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Abstract. We introduce a new cost function for the training of a neural network 
classifier in conditions of high class imbalance. This function, based on an 
approximate confusion matrix, represents a balance of sensitivity and specificity 
and is thus well suited to problems where cost functions such as the mean squared 
error and cross entropy are prone to overpredicting the majority class. The benefit 
of the new measure is shown on a set of common class-imbalanced datasets using 
the Matthews Correlation Coefficient as an independent scoring measure. 

1 Introduction 

Machine learning classification algorithms perform optimally on data that is balanced 
and evenly class-distributed. High levels of class imbalance are however found in 
many real-world datasets, including domains such as medical diagnosis where 
underprediction of the minority could lead to serious consequences [1]. This paper 
proposes a cost function for neural networks designed to better handle binary class-
imbalanced problems, even in cases in which the majority class outnumber the 
minority by ratios exceeding 100:1. The geometric mean (G-mean) is a composite 
measure that captures the trade-off between the avoidance of both false negatives 
(sensitivity) and false positives (specificity). The G-mean is, however, a counting 
measure and as such is unsuited as a cost function for learning models trained using 
gradient based methods. We introduce an approximate G-mean based on an 
approximated confusion matrix and derive its derivative for use in a backprop-trained 
feedforward neural network. We demonstrate the outperformance of this new cost 
function over standard ones on common class-imbalanced UCI datasets.  

2 Background and Motivation 

The majority of methods to handle class-imbalanced data sets either attempt to re-
sample the data in a way that leaves the dataset more balanced [2-4], or associate 
different costs to minority vs. majority misclassification errors so as to make the 
classifier more sensitive to the minority class [5-8].  

The best known of the former methods are oversampling and undersampling. 
Simple oversampling duplicates samples of the minority class, while undersampling 
randomly removes instances of the majority. Both methods are easy to implement, but 
the former can lead to overfitting while the latter can lead to a loss of important 
information. Undersampling also introduces unwanted nondeterminism into what is 
otherwise a deterministic learning process [2]. SMOTE [3] is a variant of 



oversampling that introduces synthetic examples of the minority class along line 
segments joining them to their nearest (minority class) neighbours [3]. Despite its 
benefits, some drawbacks still exist such as over-generalisation and variance [4]. 

The major difficulties in cost sensitive learning are that it may be hard to decide 
how much greater should be the cost of misclassifying a minority example [5], and 
exactly where in the learning process the cost should be applied. Nevertheless the 
method has been applied successfully in a wide range of applications. For example [6] 
presents several different approaches to achieving cost-sensitive neural networks by 
adding cost factors to either the learning rate or the output of the network, while [7] 
shows that dividing network outputs by the ‘class probability’ substantially improves 
identification success. However [8], which used a number of the 30 imbalanced UCI 
datasets used in this current work, found that cost sensitive learning was less 
successful than the manipulation of the decision threshold for minority cases. 

It is unlikely any one method will prove to be a panacea for the problem of class 
imbalance. However there is one approach that has been so far little investigated: the 
change—as opposed to the modification by class-dependent costs—of the cost 
function used in training to one more appropriate to class-imbalanced data sets. [9] 
explored the use of an approximated F-score for backpropagation training, comparing 
this to the use of mean squared error (MSE), but the derivative of the approximated 
measure was however somewhat complex and possibly liable to local minima, and as 
such its advantage (displayed in [9] for an image classification dataset with imbalance 
ratio (IR) of around 14) might not extend to cases of more severe imbalance.   

 

3 Methodology 

3.1 Why Use the G-mean? 

Many performance measures can be derived from a confusion matrix, including the F-
score used in [9] and the Matthews Correlation Coefficient (MCC) [10] (to be used as 
an independent scoring measure in the Results section below). We choose to use as 
our cost function a differential approximation to the G-mean 
 

G-mean = sqrt(
tp

(tp + fp)
×

tn
(tn + fp)

) 

 
(where tp, tn, fp, fn are the number of true positives, true negatives, false positives, 
and false negatives respectively). We pick the G-mean for two reasons: (1) this 
measure is considered a good one for imbalanced datasets, as highlighted in [11]; and 
(2) unlike the MCC (and F-score, as used in [9]) the G-mean allows for an 
approximated form with a relatively simple derivative. 

3.2 Computation of Weight Changes 

The computation of weight changes in our method starts with a pattern-by-pattern 
accumulation of an approximate confusion matrix, CMapx, which for pattern q, with 
network output y! ∈ [-1,+1] and true class label t! ∈ {-1,+1}, is incremented by  



∆CMapx q =
1
4

(1 − yq)(1 − tq) (1 + yq)(1 − tq)
(1 − yq)(1 + tq) (1 + yq)(1 + tq)

. 

 
The constructed CMapx can be used to calculate an approximated G-mean, GMN. We 
in practice choose to optimise the square of this quantity, 

 

GMN! =
1
4
×   

1 − ypp (1 − tp) 1 + ypp (1 + tp)

1 − tpp 1 + tpp
, 

 
on the basis that this choice will achieve the same goals as optimising GMN itself 
while resulting in a simpler derivative, given below,  
 

∂
∂yq
GMN2 =   

1+tq 1−ypp 1 − tp − 1 − tq 1+ypp 1+tp
16n1n2

 

 
(where n1 and n2 denote the numbers of examples in classes 1 and 2, respectively). 
This derivative can be used to calculate derivatives with respect to weights, and hence 
weight changes, via the chain rule of differentiation. We note that while the form of 
the derivative above is relatively simple, it does still imply a precomputation of the yp 
values in order to know the values of the summations, so that as in [9] each iteration 
of backpropagation involves two passes through the training set.   

 

3.3 Datasets 

The 30 chosen datasets were downloaded from the UCI repository [12], with class 
imbalance ratios ranging from 5.55 (dermatology-6) to 129.44 (abalone19), feature 
dimensions ranging from 6 (seven instances, e.g. car-good) to 41 (five instances, e.g. 
kddcup-guess_passwd_vs_satan), and numbers of examples ranging from 148 
(lymphography-normal-fibrosis) to 2935 (abalone19). Space precludes a full listing 
here of the datasets and their attributes, available from the authors on request. 

 

3.4 Experiment Design 

3.4.1 Data Preprocessing  

1) Initial training-testing k-fold split: Each dataset was shuffled and divided 
into five cross-folds, each allocating 20% of the examples to testing.  

2) Training-validation split: For each fold, the remaining 80% of the data was 
subdivided into 75% training and 25% validation, using stratified-sampling 
to ensure similar class distributions for training and validation. (Note that the 
separations for constructing the test sets were not stratified.) 

3) Standardisation: All inputs were standardised by subtracting the mean and 
dividing by the standard deviation for that input in the training dataset. 

 



3.4.2 Training and Testing 

Both the hidden and output activations were set as tanh and the output binarised with 
a decision threshold of 0. The nets used a single hidden layer with the number of 
nodes equal to the average of the number of inputs and outputs, trained using bold-
driver backpropagation. At each epoch the cost function was evaluated on the 
validation set and weights at the best performing epoch were stored for use in testing. 

3.4.3 Performance Comparison 

Competitor cost functions were evaluated using the MCC [10]. An MCC score of +1 
represents a perfect prediction, 0 either no better than random or all assigned to one 
class, and -1 an inverse prediction. In a binary setting the MCC is defined as 
 

MCC =
tp×tn − fp×fn

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
. 

 
More specifically, the methods were compared using the relative underperformance 
to the GMN-trained net (in relation to MCC), calculated as given below, 
 

𝜉ALT =
MCCALT −MCCGMN

MCCGMN
,   

 
where the subscript refers to the network’s cost function and ALT ∈ {RMSE, CE}. 
Underperformance was chosen instead of outperformance in order to avoid divide-by-
zero errors, as for several datasets the ALT cost functions gave zero MCC scores as 
all instances were assigned to the same class. In our observation the working range of 
𝜉ALT was from -1 (ALT score zero, GMN score > 0) to slightly above zero (ALT 
score slightly exceeding GMN score). An underperformance value of -1 will represent 
the strongest evidence in our test set for the superiority of GMN. 

 

4 Results 

Figure 1 shows the average competitor underperformances 𝜉ALT across five different 
(dataset shuffling and weight) initialisations as a function of  IR. (An MCC score for a 
run is based on the combined confusion matrix of all five folds, not on an average of 
each fold.) For IR < 20 all three cost functions behave similarly, but as the IR 
becomes more extreme there are more examples of clear superiority of GMN. In the 
most extreme example (abalone19), with an IR of 129.44, both the MSE and CE 
trained networks make no attempt to predict the minority class and thus achieve zero 
MCC scores, while in contrast GMN attains a positive MCC of 0.09±0.04. 

Though increasing IR generally leads to better relative performance of GMN, 
there are exceptions. One such is abalone-20_vs_8-9-10 (IR=72.69), for which both 
ALTs marginally outperform GMN. We investigated this case with an additional 55 
runs, discovering that even in such an apparently unfavourable case there may be 
benefits to the use of GMN, as evidenced in Figure 2. It can be seen there that while 



the two ALT MCC scores have a higher average there is much more variance, and in 
particular more instances for which both ALTs have an MCC of zero (all cases 
assigned to the majority class), and thus no discretionary power.  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 1: Underperformance (measured by MCC) of both MSE and CE relative 
to GMN, plotted against imbalance ratio (IR). GMN outperforms the competitor 

cost functions everywhere in the shaded region. 

 

 

 

 

 

 

 

 

Fig. 2: Abalone-20_vs_8-9-10 dataset out-of-sample scores across all random 
seeds/k-folds (300 total) for GMN, CE, and MSE cost functions. 

5 Discussion 

We have demonstrated the advantage of GMN, a newly proposed cost function based 
on an approximated G-mean, over the conventional cross entropy (CE) and MSE on 
30 imbalanced UCI datasets (IRs from 5.55 to 129.44). For IRs less than 20 the three 
cost functions performed similarly, but higher imbalances showed a clear benefit of 
using GMN. The GMN scores were also found to less sensitive to initial conditions. 

A number of avenues will be explored in future work. The approximated F-score 
of [9], which was tested only on a dataset of relatively low IR (around 14), will be 



implemented as a further competitor cost function to GMN, and tested on the same 30 
UCI datasets used here, to discover if the approximated F-score does indeed suffer 
from a problem of convergence to local optima for these more challenging cases. 

 Given that GMN has here shown its largest benefits in cases of very high IR, 
further test datasets with high imbalance ratios will be collected or generated (in the 
latter case either by oversampling a naturally occurring majority class or by the 
generation of synthetic data where the imbalance ratio can be controlled).     

In addition, the extension of GMN from binary classification problems to multi-
class could be examined. [11] have shown that existing approaches such as data 
resampling, believed to be effective in addressing the class imbalance problem, may 
in fact only be effective for two-class datasets. Lastly, the current GMN-based 
training method uses batched backpropagation which computes and sums the 
derivatives of all training patterns and updates once every epoch; however there is no 
reason why mini-batch training (as in [9]) could not be investigated, which could 
potentially provide quicker convergence and better accuracy on larger datasets. 
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