fibres from multiple granule cells synapse on distal Purkinje

cell dendrites, a single climbing fibre from the inferior olive

synapses proximally throughout a Purkinje cell arborization

and this one-to-one wiring exerts the primary influence on

Purkinje cell firing. P/Q-type channels on Purkinje cells ac-

count for the bulk of calcium-mediated current, and pre-syn-

aptic N-type channels contribute by initiating

neurotransmitter release; all are blocked by verapamil

(Diochot et al., 1995; Ishibashi et al., 1995).

Neuroanatomically, trigeminal nuclei project both directly

and indirectly to the inferior olive, which projects via climb-

ing fibres to Purkinje cells in lobule VI, located just posterior

to the primary fissure. This circuitry is evident from animal

tracing studies (Ham and Yeo, 1992) and cerebellar record-

ing after tactile stimulation of the face or electrical stimula-

tion of trigeminal nerve branches (Adrian, 1943; Cody and

Richardson, 1979). Human resting state functional MRI

studies demonstrate that lobules V and VI are functionally

connected to cerebral sensorimotor cortex and the cerebel-

lum is also organized topographically, with foot represented

anteriorly and hand and face more posteriorly (O’Reilly

et al., 2010; Buckner et al., 2011; Marek et al., 2018).

Trigeminal nociceptive stimulation results in activation in a

similar area of lobule VI (Mehnert et al., 2017). Finally,

both retrograde and anterograde tracing in monkeys has

shown direct connections between the deep cerebellar nuclei,

the target of Purkinje cell projections, and the hypothalamus

(Haines et al., 1990), a structure implicated in cluster head-

ache (May et al., 1999; Arkink et al., 2017).

These observations move us to propose that the effect of ver-

apamil in cluster headache may be at least in part dependent on

the reduction of calcium-dependent neurotransmission between

climbing fibres and Purkinje cells in the cerebellum, in a manner

that varies from patient to patient regionally as well as globally.

Individual global differences in the biophysical properties of the

calcium channel subtypes present at this synapse are likely to in-

fluence responsiveness, and the need to reduce neurotransmis-

sion substantially via calcium channel blockade may explain

why high doses of verapamil are typically needed. But the effect

of verapamil-induced reduction in firing is likely to be influ-

enced by regional variations in the cerebellar substrate that are

either constitutional or driven by the pathological process itself.

Patients where the substrate involved in facial nociception is

enlarged for either regional or global reasons may be more re-

sistant to verapamil, requiring doses that exceed tolerable levels.

This is what our data suggest.

A recent report of decreased fractional anisotropy affect-

ing the same region in migraineurs compared with controls

(Qin et al., 2019) indicates this area may be relevant for dis-

orders involving trigeminal nociception more broadly, not

only cluster headache. Note that calcium channels are homo-

genously distributed throughout the cerebellar cortex, and

thus unlikely to undergo regional change in response to any

systemically delivered drug. It is conceivable—though with-

out precedent or a clear biological mechanism—that a re-

gional change might arise from the interaction of

systemically delivered verapamil and local constitutionally

different activity specific to responders.

Figure 5 Importance of features from the clinical model. Highest ranking features from the model predicting verapamil responsiveness

from clinical data only, as ranked by the XGBoost frequency score. See Supplementary Table 1 for details of all modelled features. CCH = chron-

ic cluster headache; ECH = episodic cluster headache.
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A potential limitation of our imaging analysis is that ver-

apamil could conceivably have been effective in some non-

responders in whom side effects prevented the attainment of

an adequate dose. Nonetheless, this affected a small propor-

tion of patients (10% of non-responders and 5% of overall

cohort), and the inclusion of such non-responders would de-

crease the sensitivity for detecting a morphometric difference

between responders and non-responders rather than increase

the likelihood of a spurious finding. Since clinical treatment

decisions generally balance efficacy against side effects flex-

ibly for any given patient, it was appropriate to include all

patients who received verapamil in our analysis.

The addition of imaging features to predictive models

based on clinical data yielded only a marginal improvement

in fidelity. This may be an underestimate given that imaging

was available for only 47% of our cohort, and of clinical-

grade quality, dominated by anisotropic acquisitions.

Nonetheless, our use of imaging obtained from routine clin-

ical care is more representative of real world data. Our final

model performance (AUC = 0.689) is comparable to a re-

cent study predicting citalopram response in major depres-

sive disorder from clinical features obtained from a large

clinical trial; cross-validated AUC on the training set was

0.700 (Chekroud et al., 2016). Even where the data are

richer and the machine learning more flexible, model per-

formance to date remains similar to the performance

observed here (Sakellaropoulos et al., 2019). Predicting

treatment response remains a challenging task across medi-

cine, and will always be difficult when a disorder is of un-

known causation.

In summary, we have introduced machine phenotyping to

the study of cluster headache, revealing distinctive subpheno-

types of the disorder, and identifying an anatomical correlate

of responsiveness to verapamil that prompts a mechanistic

explanation for its effect in headache. Though our results re-

flect experience from a single tertiary care centre unlikely to

be wholly representative of the population, they are drawn

from a wide diversity of patients and are intended primarily

to establish what we believe is the correct approach to mod-

elling not just cluster but primary headache disorders as a

whole. Applying this same approach to data pooled across a

global, multicentre collaboration spanning multiple care lev-

els could potentially lead to a data-driven redefinition of

diagnostic criteria and predictive models with better general-

izing power. The continued evolution of machine learning

will no doubt cast further light on disease phenotype, patho-

physiology, and treatment: increased data scale and richness,

particularly for less common diseases such as cluster head-

ache, will be essential to maximizing the value of this new

approach.
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